2011高考物理牛顿第二定律两类动力学问题
牛顿第二定律 两类动力学问题
题型二
建立“运动模型”解决 动力学问题
例 2 原地起跳时,先屈腿下蹲,然后突然蹬地,从开始 蹬地到离地是加速过程(视为匀加速),加速过程中重 心上升的距离为“加速距离”.离地后重心继续上 升,在此过程中重心上升的最大距离称为“竖直高 度”.某同学身高 1.8 m,质量 80 kg,在某一次运 动会上,他参加跳高比赛时“加速距离”为 0.5 m, 起跳后身体横着越过(背越式)2.15 m 高的横杆, 试估 算人的起跳速度 v 和起跳过程中地面对人的平均作 用力.(g 取 10 m/s2)
第 2 课时
牛顿第二定律
两类动力学问题
课前考点自清
一、牛顿第二定律 1.内容:物体加速度的大小跟作用力成 正比 ,跟物体的 质量成 反比 。加速度的方向与作用力方向 相同.
2.表达式: F=ma 3.适用范围
.
(1) 牛顿第二定律只适用于 惯性 参考系 ( 相对 地面静止或 匀速直线运动 运动的参考系). (2)牛顿第二定律只适用于宏观 物体 (相对于分 子、原子)、低速运动(远小于光速)的情况.
答案 C
题型互动探究
题型一 牛顿运动定律在动力学两类基本问题中的应用 例 1 科研人员乘气球进行科学考察,气球、座舱、压舱物 和科研人员的总质量为 990 kg.气球在空中停留一段时间 后,发现气球漏气而下降,及时堵住,堵住时气球下降 速度为 1 m/s,且做匀加速运动,4 s 内下降了 12 m,已 知气球安全着陆的速度为 2 m/s.为使气球安全着陆. 向舱 外缓慢抛出重 101 kg 的重物.若空气阻力和泄漏气体的 质量可忽略,重力加速度 g 取 9.89 m/s2,求抛掉重物后 气球达到安全着陆速度的时间.
【高考佐证 1】质量为 1 kg 的物体静止在水平面上, 物体与水平面之间的动摩擦因数为 0.2.对物体施加一 个大小变化、方向不变的水平拉力 F,使物体在水平 面上运动了 3t0 的时间.为使物体在 3t0 时间内发生的 位移最大,力 F 随时间的变化情况应该为下面四个图 中的 ( )
利用牛顿第二定律解决动力学问题
利用牛顿第二定律解决动力学问题动力学是物理学中研究物体受力运动规律的学科,而牛顿第二定律则是动力学中最重要的定律之一,它描述了一个物体所受力的效果。
本文将探讨如何利用牛顿第二定律解决动力学问题,并提供一些实际例子来加深读者对该定律的理解。
1. 牛顿第二定律的表达式牛顿第二定律可以通过以下公式来表达:F = ma其中,F代表物体所受合外力的大小,m表示物体的质量,a表示物体的加速度。
牛顿第二定律指出,物体所受合外力的方向与物体的加速度方向相同。
2. 加速度与力的关系根据牛顿第二定律的公式F = ma,我们可以看出,物体的加速度与所受合外力成正比,质量越大,加速度越小;质量越小,加速度越大。
同时,加速度与力的大小也成正比,当所受力增大时,加速度也会增大。
3. 计算物体受力问题的步骤(1)明确物体受力的方向和大小;(2)根据牛顿第二定律的公式F = ma,利用所给条件求得物体的质量和加速度;(3)利用牛顿第二定律的公式求解物体所受合外力的大小。
下面,我们通过几个实际例子来应用牛顿第二定律解决动力学问题:例子一:小车加速问题假设有一辆质量为500kg的小车,在一个水平路面上受到一个200N的向前的恒力作用。
问小车的加速度是多少?解答:根据牛顿第二定律公式F = ma,已知F = 200N,m = 500kg,代入公式可得:200N = 500kg * a解方程可得小车的加速度a = 0.4m/s²。
例子二:摩擦力问题一块质量为2kg的物体受到一个水平方向的力F = 10N,物体与地面之间的动摩擦系数为0.5。
问物体的加速度是多少?解答:首先,我们需要明确物体所受合外力。
在水平方向上,物体所受力包括推力和摩擦力。
推力F = 10N,摩擦力的大小可以通过动摩擦系数和物体所受重力来计算。
根据牛顿第二定律公式F = ma,我们可以得到以下方程:F - μmg = ma其中,μ为动摩擦系数,m为物体的质量,g为重力加速度9.8m/s²。
(复习指导)第3章第2节 牛顿第二定律、两类动力学问题含解析
第2节牛顿第二定律、两类动力学问题一、牛顿第二定律、单位制1.牛顿第二定律(1)内容物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比。
加速度的方向与作用力的方向相同。
(2)表达式a=Fm或F=ma。
(3)适用范围①只适用于惯性参考系(相对地面静止或做匀速直线运动的参考系)。
②只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况。
2.单位制(1)单位制由基本单位和导出单位组成。
(2)基本单位基本量的单位。
力学中的基本量有三个,它们分别是质量、时间、长度,它们的国际单位分别是千克、秒、米。
(3)导出单位由基本量根据物理关系推导出的其他物理量的单位。
二、超重与失重1.实重和视重(1)实重:物体实际所受的重力,与物体的运动状态无关,在地球上的同一位置是不变的。
(2)视重①当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为视重。
②视重大小等于弹簧测力计所受物体的拉力或台秤所受物体的压力。
2.超重、失重和完全失重的比较超重现象失重现象完全失重概念物体对支持物的压物体对支持物的压力物体对支持物的压1.两类动力学问题(1)已知物体的受力情况求物体的运动情况。
(2)已知物体的运动情况求物体的受力情况。
2.解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如下:1.思考辨析(正确的画“√”,错误的画“×”)(1)牛顿第二定律的表达式F=ma在任何情况下都适用。
(×)(2)物体只有在受力的前提下才会产生加速度,因此,加速度的产生要滞后于力的作用。
(×)(3)物理公式不仅确定了物理量之间的数量关系,同时也确定了物理量间的单位关系。
(√)(4)失重说明物体的重力减小了。
(×)(5)物体超重时,加速度向上,速度也一定向上。
(×)(6)研究动力学两类问题时,做好受力分析和运动分析是关键。
(√)2.(鲁科版必修1P134T3)在粗糙的水平面上,物体在水平推力作用下由静止开始做匀加速直线运动。
3.2牛二应用一:动力学的两类问题
3.2牛二应用一:动力学的两类基本问题一、学习目标会用牛顿第二定律分析和解决两类基本问题:已知受力情况求解运动情况,已知运动情况求解受力情况。
二、知识梳理1.已知力求运动:知道物体受到的作用力,应用牛顿第二定律求加速度,如果再知道物体的初始运动状态,应用运动学公式就可以求出物体的运动情况——任意时刻的位置和速度,以及运动轨迹。
2.已知运动求力:知道物体的运动情况,应用运动学公式求出物体的加速度,再应用牛顿第二定律,推断或者求出物体的受力情况。
3.两类基本问题的解题步骤:(1)确定研究对象,明确物理过程;(2)分析研究对象的受力情况和运动情况,必要时画好受力图和运动过程示意图;(3)根据牛顿第二定律和运动学公式列方程;合力的求解常用合成法或正交分解法;要特别注意公式中各矢量的方向及正负号的选择,最好在受力图上标出研究对象的加速度的方向;(4)求解、检验,必要时需要讨论。
三、典型例题1.有三个光滑斜轨道1、2、3,它们的倾角依次是60°,45°,30°,这些轨道交于O点.现有位于同一竖直线上的三个小物体甲、乙、丙分别沿这三个轨道同时从静止自由下滑,如图所示,物体滑到O点的先后顺序是()A.甲最先,乙稍后,丙最后B.乙最先,然后甲和丙同时到达C.甲、乙、丙同时到达D.乙最先,甲稍后,丙最后2.如图甲所示,为测定物体冲上粗糙斜面能达到的最大位移x与斜面倾角θ的关系,将某一物体每次以不变的初速率v0沿足够长的斜面向上推出,调节斜面与水平方向的夹角θ,实验测得x与斜面倾角θ的关系如图乙所示,g取10 m/s2,根据图象可求出()A.物体的初速率v0=3 m/sB.物体与斜面间的动摩擦因数μ=0.75C.取不同的倾角θ,物体在斜面上能达到的位移x的最小值x min=1.44 mD.当θ=45°时,物体达到最大位移后将停在斜面上3.我国歼-15舰载战斗机首次在“辽宁舰”上成功降落,有关资料表明,该战斗机的质量m=2.0v=80 m/s减小到零所用时间t=2.5 ×104 kg,降落时在水平甲板上受阻拦索的拦阻,速度从s.若将上述运动视为匀减速直线运动,求:该战斗机在此过程中(1)加速度的大小a;(2)滑行的距离x;(3)所受合力的大小F.4.如图所示,一质量为m =2kg 的物体静止在水平地面上,物体与水平地面间的动摩擦因数μ=0.2,现对物体施加一水平向右的恒定拉力F =12N ,取g =10m/s 2。
动力学的两类基本问题
解:(1)设8s末物体离a点的距离为s, s应为v-t图与横轴所围的 面积。则:
1 1 s 4 8m 4 4m 8m ,故物体在a点右侧8m处。- 2分 2 2
(2)设物体向右做匀减速直线运动的加速度为a1,则由v-t图得 a1=2 m/s2 ① -------------2分
③根据牛顿第二定律列方程,并求出物体的加速度.
④结合题目所给的物体运动的初始条件,选择运动学公式求出 所需的运动学量. ⑤必要时对结果进行讨论.
• 例1.一物体沿倾角为α的斜面以一定的初速度冲上光滑斜 面,, 则物体加速度为 (A ) • A、gsinα • C、2gsinα B、gtanα D、2 gtanα
根据牛顿第二定律,有 F mg ma1 ② ----------- 2分
设物体向左做匀加速直线运动的加速度为a2,则由v-t图得 a2=1m/s2 ③ ------------ 2分 ------- ------- 2分 ------ 1分 μ=0.05 根据牛顿第二定律,有 F mg ma2 ④ 解①②③④得:F=6N,---- 1分
③确定研究对象,对研究对象进行受力分析,并 画出物体受力示意图. ④根据平行四边形定则或正交分解法求解所需要 的物理量
例4.如图,顶端固定着小球的直杆固定在小车上,当小车向 右做匀加速运动时,球所受合外力的方向沿图中的( D A.OA方向 C.OC方向 B.OB方向 D.OD方向 )
例5.站在自动扶梯的水平踏板上,随扶梯斜向上匀减速运动, 如图所示。以下说法正确的是(CD ) A.人只受到重力和支持力的作用
Fy
F
N 370 Fx
a
F
370
f
mg
• 解: • (1)物体受力如图所示,据牛顿第二定律有: • Fx-f= ma ;(1分) FN+Fy-mg=0(1分) • 又:f=μ FN ;(1分) Fx= Fcos37°;Fy= Fsin37°
第2讲 牛顿第二定律 两类动力学问题
第2讲牛顿第二定律两类动力学问题考点1对牛顿第二定律的理解1.牛顿第二定律的性质2.合力、加速度、速度的关系(1)物体的加速度由所受合力决定,与速度无必然联系.(2)合力与速度夹角为锐角,物体加速;合力与速度夹角为钝角,物体减速.(3)a=ΔvΔt是加速度的定义式,a与v、Δv无直接关系;a=Fm是加速度的决定式.1.(多选)关于速度、加速度、合力的关系,下列说法正确的是(ABC)A.原来静止在光滑水平面上的物体,受到水平推力的瞬间,物体立刻获得加速度B.加速度的方向与合力的方向总是一致的,但与速度的方向可能相同,也可能不同C.在初速度为0的匀加速直线运动中,速度、加速度与合力的方向总是一致的D.合力变小,物体的速度一定变小解析:加速度与力同时产生、同时消失、同时变化,选项A正确;加速度的方向由合力方向决定,但与速度方向无关,选项B正确;在初速度为0的匀加速直线运动中,合力方向决定加速度方向,加速度方向决定末速度方向,选项C正确;合力变小,物体的加速度一定变小,但速度不一定变小,选项D错误.2.(2019·黑龙江哈尔滨考试)如图所示,一木块在光滑水平面上受到一恒力F作用而运动,前方固定一轻质弹簧,当木块接触弹簧后,下列判断正确的是(C)A.木块将立即做匀减速直线运动B.木块将立即做变减速直线运动C.在弹簧弹力大小等于恒力F时,木块的速度最大D.在弹簧处于最大压缩状态时,木块的加速度为零解析:对木块进行受力分析,接触弹簧后弹力不断增大,当弹力小于力F时,木块仍将加速运动,但加速度变小,A、B均错误.在弹簧弹力大小等于恒力F时,木块的加速度为0,速度最大,C正确.继续压缩弹簧,合力反向且增大,加速度向右不断增大,D错误.3.(多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则(BC)A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变解析:质点一开始做匀速直线运动,处于平衡状态,施加恒力后,则该质点所受的合外力为该恒力.①若该恒力方向与质点原运动方向不共线,则质点做曲线运动,质点速度方向与恒力方向不同,故A 错;②若F的方向某一时刻与质点运动方向垂直,之后质点做曲线运动,力与速度方向不再垂直,例如平抛运动,故B正确;③由牛顿第二定律可知,质点加速度方向总是与其所受合外力方向相同,C 正确;④根据加速度的定义,相等时间内速度变化量相同,而速率变化量不一定相同,故D错.考点2牛顿第二定律的瞬时性1.两种模型加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:2.求解瞬时加速度的一般思路 分析瞬时变化前后物体的受力情况⇒列牛顿第二定律方程⇒求瞬时加速度如图甲、乙所示,细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A 的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;剪断瞬间图甲中倾斜细线OA 与图乙中弹簧的拉力之比为________(θ角已知).[审题指导]A 球――→刚性绳弹力特点判定合力的方向―→加速度大小和方向B 球――→弹簧弹力特点判定合力的方向―→加速度大小和方向 【解析】 设两球质量均为m ,剪断水平细线瞬间,对A 球受力分析,如图(a)所示,球A 将沿圆弧摆下,故剪断水平细线瞬间,小球A 的加速度a 1方向沿圆周的切线方向向下,即垂直倾斜细线OA 向下.则有F T1=mg cos θ,F 1=mg sin θ=ma 1,所以a 1=g sin θ.水平细线剪断瞬间,B 球所受重力mg 和弹簧弹力F T2不变,小球B 的加速度a 2方向水平向右,如图(b)所示,则 F T2=mg cos θ,F 2=mg tan θ=ma 2,所以a 2=g tan θ.甲图中倾斜细线OA 与乙图中弹簧的拉力之比为F T1F T2=cos 2θ. 【答案】 见解析在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.1.(多选)如图所示,A 、B 两物块质量分别为2m 、m ,用一轻弹簧相连,将A 用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B 物块恰好与水平桌面接触而没有挤压,此时轻弹簧的伸长量为x .现将悬绳剪断,则下列说法正确的是( BD )A .悬绳剪断后,A 物块向下运动2x 时速度最大B .悬绳剪断后,A 物块向下运动3x 时速度最大C .悬绳剪断瞬间,A 物块的加速度大小为2gD .悬绳剪断瞬间,A 物块的加速度大小为32g 解析:剪断悬绳前,对物块B 受力分析,物块B 受到重力和弹簧的弹力,可知弹力F =mg .悬绳剪断瞬间,对物块A 分析,物块A的合力为F 合=2mg +F =3mg ,根据牛顿第二定律,得a =32g ,故C 错误,D 正确;弹簧开始处于伸长状态,弹力F =mg =kx ;物块A 向下压缩,当2mg =F ′=kx ′时,速度最大,即x ′=2x ,所以A 下降的距离为3x 时速度最大,故B 正确,A 错误.2.如图所示,在倾角θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m .物块A 静止在轻弹簧上面,物块B 用细线与斜面顶端相连,A 、B 紧挨在一起但A 、B 之间无弹力,已知重力加速度为g .某时刻将细线剪断,则细线剪断瞬间,下列说法错误的是( A )A .物块B 的加速度为12g B .物块A 、B 间的弹力为13mg C .弹簧的弹力为12mg D .物块A 的加速度为13g 解析:细线剪断瞬间,弹簧弹力不变,因而弹力F =mg sin30°=12mg ,选项C 正确;细线剪断后,物块A 、B 将共同沿斜面加速下滑,根据牛顿第二定律有3mg sin30°-F =3ma ,解得a =13g ,选项A 错误,选项D 正确;以物块B 为研究对象可知2mg sin30°-N =2ma ,解得N =13mg ,选项B 正确. 考点3 两类动力学问题1.解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图所示.2.两类动力学问题的解题步骤考向1已知受力求运动如图所示,质量为0.5 kg、0.2 kg的弹性小球A、B穿过一绕过定滑轮的轻绳,绳子末端与地面距离0.8 m,小球距离绳子末端6.5 m,小球A、B与轻绳的滑动摩擦力都为重力的0.5倍,设最大静摩擦力等于滑动摩擦力.现由静止同时释放A、B两个小球,不计绳子质量,忽略与定滑轮相关的摩擦力,g取10 m/s2.(1)释放A 、B 两个小球后,A 、B 的各自加速度?(2)小球B 从静止释放经多长时间落到地面?[审题指导] 本题力和运动分析是关键(1)由于f A >f B ,B 受滑动摩擦力,A 受静摩擦力,否则轻绳合力不为零.(2)由于m B g >f B ,B 球向下加速运动.(3)由于m A g >f B ,A 球向下加速运动,同时A 球带动轻绳共同运动.【解析】 (1)由题意知,B 与轻绳的最大摩擦力小于A 与轻绳的最大摩擦力,所以轻绳与A 、B 间的摩擦力大小均为km 2g .对B ,由牛顿第二定律得:m 2g -km 2g =m 2a 2,a 2=5 m/s 2. 对A ,由牛顿第二定律得:m 1g -km 2g =m 1a 1,a 1=8 m/s 2.(2)A 球与绳子一起向下加速运动,B 球沿绳子向下加速运动. 设经历时间t 1小球B 脱离绳子,小球B 下落高度为h 1,获得速度为v ,12a 1t 21+12a 2t 21=l =6.5 m ,t 1=1 s , h 1=12a 2t 21=2.5 m ,v =a 2t 1=5 m/s.小球B脱离绳子后在重力作用下匀加速下落,此时距地面高为h2,经t2落地,则:h2=6.5 m+0.8 m-2.5 m=4.8 m,h2=v t2+12gt22,t2=0.6 s,t=t1+t2=1.6 s.【答案】(1)8 m/s2 5 m/s2(2)1.6 s考向2已知运动求未知力放于水平地面的小车上,一细线一端系着质量为m 的小球a,另一端系在车顶,当小车做直线运动时,细线与竖直方向的夹角为θ,此时放在小车上质量M的物体b跟小车相对静止,如图所示,取重力加速度为g,下列说法正确的是()A.小车一定向左运动B.加速度的大小为g sinθ,方向向左C.细线的拉力大小为mg cosθ,方向沿线斜向上D.b受到的摩擦力大小为Mg tanθ,方向向左【解析】小球a和物体b、小车一起运动,加速度相同,对小球a受力分析,受重力和绳拉力,合力水平向左,可知加速度向左,但不知道速度方向,故小车可向左加速或向右减速,选项A错误;对a球由牛顿第二定律mg tanθ=ma,可得a=g tanθ,选项B错误;对a球分析,由合成法可得F T=mgcosθ,方向沿绳斜向上,选项C错误;对b物体分析可知由静摩擦力提供加速度,F f静=Ma=Mg tanθ,方向与加速度方向相同,且向左,选项D正确.【答案】 D考向3 两类动力学问题的综合应用(多选)两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则( )A .甲球用的时间比乙球长B .甲球末速度的大小大于乙球末速度的大小C .甲球加速度的大小小于乙球加速度的大小D .甲球克服阻力做的功大于乙球克服阻力做的功[审题指导] (1)由同一种材料制成→两球的密度相等.(2)受到的阻力与球的半径成正比→F f =kr .【解析】 设小球的密度为ρ,其质量m =4ρπr 33,设阻力与球的半径的比值为k ,根据牛顿第二定律得:a =(mg -kr )m =g -kr (4ρπr 33)=g -3k 4ρπr 2,由此可见,由m 甲>m 乙,ρ甲=ρ乙,r 甲>r 乙可知a 甲>a 乙,选项C 错误;由于两球由静止下落,两小球下落相同的距离则由x =12at 2,t 2=2x a ,t 甲<t 乙,选项A 错误;由v 2=2ax 可知,甲球末速度的大小大于乙球末速度的大小,选项B 正确;由于甲球质量大于乙球质量,所以甲球半径大于乙球半径,甲球所受的阻力大于乙球所受的阻力,则两小球下落相同的距离甲球克服阻力做的功大于乙球克服阻力做的功,选项D 正确.【答案】 BD3.如图甲所示,光滑平台右侧与一长为l=2.5 m的水平木板相接,木板固定在地面上,现有一小滑块以v0=5 m/s初速度滑上木板,恰好滑到木板右端停止.现将木板右端抬高,使木板与水平地面的夹角θ=37°,如图乙所示,让滑块以相同的初速度滑上木板,不计滑块滑上木板时的能量损失,g取10 m/s2,sin37°=0.6,cos37°=0.8.求:(1)滑块与木板之间的动摩擦因数μ;(2)滑块从滑上倾斜木板到滑回木板底端所用的时间t.解析:(1)设滑块质量为m,木板水平时滑块加速度为a,则对滑块有μmg=ma①滑块恰好到木板右端停止0-v20=-2al②解得μ=v202gl=0.5③(2)当木板倾斜时,设滑块上滑时的加速度为a1,最大距离为s,上滑的时间为t1,有μmg cosθ+mg sinθ=ma1④0-v20=-2a1s⑤0=v0-a1t1⑥由④⑤⑥式,解得t1=0.5 s⑦设滑块下滑时的加速度为a2,下滑的时间为t2,有mg sinθ-μmg cosθ=ma2⑧s =12a 2t 22⑨ 由⑧⑨式解得t 2=52s ,所以滑块从滑上倾斜木板到滑回木板底端所用的时间t =t 1+t 2=1+52s. 答案:(1)0.5 (2)1+52s解决动力学两类问题的两个关键点学习至此,请完成课时作业8。
高三物理一轮复习教学案牛顿第二定律
2011高三物理一轮复习教学案(13)--牛顿第二定律【学习目标】1.理解牛顿第二定律的内容,知道牛顿第二定律表达式的确切含义2.会用牛顿第二定律处理两类动力学问题【自主学习】一、牛顿第二定律1.牛顿第二定律的内容,物体的加速度跟 成正比,跟 成反比,加速度的方向跟 方向相同。
2.公式:3.理解要点:(1)F=ma 这种形式只是在国际单位制中才适用一般地说F =kma ,k 是比例常数,它的数值与F 、m 、a 各量的单位有关。
在国际单位制中,即F 、m 、a 分别用N 、kg 、m/s 2作单位,k=1,才能写为F=ma.(2)牛顿第二定律具有“四性”①矢量性:物体加速度的方向与物体所受 的方向始终相同。
②瞬时性:牛顿第二定律说明力的瞬时效应能产生加速度,物体的加速度和物体所受的合外力总是同生、同灭、同时变化,所以它适合解决物体在某一时刻或某一位置时的力和加速度的关系问题。
③独立性:作用于物体上的每一个力各自产生的加速度都遵从牛顿第二定律,而物体的实际加速度则是每个力产生的加速度的矢量和,分力和加速度的各个方向上的分量关系 F x =ma x也遵从牛顿第二定律,即:F y =ma y④相对性:物体的加速度必须是对相对于地球静止或匀速直线运动的参考系而言的。
4.牛顿第二定律的适用范围(1)牛顿第二定律只适用于惯性参考系(相对地面静止或匀速直线运动的参考系。
)(2)牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况。
二、两类动力学问题1.已知物体的受力情况求物体的运动情况根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma 求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
2.已知物体的运动情况求物体的受力情况根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。
牛顿第二定律的应用常见题型与解题方法(王老师原创)非常全面,经典..
牛顿第二定律的应用第一讲一、两类动力学问题1.1.已知物体的受力情况求物体的运动情况:已知物体的受力情况求物体的运动情况:已知物体的受力情况求物体的运动情况:根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma 求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
2.2.已知物体的运动情况求物体的受力情况:已知物体的运动情况求物体的受力情况:已知物体的运动情况求物体的受力情况:根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。
进而求出某些未知力。
求解以上两类动力学问题的思路,可用如下所示的框图来表示:求解以上两类动力学问题的思路,可用如下所示的框图来表示:第一类第一类 第二类第二类典型例题: 例1、如图所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m =2.0 kg ,物体与地面间的动摩擦因数μ=0.30. 求:求:(1)物体加速度a 的大小;的大小; (2)物体在t =2.0s 时速度v 的大小.例2、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由5.0m/s 增加到15.0m/s.(1)求列车的加速度大小.)求列车的加速度大小.(2)若列车的质量是1.01.0××106kg kg,机车对列车的牵引力是,机车对列车的牵引力是1.51.5××105N ,求列车在运动中所受的阻力大小.,求列车在运动中所受的阻力大小.二、正交分解法在牛顿第二定律中的应用例3、如图所示,质量为m 的人站在自动扶梯上,扶梯正以加速度a 向上减速运动,向上减速运动,a a 与水平方向的夹角为θ,求人所受到的支持力和摩擦力.求人所受到的支持力和摩擦力.三、整体法与隔离法在牛顿第二定律中的应用 物体的受力情况力情况 物体的加速度a 物体的运动情况动情况F 求内力:先整体后隔离求内力:先整体后隔离例4、如图所示,两个质量相同的物体1和2,紧靠在一起放在光滑的水平面上,如果它们分别受到水平推力F1和F2的作用,而且F1F1>>F2F2,则,则1施于2的作用力的大小为(的作用力的大小为( )A .F1B .F2C .(F1+F2F1+F2))/2D D..(F1-F2F1-F2))/2求外力:先隔离后整体求外力:先隔离后整体例5、如图所示,质量为m 的物块放在倾角为θ的斜面上,斜面的质量为M M ,斜面与物块无摩擦,地面光滑。
高考物理复习 牛顿第二定律两类动力学问题
第2课时 牛顿第二定律 两类动力学问题考纲解读 1.理解牛顿第二定律的内容、表达式及性质.2.应用牛顿第二定律解决瞬时问题和两类动力学问题.考点一 瞬时加速度的求解1.牛顿第二定律(1)表达式为F =ma .(2)理解:核心是加速度与合外力的瞬时对应关系,二者总是同时产生、同时消失、同时变化.2.两类模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.例1 如图1所示,A 、B 两小球分别连在轻绳两端,B 球另一端用弹簧固定在倾角为30°的光滑斜面上.A 、B 两小球的质量分别为m A 、m B ,重力加速度为g ,若不计弹簧质量,在绳被剪断瞬间,A 、B 两球的加速度大小分别为( )图1A .都等于g 2 B.g 2和0 C.g 2和m A m B ·g 2 D.m A m B ·g 2和g 2解析 当A 、B 球静止时,弹簧弹力F =(m A +m B )g sin θ,当绳被剪断的瞬间,弹簧弹力F 不变,对B 分析,则F -m B g sin θ=m B a B ,可解得a B =m A m B ·g 2,当绳被剪断后,球A 受的合力为重力沿斜面向下的分力,F 合=m A g sin θ=m A a A ,所以a A =g 2,综上所述选项C 正确. 答案 C[拓展题组]1.[瞬时加速度的求解]如图2所示,A 、B 球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是( )图2A.两个小球的瞬时加速度均沿斜面向下,大小均为g sin θB.B球的受力情况未变,瞬时加速度为零C.A球的瞬时加速度沿斜面向下,大小为2g sin θD.弹簧有收缩的趋势,B球的瞬时加速度向上,A球的瞬时加速度向下,瞬时加速度都不为零答案BC解析设弹簧的弹力大小为F,由平衡条件可知,F=mg sin θ,烧断细线的瞬间,弹簧弹力不变,故B球受力情况不变,加速度为0,B正确,A、D均错误;以A为研究对象,由牛顿第二定律可得:F+mg sin θ=ma A,解得:a A=2g sin θ,故C正确.2.[瞬时加速度的求解]在光滑水平面上有一质量为1 kg的物体,它的左端与一劲度系数为800 N/m的轻弹簧相连,右端连接一细线.物体静止时细线与竖直方向成37°角,此时物体与水平面刚好接触但无作用力,弹簧处于水平状态,如图3所示,已知sin 37°=0.6,cos 37°=0.8,重力加速度g取10 m/s2,则下列判断正确的是()图3A.在剪断细线的瞬间,物体的加速度大小为7.5 m/s2B.在剪断弹簧的瞬间,物体所受合外力为15 NC.在剪断细线的瞬间,物体所受合外力为零D.在剪断弹簧的瞬间,物体的加速度大小为7.5 m/s2答案 A解析对物体受力分析,由平衡条件可知,在剪断细线或弹簧前,绳上弹力大小为F T1=mgcos 37°=12.5 N,弹簧的弹力大小为F T2=mg tan 37°=7.5 N;在剪断细线的瞬间,细线上弹力突变为零,弹簧弹力不变,物体还受到地面竖直向上的支持力,该支持力与物体的重力平衡,所以物体所受的合力为7.5 N,加速度大小为7.5 m/s2,选项A对,C错;在剪断弹簧的瞬间,弹簧的弹力突变为零,绳子的弹力也消失,地面对物体竖直向上的支持力与物体重力平衡,物体的合外力为零,加速度也为零,选项B 、D 均错误.求解瞬时加速度问题时应抓住“两点”(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变.考点二 动力学中的图象问题1.动力学中常见的图象v -t 图象、x -t 图象、F -t 图象、F -a 图象等.2.解决图象问题的关键:(1)看清图象的横、纵坐标所表示的物理量及单位并注意坐标原点是否从零开始。
高考物理专题复习:牛顿第二定律 动力学两类问题
高考物理专题复习:牛顿第二定律动力学两类问题专题3.2 牛顿第二定律动力学两类问题【高频考点解读】1.理解牛顿第二定律的内容、表达式及性质.2.应用牛顿第二定律解决瞬时问题和两类动力学问题.【热点题型】题型一牛顿第二定律的理解例1.如图321所示,弹簧左端固定,右端自由伸长到O点并系住质量为m的物体,现将弹簧压缩到A点,然后释放,物体可以一直运动到B点。
如果物体受到的阻力恒定,则( )图321A.物体从A到O先加速后减速B.物体从A到O做加速运动,从O到B做减速运动C.物体运动到O点时,所受合力为零D.物体从A到O的过程中,加速度逐渐减小【提分秘籍】1.牛顿第二定律的五个特性2.合力、加速度、速度间的决定关系(1)物体所受合力的方向决定了其加速度的方向,只要合力不为零,不管速度是大是小,或是零,物体都有加速度,只有合力为零时,加速度才为零。
一般情况下,合力与速度无必然的联系。
(2)合力与速度同向时,物体加速运动;合力与速度反向时,物体减速运动。
(3)a =Δv Δt是加速度的定义式,a 与Δv 、Δt 无直接关系;a=Fm是加速度的决定式,a∝F,a∝1m。
【举一反三】(多选)关于速度、加速度、合外力之间的关系,正确的是( )A.物体的速度越大,则加速度越大,所受的合外力也越大B.物体的速度为零,则加速度为零,所受的合外力也为零C.物体的速度为零,但加速度可能很大,所受的合外力也可能很大D.物体的速度很大,但加速度可能为零,所受的合外力也可能为零解析:选CD 物体的速度大小与加速度大小及所受合外力大小无关,故C、D正确,A、B错误。
题型二牛顿第二定律的瞬时性例2、如图322所示,A、B两小球分别连在弹簧两端,B端用细线固定在倾角为30°的光滑斜面上。
A、B两小球的质量分别为m A、m B,重力加速度为g,若不计弹簧质量,在线被剪断瞬间,A、B两球的加速度分别为()图322A.都等于g2B.g2和0C.mA+m B2m Bg和0 D.0和mA+m B2m Bg【提分秘籍】1.两种模型加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:2.求解瞬时加速度的一般思路分析瞬时变化前后物体的受力情况⇒列牛顿第二定律方程⇒求瞬时加速度【举一反三】如图323所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,物块2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态。
高二物理《 牛顿第二定律简单运用》知识点总结
高二物理《牛顿第二定律简单运用》知识点总结
一、牛顿第二定律
1.内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比.加速度的方向跟作用力的方向相同;
2.表达式:F=ma
3. 对牛顿第二定律的理解
4.应用牛顿第二定律求瞬时加速度的技巧
在分析瞬时加速度时应注意两个基本模型的特点:
(1)轻绳、轻杆或接触面——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间;
(2)轻弹簧、轻橡皮绳——两端同时连接(或附着)有物体的弹簧或橡皮绳,特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.二、动力学两类基本问题
1.动力学两类基本问题
(1)已知受力情况,求物体的运动情况;
(2)已知运动情况,求物体的受力情况;
2.解决两类基本问题的方法
以加速度为“桥梁”,由运动学公式和牛顿运动定律列方程求解,具体逻辑关系如图:
3.解决动力学问题的技巧和方法
1.两个关键
(1)两类分析——物体的受力分析和物体的运动过程分析;
(2)一个“桥梁”——物体运动的加速度是联系运动和力的桥梁.
2.两种方法
(1)合成法:在物体受力个数2个或3个时,一般采用“合成法”;
(2)正交分解法:若物体的受力个数3个或3个以上时,则采用“正交分解法”。
高三物理 动力学两类基本问题
(1)空气阻力与小球重力大小的比值mfg; (2)小球从抛出到落到地面所经过的时间 t.
思路点拨:根据运动情况确定加速度利用牛顿第二定律结合运动中的受力情况求解. 规范解答:(1)从抛出到最高点,2a1h=v20(1 分) 代入数据求得 a1=12 m/s2(1 分) 根据牛顿第二定律:mg+f=ma1(1 分) mfg=0.2.(1 分) (2)上升过程所用时间 t1=va10=1 s(1 分) 下落过程加速度 a2=mgm-f=mg-m0.2mg=8 m/s2(1 分) 下落过程所用时间 t2,则有 h+H=12a2t22(1 分) 得 t2=2 s(1 分) 总时间 t=t1+t2=3 s.(2 分)
8s 3g.
答案:(1)0.5 (2)
8s 3g
考点二:连接体问题的应用
【例2】 (综合题)如图所示,倾角为θ的光滑斜面固 定在水平地面上,质量为m的物块A叠放在物体B 上,物体B的上表面水平.当A随B一起沿斜面下 滑时,A、B保持相对静止.求B对A的支持力N和 摩擦力f.
解析:当A随B一起沿斜面下滑时,物块A受到竖直向下的重力mg、B对A竖直向上的支 持力N和水平向左的摩擦力f的作用而一起做加速运动,如图(甲). 设B的质量为M,以A、B为整体,根据牛顿第二定律,有 (m+M)·gsin θ=(m+M)a,得a=gsin θ. 将加速度沿水平方向和竖直方向进行分解,如图(乙)所示,则ax=acos θ=gsin θcos θ, ay=asin θ=gsin2 θ
(1)小球的加速度;
(2)最初2 s内小球的位移.
解析:(1)小球在斜杆上受力分析如图所示. 垂直杆方向:Fcos θ=mgcos θ+N① 沿杆方向:Fsin θ-mgsin θ-f=ma② 其中:f=μN③ ①②③联立,并代入数据,得 a=0.4 m/s2. (2)最初 2 s 内的位移 s=12at2=0.8 m.
牛顿第二定律两类动力学问题
个系统处于静止状态;现将细绳剪断,将
物块a的加速度记为a1,S1和S2相对原
长的伸长量分别为Δl1和Δl2,重力加速
度大小为g,在剪断瞬间 ( )
A. a1=3g
B. a1=0
C. Δl1=2Δl2
D. Δl1=Δl2
[解析] [答案] AC
要点3 动力学的两类基本问题 1. 求解两类问题的思路,可用下面的 框图来表示:
【典题演示4】 设某舰载飞机质量为 m=2.5×104kg,着舰时初速度为v0=40m/s,若 飞机仅受空气及甲板阻力作用,在甲板上以 a0=0.8m/s2的加速度做匀减速运动,着舰过程 中航母静止不动. (1) 求空气及甲板对舰载飞机阻力的大小. (2) 飞机着舰后,若仅受空气及甲板阻力作用, 航母甲板至少多长才能保证飞机安全着舰?
练习:在光滑水平面上有一物块始终受水平 恒力F的作用而运动,在其正前方固定一个 足够长的轻质弹簧,如图所示,当物块与弹 簧接触后向右运动的过程中,下列说法正确 的是( )A.物块接触弹簧后即做减速 运动B.物块接触弹簧后先加速后减速 C.当弹簧处于压缩量最大时,物块的加速 度等于零D.当物块的速度为零时,它所受
基础梳理
1. 牛顿第二定律:物体的加速度跟所受的合 外力成正比,跟物体的质量成反比,加速度 的方向跟合外力方向相同. 2. 公式:F合=ma.含义是只要作用在物体上 的合外力不为零,物体就产生加速度,速度 就要变化. 3. 适用条件:只适用于宏观、低速运动的物 体,不适用于微观、高速运动的粒子;物体 的加速度必须是相对于地球静止或匀速直 线运动的参考系(惯性系)而言的.
【典题演示1】 如图所示,弹簧左端固定, 右端自由伸长到O点并系住物体m.现将 弹簧压缩到A点,然后释放,物体可以一直 运动到B点,如果物体受到的阻力恒定,则
高考物理 牛顿第二定律 两类动力学问题(含答案)
基础课时7牛顿第二定律两类动力学问题一、单项选择题1.关于力与运动的关系,下列说法正确的是()A.物体的速度不断增大,表示物体必受力的作用B.物体的位移不断增大,表示物体必受力的作用C.若物体的位移与时间的平方成正比,表示物体一定不受力的作用D.物体的速率不变,则其所受合力必为零解析物体的速度不断增大,表明物体有加速度,所以A正确;物体匀速运动也会导致位移增大,故B错误;位移与时间的平方成正比表明物体在做加速运动,所以C错误;若物体的速率不变,但速度方向改变,则物体仍然有加速度,合力不为零,故D错误。
答案 A2.(2016·广东珠海模拟)质量为1 t的汽车在平直公路上以10 m/s的速度匀速行驶,阻力大小不变。
从某时刻开始,汽车牵引力减少2 000 N,那么从该时刻起经过6 s,汽车行驶的路程是()A.50 m B.42 m C.25 m D.24 m解析汽车匀速运动时F牵=F f,当牵引力减小2 000 N时,即汽车所受合力的大小为F=2 000 N,由牛顿第二定律得F=ma,解得a=2 m/s2,汽车减速到停止所需时间t=va=5 s,汽车行驶的路程x=12v t=25 m,C正确。
答案 C3.一皮带传送装置如图1所示,皮带的速度v足够大,轻弹簧一端固定,另一端连接一个质量为m的滑块,已知滑块与皮带之间存在摩擦,当滑块放在皮带上时,弹簧的轴线恰好水平,若滑块放到皮带上的瞬间,滑块的速度为零,且弹簧正好处于自然长度,则当弹簧从自然长度到第一次达到最长这一过程中,滑块的速度和加速度的变化情况是()图1A.速度增大,加速度增大B.速度增大,加速度减小C.速度先增大后减小,加速度先增大后减小D.速度先增大后减小,加速度先减小后增大解析滑块在水平方向受向左的滑动摩擦力F f和弹簧向右的拉力F拉=kx,合力F合=F f-F拉=ma,当弹簧从自然长度到第一次达最长这一过程中,x 逐渐增大,拉力F拉逐渐增大,因为皮带的速度v足够大,所以合力F合先减小后反向增大,从而加速度a先减小后反向增大;滑动摩擦力与弹簧弹力相等之前,加速度与速度同向,滑动摩擦力与弹簧拉力相等之后,加速度便与速度方向相反,故滑块的速度先增大,后减小。
牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题
学案12 牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题一、概念规律题组1.下列对牛顿第二定律的表达式F =ma 及其变形公式的理解,正确的是( ) A.由F =ma 可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比B.由m =Fa 可知,物体的质量与其所受的合力成正比,与其运动的速度成反比C.由a =Fm 可知,物体的加速度与其所受的合力成正比,与其质量成反比D.由m =Fa可知,物体的质量可以通过测量经的加速度和它所受的合力而求出2.下列说法正确的是( )A .物体所受合力为零时,物体的加速度可以不为零B .物体所受合力越大,速度越大C .速度方向、加速度方向、合力方向总是相同的D .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同图13.如图1所示,质量为20 kg 的物体,沿水平面向右运动,它与水平面间的动摩擦因数为0.1,同时还受到大小为10 N 的水平向右的力的作用,则该物体(g 取10 m /s 2)( ) A .受到的摩擦力大小为20 N ,方向向左 B .受到的摩擦力大小为20 N ,方向向右 C .运动的加速度大小为1.5 m /s 2,方向向左 D .运动的加速度大小为0.5 m /s 2,方向向右 4.关于国秒单位制,下列说法正确的是( ) A .kg ,m /s ,N 是导出单位 B .kg ,m ,h 是基本单位C .在国际单位制中,质量的单位可以是kg ,也可以是gD .只有在国际单位制中,牛顿第二定律的表达式才是F =ma二、思想方法题组图25.(2011·淮南模拟)如图2所示,两个质量相同的物体1和2紧靠在一起,放在光滑水平面上,如果它们分别受到水平推力F 1和F 2的作用,而且F 1>F 2,则1施于2的作用力大小为( ) A .F 1 B .F 2 C .12(F 1+F 2) D .12(F 1-F 2)图36.如图3所示,在光滑水平面上,质量分别为m 1和m 2的木块A 和B 之下,以加速度a 做匀速直线运动,某时刻空然撤去拉力F ,此瞬时A 和B 的加速度a 1和a 2,则( ) A .a 1=a 2=0 B .a 1=a ,a 2=0C .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2aD .a 1=a ,a 2=-m 1m 2a一、对牛顿第二定律的理解矢量性公式F=ma是矢量式,任一时刻,F与a总同向瞬时性a与F对应同一时刻,即a为某时刻的加速度时,F为该时刻物体所受的合外力因果性F是产生加速度a的原因,加速度a是F作用的结果同一性有三层意思:(1)加速度a是相对同一个惯性系的(一般指地面);(2)F=ma中,F、m、a对应同一个物体或同一个系统;(3)F=ma中,各量统一使用国际单位独立性(1)作用于物体上的每一个力各自产生的加速度都满足F=ma(2)物体的实际加速度等于每个力产生的加速度的矢量和(3)力和加速度在各个方向上的分量也满足F=ma即F x=ma x,F y=ma y【例1】(2010·上海·11)将一个物体以某一速度从地面竖直向上抛出,设物体在运动过程中所受空气阻力大小不变,则物体()A.刚抛出时的速度最大B.在最高点的加速度为零C.上升时间大于下落时间D.上升时的加速度等于下落时的加速度[规范思维]【例2】(2009·宁夏理综·20)如图4所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()图4A.物块先向左运动,再向右运动B.物块向左运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零[规范思维][针对训练1] (2009·上海综合·7)图5如图5所示为蹦极运动的示意图.弹性绳的一端固定在O点,另一端和运动员相连.运动员从O点自由下落,至B点弹性绳自然伸直,经过合力为零的C点到达最低点D,然后弹起.整个过程中忽略空气阻力.分析这一过程,下列表述正确的是()①经过B点时,运动员的速率最大②经过C点时,运动员的速率最大③从C点到D点,运动员的加速度增大④从C点到D点,运动员的加速度不变A.①③B.②③C.①④D.②④二、动力学两类基本问题1.分析流程图2.应用牛顿第二定律的解题步骤(1)明确研究对象.根据问题的需要和解题的方便,选出被研究的物体.(2)分析物体的受力情况和运动情况.画好受力分析图,明确物体的运动性质和运动过程.(3)选取正方向或建立坐标系.通常以加速度的方向为正方向或以加速度方向为某一坐标轴的正方向.(4)求合外力F合.(5)根据牛顿第二定律F合=ma列方程求解,必要时还要对结果进行讨论.特别提醒(1)物体的运动情况是由所受的力及物体运动的初始状态共同决定的.(2)无论是哪种情况,加速度都是联系力和运动的“桥梁”.(3)如果只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般用正交分解法求其合力.如果物体做直线运动,一般把力分解到沿运动方向和垂直于运动方向;当求加速度时,要沿着加速度的方向处理力即一般情况不分解加速度;特殊情况下当求某一个力时,可沿该力的方向分解加速度.【例3】如图6图6所示,一质量为m的物块放在水平地面上.现在对物块施加一个大小为F的水平恒力,使物块从静止开始向右移动距离x后立即撤去F,物块与水平地面间的动摩擦因数为μ,求:(1)撤去F时,物块的速度大小;(2)撤去F后,物块还能滑行多远.【例4】(2010·安徽理综·22)图7质量为2 kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的v-t图象如图7所示.g取10 m/s2,求:(1)物体与水平面间的动摩擦因数μ;(2)水平推力F的大小;(3)0~10 s内物体运动位移的大小.[规范思维][针对训练2] (2009·江苏·13)航模兴趣小组设计出一架遥控飞行器,其质量m=2 kg,动力系统提供的恒定升力F=28 N.试飞时,飞行器从地面由静止开始竖直上升.设飞行器飞行时所受的阻力大小不变,g取10 m/s2.(1)第一次试飞,飞行器飞行t1=8 s时到达高度H=64 m,求飞行器所受阻力f的大小.(2)第二次试飞,飞行器飞行t2=6 s时遥控器出现故障,飞行器立即失去升力.求飞行器能达到的最大高度h.(3)为了使飞行器不致坠落到地面,求飞行器从开始下落到恢复升力的最长时间t3.【基础演练】1.(2011·海南华侨中学月考)在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下来的痕迹.在某次交通事故中,汽车的刹车线的长度是14 m,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g取10 m/s2,则汽车开始刹车时的速度为()A.7 m/s B.10 m/s C.14 m/s D.20 m/s2.(2011·吉林长春调研)竖直向上飞行的子弹,达到最高点后又返回原处,假设整个运动过程中,子弹受到的阻力与速度的大小成正比,则子弹在整个运动过程中,加速度大小的变化是()A.始终变大B.始终变小C.先变大后变小D.先变小后变大3.如图8甲所示,在粗糙水平面上,物体A在水平向右的外力F的作用下做直线运动,其速度—时间图象如图乙所示,下列判断正确的是()图8A.在0~1 s内,外力F不断增大B.在1~3 s内,外力F的大小恒定C.在3~4 s内,外力F不断增大D.在3~4 s内,外力F的大小恒定图94.(2009·广东理基·4)建筑工人用图9所示的定滑轮装置运送建筑材料,质量为70.0 kg的工人站在地面上,通过定滑轮将20.0 kg的建筑材料以0.500 m/s2的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g取10 m/s2)()A.510 N B.490 NC.890 N D.910 N图105.如图10所示,足够长的传送带与水平面间夹角为θ,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tanθ.则图中能客观地反映小木块的速度随时间变化关系的是()图116.(2011·福建福州质检)商场搬运工要把一箱苹果沿倾角为θ的光滑斜面推上水平台,如图11所示.他由斜面底端以初速度v0开始将箱推出(箱与手分离),这箱苹果刚好能滑上平台.箱子的正中间是一个质量为m的苹果,在上滑过程中其他苹果对它的作用力大小是()A.mg B.mg sinθC.mg cosθ D.0题号 1 2 3 4 5 6答案7.在某一旅游景区,建有一山坡滑草运动项目.该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m=80 kg,他从静止开始匀加速下滑,在时间t=5 s内沿斜面滑下的位移x=50 m.(不计空气阻力,取g=10 m/s2).问:(1)游客连同滑草装置在下滑过程中受到的摩擦力F f为多大?(2)滑草装置与草皮之间的动摩擦因数μ为多大?(3)设游客滑下50 m后进入水平草坪,试求游客在水平面上滑动的最大距离.【能力提升】图128.如图12所示,有一长度x=1 m、质量M=10 kg的平板小车静止在光滑的水平面上,在小车一端放置一质量m=4 kg的小物块,物块与小车间的动摩擦因数μ=0.25,要使物块在2 s内运动到小车的另一端,求作用在物块上的水平力F是多少?(g取10 m/s2)图139.质量为10 kg的物体在F=200 N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°,如图13所示.力F作用2 s后撤去,物体在斜面上继续上滑了1.25 s后,速度减为零.求:物体与斜面间的动摩擦因数μ和物体的总位移x.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)10.(2010.天星调研)图14如图14所示,长为L的薄木板放在长为L的正方形水平桌面上,木板的两端与桌面的两端对齐,一小木块放在木板的中点,木块、木板质量均为m,木块与木板之间、木板与桌面之间的动摩擦因数都为μ.现突然施加水平外力F在薄木板上将薄木板抽出,最后小木块恰好停在桌面边上,没从桌面上掉下.假设薄木板在被抽出的过程中始终保持水平,且在竖直方向上的压力全部作用在水平桌面上.求水平外力F的大小.学案12牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题【课前双基回扣】1.CD[牛顿第二定律的表达式F=ma表明了各物理量之间的数量关系,即已知两个量,可求第三个量,但物体的质量是由物体本身决定的,与受力无关;作用在物体上的合力,是由和它相互作用的物体作用产生的,与物体的质量和加速度无关.故排除A、B,选C、D.]2.D [由牛顿第二定律F =ma 知,F 合为零,加速度为零,由惯性定律知速度不一定为零;对某一物体,F 合越大,a 越大,由a =ΔvΔt知,a 大只能说明速度变化率大,速度不一定大,故A 、B 项错误;F 合、a 、Δv 三者方向一定相同,而速度方向与这三者方向不一定相同,故C 项错误,D 项正确.] 3.AD4.BD [所谓导出单位,是利用物理公式和基本单位推导出来的,力学中的基本单位只有三个,即kg 、m 、s ,其他单位都是由这三个基本单位衍生(推导)出来的,如“牛顿”(N)是导出单位,即1 N =1 kg·m/s 2(F =ma ),所以题中A 项错误,B 项正确.在国际单位制中,质量的单位只能是kg ,C 错误.在牛顿第二定律的表达式中,F =ma (k =1)只有在所有物理量都采用国际单位制时才能成立,D 项正确.]5.C [将物体1、2看做一个整体,其所受合力为:F 合=F 1-F 2,设质量均为m ,由第二定律得F 1-F 2=2ma ,所以a =F 1-F 22m以物体2为研究对象,受力情况如右图所示..由牛顿第二定律得F 12-F 2=ma ,所以F 12=F 2+ma =F 1+F 22.] 6.D [两物体在光滑的水平面上一起以加速度a 向右匀速运动时,弹簧的弹力F 弹=m 1a ,在力F 撤去的瞬间,弹簧的弹力来不及改变,大小仍为m 1a ,因此对A 来讲,加速度此时仍为a ;对B 物体,取向右为正方向,-m 1a =m 2a 2,a 2=-m 1m 2a ,所以只有D 项正确.]思维提升1.牛顿第二定律是一个实验定律,其公式也就不能像数学公式那样随意变换成不同的表达式.2.a =Δv Δt 是a 的定义式,a =Fm 是a 的决定式,a 虽可由a =Δv Δt进行计算,但a 决定于合外力F 与质量m .3.在牛顿运动定律的应用中,整体法与隔离法的结合使用是常用的一种方法. 4.对于弹簧弹力和细绳弹力要区别开.5.在牛顿运动定律的应用中,整体法与隔离法的结合使用是常用的一种方法,其常用的一种思路是:利用整体法求出物体的加速度,再利用隔离法求出物体间的相互作用力. 【核心考点突破】例1 A [最高点速度为零,物体受重力,合力不可能为零,加速度不为零,故B 项错.上升时做匀减速运动,h =12a 1t 21,下落时做匀加速运动,h =12a 2t 22,又因为a 1=mg +f m ,a 2=mg -f m,所以t 1<t 2,故C 、D 错误.根据能量守恒,开始时只有动能,因此开始时动能最大,速度最大,故A 项正确.][规范思维] 物体的加速度与合外力存在瞬时对应关系;加速度由合外力决定,合外力变化,加速度就变化. 例2 BC [由题意可知,当撤去外力,物块与木板都有向右的速度,但物块速度小于木板的速度,因此,木板给物块的动摩擦力向右,使物块向右加速,反过来,物块给木板的动摩擦力向左,使木板向右减速运动,直到它们速度相等,没有了动摩擦力,二者以共同速度做匀速运动,综上所述,选项B 、C 正确.][规范思维] 正确建立两物体的运动情景,明确物体的受力情况,进而确定加速度的大小方向,再进行运动状态分析.例3 (1) 2(F -μmg )x m (2)(Fμmg-1)x解析 (1)设撤去F 时物块的速度大小为v ,根据牛顿第二定律,物块的加速度 a =F -μmg m又由运动学公式v 2=2ax ,解得v = 2(F -μmg )xm(2)撤去F 后物块只受摩擦力,做匀减速运动至停止,根据牛顿第二定律,物块的加速度a ′=-μmg m =-μg 由运动学公式v ′2-v 2=2a ′x ′,且v ′=0解得x ′=(Fμmg-1)x[规范思维] 本题是已知物体的受力情况,求解运动情况,受力分析是求解的关键.如果物体的加速度或受力情况发生变化,则要分段处理,受力情况改变时的瞬时速度即是前后过程的联系量.多过程问题画出草图有助于解题.例4 (1)0.2 (2)6 N (3)46 m解析 (1)设物体做匀减速直线运动的时间为Δt 2、初速度为v 20、末速度为v 2t 、加速度为a 2,则a 2=v 2t -v 20Δt 2=-2 m/s 2①设物体所受的摩擦力为F f ,根据牛顿第二定律,有 F f =ma 2② F f =-μmg ③联立②③得μ=-a 2g=0.2④(2)设物体做匀加速直线运动的时间为Δt 1、初速度为v 10、末速度为v 1t 、加速度为a 1,则a 1=v 1t -v 10Δt 1=1 m/s 2⑤根据牛顿第二定律,有F +F f =ma 1⑥ 联立③⑥得F =μmg +ma 1=6 N(3)解法一 由匀变速直线运动位移公式,得x =x 1+x 2=v 10Δt 1+12a 1Δt 21+v 20Δt 2+12a 2Δt 22=46 m 解法二 根据v -t 图象围成的面积,得x =(v 10+v 1t 2×Δt 1+12×v 20×Δt 2)=46 m[规范思维] 本题是牛顿第二定律和运动图象的综合应用.本题是已知运动情况(由v -t 图象告知运动信息)求受力情况.在求解两类动力学问题时,加速度是联系力和运动的桥梁,受力分析和运动过程分析是两大关键,一般需列两类方程(牛顿第二定律,运动学公式)联立求解. [针对训练]1.B 2.(1)4 N (2)42 m (3)322s(或2.1 s)【课时效果检测】1.C 2.B 3.BC 4.B 5.D [m 刚放上时,mg sin θ+μmg cos θ=ma 1.当m 与带同速后,因带足够长,且μ<tan θ,故m 要继续匀加速.此时,mg sin θ-μmg cos θ=ma 2,a 2<a 1,故D 正确.]6.C [以箱子和里面所有苹果作为整体来研究,受力分析得,Mg sin θ=Ma ,则a =g sin θ,方向沿斜面向下;再以质量为m 的苹果为研究对象,受力分析得,合外力F =ma =mg sin θ,与苹果重力沿斜面的分力相同,由此可知,其他苹果给它的力的合力应与重力垂直于斜面的分力相等,即mg cos θ,故C 正确.]7.(1)80 N (2)315(3)100 3 m8.16 N解析 由下图中的受力分析,根据牛顿第二定律有F -F f =ma 物① F f ′=Ma 车②其中F f =F f ′=μmg ③由分析图结合运动学公式有x 1=12a 车t 2④x 2=12a 物t 2⑤x 2-x 1=x ⑥由②③解得a 车=1 m/s 2⑦ 由④⑤⑥⑦解得a 物=1.5 m/s 2所以F =F f +ma 物=m (μg +a 物)=4×(0.25×10+1.5) N =16 N. 9.0.25 16.25 m解析 设力F 作用时物体沿斜面上升的加速度大小为a 1撤去力F 后其加速度大小变为a 2,则: a 1t 1=a 2t 2①有力F 作用时,物体受力为:重力mg 、推力F 、支持力F N1、摩擦力F f1,如图所示.在沿斜面方向上,由牛顿第二定律可得: F cos θ-mg sin θ-F f1=ma 1②F f1=μF N1′=μ(mg cos θ+F sin θ)③撤去力F 后,物体受重力mg 、支持力F N2、摩擦力F f2,在沿斜面方向上,由牛顿第二定律得: mg sin θ+F f2=ma 2④F f2=μF N2′=μmg cos θ⑤联立①②③④⑤式,代入数据得:a 2=8 m/s 2 a 1=5 m/s 2 μ=0.25物体运动的总位移x =12a 1t 21+12a 2t 22=⎝⎛⎭⎫12×5×22+12×8×1.252 m =16.25 m 10.6μmg解析 设小木块离开薄木板之前的过程,所用时间为t ,小木块的加速度大小为a 1,移动的距离为x 1,薄木板被抽出后,小木块在桌面上做匀减速直线运动,所用时间为t ′,设其加速度大小为a 2,移动的距离为x 2,有 μmg =ma 1① μmg =ma 2②即有a 1=a 2=μg ③根据运动学规律有x 1=x 2,t =t ′④所以x 1=12μgt 2⑤x 2=12μgt 2⑥根据题意有x 1+x 2=12L ⑦解得t 2=L2μg⑧设小木块没有离开薄木板的过程中,薄木板的加速度为a ,移动的距离为x ,有 x =12at 2⑨ 根据题意有x =x 1+12L ⑩联立⑤⑧⑨⑩得a =3μg ⑪对薄木板,根据牛顿第二定律得F -3μmg =ma , 解得F =6μmg . 易错点评1.应用牛顿第二定律时,要注重对定律“四性”的理解.特别是“瞬时性”是常考要点之一;此外“独立性”也是解题中经常用到的.2.解决动力学两类基本问题的关键是找到加速度这一桥梁,除此之外,还应注意受力分析和运动过程分析,最好能画出受力分析图和运动过程草图.。
(完整版)两类动力学问题
牛顿运动定律的应用—-两类动力学问题一、引入本单元应以牛顿第二定律为核心,要求学生熟练掌握之.然而,关于物体的“惯性”和作用力与反作用力关系及判断,学生也是极易出错的,因此也要求熟练掌握.二、教学过程1.加深对牛顿第二定律的理解 ①对定律中三个关键字的理解“受”--—是指物体所受的力,而非该物体对其他物体所施加的力。
“合”———是指物体所受的所有外力的合力,而非某一分力或某些分力的合力“外"-——是指物体所受的外力,而非内力(即物体内部各部分间的相互作用力,如一列火车各车厢间的拉力).②牛顿第二定律确定了三个关系大小关系:a ∝mF,加速度的大小与物体所受的合外力成正比,与物体的质量成反比.方向关系:加速度的方向与合外力的方向相同.单位关系:F =kma 中,只有当公式两边的物理量均取国际单位制中的单位时,比例系数k 才等于 1,公式才可简化为 F 合=ma 。
③牛顿第二定律反映了加速度和力的五条性质同体性-—F 合、m 和a 都是相对于同一物体而言的.矢量性—-牛顿第二定律是一个矢量式,求解时应先规定正方向.独立性—-作用在物体上的每个力都将独立地产生各自的加速度,合外力的加速度即是这些加速度的矢量和.同时性——加速度随着合外力的变化而同时变化.瞬时性-—牛顿第二定律是一个瞬时关系式,它描述了合外力作用的瞬时效果.如果合外力时刻变化,则牛顿第二定律反映的是某一时刻加速度与力之间的瞬时关系.④力、加速度和速度的关系关于力、加速度和速度的关系,正确的结论是:加速度随力的变化而变化,但力(或加速度)和速度并没有直接的关系,其变化规律需根据具体情况分析。
例如,在简谐运动中,回复力、加速度最大时,振子的速度为零;而回复力、加速度为零时,振子的速度最大.2.什么样的问题是“牛顿第二定律"的应用问题(即物理问题的归类) 凡是求瞬时力及其作用效果的问题;判断质点的运动性质的问题(除根据质点运动规律判断外)都属“牛顿第二定律”的应用问题.动力学的两类基本问题即:① 由受力情况判断物体的运动状态;②由运动情况判断的受力情况解决这两类基本问的方法是,以加速度(a )为桥梁,由运动学公式和牛顿定律列方程求解。
牛顿第二定律两类动力学问题及答案解析
牛顿第二定律两类动力学问题知识点、两类动力学问题1. 动力学的两类基本问题第一类:已知受力情况求物体的运动情况。
第二类:已知运动情况求物体的受力情况。
2. 解决两类基本问题的方法以加速度为"桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图:山力求运动由运动求力考点n 对牛顿第二定律的理解1. 牛顿第二定律的“五个性质”2. 合力、如速度、速度的关系(1) 物体的加速度由所受合力决定,与速度无必然联系。
(2) 合力与速度夹角为锐角,物体力◎速;合力与速度夹角为钝角,物体减速。
A iz p(3) 3=——是加速度的定义式,a与厶无直接关系;a=-是加速度的决定式。
A t m跟进题组多角练透3. [应用牛顿第二定律定性分析]如图1所示,弹簧左端固定,右端自由伸长到0点并系住质量为刃的物体,现将弹簧压缩到力点,然后释放,物体可以一直运动到3点。
如果物体受到的阻力恒定,则( )乡....宀…乡I I • I乡"WWWjAAfV- :: 少〃〃〃〃〃〃〉//〃〉〃力〃A O 13图1A. 物体从力到0先如速后减速B. 物体从力到0做加速运动,从0到3做减速运动C. 物体运动到0点时,所受合力为零D. 物体从力到。
的过程中,如速度逐渐减小解析物体从力到0,初始阶段受到的向右的弹力大于阻力,合力向右。
随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大。
当物体向右运动至肋间菜点(设为点O )时,弹力减小到与阻力相等,物体所受合力为零,加速度为零,速度达到最大。
此随着物体继续向右运动,弹力继续减小,阻力大于弹力,合力方向变为向左。
至0点时弹力减为零,此后弹力向左且逐渐增大。
所以物体越过/点后,合力(加速度)方向向左且逐渐增大,由于加速度与速度反向,故物体做加速度逐渐增大的减速运动。
综合以上分析,只有选项A 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提示: 提示 : 牛顿第一定律是不受任何外力作用下的理想 化情况,无法用实验直接验证. 化情况,无法用实验直接验证.牛顿第一定律是以伽 利略的“ 理想实验” 为基础, 将实验结论经过科学 利略的 “ 理想实验 ” 为基础 , 抽象、归纳推理而总结出来的.因此, 抽象、归纳推理而总结出来的.因此,牛顿第一定律 是一种科学的抽象思维方法,它并不是实验定律. 是一种科学的抽象思维方法,它并不是实验定律.而 牛顿第二定律表示实际物体在所受外力作用下遵循 的规律,是实验定律. 的规律,是实验定律.牛顿第一定律有着比牛顿第二 定律更丰富的内涵, 定律更丰富的内涵 , 牛顿第一定律和牛顿第二定律 是地位相同的两个规律, 两者没有从属关系. 因此, 是地位相同的两个规律 , 两者没有从属关系 . 因此 , 牛顿第一定律并不是牛顿第二定律的特例. 牛顿第一定律并不是牛顿第二定律的特例.
热点聚焦
热点一 牛顿第二定律的“四性” 牛顿第二定律的“四性” 1.瞬时性: 1.瞬时性:牛顿第二定律表明了物体的加速度与物 瞬时性 体所受合外力的瞬时对应关系. 体所受合外力的瞬时对应关系.a为某一瞬时的加 速度, 即为该时刻物体所受的合外力, 速度,F即为该时刻物体所受的合外力,对同一物 体a与F的关系为瞬时对应. 的关系为瞬时对应. 2.矢量性:牛顿第二定律公式是矢量式,任一瞬间a 2.矢量性:牛顿第二定律公式是矢量式,任一瞬间a 矢量性 的方向均与F 的方向相同. 方向变化时, 的方向均与F合的方向相同.当F合方向变化时,a的 方向同时变化,且任意时刻两者均保持一致. 方向同时变化,且任意时刻两者均保持一致. 3.同一性: 3.同一性:牛顿第二定律公式中的三个物理量必须 同一性 是针对同一物体而言的; 是针对同一物体而言的;物体受力运动时必然只 有一种运动情形, 有一种运动情形,其运动状态只能由物体所受的 合力决定,而不能是其中的一个力或几个力. 合力决定,而不能是其中的一个力或几个力.
小球的加速度方向是先向下后向上, 答案 小球的加速度方向是先向下后向上,大小是先 变小后变大;速度方向始终竖直向下, 变小后变大;速度方向始终竖直向下,大小是先变大后 变小. 变小. 规律总结 很多非匀变速过程都要涉及应用牛顿第二定律进行过 程分析, 程分析,如“电磁感应部分导体棒获得收尾速度前的 过程”“机车起动获得最大速度之前的过程”等都属 过程”“机车起动获得最大速度之前的过程” ”“机车起动获得最大速度之前的过程 于这一问题.分析此类问题应注意以下几方面: 于这一问题.分析此类问题应注意以下几方面: (1)准确分析研究对象的受力情况,明确哪些力是恒力, (1)准确分析研究对象的受力情况,明确哪些力是恒力, 准确分析研究对象的受力情况 哪些力是变力,如何变化. 哪些力是变力,如何变化. (2)依据牛顿第二定律列方程,找到运动情况和受力情 (2)依据牛顿第二定律列方程, 依据牛顿第二定律列方程 况的相互制约关系,发现潜在状态(如平衡状态、 况的相互制约关系,发现潜在状态(如平衡状态、收尾 速度等),找到解题突破口. 速度等),找到解题突破口. ),找到解题突破口
题型2 题型2 牛顿第二定律的基本应用 (2008海南15)科研人员乘气球进行科学考察. (2008海南15)科研人员乘气球进行科学考察. 海南15)科研人员乘气球进行科学考察 【例2 】 气球、座舱、压舱物和科研人员的总质量为990 kg.气 气球、座舱、压舱物和科研人员的总质量为990 kg.气 球在空中停留一段时间后,发现气球漏气而下降, 球在空中停留一段时间后,发现气球漏气而下降,及时堵 住.堵住时气球下降速度为1 m/s,且做匀加速运动,4 s 且做匀加速运动,4 堵住时气球下降速度为1 m/s,且做匀加速运动 内下降了12 m.为使气球安全着陆 为使气球安全着陆, 内下降了12 m.为使气球安全着陆,向舱外缓慢抛出一定 的压舱物.此后发现气球做匀减速运动,下降速度在5 的压舱物.此后发现气球做匀减速运动,下降速度在5分 钟内减少了3 m/s.若空气阻力和泄漏气体的质量均可忽 钟内减少了3 m/s.若空气阻力和泄漏气体的质量均可忽 求抛掉的压舱物的质量. 略,重力加速度g=9.89 m/s2,求抛掉的压舱物的质量. 重力加速度g=9.89
题型探究
题型1 题型1 涉及牛顿第二定律的过程分析
如图1所示, 【例1 】 如图1所示,自由下落的小 球下落一段时间后,与弹簧接触, 球下落一段时间后,与弹簧接触,从 它接触弹簧开始, 它接触弹簧开始,到弹簧压缩到最短
图1
的过程中,小球的速度、加速度的变化情况如何? 的过程中,小球的速度、加速度的变化情况如何? 思维点拨 速度的变化取决于速度方向与加速度方 向的关系( 向的关系(当a与v同向时,v变大,当a与v反向时,v 同向时, 变大, 反向时, 变小),而加速度由合力决定,所以要分析v 变小),而加速度由合力决定,所以要分析v、a的变 ),而加速度由合力决定 化,必须先分析物体受到的合力的变化. 必须先分析物体受到的合力的变化.
力相等的位置,故物体在A 力相等的位置,故物体在A、O之间的运动应该是先 加速后减速,A选项正确,B选项不正确; 加速后减速,A选项正确,B选项不正确;O点的弹力为 ,A选项正确,B选项不正确 0,但摩擦力不是0,所以C选项不正确; 0,但摩擦力不是0,所以C选项不正确;从A到O的过程 但摩擦力不是0,所以 加速度先减小、后增大, 加速度先减小、后增大,故D选项错误. 选项错误. 答案 A
变式练习1 变式练习1
如图2所示,弹簧左端固定, 如图2所示,弹簧左端固定, 图2
右端自由伸长到O点并系住物 右端自由伸长到O 体m.现将弹簧压缩到A点,然 现将弹簧压缩到A 后释放, 后释放,物体一直可以运动到 B点,如果物体受到的阻力恒定,则 如果物体受到的阻力恒定, A.物体从A A.物体从A到O先加速后减速 物体从 B.物体从A B.物体从A到O加速运动,从O到B减速运动 物体从 加速运动, C.物体运动到O点时所受合力为0 C.物体运动到O点时所受合力为0 物体运动到 D.物体从A D.物体从A到O的过程加速度逐渐减小 物体从 首先有两个问题应清楚,物体在A 解析 首先有两个问题应清楚,物体在A点的弹力 大于物体与地面之间的阻力(因为物体能运动),物 大于物体与地面之间的阻力(因为物体能运动),物 ), 体在O点的弹力为0.所以在A 体在O点的弹力为0.所以在A、O之间有弹力与阻 0.所以在 ( )
第2课时 牛顿第二定律两类动力学问题 考点自清
一、牛顿第二定律 1.内容: 1.内容:物体加速度的大小跟作用力成 正比,跟物体的质 内容 相同. 量成 反比 .加速度的方向与 作用力方向 相同. 2.表达式: 2.表达式: F=ma . 表达式 3.适用范围 3.适用范围 (1)牛顿第二定律只适用于 参考系( (1)牛顿第二定律只适用于 惯性 参考系(相对地面静止或 的参考系). 匀速直线运动的参考系).
返回
二、两类动力学问题 1.已知物体的受力情况, 1.已知物体的受力情况,求物体的 运动情况 . 已知物体的受力情况 2.已知物体的运动情况, 2.已知物体的运动情况,求物体的受力情况 . 已知物体的运动情况 名师点拨 利用牛顿第二定律解决动力学问题的关键是利用加 速度的“桥梁”作用, 速度的“桥梁”作用,将运动学规律和牛顿第二定 律相结合,寻找加速度和未知量的关系, 律相结合,寻找加速度和未知量的关系,是解决这类 问题的思考方向. 问题的思考方向.
(1)明确研究对象.根据问题的需要和解题的方便, (1)明确研究对象.根据问题的需要和解题的方便, 明确研究对象
(3)选取正方向或建立坐标系, (3)选取正方向或建立坐标系,通常以加速度的方向 选取正方向或建立坐标系 为正方向或以加速度方向为某一坐标轴的正方向. 为正方向或以加速度方向为某一坐标轴的正方向. (4)求合外力F (4)求合外力F合. 求合外力 (5)根据牛顿第二定律F (5)根据牛顿第二定律F合=ma列方程求解,必要时Байду номын сангаас 根据牛顿第二定律 ma列方程求解, 列方程求解 要对结果进行讨论. 要对结果进行讨论. 特别提醒 1.物体的运动情况是由所受的力及物体运动的初始 1.物体的运动情况是由所受的力及物体运动的初始 状态共同决定的. 状态共同决定的. 2.无论是哪种情况,联系力和运动的“桥梁” 2.无论是哪种情况,联系力和运动的“桥梁”是加 无论是哪种情况 速度. 速度.
4.同时性:牛顿第二定律中F 4.同时性:牛顿第二定律中F、a只有因果关系而没 同时性 有先后之分, 发生变化时a同时变化, 有先后之分,F发生变化时a同时变化,包括大小和方 向. 交流与思考: 交流与思考:牛顿第一定律是不受任何外力作用下 的规律, 的规律,跟合外力为零情况下的牛顿第二定律的结 论是一致的, 论是一致的,所以可以将牛顿第一定律看做牛顿第 二定律的特例.这种说法是否正确?谈谈你的观点. 二定律的特例.这种说法是否正确?谈谈你的观点.
热点二
解答两类动力学问题的基本方法及步骤 加 速 度 a 运动情 况v0、v、 x、t
1.分析流程图 1.分析流程图 受 运动学 F合 力 公式 =ma 情 况 2.应用牛顿第二定律的解题步骤 2.应用牛顿第二定律的解题步骤 选出被研究的物体. 选出被研究的物体. (2)分析物体的受力情况和运动情况, (2)分析物体的受力情况和运动情况,画好受力分 分析物体的受力情况和运动情况 析图,明确物体的运动性质和运动过程. 析图,明确物体的运动性质和运动过程.
(2)牛顿第二定律只适用于 物体(相对于分子、 (2)牛顿第二定律只适用于 宏观 物体(相对于分子、 原子) 低速运动(远小于光速)的情况. 原子)、低速运动(远小于光速)的情况. 特别提醒 1.牛顿第二定律F=ma在确定a 1.牛顿第二定律F=ma在确定a与m、F的数量关系的 牛顿第二定律F=ma在确定 同时,也确定了三个量间的单位关系及a 同时,也确定了三个量间的单位关系及a和F间的 方向关系. 方向关系. 2.应用牛顿第二定律求a 2.应用牛顿第二定律求a时,可以先求F合,再求a,或 应用牛顿第二定律求 可以先求F 再求a 先求各个力的加速度,再合成求出合加速度. 先求各个力的加速度,再合成求出合加速度.