2020高二数学下学期期末考试试题 文3

合集下载

2020~2021学年度第二学期期末考试高二数学答案

2020~2021学年度第二学期期末考试高二数学答案

2021~2022学年度第一学期期末考试高二数学参考答案一、选择题:本大题共9小题,每小题4分,共36分.题号123456789答案BDADBBCCA二、填空题:本大题共6小题,每小题4分,共24分.试题中包含两个空的,每个空2分.10.111.1812.2214x y -=13.848(,,999-14.(],1-∞;0,,42πππ⎡⎤⎛⎫⎪⎢⎣⎦⎝⎭15.2214x y +=三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)解:依题意,设圆的方程为x 2+y 2+Dx +Ey +F =0,则代入圆的一般方程,193016442014970D E F D E F D E F ++++=⎧⎪++++=⎨⎪++-+=⎩………………………3分∴D =2-………………………4分E =4,………………………5分F =20-,………………………6分∴x 2+y 22x -4y +20-=0,………………………8分令x =0,可得24200y y +-=,………………………9分∴y =2-±……………………10分∴PQ =.……………………12分17.(本小题满分12分)解:(Ⅰ)设等比数列}{n a 的公比为q ,则41(1)151a q q -=-………………………2分4211134a q a q a =+………………………3分因为各项均为正数,所以2q =………………………4分解得11a =………………………5分故}{n a 的通项公式为12n n a -=………………………6分(Ⅱ)由(Ⅰ)可知12n n a -=,………………………7分*22()n n n b n a n n =⋅=⋅∈N ………………………8分所以1212222nn S n =⨯+⨯++⨯ ③231212222n n S n +=⨯+⨯++⨯ ④………………………9分③-④得1212222n n n S n +-=+++-⨯ ……………………10分11222n n n ++=--⨯1(1)22n n +=-⨯-……………………11分所以1(1)22n n S n +=-⨯+……………………12分18.(本小题满分12分)解:(Ⅰ)证明:连接1CD ,因为O ,P 分别是AC ,1AD 的中点,………………………2分所以1∥OP CD .………………………3分又因为OP ⊄平面11CC D D ,………………………4分1CD ⊂平面11CC D D ,………………………5分所以OP ∥平面11CC D D .………………………6分(Ⅱ)依题意,以D 为原点,分别以DA ,DC ,1DD 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,可得)0,0,2(A ,)2,0,0(1D ,)1,0,1(P ,)0,2,2(B ,)0,2,0(C ,)2,2,0(1C .………7分依题意)2,0,2(1-=BC ………………………8分设),,(z y x n =为平面BPC 的法向量………………………9分则⎪⎩⎪⎨⎧=⋅=⋅0PC n PB n 得)2,1,0(=n ……………………10分因此510==BC n ……………………11分所以,直线1BC 与平面BPC 所成角的正弦值为510.………………12分解:(Ⅰ)由题意知:c ……………………1分根据椭圆的定义得:122a =+,即2a =.……………………2分2431b =-=.……………………3分所以椭圆C 的标准方程为2214x y +=.……………………4分(Ⅱ)由题:①当直线l 的斜率不存在时,l的方程是x =.……………………5分此时||1AB =,||OP =,所以24=||=1||OP AB λ--.…………6分②当直线l 的斜率存在时,设直线l的方程为=(y k x ,…………7分11(,)A x y ,22(,)B x y .由⎪⎩⎪⎨⎧-==+3(1422x k y y x可得2222(41)1240k x x k +-+-=.显然0∆>,则212241x x k +=+,212212441k x x k -=+,...............8分因为11=(y k x,22=(y k x ,所以||AB ==221441k k +=+.....................9分所以22223||1k OP k ==+,……………………10分此时2222341==111k k k k λ+--++.……………………11分综上所述,λ为定值1-.……………………12分解:(Ⅰ)设{}n a 的公比为(0)q q >,由题意得324113541114242a q a q a q a q a q⎧=⎨=+⎩,………1分解得11212q a ⎧=⎪⎪⎨⎪=⎪⎩,………………………2分所以12nn a ⎛⎫= ⎪⎝⎭,………………………3分当2n ≥时,11122n n n n n nb n b S S b --+=-=-,………………………4分即11n n b b n n -=-,………………………5分∴{}nb n是首项为1的常数列,………………………6分所以1nb n=∴n b n =………………………7分(Ⅱ)设()()()212121(3)241112222n n n n n n b a n c b b n n +++++==-++,n *∈N ,……………8分()111212n n n n +=-⋅+………………………9分所以2231111111122222322(1)2n n n A n n +=-+-++-⨯⨯⨯⨯⨯+⨯ …………10分1112(1)2n n A n +=-+⨯……………………11分因为*n N ∈,所以12n A <.……………………12分。

潍坊市高二数学下学期期末考试试题含解析

潍坊市高二数学下学期期末考试试题含解析
5。 老师想要了解全班50位同学的成绩状况,为此随机抽查了10位学生某次考试的数学与物理成绩,结果列表如下:
学生










平均
标准差
数学
88
62
物理
75
63
若这10位同学的成绩能反映全班的成绩状况,且全班成绩服从正态分布,用实线表示全班数学成绩分布曲线,虚线表示全班物理成绩分布曲线,则下列正确的是( )
∴ 面 ,又 面 ,即有 ,故B正确
选项C中,点 运动到 中点时,即在△ 中 、 均为中位线
∴Q为中位线的交点
∴根据中位线的性质有: ,故C错误
选项D中,由于 ,直线 与 所成角即为 与 所成角:
结合下图分析知:点 在 上运动时
当 在 或 上时, 最大为45°
当 在 中点上时, 最小为
∴ 不可能是30°,故D正确
故选:B
【点睛】本题主要考查利用棱柱侧面展开图求解距离最值问题,意在考查学生对该知识的理解掌握水平.
8. 在桌面上有一个正四面体 .任意选取和桌面接触的平面的三边的其中一条边,以此边为轴将正四面体翻转至另一个平面,称为一次操作.如图,现底面为 ,且每次翻转后正四面体均在桌面上,则操作3次后,平面 再度与桌面接触的概率为( )
二、多项选择题:
9。 已知复数 的共轭复数为 ,且 ,则下列结论正确的是( )
A。 B。 虚部为 C。 D.
【答案】ACD
【解析】
【分析】
先利用题目条件可求得 ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.
【详解】由 可得, ,所以 , 虚部为 ;

陕西省咸阳市2020_2021学年高二数学下学期期末教学质量检测试题文含解析

陕西省咸阳市2020_2021学年高二数学下学期期末教学质量检测试题文含解析

某某省某某市2020-2021学年高二数学下学期期末教学质量检测试题文(含解析)一、选择题(共12小题,每小题5分,共60分).1.已知复数z=2a+1+(a﹣2)i(其中i是虚数单位)的实部与虚部相等,则实数a等于()A.﹣3B.﹣2C.2D.32.复数z=(3+4i)(1﹣i)(其中i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.命题“∀x∈R,e x﹣x+5≥0”的否定是()A.∀x∈R,lnx+x+5<0B.∃x∈R,e x﹣x+5≥0C.∀x∈R,e x﹣x+5>0D.∃x∈R,e x﹣x+5<04.已知f(x)=e x cos x,且f(x)的导函数为f'(x),则f'(0)=()A.﹣1B.0C.1D.e5.已知点A(﹣7,0),B(7,0),动点P满足|PA|+|PB|=16,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆6.在△ABC中,“sin A=”是“A=”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件7.如图,某系统使用A,B,C三种不同的元件连接而成,每个元件是否正常工作互不影响.当元件A正常工作且B,C中至少有一个正常工作时系统即可正常工作.若元件A,B,C正常工作的概率分别为0.7,0.9,0.8,则系统正常工作的概率为()A.0.196B.8.执行如图所示的程序框图,输出的s值为()A.B.C.2D.9.已知函数f(x)的导函数为f'(x),且y=f'(x)的图像如图所示,则下列结论一定正确的是()A.f(a)=0B.f(x)没有极大值C.x=b时,f(x)有极大值D.x=c时,f(x)有极小值10.已知命题p:∃x∈R,x﹣3>lnx,命题q:∀x∈R,x2>0,则()A.p∨q是假命题B.p∧q是真命题C.p∧(¬q)是真命题D.p∨(¬q)是假命题11.已知双曲线的左、右焦点分别为F1、F2,过F2作渐近线的垂线,垂足为P,O为坐标原点,且,则双曲线的离心率为()A.B.3C.D.12.若对于任意的0<x1<x2<a,都有,则a的最大值为()A.2e B.e C.1D.二、填空题(本大题共4小题,每小题5分,共20分)13.10X奖券中有4X“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回地抽取一X奖券,甲先抽,乙后抽,则在甲中奖的条件下,乙没有中奖的概率为.14.已知复数z=﹣4+2i,则|z|=.15.若复数,则共轭复数=.16.椭圆的焦点为F1,F2,上顶点为A,若,则m=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知函数f(x)=x3﹣3x+1.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的单调区间.18.已知抛物线C:y2=2px(p>0)的焦点为F,准线方程为x=﹣2.(Ⅰ)求抛物线C的方程;(Ⅱ)若直线l:y=x﹣2与抛物线C交于A,B两点,求|AB|.19.青少年近视问题已经成为我国面临的重要社会问题.对于这一问题,总书记连续作出重要指示,要求“全社会都要行动起来,共同呵护好孩子的眼睛,让他们拥有一个光明的未来”.某机构为了解使用电子产品对青少年视力的影响,随机抽取了200名青少年,调查他们每天使用电子产品的时间(单位:分钟),根据调查数据按(0,30],(30,60],(60,90],(90,120],(120,150],(150,180]分成6组,得到如下频数分布表:时间/分钟(0,30] (30,60] (60,90] (90,120] (120,150] (150,180] 频数12 38 72 46 22 10 记每天使用电子产品的时间超过60分钟为长时间使用电子产品.(Ⅰ)完成下面的列联表;非长时间使用电子产长时间使用电子产品合计品患近视人数100未患近视人数80 合计200 (Ⅱ)判断是否有99.9%的把握认为患近视与每天长时间使用电子产品有关.附:,其中n=a+b+c+d.P(K2≥k0)k020.已知椭圆(a>b>0)的中心是坐标原点O,左右焦点分别为F1、F2,设P是椭圆C上一点,满足PF2⊥x轴,,离心率为.(Ⅰ)求椭圆的标准方程;(Ⅱ)过椭圆左焦点且倾斜角为45°的直线l与椭圆C相交于A,B两点,求△AOB的面积.21.中国是世界上沙漠化最严重的国家之一,沙漠化造成生态系统失衡,可耕地面积不断缩小,对中国工农业生产和人民生活带来严重影响.随着综合国力逐步增强,西北某地区大力兴建防风林带,引水拉沙,引洪淤地,开展了改造沙漠的巨大工程,该地区于2017年投入沙漠治理经费2亿元,从2018年到2020年连续3年每年增加沙漠治理经费1亿元,近4年投入的沙漠治理经费x(亿元)和沙漠治理面积y(万亩)的相关数据如表所示:年份2017 2018 2019 2020x 2 3 4 5y26 39 49 54 (Ⅰ)通过绘制散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;(结果保留3位小数)(Ⅱ)建立y关于x的线性回归方程,并预测2025年该地区沙漠治理面积是否可突破100万亩.参考公式:相关系数,线性回归方程的斜率和截距的最小二乘法估计分别为,.参考数据:,,,,.22.已知函数f(x)=e x﹣(k+1)lnx+2sinα.(Ⅰ)若函数f(x)在(0,+∞)上单调递增,某某数k的取值X围;(Ⅱ)当k=0时,证明:函数f(x)无零点.参考答案一、选择题(共12小题,每小题5分,共60分).1.已知复数z=2a+1+(a﹣2)i(其中i是虚数单位)的实部与虚部相等,则实数a等于()A.﹣3B.﹣2C.2D.3解:因为复数z=2a+1+(a﹣2)i(其中i是虚数单位)的实部与虚部相等,所以2a+1=a﹣2,则a=﹣3.故选:A.2.复数z=(3+4i)(1﹣i)(其中i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:∵z=(3+4i)(1﹣i)=3﹣3i+4i﹣4i2=7+i,∴z在复平面内对应点的坐标为(7,1),位于第一象限.故选:A.3.命题“∀x∈R,e x﹣x+5≥0”的否定是()A.∀x∈R,lnx+x+5<0B.∃x∈R,e x﹣x+5≥0C.∀x∈R,e x﹣x+5>0D.∃x∈R,e x﹣x+5<0解:命题为全称命题,则命题的否定为∃x∈R,e x﹣x+5<0,故选:D.4.已知f(x)=e x cos x,且f(x)的导函数为f'(x),则f'(0)=()A.﹣1B.0C.1D.e解:因为f(x)=e x cos x,所以f'(x)=e x cos x﹣e x sin x,则f'(0)=e0cos0﹣e0sin0=1.故选:C.5.已知点A(﹣7,0),B(7,0),动点P满足|PA|+|PB|=16,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆解:由题可知,动点P是以A(﹣7,0),B(7,0),为焦点的椭圆,∵动点P满足|PA|+|PB|=16,∴2a=16,即a=8,c=7,∴b==,∴动点P的轨迹C的方程为:=1.故选:A.6.在△ABC中,“sin A=”是“A=”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件解:在△ABC中,由sin A=⇔A=,或.∴“sin A=”是“A=”的必要非充分条件,故选:B.7.如图,某系统使用A,B,C三种不同的元件连接而成,每个元件是否正常工作互不影响.当元件A正常工作且B,C中至少有一个正常工作时系统即可正常工作.若元件A,B,C正常工作的概率分别为0.7,0.9,0.8,则系统正常工作的概率为()A.0.196B.解:某系统使用A,B,C三种不同的元件连接而成,每个元件是否正常工作互不影响.当元件A正常工作且B,C中至少有一个正常工作时系统即可正常工作.元件A,B,C正常工作的概率分别为0.7,0.9,0.8,则系统正常工作的概率为:P×[1﹣(1﹣0.9)(1﹣0.8)]=0.686.故选:C.8.执行如图所示的程序框图,输出的s值为()A.B.C.2D.解:模拟程序的运行,可得:k=0,S=1,满足条件i<4,执行循环体,k=1,S=2,满足条件i<4,执行循环体,k=2,S=,满足条件i<4,执行循环体,k=3,S=,满足条件i<4,执行循环体,k=4,S=,此时,不满足条件i<4,退出循环,输出S的值为.故选:D.9.已知函数f(x)的导函数为f'(x),且y=f'(x)的图像如图所示,则下列结论一定正确的是()A.f(a)=0B.f(x)没有极大值C.x=b时,f(x)有极大值D.x=c时,f(x)有极小值解:由图象可知,设y=f′(x)的图象在原点与(c,0)之间的交点为(d,0),由图象可知f′(a)=f′(d)=f′(c)=0,当x<a时,f′(x)<0,f(x)单调递减,当a<x<d时,f′(x)>0,f(x)单调递增,当d<x<c时,f′(x)<0,f(x)单调递减,当c<x时,f′(x)>0,f(x)单调递增,所以x=a是f(x)的极小值点,x=d是函数f(x)的极大值点,x=c是f(x)的极小值点,x=b不是f(x)的极值点,f(a)=0不一定成立,故选:D.10.已知命题p:∃x∈R,x﹣3>lnx,命题q:∀x∈R,x2>0,则()A.p∨q是假命题B.p∧q是真命题C.p∧(¬q)是真命题D.p∨(¬q)是假命题解:命题p:根据函数y=x﹣3和函数y=lnx的图象,如图所示:即存在实数t﹣3>lnt成立,故命题p为真命题,命题q:当x=0时,∀x∈R,x2>0故命题q不成立,故q为假命题,故p∨q为真命题,p∧q为假命题,p∧(¬q)为真命题,p∨(¬q)为真命题,故选:C.11.已知双曲线的左、右焦点分别为F1、F2,过F2作渐近线的垂线,垂足为P,O为坐标原点,且,则双曲线的离心率为()A.B.3C.D.解:如图,不妨取渐近线为y=,焦点F2到渐近线y=的距离为b,则tan∠PF2O==,∴,则e===.故选:A.12.若对于任意的0<x1<x2<a,都有,则a的最大值为()A.2e B.e C.1D.解:∵,∴<,据此可得函数f(x)=在定义域(0,a)上单调递增,其导函数:f′(x)==﹣≥0在(0,a)上恒成立,据此可得:0<x≤1,即实数a的最大值为1.故选:C.二、填空题(本大题共4小题,每小题5分,共20分)13.10X奖券中有4X“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回地抽取一X奖券,甲先抽,乙后抽,则在甲中奖的条件下,乙没有中奖的概率为.解:∵10X奖券中有4X“中奖”奖券,甲先抽,并且中奖,∴此时还有9X奖券,其中3X为“中奖”奖券,∴在甲中奖的条件下,乙没有中奖的概率P=.故答案为:.14.已知复数z=﹣4+2i,则|z|=.解:∵复数z=﹣4+2i,∴.故答案为:.15.若复数,则共轭复数=3+i.解:∵=,∴.故答案为:3+i.16.椭圆的焦点为F1,F2,上顶点为A,若,则m=.解:由题意可得c=,b=m,又∵∠F1AF2=,可得∠F1AO=,可得tan∠F1AO==,解得m=.故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知函数f(x)=x3﹣3x+1.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的单调区间.解:(1)f(x)=x3﹣3x+1,所以f(0)=1,又f'(x)=3x2﹣3,所以k=f'(0)=﹣3,故切线方3x+y﹣1=0.(2)f'(x)=3x2﹣3>0,则x>1或x<﹣1;f'(x)=3x2﹣3<0,则﹣1<x<1.故函数在(﹣∞,﹣1)和(1,+∞)上单调递增.在(﹣1,1)上单调递减.18.已知抛物线C:y2=2px(p>0)的焦点为F,准线方程为x=﹣2.(Ⅰ)求抛物线C的方程;(Ⅱ)若直线l:y=x﹣2与抛物线C交于A,B两点,求|AB|.解:(Ⅰ)∵抛物线C的准线方程为x=﹣2,∴,得p=4,故抛物线C的方程为y2=8x.(Ⅱ)显然直线l:y=x﹣2过焦点F(2,0),联立,消去y可得x2﹣12x+4=0,设A(x1,y1),B(x2,y2),则x1+x2=12,故|AB|=x1+x2+p=12+4=16.19.青少年近视问题已经成为我国面临的重要社会问题.对于这一问题,总书记连续作出重要指示,要求“全社会都要行动起来,共同呵护好孩子的眼睛,让他们拥有一个光明的未来”.某机构为了解使用电子产品对青少年视力的影响,随机抽取了200名青少年,调查他们每天使用电子产品的时间(单位:分钟),根据调查数据按(0,30],(30,60],(60,90],(90,120],(120,150],(150,180]分成6组,得到如下频数分布表:时间/分钟(0,30] (30,60] (60,90] (90,120] (120,150] (150,180] 频数12 38 72 46 22 10 记每天使用电子产品的时间超过60分钟为长时间使用电子产品.(Ⅰ)完成下面的列联表;长时间使用电子产品合计非长时间使用电子产品患近视人数100未患近视人数80 合计200 (Ⅱ)判断是否有99.9%的把握认为患近视与每天长时间使用电子产品有关.附:,其中n=a+b+c+d.P(K2≥k0)k0解:(Ⅰ)由表中数据完成的列联表如下:长时间使用电子产品合计非长时间使用电子产品患近视人数20 100 120未患近视人数30 50 80 合计50 150 200 (Ⅱ)由列联表中的数据可得,,所以有99.9%的把握认为患近视与每天长时间使用电子产品有关.20.已知椭圆(a >b>0)的中心是坐标原点O,左右焦点分别为F1、F2,设P是椭圆C上一点,满足PF2⊥x 轴,,离心率为.(Ⅰ)求椭圆的标准方程;(Ⅱ)过椭圆左焦点且倾斜角为45°的直线l与椭圆C相交于A,B两点,求△AOB的面积.解:(Ⅰ)由题意P是椭圆C上一点,满足PF2⊥x 轴,,离心率为.知,,所以.(Ⅱ)过椭圆左焦点(﹣,0)且倾斜角为45°的直线l,可知,联立直线l和椭圆C,有,有,设A(x1,y1),B(x2,y2),x1+x2=,x1x2=,有,所以.21.中国是世界上沙漠化最严重的国家之一,沙漠化造成生态系统失衡,可耕地面积不断缩小,对中国工农业生产和人民生活带来严重影响.随着综合国力逐步增强,西北某地区大力兴建防风林带,引水拉沙,引洪淤地,开展了改造沙漠的巨大工程,该地区于2017年投入沙漠治理经费2亿元,从2018年到2020年连续3年每年增加沙漠治理经费1亿元,近4年投入的沙漠治理经费x(亿元)和沙漠治理面积y(万亩)的相关数据如表所示:年份2017 2018 2019 2020x 2 3 4 5y26 39 49 54 (Ⅰ)通过绘制散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;(结果保留3位小数)(Ⅱ)建立y关于x的线性回归方程,并预测2025年该地区沙漠治理面积是否可突破100万亩.参考公式:相关系数,线性回归方程的斜率和截距的最小二乘法估计分别为,.参考数据:,,,,.解:(Ⅰ)由题意可得,,,,所以,由于y与x的相关系数近似为0.998,说明y与x的线性相关程度相当高,从而可以用线性回归模型拟合y与x的关系;(Ⅱ)因为,,所以,又,,则,故y关于x的线性回归方程为,当x=10时,,所以2025年该地区沙漠治理面积可突破100万亩.22.已知函数f(x)=e x﹣(k+1)lnx+2sinα.(Ⅰ)若函数f(x)在(0,+∞)上单调递增,某某数k的取值X围;(Ⅱ)当k=0时,证明:函数f(x)无零点.解:(Ⅰ),x>0,∵函数f(x)在(0,+∞)上单调递增,∴在(0,+∞)上恒成立,即k+1≤xe x在(0,+∞)上恒成立,∵函数y=xe x在(0,+∞)上单调递增,且y∈(0,+∞),∴k+1≤0,即k≤﹣1,故实数k的取值X围是(﹣∞,﹣1].(Ⅱ)证明:当k=0时,,x>0,易知f'(x)为增函数,且,f'(1)=e﹣1>0,∴存在,使得f'(m)=0,得,故m=﹣lnm,当x∈(0,m)时,f'(x)<0,f(x)单调递减,当x∈(m,+∞)时,f'(x)>0,f(x)单调递增,∴,∴函数f(x)无零点.。

2020学年山东省济宁市高二下学期期末考试数学试题(解析版)

2020学年山东省济宁市高二下学期期末考试数学试题(解析版)

2020学年山东省济宁市高二下学期期末考试数学试题一、 单选题1. 已知集合{}2{0,1,2,3,4},|560A B x x x ==-+>,则A B =I ( )A .{0,1}B .{4}C .{0,1,4}D .{0,1,2,3,4}【答案】 C【解析】解一元二次不等式求得集合B ,由此求得两个集合的交集. 【详解】由()()256320x x x x -+=-->,解得2x <,或3x >,故{}0,1,4A B =I .故选C. 【点睛】本小题主要考查两个集合交集的运算,考查一元二次不等式的解法,属于基础题.2.计算52752C 3A +的值是( ) A .72 B .102 C .5070 D .5100【答案】B【解析】根据组合数和排列数计算公式,计算出表达式的值. 【详解】依题意,原式227576232354426010221C A ⨯=+=⨯+⨯⨯=+=⨯,故选B. 【点睛】本小题主要考查组合数和排列数的计算,属于基础题.3.设23342,log 5,log 5a b c -===,则a ,b ,c 的大小关系是( )A .a c b <<B .a b c <<C .b c a <<D .c b a <<【答案】A【解析】先根据1来分段,然后根据指数函数性质,比较出,,a b c 的大小关系. 【详解】由于203221-<=,而344log 5log 5log 41>>=,故a c b <<,所以选A. 【点睛】本小题主要考查指数函数的单调性,考查对数函数的性质,考查比较大小的方法,属于基础题.4.5(12)(1)x x ++的展开式中3x 的系数为( ) A .5 B .10 C .20 D .30【答案】D【解析】根据乘法分配律和二项式展开式的通项公式,列式求得3x 的系数. 【详解】根据乘法分配律和二项式展开式的通项公式,题目所给表达式中含有3x 的为()3322335512102030C x x C x x x ⋅+⋅=+=,故展开式中3x 的系数为30,故选D.【点睛】本小题主要考查二项式展开式通项公式的应用,考查乘法分配律,属于基础题.5.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,每天的正点率X 服从正态分布2(0.98)N σ,,且(0.97)0.005P X <=,则(0.970.99)P X <<=( )A .0.96B .0.97C .0.98D .0.99【答案】D【解析】根据正态分布的对称性,求得指定区间的概率. 【详解】由于0.98μ=,故(0.970.99)12(0.97)0.99P X P X <<=-⨯<=,故选D. 【点睛】本小题主要考查正态分布的对称性,考查正态分布指定区间的概率的求法,属于基础题.6.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭【答案】C【解析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果. 【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续. 7.已知函数()211x f x x +=-,其定义域是[)8,4--,则下列说法正确的是( ) A .()f x 有最大值53,无最小值B .()f x 有最大值53,最小值75C .()f x 有最大值75,无最小值 D .()f x 有最大值2,最小值75【答案】A【解析】试题分析:()2132()11x f x f x x x +==+⇒--在[)8,4--上是减函数()f x 有最大值5(8)3f -=,无最小值,故选A.【考点】函数的单调性.8.已知函数224,0()4,0x x x f x x x x ⎧+≥=⎨-<⎩,若()22()f a f a ->,则实数a 的取值范围是( ) A .(2,1)-B .(1,2)-C .(,1)(2,)-∞-+∞UD .(,2)(1,)-∞-+∞U【答案】A【解析】代入特殊值对选项进行验证排除,由此得出正确选项. 【详解】若0a =,()()()20212,00,120f f f -===>符合题意,由此排除C,D 两个选项.若1a =,则()()2211f f -=不符合题意,排除B 选项.故本小题选A.【点睛】本小题主要考查分段函数函数值比较大小,考查特殊值法解选择题,属于基础题.9.如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为36,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为二项式5(31)x -的展开式的各项系数之和.现从0,1,2,3,4,5中任取两个不同的数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )A .115B .215 C .15D .415【答案】B【解析】先求得二项式5(31)x -的展开式的各项系数之和为32.然后利用列举法求得在05:一共6个数字中任选两个,和为4的概率,由此得出正确选项. 【详解】令1x =代入5(31)x -得5232=,即二项式5(31)x -的展开式的各项系数之和为32.从0,1,2,3,4,5中任取两个不同的数字方法有:01,02,03,04,05,12,13,14,15,23,24,25,34,35,45共15种,其中和为36324-=的有04,13共两种,所以恰好使该图形为“和谐图形”的概率为215,故选B. 【点睛】本小题主要考查二项式展开式各项系数之和,考查列举法求古典概型概率问题,属于基础题.10.函数()21()ln 2x f x x e -=+-的图像可能是( )A .B .C .D .【答案】A【解析】分析四个图像的不同,从而判断函数的性质,利用排除法求解。

哈尔滨师范大学附属中学2019_2020学年高二数学下学期期末考试试题文含解析

哈尔滨师范大学附属中学2019_2020学年高二数学下学期期末考试试题文含解析
9. 若某10人一次比赛得分数据如茎叶图所示,则这组数据的中位数是( )
A。 82。5B。 83C。 93D. 72
【答案】A
【解析】
【分析】
由茎叶图得出所有数据并从小到大排序,由于偶数个,则中位数为中间两个数之和再除以2。
【详解】将这组数据从小到大排列为72,74,76,81,82,83,86,93,93,99,则这组数据的中位数是 ,即82。5
A. 3B. 4C。 6D。 7
【答案】B
【解析】
【分析】
类比二分法,将16人均分为两组,选择其中一组进行检测,再把认定的这组的8人均分两组,选择其中一组进行检测,以此类推,即可得解.
【详解】先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了1次检测。继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查,为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了2次检测。继续把认定的这组的4人均分两组,选其中一组2人的样本混合检查,为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了3次检测。选认定的这组的2人中一人进行样本混合检查,为阴性则认定是另一个人;若为阳性,则认定为此人,此时进行了4次检测。所以,最终从这16人中认定那名感染者需要经过4次检测。
【解析】
【分析】
分析图形中火柴数 变化是以3位首项2为公差的等差数列,由此可算第100个图形所用火柴棒数。
【详解】由图形可知,第一个图形用3个火柴,以后每一个比前一个多两个火柴,则第n个使用火柴为 ,则第100个图形所用火柴棒数为2×100+1=201.
故答案为:201
【点睛】本题考查合情推理的应用,属于基础题.
70 29 17 12 13 40 33 12 38 26 13 89 51 03

四川省雅安市始阳中学2020-2021学年高二数学文期末试题含解析

四川省雅安市始阳中学2020-2021学年高二数学文期末试题含解析

四川省雅安市始阳中学2020-2021学年高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 数列{a n}是等差数列,若<﹣1,且它的前n项和S n有最大值,那么当S n取的最小正值时,n=()A.11 B.17 C.19 D.21参考答案:C【考点】等差数列的性质.【分析】根据题意判断出d<0、a10>0>a11、a10+a11<0,利用前n项和公式和性质判断出S20<0、S19>0,再利用数列的单调性判断出当S n取的最小正值时n的值.【解答】解:由题意知,S n有最大值,所以d<0,因为<﹣1,所以a10>0>a11,且a10+a11<0,所以S20=10(a1+a20)=10(a10+a11)<0,则S19=19a10>0,又a1>a2>…>a10>0>a11>a12所以S10>S9>…>S2>S1>0,S10>S11>…>S19>0>S20>S21又S19﹣S1=a2+a3+…+a19=9(a10+a11)<0,所以S19为最小正值,故选:C.2. 已知函数f(x)=(e x+1)(ax+2a﹣2),若存在x∈(0,+∞),使得不等式f(x)﹣2<0成立,则实数a的取值范围是()A.(0,1)B.(0,)C.(﹣∞,1)D.(﹣∞,)参考答案:D 【考点】特称命题.【分析】由题意分离出a可得存在x∈(0,+∞),使得不等式a<+成立,由函数的单调性求出右边式子的最大值可得.【解答】解:由题意可得存在x∈(0,+∞),使得不等式(e x+1)(ax+2a﹣2)﹣2<0成立,故可得存在x∈(0,+∞),使得不等式(e x+1)(ax+2a﹣2)<2成立,即存在x∈(0,+∞),使得不等式a(x+2)<2+成立,即存在x∈(0,+∞),使得不等式a<+成立,又可得函数g(x)=+在x∈(0,+∞)单调递减,∴g(x)<g(0)=,∴实数a的取值范围为(﹣∞,)故选:D.3. 已知在△ABC中,角A,B,C分别为△ABC的三个内角,若命题p:sinA>sinB,命题q:A>B,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:C【考点】必要条件、充分条件与充要条件的判断.【分析】△ABC中,由正弦定理,a>b?sinA>sinB.而a>b?A>B.即可判断出结论.【解答】解:△ABC中,由正弦定理=k>0,a>b?ksinA>ksinB?sinA>sinB.而a>b?A>B.∴△ABC中,sinA>sinB?A>B,即p?q.∴p是q的充要条件.故选:C.4. 车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了8次试验,数据如下:设回归方程为,则点在直线x+45y-10=0的( )A.左上方 B.右上方 C.左下方 D.右下方参考答案:B5. 在△ABC中,a=15,b=10,sinA=,则sinB=()A.B.C.D.参考答案:D【考点】正弦定理.【分析】由正弦定理代入已知即可求值.【解答】解:由正弦定理可得:sinB===.故选:D.6. 如图所示的几何体中,四边形是矩形,平面⊥平面,已知,且当规定主(正)视图方向垂直平面时,该几何体的左(侧)视图的面积为.若分别是线段上的动点,则的最小值为( )A.1B.2C.3D.4参考答案:C略7. 如图,两座相距60m的建筑物AB,CD的高度分别为20m,50m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为()A.30°B.45°C.60°D.75°参考答案:B【考点】解三角形.【分析】过A作AE⊥CD,垂足为E,在Rt△ABD和Rt△ACE中使用勾股定理求出AD,AC的长,再在△ACD中使用余弦定理求出∠CAD.【解答】解:过A作AE⊥CD,垂足为E,则CE=50﹣20=30,AE=60,∴AD==20,AC==30,在△ACD中,由余弦定理得cos∠CAD==,∴∠CAD=45°.故选:B .8. 若在直线上存在不同的三个点,使得关于实数的方程有解(点不在上),则此方程的解集为()A. B. C. D .参考答案:D9. 设f(x)是定义在R上的函数,其导函数为f′(x),若f(x)+f′(x)>1,f(0)=2017,则不等式e x f(x)>e x+2016(其中e为自然对数的底数)的解集为()A.(﹣∞,0)∪(0,+∞)B.(0,+∞)C.D.(﹣∞,0)∪参考答案:B【考点】6A:函数的单调性与导数的关系.【分析】构造函数g(x)=e x f(x)﹣e x,则可判断g′(x)>0,故g(x)为增函数,结合g(0)=2016即可得出答案.【解答】解:设g(x)=e x f(x)﹣e x,则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,e x>0,∴g′(x)=e x[f(x)+f′(x)﹣1]>0,∴g(x)是R上的增函数,又g(0)=f(0)﹣1=2016,∴g(x)>2016的解集为(0,+∞),即不等式e x f(x)>e x+2016的解集为(0,+∞).故选B.10.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 对于下列语句:①?x∈Z,x2=3;②?x∈R,x2=2;③?x∈R,x2+2x+3>0;④?x∈R,x2+x﹣5>0,其中正确的命题序号是.参考答案:②③【考点】命题的真假判断与应用.【专题】常规题型.【分析】对各个选项依次加以判断:利用开平方运算的性质,得到命题①错误而命题②正确,通过配方,利用平方非负的性质,得到③正确,通过举反例得到④错误.【解答】解:对于①,若x2=3,x的取值只有±,说明“?x∈Z,x2=3”不成立,故①错;对于②,存在x=∈R,使x2=2成立,说明“?x∈R,x2=2”成立,故②正确;对于③,因为x2+2x+3=(x+1)2+2≥2>0,所以“?x∈R,x2+2x+3>0”成立,故③正确;对于④,当x=0时,式子x2+x﹣5=﹣5为负数,故“?x∈R,x2+x﹣5>0”不成立,故④错综上所述,正确的是②③两个命题故答案为:②③【点评】本题以开平方运算和二次函数恒成立为载体,考查了含有量词的命题真假的判断,属于基础题.12. 已知集合A={x||x﹣1|+|x+2|=3},B={x||x﹣a|<1},若A∩B=B,则实数a的取值范围是_________ .参考答案:13. 直线2ρcosθ=1与圆ρ=2cosθ相交的弦长为.参考答案:【考点】简单曲线的极坐标方程.【分析】化极坐标方程为直角坐标方程,然后由直线和圆的位置关系求得弦长.【解答】解:由2ρcosθ=1,可得直线方程为x=,由ρ=2cosθ,得ρ2=2ρcosθ,即x2+y2=2x,化为标准方程得(x﹣1)2+y2=1.如图,∴弦AB 的长为.故答案为:.14. 若函数f (x )=2x ﹣5,且f (m )=3,则m= .参考答案:3【考点】有理数指数幂的化简求值;函数的值. 【分析】由题意化为方程f (m )=2m ﹣5=3,从而解得. 【解答】解:由题意知, f (m )=2m﹣5=3, 解得,m=3; 故答案为:3.15. 若直线y=x+b 与曲线x=恰有一个公共点,则b的取值范围是。

2020年福建省三明市尤溪县第一高级中学高二数学文下学期期末试题含解析

2020年福建省三明市尤溪县第一高级中学高二数学文下学期期末试题含解析

2020年福建省三明市尤溪县第一高级中学高二数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若a,b,c为实数,下列结论正确的是()A.若a>b,c>d,则ac>bd B.若a<b<0,则a2>ab>b2C.若a<b<0,则D.若a<b<0,则参考答案:B【考点】不等式的基本性质.【专题】计算题;转化思想;定义法;不等式.【分析】根据不等式的基本性质,判断每个选项即可【解答】解:对于A:若a>0,b,c,d均小于0,则不正确,对于B:若a<b<0,则a2>ab>b2,正确,对于C:若a<b<0,则<,即<,故C不正确,对于D:若a<b<0,则a2>b2,则>,即>,故D不正确,故选:B.【点评】本题主要考查了不等式的基本性质,属于基础题2. 等差数列{an}中,a4=9,则前7项的和S7=()A.B.28 C.63 D.36参考答案:C考点:等差数列的前n项和.专题:等差数列与等比数列.分析:等差数列的性质可得:S7==7a4,即可得出.解答:解:由等差数列的性质可得:S7==7a4=7×9=63.故选:C.点评:本题考查了等差数列的性质,考查了推理能力与计算能力,属于中档题.3. 设是简单命题,则为真,是为真的A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件参考答案:A4. 设α,β是两个不同的平面,m是直线且m?α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件参考答案:B【考点】2L:必要条件、充分条件与充要条件的判断.【分析】m∥β并得不到α∥β,根据面面平行的判定定理,只有α内的两相交直线都平行于β,而α∥β,并且m?α,显然能得到m∥β,这样即可找出正确选项.【解答】解:m?α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;α∥β,m?α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”是“α∥β”的必要不充分条件.故选B.5. 复数的共轭复数是( )A. B. C. D.参考答案:B6. 若是两条异面直线,是两个不同平面,,,,则A.与分别相交B.与都不相交C.至多与中一条相交D.至少与中的一条相交参考答案:D7. 一元二次不等式的解集是( -1 ,3 ),则的值是()A. -2B. 2C.-5 D. 5参考答案:D8. 甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a﹣b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A.B.C.D.参考答案:D【考点】古典概型及其概率计算公式.【分析】本题是一个古典概型,试验包含的所有事件是任意找两人玩这个游戏,其中满足条件的满足|a﹣b|≤1的情形包括6种,列举出所有结果,根据计数原理得到共有的事件数,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,∵试验包含的所有事件是任意找两人玩这个游戏,共有6×6=36种猜字结果,其中满足|a﹣b|≤1的有如下情形:①若a=1,则b=1,2;②若a=2,则b=1,2,3;③若a=3,则b=2,3,4;④若a=4,则b=3,4,5;⑤若a=5,则b=4,5,6;⑥若a=6,则b=5,6,总共16种,∴他们“心有灵犀”的概率为.故选D.9. 已知==2,且它们的夹角为,则=()A.B.C.1 D.2参考答案:A【考点】平面向量数量积的运算.【分析】由条件进行数量积的运算即可求出的值,从而求出的值.【解答】解:根据条件:==12;∴.故选A.10. 已知数列的前n项和则的值为()A.80 B.40 C.20 D.10参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 若向量,,,则;参考答案:12. 下列命题中是真命题的是 .①x∈N, ;②所有可以被5整除的整数,末尾数字都是0;③“若m>0,则x2+x-m=0有实根”的逆否命题;④“若x2+y2≠0,则x,y不全为零”的否命题.参考答案:③④13. 比较大小:将三数从小到大依次排列为.参考答案:b<a<c略14. 圆心在直线y=﹣4x上,并且与直线l:x+y﹣1=0相切于点P(3,﹣2)的圆的方程为.参考答案:(x﹣1)2+(y+4)2=8【考点】圆的标准方程.【专题】计算题.【分析】设出圆心坐标,利用直线与圆相切,求出x的值,然后求出半径,即可得到圆的方程.【解答】解:设圆心O为(x,﹣4x) k op=k L=﹣1 又相切∴k op?k L=﹣1∴x=1∴O(1,﹣4)r==所以所求圆方程为(x﹣1)2+(y+4)2=8.故答案为:(x﹣1)2+(y+4)2=8.【点评】本题是基础题,考查圆的方程的求法,直线与圆的位置关系,考查计算能力.15. 若正四棱柱的底面边长为2,高为4,则异面直线与AD所成角的余弦值是________.参考答案:16. 已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的取值范围是________参考答案:(-∞,-3)∪(6,+∞)略17. 甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1h,乙船停泊时间为2h,则它们中的任意一艘都不需要等待码头空出的概率.参考答案:【考点】几何概型.【分析】建立甲先到,乙先到满足的条件,画出0≤x≤24且0≤y≤24可行域面积,求出满足条件的可行域面积,由概率公式求解即可.【解答】解:甲船停泊的时间是1h,乙船停泊的时间是2h,设甲到达的时刻为x,乙到达的时刻为y,则(x,y)全部情况所对应的平面区域为;若不需等待则x,y满足的关系为,如图所示;它们中的任意一艘都不需要等待码头空出的概率为P==.故答案为:.三、解答题:本大题共5小题,共72分。

2019-2020年高二下学期期末数学试卷(文科)含解析

2019-2020年高二下学期期末数学试卷(文科)含解析

2019-2020年高二下学期期末数学试卷(文科)含解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>04.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.45.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.58.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.0049.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=_______.12.函数y=的值域为_______.13.若P=﹣1,Q=﹣,则P与Q的大小关系是_______.14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于_______.15.已知函数则的值为_______.16.按程序框图运算:若x=5,则运算进行_______次才停止;若运算进行3次才停止,则x的取值范围是_______.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.2015-2016学年北京市东城区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)【考点】交集及其运算.【分析】先求出不等式x(x﹣2)<0的解集,即求出A,再由交集的运算求出A∩B.【解答】解:由x(x﹣2)<0得,0<x<2,则A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩B═{x|1<x<2}=(1,2),故选D.2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式an2=2+(n﹣1)×3=3n﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n2﹣a n﹣12=3,又∵a12=2,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0 C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>0【考点】四种命题的真假关系.【分析】注意判断区分∃和∀.【解答】解:A错误,因为,不存在x0∉ZB错误,因为C错误,x=3时不满足;D中,△<0,正确,故选D答案:D4.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.4【考点】导数的运算.【分析】先求原函数的导函数,再把x=1的值代入即可.【解答】解:∵y′=,∴y′|x=1==1.故选:A.5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;复数的基本概念.【分析】把a=﹣2代入复数,可以得到复数是纯虚数,当复数是纯虚数时,得到的不仅是a=﹣2这个条件,所以得到结论,前者是后者的充分不必要条件.【解答】解:a=﹣2时,Z=(22﹣4)+(﹣2+1)i=﹣i是纯虚数;Z为纯虚数时a2﹣4=0,且a+1≠0∴a=±2.∴“a=2”可以推出“Z为纯虚数”,反之不成立,故选A.6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】a=30.2>1,利用换底公式可得:b=log64=,c=log32=,由于1<log26<log29,即可得出大小关系.【解答】解:∵a=30.2>1,b=log64=,c=log32==,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.5【考点】函数奇偶性的性质;函数的值.【分析】利用奇函数的定义、函数满足的性质转化求解函数在特定自变量处的函数值是解决本题的关键.利用函数的性质寻找并建立所求的函数值与已知函数值之间的关系,用到赋值法.【解答】解:由f(1)=,对f(x+2)=f(x)+f(2),令x=﹣1,得f(1)=f(﹣1)+f(2).又∵f(x)为奇函数,∴f(﹣1)=﹣f(1).于是f(2)=2f(1)=1;令x=1,得f(3)=f(1)+f(2)=,于是f(5)=f(3)+f(2)=.故选:C.8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.004【考点】独立性检验的应用.【分析】本题考查的知识点是独立性检验公式,我们由列联表易得:a=11,b=34,c=8,d=37,代入K2的计算公式:K2=即可得到结果.【解答】解:由列联表我们易得:a=11,b=34,c=8,d=37则K2===0.6004≈0.60故选A9.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B 选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C 选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D 选项正确;故选C.二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=﹣1+i.【考点】复数相等的充要条件;复数代数形式的乘除运算.【分析】由条件利用两个复数相除,分子和分母同时乘以分母的共轭复数,计算求得结果.【解答】解:∵复数z满足(1﹣i)z=2i,则z====﹣1+i,故答案为:﹣1+i.12.函数y=的值域为{y|y≠2} .【考点】函数的值域.【分析】函数y===2+,利用反比例函数的单调性即可得出.【解答】解:函数y===2+,当x>1时,>0,∴y>2.当x<1时,<0,∴y<2.综上可得:函数y=的值域为{y|y≠2}.故答案为:{y|y≠2}.13.若P=﹣1,Q=﹣,则P与Q的大小关系是P>Q.【考点】不等式比较大小.【分析】利用作差法,和平方法即可比较大小.【解答】解:∵P=﹣1,Q=﹣,∴P﹣Q=﹣1﹣+=(+)﹣(+1)∵(+)2=12+2,( +1)2=12+2∴+>+1,∴P﹣Q>0,故答案为:P>Q14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于0.9.【考点】线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵==1.5,==3,∴这组数据的样本中心点是(1.5,3)把样本中心点代入回归直线方程,∴3=1.4×1.5+a,∴a=0.9.故答案为:0.9.15.已知函数则的值为﹣.【考点】函数的值;函数迭代.【分析】由题意可得=f(﹣)=3×(﹣),运算求得结果.【解答】解:∵函数,则=f(﹣)=3×(﹣)=﹣,故答案为﹣.16.按程序框图运算:若x=5,则运算进行4次才停止;若运算进行3次才停止,则x 的取值范围是(10,28] .【考点】循环结构.【分析】本题的考查点是计算循环的次数,及变量初值的设定,在算法中属于难度较高的题型,处理的办法为:模拟程序的运行过程,用表格将程序运行过程中各变量的值进行管理,并分析变量的变化情况,最终得到答案.【解答】解:(1)程序在运行过程中各变量的值如下表示:x x 是否继续循环循环前5∥第一圈15 13 是第二圈39 37 是第三圈111 109 是第四圈327 325 否故循环共进行了4次;(2)由(1)中数据不难发现第n圈循环结束时,经x=(x0﹣1)×3n+1:x 是否继续循环循环前x0/第一圈(x0﹣1)×3+1 是第二圈(x0﹣1)×32+1 是第三圈(x0﹣1)×33+1 否则可得(x0﹣1)×32+1≤244且(x0﹣1)×33+1>244解得:10<x0≤28故答案为:4,(10,28]三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.【考点】函数奇偶性的判断;函数的定义域及其求法.【分析】(1)使函数各部分都有意义的自变量的范围,即列出不等式组,解此不等式组求出x范围就是函数的定义域;(2)根据函数奇偶性的定义进行证明即可.【解答】解:(1)由题得,使解析式有意义的x范围是使不等式组成立的x范围,解得﹣1<x<1,所以函数f(x)的定义域为{x|﹣1<x<1}.(2)函数f(x)为奇函数,证明:由(1)知函数f(x)的定义域关于原点对称,且f(﹣x)=log a(﹣x+1)﹣log a(1+x)=﹣log a(1+x)+log a(1﹣x)=﹣[log a(1+x)﹣log a (1﹣x)]=﹣f(x)所以函数f(x)为奇函数.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假.【分析】先将命题p,q分别化简,然后根据若“p或q”为真命题,“p且q”为假命题,判断出p,q一真一假,分类讨论即可.【解答】解:由题意命题P:x2+mx+1=0有两个不等的实根,则△=m2﹣4>0,解得m>2或m<﹣2,命题Q:方程4x2+4(m+2)x+1=0无实根,则△<0,解得﹣3<m<﹣1,若“p或q”为真命题,“p且q”为假命题,则p,q一真一假,(1)当P真q假时:,解得m≤﹣3,或m>2,(2)当P假q真时:,解得﹣2≤m<﹣1,综上所述:m的取值范围为m≤﹣3,或m>2,或﹣2≤m<﹣1.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】先设箱底边长为xcm,则箱高cm,得箱子容积,再利用导数的方法解决,应注意函数的定义域.【解答】解:设箱底边长为xcm,则箱高cm,得箱子容积(0<x<60).(0<x<60)令=0,解得x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm320.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,可得曲线y=f(x)在x=1处的切线方程;(Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间;(Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.【解答】解:(Ⅰ)由已知,f'(1)=2+1=3,所以斜率k=3,又切点(1,2),所以切线方程为y﹣2=3(x﹣1)),即3x﹣y﹣1=0故曲线y=f(x)在x=1处切线的切线方程为3x﹣y﹣1=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)①当a≥0时,由于x>0,故ax+1>0,f'(x)>0,所以f(x)的单调递增区间为(0,+∞).﹣﹣﹣﹣﹣﹣②当a<0时,由f'(x)=0,得.在区间上,f'(x)>0,在区间上,f'(x)<0,所以,函数f(x)的单调递增区间为,单调递减区间为.﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由已知,转化为f(x)max<g(x)max.g(x)=(x﹣1)2+1,x∈[0,1],所以g (x)max=2由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,,所以2>﹣1﹣ln(﹣a),解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.【考点】数列的求和;数列的应用.【分析】(I)由{a n}伴随数列{b n}的定义可得前5项为1,1,1,2,3.(II)由a n=3n﹣1≤m,可得n≤1+log3m,m∈N*,分类讨论:当1≤m≤2时,m∈N*,b1=b2=1;当3≤m≤8时,m∈N*,b3=b4=…=b8=2;当9≤m≤20时,m∈N*,b9=b10=…=3;即可得出数列{a n}的伴随数列{b n}的前20项和.【解答】解:(Ⅰ)数列1,4,5,…的伴随数列{b n}的前5项1,1,1,2,3;(Ⅱ)由,得n≤1+log3m(m∈N*).∴当1≤m≤2,m∈N*时,b1=b2=1;当3≤m≤8,m∈N*时,b3=b4=…=b8=2;当9≤m≤20,m∈N*时,b9=b10=…=b20=3.∴b1+b2+…+b20=1×2+2×6+3×12=50.2016年9月9日。

新疆2020年高二数学第二学期期末模拟考试卷(三)

新疆2020年高二数学第二学期期末模拟考试卷(三)

范文新疆2020年高二数学第二学期期末模拟考试卷(三)1/ 7新疆高二第二学期期末模拟考试卷(三)(考试时间 120 分钟满分 150 分)一、选择题(共 12 道小题,每题 5 分,共 60 分) 1.已知集合 A={x|x2﹣1≥0},B={x||x|=1},则A∩B=()A.{x|x≥1 或x≤﹣1} B.{x|﹣1≤x≤1} C.{﹣1,1}D.? 2.复数 z= ,则 z2 的虚部是() A.1 B.﹣1 C.i D.0 3.已知命题 p:3≥3,q:3>4,则下列判断正确的是() A.p∨q 为真,p∧q 为真,¬p 为假 B.p∨q 为真,p∧q 为假,¬p 为真 C.p∨q 为假,p∧q 为假,¬p 为假 D.p∨q 为真,p∧q 为假,¬p 为假 4.执行如图所示的程序框图,若输出的 S=88,则判断框内应填入的条件是() A.k>7 B.k>6 C.k>5 D.k>4 5.若 x,y 满足约束条件,则 z=x﹣y 的最小值是() A.﹣3 B.0 C. D.3 6.某几何体的三视图如图所示,则该几何体的体积是()A. B.2π C. D. 7.已知函数 y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则() A.ω=1,φ= B.ω=1,φ=﹣ C.ω=2,φ= D.ω=2,φ=﹣ 8.(ex+2x)dx 等于() A.1 B.e﹣1 C.e D.e+1 9.在等差数列{an}中,已知 a4+a8=16,则该数列前 11 项和 S11=() A.58 B.88 C.143 D.176 10.过椭圆 + =1(a>b>0)的左焦点 F1 作 x 轴的垂线交椭圆于点 P,F2 为右焦点,若∠F1PF2=60°,则椭圆的离心率为()A. B. C. D. 11.A、B、C、D、E 共 5 人站成一排,如果 A、B 中间隔一人,那么排法种数有() A.60 B.36 C.48 D.24 12.在区间(0,)上随机取一个数 x,则事件“sinx ”发生的概率为()A. B. C. D.3/ 713.设 F1,F2 是双曲线 =1 的两个焦点,P 在双曲线上,当△F1PF2 的面积为 2 时,的值为() A.2 B.3 C.4 D.=0.95x+a,以此预测当 x=2 时,y= . 17.已知 M(2,5),N(3,﹣2),点P 在直线上,且满足 =3 .则点 P 的坐标为. 18.已知球面上有 S,A,B,C 四点,且SA⊥平面 ABC,∠ABC=90°,SC=2.则该球的表面积为. 19.已知函数 f(x)=x3+x,对任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0 恒成立,则 x 的取值范围为.三、解答题(共 70 分) 20.已知△ABC 中,角 A,B,C 所对的边分别是 a,b,c,且 2(a2+b2﹣c2)=3ab;(1)求;(2)若 c=2,求△ABC 面积的最大值. 21.已知数列{an}的前 n 项和为 Sn,且an 是 Sn 与 2 的等差中项,数列{bn}中,b1=1,点 P(bn,bn+1)在直线 x﹣y+2=0 上.(1)求 a1 和 a2 的值;(2)求数列{an},{bn}的通项 an 和 bn;(3)设 cn=an?bn,求数列{cn}的前 n 项和 Tn. 22.通过随机询问某景区 110 名游客对景区的服务是否满意,得到如下的列联表:性别与对景区的服务是否满意单位:名男女总计满意 50 30 80 不满意 10 20 30 总计 60 50 110 (I)从这 50 名女游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5 的样本,闷样本中浦意与不满意的女游客各有多少名?(II)从(I)中的 5 名女游客样本中随机选取两名作深度访谈,求选到满意与不满意的女游客各一名的概率;(III》很招以上列联表,问有多大把握认为“游客性别与对景区的服务满意”有关. 23.如图 ABCD 是正方形,O 是正方形的中心,PO⊥底面 ABCD,E 是 PC 的中点.求证:(1)PA∥平面 BDE;(2)平面PAC⊥平面 BDE.(3)若 PO=1,AB=2,则异面直线 OE 与 AD 所成角的余弦值. 24.已知椭圆 + =1(a>b>0)的离心率为,且过点 B(0,1).(Ⅰ)求椭圆的标准方程;(Ⅱ)直线 l:y=k(x+2)交椭圆于 P、Q 两点,若点 B 始终在以 PQ 为直径的圆内,求实数 k 的取值范围. 25.已知函数,f(x)=alnx﹣ax﹣3(a∈R).(1 )当 a=1 时,求函数 f(x)的单调区间;(2)若函数 y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问:m 在什么范围取值时,对于任意的 t[1,2],函数在区间(t,3)上总存在极值?5/ 726.已知曲线 C 的参数方程为(α 为参数),以直角坐标系原点为极点, Ox 轴正半轴为极轴建立极坐标系.(1)求曲线 C 的极坐标方程(2)若直线 l 的极坐标方程为ρ(sinθ+cosθ)=1,求直线 l 被曲线 C 截得的弦长.参7/ 7。

2020-2021学年山西省晋城市高平明希中学高二数学文下学期期末试题含解析

2020-2021学年山西省晋城市高平明希中学高二数学文下学期期末试题含解析

2020-2021学年山西省晋城市高平明希中学高二数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知△ABC的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A的轨迹方程是()A.(x≠0)B.(x≠0)C.(x≠0)D.(x≠0)参考答案:B【考点】椭圆的定义.【专题】计算题.【分析】根据三角形的周长和定点,得到点A到两个定点的距离之和等于定值,得到点A的轨迹是椭圆,椭圆的焦点在y轴上,写出椭圆的方程,去掉不合题意的点.【解答】解:∵△ABC的周长为20,顶点B (0,﹣4),C (0,4),∴BC=8,AB+AC=20﹣8=12,∵12>8∴点A到两个定点的距离之和等于定值,∴点A的轨迹是椭圆,∵a=6,c=4∴b2=20,∴椭圆的方程是故选B.【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.2. 已知圆C的方程为(x﹣3)2+(y﹣4)2=22,平面上有A(1,0),B(﹣1,0)两点,点Q在圆C 上,则△ABQ的面积的最大值是()A.6 B.3 C.2 D.1参考答案:A【考点】点与圆的位置关系.【分析】求出Q到AB的最大距离,即可求出△ABQ的面积的最大值.【解答】解:由题意,Q到AB的最大距离为4+2=6,∵|AB|=2,∴△ABQ的面积的最大值是=6,故选:A.3. 设椭圆 1(m>0,n>0)的一个焦点与抛物线x2=4y的焦点相同,离心率为:则此椭圆的方程为( )A. B.C. D.参考答案:B略4. 在△ABC中,若sin2A=sinB?sinC且(b+c+a)(b+c﹣a)=3bc,则该三角形的形状是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形参考答案:D【考点】三角形的形状判断.【专题】计算题.【分析】根据条件应用正弦定理、余弦定理可得cosA==,故A=60°,再根据a2=bc以及b2+c2﹣a2=bc,可得(b﹣c)2=0,故b=c,从而得到三角形是等边三角形.【解答】解:若sin2A=sinB?sinC,则a2=bc.又(b+c+a)(b+c﹣a)=3bc,∴b2+c2﹣a2=bc,∴cosA==,∴A=60°.再根据a2=bc以及b2+c2﹣a2=bc,可得(b﹣c)2=0,∴b=c,故该三角形的形状是等边三角形,故选:D.【点评】本题考查正弦定理、余弦定理的应用,根据三角函数的值求角,求得A=60°,及cos(B﹣C )=1,是解题的关键.5. 早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个步骤、从下列选项中选最好的一种算法()A.S1 洗脸刷牙、S2刷水壶、S3 烧水、S4 泡面、S5 吃饭、S6 听广播B.刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5 听广播C.刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.吃饭同时听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶参考答案:C6. 下列函数中,在定义域内是单调递增函数的是()A. B. C. D.参考答案:A7. 函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象中相邻对称中心的距离为,若角φ的终边经过点(3,),则f(x)图象的一条对称轴为()A.x=B.x=C.x=D.x=﹣参考答案:A 【考点】HW:三角函数的最值.【分析】由周期求得ω,根据角φ的终边经过点(3,),求得φ的值,可得函数的解析式,即可求出f(x)图象的一条对称轴.【解答】解:由题意可得函数的最小正周期为=2×,∴ω=2.∵角φ的终边经过点(3,),∴tanφ=,∵0<φ<π,∴φ=∴f(x)=sin(2x+),∴f(x)图象的对称轴为2x+=+kπ,k∈Z,即x=+,当k=0时,f(x)图象的一条对称轴为x=,故选:A.8. 如图,在;类似地有命题:在三棱锥A—BCD中,面ABC,若A点在BCD内的射影为M,则有。

2019-2020年高二下学期期末数学试卷(理科) 含解析

2019-2020年高二下学期期末数学试卷(理科) 含解析

2019-2020年高二下学期期末数学试卷(理科)含解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.23.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=45.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.46.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.38.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是.16.在平面直角坐标系xOy中,直线1与曲线y=x2(x>0)和y=x3(x>0)均相切,切点分别为A(x1,y1)和B(x2,y2),则的值为.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),直线l过点(0,2)且倾斜角为.(Ⅰ)求圆C的普通方程及直线l的参数方程;(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.2015-2016学年吉林省东北师大附中净月校区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]【考点】交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据复数相等的充要条件列出方程组,求解即可得答案.【解答】解:===i,则,解得:a=1.故选:C.3.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)【考点】简单曲线的极坐标方程.【分析】利用x=ρcosθ,y=ρsinθ即可得出直角坐标.【解答】解:点M的极坐标(4,)化成直角坐标为,即.故选:B.4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=4【考点】伸缩变换.【分析】把伸缩变换的式子变为用x′,y′表示x,y,再代入原方程即可求出.【解答】解:由得,代入直线x﹣2y=2得,即2x′﹣y′=4.故选B.5.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.4【考点】定积分在求面积中的应用.【分析】利用积分的几何意义即可得到结论.【解答】解:由题意,S===4﹣=,故选:C.6.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.【考点】条件概率与独立事件.【分析】根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.【解答】解:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为故选:C.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据逆否命题的定义进行判断②根据充分条件和必要条件的定义进行判断,③根据集合关系进行判断.【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,故①正确,②由|x|>1得x>1或x<﹣1,则“x>1”是“|x|>1”的充分不必要条件;故②正确,③集合A={1},B={x|ax﹣1=0},若B⊆A,当a=0时,B=∅,也满足B⊆A,当a≠0时,B={},由=1,得a=1,则实数a的所有可能取值构成的集合为{0,1}.故③错误,故正确的是①②,故选:C8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【考点】n次独立重复试验中恰好发生k次的概率.【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选C.9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.【解答】解:∵在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,基本事件总数n==120,取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m==22,∴取出的3件产品中一等品件数多于二等品件数的概率p===.故选:C.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】利用在切点处的导数值是切线的斜率,令f′(x)=2有解;利用有解问题即求函数的值域问题,求出值域即a的范围.【解答】解:f′(x)=﹣e﹣x+a据题意知﹣e﹣x+a=2有解即a=e﹣x+2有解∵e﹣x+2>2∴a>2故选C11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.【考点】抽象函数及其应用.【分析】先研究函数的奇偶性知它是非奇非偶函数,从而排除A、D两个选项,再看此函数的最值情况,即可作出正确的判断.【解答】解:由于f(x)=e sinx,∴f(﹣x)=e sin(﹣x)=e﹣sinx∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A,D;又当x=时,y=e sinx取得最大值,排除B;故选:C.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1【考点】利用导数求闭区间上函数的最值.【分析】当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,一方面0<1+ln(x2﹣m)≤,.利用lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.可得1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,可得m≥x﹣e x﹣e,利用导数求其最大值即可得出.【解答】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为0.3.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P (X<0).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(X>4)=0.3,∴P(X<0)=P(X>4)=0.3.故答案为:0.3.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(1)=0,得到关于a的方程,解出即可.【解答】解:∵f(x)=x2﹣alnx,x>0,∴f′(x)=2x﹣=,若函数f(x)在x=1处取极值,则f′(1)=2﹣a=0,解得:a=2,经检验,a=2符合题意,故答案为:2.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是46.【考点】归纳推理.【分析】由三角形阵可知,上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,利用累加法可求.【解答】解:设第一行的第二个数为a 1=1,由此可得上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,即a 2﹣a 1=1,a 3﹣a 2=2,a 4﹣a 3=3,…a n ﹣1﹣a n ﹣2=n ﹣2,a n ﹣a n ﹣1=n ﹣1, ∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =(n ﹣1)+(n ﹣2)+…+3+2+1+1 =+1=,∴a 10==46.故答案为:46.16.在平面直角坐标系xOy 中,直线1与曲线y=x 2(x >0)和y=x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则的值为.【考点】抛物线的简单性质.【分析】求出导数得出切线方程,即可得出结论.【解答】解:由y=x 2,得y ′=2x ,切线方程为y ﹣x 12=2x 1(x ﹣x 1),即y=2x 1x ﹣x 12, 由y=x 3,得y ′=3x 2,切线方程为y ﹣x 23=3x 22(x ﹣x 2),即y=3x 22x ﹣2x 23, ∴2x 1=3x 22,x 12=2x 23, 两式相除,可得=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤) 17.在平面直角坐标系xOy 中,圆C 的参数方程为(φ为参数),直线l 过点(0,2)且倾斜角为.(Ⅰ)求圆C 的普通方程及直线l 的参数方程;(Ⅱ)设直线l 与圆C 交于A ,B 两点,求弦|AB |的长. 【考点】参数方程化成普通方程. 【分析】(Ⅰ)圆C 的参数方程为(φ为参数),利用cos 2φ+sin 2φ=1消去参数可得圆C 的普通方程.由题意可得:直线l 的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离d,利用|AB|=2即可得出.【解答】解:(Ⅰ)圆C的参数方程为(φ为参数),消去参数可得:圆C的普通方程为x2+y2=4.由题意可得:直线l的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离,∴|AB|=2=2.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直线l:(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.(Ⅱ)把代入椭圆方程中,整理得,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.【解答】解:(Ⅰ)直线l:(t为参数),消去参数t可得普通方程:l:x﹣y+1=0.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,可得直角坐标方程:x2+y2+y2=2,即.(Ⅱ)把代入中,整理得,设A,B对应的参数分别为t1,t2,∴,由t得几何意义可知,.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)利用等可能事件概率计算公式能求出元件甲,乙为正品的概率.(Ⅱ)随机变量X的所有取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(Ⅰ)元件甲为正品的概率约为:,元件乙为正品的概率约为:.(Ⅱ)随机变量X的所有取值为0,1,2,,,,所以随机变量X的分布列为:X 0 1 2P所以:.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为在区间[1,4]上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域为R,当a=1时,f(x)=x3﹣x2+6x,f′(x)=3(x﹣1)(x﹣2),当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,1),(2,+∞),单调减区间为(1,2).(Ⅱ)即在区间[1,4]上恒成立,令,故当时,g(x)单调递减,当时,g(x)单调递增,时,∴,即.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数40 15 55女性驾驶员人数20 25 45合计60 40 100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X 0 1 2 3P.…22.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为a≤x2,求出a的范围即可;(2)问题可化为,设,求出函数的导数,问题等价于m≥x3﹣ax在[1,2]上恒成立,求出m的最小值即可.【解答】解:(1)∵在[1,2]上是增函数,∴恒成立,…所以a≤x2…只需a≤(x2)min=1…(2)因为﹣2≤a<0,由(1)知,函数f(x)在[1,2]上单调递增,…不妨设1≤x1≤x2≤2,则,可化为,设,则h(x1)≥h(x2).所以h(x)为[1,2]上的减函数,即在[1,2]上恒成立,等价于m≥x3﹣ax在[1,2]上恒成立,…设g(x)=x3﹣ax,所以m≥g(x)max,因﹣2≤a<0,所以g'(x)=3x2﹣a>0,所以函数g(x)在[1,2]上是增函数,所以g(x)max=g(2)=8﹣2a≤12(当且仅当a=﹣2时等号成立).所以m≥12.即m的最小值为12.…2016年10月17日。

河北省石家庄市无极县中学2020年高二数学文期末试题含解析

河北省石家庄市无极县中学2020年高二数学文期末试题含解析

河北省石家庄市无极县中学2020年高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 的展开式中的常数项为 ()A.-1320 B.1320 C.-220 D.220参考答案:C略2. 抛物线上有一点M,它的横坐标是3,它到焦点的距离是5,则抛物线方程为( )A. B. C. D.参考答案:A3. (5分)(2015?文登市二模)设x,y满足约束条件,若目标函数的最大值为2,则的图象向右平移后的表达式为()A.B.C.y=sin2x D.参考答案:C【考点】简单线性规划;函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质;不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用线性规划的知识求出m的值,利用三角函数的图象关系进行平移即可.【解答】解:作出不等式组对应的平面区域如图,∵m>0,∴平移直线,则由图象知,直线经过点B时,直线截距最大,此时z最大为2,由,解得,即B(1,1),则1+=2,解得m=2,则=sin(2x+),则的图象向右平移后,得到y=sin[2(x﹣)+]=sin2x,故选:C.【点评】本题主要考查三角函数解析式的求解以及线性规划的应用,根据条件求出m的取值是解决本题的关键.4. 若随机变量X~B(n,0.6),且E(X)=3,则P(X=1)的值是()A.2×0.44 B.2×0.45 C.3×0.44 D.3×0.64参考答案:C【考点】二项分布与n次独立重复试验的模型.【专题】常规题型.【分析】根据随机变量符合二项分布,根据期望值求出n的值,写出对应的自变量的概率的计算公式,代入自变量等于1时的值.【解答】解:∵随机变量X服从,∵E(X)=3,∴0.6n=3,∴n=5∴P(X=1)=C51(0.6)1(0.4)4=3×0.44故选C.【点评】本题考查二项分布,本题解题的关键是写出变量对应的概率的表示式和期望的表示式,根据期望值做出n的值,本题是一个基础题.5. 数列{a n}满足a n=4a n﹣1+3且a1=0,则此数列第4项是()A.15 B.16 C.63 D.255参考答案:C【考点】梅涅劳斯定理;数列递推式.【专题】计算题;等差数列与等比数列.【分析】根据a n=4a n﹣1+3,把a1=0代入求出a2,进而求出a3,a4,即可确定出第4项.【解答】解:把a1=0代入得:a2=4a1+3=3,把a2=3代入得:a3=4a2+3=12+3=15,把a3=15代入得:a4=4a3+3=60+3=63,则此数列第4项是63,故选:C.【点评】此题考查了梅涅劳斯定理,数列的递推式,熟练掌握运算法则是解本题的关键.6. 函数,已知在时取得极值,则=()A.2B.3C.4D.5参考答案:D略7. 设全集,则的值为()A 3B 9C 3或9 D参考答案:C8. 设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y﹣z的最大值为()A.0 B.C.2 D.参考答案:C【考点】基本不等式.【分析】将z=x2﹣3xy+4y2代入,利用基本不等式化简即可求得x+2y﹣z的最大值.【解答】解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z为正实数,∴=+﹣3≥2﹣3=1(当且仅当x=2y时取“=”),即x=2y(y>0),∴x+2y﹣z=2y+2y﹣(x2﹣3xy+4y2)=4y﹣2y2=﹣2(y﹣1)2+2≤2.∴x+2y﹣z的最大值为2.故选:C.9. 等差数列中,,,则此数列前项和等于()A. B. C. D.参考答案:B10. 在空间中,“两条直线没有公共点”是这两条直线平行的充分不必要条件必要不充分条件充要条件既不充分也不必要条件参考答案:BB略二、填空题:本大题共7小题,每小题4分,共28分11. 在同一平面直角坐标系中,直线x﹣2y=2变成直线2x′﹣y′=4的伸缩变换是.参考答案:【考点】O7:伸缩变换.【分析】将直线x﹣2y=2变成直线2x′﹣y′=4即直线x′﹣y′=2,横坐标不变,纵坐标变为原来的4倍,故有是.【解答】解:直线2x′﹣y′=4即直线x′﹣y′=2.将直线x﹣2y=2变成直线2x′﹣y′=4即直线x′﹣y′=2,故变换时横坐标不变,纵坐标变为原来的4倍,即有伸缩变换是.故答案为:.12. 设变量x,y满足约束条件,则z=3x+y的最小值是。

高二下学期期末考试数学试题(图片版)

高二下学期期末考试数学试题(图片版)
(2) ,则 或 ;………………………………8分
,则 .………………………………………10分
故函数在 和 上单调递增…………………………………………11分
在 上单调递减.………………………………………………………………12分
17.(本小题满分12分)
解:(Ⅰ)由A∩B={3,7}得 2+4 +2=7,解得 =1或 =-5.………………4分
所以 , 在 上单调递减,……………………………………10分
.………………………………………………………………………11分
所以 最小值为 .…………………………………………………………………12分
所以至少一种产品研发成功的概率为 .………………………………………5分
(2)依题意, ,……………………6分
由独立试验同时发生的பைடு நூலகம்率计算公式可得:
;………………………………………………7分
;…………………………………………………8分
;……………………………………………………9分
;…………………………………………………………10分
所以 的分布列如下:
………………………………………………………………………………………11分
则数学期望 .
…………………………………………………………………………………………12分
20.(本小题满分12分)
解:(Ⅰ)函数 …………………………………………………1分
所以 ………………………………………………………………3分
当 =1时,集合B={0,7,3,1};……………………………………………………5分
当 =-5时,因为2- =7,集合B中元素重复.…………………………………6分

福建省三明市2020_2021学年高二数学下学期期末考试试题含解析

福建省三明市2020_2021学年高二数学下学期期末考试试题含解析

福建省三明市2020-2021学年高二数学下学期期末考试试题(含解析)一、选择题(共8小题,每小题5分,共40分).1.已知复数z满足(1+i)=1﹣i(i是虚数单位),则复数z的虚部为()A.1 B.﹣i C.i D.﹣12.2020年是脱贫攻坚年,为顺利完成“两不愁,三保障”,即农村贫困人口不愁吃、不愁穿,农村贫困人口义务教育、基本医疗、住房安全有保障,某市拟派出6人组成三个帮扶队,每队两人,对脱贫任务较重的甲、乙、丙三县进行帮扶,则不同的派出方法种数共有()A.15 B.60 C.90 D.5403.在研究打鼾与患心脏病的关系中,通过收集数据、独立性检验得到“打鼾与患心脏病有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,下列说法中正确的是()A.100个吸烟者中至少有99人打鼾B.如果某人患有心脏病,那么这个人有99%的概率打鼾C.在100个心脏病患者中一定有打鼾的人D.在100个心脏病患者中可能一个打鼾的人也没有4.在一组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且,则以下四种情形中,对应样本的方差最大的一组是()A.p1=p4=0.15,p2=p3=0.35B.p1=p4=0.45,p2=p3=0.05C.p1=p4=0.25,p2=p3=0.25D.p1=p4=0.35,p2=p3=0.155.已知y=f(x)是R上的可导函数,直线是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)的值等于()A.﹣1 B.0 C.2 D.46.在一次期中考试中,数学不及格的人数占30%,语文不及格占10%,两门都不及格占5%,若一名学生语文及格,则该生数学不及格的概率为()A.B.C.D.7.袋子中装有若干个大小相同、质地均匀的黑球和白球,从中任意摸出一个黑球的概率是,依次从中有放回地摸球,每次摸出一个,累计2次摸到黑球即停止.记3次之内(含3次)摸到黑球的次数为ξ,则P(ξ=2)=()A.B.C.D.8.若,则()A.aln2>bln3>cln5 B.cln5>bln3>aln2C.aln2>cln5>bln3 D.cln5>aln2>bln3二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.某企业退休职工黄师傅退休前后每月各类支出占比情况如图,已知退休前工资收入为6000元/月,退休后每月旅行的金额比退休前每月旅行的金额多450元,则下面结论中正确的是()A.黄师傅退休后储蓄支出900元/月B.黄师傅退休工资收入为5000元/月C.黄师傅退休后每月的衣食住支出与退休前相比未发生变化D.黄师傅退休后的其它支出比退休前的其它支出多50元/月10.下列函数在定义域内是增函数的有()A.y=xB.y=C.y=2x﹣2﹣xD.y=x2﹣2x+lnx11.若随机变量ξ~N(0,2),ϕ(x)=P(ξ≤x),其中x>0,则下列等式成立的有()A.ϕ(﹣x)=1﹣ϕ(x)B.ϕ(2x)=2ϕ(x)C.P(|ξ|<x)=2ϕ(x)﹣1 D.P(|ξ|>x)=2﹣2ϕ(x)12.已知函数f(x)=x+a sin x,g(x)=﹣sin2x,∀x1,x2∈R,且x1<x2时,都有f (x2)﹣f(x1)>2g(x1)﹣2g(x2)成立,则实数a的值可以是()A.B.0 C.D.1三、填空题:本题共4小题,每小题5分,共20分.13.(x+1)(x﹣1)6展开式中x3项的系数为.14.已知函数,则=.15.设复数z1,z2满足|z1|=|z2|=1,z1+z2=,则|z1﹣z2|=.16.若正实数x,y满足,则4x+2y的最小值是.四、解答题:本题共6小题.共70分.解答应写出文字说明、证明过程或演算步骤.17.如图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图.由折线图看出,可用线性回归模型拟合y与t的关系,请建立y关于t的回归方程(系数精确到0.01),并预测2022年我国生活垃圾无害化处理量.参考数据:.参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:.18.已知复数z1=a+i,z2=1﹣i(a∈R,i为虚数单位).(1)若z1•z2是纯虚数,求实数a的值;(2)若复数在复平面上对应的点在第二象限,求实数a的取值范围.19.在①若展开式倒数三项的二项式系数之和等于46,②若展开式所有项的系数的和为512,③若展开式中第3项与第4项的系数之比为3:7.这三个条件中任选一个,补充在下面的横线上,并且完成下列问题.在二项式的展开式中,______.(1)求展开式中二项式系数最大的项;(2)求展开式中的常数项.20.已知函数f(x)=(x+a)lnx,g(x)=a(lnx﹣1).(1)当a=﹣1时,求函数f(x)的极值;(2)若存在x0∈(0,+∞),使得f(x0)=g(x0)成立,求a的取值范围.21.在中国共产党的坚强领导及全国人民的共同努力下,抗击新冠肺炎疫情工作取得了全面胜利,但随着复工复产的推进,某地的疫情出现了反弹,为了防止疫情蔓延,该地立即开展核酸检测工作.为了提高检测效率及降低医耗成本,采用如下方式进行核酸检测:采集5个人的咽拭子共同组成一个标本,对该标本进行检测,若结果呈阳性,说明5个人中有疑似新冠肺炎感染者,则需要进行第二阶段的检测,直到确定出疑似新冠肺炎感染者为止;若结果呈阴性,则无需再进行检测.已知某个标本的检测结果呈阳性且只有1人是疑似新冠肺炎感染者,现提供第二阶段的两种检测方案:方案甲:逐个检测,直到能确定出疑似新冠肺炎感染者为止;方案乙:先任取3人的咽拭子共同组成一个标本进行检测,若结果呈阳性则表明这3人中有1人是疑似新冠肺炎感染者,然后再逐个检测,直到能确定出疑似感染者为止;若结果呈阴性,则在另外2人中任取1人检测,即可确定出疑似感染者.(1)若ξ表示方案甲所需检测的次数,求ξ的期望;(2)以所需检测次数作为决策依据,采用哪个方案效率更高.22.已知函数f(x)=xe x+a(x+1)2(a∈R).(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.参考答案一、选择题(共8小题,每小题5分,共40分).1.已知复数z满足(1+i)=1﹣i(i是虚数单位),则复数z的虚部为()A.1 B.﹣i C.i D.﹣1解:由(1+i)=1﹣i,得,∴z=i,则复数z的虚部为1.故选:A.2.2020年是脱贫攻坚年,为顺利完成“两不愁,三保障”,即农村贫困人口不愁吃、不愁穿,农村贫困人口义务教育、基本医疗、住房安全有保障,某市拟派出6人组成三个帮扶队,每队两人,对脱贫任务较重的甲、乙、丙三县进行帮扶,则不同的派出方法种数共有()A.15 B.60 C.90 D.540解:分为三步,第一步给甲县分派有C种,第二步给乙县分派有C种,第三步给丙县分派有C种,则总共有C C C=90种方法.故选:C.3.在研究打鼾与患心脏病的关系中,通过收集数据、独立性检验得到“打鼾与患心脏病有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,下列说法中正确的是()A.100个吸烟者中至少有99人打鼾B.如果某人患有心脏病,那么这个人有99%的概率打鼾C.在100个心脏病患者中一定有打鼾的人D.在100个心脏病患者中可能一个打鼾的人也没有解:0.01的统计意义是指“打鼾与患心脏病有关”这个结论出错的概率在0.01以下,而不是心脏病患者中打鼾的比例或概率.故选:D.4.在一组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且,则以下四种情形中,对应样本的方差最大的一组是()A.p1=p4=0.15,p2=p3=0.35B.p1=p4=0.45,p2=p3=0.05C.p1=p4=0.25,p2=p3=0.25D.p1=p4=0.35,p2=p3=0.15解:根据题意,依次分析选项:对于A,E(x)=1×0.15+2×0.35+3×0.35+4×0.15=2.5,所以D(x)=(1﹣2.5)2×0.15+(2﹣2.5)2×0.35+(3﹣2.5)2×0.35+(4﹣2.5)2×0.15=0.85;对于B,E(x)=1×0.45+2×0.05+3×0.05+4×0.45=2.5,所以D(x)=(1﹣2.5)2×0.45+(2﹣2.5)2×0.05+(3﹣2.5)2×0.05+(4﹣2.5)2×0.45=2.05;对于C,E(x)=1×0.25+2×0.25+3×0.25+4×0.25=2.5,所以D(x)=(1﹣2.5)2×0.25+(2﹣2.5)2×0.25+(3﹣2.5)2×0.25+(4﹣2.5)2×0.25=1.25;对于D,E(x)=1×0.35+2×0.15+3×0.15+4×0.45=2.5,所以D(x)=(1﹣2.5)2×0.35+(2﹣2.5)2×0.15+(3﹣2.5)2×0.15+(4﹣2.5)2×0.35=1.65;B选项对应样本的方差最大.故选:B.5.已知y=f(x)是R上的可导函数,直线是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)的值等于()A.﹣1 B.0 C.2 D.4解:∵直线是曲线y=f(x)在x=3处的切线,∴f′(3)=﹣,∵g(x)=xf(x),∴g′(x)=f(x)+xf′(x)则g′(3)=f(3)+3f′(3)==0.故选:B.6.在一次期中考试中,数学不及格的人数占30%,语文不及格占10%,两门都不及格占5%,若一名学生语文及格,则该生数学不及格的概率为()A.B.C.D.解:记“一名学生语文及格”为事件A,“该生数学不及格”为事件B,所以所求概率为P(B|A)=.故选:A.7.袋子中装有若干个大小相同、质地均匀的黑球和白球,从中任意摸出一个黑球的概率是,依次从中有放回地摸球,每次摸出一个,累计2次摸到黑球即停止.记3次之内(含3次)摸到黑球的次数为ξ,则P(ξ=2)=()A.B.C.D.解:ξ=2表示3次中摸到黑球的次数为2,可能的情况有:①前2次是黑球;②3次中后两次是黑球,第1次是白球;③3次中第1次和第3次是黑球,第2次是白球,所以P(ξ=2)=+=.故选:C.8.若,则()A.aln2>bln3>cln5 B.cln5>bln3>aln2C.aln2>cln5>bln3 D.cln5>aln2>bln3解:设函数f(x)=,f'(x)=,当x∈(0,e)时,f'(x)>0,x∈(e,+∞),f'(x)<0,又f(2)=,当x∈(e,+∞)时,f(x)单调递减,则f(5)<f(4)<f(3),即,∵,∴5c>2a>3b,∴cln5>aln2>bln3.故选:D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.某企业退休职工黄师傅退休前后每月各类支出占比情况如图,已知退休前工资收入为6000元/月,退休后每月旅行的金额比退休前每月旅行的金额多450元,则下面结论中正确的是()A.黄师傅退休后储蓄支出900元/月B.黄师傅退休工资收入为5000元/月C.黄师傅退休后每月的衣食住支出与退休前相比未发生变化D.黄师傅退休后的其它支出比退休前的其它支出多50元/月解:由题意可得,退休前的旅行金额为6000×0.05=300,∵退休后每月旅行的金额比退休前每月旅行的金额多450元,∴黄师傅退休工资收入为/月,故B选项正确,黄师傅退休后储蓄支出5000×0.15=750/月,故A选项错误,黄师傅退休后每月的衣食住支出与退休前的支出占各自工资的占比相同,∵黄师傅退休前后工资不同,∴黄师傅退休后每月的衣食住支出与退休前相比发生变化,故C选项错误,∵黄师傅退休前的其它支出为6000×0.2=1200/月,黄师傅退休后的其它支出为5000×0.25=1250/月,∴黄师傅退休后的其它支出比退休前的其它支出多50元/月,故D选项正确.故选:BD.10.下列函数在定义域内是增函数的有()A.y=xB.y=C.y=2x﹣2﹣xD.y=x2﹣2x+lnx解:因为,所以单调递增,又因为为奇函数,所以在R上单调递增,故选项A正确,当x≤﹣1 时,,在(﹣∞,﹣1]单调递增,当x>﹣1时,y=x2+4x+3在(﹣1,+∞)单调递增,但,所以在R上不是单调递增函数,故选项B不正确,y=2x在R上单调递增,y=﹣2﹣x在R上单调递增,所以y=2x﹣2﹣x在R上单调递增,故选项C正确,恒成立,所以在(0,+∞)单调递增,故选项D正确,故选:ACD.11.若随机变量ξ~N(0,2),ϕ(x)=P(ξ≤x),其中x>0,则下列等式成立的有()A.ϕ(﹣x)=1﹣ϕ(x)B.ϕ(2x)=2ϕ(x)C.P(|ξ|<x)=2ϕ(x)﹣1 D.P(|ξ|>x)=2﹣2ϕ(x)解:因为ϕ(x)=P(ξ≤x),由正态曲线的对称性可得,ϕ(﹣x)=1﹣ϕ(x),故选项A正确;ϕ(2x)=P(ξ≤2x),2ϕ(x)=2P(ξ≤x),故选项B错误;因为ϕ(x)=P(ξ≤x),所以P(ξ<﹣x)=P(ξ>x)=1﹣ϕ(x),则P(|ξ|<x)=1﹣2(1﹣ϕ(x))=2ϕ(x)﹣1,故选项C正确;因为P(ξ<﹣x)=P(ξ>x)=1﹣ϕ(x),所以P(|ξ|>x)=2﹣2ϕ(x),故选项D正确.故选:ACD.12.已知函数f(x)=x+a sin x,g(x)=﹣sin2x,∀x1,x2∈R,且x1<x2时,都有f (x2)﹣f(x1)>2g(x1)﹣2g(x2)成立,则实数a的值可以是()A.B.0 C.D.1解:因为∀x1,x2∈R,且x1<x2时,都有f(x2)﹣f(x1)>2g(x1)﹣2g(x2)成立,所以∀x1,x2∈R,且x1<x2时,都有f(x2)+2g(x2)>f(x1)+2g(x1)成立,令F(x)=f(x)+2g(x)=x+a sin x﹣sin2x,则F(x)在(﹣∞,+∞)上单调递增,F′(x)=1+a cos x﹣cos2x≥0恒成立,所以1+a cos x﹣[2cos2x﹣1]≥0恒成立,所以﹣cos2x+a cos x+≥0恒成立,所以﹣4cos2x+3a cos x+5≥0恒成立,令t=cos x,﹣1≤t≤1,所以﹣4t2+3at+5≥0在[﹣1,1]上恒成立,当t=0时,不等式显然成立,当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1)递增,所以t=1时,4t﹣取得最大值﹣1,所以3a≥﹣1,即a≥﹣,当﹣1≤t<0时,3a≤4t﹣,由4t﹣在(﹣1,0)上单调递增,可得t=﹣1时,取得最小值1,所以3a≤1,即a≤,综上可得a的取值范围为[﹣,].故选:ABC.三、填空题:本题共4小题,每小题5分,共20分.13.(x+1)(x﹣1)6展开式中x3项的系数为﹣5 .解:由题意可得展开式中含x3项为x+1=(15﹣20)x3=﹣5x3,故答案为:﹣5.14.已知函数,则= 4 .解:根据题意,=2×=2f′(1),而函数,则f′(x)=1+,则有f′(1)=2,故=2f′(1)=4;故答案为:4.15.设复数z1,z2满足|z1|=|z2|=1,z1+z2=,则|z1﹣z2|=.解:∵复数z1,z2满足|z1|=|z2|=1,z1+z2=,∴|z1+z2|==1,∴|z1﹣z2|2=2(|z1|2+|z2|2)﹣|z1+z2|2=3,∴|z1﹣z2|=,故答案为:.16.若正实数x,y满足,则4x+2y的最小值是8 .解:因为y>0,y≥﹣y(lnx+ln),所以y≥y﹣y(lnx+ln),所以﹣lnx≥﹣ln,令f(x)=+lnx,f(x)在(0,+∞)上是增函数,所以f(x)≥f(),推出x≥,所以4x+2y≥+2y≥8,(当且仅当x=时,取等号),所以4x+2y的最小值为8,故答案为:8.四、解答题:本题共6小题.共70分.解答应写出文字说明、证明过程或演算步骤. 17.如图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图.由折线图看出,可用线性回归模型拟合y与t的关系,请建立y关于t的回归方程(系数精确到0.01),并预测2022年我国生活垃圾无害化处理量.参考数据:.参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:.解:由折线图中的数据以及参考数据可得,,,,=40.17﹣4×9.32=2.89,所以,则,故y关于t的线性回归方程为;因为2022年对应的t=12,代入回归方程可得,,所以预测2022年我国生活垃圾无害化处理量为2.13亿吨.18.已知复数z1=a+i,z2=1﹣i(a∈R,i为虚数单位).(1)若z1•z2是纯虚数,求实数a的值;(2)若复数在复平面上对应的点在第二象限,求实数a的取值范围.解:(1)因为复数z1=a+i,z2=1﹣i,所以z1•z2=(a+i)(1﹣i)=a+1+(1﹣a)i为纯虚数,所以a+1=0且1﹣a≠0,所以a=﹣1;(2)复数=,因为复数在复平面上对应的点在第二象限,所以,解得﹣1<a<1,所以实数a的取值范围为(﹣1,1).19.在①若展开式倒数三项的二项式系数之和等于46,②若展开式所有项的系数的和为512,③若展开式中第3项与第4项的系数之比为3:7.这三个条件中任选一个,补充在下面的横线上,并且完成下列问题.在二项式的展开式中,______.(1)求展开式中二项式系数最大的项;(2)求展开式中的常数项.解:展开式的第k+1项为,k=0,1,2,⋯,n;若选①,则,又n>0,所以n=9;若选②,则2n=512,解得n=9;若选③,则,解得n=9;(1)当k=4或k=5时,二项式系数最大.所以二项式系数最大的项为和;(2)令,得k=6,所以常数项为.20.已知函数f(x)=(x+a)lnx,g(x)=a(lnx﹣1).(1)当a=﹣1时,求函数f(x)的极值;(2)若存在x0∈(0,+∞),使得f(x0)=g(x0)成立,求a的取值范围.解:(1)当a=﹣1时,f(x)=(x﹣1)lnx,函数f(x)的定义域为(0,+∞),,当0<x<1时,,所以,故f(x)单调递减;当x>1时,,所以,故f(x)单调递增.又f′(1)=0,所以f(x)有极小值f(1)=0,无极大值.(2)f(x)=g(x)⇔﹣a=xlnx,令h(x)=xlnx,h(x)的定义域为(0,+∞),h′(x)=1+lnx,令h′(x)>0,解得;令h′(x)<0,解得.所以h(x)在上单调递减,在上单调递增,,当x→+∞时,h(x)→+∞,所以函数h(x)的值域为.由题意可得,所以.21.在中国共产党的坚强领导及全国人民的共同努力下,抗击新冠肺炎疫情工作取得了全面胜利,但随着复工复产的推进,某地的疫情出现了反弹,为了防止疫情蔓延,该地立即开展核酸检测工作.为了提高检测效率及降低医耗成本,采用如下方式进行核酸检测:采集5个人的咽拭子共同组成一个标本,对该标本进行检测,若结果呈阳性,说明5个人中有疑似新冠肺炎感染者,则需要进行第二阶段的检测,直到确定出疑似新冠肺炎感染者为止;若结果呈阴性,则无需再进行检测.已知某个标本的检测结果呈阳性且只有1人是疑似新冠肺炎感染者,现提供第二阶段的两种检测方案:方案甲:逐个检测,直到能确定出疑似新冠肺炎感染者为止;方案乙:先任取3人的咽拭子共同组成一个标本进行检测,若结果呈阳性则表明这3人中有1人是疑似新冠肺炎感染者,然后再逐个检测,直到能确定出疑似感染者为止;若结果呈阴性,则在另外2人中任取1人检测,即可确定出疑似感染者.(1)若ξ表示方案甲所需检测的次数,求ξ的期望;(2)以所需检测次数作为决策依据,采用哪个方案效率更高.解:(1)方案甲化验次数ξ可能取值为1,2,3,4,P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,P(ξ=4)=,ξ的期望E(ξ)=1×0.2+2×0.2+3×0.2+4×0.4=2.8.(2)设X表示乙方案所需化验次数,X的可能取值为2,3,P(X=2)=,P(X=3)=1﹣,E(X)==,E(ξ)>E(X),∴方案乙的效率更佳.22.已知函数f(x)=xe x+a(x+1)2(a∈R).(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.解:(1)由f(x)=xe x+a(x+1)2,可得f′(x)=(x+1)e x+2a(x+1)=(x+1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>﹣1;由f′(x)<0,可得x<﹣1,即有f(x)在(﹣∞,﹣1)递减;在(﹣1,+∞)递增;②当a<0时,由f'(x)=0得x=﹣1或x=ln(﹣2a);若a=﹣,则f'(x)=(x+1)(e x﹣e﹣1),当x≤﹣1时,f′(x)≥0,当x>﹣1时,f'(x)>0;∴∀x∈R,f'(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,则ln(﹣2a)>﹣1;由f′(x)>0,可得x<﹣1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,﹣1),(ln(﹣2a),+∞)递增;在(﹣1,ln(﹣2a))递减;若0>a>﹣,则ln(﹣2a)<﹣1,由f′(x)>0,可得x<ln(﹣2a)或x>﹣1;由f′(x)<0,可得ln(﹣2a)<x<﹣1.即有f(x)在(﹣∞,ln(﹣2a)),(﹣1,+∞)递增;在(ln(﹣2a),﹣1)递减.(2)①由(1)可得当a>0时,f(x)在(﹣∞,﹣1)递减;在(﹣1,+∞)递增,且f(﹣1)=﹣,f(0)=a,取b满足b<﹣1且b﹣2<ln.则f(b﹣2)>(b ﹣2)+a(b﹣1)2=a(b2﹣b)>0,∴f(x)有两个零点;②当a=0时,f(x)=xe x,所以f(x)只有一个零点x=0;③当a<0时,若a<﹣时,由(1)知f(x)在(﹣1,ln(﹣2a))递减,在(﹣∞,﹣1),(ln(﹣2a),+∞)递增,又当x≤﹣1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,由(1)知,f(x)在(﹣1,+∞)单调增,又当x≤﹣1时,f(x)<0,故f(x)不存在两个零点;综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).。

2020-2021学年高二数学下学期期末考试试题

2020-2021学年高二数学下学期期末考试试题

2020-2021学年高二数学下学期期末考试试题一、 选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知随机变量X 服从正态分布N (μ,σ2),且P (μ-2σ<X<μ+2σ)=0.954 4,P (μ-σ<X<μ+σ)=0.682 6.若μ=4,σ=1,则P (5<X<6)=( )A .0.135 9B .0.135 8C .0.271 8D .0.271 6 1.(文科做)若f (x )=x 2+2(a -1)x +2在区间(-∞,4)上是减函数,则实数a 的取值范围是( )A .a <-3B . a >-3C . a ≤-3D .a ≥-32.集合A ={1,2,3,a },B ={3,a },则使A ∪B =A 成立的a 的个数是 ( ) A .2个 B .5个 C .3个 D . 4个3.设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∪B )=( )A .{3,6}B .{2,6}C .{1,3,4,5}D .{1,2,4,6}4.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布B (10,0.6),则E (η)和D (η)的值分别是( ) A .6和2.4B .2和5.6C .2和2.4D .6和5.64.(文科做)函数y =f (2x -1)的定义域为[0,1],则y =f (x )的定义域为( )A . [0,1]B .⎣⎢⎡⎦⎥⎤12,1 C . [-1,1] D .[]-1,0其线性回归方程一定过的定点是( ) A .(2,2) B .(1,2) C .(1.5,0)D .(1.5,5)6.已知集合A={x|2<x<4},B={x|x<3或x>5},则A ∩B=( )A .{x|2<x<3}B .{x|x<4或x>5}C .{x|2<x<5}D .{x|x<2或x>5}7.设x ∈R ,则“1<x <2”是“|x -2|<1”的( )A .必要而不充分条件B .充分而不必要条件C .充要条件D .既不充分也不必要条件 8.(文科做)已知某四个家庭xx 上半年总收入x (单位:万元)与总投资y (单位:万元)的对照数据如表所示:根据上表提供的数据,若用最小二乘法求出y 关于x 的线性回归方程为y ^=0.7x +0.35,则m 的值为( )A . 3B . 5C . 4D .68.有10件产品,其中3件是次品,从这10件产品中任取两件,用ξ表示取到次品的件数,x 0 1 2 3 y2468x 3 4 5 6y 2.5 3 m 4.5则E (ξ)等于( )A .35B .815C .1415D .1 9. 甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( )A .0.12B .0.42C .0.46D .0.889.(文科做)函数f (x )=x 2+x -6的单调增区间是( )A .(-∞,-3)B .[2,+∞)C .[0,2)D .[-3,2]10(文科做).函数f (x )=ax 2+bx +2a -b 是定义在[a -1,2a ]上的偶函数,则a +b =( )A .13B .0C .-13D .1 10.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为( )A .C 35C 14C 45B .⎝ ⎛⎭⎪⎫593×49C .35×14D .C 14×⎝ ⎛⎭⎪⎫593×4911. f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1, 当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞) B.[8,9] C .(8,9] D .(0,8) 12.函数f (x )=log 2(x 2+2x -3)的定义域是( )A .[-3,1]B .(-3,1)C . (-∞,-3)∪(1,+∞)D .(-∞,-3]∪[1,+∞)二.填空题:(本大题共4小题,每小题5分,共20分)13.从装有3个红球,2个白球的袋中随机取出2个球,用ξ表示取到白球的个数,则P (ξ=1)= 13.(文科做)下列不等式:①x <1;②0<x <1;③-1<x <0;④-1<x <1.其中可以作为“x 2<1”的一个充分条件的所有序号为_______14,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅匀后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=14(文科做).已知f (x )=ax 3+bx +xx ,且f (xx)=xx ,则f (-xx)=________.15.下列是关于男婴与女婴出生时间调查的列联表:那么a= ,b= ,c= ,d= ,e= .16.已知命题“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,则实数a 的取值范围是________三.解答题:(本大题共6小题,共70分)17.(本题满分10分)已知集合P ={x |a +1≤x ≤2a +1},Q ={x |x 2-3x ≤10}.(1)若a =3,求(∁R P )∩Q ;(2)若P ∪Q =Q ,求实数a 的取值范围.18.(本题满分12分)设命题p :函数f (x )=lg (ax 2-4x +a )的定义域为R ;命题q :不等式2x 2+x >2+ax 在x ∈(-∞,-1)上恒成立,如果命题“p ∨q ”为真命题,命题“p ∧q ”为假命题,求实数a 的取值范围.19.(本题满分12分)甲、乙两人各进行3次射击,甲每次击中目标的概率为1/2,乙每次击中目标的概率为2/3 (1)记甲击中目标的次数为X ,求X 的概率分布列及数学期望E (X ); (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率19(文科做)已知p :A ={x |x 2-2x -3≤0,x ∈R },q :B ={x |x 2-2mx +m 2-9≤0,x ∈R ,m ∈R }.(1)若A ∩B =[1,3],求实数m 的值;(2)若p 是非q 的充分条件,求实数m 的取值范围20(本题满分12分)将编号为1,2,3,4的四个材质和大小都相同的球,随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个球,ξ表示球的编号与所放入盒子的编号正好相同的个数. (1)求1号球恰好落入1号盒子的概率;(2)求ξ的分布列.20(文科做)某城市随机抽取一年(365天)内100天的空气质量指数API 的监测数据,结果统计如下: API [0, 50] (50, 100] (100, 150] (150, 200] (200, 250] (250, 300] (300, +∞) 空气 质量 优 良 轻微 污染 轻度 污染 中度 污染 中度 重污染 重度 污染 天数413183091115(1)若某企业每天由空气污染造成的经济损失S (单位:元)与空气质量指数API(记为ω)的关系式为S =⎩⎪⎨⎪⎧0,0≤ω≤100,3ω-200,100<ω≤300,2000,ω>300.试估计在本年内随机抽取一天,该天经济损失S 大于400元且不超过700元的概率;(2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?附:P (K 2≥k 0)0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 0 1.323 2.072 2.706 3.841 5.024 6.635 7.87910.828K 2=n ad -bc 2a +bc +d a +cb +d非重度污染重度污染合计供暖季非供暖季合计10021.(本题满分12分)已知函数f(x)=x·|x|-2x.(1)求函数f(x)=0时x的值;(2)画出y=f(x)的图象,并结合图象写出f(x)=m有三个不同实根时,实数m的取值范围.22.已知关于x的不等式|2x+1|-|x-1|≤log2a(其中a>0).(1)当a=4时,求不等式的解集;(2)若不等式有解,求实数a的取值范围.西宁市第四高级中学xx —17xx 第二学期期末测试试题答案高二数学1 2 3 4 5 6 A DABCD7 8 9 10 11 12 AB D D D B (13)0.6 13文(2)(3)(4) (14)6/5 文 xx (15)47 92 88 82 53 (16) a>5/617. 解 (1)因为a =3,所以P ={x |4≤x ≤7},∁R P ={x |x <4或x >7}.又Q ={x |x 2-3x -10≤0}={x |-2≤x ≤5},所以(∁R P )∩Q ={x |x <4或x >7}∩{x |-2≤x ≤5}={x |-2≤x <4}.(2)当P ≠∅时,由P ∪Q =Q 得P ⊆Q ,所以⎩⎪⎨⎪⎧a +1≥-2,2a +1≤5,2a +1≥a +1,解得0≤a ≤2;当P =∅,即2a +1<a +1时,有P ⊆Q ,得a <0. 综上,实数a 的取值范围是(-∞,2]. 18.对于命题p :Δ<0且a >0,故a >2;对于命题q :a >2x -2x+1在x ∈(-∞,-1)上恒成立,又函数y =2x -2x+1为增函数,所以⎝⎛⎭⎪⎫2x -2x+1<1,故a ≥1,命题“p ∨q ”为真命题,命题“p ∧q ”为假命题,等价于p ,q 一真一假.故1≤a ≤2.19. (1)X 的概率分布列为X 0 1 2 3 PE (X )=0E (X )=3(2)乙至多击中目标2次的概率为1(3)设甲恰好比乙多击中目标2次为事件A ,甲恰好击中目标2次且乙恰好击中目标0次为事件B 1,甲恰好击中目标3次且乙恰好击中目标1次为事件B 2,则A=B 1+B 2.B 1,B 2为互斥事件,P (A )=P (B 1)+P (B 2)19 文科做(1)A ={x |-1≤x ≤3,x ∈R },B ={x |m -3≤x ≤m +3,x ∈R ,m ∈R },∵A ∩B =[1,3],∴m =4.(2)∵p 是綈q 的充分条件,∴A ⊆∁R B ,∴m >6或m <-4.20.(1)设事件A 表示“1号球恰好落入1号盒子”,P (A )=A 33A 44=14,所以1号球恰好落入1号盒子的概率为14.(2)ξ的所有可能取值为0,1,2,4.P (ξ=0)=3×3A 44=38,P (ξ=1)=4×2A 44=13, P (ξ=2)=C 24A 44=14,P (ξ=4)=1A 44=124.所以随机变量ξ的分布列为20.文科做(1)记“在本年内随机抽取一天,该天经济损失S 大于400元且不超过700元”为事件A .由400<S ≤700,即400<3ω-200≤700,解得200<ω≤300,其满足条件天数为20.所以P (A )=20100=15. (2)根据以上数据得到如下列联表:非重度污染重度污染合计 供暖季 22 8 30 非供暖季 63 7 70 合计85 15100K 2=100×63×8-22×7285×15×30×70≈4.575>3.841,所以有95%的把握认为该市本年空气重度污染与供暖有关.21.(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图由图象可得实数m ∈(-1,1).22. (1)当a =4时,不等式为|2x +1|-|x -1|≤2.当x <-12时,-x -2≤2,解得-4≤x <-12;当-12≤x ≤1时,3x ≤2,解得-12≤x ≤23;当x >1时,x ≤0,此时x 不存在,∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-4≤x ≤23. (2)令f (x )=|2x +1|-|x -1|,则f (x )=⎩⎪⎨⎪⎧-x -2,x <-12,3x ,-12≤x ≤1,x +2,x >1.故f (x )∈⎣⎢⎡⎭⎪⎫-32,+∞,即f (x )的最小值为-32. 若f (x )≤log 2a 有解,则log 2a ≥-32,解得a ≥24,即a 的取值范围是⎣⎢⎡⎭⎪⎫24,+∞ 【感谢您的阅览,下载后可自由编辑和修改,关注我 每天更新】。

郑州市2020_2021学年高二数学下学期期末考试试题文(含答案)

郑州市2020_2021学年高二数学下学期期末考试试题文(含答案)

河南省郑州市2020-2021学年高二下学期期末考试数学试题 文注意事项:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考试时间120分钟,满分150分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡. 参考公式和数据:1.对于一组具有线性相关关系的数据,(),i i x y ()1,2,3,,i n =⋅⋅⋅其回归直线ˆˆˆybx a =+的斜率和截距的最小二乘估计分别为:()()()1122211ˆn niii ii i nni ii i x x y y x y nxybx x xnx ====---==--∑∑∑∑,ˆˆay bx =-; 2.()()()()()22n ad bc K a b c d a c b d -=++++,()n a b c d =+++;3.参考数据:()2P K k >0.50 0.40 0.25 0.15 0.10 0.05 0.0250.0100.005 0.001 k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.6357.87910.828第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题所给出的四个选项中,只有一项是符合题目要求的.1.在用反证法证明命题“已知0a >,0b >,且13a b +>.求证:31b a ++,2a b+中至少有一个小于4”时,假设正确的是( )A .假设31b a ++,2a b +都不大于4 B .假设31b a ++,2a b +都不小于4 C .假设31b a ++,2a b +都小于4 D .假设31b a ++,2a b+都大于42.如图,复平面内的点Z 对应的复数记为z ,则对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.中国茶文化博大精深,茶水的口感与茶叶的类型和水的温度有关某数学建模小组建立了茶水冷却时间x 和茶水温度y 的一组数据(),i i x y .经过分析,提出了四种回归模型,①②③④四种模型的残差平方和()21ˆni i i y y=-∑的值分别是098.,080.,012.,1.36.则拟合效果最好的模型是( ) A .模型① B .模型② C .模型③ D .模型④4.(选修4-4:坐标系与参数方程)将曲线2220x y x --=变换为曲线221640x y '''--=的一个伸缩变换为( )A .212x x y y '=⎧⎪⎨'=⎪⎩,B .214x x y y '=⎧⎪⎨'=⎪⎩,C .1212x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩,D .14x x y y '=⎧⎪⎨'=⎪⎩,(选修4-5:不等式选讲)若关于x 的不等式2123x x a a ++-≤+-()a ∈R 的解集为空集,则实数a 的取值范围是( ) A .32a -<<B .11a -<<C .01a <<D .1a <-5.已知bg 糖水中含有ag 糖()0b a >>,若再添加mg 糖完全溶解在其中,则糖水变得更甜了(即糖水中含糖浓度变大).根据这个事实,下列不等式中一定成立的是( )A .a a mb b m+>+B .22mma m ab m b ++<++ C .()()()()22a m b m a m b m ++<++ D .121313b a ->- 6.“关注夕阳,爱老敬老”,某商会从2016年开始向晚晴山庄养老院捐赠物资和现金.下表记录了第x 年(2016年为第一年)捐赠现金y (万元)的数据情况.由表中数据得到了y 关于x 的线性回归方程为ˆˆ295y bx =+.,预测2021年该商会捐赠现金______万元.A .4.25B .5.25C .5.65D .4.757.若输出的S 的值等于26,那么在程序框图中的判断框内应填写的条件是( )A .10i >B .11i >C .12i >D .13i >8.已知正数a ,b 满足1256255a b ⨯=,则3a b +的最小值为( ) A .25 B .24 C .27 D .59.任何一个复数z a bi =+都可以表示成()cos sin z r i θθ=+的形式,我们把()cos sin r i θθ+叫做复数的三角形式.已知cossin33z i ππ=+,则下列结论正确的是( )A .2z 的实部为1B .21z z =-C .2z z = D .22z =10.(选修4-4:坐标系与参数方程)已知曲线Γ的参数方程3sin ,2cos ,x y θθ=⎧⎨=⎩(θ为参数,且0θπ≤≤).若以下曲线中有一个是Γ,则曲线Γ是( )A .B .C .D .(选修4-5:不等式选讲)已知a b c >>,若14ma b b c a c+≥---恒成立,则m 的最大值为( ) A .3B .4C .8D .911.胡夫金字塔的形状为正四棱锥.1859年,英国作家约翰·泰勒在其《大金字塔》一书中提出:埃及人在建造胡夫金字塔时利用了黄金比例15 1.6182⎛⎫+≈ ⎪ ⎪⎝⎭,泰勒还引用了古希腊历史学家希罗多德的记载:胡夫金字塔的每一个侧面的面积都等于金字塔高的平方,如图,即2h as =.已知四棱锥底面是边长约为860英尺的正方形()2860a =,顶点P 的投影在底面中心O ,H 为BC 中点,根据以上条件,PH 的长度(单位:英尺)约为( )A .3479.B .512.4C .6116.D .695.712.已知0a b c d <<<<,若dcc d =,则ba 与ab 的大小关系为( ) A .baa b < B .baa b = C .baa b > D .不确定第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分.13.若2i -为方程220x mx n ++=(m ,n ∈R )的一个根,则n =______. 14.从某大学随机选择8名女大学生,其身高和体重数据如表所示: 身高x (cm ) 155 157 165 165 165 170 170 175体重y (kg )43 50 48 5761 54 59 64根据表中的数据可得回归直线方程ˆ0.84985.712yx =-,20.64R ≈,这表明女大学生的体重差异有______是由身高引起的.15.在等差数列{}n a 中,若80a =,则121215n n a a a a a a -++⋅⋅⋅+=++⋅⋅⋅+(15n <,*n ∈N ).类比上述性质,在等比数列{}n b 中,若151b =,则存在的等式为______. 16.已知函数()()()333322f x x a x b x a x =++-+--有五个不同的零点,且所有零点之和为52,则实数b 的值为______.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.ABCD 为复平面内的平行四边形,向量OA 对应的复数为5,AB 对应的复数为23i --,BC 对应的复数为64i -+.(Ⅰ)求点D 对应的复数;(Ⅱ)判断A 、B 、C 、D 四点是否在同一个圆上?并证明你的结论.18.(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的非负半轴为极轴且取相同的单位长度建立板坐标系,已知曲线E 的极坐标方程为2241sin ρθ=+;直线l 的倾斜角为34π,且l 经过曲线E 的左顶点.(Ⅰ)求曲线E 的直角坐标方程和直线l 的参数方程; (Ⅱ)求曲线E 的内接矩形ABCD 的周长的最大值. (选修4-5:不等式选讲)已知函数()1112f x x x =--+. (Ⅰ)求()f x 的最大值,并在网格纸中作出函数()f x 的图象;(Ⅱ)求()6f x x ≤-的解集.19.调查某医院某段时间内婴儿出生的时间与性别的关系,随机调查了一段时间内该医院50名男宝宝和50名女宝宝的出生时间,通过分析数据得到下面等高条形图:(Ⅰ)根据所给等高条形图数据,完成下面的22⨯列联表,并通过图形和数据直观判断婴儿性别与出生时间是否有关?晚上 白天 合计 男婴 女婴 合计(Ⅱ)根据(Ⅰ)中列联表,能否在犯错误概率不超过0.1的前提下认为婴儿的性别与出生的时间有关? 20.(选修4-4:坐标系与参数方程)平面直角坐标系xOy 中,射线l :33y x =()0x ≥,曲线1C 的参数方程为1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数);以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为8sin ρθ=.(Ⅰ)写出射线l 的极坐标方程、曲线1C 的普通方程;(Ⅱ)已知射线l 与1C 交于点A ,与2C 交于点B (B 异于点O ),求AB 的值. (选修4-5:不等式选讲)已知函数()2f x x a =+. (Ⅰ)当1a =-时,求不等式()93f x x x -≥-+的解集;(Ⅱ)是否存在实数a 使得()34f x x x ++≤+的解集中包含[]01,.若存在,求a 的取值范围;若不存在,说明理由.21.红铃虫是棉花的主要害虫之一,其产卵数与温度有关.现收集到一只红铃虫的产卵数y (个)和温度x (℃)的8组观测数据,制成图1所示的散点图现用两种模型①x y a b =⋅(0a >,0b >),②2y cx d =+分别进行拟合,由此得到相应的回归方程并进行残差分析,进一步得到图2所示的残差图. 根据收集到的数据,计算得到如下值:xz t()821ii x x =-∑()821i i t t =-∑()()81iii z z x x =--∑()()81iii y y t t =--∑25 2.89 646 168 422688 48.48 70308表中ln i i z y =;8118i i z z ==∑;2i i t x =;8118i t t ==∑.(Ⅰ)根据残差图,比较模型①、②的拟合效果,应选择哪个模型?并说明理由;(Ⅱ)根据(Ⅰ)中所选择的模型,求出y 关于x 的回归方程(计算过程中四舍五入保留两位小数),并求温度为35℃时,产卵数y 的预报值. 参考数据: 5.61273e≈, 5.70299e ≈, 5.79327e ≈.22.开普勒说:“我珍视类比胜过任何别的东西,它是我最可信赖的老师,它能揭示自然界的秘密,”波利亚也曾说过:“类比是一个伟大的引路人,求解立体几何问题往往有赖于平面几何中的类比问题.”在选修1—2第二章《推理与证明》的学习中,我们知道,平面图形很多可以推广到空间中去,例如正三角形可以推广到正四面体,圆可以推广到球,平行四边形可以推广到平行六面体等.如图,如果四面体D EFP -中棱DE ,DF ,DP 两两垂直,那么称四面体D EFP -为直角四面体.请类比直角三角形ABC (h 表示斜边上的高)中的性质给出直角四面体D EFP -中的两个性质,并给出证明.直角三角形ABC直角四面体D EFP -条件 CA CB ⊥ DE DF ⊥,DE DP ⊥,DF DP ⊥结论1 222a b c +=结论2 222111h a b=+郑州市2020—2021下期高二文科数学考试评分参考一、选择题 题号 123456789101112答案B BC A BD A C B D D A二、填空题13.10; 14.64%; 15.121229n n bb b bb b -⋅⋅⋅=⋅⋅⋅(15n <,*n ∈N )备注:考生不写小括号内容不给分. 16.3225.(或者4129). 三、解答题17.解:(1)由题意知,()5,0OA =,()2,3AB =--,()6,4BC =-, 所以()()()5,02,33,3OB OA AB =+=+--=-, 同理()()()3,36,43,1OC OB BC =+=-+-=-, 由AD BC =,得()1,4D -, 则点D 对应的复数14z i =-+.(2)由0AB BC ⋅=,得AB BC ⊥,即AB BC ⊥.∴四边形ABCD 为矩形 ∴A 、B 、C 、D 四点共圆.18.解:(1)因为曲线E 的极坐标方程为222sin4ρρθ=+.将222x y ρ=+,sin y ρθ=,代入上式,得2224x y =+.所以曲线E 的直角坐标方程为22142x y +=; 又∵曲线E 为椭圆,其左顶点坐标为()2,0-,∴直线l的参数方程为:222x y ⎧=--⎪⎪⎨⎪=⎪⎩(t为参数).(2)设椭圆E的内接矩形在第一象限的顶点为()2cos θθ02πθ⎛⎫<<⎪⎝⎭, ∴椭圆E 的内接矩形的周长y为:()8cos y θθθϕ=+=+(其中sin ϕ=,cos ϕ=)∴椭圆E 的内接矩形的周长的最大值为46.(选修4—5:不等式选讲)解:(1)依题意,()111=2f x x x =--+13,12231,112213,122x x x x x x ⎧+≤-⎪⎪⎪---<<⎨⎪⎪--≥⎪⎩所以,当1x =-时,()max 1f x =; 函数()f x 的图象如图所示:(2)由(1)可知,利用图象法,直线6y x =-只与()f x 的图像相交于A ,由613,22y x y x =-⎧⎪⎨=--⎪⎩解得()3,3A -故当3x ≥时,直线6y x =-在()f x 图象的上方, 即()6f x x ≤-,故解集为[)3,+∞.19.解:(1)根据所给等高条形图数据,完成22⨯列联表如下:晚上白天合计男婴 10 40 50 女婴 20 30 50 合计3070100根据等高条形图,在男婴样本中白天出生的频率要高于女婴样本中白天出生的频率; 根据列联表,男婴样本中白天出生的频率为80%,女婴样本中白天出生的频率为60%. 因此可以直观得到结论:婴儿的性别和出生时间有关系(二者选其一即可给分)(2)根据(1)中列联表,计算()22100402030101004.762 2.7065050703021K ⨯⨯-⨯==≈>⨯⨯⨯,所以能在犯错误概率不超过0.1的前提下认为婴儿的性别和出生的时间有关. 20.(选修4-4:坐标系与参数方程) 解:(1)依题意,因为射线l:y x =()0x ≥,故射线l :6πθ=()0ρ≥;因为1C 的参数方程为:1,1x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,可得曲线1C 的普通方程:224x y -=.(2)曲线1C 的方程为224x y -=,故曲线1C 的极坐标方程为42cos 2=θρ. 设点A 、B 对应的极坐标分别为()1,ρθ,()2,ρθ,联立l 与1C ,得2,6cos 24,πθρθ⎧=⎪⎨⎪=⎩解得6A π⎛⎫ ⎪⎝⎭ 联立l 与2C ,得,68sin ,πθρθ⎧=⎪⎨⎪=⎩解得4,6B π⎛⎫⎪⎝⎭故124AB ρρ=-=-(选修4—5:不等式选讲)解:(1)当1a =-时,原不等式可化为2139x x x -++≥+等价于31239x x x x ≤-⎧⎨---≥+⎩或1321239x x x x ⎧-<<⎪⎨⎪-++≥+⎩或1,22139,x x x x ⎧≥⎪⎨⎪-++≥+⎩即52x ≤-或72x ≥,所以不等式的解集是57,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. (2)若存在这样的a ,使得()34f x x x ++≤+的解集中包含[]0,1. 即当[]0,1x ∈时,()34f x x x ++≤+恒成立.11 可得234x a x x +++≤+,得21x a +≤,得1122a a x ---≤≤. 所以11,210,2a a -⎧≥⎪⎪⎨--⎪≤⎪⎩解得1a =-所以存在这样的a ,满足1a =-使得()34f x x x ++≤+的解集中包含[]0,1.21.解:(1)应该选择模型①.理由为:模型①残差点比较均匀地落在水平的带状区域中,且带状区域的宽度比模型②带状宽度窄,所以模型①的拟合精度更高,回归方程的预报精度相应就会越高.故选模型①比较合适.(2)由(1)知,选用模型①,xy a b =⋅,用两边取对数,得()ln ln ln y b x a =+, 令ln z y =,z 与温度x 可以用线性回归方程来拟合,则()ln ln z b x a =+,()()()8182148.48ln 0.29168ii i i i x x z z b x x ==--==≈-∑∑, ln ln 2.890.2925 4.36a z x b =-=-⨯≈-,于是有ln 029436y x =-..,所以产卵数y 关于温度x 的回归方程为0.29 4.36x y e-=. 当35x =时,0.2935 4.36 5.79327y e e ⨯-==≈(个), 所以,在气温在35℃时,一个红铃虫的产卵数的预报值为327个.22.解:记DEF △、DEP △、DFP △、EFP △的面积依次为1S 、2S 、3S 、S ,记DE m =,DF n =,DP p =.结论1:2222123S S S S =++,证明:过D 作DH EF ⊥,垂足为H ,连接PH , ()22222222222212311112224S S S mn mp np m n m p n p ⎛⎫⎛⎫⎛⎫++=++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12 在Rt DEF △中,DE DF DH EF ⋅== DH =,PH ==()2222222214S m n n p m p ==++, 2222123S S S S =++.结论2:22221111h m n p =++证明:过D 作DH EF ⊥,垂足为H ,连接PH , 过D 作DG PH ⊥,垂足为G ,设DG h =,∵h = ∴22222222222221111m n m p n p h m n p m n p ++==++. ∴22221111d m n p =++.。

2020-2021学年辽宁省鞍山市高二下学期期末考试数学试卷(解析版)

2020-2021学年辽宁省鞍山市高二下学期期末考试数学试卷(解析版)

辽宁省鞍山市2020-2021学年高二下学期期末考试数学试卷一、单选题(共8小题,每小题5分,共40分).1.设集合A={x|x>3},B={x|≤0},则(∁R A)∩B=()A.(﹣∞,2] B.[3,5] C.[2,3] D.[3,5)『答案』A『解析』因为集合A={x|x>3},所以∁R A={x|x≤3},又B={x|≤0}={x|x≤2或x>5},故(∁R A)∩B=(﹣∞,2].故选:A.2.若a<b<0,则下列不等式中不能成立的是()A.>B.>C.|a|>|b| D.a2>b2『答案』B『解析』∵a<b<0,f(x)=在(﹣∞,0)单调递减,所以>成立;∵a<b<0,0>a﹣b>a,f(x)=在(﹣∞,0)单调递减,所以<,故B不成立;∵f(x)=|x|在(﹣∞,0)单调递减,所以|a|>|b|成立;∵f(x)=x2在(﹣∞,0)单调递减,所以a2>b2成立;故选:B.3.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时,答对的概率为100%,而不知道正确答案时猜对的概率为0.25,那么他答对题目的概率为()A.0.625 B.0.75 C.0.5 D.0『答案』A『解析』设“考生答对题目”为事件A,“考生知道正确答案”为事件B,则P(B)=0.5,P(A|B)=1,P(A|)=0.25,P(A)=P(AB)+P(A)==1×0.5+0.25×0.5=0.625.故选:A.4.在(x﹣)5的二项展开式中,x2的系数是()A.8 B.﹣8 C.10 D.﹣10『答案』D『解析』∵(x﹣)5的二项展开式的通项公式为T r+1=•(﹣2)r•x5﹣3r,令5﹣3r=2,求得r=1,可得展开式中x2的系数是﹣10,故选:D.5.疫情期间以网课的方式进行授课,某省级示范中学对在家学习的100名同学每天的学习时间(小时)进行统计,服从正态分布N(9,12),则100名同学中,每天学习时间超过10小时的人数为()(四舍五入保留整数)参考数据:P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9545,P(μ﹣3σ<Z≤μ+3σ)=0.9973.A.15 B.16 C.31 D.32『答案』B『解析』,故所求人数为100×0.1587≈16.故选:B.6.下列说法错误的是()A.“若x≠3,则x2﹣2x﹣3≠0”的逆否命题是“若x2﹣2x﹣3=0,则x=3”B.“∀x∈R,x2﹣2x﹣3≠0”的否定是“∃x0∈R,x02﹣2x0﹣3=0”C.“x>3”是“x2﹣2x﹣3>0”的必要不充分条件D.“x<﹣1或x>3”是“x2﹣2x﹣3>0”的充要条件『答案』C『解析』对于A,“若x≠3,则x2﹣2x﹣3≠0”的逆否命题是“若x2﹣2x﹣3=0,则x=3”,正确;对于B,“∀x∈R,x2﹣2x﹣3≠0”的否定是∃x0∈R,x02﹣2x0﹣3=0”,正确;对于C,“x2﹣2x﹣3>0”等价于“x<﹣1或x>3”,∴“x>3”是“x2﹣2x﹣3>0”的充分不必要条件,错误;对于D,“x<﹣1或x>3”是“x2﹣2x﹣3>0”的充要条件,正确.故选:C.7.等差数列{a n}的前n项和记为S n,若a1>0,S10=S20,则不成立是()A.d<0 B.a16<0C.S n的最大值是S15D.当且仅当S n<0时,n=32『答案』D『解析』设等差数列{a n}的公差为d,由S10=S20,得10a1+45d=20a1+190d,即2a1+29d =0,又a1>0,所以d<0,故选项A正确;由2a1+29d=0,得a1+14d+a1+15d=0,即a15+a16=0,所以a15>0;a16<0,即{a n}是递减数列,且n≤15时,a n>0;当n≥16时,a n<0,所以选项C正确.因为S31=(a1+a31)=31a16<0,所以选项D错误.故选:D.8.定义在R上的可导函数f(x),当x∈(1,+∞)时,(x﹣1)f′(x)﹣f(x)>0恒成立,a=f(2),b=f(3),c=(+1)f(),则a、b、c的大小关系为()A.c<a<b B.b<c<a C.a<c<b D.c<b<a『答案』A『解析』构造函数g(x)=,当x∈(1,+∞)时,g′(x)=,即函数g(x)单调递增,则a=f(2)==g(2),b=f(3)==g(3),c=(+1)f()==g(),则g()<g(2)<g(3),即c<a<b,故选:A.二、多选题(本大题4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2019最新】精选高二数学下学期期末考试试题 文3数学 试 题 卷(文科) 第I 卷(选择题,共60分)一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项是符合题目要求的.1.设集合,,则( ){}2|log 0A x x =<133xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭A B =IA .B .C .D .{}|11x x -<<{}|01x x <<{}|0x x >R2.复数( )2431i i i i++=-A. B. C. D.1122i --1122i -+1122i -1122i +3.已知等差数列的通项公式为,且满足,,则( ){}n a n a 11a =121n n a a n ++=+=10S A .45B .95C .110D .554.已知函数为偶函数,且在单调递减,则的解集为( )()(1)()f x x ax b =-+(0,)+∞0)(<x fA .B .C .D .),(),(101--⋃∞),(),(∞+⋃∞11--(1,1)-),(),(∞+⋃101-5.已知双曲线的离心率为,焦点到渐近线的距离为,则此双曲线的焦距等于( ).22221(0,0)x y a b a b-=>>322A. B. C. 2 D.63236.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( )A .B .C .D .32643π-648π-16643π-8643π-7.如图程序中,输入,则输出的结果为( )10lg ,2log ,2ln 3===z y x A . B .x yC .D .无法确定z8.函数的导函数在区间上的图像大致是( )x x x f cos )(=)(x f '],[ππ-A. B. C. D. 9.已知函数.1)(-=x x x f 命题:的值域是;命题:在单调递减.则在命题:;:;:和:中,真命题是( )1p )(x f ()()∞+⋃∞,,11-2p )(x f ()()∞+⋃∞,,11-1q 12p p ∨2q ()()12p p ⌝∧⌝3q ()12p p ⌝∨4q ()12p p ∧⌝A .1q , B ., C ., D .,3q 1q 4q 2q 3q 2q 4q10.对任意实数都有,若的图像关于成中心对称,,则( )x )2(2)()4(f x f x f =++)2(-x f ),(023)1(=f =+)2018()2017(f fA.0B.3C.6D.-3 11.对于实数,下列说法:①若,则;②若,则;③若,则;④若且,则,正确的个数为()mb a 、、22bm am >ba >ba >bb a a >0,0>>>m a b bam b m a >++0>>b a ba ln ln =222的最小值是b a +A .B .C .D .1234 12.已知函数,,若对任意的,,都有成立,则实数的取值范围是( )()ln a f x x x x =+5)(23++-=x x x g 1x 21,22x ⎡⎤∈⎢⎥⎣⎦0)()(21≤-x g x f a A . B . C . D . 第II 卷(非选择题,共90分)(]2ln 4-2-,∞(]1-,∞⎥⎦⎤⎢⎣⎡+2ln 4121,2ln 4-2⎥⎦⎤⎝⎛+∞2ln 4121-,第15题图二.填空题:本大题共4小题,每小题5分,共20分. 13.已知奇函数满足,则=)2(f14. 已知曲线的一条切线为,则实数的值为ln y x x =2y x b =+b 15.通常,满分为100分的试卷,60分为及格线.若某次满分为100分的测试卷,100人参加测试,将这100人的卷面分数按照分组后绘制的频率分布直方图如图所示.由于及格人数较少,某位老师准备将每位学生的卷面得分采用“开方乘以10取整”的方法进行换算以提高及格率(实数的取整等于不超过的最大整数),如:某位学生卷面49分,则换算成70分作为他的最终考试成绩,则按照这种方式,这次测试的及格率将变为.(结果用小数表示)[)[)[]96,84,,48,36,36,24K a a16.已知定义在上的函数,若有零点,则实数的取值范围是R ⎩⎨⎧<+≥-=ax x ax x x f ,2,2)(2a f x g -+=)22018()(x a 三.解答题:本大题共6小题,共70分.17.(本小题满分12分)在中,角,,所对的边分别是,,,且.ABC ∆A B C a b c sin sin ()sin a A b B c b c =+- (1)求的大小;A(2)若,,求的面积.sin 2sin B C =32=a ABC ∆ 18.(本小题满分12分)近年来,某地区积极践行“绿水青山就是金山银山”的绿色发展理念,2012年年初至2018年年初,该地区绿化面积(单位:平方公里)的数据如下表:y (1)求关于的线性回归方程;y t(2)利用(1)中的回归方程,预测该地区2022年年初的绿化面积.(附:回归直线的斜率与截距的最小二乘法估计公式分别为:,.其中)=b ∑∑==-⋅-=ni in i i i xn xyx n y x 1221__xb y a ∧∧-=4.13471=∑=i ii yx19.(本小题满分12分)如图,在四棱锥中,底面是梯形,,,,.ABCD P - (1)证明:平面平面;(2)若与平面所成的角为,,求点到平面的距离.PD PA AD ==,1C PAB 20.(本小题满分12分)已知动点到定点的距离与到定直线的距离相等.M )21,0(F M 21-=y (1)求点的轨迹的方程;M C(2)直线交于两点,且的面积为,求的方程.l C B A ,2OA OB k k ⋅=-OAB ∆16l 21.(本小题满分12分)设函数,为正实数.2()ln f x x ax ax =-+a (1)当时,求曲线在点处的切线方程;2a =()y f x =(1,(1))f(2)求证:;1()0f a≤(3)若函数有且只有个零点,求的值.()f x 1a选考题:请考生在第22,23题中任选一题作答。

如果多选,则按所做的第一题计分。

22.选修4-4:坐标系与参数方程(本小题满分10分)在直角坐标系中,圆的普通方程为.在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.xOy C 2246120x y x y +--+=x l sin()24πρθ+=(1)写出圆的参数方程和直线的直角坐标方程;C l(2)设直线与轴和轴的交点分别为、,为圆上的任意一点,求的取值范围.l x y A B P C PA PB ⋅u u u r u u u r23.选修4-5:不等式选讲(本小题满分10分)2019年已知函数,.()22f x x a a =++a R ∈(1)若对于任意,都满足,求的值;x R ∈()f x ()(3)f x f x =-a (2)若存在,使得成立,求实数的取值范围.x R ∈()21f x x a ≤--+a2018年重庆一中高2019级高二下期期末考试数学参考答案(文科)一.选择题1-5 BCDBD 6-10 CAABB 11-12 CA 二.填空题13.0 14.- 15.0.82 16.e ()∞+,4 三.解答题。

17.,3π=A 32,2,4===S c b18.(1), , 3.4,4==y t 3.2,5.0==∧∧a b 线性回归方程为3.25.0+=∧t y(2)将2022年年号11代入,预测绿化面积为7.8平方公里. 19.解:(1)证明:在△ABD 中,由余弦定理得 BD2=AB2+AD2-2AB·ADcos ∠BAD, ∵∠BAD =60°,AB =2AD ,∴BD2=4AD2+AD2-2·2AD ·ADcos 60°=3AD2,∴AB2=AD2+BD2,即BD ⊥AD . 又∵AP ⊥BD ,AD ∩AP =A , ∴BD ⊥平面PAD . ∵BD ⊂平面ABD , ∴平面ABD ⊥平面PAD .(2)解:取AD 的中点O ,连接PO ,BO ,∵PA =PD ,∴PO ⊥AD .由(1)知平面ABD ⊥平面PAD ,交线为AD ,∴PO ⊥平面ABD , 由AD =1,得AB =2,BD =,OB=,213 ∵PA 与平面ABCD 所成的角为60°,∴∠PAO =60°,得OP =,∴PB =2,PA =1.23 ∵AB ∥CD ,∴CD ∥平面PAB ,故点C 到平面PAB 的距离即为点D 到平面PAB 的距离d , 在三棱锥P -ABD 中,VD -PAB =VP -ABD , 即,求得d =,∴点C到平面PAB 的距离为.23312131)21(-21213122⨯⨯⨯⨯=⨯⨯⨯⨯d 515515 20.解:(1)由抛物线定义可知,的轨迹方程是:M y x 22=(2)直线的斜率显然存在,设直线,l )2,(),2,(,:222211x x B x x A b kx y l +=由得:⎩⎨⎧=+=yx bkx y 220222=--b kx x由,4,224212211=∴-=-==⋅=⋅b b x x x y x y k k OB OA ∴直线方程为:,所以直线恒过定点4+=kx y )4,0(R即64324,644)221221=+∴=-+k x x x x ( 所以直线方程为:422+±=y 21.解:(1)当时,,则,所以,又,所以曲线在点处的切线方程为.2a =2()ln 22f x x x x =-+1'()42f x x x=-+'(1)1f =-(1)0f =()y f x =(1,(1))f 10x y +-= (2)因为,设函数,则,111()ln 1f aaa=-+()ln 1g x x x =-+11'()1x g x xx-=-=令,得,列表如下:'()0g x =1x =所以的极大值为.所以.()g x(1)0g =()ln 10f a a a=-+≤(3),,2121'()2ax ax f x ax a x x--=-+=-0x >令,得,因为,'()0f x>x<<0< 所以在上单调增,在上单调减.()fx )+∞ 所以.()f x f≤设,因为函数只有1个零点,而,0x =()f x (1)0f =所以是函数的唯一零点.1()f x当时,,有且只有个零点,01x =()(1)0f x f =≤()f x 11=1a = 下证,当时,的零点不唯一.01x ≠()f x若,则,此时,即,则.01x >0()(1)0f x f >=1>01a <<11a> 由(2)知,,又函数在以和为端点的闭区间上的图象不间断,1()0f a<()f x 0x 1a所以在和之间存在的零点,则共有2个零点,不符合题意;0x 1a()f x ()f x 若,则,此时,即,则.01x <0()(1)0f x f >=1<1a >101a<< 同理可得,在和之间存在的零点,则共有2个零点,不符合题意.1ax ()f x ()f x因此,所以的值为.01x =a 122.解:(Ⅰ)圆的参数方程为(为参数).C 2cos 3sin x y θθ=+⎧⎨=+⎩θ直线的直角坐标方程为.l 20x y +-= (Ⅱ)由直线的方程可得点,点.设点,则..l 20x y +-=(2,0)A (0,2)B (,)P x y PA PB ⋅u u u r u u u r(2,)(,2)x y x y =--⋅--2222x y x y =+--2412x y =+-由(Ⅰ)知,则.2cos3sin x y θθ=+⎧⎨=+⎩PA PB ⋅u uu r u u u r 4sin 2cos 4θθ=++)4θϕ=++因为,所以.R θ∈44PA PB -≤⋅≤+u u u r u u u r23.解:(Ⅰ)因为,,所以的图象关于对称.()(3)f x f x =-x R ∈()f x 32x = 又的图象关于对称,所以,所以.()2||22a f x x a =++2a x =-322a -=3a =- (Ⅱ)等价于.()21f x x a ≤--+2210x a x a ++-+≤设,则.()g x =221x a x a ++-+min ()(2)(21)g x x a x a =+--+1a a =++ 由题意,即.min ()0g x ≤10a a ++≤当时,,,所以;1a ≥-10a a ++≤12a ≤-112a -≤≤-当时,,,所以,综上.1a <-(1)0a a -++≤10-≤1a <-12a ≤-。

相关文档
最新文档