第八章 :染色体畸变与基因突变

合集下载

染色体畸变与基因突变

染色体畸变与基因突变
育。
(1-2)(12- 21) 1/4是完全可育的正常个体(1,1
和2,2),2/4仍然是半不育的易位杂合体(1,12,
2,21),1/4是完全可育的易位纯合体(12,12,21
,21)
(四) 罗伯逊易位(Robertsonian translocation)
两个近端着丝粒染色体或端部着丝粒染色体,相互 易位,两条大的相互融合,两条小的相互融合(丢 失)。
(一)染色体组(genome)及其基本特征
– 二倍体种配子中具有的全部染色体。 – 染色体基数(x):一个物种染色体组的染色体数
基本特征:
– 不同属的染色体基数不同; – 染色体组内的各染色体间形态、结构和载有的基
因均彼此不同。
(二)整倍体(euploid)
1. 整倍体:染色体数目是x的整倍的生 物个体。
四重体“十”字形;
相互易位杂和体减数分裂粗线期联会形成1-12-221的“十”字形象十字形。
到了终变期,十字形因交叉端化而变为四个染色 体构成的“四体链”或“四体环”(相邻式),交 替式则变为“8”字形象。
易位杂合体的联会和分离
可育
不育
(三) 易位的遗传学效应
降低连锁基因的重组率。
改变基因连锁关系 进化意义
(三) 缺失的细胞学鉴定 无着丝粒断片;
最初发生缺失的细胞在分裂时可见无着丝粒断片。
缺失环;
中间缺失杂合体偶线期和粗线期出现;
二价体末端突出;
顶端缺失杂合体粗线期、双线期,交叉未完全端 化的二价体末端不等长。
较小的缺失往往并不表现出明显的细胞学特征; 缺失纯合体减数分裂过程也不表现明显的细胞学特征。
一倍体(monoploid, x) 二倍体(diploid, 2x) 三倍体(tripoid, 3x) 四倍体(tetraploid, 4x)

第八章 微生物遗传学笔记

第八章 微生物遗传学笔记
基因重组的意义:基因重组是杂交育种的理论基础。
杂交育种的优点:①由于杂交育种选用了已知性状的供体菌和受体菌作为亲本,故在方向性和自觉性方面,均比诱变育种前进了一大步。②利用杂交育种可以消除某一菌株在经过长期诱变处理后所出现的产量上升缓慢的现象
杂交育种的缺点:杂交育种的方法较复杂,目前还没有得到普遍的推广和使用,尤其在原核生物的领域中,应用转化、转导或接合等重组技术来培育可应用于生产实践上的高产菌株的例子还不多见。
2.转导:通过完全缺陷或部分缺陷噬菌体的媒介,把供体细胞的DNA小片段携带到受体细胞中,通过交换与整合,使后者获得前者部分遗传形状的现象。获得新遗传形状的受体细胞称为转导子(transductant)
3.接合(conjugation):供体菌通过性菌毛传递不同长度的单链DNA给受体菌,在后者细胞中发生交换、整合,从而使后者获得供体菌的遗传性状的现象。获得新性状的受体细胞称为接合子。
移码突变(frame-shift mutation)指诱变剂使DNA分子中的一个或少数几个核苷酸的增添(插入)或缺失,从而使该部位后面的全部遗传密码发生转录和转译错误的一类突变。
染色体畸变(chromosomal aberration)某些理化因子,如X射线等的辐射及烷化剂、亚硝酸等,除了能引起点突变外,还会引起DNA的大损伤——染色体畸变,包括以下两个方面:染色体结构上的缺失、重复、易位和倒位染色体数目的变化。
6.降解性(代谢)质粒
如假单胞菌属中发现。它们的降解性质粒可为一系列能降解复杂物质的酶编码,从而能利用一般细菌所难以分解的物质做碳源。这些质粒以其所分解的底物命名。
7.隐秘质粒:不显示任何表型效应,只能通过物理的方法检测的质粒。如酵母菌的2um质粒。
二.转座因子
插入(IS)序列、转座子(Tn)、特殊病毒(Mu噬菌体)

基因突变和染色体畸变与疾病PPT课件

基因突变和染色体畸变与疾病PPT课件
A
a
A
病畜
a
a
a
正常
A
a
病畜
a
a
正常
4.1.2 基因型分析
子代表现型
病畜
正常
概率
0.50
0.50
4.1.3 特点: (1)致病基因在常染色体上,遗传与性别无关,后代发病雌雄机会均等; (2)系谱图,病畜呈连续分布; (3)表现正常家畜交配,后代不发病。
4.1.4 举例 牛复合脂肪过多症、外生性骨疣、牛和猪的遗传性淋巴结水肿、猪并趾症等。
3.3.2 非整倍体产生机理
(1)染色体不分离:染色体的两条单体在细胞分裂后期不能正常分开,而同时进入子细胞,导致一个细胞增多一条,而另一细胞减少一条。 (2)染色体丢失:由于纺锤体形成不完全或着丝粒受损,使个别染色体在细胞分裂后期移动滞留,没有进入子细胞并随后丢失,导致子细胞中减少一条染色体。
概率
0.25
0.25
正常
病畜
雄性病畜
正常雄性
0.25
0.25
4.4.3 特点: (1)后代发病有性别差异,群体中雄性大于雌性; (2)系谱图,病畜呈不连续分布; (3)近亲交配,发病几率增高。
4.4.4 举例: 人和动物的血友病A和B 血友病A:先天性凝血因子Ⅷ缺乏(狗、兔、猪); 血友病B: 先天性凝血因子Ⅸ缺乏(猪、狗、猫)。
Back
Back
Back
Back
Back
3.3 染色体畸变机理
3.3.1 多倍体产生机理 (1)双雄受精:同时有2个精子入卵受精; (2)双雌受精:减数分裂时,极体与卵核再结合,形成两倍体卵子; (3)核内再复制:染色体已复制而核膜未分裂,在完整的胞膜内形成多倍化现象,称核内再复制(endoreduplication)。

《动物遗传学》教学课件:第8章 遗传病的发病机理——染色体畸变

《动物遗传学》教学课件:第8章 遗传病的发病机理——染色体畸变
第八章 遗传病的发病机理— —染色体畸变
第一节 染色体结构变异 第二节 染色体数目变异
第一节 染色体结构变异
一 、染色体结构变异的概述
1. 染色体结构变异的概念:由于染色体
断裂后或不结合或进行差错结合而产生的 染色体某区段发生改变,从而改变了基因 的数目、位置和顺序。
2.引起结构变异的因素
内因:营养、温度、生理等异常变化 外因:物理因素、化学药剂的处理
二. 染色体数目变异类型
整倍体变异 非整倍体变异
三. 整倍体变异
单倍体和一倍体 (n和x) 同源三倍体
同源多倍体
多倍体
同源四倍体
异源多倍体
依据生物细胞中染色体组(X)的数目可分为一倍体、 二倍体和多倍体。
1.整倍体的类型
整倍体(euploid)——指体细胞中染色体数是完 整染色体组的倍数的生物个体。用mX表示
3.倒位的遗传学效应
①改变了倒位区段内的基因和倒位区段两侧基因之间 的顺序和距离;
②由于在倒位杂合体中倒位圈内发生交换的染色单体 都带有缺失和重复,引起配子死亡,最后得到的配 子都是未发生交换的,因此导致
倒位区段内的基因表现很强的连锁 倒位杂合体上基因的重组率降低了
③倒位圈内非姐妹染色单体发生奇数次交换导致配子 不育
断头之间易发生错接,形成双着丝粒染色体 或易位; 一条染色体发生缺失,会形成异形二价体
倘若缺失区段很小,在形态上很难看出
2.中间缺失
中间缺失至少牵涉到两个位点的断裂; 同源染色体配对时,往往形成缺失环 比末端缺失常见
3.缺失产生的原因
染色体损伤断裂:末端缺失 染色体纽结:中间缺失(或反接重复) 不等交换(unequal crossing over):缺失

《微生物学》主要知识点-08第八章微生物的遗传

《微生物学》主要知识点-08第八章微生物的遗传

第八章微生物的遗传概述:遗传(heredity or inheritanc® 和变异(variation)是生物体的最本质的属性之一。

遗传即生物的亲代将一整套遗传因子传递给子代的行为或功能。

变异指生物体在某种外因或内因的作用下所引起的遗传物质结构或数量的改变。

基因型(ge no type某一生物个体所含有的全部基因的总和。

表型(phe no type)某一生物所具有的一切外表特征及内在特性的总和。

饰变( modification)不涉及遗传物质结构改变而发生在转录、翻译水平上的表型变化。

8.1遗传变异的物质基础8.1.1三个经典实验1. 经典转化实验:1928年F.Griffith以Streptococcus pneumoniae为研究对象进行转化(transformation)实验。

1944年O.T.Avery等人进一步研究得出DNA是遗传因子。

S strun A2. 噬菌体感染实验:1952年Alfred D.Hershey和Martha Chase用32P标记病毒的DNA,用35S标记病毒的蛋白质外壳,证实了T2噬菌体的DNA是遗传物质。

3.植物病毒的重建实1956年H.Fraenkel-Conrat用含RNA的烟草花叶病毒(tobacco mosaic virus,TMV)与TMV 近源的霍氏车前花叶病毒(Holmes ribgrass mosaic virus,HRV)所进行的拆分与重建实验证明,RNA也是遗传的物质基础。

8.2微生物的基因组结构:基因组(genome是指存在于细胞或病毒中的所有基因。

细菌在一般情况下是一套基因,即单倍体(haploid);真核微生物通常是有两套基因又称二倍体(diploid )。

基因组通常是指全部一套基因。

由于现在发现许多非编码序列具有重要的功能,因此目前基因组的含义实际上是指细胞中基因以及非基因的DNA序列的总称,包括编码蛋白质的结构基因、调控序列以及目前功能还尚不清楚的DNA序列。

《医学遗传学》背诵重点分章

《医学遗传学》背诵重点分章

《医学遗传学》背诵重点第一章绪论【名词解释】1、遗传性疾病(genetic disease):简称遗传病,是指遗传物质改变(基因突变或染色体畸变)所引起的疾病。

2、先天性疾病:是指个体出生后即表现出来的疾病。

大多数是遗传病与遗传因素有关的疾病和畸形。

3、家族性疾病:是指某些表现出家族性聚集现象的疾病,即在一个家族中有多人同患一种疾病。

【简答题】遗传病的特征及分类(1)特征:①垂直遗传②基因突变或染色体畸变是遗传病发生的根本原因,也是遗传病不同于其他疾病的主要特征。

③生殖细胞或受精卵发生的遗传物质改变才能遗传,而体细胞中遗传物质的改变,并不能向后代传递。

④遗传病常有家族性聚集现象。

(2)分类:(一)单基因病:由染色体上某一等位基因发生突变所导致的疾病。

①常染色体显性遗传病②常染色体隐性遗传病③X连锁隐性遗传病④X连锁显性遗传病⑤Y连锁遗传病⑥线粒体遗传病(二)多基因病:由两对以上的等位基因和环境因素共同作用所致的疾病。

(三)染色体病:染色体数目或结构改变所致的疾病。

(四)体细胞遗传病:体细胞中遗传物质改变所致的疾病。

第二章基因【名词解释】1、基因(gene):是合成一种有功能的多肽链或者RNA分子所必需的一段完整的DNA序列。

2、断裂基因(split gene):真核生物结构基因包括编码序列和非编码序列两部分,编码顺序在DNA分子中是不连续的,被非编码顺序分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因。

3、基因突变(gene mutation):是DNA分子中核苷酸序列发生改变,导致遗传密码编码信息改变,造成基因的表达产物蛋白质的氨基酸变化,从而引起表型的改变。

4、外显子(exon):编码顺序称为外显子5、内含子(intron):非编码顺序称为内含子6、多基因家族(mumlti gene family):指某一共同祖先基因经过重复和变异所产生的一组基因。

来源相同、结构相似、功能相关。

7、假基因(pseudo gene):基因序列与具有编码功能的类α和类β珠蛋白基因序列类似,因为不能编码蛋白质,所以称为假基因。

遗传学中的染色体结构与遗传变异

遗传学中的染色体结构与遗传变异

遗传学中的染色体结构与遗传变异遗传学是一门研究遗传信息传递和遗传变异的学科,它对于了解生物的遗传特征、进化过程以及疾病的发生机制具有重要意义。

在遗传学中,染色体结构与遗传变异是研究的核心内容之一。

本文将从染色体的结构及其功能出发,阐述染色体的遗传变异对个体特征和种群进化的影响。

一、染色体的结构染色体是细胞遗传物质的载体,内含有遗传信息。

一般情况下,人类细胞中常见的染色体为23对(男性为XY,女性为XX)。

染色体的结构可以分为三个层次:染色单体、染色体和染色质。

染色单体是染色体最基本的单位,在细胞分裂时能够看到它的形态。

染色单体由DNA、RNA和蛋白质组成,其中DNA是存储遗传信息的重要分子。

染色体是由染色单体在有丝分裂或减数分裂过程中进行有序组装形成的。

正常情况下,人类每个染色体都是由两条同源染色单体连接而成的,这两条染色体称为一对同源染色体。

染色质是指染色体在非分裂时呈现出的形态,主要由DNA和蛋白质构成。

染色质能够分为紧密染色质和松弛染色质两种形态。

紧密染色质主要包含高度压缩的DNA,主要以非活跃的状态存在,而松弛染色质则包含松弛的DNA,主要以活跃的状态存在。

二、染色体的遗传变异染色体的遗传变异是指染色体结构、数量或染色质的组成发生改变。

主要的遗传变异包括染色体畸变和基因突变。

1. 染色体畸变染色体畸变指染色体在数量或结构上发生变异。

常见的染色体畸变有数目异常和结构异常。

数目异常是指染色体的数量有增加或减少,最为常见的数目异常是三体综合症,即21号染色体三体综合症(唐氏综合症)。

在正常情况下,人类细胞中每个染色体都是成对存在的,但是在三体综合症患者体内,21号染色体出现了三个而非两个的情况,导致患者在智力、身体发育等方面出现异常。

结构异常是指染色体的结构发生改变,包括染色体片段的缺失、重复、倒位、倒置、颠倒等。

这些结构异常可能会导致染色体上的基因错位、破坏或者重复,从而引发一系列遗传性疾病。

染色体畸变

染色体畸变

5)生产用青霉素高产菌株;6)无子西瓜;7)流感病毒变种
8)偶然获得的维生素B缺陷型大肠杆菌 9)人类21三体综合征 10)用赤霉素处理所得到的高茎豌豆
问题:1.以上变异类型中与1)原理相同的有—10—,它们的变异不 可——遗传,其变异类型是由于环境条件引起,特点是遗传物质并 未改变。 2.属于染色体变异的有2、6、9;属于有性生殖过程中基因重组的 有—4;属于DNA重组技术而导致的变异类型是3;属于自然突变的 有——7、8;属于人工诱变的有5;
多倍体植株的成因和特点
特点:植株茎杆粗壮,叶片、果实、种子较大,有机 物含量高,细胞大,但发育迟缓、结实率低
二倍体和四倍体葡萄的比较
二倍体和四倍体草莓的比较
多倍体产生: 1.主要原因:体细胞在有丝分裂过程中, 染色体完成了复制,但是细胞受到外界环 境条件(如低温、秋水仙素处理)或内部 因素的干扰,纺锤体形成受破坏,着丝粒 会分裂,但是子染色体不能被拉向两极, 细胞也不能分裂成两个子细胞,于是就形 成了染色体数目加倍的细胞。
果 蝇 体 细 胞 染 色 体
1、果蝇的性别决定方式是什么? 2、果蝇体细胞中有几对同源染色体?其中有几对常染色体和性染 色体? 3、请画出雄果蝇经过减数分裂产生的配子中染色体构成情况?
4.如果将果蝇的配子中的染色体看成一组, 称为染色体组,那么果蝇的一个染色体组 中有几条染色体,果蝇的体细胞中有几个 染色体组?
资料一:
在棉、水稻、咖啡、甜菜、大麦、
大麻、可可、油菜、西红柿、芦笋和
ห้องสมุดไป่ตู้
小麦等作物中,都发现过自发产生的
单倍体,基本性状虽然和二倍体相同, 但一般比较小,而且比较纤弱。
难点5:染色体组数与单倍体、二倍体、多倍体的 关系。 判断几倍体时的两步曲: 1.从生物发育的起点来判断可以区分开单倍体或是二倍 体

第八章遗传与变异 第1节遗传规律教案

第八章遗传与变异  第1节遗传规律教案

第八章遗传与变异一、本章教材分析:生物世代相传,其性状的传递保持着相对稳定。

性状传递有序地按规律进行。

在第六章探讨过遗传信息的传递和表达、第七章了解生殖方式和细胞分裂过程中遗传物质传递规律的基础上,本章继续研究遗传规律。

了解遗传规律,有助于人们对生命的认识,并指导生产实践和预防遗传病。

本章从遗传规律、伴性遗传、变异、人类遗传病和遗传病的预防四个方面阐述了生命遗传与变异的最基本规律。

基因的分离和自由组合规律是孟德尔首先发现的,孟德尔的实验过程和科学方法是学生学习科学探究方法和精神的良好教材。

通过模拟实验能帮助学生进一步了解性状与基因组合之间的关系,从而使学生更好理解基因的两大遗传规律。

对于“伴性遗传”的内容,教材以人类伴性遗传的典型例子如红绿色盲、抗维生素D佝偻病、毛耳性状的遗传等,说明伴随着X、Y染色体遗传的特点,方便学生理解伴性遗传的相关知识。

“变异”是生物多样性和进化的来源。

教材通过举例说明变异在生物界无处不在,然后简要介绍基因重组、基因突变、染色体畸变等概念,并指出这些变化是导致遗传物质发生变异的主要原因。

变异可以自发产生也可以在人工条件下发生。

人类可通过物理、化学、太空育种等方法实施人工诱变获得需要的品种。

但某些人工诱变可可能导致人体细胞的癌变,是生活中需要避免的。

通过实验“探究化学因子对蚕豆根尖细胞变异的影响”,学生可以直观地了解化学、物理因子引起细胞染色体发生变异实例。

第4节介绍常见的遗传病种类及病因,并从遗传学角度分析探讨人类优生与遗传病的预防关系,体现STS教学理念。

二、课题:第八章遗传和变异第1节遗传规律三、本节教材分析:遗传与变异是生命的基本特征之一,遗传现象普遍存在,遗传规律的揭示是建立在实验基础上的。

孟德尔是近代遗传学的奠基人,本节首先介绍孟德尔的研究轶事,突出他的研究思路、方法及科学研究的精神。

通过让学生读出孟德尔的研究获得成功的原因,让学生思考成功的科学研究包含的要素,鼓励学生积极运用科学知识、树立正确的态度解决自己学生和生活中遇到的问题。

高中生命科学(生物)第三册知识点整理

高中生命科学(生物)第三册知识点整理

生物第三册复习资料【第八章遗传与变异】第一节遗传规律※子代与亲代相似的现象就是遗传。

一、孟德尔及其科学研究方法1、孟德尔通过认真观察遗传现象、设计实验、收集数据、科学分析,成为第一个总结出遗传规律的科学家。

2、孟德尔通过种植多种植物总结遗传规律,最突出的是豌豆杂交试验。

3、豌豆是一种严格自花传粉的植物,能避免外来花粉的干扰而保持纯种,而试验时又容易用人工的方法(异花授粉)进行杂交。

且不同品种的豌豆具有区别明显的性状。

4、性状是指生物形态、结构和生理生化等特征。

5、每种性状又具有不同的表现形式,即称为相对性状。

6、孟德尔用豌豆做杂交试验过程:去除紫花的雄蕊(人工去雄)→将白花的花粉授到紫花的柱头上(杂交授粉)→受精后的子房发育成豆荚,胚珠发育成种子→用豆荚中的种子播种→子一代(F1)二、基因的分离定律1、杂交中的符号表示:亲本(用“P”表示)进行杂交(用“X”表示),产生子一代(用“F1”表示)。

2、子一代表现出亲本性状的称为显性性状,没有表现出来的亲本性状称为隐性性状。

3,子二代(用“F2”表示)。

4、在杂种后代呈现不同亲本性状的现象称为性状分离。

5、豌豆的花色杂交试验:6、结论:子一代都只表现一个亲本性状,子二代既出现显性性状又出现隐性性状,两者数量上的比例接近3:1。

7、位于一对同源染色体同一位置上的控制着相对性状的基因叫做等位基因。

8、控制显性性状的基因为显性基因,控制隐形性状的基因为隐性基因。

9、由于A对a的显性作用,所以F1(Aa)全部表现为紫花。

子二代出现三种组合,即AA、Aa、aa(1∶2∶1)。

所以,紫花与白花的比例接近3∶1。

10、控制生物性状的基因组称为基因型。

将具有特定基因型的个体所能表现出来的性状称为表现型。

11、AA、aa叫做纯合子,Aa叫做杂合子。

12、测交就是让杂种子一代与隐性亲本杂交(例如:Dd与dd)13、减数分裂时,等位基因会随着同源染色体的分离而分开,分别进入两个配子中,独立地随配子遗传给后代,这就是基因的分离定律。

医学遗传学中的染色体异常和基因突变分析

医学遗传学中的染色体异常和基因突变分析

医学遗传学中的染色体异常和基因突变分析遗传学是研究生物遗传的学科,而医学遗传学则更注重与人类疾病相关的基因、染色体异常等问题,为医学诊断、预防、治疗疾病提供有力依据。

其中染色体异常和基因突变分析成为医学遗传学中的重要内容。

一、染色体异常分析染色体异常,是指染色体变异发生后所引起的染色体数目、形状或结构上的改变,常有染色体缺失、染色体重复、染色体易位、染色体畸变等表现。

通过分析染色体异常,可以确定遗传病变异的机制。

其中以下三种染色体异常较为常见:1、染色体数目异常。

在正常情况下,人类的体细胞核内有46条染色体(包括44条自体体染色体和两条性染色体)。

若因染色体分离不平衡等原因,导致染色体数目增多或减少,就称为染色体数目异常。

常见的染色体数目异常疾病有唐氏综合征(21三体综合征)、爱德华氏综合征(18三体综合征)、帕塔综合征(13三体综合征)等,这些疾病的产生和染色体分离不平衡有所关联。

2、染色体结构异常。

染色体结构异常是指染色体的某些区域发生了缺失、重复、易位、倒位等结构上的变异。

染色体结构异常常见于家族性遗传病,如克拉宾综合症、唐式综合征等。

3、染色体畸变。

染色体畸变是指染色体在长度和形状上的不正常变化,如某一特定断点上的断裂、变形等。

染色体畸变也是导致一部分遗传病变的原因之一,如微小删除综合征、第二型自体隐性多囊等。

二、基因突变分析基因突变是指基因序列发生了拼写错误导致遗传物质某处发生了单个核苷酸(即DNA基因词汇中最小的单位)的改变,这种改变可能对基因功能造成不同程度的影响,从而导致人类遗传病的发病。

基因突变是遗传病的重要原因之一,如新生儿遗传病中的苯丙酮尿症、肌萎缩性脊髓侧索硬化症、多囊肾等都属于基因突变导致的。

因此,对基因突变进行分析,有助于确定疾病的遗传方式并提供精准的治疗手段。

在疾病基因研究中,现已知的基因有两种突变类型,分别是点突变和结构变异。

点突变即单核苷酸变异,可以分为错义、无义、等位基因、剪切位点等类型。

遗传变异的类型

遗传变异的类型

遗传变异的类型遗传变异是指在一代个体的基因型与下一代个体的基因型之间发生的差异。

这种差异可以在个体内部出现(体细胞突变),也可以在个体间出现(生殖细胞突变)。

根据遗传变异的性质和程度,可以将其分为几种不同的类型。

1. 基因突变基因突变是指基因序列的改变,分为点突变和染色体畸变。

点突变是单个核苷酸的改变,包括替换、插入、缺失和错义突变等。

染色体畸变则是指染色体的数量和结构发生改变,包括染色体数目的变化、结构性染色体畸变和功能性染色体畸变等。

2. 染色体重组染色体重组是指在有性生殖过程中,从父母亲体中各选取一套染色体进行组合,使得后代个体染色体组合方式发生了变化。

染色体重组不仅可以创造新的基因组合,还可以产生新的基因交互作用,增加基因多样性和抗逆性。

3. 基因重排基因重排是指某一个或几个基因的DNA序列在基因组中发生了位置上的改变,也称DNA重排。

基因重排包括基因转座和非同源重组两种类型。

基因转座是指一个基因或基因片段自由地移动到不同的染色体区域或基因组中,并插入到新的位置上。

非同源重组则是指两段非同源的DNA序列在某些位置上发生交换、删除或插入等事件。

4. 基因甲基化基因甲基化是指在DNA分子中某些细胞酶作用下,甲基基团(-CH3)被添加到甲基化位点上,从而改变基因的表观遗传特征。

基因甲基化能够调控基因表达水平,对细胞分化和生长发育过程具有重要作用。

总之,遗传变异是生物进化和多样性产生的重要思想基础。

而不同类型的遗传变异也为遗传学研究提供了多重学术思考。

在细胞分裂和有性生殖过程中,各种类型的遗传变异相互作用,推动生物种群的多样性和适应能力的增强,从而使物种得以生生不息地繁衍和进化。

第8章 遗传物质的改变

第8章       遗传物质的改变



多线染色体上分布着约5000个可见的条带, 条带数目和线性排布方式是恒定的,大小从 500m到50m.
染色体结构变异的类型
缺失 :顶端缺失、中间缺失 重复 :正向重复、反向重复 染色体结构变异 易位 :单向易位、双向易位 倒位 :臂内倒位、臂间倒位
对每一种染色体结构变异类型,从三个方面 把握:基本概念和变异种类细胞学鉴定 遗传效应
第八章
遗传物质的改变
(一)染色体畸变
染色体变异及其类型
亲子间、个体间的形状差异
可遗传变异 不可遗传变异
环境条件差异
结构变异 基因重组 基因突变 染色体变异 数目变异
遗传物质改变
染色体是遗传物质的载体,通常情况下,生 物的染色体形态结构和数目都是相当稳定的 。但是这种稳定也不是绝对的,在自然环境 条件下也会发生改变,只是频率极低。
缺失的遗传效应
1.缺失对个体的生长和发育不利。

染色体的某一区段缺失了,其上原来所 载基因自然就丢失了,这是有害于生物 生长和发育的。
缺失的有害性因缺失区段的大小、缺失 区段所含基因的多少、和随之丢失的基 因的重要程度、染色体倍性水平而异。


异源多倍体生物对缺失的耐受力较强,二 倍体生物的缺失常常产生严重后果。一般 规律是:

区分倒位圈与缺失、重复圈的结构差异
倒位纯合体无明显细胞学特征
臂间倒位杂合体的交换
臂间倒位杂合体一旦非姐妹染色单体之间在倒 位圈发生奇数次交换,即产生1/2 败育配子.
重复-缺失染色体和缺失染色体,其配子也是不 育。 发生这种交换的减数分裂细胞,要产生2个可育 配子,一个含正常染色单体,另一个含倒位染 色单体。
一、缺失(deficiency)

第八章 染色体畸变

第八章 染色体畸变

第八章 染色体畸变*变异是生物界一种普遍现象,环境变化引起的变异不能真实遗传。

基因的分离、重组可引起遗传的变异,但这种变异(新性状)都是他们祖先中原来就有的,并不是真正的新性状,不是产生新的遗传基础的变化。

真正的遗传物质的改变是突变。

突变是指遗传物质的改变而导致的变异。

包括基因突变和染色体畸变。

环境因素导致环境变异(如小麦遮盖塑料薄膜高温杀雄),不遗传变异 基因(遗传)重组(自由组合及连锁互换),遗传物质无新变化遗传因素导致遗传变异 染色体的变化基因的改变染色体畸变:指染色体结构和数目的异常变化及其所导致的遗传性状的变异。

包括染色体结构变异和染色体数目变异。

其特点在显微镜下可见其变异。

第一节 染色体结构的变异一、染色体结构变异的类型染色体结构变异:指染色体片段的丢失、附加及位置改变的任何结构变化。

染色体结构变异的原因: 环境条件: 辐射化学物质自身生理异常:由于上述因素影响,可导致染色体断裂、断裂的数量、位置可断裂端的重接途径,决定结构变化的各种类型。

染色体结构变异分四类:缺失、重复、易位和倒位。

(一)缺失:只某一染色体丢失了自身的某一区段,从而引起变异的现象。

1、缺失的类型:包括顶端缺失和中间缺失两类。

(1)顶端缺失(末端缺失):丢失的区段发生在染色体某臂的外端。

(2)中间缺失:丢失的区段发生在染色体某臂内部的一段。

(3)整臂缺失:染色体也能丢失整个一个臂,而变成顶端着丝粒染色体和一个无着丝粒的染色体断片。

断片在减数分裂后期,由于不能向两极移动,常常消失在细胞质中。

缺失纯合体和缺失杂合体2、缺失的鉴定:缺失的鉴别很难,一般采用缺失杂合体在减数分裂时染色体配对的图象来区别。

(1)如果是中间缺失,且缺失区段较长,那么,缺失杂合体的一对染色体在粗线期可以联会,但正常染色体上多余的区段常呈环状突起—缺失环。

(2)如果是顶端缺失,一般很难鉴别,只有在减数分裂时,看联会的染色体的末端臂是否较细,配对的同源染色体末端长短不一。

染色体变异与基因突变

染色体变异与基因突变

向一致。
反接重复:增加的染色体片断带有的基因顺序与染色体的线性方
向相反。 重复杂合体:同源染色体中仅一条有重复的个体。 重复纯合体:两条同源染色体重复了相同区段的个体。 重复的形成—同源染色体非姐妹染色单体间的不等交换而造成
16
重复的类别 顺接重复
反接重复
17
重复的形成
18
2.重复的细胞学鉴定
生球茎大麦(2n=2x=14)→杂种,在胚发育过程中,两 物种染色体的行为不协调,导致球茎大麦的染色体逐 渐丢失,获得大麦的单倍体植株。
59
花 药 培 养 获 得 单 倍 体
60
染色体消减获得单倍体大麦
61
(3)单倍体的特征(与二倍体相比)
n ①细胞、组织、器官和生物个体均较小
n ②高度不育性。
56
二、整倍性变异
1.整倍体(euploid)——指体细胞(2n)内具有完整的染色体组的个体。
计算染色体数目时,体细胞—2n,配子—n, 2.整倍体变异——指体细胞中染色体数目,在正常染色体数的基础上,
以染色体组(x)为基数成倍数性增加或减少的现象。
n单倍体(n):指体细胞中含有本物种配子染色体数目的个体。 单倍体:蚕豆 n=1x=6 ;人 n=1x=23 ;小麦 n=3x=21。 n二倍体(2n=2x):指体细胞中含有两个染色体组的生物个体。 n三倍体(2n=3x):指体细胞中含有三个染色体组的生物个体。 n多倍体(2n=mx,m≥3):指体细胞中含有三个或三个以上染色体组的生物 个体。
减数分裂过程也不表现明显的细胞学特征。
7
微核、染色体桥
8
缺失的细胞学特征及缺失染色体的联会
9
玉米缺失杂合体粗线期缺失环
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

剂量效应(dosage effect)
同一基因或片段对表型的作用随数目增多而呈一 定的累加增长。
位置效应(position effect)
由于重复的基因或染色体片段的相对位置改变而 引起个体表型改变的效应。
果蝇棒眼的遗传
表现剂量效应和位置效应
重复纯合体 ↓ 不对称配对和 重组 ↓ 产生重棒眼
产生新的变异
不育


臂间倒位圈内单交换
不育
可 育
靠近非必要末端的臂间倒 位圈内单交换产生一个存活 的反接重复
两个重迭倒位产 生一个反接重复
人染色体
仓鼠染色体
例如 对3号染色体倒位杂合 体的某男性的分析 在其配子中发现了四种3号染色体:
正常
倒位
38%
32%
Dup q,Del p
Dup p,Del q
1. 配子半不育
½ ½
交替式分离产生可育配子 相邻式分离产生不育配子
50%配子可育 50%结实率 50%自交后代半不育
12
1221
12
正常
易杂
易纯
1221 易杂
2. 降低连锁基因重组率
例如,玉米t5—9a涉及第5染色体长臂外侧的一小 段和第9染色体短臂包括Wx座位在内的一大段。 正常 易位杂合体 又如, Yg2—sh 23% 11% sh—wx 20% 5%
带型划分
X(I ) 1-20区 端部→中心 端部→中心 中心→端部 端部→中心 端部→中心 Ⅱ(L) 21-40区 Ⅱ(R) 41-60区 Ⅲ(L) 61-80区
Ⅲ(R) 81-100区 中心→端部 Ⅳ 101-102区
1. 缺失(deficency):染色体的某一区段丢失了。 2. 重复(duplication):染色体的某一区段发生了
一条染色体的片段移接到一非同源染色体上
易位杂合体和易位纯合体
A B C D
A B C D A B C E A B C D A B C E A B C E
E F G H E F G H D F G H E F G H
正常个体
易位杂合体
D F G H
E F G H
易位纯合体
二. 相互易位的细胞学特征
1、基因定位
将易位断点看成半不育的显性遗传单位T 正常染色体上相应位点看成隐性遗传单位t

易位纯合体 T T 易位杂合体 T t 正常个体 tt
育性正常 半不育 育性正常
采用两点测验和三点测验进行定位
例如
玉米T 1-2易位点的定位
选择第1,第2染色体上的标记基因

将易位纯合体(TT)与具有相对性状的测验种(tt)杂交 ↓ 再与隐性个体(tt)测交 ↓


核仁组织者的位置
染色粒状态


常染色质和异染色质
带型
人染色体大小
பைடு நூலகம்人染色体的G-带
人染色体的R带 (acridine orange 染色)
Allium carinatum
Q带
二. 果蝇幼虫唾液腺染色体
• 多拷贝 • 同源染色体配对(联会) • 异染色质区形成染色中心 • 横纹 • 五条长臂和一条短臂
答案.①
②可以,因为产生的配子具有平衡的染色体。
补充练习
1.甲乙丙三个品种杂交的子一代均产生一个四 体环,问甲乙丙的染色体组成如何? 2.甲乙两个材料的减数分裂均产生四体环,杂 交所得子代有3/4个体产生四体环、1/4正常,问甲 乙的染色体组成如何?
小结
:染色体结构变异的遗传效应
缺失 (缺失环;假显性;隐性致死) 重复 (重复环;剂量效应;位置效应) 倒位 (倒位圈;杂合倒位可作为一个抑制交换基因; 降低了连锁基因重组率;倒位杂合体部分不育) 易位 (易位环和十字联会;易位杂合体半不育; 假连锁现象;易位点可作为一个不育显性基因)
通过易位形成的易位纯合体。(2n=24,X=12) 原型一系 1· 2,3· 4,5·6 … 23·24
原型二系
原型三系
1· 18 和 2· 17的易位纯合体
11· 21 和 12· 22的易位纯合体
4.
造成染色体融合
,产生数目变异
罗伯逊易位(robertsonian translocation) 人 2n=46 发现异常核2n=45 14,21,t(14,21)
8%。两个纯系杂交,产生的杂种育性有些下降。问①B系中的
重组率低的可能原因是什么?是否缺失造成的,为什么?②绘 图说明染色体畸变与Pl和sm基因的大致关系(可自定符号表示
第6染色体上其它基因);③为什么杂种的育性会下降?
答案 ①Pl—sm重组率26%,故包括的染色体区段 较大,如果缺失则会致死,倒位比较合理。 ②Pl a b c d sm e f Pl a e sm d c b f 正常染色体 倒位染色体
雄性不育
3.利用易位鉴别家蚕的雌雄性别
4. 利用易位产生缺失和重复材料
5. 利用易位控制虫害
用一定剂量的射线照射雄性害虫使染色体 发生易位,易位的雄虫与自然群体中的雌虫交 配,造成后代半不育,50%的卵不能孵化。
练习 1. 两个玉米纯系在第6染色体上Pl和sm的区域具有不同
的重组频率。正常的纯系 (A) 重组率为 26% ,异常的纯系 (B) 为
Tx-y 的x是 T 1-2的1
x (1) xy yx × F1 y 2 12 21
六体环
Tx-y 就是 T 1-2
xy
yx ×
12
21
F1
二价体
Tx-y 与 T 1-2涉及相同染色体,但易位区段不同
x xy yx × y 1 12 2 21
F1

Chromosome painting
五. 易位的应用
1. 联会
易位杂合体的两对同源染色体由于发 生节段互换,联会时常由四条染色体组成 一个四重体(quadruple)的构型。
ABIJKL EFGHIJKL
2. 分 离
ABCD EFGHIJKL
ABCD EFGHCD
ABIJKL EFGHCD
相邻式分离 配子不育
交替式分离 配子可育
三. 易位的遗传效应
(十字型联会、四体环、多体环)
8 字型
环型
链型
四. 易位点的细胞学测定
相互易位杂合体联会成十字型,十字型的中心即是 易位点所在。 确定易位所涉及的染色体,可用已知易位纯合体 与新的易位纯合体杂交,检查F1终变期染色体构型。
Tx-y 与 T 1-2无关 x y
xy yx ×
1 12
2 21
F1
2 个四体环
a b c
a b c
d e f g h
d e f g e f g h
a b c
d e f g g f e h
二.重复杂合体的染色体联会
重复纯合体 ↓
不对称配对 ↓
交换 ↓
三重复 ↓
↓正常
重复纯合体中不对称配对和重组产生较高阶次的重复
三. 重复的遗传学效应
扰乱了基因的固有平衡
重复区段太大,生活力降低,甚至不能存活。
增加。
三.染色体结构变异的类型
3. 倒位(inversion):染色体的某一区段的正常顺
序发生了颠倒。
4. 易位(translocation):染色体的某一区段移接
到非同源的染色体上。
缺失
重复
倒位
易位
四. “断裂—融合—桥” 假说
a b c d
a b c
复制
d
a b c
c b a
第二节 缺失
一. 缺失的类型 顶端缺失(terminal deficency) 中间缺失(interstitial deficency)
地中海贫血症 Lepore
地中海贫血症 Kenya
四. 重复与进化
重复是染色体的重要改变,
可提供发展新功能的额外遗传物质。
血红蛋白(Hb)结构基因
衔接重复(及其相互缺失)的不等交换 基因座位 多肽链 血红蛋白 胚 胎儿 成人
不同发育时期多肽链不同结合,
产生有功能的血红蛋白分子
第四节 倒
一. 倒位的类型
异常后代
例如:进化中的染色体重排
5、杂易位的假连锁现象
例: A(迟熟),a(早熟);B(高杆),b(矮杆)
A
a b B a B 减数分裂 A b
表明 A-b和a-B表现假连锁现象
6. 位 置 效 应
表明:基因表达存在位置 效应
原癌基因
伯基特氏 淋巴瘤
易位与人的疾病
四. 易位的细胞学检测
猫叫综合症 人5号染色体短臂 部分缺失
果蝇的翅缺刻性状
四. 缺失与基因定位
猫叫综合症 5号染色体短臂顶端 缺失5p15.2和5p15.3 两条带
成神经细胞瘤 黑素瘤
↓ ↓
肺小细胞癌

肾胚细胞瘤

睾丸肿瘤

利用原位杂交 技术定位基因
第三节 重 复
一 . 重复的类型
顺接重复(tandem duplication) 反接重复(reverse duplication)
根据交换值确定大致位置
↓ 对照正常连锁图找出邻近标记基因进一步测定。
2. 利用易位创造玉米不育系的双杂合保持系
核不育 msms× 正常 MsMs → Msms 半不育 ?不育性状的保持 ms Ms ms
9
Ms
6 6 9 9
两种胚囊,一种花粉可育
Ms 胚囊
ms
ms
花粉
双杂合保持系 DP—DF 雄性可育
大麦
k-Bi
正常4染色体 t2-4a
40% 23%
相关文档
最新文档