2020中考复习专题:简单动点问题的函数图像真题解析
动点的函数图象问题(压轴题专项讲练)解析版—2024-2025学年九年级数学上册压轴题专项(浙教版)
动点的函数图象问题数形结合思想:所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3所给的等式或代数式的结构含有明显的几何意义。
【典例1】如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD=2,CD⊥AB于点D,点E、F、G分别是边CD、CA、AD的中点,连接EF、FG,动点M从点B出发,以每秒2个单位长度的速度向点A方向运动(点M运动到AB的中点时停止);过点M作直线MP∥BC与线段AC交于点P,以PM为斜边作Rt△PMN,点N在AB 上,设运动的时间为t(s),Rt△PMN与矩形DEFG重叠部分的面积为S,则S与t之间的函数关系图象大致为()A.B.C.D.本题考查几何动点问题的函数图象,正确分段并分析是解题的关键.根据题意先分段,分为0≤t≤0.5,0.5<t≤1,1<t≤2三段,分别列出三段的函数解析式便可解决,本题也可只列出0≤t≤0.5,1<t≤2两段,用排除法解决.解:分析平移过程,①从开始出发至PM与点E重合,由题意可知0≤t≤0.5,如图,则BM=2t,过点M作MT⊥BC于点T,∵∠B=60°,CD⊥AB,∴BC=2BD=4,CD==BT=12BM=t,∵∠ACB=90°,MP∥BC,∴∠ACB=∠MPA=90°,∴四边形CTMP为矩形,∴PM=CT=BC―BT=4―t,∵∠PMN=∠B=60°,PN⊥AB,∴MN=PM2=4―t2,∴DN=MN―MD=MN―BD+BM=3t2,∵E为CD中点,∴DE=CD2=∴S=DE⋅DN=∴S与t的函数关系是正比例函数;②当0.5<t≤1,即从PM与E重合至点M与点D重合,如图,由①可得QN=ED=DM=2―2t,DN=32t,S矩形EDNQ=∵∠PMN=∠B=60°,CD⊥AB,∴SD==,∴ES=ED―SD=∴ER ==2t ―1,∴S =S 矩形EDNQ ―S △ERS =12(2―2t ―1)=―2+此函数图象是开口向下的二次函数;③当1<t ≤2,即从点M 与点D 重合至点M 到达终点,如图,由①可得DN =32t ,MN =4―t 2,∵AD ==6, DG =12AD =3,∴NG =DG ―DN =3―32t ,∴QF =NG =3―32t ,∴PQ==,∴HQ ==1―12t ,∴S =(HQ+MN )×QN 2==―∴S 与t 的函数关系是一次函数,综上,只有选项A 的图象符合,故选:A .1.(2024·四川广元·二模)如图,在矩形ABCD 中,AB =4cm ,AD =2cm ,动点M 自点A 出发沿AB 方向以每秒1cm 的速度向点 B 运动,同时动点N 自点A 出发沿折线AD -DC -CB 以每秒2cm 的速度运动,到达点B 时运动同时停止.设△AMN的面积为y (cm2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是( )A.B.C.D.【思路点拨】本题考查动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.根据题意,分三段(0<x<1,1≤x<3,3≤x<4)分别求解y与x的解析式,从而求解.【解题过程】解:当0<x<1时,M、N分别在线段AB、AD上,此时AM=x cm,AN=2x cm,y=S△AMN=12×AM×AN=x2,为二次函数,图象为开口向上的抛物线;当1≤x<3时,M、N分别在线段、CD上,此时AM=x cm,△AMN底边AM上的高为AD=2cm,y=S△AMN=12×AM×AD=x,为一次函数,图象为直线;当3≤x<4时,M、N分别在线段AB、BC上,此时AM=x cm,△AMN底边AM上的高为BN=(8―2x)cm,y=S△AMN=12×AM×BN=12x(8―2x)=―x2+4x,为二次函数,图象为开口向下的抛物线;结合选项,只有A选项符合题意,故选:A.2.(22-23九年级上·安徽合肥·期中)如图,在△ABC中,∠C=135°,AC=BC=P为BC边上一动点,PQ∥AB交AC于点Q,连接BQ,设PB=x,S△BPQ=y,则能表示y与x之间的函数关系的图象大致是()A.B.C.D.【思路点拨】过点Q作QE⊥BC交BC延长线于点E,根据S△BPQ=y=12QE⋅BP列出解析式再判断即可.【解题过程】解:如图,过点Q作QE⊥BC交BC延长线于点E,∵AC =BC =∴∠A =∠ABC∵PQ∥AB ,∴∠CQP =∠A,∠CPQ =∠ABC∴∠CQP =∠CPQ∴CQ =CP =―x .∵∠ACB =135°∴∠ECQ =45°在Rt △CEQ 中,∠ECQ =45°,∴QE ==―x )=2―,∴y =12QE ⋅BP =12x 2x =―2+x =――2+∴当x =y 最大值=故选:C.3.(2024·河北石家庄·二模)如图所示,△ABC 和△DEF 均为边长为4的等边三角形,点A 从点D 运动到点E 的过程中,AB 和DF 相交于点G ,AC 和EF 相交于点H ,(S △BGF +S △FCH )为纵坐标y ,点A 移动的距离为横坐标x ,则y 与x 关系的图象大致为( )A .B .C .D .【思路点拨】如图,过G 作GK ⊥BC 于K ,过H 作HT ⊥BC 于T ,证明四边形ACFD 为平行四边形,可得AD =CF =x ,BF =4―x ,求解CT =FT =12x ,TH ==,同理可得:GK =―x ),再利用面积公式建立函数关系式即可判断.【解题过程】解:如图,过G 作GK ⊥BC 于K ,过H 作HT ⊥BC 于T ,由题意可得:AD∥CF ,DF∥AC ,∴四边形ACFD 为平行四边形,∴AD =CF =x ,∴BF =4―x ,∵△ABC 和△DEF 均为边长为4的等边三角形,AD∥CF ,∴∠D =∠DFB =60°,而∠B =60°,∴△BGF 为等边三角形,同理:△CFH 为等边三角形,∵HT ⊥BC ,∴CT =FT =12x ,TH ==,同理可得:GK =―x ),∴y =12x +12(4―x )⋅―x )=2―+故选B4.(2023·辽宁铁岭·模拟预测)如图,矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,M 是BC 的中点.P 、Q 两点沿着B→C→D 方向分别从点B 、点M 同时出发,并都以1cm/s 的速度运动,当点Q 到达D 点时,两点同时停止运动.在P 、Q 两点运动的过程中,与△OPQ 的面积随时间t 变化的图象最接近的是( )A .B .C .D .【思路点拨】本题考查了动点问题函数图象.根据矩形的性质求出点O 到BC 的距离等于4,到CD 的距离等于6,求出点Q 到达点C 的时间为6s ,点P 到达点C 的时间为12s ,点Q 到达点D 的时间为14s ,然后分①0≤t ≤6时,点P 、Q 都在BC 上,表示出PQ ,然后根据三角形的面积公式列式计算即可;②6<t ≤12时,点P 在BC 上,点Q 在CD 上,表示出CP 、CQ ,然后根据S ΔOPQ =S ΔCOP +S ΔCOQ ―S ΔPCQ 列式整理即可得解;③12<t ≤14时,表示出PQ ,然后根据三角形的面积公式列式计算即可得解.【解题过程】解:∵矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,∴点O 到BC 的距离=12AB =4,到CD 的距离=12AD =6,∵点M 是BC 的中点,∴CM =12BC =6,∴点Q到达点C的时间为6÷1=6s,点P到达点C的时间为12÷1=12s,点Q到达点D的时间为(6+8)÷1=14s,①0≤t≤6时,点P、Q都在BC上,PQ=6,△OPQ的面积=12×6×4=12;②6<t≤12时,点P在BC上,点Q在CD上,CP=12―t,CQ=t―6,SΔOPQ=SΔCOP+SΔCOQ―SΔPCQ,=12×(12―t)×4+12×(t―6)×6―12×(12―t)×(t―6),=12t2―8t+42,=12(t―8)2+10,③12<t≤14时,PQ=6,△OPQ的面积=12×6×6=18;纵观各选项,只有B选项图形符合.故选:B.5.(2023·江苏南通·模拟预测)如图,在矩形ABCD中,AB=4,BC=6,E为AB中点,动点P从点B开始沿BC方向运动到点C停止,动点Q从点C开始沿CD→DA方向运动,与点P同时出发,同时停止;这两点的运动速度均为每秒1个单位;若设他们的运动时间为x(s),△EPQ的面积为y,则y与x之间的函数关系的图像大致是()A.B.C.D.【思路点拨】先求出点P在BC上运动是时间为6秒,点Q在CD上运动是时间为4秒,再根据中点的定义可得AE =BE =12AB ,然后分①点Q 在CD 上时,表示出BP 、CP 、CQ ,再根据△EPQ 的面积为y =S 梯形BCQE ―S △BPE ―S △PCQ ,列式整理即可得解;②点Q 在AD 上时,表示出BP 、AQ ,再根据△EPQ 的面积为y =S 梯形ABPQ ―S △BPE ―S △AEQ ,列式整理即可得解,再根据函数解析式确定出函数图象即可.【解题过程】解:∵点P 、Q 的速度均为每秒1个单位,∴点P 在BC 上运动的时间为6÷1=6(秒),点Q 在CD 上运动的时间为4÷1=4(秒),∵E 为AB 中点,∴AE =BE =12AB =12×4=2,①如图1,点Q 在CD 上时,0≤x ≤4,则BP =x,CP =6―x,CQ =x ,∴ △EPQ 的面积为y =S 梯形BCQE ―S △BPE ―S △PCQ ,=12(2+x )×6―12×2x ―12(6―x )⋅x =12x 2―x +6=12(x ―1)2+112②如图2,点Q 在AD 上时,4<x ≤6,则BP =x,AQ =6+4―x =10―x ,∴ △EPQ 的面积为y =S 梯形ABPQ ―S △BPE ―S △AEQ ,=12(x +10―x )×4―12×2x ―12(10―x )⋅2=10,综上所述,y =2―x +6(0≤x ≤4)10(4<x ≤6),函数图象为对称轴为直线x =1的抛物线的一部分加一条线段,只有A 选项符合.故选:A .6.(2024·河南开封·一模)如图1,在△ABC 中,∠B =60°,点D 从点B 出发,沿BC 运动,速度为1cm/s .点P 在折线BAC 上,且PD ⊥BC 于点D .点D 运动2s 时,点P 与点A 重合.△PBD 的面积S (cm 2)与运动时间t (s)的函数关系图象如图2所示,E 是函数图象的最高点.当S (cm 2)取最大值时,PD 的长为( )A .B .(1+cm C .(1+cm D .(2+cm【思路点拨】本题考查动点函数图象,二次函数图象性质,三角形面积.本题属二次函数与几何综合题目.先根据点D 运动2s 时,点P 与点A 重合.从而求得PD ==,再由函数图象求得BC =(2+×1=(2+cm ,从而求得DC =BC ―BD =2+2=,得出PD =DC ,然后根据由题图2点E 的位置可知,点P 在AC 上时,S △PBD 有最大值.所以当2≤t ≤2+点P 在AC边上,此时BD =t ×1=t (cm),PD =DC =(2+―t )cm ,根据三角形面积公式求得S △PBD =―12t ―(13)2+2+【解题过程】解:由题意知,点D 运动2s 时,点P ,D 的位置如图1所示.此时,在Rt △PBD 中,BD =2cm ,∠B =60°,PD ⊥BC ,∴PB =2BD =4(cm),∴PD ==.由函数图象得BC =(2+×1=(2+cm ,∴DC =BC ―BD =2+2=,∴PD =DC .由题图2点E 的位置可知,点P 在AC 上时,S △PBD 有最大值.当2≤t ≤2+P 在AC 边上,如图2,此时BD =t ×1=t (cm),PD =DC =(2+―t )cm ,∴S △PBD =12×BD ×PD =12×t ×(2+t )=―12t 2+(1+t .∵S △PBD =――(1+3)2+2+又∵―12<0,∴当t =1+S △PBD 的值最大,此时PD =CD =2+―(1+=(1+cm .故选:B .7.(2024·安徽·一模)如图,在四边形ABCD 中,∠A =60°,CD ⊥AD ,∠BCD =90°, AB =BC =4,动点P ,Q 同时从A 点出发,点Q 以每秒2个单位长度沿折线A ―B ―C 向终点C 运动;点P 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,△APQ 的面积为y 个平方单位,则y 随x 变化的函数图象大致为( )A .B .C .D .【思路点拨】分当0≤x <2时,点Q 在AB 上和当2≤x ≤4时,点Q 在BC 上,根据三角形的面积公式即可得到结论.【解题过程】解:过Q 作QN ⊥AD 于N ,当0≤x <2时,点Q 在AB 上,∵∠A =60°,∴∠AQN =90°―60°=30°,∴AN = 12AQ =12×2x =x ,∴QN ==,∴y =12×AP ×NQ =12×x ×=2,当2≤x ≤4时,点Q 在BC 上,过点B 作BM ⊥AD 于点M ,∵BM ⊥AD ,∠A =60°,∴∠ABM =30°,∴AM = 12AB =12×4=2,∴BM ==∵CD ⊥AD ,QN ⊥AD ,∴QN ∥CD ,∴∠BQN =∠BCD =90°,∵BM ⊥AD, CD ⊥AD ,∴四边形BMNQ 是矩形,∴QN =BM = ,y =12AP ⋅QN =12x ×=,综上所述,当0≤x <2时的函数图象是开口向上的抛物线的一部分,当2≤x ≤4时,函数图象是直线的一部分,故选:D .8.(23-24九年级上·浙江温州·期末)某兴趣小组开展综合实践活动:在Rt △ABC 中,∠C =90°,CD =,D 为AC 上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C→B→A 匀速运动,到达点A 时停止,以DP 为边作正方形DPEF ,设点P 的运动时间为t s ,正方形DPEF 的面积为S ,当点P 由点C 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象,若存在3个时刻t 1,t 2,t 3(t 1<t 2<t 3)对应的正方形DPEF 的面积均相等,当t 3=5t 1时,则正方形DPEF 的面积为( )A .3B .349C .4D .5【思路点拨】由题意可得:CD =CP =t ,当点P 在BC 上运动时S =t 2+2,由图可得,当点P 与点B 重合时,S =6,求出t=2,即BC=2,当P在BA上时,由图可得抛物线过点2,6,顶点为4,2,求出抛物线解析式为S=(t―2)2+2,从两个函数表达式看,两个函数a相同,都为1,则从图象上看t1,t2关于x=2对称,t2,t3关于x=4对称,t1+t2=4①,t2+t3=8②,结合t3=5t1③,求出t的值即可得出答案.【解题过程】解:由题意可得:CD=CP=t,当点P在BC上运动时,S=DP2=CP2+CD2=t2+2,由图可得,当点P与点B重合时,S=6,∴t2+2=6,∴t=2或t=―2(不符合题意,舍去),∴BC=2,当P在BA上时,由图可得抛物线过点2,6,顶点为4,2,则抛物线的表达式为S=a(t―4)2+2,将2,6代入得:a(2―4)2+2=6,∴a=1,∴抛物线的表达式为:S=(t―4)2+2,从两个函数表达式看,两个函数a相同,都为1,若存在3个时刻t1,t2,t3(t1<t2t3)对应的正方形DPEF的面积均相等,则从图象上看t1,t2关于x=2对称,t2,t3关于x=4对称,∴t1+t2=4①,t2+t3=8②,∵t3=5t1③,由①③③解得t1=1,∴S=t2+2=1+2=3,故选:A.9.(22-23九年级上·浙江嘉兴·期中)如图,在Rt△ABC中,∠C=90°,∠ABC=60°,BC=6,点O为AC 中点,点D为线段AB上的动点,连接OD,设BD=x,OD2=y,则y与x之间的函数关系图像大致为( )A .B .C .D .【思路点拨】如图:过O 作OE ⊥AB ,垂足为E ,先根据直角三角形的性质求得AB =12,AC =OA =12AC =AE ==92可得DE =152―x ,然后再根据勾股定理求得函数解析式,最后确定函数图像即可.【解题过程】解:如图:过O 作OE ⊥AB ,垂足为E∵∠C =90°,∠ABC =60°∴∠A =30°∵BC =6∴AB =2BC =12∴AC ===∵点O 为AC 中点∴OA =12AC =∵∠A =30°∴OE =12AO =∴AE ===92∴DE =|152―x |∴OD 2=OE 2+DE 2,即y =+―x 2=x +274当x =0时,y =0―+274=63当x =152时,y =―+274=274当x =12时,y =12+274=27则函数图像为.故选C .10.(2024·广东深圳·三模)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =8,点D 和点E 分别是AB 和AC 的中点,点M 和点N 分别从点A 和点E 出发,沿着A→C→B 方向运动,运动速度都是1个单位/秒,当点N 到达点B 时,两点间时停止运动.设△DMN 的面积为S ,运动时间为t ,则S 与t 之间的函数图象大致为( )A .B .C .D .【思路点拨】本题主要考查动点问题,依托三角形面积考查二次函数的图象和分类讨论思想,取BC 的中点F,连接DF 根据题意得到DF 和DE ,分三种情况讨论三角形的面积:(1)当0<t ≤6时,得MN =AE =6,结合三角形面积公式求解即可;(2)当6<t ≤12时,得AM ,MC ,CN 和BN ,结合S =S ΔABC ―S ΔADM ―S ΔBDN ―S ΔCMN ;(3)当12<t ≤14时,点M 、N 都在BC 上,结合DF 和MN 求面积即可.【解题过程】解:如图,取BC 的中点F ,连接DF ,∴DF ∥AC ,DF =12AC =6∵点D 、E 是中点,∴DE =12BC =4,DF ∥CB ,∵∠C =90°,∴四边形DECF 为矩形,当0<t ≤6时,点M 在AE 上,点N 在EC 上,MN =AE =6,∴S =12MN ⋅DE =12×6×4=12;如图,当6<t ≤12时,点M 在EC 上,点N 在BC 上,∵AM =t ,∴MC =12―t ,CN =t ―6,BN =14―t ,∴S =S ΔABC ―S ΔADM ―S ΔBDN ―S ΔCMN=12×8×12―12×4t ―12×6(14―t)―12(12―t)(t ―6)=12t 2―8t +42;如图,当12<t ≤14时,点M 、N 都在BC 上,∴S =12MN ⋅DF =12×6×6=18,综上判断选项A 的图象符合题意.故选:A .11.(2024·河南南阳·二模)如图是一种轨道示意图,其中A 、B 、C 、D 分别是菱形的四个顶点,∠A =60°.现有两个机器人(看成点)分别从A ,C 两点同时出发,沿着轨道以相同的速度匀速移动,其路线分别为A→B→C 和C→D→A .若移动时间为t ,两个机器人之间距离为d .则 d²与t 之间的函数关系用图象表示大致为( )A .B .C .D .【思路点拨】设菱形的边长为2,根据菱形的性质求出关于两个机器人之间的距离d2的解析式,再利用二次函数的性质即可解答.【解题过程】解:①设AD=2,如图所示,∵移动时间为t,∠A=60°,∴CK=1,FT=KB=∴AE=t,CF=2―t,∴FK=2―t―1=1+t,∴ET=2―t―(1+t)=1+2t,∴在Rt△EFT中,EF2=ET2+FT2=(1+2t)2+2=4t2+4t+4;②设AD=2,如图所示,∵移动时间为t,∠A=60°,∴BM=t―2,CM=2―(t―2)=4―t,CP=1,PD=LQ=∴MQ=CM―CQ=(4―t)―1=―t,∴在Rt△LMQ中,ML2=MQ2+LQ2=(3―t)2+2=t2―6t+12,∴函数图像为两个二次函数图象;③当从A出发的机器人在B点,从C出发的机器人在D点,此时距离是BD;从A出发的机器人在A点,从C出发的机器人在C点,此时距离是AC;∵设AD=2,∠A=60°,∴BD=2,AE=∴AC=2AE=∴BD<AC,∴函数图象的起点和终点高于中间点;综上所述:A项符合题意;故选A.12.(2024·山东聊城·二模)如图,等边△ABC与矩形DEFG在同一直角坐标系中,现将等边△ABC按箭头所指的方向水平移动,平移距离为x,点C到达点F为止,等边△ABC与矩形DEFG重合部分的面积记为S,则S关于x的函数图象大致为()A.B.C.D.【思路点拨】本题主要考查了动点问题的函数图象,二次函数的图象,等腰三角形的性质等知识,如图,作AQ⊥BC于点Q,可知AQ=0<x≤1或1<x≤2或2<x≤3三种情形,分别求出重叠部分的面积,即可得出图象.【解题过程】解:如图①,设AC与DE交于点H,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=BC=AC=2,BC=1,过点A作AQ⊥BC于点Q,则BQ=CQ=12∴AQ===∵四边形DEFG 是矩形,∴∠DEF =90°,DE =AQ ==OF ―OE =5―2=3,当0<x ≤1时,在Rt △HCE 中,∠ACE =60°,EC =x,∴∠CHE =30°,∴HC =2x ,∴HE ===∴S =12EC ×HE =12x ×=2,所以,S 关于x 的函数图象是顶点为原点,开口向上且在0<x ≤1内的一段;当1<x ≤2时,如图,设AB 与DE 交于点P ,∵EC =x,BC =2,∴BE =BC ―EC =2―x,同理可得,PE =x ―2),∴S =S △ABC ―S △PBE =12×2―12(2―x )⋅―x )=―x ―2)2+所以,图象为1<x ≤2时开口向下的一段抛物线索;当2<x ≤3时,如图,S =12×2×=此时的函数图象是在2<x≤3范围内的一条线段,即S=<x≤3),故选:C13.(2024·河南·模拟预测)如图,在等腰直角三角形ABC中,∠ABC=90°,BD是AC边上的中线,将△BCD 沿射线BA方向匀速平移,平移后的三角形记为△B1C1D1,设△B1C1D1与△ABD重叠部分的面积为y,平移距离为x,当点B1与点A重合时,△B1C1D1停止运动,则下列图象最符合y与x之间函数关系的是()A.B.C.D.【思路点拨】本题考查了二次函数与几何图形的综合,涉及等腰直角三角形,平移的性质,二次函数的性质等知识,解题的关键是灵活运用这些性质,学会分类讨论.过点D作DM⊥AB于M,由△ABC为等腰直角三角形,∠ABC=90°,可设AB=BC=2,可得AD=CD=BD=DM=AM=BM=1,然后分情况讨论:当0<x≤1时,当1<x≤2时,分别求出关于S、x的函数,再数形结合即可求解.【解题过程】解:过点D作DM⊥AB于M,∵△ABC为等腰直角三角形,∠ABC=90°,∴ AB =BC ,设AB =BC =2,∴ AD =CD =BD =DM =AM =BM =1,当0<x ≤1时,设B 1D 1交AC 于点G ,B 1C 1交BD 于N ,∴ AB 1=AB ―BB 1=2―x ,由平移知B 1G ∥BD ,∠AB 1G =∠ABD ,∴ △AB 1G 是等腰直角三角形,∴ S △AB 1G =12AB 1·12AB 1=14(2―x )2,又∵ S △ABD =12×12×2×2=1,S △BB 1N =12x 2∴ S =S △ABD ―S △AB 1G ―S △BB 1N =1―14(2―x )2―12x 2=―34x 2+x ,当x =―=23时取得最大值,故排除A 、B 选项当1<x ≤2时,B 1D 1交AC 于点G ,B 1C 1交AC 于点H ,∵ B 1H ∥BC ,∴ ∠B 1HG =∠ACB =45°,又∵ ∠D 1B 1C 1=45°,∴ △B 1GH 为等腰三角形,∵ ∠AB 1D 1=∠ABD =45°=∠A ,∴ AB 1G 为等腰三角形,∴ B 1G =1=―x ),∴ S =S △B 1GH =12·―x )―x )=14(2―x )2,即当1<x ≤2时,函数图像为开口向上的抛物线,故排除C 选项故选:D .14.(23-24九年级上·安徽滁州·期末)如图,菱形ABCD的边长为3cm,∠B=60°,动点P从点B出发以3cm/ s的速度沿着边BC―CD―DA运动,到达点A后停止运动;同时动点Q从点B出发,以1cm/s的速度沿着边BA 向A点运动,到达点A后停止运动.设点P的运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象为()A.B.C.D.【思路点拨】根据题意可知分情况讨论,分别列出当点P在BC上时,点P在CD上时,点P在AD上时表达式,再画图得到函数解析式,即可得到本题答案.【解题过程】解:设点P的运动时间为x(s),△BPQ的面积为y(cm2),①当0≤x≤1时,点P在BC上时,过点P作PE⊥BA,,∵根据题知:∠B =60°,PB =3x,BQ =x ,∴BE =32x ,PE =,∴y =12BQ·PE =12x·=2;②当1<x ≤2时,点P 在CD 上时,过点P 作PH ⊥BA ,,∵根据题知:∠B =60°,BC =3,BQ =x ,∴PH =∴y =12BQ·PH =12x·=;③当2<x ≤3时,点P 在AD 上时,过点P 作PF ⊥BA 交DA 延长线于F ,,∵根据题知:∠B =60°,即∠FAD =60°,∵BC +CD +AD =3+3+3=9cm ,BC +CD +DP =3x ,∴AP =(9―3x)cm ,∴PF =9―3x 2·∴y =12BQ·PF =12x·9―3x 2·=―2;∴结合三种情况,图像如下所示:,故选:D.15.(2023·辽宁盘锦·中考真题)如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴的正半轴上,顶点B、C在x轴的正半轴上,D,P(―1,―1).点M在菱形的边AD和DC上运动(不与点A,C重合),过点M作MN∥y轴,与菱形的另一边交于点N,连接PM,PN,设点M的横坐标为x,△PMN的面积为y,则下列图象能正确反映y与x之间函数关系的是()A.B.C.D.【思路点拨】先根据菱形的性质求出各点坐标,分M的横坐标x在0∼1,1∼2,2∼3之间三个阶段,用含x的代数式表示出△PMN的底和高,进而求出分段函数的解析式,根据解析式判断图象即可.【解题过程】解:∵菱形ABCD 的顶点A 在y 轴的正半轴上,顶点B 、C 在x 轴的正半轴上,∴ AB =AD =2,OA=∴ OB===1,∴ OC =OB +BC =1+2=3,∴ A ,B (1,0),C (3,0),设直线AB 的解析式为y =kx +b ,将A ,B (1,0)代入,得:k +b = ,解得k =b =∴直线AB 的解析式为y =―+∵ MN∥y 轴,∴N 的横坐标为x ,(1)当M 的横坐标x 在0∼1之间时,点N 在线段AB 上,△PMN 中MN 上的高为1+x ,∴ N (x,―+,∴ MN=(―+=,∴ S △PMN =12MN ⋅(1+x )=⋅(1+x)=2+,∴该段图象为开口向上的抛物线;(2)当M 的横坐标x 在1∼2之间时,点N 在线段BC 上,△PMN 中MN =MN 上的高为1+x ,∴ S △PMN =12MN ⋅(1+x)=(1+x)=∴该段图象为直线;(3)当M 的横坐标x 在2∼3之间时,点N 在线段BC 上,△PMN 中MN 上的高为1+x ,由D ,C (3,0)可得直线CD 的解析式为y =―+∴ M (x,―+,N (x,0),∴ MN =―+∴ S △PMN =12MN ⋅(1+x )=12(+⋅(1+x )=―2∴该段图象为开口向下的抛物线;观察四个选项可知,只有选项A 满足条件,故选A .16.(22-23九年级上·安徽蚌埠·期末)如图,在平面直角坐标系中,点A (2,0),点B,点C (―,点P从点O出发沿O→A→B路线以每秒1个单位的速度运动,点Q从点O出发沿O→C→B的速度运动,当一个点到达终点时另一个点随之停止运动,设y=PQ2,运动时间为t秒,则正确表达y与t 的关系图象是()A.B.C.D.【思路点拨】先分析各个线段的长,在Rt△OAB中,可知,OA=2,OB AB=4,∠BAO=60°,过点C作CM⊥y轴于点M,易得△OBC是等边三角形,OC=BC=OB P在OA上运动用时2s,在AB上运动用时4s,点Q在OC上运动用时2s,在OC上运动用时2s,则点P和点Q共用时4s,可排除D选项;再算出点P在OA上时,y的函数表达式,结合选项可得结论.【解题过程】解:如图,∵点A(2,0),点B(0,∴OA=2,OB∴AB=4,∠BAO=60°,过点C作CM⊥y轴于点M,则OM =BM CM =3,∴OC =BC ∴△OBC 是等边三角形,∠BOC =60°,∴点P 在OA 上运动用时2s ,在AB 上运动用时4s ,点Q 在OC 上运动用时2s ,在OC 上运动用时2s ,即点P 和点Q 共运动4s 后停止;由此可排除D 选项.当点P 在线段OA 上运动时,点Q 在线段OC 上运动,过点Q 作QN ⊥x 轴于点N ,由点P ,点Q 的运动可知,OP =t ,OQ ,∴QN =12OQ ==32t,∴PN =52t,∴y =PQ 2=(52t)2+2=7t 2.即当0<t <2时,函数图象为抛物线,结合选项可排除A ,C .故选:B .17.(2022·辽宁·中考真题)如图,在等边三角形ABC 中,BC =4,在Rt △DEF 中,∠EDF =90°,∠F =30°,DE =4,点B ,C ,D ,E 在一条直线上,点C ,D 重合,△ABC 沿射线DE 方向运动,当点B 与点E 重合时停止运动.设△ABC 运动的路程为x ,△ABC 与Rt △DEF 重叠部分的面积为S ,则能反映S 与x 之间函数关系的图象是( )A.B.C.D.【思路点拨】分三种情形∶①当0<x≤2时,△CDG,②当2<x≤4时,重叠部分为四边形AGDC,③当4<x≤8时,重叠部分为△BEG,分别计算即可.【解题过程】解:过点A作AM⊥BC,交BC于点M,在等边△ABC中,∠ACB=60°,在Rt△DEF中,∠F=30°,∴∠FED=60°,∴∠ACB=∠FED,∴AC∥EF,在等边△ABC中,AM⊥BC,BC=2,AM=∴BM=CM=12BC•AM=∴S△ABC=12①当0<x≤2时,设AC与DF交于点G,此时△ABC与Rt△DEF重叠部分为△CDG,由题意可得CD=x,DGCD•DG2;∴S=12②当2<x≤4时,设AB与DF交于点G,此时△ABC与Rt△DEF重叠部分为四边形AGDC,由题意可得:CD=x,则BD=4﹣x,DG4﹣x),×(4﹣x)4﹣x),∴S=S△ABC﹣S△BDG=﹣12∴S=2﹣x﹣4)2③当4<x≤8时,设AB与EF交于点G,过点G作GM⊥BC,交BC于点M,此时△ABC与Rt△DEF重叠部分为△BEG,由题意可得CD =x ,则CE =x ﹣4,DB =x ﹣4,∴BE =x ﹣(x ﹣4)﹣(x ﹣4)=8﹣x ,∴BM =4﹣12x在Rt △BGM 中,GM 4﹣12x ),∴S =12BE •GM =12(8﹣x )4﹣12x ),∴S x ﹣8)2,综上,选项A 的图像符合题意,故选:A .18.(2023·山东聊城·三模)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ―ED ―DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒,设P ,Q 同时出发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图像如图(2)(曲线OM 为抛物线的一部分),则下列结论不正确的是( )A .AB:AD =4:5B .当t =2.5秒时,PQ =C .当t =294时,BQ PQ =53D .当△BPQ 的面积为4cm 2时,t 或475秒【思路点拨】先由图2中的函数图像得到当t =5时,点Q 到达点C ,即BC =5cm ,然后由5<t <7时,y =10可知△BPQ的面积是定值10cm 2、BE =5cm,ED=2cm ,当t =7时点P 到达点D ,AE ==4cm ,可以判定A ;当0<t ≤5时,根据y =25t 2得到y =2.5cm 2,过点P 作PH ⊥BC 于点H ,根据y =12BQ·PH =12×2.5cm ×PH =2.5cm 2求得PH =2,设QH =x cm ,根勾股定理计算QH =1cm ,可计算PQ =根据AB =CD =4cm ,得到再运动4秒到达C 点即H (11,0),N (7,10),确定直线HN 或475秒;当t =294>284=7时,故点Q 在DC 上,把t =294代入直线HN 的解析式计算BQ PQ =43.【解题过程】解:设抛物线的解析式为y =at 2,当t =5时,y =10,∴10=25a ,解得a =25,∴y =25t 2,由图2中的函数图像得当t =5时,点Q 到达点C ,即BC =BE =5cm ,∵5<t <7时,y =10,∴△BPQ 的面积是定值10cm 2且BE =5cm,ED=2cm ,当t =7时点P 到达点D ,∴AE =5―2==4cm,AD=BC =5cm ,∴AB:AD =4:5,故A 正确,不符合题意;当0<t ≤5时,∵y =25t 2,t =2.5,∴BP =BQ =2.5cm ,y =2.5cm 2,过点P 作PH ⊥BC 于点H ,∴y =12BQ·PH =12×2.5cm ×PH =2.5cm 2解得PH =2,设QH =x cm ,则BH =BQ ―QH =(2.5―x )cm ,∴2.52=22+(2.5―x )2,解得x =1,x =4(舍去),∴QH =1cm ,∴PQ==故B 正确,不符合题意;根据AB =CD =4cm ,∴再运动4秒到达C 点即H (11,0),N (7,10),设直线HN 的解析式为y =kt +b ,根据题意,得11k +b =07k +b =10 ,解得k =―52b =552 ,∴直线HN 的解析式为y =―52t +552,∵△BPQ 的面积为4cm 2,故4=25t 2或4=―52t +552解得t==―t =475,故D 正确,不符合题意;∵t =294>284=7时,故点Q 在DC 上,当t =294时,y =―52×294+552=758,12PQ·BC =758解得PQ=154∴BQ PQ =5154=43.故C错误,符合题意.故选:C.19.(2023·辽宁·中考真题)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN 的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x之间函数关系的图象是()A.B.C.D.【思路点拨】分三种情况分别求出S与x的函数关系式,根据函数的类型与其图象的对应关系进行判断即可.【解题过程】解:∵∠MAN=60°,AC=AB=6,∴△ABC是边长为6的正三角形,∵AD平分∠MAN,∴∠MAD=∠NAD=30°,AD⊥BC,CD=DB=3,①当矩形EFGH全部在△ABC之中,即由图1到图2,此时0<x≤3,∵EG∥AC,∴∠MAD=∠AGE=30°,∴∠NAD=∠AGE=30°,∴AE=EG=x,在Rt△AEF中,∠EAF=60°,∴EF==,∴S=2;②如图3时,当AE+AF=GE+AF=AF+CF=AC,x=6,解得x=4,则x+12由图2到图3,此时3<x≤4,如图4,记BC,EG的交点为Q,则△EQB是正三角形,∴EQ=EB=BQ=6―x,∴GQ=x―(6―x)=2x―6,而∠PQG=60°,∴PG==2x―6),∴S=S矩形EFHG―S△PQG=2x 2―12×(2x ―6)×2x ―6)=―2― ③如图6时,x =6,由图3到图6,此时4<x ≤6,如图5,同理△EKB 是正三角形,∴EK =KB =EB =6―x ,FC =AC ―AF =6―12x ,EF =, ∴S =S 梯形EKCF=―x +6―12x 2=―2, 因此三段函数的都是二次函数关系,其中第1段是开口向上,第2段、第3段是开口向下的抛物线, 故选:A .20.(22-23九年级上·安徽滁州·期末)如图,在平面直角坐标系中,菱形ABCD 的边长为4,且点A 与原点O 重合,边AD 在x 轴上,点B 的横坐标为―2,现将菱形ABCD 沿x 轴以每秒1个单位长度的速度向右平移,设平移时间为t (秒),菱形ABCD 位于y 轴右侧部分的面积为S ,则S 关于t 的函数图像大致为( )A .B .C .D .【思路点拨】过点B 作x 轴的垂线,垂足为点E ,如图所示,由菱形ABCD 沿x 轴以每秒1个单位长度的速度向右平移,分①当0≤t ≤2时;②当2<t <4时;③当4≤t ≤6时;④当t >6时;四种情况,作图求解S 关于t 的函数解析式,作出图像即可得到答案.【解题过程】解:过点B 作x 轴的垂线,垂足为点E ,如图所示:∵菱形ABCD 的边长为4,且点A 与原点O 重合,边AD 在x 轴上,点B 的横坐标为―2,∴OE =2,OB =4,∴∠OBE =30°,∴∠BOE =60°,BE =①当0≤t ≤2时,如图(1)所示:S =12OA ⋅OF =12×t ×=2;②当2<t <4时,如图(2)所示:S =S △ABE +S 矩形OEBG =12AE ⋅BE +BE ⋅OE =12×2×t ―2)=―③当4≤t ≤6时,如图(3)所示:∵∠C =60°,OD =OA ―AD =t ―4,∴∠KDO =60°,OK=t ―4),∵HO =BE =∴HK =HO ―OK =―t ―4)=―+∵HB =OE =OA ―AE =t ―2,∴CH =BC ―HB =4―(t ―2)=―t +6,S =S 菱形ABCD ―S △CHK =AD ⋅BE ―12CH ⋅HK =4×―12(―t +6)(―+=―2―+=―2―当t >6时,S =S 菱形ABCD =AD ⋅BE=综上所述S =20≤t ≤2―2<t <4t2+―4≤t ≤6t >6 ,∴第一段二次函数部分,开口向上;第二段一次函数部分;第三段二次函数部分,开后向下;第四段平行于x轴的射线,故选:A.。
题型1 专题1 动点问题的函数图像
A
B
C
D
5.(2019·潍坊)如图,在矩形 ABCD 中,AB=2,BC=3,动点 P 沿折线 B→C→D
从点 B 开始运动到点 D.设运动的路程为 x,△ADP 的面积为 y,那么 y 与 x 之间的函
数关系的图象大致是( D )
于点 E,F.设直线 l 向右平移的距离为 x,线段 EF 的长为 y,且 y 与 x 的函数关系如图
2 所示,则四边形 ABCD 的周长是
10+2 3
.
图1
图2
10.(2019·信阳一模)如图 1,在正方形 ABCD 中,点 E 是 AB 的中点,点 P 是对角
线 AC 上一动点.设 PC 的长度为 x,PE 与 PB 的长度和为 y.图 2 是 y 关于 x 的函数图
A
B
C
D
6.(2019·河池)如图,△ABC 为等边三角形,点 P 从点 A 出发,沿 A→B→C→A 作 匀速运动,则线段 AP 的长度 y 与运动时间 x 之间的函数关系大致是( B )
A
B
C
D
类型二 函数图象的分析
7.如图 1,AB 是半圆 O 的直径,点 C 是半圆 O 上一点,连接 AC,BC.点 P 从 点 B 出发,沿折线 B→C→A 以 1 cm/s 的速度匀速运动到点 A.图 2 是点 P 运动时,△
以 1cm/s 的速度匀速运动到点 B.图 2 是点 F 运动时,△FBC 的面积 y(cm2)随时间 x(s)
变化的关系图象,则 a 的值为( C )
A. 5
图1 B.2
C.52
图2 D.2 5
中考动点问题经典题型归类总结附答案
专题十动点型问题考点一:建立动点问题的函数解析式(或函数图像)例1 (2013•兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:(1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1);(2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.1.(2013•白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()A.B.C.D.1.C考点二:动态几何型题目动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
(一)点动问题.例2 (2013•河北)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()A.B.C.D.思路分析:分三段考虑,①点P在AD上运动,②点P在DC上运动,③点P在BC上运动,分别求出y与t 的函数表达式,继而可得出函数图象. 解:在Rt △ADE 中,AD=2213AE DE +=,在Rt △CFB 中,BC=2213BF CF +=,①点P 在AD 上运动:对应训练2.(2013•北京)如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2.设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .2.A(二)线动问题例3 (2013•荆门)如右图所示,已知等腰梯形ABCD ,AD ∥BC ,若动直线l 垂直于BC ,且向右平移,设扫过的阴影部分的面积为S ,BP 为x ,则S 关于x 的函数图象大致是( )A.B.C.D.解:①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小;结合选项可得,A选项的图象符合.故选A.对应训练3.(2013•永州)如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()A.B.C.D.3.A(三)面动问题例4 (2013•牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为()A.B.C.D.解:根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-Vt×1=4-Vt,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,A符合;故选A.对应训练4.(2013•衡阳)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.4.A究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.(4)△QMN 为等腰三角形的情形有两种,需要分类讨论,避免漏解.解:(1)∵C (7,4),AB ∥CD ,∴D (0,4).∵sin ∠DAB=22, ∴∠DAB=45°,∴OA=OD=4,∴A (-4,0).设直线l 的解析式为:y=kx+b ,则有4-40b k b =⎧⎨+=⎩, 解得:k=1,b=4,∴y=x+4.∴点A 坐标为(-4,0),直线l 的解析式为:y=x+4.(2)在点P 、Q 运动的过程中:①当0<t≤1时,如答图1所示:过点C 作CF ⊥x 轴于点F ,则CF=4,BF=3,由勾股定理得BC=5.过点Q 作QE ⊥x 轴于点E ,则BE=BQ•cos ∠CBF=5t•35=3t . ∴PE=PB -BE=(14-2t )-3t=14-5t ,S=12PM•PE=12×2t×(14-5t )=-5t 2+14t ; ②当1<t≤2时,如答图2所示:过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t-5,PE=AF-AP-EF=11-2t-(5t-5)=16-7t,S=12PM•PE=12×2t×(16-7t)=-7t2+16t;③当点M与点Q相遇时,DM+CQ=CD=7,即(2t-4)+(5t-5)=7,解得t=167.当2<t<167时,如答图3所示:MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,S=12PM•MQ=12×4×(16-7t)=-14t+32.(3)①当0<t≤1时,S=-5t2+14t=-5(t-75)2+495,∵a=-5<0,抛物线开口向下,对称轴为直线t=75,∴当0<t≤1时,S随t的增大而增大,∴当t=1时,S有最大值,最大值为9;②当1<t≤2时,S=-7t2+16t=-7(t-87)2+647,∵a=-7<0,抛物线开口向下,对称轴为直线t=87,∴当t=87时,S有最大值,最大值为647;③当2<t<167时,S=-14t+32∵k=-14<0,∴S随t的增大而减小.又∵当t=2时,S=4;当t=167时,S=0,∴0<S<4.综上所述,当t=87时,S有最大值,最大值为647.(4)△QMN为等腰三角形,有两种情形:①如答图4所示,点M在线段CD上,MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,MN=DM=2t-4,由MN=MQ,得16-7t=2t-4,解得t=209;②如答图5所示,当点M运动到C点,同时当Q刚好运动至终点D,此时△QMN为等腰三角形,t=125.故当t=209或t=125时,△QMN为等腰三角形.对应训练5.(2013•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B-A-D-A 运动,沿B-A运动时的速度为每秒13个单位长度,沿A-D-A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q 两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A-D-A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B-A-D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B-A-D运动过程中,当线段PQ 扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.5.解:(1)当点P沿A-D运动时,AP=8(t-1)=8t-8.当0<t<1时,如图①.作过点Q作QE⊥AB于点E.S△ABQ=12AB•QE=12BQ×12,4当0<t≤1时,如图③.∵S △BPM =S △BQM ,∴PM=QM .∵AB ∥QR ,∴∠PBM=∠QRM ,∠BPM=∠MQR ,在△BPM 和△RQM 中PBM QRMBPM MQR PM QM∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BPM ≌△RQM .∴BP=RQ ,∵RQ=AB ,∴BP=AB∴13t=13,解得:t=1当1<t≤83时,如图④.∵BR 平分阴影部分面积,∴P 与点R 重合.34∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或83时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(4)如图⑥,当P在A-D之间或D-A之间时,C′D′在BC上方且C′D′∥BC时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50-5t=50-8(t-1)+13,或50-5t=8(t-1)-50+13,解得:t=7或t=95 13.当P在A-D之间或D-A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50-5t+13=8(t-1)-50,解得:t=121 13.∴当t=7,t=9513,t=12113时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.中考真题演练一、选择题1.(2013•新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E 以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为()A.2B.2.5或3.5C.3.5或4.5D.2或3.5或4.51.D2.(2013•安徽)图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变2.D3.(2013•盘锦)如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为()A.B.C.D.3.B4.(2013•龙岩)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是()A.2B.3C.4D.54.B5.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.516、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A、①②③B、①④⑤(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.6.解:(1)∵A(8,0),B(0,6),8.(2013•宜昌)半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O与l相切于点F,DC在l上.(1)过点B作的一条切线BE,E为切点.①填空:如图1,当点A在⊙O上时,∠EBA的度数是;②如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF 重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.7.解:(1)①∵半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,当点A在⊙O如图,过O 点作OK ⊥MN 于K ,∴∠MON=2∠NOK ,MN=2NK ,在Rt △ONK 中,sin ∠NOK=2NK NK ON =, ∴∠NOK 随NK 的增大而增大,∴∠MON 随MN 的增大而增大,∴当MN 最大时∠MON 最大,当MN 最小时∠MON 最小,①当N ,M ,A 分别与D ,B ,O 重合时,MN 最大,MN=BD ,∠MON=∠BOD=90°,S 扇形MON 最大=π(cm 2),②当MN=DC=2时,MN 最小,∴ON=MN=OM ,∴∠NOM=60°,S 扇形MON 最小=23π(cm 2), ∴23π≤S 扇形MON ≤π. 故答案为:30°.9.(2013•重庆)已知:如图①,在平行四边形ABCD 中,AB=12,BC=6,AD ⊥BD .以AD 为斜边在平8.解:(1)∵四边形ABCD是平行四边形,∴AD=BC=6.在Rt△ADE中,AD=6,∠EAD=30°,∴AE=AD•cos30°=33,DE=AD•sin30°=3,∴△AED的周长为:6+33+3=9+33.(2)在△AED向右平移的过程中:(I)当0≤t≤1.5时,如答图1所示,此时重叠部分为△D0NK.∵DD0=2t,∴ND0=DD0•sin30°=t,NK=ND0•tan30°=3t,∴S=S△D0NK=12ND0•NK=12t•3t=32t2;(II)当1.5<t≤4.5时,如答图2所示,此时重叠部分为四边形D0E0KN.∵AA0=2t,∴A0B=AB-AA0=12-2t,∴A0N=12A0B=6-t,NK=A0N•tan30°=33(6-t).∴S=S四边形D0E0KN=S△ADE-S△A0NK=12×3×33-12×(6-t)×33(6-t)=-36t2+23t-332;(III)当4.5<t≤6时,如答图3所示,此时重叠部分为五边形D0IJKN.∵AA 0=2t,∴A0B=AB-AA0=12-2t=D0C,∴A0N=12A0B=6-t,D0N=6-(6-t)=t,BN=A0B•cos30°=3(6-t);易知CI=BJ=A0B=D0C=12-2t,∴BI=BC-CI=2t-6,S=S梯形BND0I-S△BKJ=12[t+(2t-6)]• 3(6-t)-12•(12-2t)•33(12-2t)=-1336t2+203t-423.综上所述,S与t之间的函数关系式为:S=2223(0 1.5)2333-23-(1.5 4.5)62133-203-423(4.56)6t tS t t tt t t⎧≤≤⎪⎪⎪⎪=+<≤⎨⎪⎪+<≤⎪⎪⎩.(3)存在α,使△BPQ为等腰三角形.理由如下:经探究,得△BPQ∽△B1QC,故当△BPQ为等腰三角形时,△B1QC也为等腰三角形.(I)当QB=QP时(如答图4),则QB1=QC,∴∠B1CQ=∠B1=30°,即∠BCB1=30°,∴α=30°;(II)当BQ=BP时,则B1Q=B1C,若点Q在线段B1E1的延长线上时(如答图5),∵∠B1=30°,∴∠B1CQ=∠B1QC=75°,即∠BCB1=75°,∴α=75°.10.(2013•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D、E、F分别是边AB、(2)在点P 从点F 运动到点D 的过程中,某一时刻,点P 落在MQ 上,求此时BQ 的长度;(3)当点P 在线段FD 上运动时,求y 与x 之间的函数关系式.11.解:(1)当点P 运动到点F 时,∵F 为AC 的中点,AC=6cm ,∴AF=FC=3cm ,∵P 和Q 的运动速度都是1cm/s ,∴BQ=AF=3cm ,∴CQ=8cm -3cm=5cm ,故答案为:5.(2)设在点P 从点F 运动到点D 的过程中,点P 落在MQ 上,如图1,则t+t -3=8,t=112, BQ 的长度为112×1=112(cm );(3)∵D 、E 、F 分别是AB 、BC 、AC 的中点,∴DE=12AC=12×6=3, DF=12BC=12×8=4, ∵MQ ⊥BC ,∴∠BQM=∠C=90°,∵∠QBM=∠CBA ,∴△MBQ ∽△ABC ,∴BQ MQ BC AC=, ∴86x MQ =,MQ=34x,分为三种情况:①当3≤x<4时,重叠部分图形为平行四边形,如图2,y=PN•PD=34x(7-x)即y=-34x2+214x;②当4≤x<112时,重叠部分为矩形,如图3,y=3[(8-X)-(X-3))]即y=-6x+33;③当112≤x≤7时,重叠部分图形为矩形,如图4,y=3[(x-3)-(8-x)]即y=6x-33.213.解:(1)如图,2如图2,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小∵B(6,0),C(0,2)(3)如图3,连接ME ,∵CE 是⊙M 的切线∴ME ⊥CE ,∠CEM=90°由题意,得OC=ME=2,∠ODC=∠MDE ∵在△COD 与△MED 中COA DEMODC MD EOC ME∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△MED (AAS ),∴OD=DE ,DC=DM设OD=x 则CD=DM=OM -OD=4-x 则RT △COD 中,OD 2+OC 2=CD 2, ∴x 2+22=(4-x )2∴x=32,∴D (32,0)设直线CE 的解析式为y=kx+b ∵直线CE 过C (0,2),D (32,0)两点,则3022k b b ⎧+=⎪⎨⎪=⎩,解得:432k b ⎧=-⎪⎨⎪=⎩。
2020年中考数学三轮冲刺 难点题型突破 3 动点问题的函数图像
动点问题的函数图像1.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.2.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.3.如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.4.如图,在△ABC中,∠C=90°,点P是斜边AB的中点,点M从点C向点A匀速运动,点N从点B向点C匀速运动,已知两点同时出发,同时到达终点,连接PM、PN、MN,在整个运动过程中,△PMN的面积S与运动时间t的函数关系图象大致是()A.B.C.D.5.如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是()A.B.C.D.6.如图,AB为半圆所在⊙O的直径,弦CD为定长且小于⊙O的半径(C点与A点不重合),CF⊥CD交AB于点F,DE⊥CD交AB于点E,G为半圆弧上的中点.当点C在上运动时,设的长为x,CF+DE=y.则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.7.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.M处B.N处C.P处D.Q处8.如右图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()A.B.C.D.9.如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD﹣DC﹣CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()A.B.C.D.10.如图,已知A、B是反比例函数上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()A.B.C.D.11.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是()A.B.C.D.12.如图,△ABC和△DEF是全等的等腰直角三角形,∠ABC=∠DEF=90°,AB=4cm,BC与EF在直线ɭ上,开始时C点与E点重合,让△ABC沿直线l向右平移,直到B点与F点重合为止.设△ABC与△DEF的重叠部分(即图中影阴部分)的面积为ycm2,CE的长度为xcm,则y与x之间的函数图象大致是()A.B.C.D.13.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t 的大致图象为()A.B.C.D.14.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点,连接MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减少15.如图,在△ABC中,AB=AC=6cm,BC=8cm,点D为BC的中点,BE=DE,将∠BDE 绕点D顺时针旋转α度(0≤α≤83°),角的两边分别交直线AB于M、N两点,设B、M 两点间的距离为xcm,M,N两点间的距离为ycm.小涛根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小涛的探究过程,请补充完整.(1)列表:下表的已知数据是B,M两点间的距离x进行取点、画图、测量,分别得到了y与x的几组对应值:x/cm00.300.50 1.00 1.50 2.00 2.50 3.00 3.50 3.68 3.81 3.90 3.93 4.10 y/cm 2.88 2.81 2.69 2.67 2.80 3.15 3.85 5.24 6.01 6.717.277.448.87请你通过计算,补全表格;(2)描点、连线,在平面直角坐标系xOy中,描出表格中各组数值所对应的点(x,y),并画出函数y关于x的图象.(3)探究性质:随着自变量x的不断增大,函数y的变化趋势:.(4)解决问题:当MN=2BM时,BM的长度大约是cm.(保留两位小数).16.如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2,点P,Q同时从点D出发,以相同的速度分别沿射线DC、射线DA运动,过点Q作AC的垂线段QR,使QR=PQ,连接PR,当点Q到达点A时,点P,Q同时停止运动.设PQ=x,△PQR与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤,<x≤m时,函数的解析式不同).(1)填空:n的值为;(2)求S关于x的函数关系式,并写出x的取值范围.试题解析1.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.解:∵∠CPD=∠FPD,∠BPE=∠FPE,又∵∠CPD+∠FPD+∠BPE+∠FPE=180°,∴∠CPD+∠BPE=90°,又∵直角△BPE中,∠BPE+∠BEP=90°,∴∠BEP=∠CPD,又∵∠B=∠C,∴△BPE∽△CDP,∴,即,则y=﹣x2+x,y是x的二次函数,且开口向下.故选:C.2.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x≤4),图象为:故选:A.3.如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.解:根据题意,有AE=BF=CG,且正三角形ABC的边长为2,故BE=CF=AG=2﹣x;故△AEG、△BEF、△CFG三个三角形全等.在△AEG中,AE=x,AG=2﹣x.则S△AEG=AE×AG×sin A=x(2﹣x);故y=S△ABC﹣3S△AEG=﹣3×x(2﹣x)=(3x2﹣6x+4).故可得其大致图象应类似于抛物线,且抛物线开口方向向上;故选:D.4.如图,在△ABC中,∠C=90°,点P是斜边AB的中点,点M从点C向点A匀速运动,点N从点B向点C匀速运动,已知两点同时出发,同时到达终点,连接PM、PN、MN,在整个运动过程中,△PMN的面积S与运动时间t的函数关系图象大致是()A.B.C.D.解:如图1,连接CP,,∵点P是斜边AB的中点,∴S△ACP=S△BCP=S△ABC,出发时,S△PMN=S△BCP=S△ABC;∵两点同时出发,同时到达终点,∴点N到达BC的中点时,点M也到达AC的中点,∴S△PMN=S△ABC;结束时,S△PMN=S△ACP=S△ABC,在整个运动过程中设BC=a,AC=b,∴S=[ab﹣V N•t•﹣(a﹣V N•t)•V M•t﹣(b﹣V M•t)•]=(ab﹣V N b•t﹣aV M•t+V N V M•t2﹣ab+aV M•t)=V N V M•t2﹣(V N b+aV M)t+ab,∴△MPN的面积大小变化情况是:先减小后增大,而且是以抛物线的方式变化,∴△PMN的面积S与运动时间t的函数关系图象大致是:.故选:A.5.如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是()A.B.C.D.解:设运动员C的速度为v,则运动了t的路程为vt,设∠BOC=α,当点C从运动到M时,∵vt==,∴α=,在直角三角形中,∵d=50sinα=50sin,∴d与t之间的关系d=50sin,当点C从M运动到A时,d与t之间的关系d=50sin(180﹣),故选:C.6.如图,AB为半圆所在⊙O的直径,弦CD为定长且小于⊙O的半径(C点与A点不重合),CF⊥CD交AB于点F,DE⊥CD交AB于点E,G为半圆弧上的中点.当点C在上运动时,设的长为x,CF+DE=y.则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.解:作OH⊥CD于点H,∴H为CD的中点,∵CF⊥CD交AB于F,DE⊥CD交AB于E,∴OH为直角梯形的中位线,∵弦CD为定长,∴CF+DE=y为定值,故选:B.7.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.M处B.N处C.P处D.Q处解:点R在NP上时,三角形面积增加,点R在PQ上时,三角形的面积不变,点R在QN上时,三角形面积变小,点R在Q处,三角形面积开始变小.故选:D.8.如右图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()A.B.C.D.解:①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l经过AD段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小;结合选项可得,A选项的图象符合.故选:A.9.如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD﹣DC﹣CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()A.B.C.D.解:在Rt△ADE中,AD==13,在Rt△CFB中,BC==13,①点P在AD上运动:过点P作PM⊥AB于点M,则PM=AP sin∠A=t,此时y=EF×PM=t,为一次函数;②点P在DC上运动,y=EF×DE=30;③点P在BC上运动,过点P作PN⊥AB于点N,则PN=BP sin∠B=(AD+CD+BC ﹣t)=,则y=EF×PN=,为一次函数.综上可得选项A的图象符合.故选:A.10.如图,已知A、B是反比例函数上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()A.B.C.D.解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l﹣at),因为l,OC,a均是常数,所以S与t成一次函数关系.故排除C.故选:A.11.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是()A.B.C.D.解:如右图,过点E作EM⊥BC于点M,EN⊥AB于点N,∵点E是正方形的对称中心,∴EN=EM,由旋转的性质可得∠NEK=∠MEL,在Rt△ENK和Rt△EML中,,故可得△ENK≌△EML,即阴影部分的面积始终等于正方形面积的.故选:B.12.如图,△ABC和△DEF是全等的等腰直角三角形,∠ABC=∠DEF=90°,AB=4cm,BC与EF在直线ɭ上,开始时C点与E点重合,让△ABC沿直线l向右平移,直到B点与F点重合为止.设△ABC与△DEF的重叠部分(即图中影阴部分)的面积为ycm2,CE的长度为xcm,则y与x之间的函数图象大致是()A.B.C.D.解:∵△ABC和△DEF是全等的等腰直角三角形,∴△ABC与△DEF的重叠部分也是等腰直角三角形,当△ABC沿直线ɭ自点E向右平移到点F,即0≤x≤4时,△ABC与△DEF的重叠部分的面积y=x2,当4≤x≤8时,△ABC与△DEF的重叠部分的面积y=(x﹣8)2,则y与x之间的函数图象大致是C.故选:C.13.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t 的大致图象为()A.B.C.D.解:由图中可知:在开始的时候,阴影部分的面积最大,可以排除B,C.随着圆的穿行开始,阴影部分的面积开始减小,当圆完全进入正方形时,阴影部分的面积开始不再变化.应排除D.故选:A.14.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点,连接MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减少解:如图所示,连接CM,∵M是AB的中点,∴S△ACM=S△BCM=S△ABC,开始时,S△MPQ=S△ACM=S△ABC,点P到达AC的中点时,点Q到达BC的中点时,S△MPQ=S△ABC,结束时,S△MPQ=S△BCM=S△ABC,所以,△MPQ的面积大小变化情况是:先减小后增大.故选:C.15.如图,在△ABC中,AB=AC=6cm,BC=8cm,点D为BC的中点,BE=DE,将∠BDE 绕点D顺时针旋转α度(0≤α≤83°),角的两边分别交直线AB于M、N两点,设B、M两点间的距离为xcm,M,N两点间的距离为ycm.小涛根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小涛的探究过程,请补充完整.(1)列表:下表的已知数据是B,M两点间的距离x进行取点、画图、测量,分别得到了y与x的几组对应值:x/cm00.300.50 1.00 1.50 2.00 2.50 3.00 3.50 3.68 3.81 3.90 3.93 4.10y/cm32.88 2.81 2.69 2.67 2.803.15 3.85 5.24 6.01 6.717.277.448.87请你通过计算,补全表格;(2)描点、连线,在平面直角坐标系xOy中,描出表格中各组数值所对应的点(x,y),并画出函数y关于x的图象.(3)探究性质:随着自变量x的不断增大,函数y的变化趋势:0≤x≤1.65时,y随x增大而减小,当1.65<x≤4.10时,y随x增大而增大.(4)解决问题:当MN=2BM时,BM的长度大约是 1.33或4cm.(保留两位小数).解:(1)①当x=BM=0时,MN是三角形ABC的中位线,则MN=AC=3;②x=BM=,在△MBD中,BD=4,BM=,cos∠B==cosβ,tanβ=,过点M作MH⊥BD于点H,则BH=BM cosβ=,则MH=,MD2=HD2+MH2=,则BD2=BM2+MD2,故∠BMD=90°,则y=MN=MD tanβ=(DB sinβ)tanβ=;故:答案为3,;(2)描点出如下图象,(3)从图象可以看出:0≤x≤1.65时,y随x增大而减小,当1.65<x≤4.10时,y随x增大而增大(数值是估值,不唯一);(4)方法一:MN=2BM,即y=2x,在上图中作直线y=2x,直线与曲线交点的横坐标1.33和4故答案为:1.33或4.方法二:如图3,DN与CA的延长线交于点H.设BM=x,MN=2xEN=3x﹣3,AN=6﹣3x∵∠NDB=∠H+∠C(外角的性质)∠NDB=∠MDB+∠NDM∴∠MDB+∠NDM=∠H+∠C∴∠MDB=∠H,∠B=∠C∴△MDB∽△DHC∴=∴,CH=,HA=HC﹣AC=﹣6又∵△HAN∽△DEN∴=∴=解得x1=4,x2=.故答案为:1.33或4.16.如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2,点P,Q同时从点D出发,以相同的速度分别沿射线DC、射线DA运动,过点Q作AC的垂线段QR,使QR=PQ,连接PR,当点Q到达点A时,点P,Q同时停止运动.设PQ=x,△PQR与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤,<x≤m时,函数的解析式不同).(1)填空:n的值为;(2)求S关于x的函数关系式,并写出x的取值范围.解:(1)如图1,,当x=时,△PQR与△ABC重叠部分的面积就是△PQR的面积,∵PQ=,QR=PQ,∴QR=,∴n=S=×()2=×=.(2)如图2,,根据S关于x的函数图象,可得S关于x的函数表达式有两种情况:当0<x≤时,S=×PQ×RQ=x2,当点Q点运动到点A时,x=2AD=4,∴m=4.当<x≤4时,S=S△APF﹣S△AQE=AP•FG﹣AQ•EQ,AP=2+,AQ=2﹣,∵△AQE∽△AQ1R1,,∴QE=,设FG=PG=a,∵△AGF∽△AQ1R1,,∴AG=2+﹣a,∴a=,∴S=S△APF﹣S△AQE=AP•FG﹣AQ•EQ=(2)(2)﹣(2﹣)•(2)=﹣x2+∴S=﹣x2+.2020 中考综上,可得S=故答案为:.。
2020年浙江省中考数学题型专练一 动点问题的函数图像含答案
题型一 动点问题的函数图像类型一 判断函数图像(2014.8)1. 如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA →AB ︵→BO 的路径运动一周,设点P 到点O的距离为s ,运动时间为t ,则下列图象能大致地反映s 与t 之间的关系的是( )第1题图2. 如图,在Rt △ABC 中,AC =BC =4 cm ,点D 是AB 的中点,点F 是BC 的中点,动点E 从点C 出发,沿CD →DA 以1 cm/s 的速度运动至点A ,设点E 运动的时间为x s ,△EFC 的面积为y cm 2(当E ,F ,C 三点共线时,设y =0),则y 与x 之间的函数关系的大致图象是( )第2题图3.如图,A 、B 是反比例函数y =k x(k >0)在第一象限图象上的两点,动点P 从坐标原点O 出发,沿图中 箭头所指方向匀速运动,即点P 先在线段OA 上运动,然后在双曲线上由A 到B 运动,最后在线段BO 上运动,最终回到点O .过点P 作PM ⊥x 轴,垂足为点M ,设△POM 的面积为S ,点P 运动时间为t ,则S 关于t 的函数图象大致为( )第3题图4.如图,在菱形ABCD中,∠B=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是()第4题图5.如图,在矩形ABCD中,对角线AC与BD交于点O,点M为线段AC上一个动点,过点M作EF∥BD 交AD(或DC)于点E,交AB(或BC)于点F,已知AC=5,设AM=x,EF=y,则y关于x的函数图象大致为()第5题图6. (2019衢州)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C,设点P经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()第6题图类型二分析函数图像1.如图①,点P从矩形ABCD的顶点B出发,沿射线BC的方向以每秒1个单位长度的速度运动,过点P作PG⊥AP交射线DC于点G.如图②是点P运动时CG的长度y随时间t变化的图象,其中点Q是第一段曲线(抛物线的一部分)的最高点,则AB的长度是()第1题图A. 2B. 3C. 4D. 232.(2019郑州模拟)如图①,四边形ABCD中,AB∥CD,∠B=90°,AC=A D.动点P从点B出发,沿折线B-A-D-C方向以 1 cm/s的速度匀速运动,在整个运动过程中,△BCP的面积S(cm2)与运动时间t(s)的函数图象如图②所示,则AD等于()第2题图A. 5 cmB. 34 cmC. 8 cmD. 2 3 cm3.如图①,菱形ABCD中,∠B=60°,动点P以每秒1个单位的速度自点A出发沿线段AB运动到点B,同时动点Q以每秒2个单位的速度自点B出发沿折线B-C-D运动到点D.图②是点P、Q运动时,△BPQ的面积S随时间t变化关系图象,则a的值是()第3题图A. 2B. 2.5C. 3D. 234.如图①,在正方形ABCD中,动点E从点A出发,沿A-B-C运动,当点E到达点C时停止运动,过点E作EF⊥AE,交CD于点F,设点E运动的路程为x,FC=y(当点A,E重合时,点D,F重合;当点C,E重合时,不妨设y=0),y与x的函数关系的大致图象如图②,当点E在BC上运动时,FC的最大长度是1,则正方形ABCD的面积是()第4题图A. 8B. 12C. 16D. 4.85.如图①,在矩形ABCD中,动点P从点A出发,沿A→B→C运动,设P A=x,点D到直线P A的距离为y,且y关于x的函数图象如图②所示,则当△PCD和△P AB的面积相等时,y的值为.第5题图6.如图①,已知点E,F,G,H是矩形ABCD各边的中点,动点M从点E出发,沿E→F→G匀速运动,设点M运动的路程为x,点M到矩形顶点B的距离为y,如果表示y关于x函数关系的图象如图②所示,那么四边形EFGH的面积是.第6题图参考答案类型一 判断函数图象1. C 【解析】点P 在OA 上从点O 向点A 运动的过程中,s 随着t 的增大而增大,点P 在AB ︵上运动时,s =OP =12AB (定值),点P 在OB 上从点B 向点O 运动的过程中,s 随着t 的增大而减小. 2. A 【解析】∵在Rt △ABC 中,AC =BC =4,∴AB =42,AD =CD =22,CF =2,当点E 在CD 上时,CE =x ,点E 到BC 的距离h 1=22x ,∴y =12×2×22x =22x (0≤x ≤22);当点E 在AD 上时,BE =BD +DE =CD +DE =x ,∴点E 到FC 的距离h 2=22BE =22x ,∴y =12×2×22x =22x (22≤x ≤42). 3. D 【解析】设∠AOM =α,点P 运动的速度为a ,当点P 从点O 运动到点A 的过程中,S =12OM ·PM =12at ·cos α·at ·sin α=12a 2·cos α·sin α·t 2,由于α及a 均为常量,从而可知图象本段应为抛物线,且S 随着t 的增大而增大;当点P 从A 运动到B 时,由反比例函数性质可知△OPM 的面积为12k ,保持不变,本段图象应为与x 轴平行的线段;同理可得,当点P 从B 运动到O 过程中,S 也是t 的二次函数,且S 随着t 的增大而减小.4. B 【解析】∵四边形ABCD 为菱形,且∠B =60°,AB =2,∴当0<t <2时,△APQ 的面积y =12t ·(2-t )·sin60°=-34t 2+32t ,函数图象为开口向下的一段抛物线,且当t =1时,y 最大值为34;当2<t <4时,△APQ 的面积y =12(t -2)·(t -2)·sin60°=34(t -2)2,函数图象为开口向上的一段抛物线,且当t =4时,y 最大值为3,故选B .5. B 【解析】当0≤x ≤2.5时,如解图①,∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,∴∠OAD =∠ODA ,∵EF ∥BD ,∴∠ODA =∠MEA ,∴∠OAD =∠MEA ,∴ME =MA ,同理可得AM =MF ,∴EM =AM =MF ,∴EF =2AM ,即y =2x ;当2.5<x ≤5时,如解图②,由题意知CM =AC -AM =5-x ,∵ME=MC =MF ,∴EF =2MC ,即y =2(5-x )=10-2x .综上所述,y =⎩⎪⎨⎪⎧2x (0≤x ≤2.5)10-2x (2.5<x ≤5).图① 图②第5题解图6. C 【解析】∵AB =4,点E 是AB 的中点,∴AE =BE =2,当0≤x ≤2时,如解图①,y =S △CPE =12PE·BC=2x,∴此段函数图象是正比例函数的一部分;当2<x≤6时,如解图②,y=S△CPE=S正方形ABCD-S△BCE -S△APE-S△PCD=42-12×4×2-12×2×(x-2)-12×4×[4-(x-2)]=x+2,∴此段函数图象是一次函数的一部分;当6<x≤10时,如解图③,y=S△CPE=12PC·BC=12(10-x)×4=-2x+20,∴此段函数图象是一次函数的一部分,综上所述,根据各段图象及x的取值范围,可得函数图象如选项C所示.图①图②图③第6题解图类型二 分析函数图象1. B 【解析】结合图形分析函数图象可得:当点P 运动到点C 的位置时,CG =0,∴BC =4.当点P运动到线段BC 的中点时,CG =43.∵∠B =90°,∴∠BAP +∠APB =90°,∵PG ⊥AP ,∴∠APG =90°,∴∠APB +∠CPG =90°,∴∠BAP =∠CPG ,又∵∠ABP =∠PCG =90°,∴△ABP ∽△PCG ,∴AB PC =BP CG,当点P 为BC 的中点时,BP =PC =2,∴AB 2=243,解得AB =3. 2. B 【解析】结合图形分析函数图象可得,当t =3时,点P 到达A 处,即AB =3;如解图,过点A作AE ⊥CD 于点E ,则四边形ABCE 为矩形,∵AC =AD ,∴DE =CE =12CD .当S =15时,点P 到达点D 处,则S =12CD ·BC =12·2AB ·BC =3×BC =15,则BC =5,在Rt △ABC 中,由勾股定理得,AD =AC =AB 2+BC 2=34.第2题解图3. D 【解析】由题图②得,t =4时两点停止运动,∴点P 以每秒1个单位的速度从点A 运动到点B 用了4秒,∴AB =4,∵点Q 运动到点C 之前和之后,△BPQ 面积算法不同,即t =2时,S 的解析式发生变化,∴题图②中点M 对应的横坐标为2,此时P 为AB 中点,点C 与点Q 重合,如解图,连接AC ,∵菱形ABCD 中,AB =BC =4,∠B =60°,∴△ABC 是等边三角形,∴CP ⊥AB ,BP =12AB =2,∴CP =BC 2-BP 2=42-22=23,∴a =12BP ·CP =12×2×23=2 3.第3题解图4. C 【解析】如解图,设AB =a ,当点E 在BC 上运动时(不与点B 、C 重合),∵AE ⊥EF ,∴△EFC∽△AEB ,∴EC AB =FC EB ,即2a -x a =y x -a ,∴y =-1a x 2+3x -2a ,-1a <0,当x =-32×(-1a )=32a 时,y 取得最大值,此时点E 为BC 的中点,y =1,把(32a ,1)代入y =-1ax 2+3x -2a ,解得a =4,即AB =4,故正方形ABCD 的面积为4×4=16.第4题解图5. 121313【解析】当P 点在AB 上运动时,D 点到AP 的距离不变,始终是AD 长,从图象可以看出AD =4,当P 点到达B 点时,从图象看出x =3,即AB =3.当△PCD 和△P AB 的面积相等时,P 点在BC 中点处,此时△ADP 面积为12×4×3=6,在Rt △ABP 中,AP =AB 2+BP 2=13,则12AP ·y =6,解得y =121313. 6. 24 【解析】如解图,连接BD ,EG ,FH ,∵点E ,F ,G ,H 是矩形ABCD 各边的中点,∴EF ∥BD ∥GH ,EF =GH =12BD ,∴四边形EFGH 是平行四边形,又∵EF =EH ,∴平行四边形EFGH 是菱形,由题图②得BE =3,点M 运动到点G 时,运动路程为10,又∵EF =FG ,则可知菱形的边长为5,即EF =FG =GH =HE =5,∴AF =4,AD =8,∴S 菱形EFGH =12EG ·FH =24.第6题解图。
2020年中考数学备考优生百日闯关 第4关 以动点函数图象问题为背景的选择填空题(解析版)
第4关 以动点函数图象问题为背景的选择填空题【考查知识点】这类问题通过点、线或图形的运动构成一种函数关系,生成一种函数图像,将几何图形与函数图像有机地融合在一起,体现了数形结合的思想,能充分考查学生的观察、分析、归纳、猜想的能力以及综合运用所学知识解决问题的能力。
【解题思路】解答此类问题的策略可以归纳为三步:“看” 、“写” 、“选”。
(1)“看”就是认真观察几何图形,彻底弄清楚动点从何点开始出发,运动到何点停止,整个运动过程分为不同的几段,何点(时刻)是特殊点(时刻),这是准确解答的前提和关键(2)“写”就是计算、写出动点在不同路段的函数解析式,注意一定要注明自变量的取值范围,求出在特殊点的函数数值和自变量的值(3)“选”就是根据解析式选择准确的函数图像或答案,多用排除法。
首先,排除不符合函数类形的图像选项,其次,对于相同函数类型的函数图像选项,再用自变量的取值范围或函数数值的最大和最小值进行排除,选出准确答案。
【典型例题】【例1】(2019·辽宁中考真题)如图,在Rt ABC △中,AB AC =,4BC =,AG BC ⊥于点G ,点D 为BC 边上一动点,DE BC ⊥交射线CA 于点E ,作DEC V 关于DE 的轴对称图形得到DEF V ,设CD 的长为x ,DEF V 与ABG V 重合部分的面积为y .下列图象中,能反映点D 从点C 向点B 运动过程中,y 与x 的函数关系的是( )A .B .C .D .【答案】A【分析】根据等腰三角形的性质可得122BG GC BC ===,由DEC V 与DEF V 关于DE 对称,即可求出当点F 与G 重合时x 的值,再根据分段函数解题即可. 【详解】解:AB AC =Q ,AG BC ⊥,122BG GC BC ∴===, DEC QV 与DEF V 关于DE 对称,FD CD x ∴==.当点F 与G 重合时,FC GC =,即22x =,1x ∴=,当点F 与点B 重合时,FC BC =,即24=x ,2x ∴=,如图1,当01x ≤≤时,0y =,∴B 选项错误;如图2,当12x <≤时,()()22211222122y FG x x ==-=-,∴选项D 错误;如图3,当24x <≤时,()2211422y BD x ==-,∴选项C 错误.故选:A .【名师点睛】函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系. 本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.【例2】(2019·甘肃中考真题)已知点P 为某个封闭图形边界上一定点,动点M 从点P 出发,沿其边界顺时针匀速运动一周,设点M 的运动时间为x ,线段PM 的长度为y ,表示y 与x 的函数图象大致如图所示,则该封闭图形可能是( )A .B .C .D .【答案】D【分析】先观察图象得到y 与x 的函数图象分三个部分,则可对有4边的封闭图形进行淘汰,从而得到正确选项.【详解】y 与x 的函数图象分三个部分,而B 选项和C 选项中的封闭图形都有4条线段,其图象要分四个部分,所以B 、C 选项不正确;A 选项中的封闭图形为圆,开始y 随x 的增大而增大,然后y 随x 的减小而减小,所以A 选项不正确; D 选项为三角形,M 点在三边上运动对应三段图象,且M 点在P 点的对边上运动时,PM 的长有最小值. 故选:D . 【名师点睛】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.【例3】(2018·安徽中考真题)如图,直线12l l 、都与直线l 垂直,垂足分别为M ,N ,MN=1,正方形ABCD,对角线AC 在直线l 上,且点C 位于点M 处,将正方形ABCD 沿l 向右平移,直到点A 与点N 重合为止,记点C 平移的距离为x ,正方形ABCD 的边位于12l l 、之间部分的长度和为y ,则y 关于x的函数图象大致为()A.B.C.D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,=,如图,当1<x≤2时,y=2,=-,如图,当2<x≤3时,y=2)x综上,只有选项A 符合, 故选A.【名师点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.【例4】(2019·四川中考真题)如图1,在四边形ABCD 中,AD ∥BC ,30B ︒∠=,直线l AB ⊥.当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2所示,则四边形ABCD 的周长是_____.【答案】10+【分析】根据图1直线l 的平移过程分为三段,当F 与A 重合之前,x 与y 都不断增大,当当F 与A 重合之后到点E 与点C 重合之前,x 增加y 不变,E 与点C 重合后继续运动至F 与D 重合x 增加y 减小.结合图2可知BC=5,AD=7-4=3,由l AB ⊥且∠B=30°可知AB=F 与A 重合时,把CD 平移到E 点位置可得三角形AED′为正三角形,可得CD=2,进而可求得周长. 【详解】由题意和图像易知BC=5,AD=7-4=3 当BE=4时(即F 与A 重合),EF=2 又∵l AB ⊥且∠B=30°∴AB=∵当F 与A 重合时,把CD 平移到E 点位置可得三角形AED′为正三角形 ∴CD=2∴AB+BC+CD+AD=故答案时10+ 【名师点睛】本题考查了30°所对的直角边是斜边的一半,对四边形中动点问题几何图像的理解,解本题的关键是清楚掌握直线l 平移的距离为x ,线段EF 的长为的图像和直线运动的过程的联系,找到对应线段长度.【方法归纳】从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
2020年浙江省中考数学题型专练一 动点问题的函数图像含答案
题型一 动点问题的函数图像类型一 判断函数图像(2014.8)1. 如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA →AB ︵→BO 的路径运动一周,设点P 到点O的距离为s ,运动时间为t ,则下列图象能大致地反映s 与t 之间的关系的是( )第1题图2. 如图,在Rt △ABC 中,AC =BC =4 cm ,点D 是AB 的中点,点F 是BC 的中点,动点E 从点C 出发,沿CD →DA 以1 cm/s 的速度运动至点A ,设点E 运动的时间为x s ,△EFC 的面积为y cm 2(当E ,F ,C 三点共线时,设y =0),则y 与x 之间的函数关系的大致图象是( )第2题图3.如图,A 、B 是反比例函数y =k x(k >0)在第一象限图象上的两点,动点P 从坐标原点O 出发,沿图中 箭头所指方向匀速运动,即点P 先在线段OA 上运动,然后在双曲线上由A 到B 运动,最后在线段BO 上运动,最终回到点O .过点P 作PM ⊥x 轴,垂足为点M ,设△POM 的面积为S ,点P 运动时间为t ,则S 关于t 的函数图象大致为( )第3题图4.如图,在菱形ABCD中,∠B=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是()第4题图5.如图,在矩形ABCD中,对角线AC与BD交于点O,点M为线段AC上一个动点,过点M作EF∥BD 交AD(或DC)于点E,交AB(或BC)于点F,已知AC=5,设AM=x,EF=y,则y关于x的函数图象大致为()第5题图6. (2019衢州)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C,设点P经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()第6题图类型二分析函数图像1.如图①,点P从矩形ABCD的顶点B出发,沿射线BC的方向以每秒1个单位长度的速度运动,过点P作PG⊥AP交射线DC于点G.如图②是点P运动时CG的长度y随时间t变化的图象,其中点Q是第一段曲线(抛物线的一部分)的最高点,则AB的长度是()第1题图A. 2B. 3C. 4D. 232.(2019郑州模拟)如图①,四边形ABCD中,AB∥CD,∠B=90°,AC=A D.动点P从点B出发,沿折线B-A-D-C方向以 1 cm/s的速度匀速运动,在整个运动过程中,△BCP的面积S(cm2)与运动时间t(s)的函数图象如图②所示,则AD等于()第2题图A. 5 cmB. 34 cmC. 8 cmD. 2 3 cm3.如图①,菱形ABCD中,∠B=60°,动点P以每秒1个单位的速度自点A出发沿线段AB运动到点B,同时动点Q以每秒2个单位的速度自点B出发沿折线B-C-D运动到点D.图②是点P、Q运动时,△BPQ的面积S随时间t变化关系图象,则a的值是()第3题图A. 2B. 2.5C. 3D. 234.如图①,在正方形ABCD中,动点E从点A出发,沿A-B-C运动,当点E到达点C时停止运动,过点E作EF⊥AE,交CD于点F,设点E运动的路程为x,FC=y(当点A,E重合时,点D,F重合;当点C,E重合时,不妨设y=0),y与x的函数关系的大致图象如图②,当点E在BC上运动时,FC的最大长度是1,则正方形ABCD的面积是()第4题图A. 8B. 12C. 16D. 4.85.如图①,在矩形ABCD中,动点P从点A出发,沿A→B→C运动,设P A=x,点D到直线P A的距离为y,且y关于x的函数图象如图②所示,则当△PCD和△P AB的面积相等时,y的值为.第5题图6.如图①,已知点E,F,G,H是矩形ABCD各边的中点,动点M从点E出发,沿E→F→G匀速运动,设点M运动的路程为x,点M到矩形顶点B的距离为y,如果表示y关于x函数关系的图象如图②所示,那么四边形EFGH的面积是.第6题图参考答案类型一 判断函数图象1. C 【解析】点P 在OA 上从点O 向点A 运动的过程中,s 随着t 的增大而增大,点P 在AB ︵上运动时,s =OP =12AB (定值),点P 在OB 上从点B 向点O 运动的过程中,s 随着t 的增大而减小. 2. A 【解析】∵在Rt △ABC 中,AC =BC =4,∴AB =42,AD =CD =22,CF =2,当点E 在CD 上时,CE =x ,点E 到BC 的距离h 1=22x ,∴y =12×2×22x =22x (0≤x ≤22);当点E 在AD 上时,BE =BD +DE =CD +DE =x ,∴点E 到FC 的距离h 2=22BE =22x ,∴y =12×2×22x =22x (22≤x ≤42). 3. D 【解析】设∠AOM =α,点P 运动的速度为a ,当点P 从点O 运动到点A 的过程中,S =12OM ·PM =12at ·cos α·at ·sin α=12a 2·cos α·sin α·t 2,由于α及a 均为常量,从而可知图象本段应为抛物线,且S 随着t 的增大而增大;当点P 从A 运动到B 时,由反比例函数性质可知△OPM 的面积为12k ,保持不变,本段图象应为与x 轴平行的线段;同理可得,当点P 从B 运动到O 过程中,S 也是t 的二次函数,且S 随着t 的增大而减小.4. B 【解析】∵四边形ABCD 为菱形,且∠B =60°,AB =2,∴当0<t <2时,△APQ 的面积y =12t ·(2-t )·sin60°=-34t 2+32t ,函数图象为开口向下的一段抛物线,且当t =1时,y 最大值为34;当2<t <4时,△APQ 的面积y =12(t -2)·(t -2)·sin60°=34(t -2)2,函数图象为开口向上的一段抛物线,且当t =4时,y 最大值为3,故选B .5. B 【解析】当0≤x ≤2.5时,如解图①,∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,∴∠OAD =∠ODA ,∵EF ∥BD ,∴∠ODA =∠MEA ,∴∠OAD =∠MEA ,∴ME =MA ,同理可得AM =MF ,∴EM =AM =MF ,∴EF =2AM ,即y =2x ;当2.5<x ≤5时,如解图②,由题意知CM =AC -AM =5-x ,∵ME=MC =MF ,∴EF =2MC ,即y =2(5-x )=10-2x .综上所述,y =⎩⎪⎨⎪⎧2x (0≤x ≤2.5)10-2x (2.5<x ≤5).图① 图②第5题解图6. C 【解析】∵AB =4,点E 是AB 的中点,∴AE =BE =2,当0≤x ≤2时,如解图①,y =S △CPE =12PE·BC=2x,∴此段函数图象是正比例函数的一部分;当2<x≤6时,如解图②,y=S△CPE=S正方形ABCD-S△BCE -S△APE-S△PCD=42-12×4×2-12×2×(x-2)-12×4×[4-(x-2)]=x+2,∴此段函数图象是一次函数的一部分;当6<x≤10时,如解图③,y=S△CPE=12PC·BC=12(10-x)×4=-2x+20,∴此段函数图象是一次函数的一部分,综上所述,根据各段图象及x的取值范围,可得函数图象如选项C所示.图①图②图③第6题解图类型二 分析函数图象1. B 【解析】结合图形分析函数图象可得:当点P 运动到点C 的位置时,CG =0,∴BC =4.当点P运动到线段BC 的中点时,CG =43.∵∠B =90°,∴∠BAP +∠APB =90°,∵PG ⊥AP ,∴∠APG =90°,∴∠APB +∠CPG =90°,∴∠BAP =∠CPG ,又∵∠ABP =∠PCG =90°,∴△ABP ∽△PCG ,∴AB PC =BP CG,当点P 为BC 的中点时,BP =PC =2,∴AB 2=243,解得AB =3. 2. B 【解析】结合图形分析函数图象可得,当t =3时,点P 到达A 处,即AB =3;如解图,过点A作AE ⊥CD 于点E ,则四边形ABCE 为矩形,∵AC =AD ,∴DE =CE =12CD .当S =15时,点P 到达点D 处,则S =12CD ·BC =12·2AB ·BC =3×BC =15,则BC =5,在Rt △ABC 中,由勾股定理得,AD =AC =AB 2+BC 2=34.第2题解图3. D 【解析】由题图②得,t =4时两点停止运动,∴点P 以每秒1个单位的速度从点A 运动到点B 用了4秒,∴AB =4,∵点Q 运动到点C 之前和之后,△BPQ 面积算法不同,即t =2时,S 的解析式发生变化,∴题图②中点M 对应的横坐标为2,此时P 为AB 中点,点C 与点Q 重合,如解图,连接AC ,∵菱形ABCD 中,AB =BC =4,∠B =60°,∴△ABC 是等边三角形,∴CP ⊥AB ,BP =12AB =2,∴CP =BC 2-BP 2=42-22=23,∴a =12BP ·CP =12×2×23=2 3.第3题解图4. C 【解析】如解图,设AB =a ,当点E 在BC 上运动时(不与点B 、C 重合),∵AE ⊥EF ,∴△EFC∽△AEB ,∴EC AB =FC EB ,即2a -x a =y x -a ,∴y =-1a x 2+3x -2a ,-1a <0,当x =-32×(-1a )=32a 时,y 取得最大值,此时点E 为BC 的中点,y =1,把(32a ,1)代入y =-1ax 2+3x -2a ,解得a =4,即AB =4,故正方形ABCD 的面积为4×4=16.第4题解图5. 121313【解析】当P 点在AB 上运动时,D 点到AP 的距离不变,始终是AD 长,从图象可以看出AD =4,当P 点到达B 点时,从图象看出x =3,即AB =3.当△PCD 和△P AB 的面积相等时,P 点在BC 中点处,此时△ADP 面积为12×4×3=6,在Rt △ABP 中,AP =AB 2+BP 2=13,则12AP ·y =6,解得y =121313. 6. 24 【解析】如解图,连接BD ,EG ,FH ,∵点E ,F ,G ,H 是矩形ABCD 各边的中点,∴EF ∥BD ∥GH ,EF =GH =12BD ,∴四边形EFGH 是平行四边形,又∵EF =EH ,∴平行四边形EFGH 是菱形,由题图②得BE =3,点M 运动到点G 时,运动路程为10,又∵EF =FG ,则可知菱形的边长为5,即EF =FG =GH =HE =5,∴AF =4,AD =8,∴S 菱形EFGH =12EG ·FH =24.第6题解图。
专题02 动点问题的函数图象(原卷版)
专题02动点问题的函数图象【考点1】随时间变化的函数关系【例1】(2018•东城区二模)有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃Oe 的直径,且AB CD⊥.入口K位于¶AD中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是()A.A O D→→→→→D.O D B C→→→C.D O C→→B.C A O B【变式1-1】(2017•顺义区二模)如图,木杆AB斜靠在墙壁上,30∠=︒,4OABAB=米.当木杆的上端A 沿墙壁NO下滑时,木杆的底端B也随之沿着地面上的射线OM方向滑动.设木杆的顶端A匀速下滑到点O停止,则木杆的中点P到射线OM的距离y(米)与下滑的时间x(秒)之间的函数图象大致是( )A.B.C.D.【考点2】线段间的变量关系【例2】(2019•顺义区一模)如图,点A、C、E、F在直线l上,且2AC=,1EF=,四边形ABCD,EFGH,EFNM均为正方形,将正方形ABCD沿直线l向右平移,若起始位置为点C与点E重合,终止位置为点A与点F重合.设点C平移的距离为x,正方形ABCD的边位于矩形MNGH内部的长度为y,则y与x的函数图象大致为()A.B.C.D.【变式2-1】(2017•朝阳区一模)如图1,在ABC=,D,E分别是AB,BC边的=,AC m∆中,AB BC中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP x=,图1中某条线段长为y,若表示y 与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC【考点3】周长的变化【例3】(2017•东城区二模)如图,点E为菱形ABCD的BC边的中点,动点F在对角线AC上运动,连接BF、EF,设AF x=,BEF∆的周长为y,那么能表示y与x的函数关系的大致图象是()A.B.C.D.【变式3-1】(2017•平谷区二模)如图,正方形ABCD中,动点P的运动路线为AB BC,动点Q的运动路线为对角线BD,点P,Q以同样的速度分别从A,B两点同时出发匀速前进,当一个点到达终点停止运动时,另一个点也随之停止.设点P的运动路程为x,PQ的长为y,则下列能大致表示y与x的函数关系的图象为()A.B.C.D.【变式3-2】(2017•石景山区二模)如图1,在矩形ABCD中,对角线AC与BD相交于点O,动点P从点B出发,在线段BC上匀速运动,到达点C时停止.设点P运动的路程为x,线段OP的长为y,如果y 与x的函数图象如图2所示,则矩形ABCD的面积是()A.20B.24C.48D.60【考点4】面积的变化【例4】(2019•东城区二模)如图1,动点P 从菱形ABCD 的顶点A 出发,沿A C D →→以1/cm s 的速度运动到点D .设点P 的运动时间为()s ,PAB ∆的面积为2()y cm .表示y 与x 的函数关系的图象如图2所示,则a 的值为( )A B .52 C .2 D .【变式4-1】(2018•大兴区一模)如图,在矩形ABCD 中,2AB =,3BC =,点P 在矩形的边上沿B C D A →→→运动.设点P 运动的路程为x ,ABP ∆的面积为y ,则y 关于x 的函数图象大致是( )A .B .C .D .1.(2018•顺义区二模)已知正方形ABCD 的边长为4cm ,动点P 从A 出发,沿AD 边以1/cm s 的速度运动,动点Q 从B 出发,沿BC ,CD 边以2/cm s 的速度运动,点P ,Q 同时出发,运动到点D 均停止运动,设运动时间为x (秒),BPQ ∆的面积为2()y cm ,则y 与x 之间的函数图象大致是( )A .B .C .D .2.(2018•朝阳一模)如图,ABC ∆是等腰直角三角形,90A ∠=︒,6AB =,点P 是AB 边上一动点(点P 与点A 不重合),以AP 为边作正方形APDE ,设AP x =,正方形APDE 与ABC ∆重合部分(阴影部分)的面积为y ,则下列能大致反映y 与x 的函数关系的图象是( )A.B.C.D.3.(2018•东城一模)如图1是一座立交桥的示意图(道路宽度忽略不计),A为入口,F,G为出口,其中直行道为AB,CG,EF,且AB CG EF==;弯道为以点O为圆心的一段弧,且¶BC,¶CD,¶DE所对的圆心角均为90︒.甲、乙两车由A口同时驶入立交桥,均以10/m s的速度行驶,从不同出口驶出,其间两车到点O的距离()x s的对应关系如图2所示.结合题目信息,下列说法错误的是() y m与时间()A.甲车在立交桥上共行驶8sB.从F口出比从G口出多行驶40mC.甲车从F口出,乙车从G口出D.立交桥总长为150m4.(2018•海淀一模)如图1,矩形的一条边长为x,周长的一半为y.定义(,)x y为这个矩形的坐标.如图2,在平面直角坐标系中,直线1y=将第一象限划分成4个区域.已知矩形1的坐标的对应点Ax=,3落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中.则下面叙述中正确的是( )A .点A 的横坐标有可能大于3B .矩形1是正方形时,点A 位于区域②C .当点A 沿双曲线向上移动时,矩形1的面积减小D .当点A 位于区域①时,矩形1可能和矩形2全等5.(2018•延庆县一模)某游泳池长25米,小林和小明两个人分别在游泳池的A ,B 两边,同时朝着另一边游泳,他们游泳的时间为(秒),其中0180t 剟,到A 边距离为y (米),图中的实线和虚线分别表示小林和小明在游泳过程中y 与t 的对应关系.下面有四个推断:①小明游泳的平均速度小于小林游泳的平均速度;②小明游泳的距离大于小林游泳的距离;③小明游75米时小林游了90米游泳;④小明与小林共相遇5次;其中正确的是( )A .①②B .①③C .③④D .②④6.(2018•通州一模)如图1,点O 为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t 秒,机器人到点A 的距离设为y ,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当3t =时,机器人一定位于点O ;③机器人一定经过点D ;④机器人一定经过点E ;其中正确的有( )A .①④B .①③C .①②③D .②③④7.(2017•东城一模)图1是某娱乐节目中一个游戏环节的录制现场,场地由等边ADE ∆和正方形ABCD 组成,正方形ABCD 两条对角线交于点O ,在AD 的中点P 处放置了一台主摄像机.游戏参与者行进的时间为x ,与主摄像机的距离为y ,若游戏参与者匀速行进,且表示y 与x 的函数关系式大致如图2所示,则游戏参与者的行进路线可能是( )A .A O D →→B .E AC →→ C .A ED →→ D .E A B →→8.(2017•房山区一模)如图1,已知点E ,F ,G ,H 是矩形ABCD 各边的中点,6AB =,8BC =,动点M 从点E 出发,沿E F G H E →→→→匀速运动,设点M 运动的路程x ,点M 到矩形的某一个顶点的距离为y ,如果表示y 关于x 函数关系的图象如图2所示,那么这个顶点是矩形的( )A .点AB .点BC .点CD .点D9.(2018秋•朝阳期末)如图,在ABC∆中,AB AC=,MN是边BC上一条运动的线段(点M不与点B重合,点N不与点C重合),且12MN BC=,MD BC⊥交AB于点D,NE BC⊥交AC于点E,在MN从左至右的运动过程中,设BM x=,BMD∆的面积减去CNE∆的面积为y,则下列图象中,能表示y与x 的函数关系的图象大致是()A.B.C.D.10.(2017秋•海淀区期末)两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿Oe逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC DB=.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的是()11 / 11A .小红的运动路程比小兰的长B .两人分别在1.09秒和7.49秒的时刻相遇C .当小红运动到点D 的时候,小兰已经经过了点DD .在4.84秒时,两人的距离正好等于O e 的半径。
中考数学复习----《动点问题的函数图像》压轴真题练习(含答案解析)
中考数学复习----《动点问题的函数图像》压轴真题练习(含答案解析)1.(2021•益阳)如图,已知▱ABCD的面积为4,点P在AB边上从左向右运动(不含端点),设△APD的面积为x,△BPC的面积为y,则y关于x的函数图象大致是()A.B.C.D.【答案】B【解答】解:∵▱ABCD的面积为4,x+y是平行四边形面积的一半,∴x+y=2,∴y=2﹣x,∴y是x的一次函数,且当x=0时,y=2;x=2时,y=0;故只有选项B符合题意.2.(2021•河南)如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为()A.4B.5C.6D.7【答案】C【解答】解:由函数图象知:当x=0,即P在B点时,BA﹣BE=1.利用三角形两边之差小于第三边,得到PA﹣PE≤AE.∴y的最大值为AE,∴AE=5.在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25,设BE的长度为t,则BA=t+1,∴(t+1)2+t2=25,即:t2+t﹣12=0,∴(t+4)(t﹣3)=0,由于t>0,∴t+4>0,∴t﹣3=0,∴BC=2BE=2t=2×3=6.故选:C.3.(2022•鞍山)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以cm/s的速度匀速运动到点B,同时动点N从点C出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN.设运动时间为ts,△MND的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.【答案】B【解答】解:∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,AC=BC=6,∵CD⊥AB,∴CD=AC=3,AD=CD=3,BD=BC=,∴当M在AD上时,0≤t≤3,MD=AD﹣AM=3﹣t,DN=DC+CN=3+t,∴S=MD•DN=(3﹣t)(3+t)=﹣t2+,当M在BD上时,3<t≤4,MD=AM﹣AD=t﹣3,∴S=MD•DN=(t﹣3)(3+t)=t2﹣,故选:B.4.(2022•菏泽)如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE =2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.【答案】B【解答】解:如图,作CH⊥AB于点H,∵AB=2,△ABC是等腰直角三角形,∴CH=1,当0≤x≤1时,y=×2x•x=x2,当1<x≤3时,y==1,当3<x≤4时,y=1﹣=﹣(x﹣3)2+1,故选:B.5.(2022•鄂尔多斯)如图①,在正方形ABCD中,点M是AB的中点,点N 是对角线BD上一动点,设DN=x,AN+MN=y,已知y与x之间的函数图象如图②所示,点E(a,2)是图象的最低点,那么a的值为()A.B.2C.D.【答案】 A【解答】解:如图,连接AC交BD于点O,连接NC,连接MC交BD于点N′.∵四边形ABCD是正方形,∴O是BD的中点,∵点M是AB的中点,∴N′是△ABC的重心,∴N′O=BO,∴N′D=BD,∵A、C关于BD对称,∴NA=NC,∴AN+MN=NC+MN,∵当M、N、C共线时,y的值最小,∴y的值最小就是MC的长,∴MC=2,设正方形的边长为m,则BM=m,在Rt△BCM中,由勾股定理得:MC2=BC2+MB2,∴20=m2+(m)2,∴m=4,∴BD=4,∴a=N′D=BD=×4=,故选:A.6.(2021•鞍山)如图,△ABC是等边三角形,AB=6cm,点M从点C出发沿CB方向以1cm/s的速度匀速运动到点B,同时点N从点C出发沿射线CA 方向以2cm/s的速度匀速运动,当点M停止运动时,点N也随之停止.过点M作MP∥CA交AB于点P,连接MN,NP,作△MNP关于直线MP对称的△MN′P,设运动时间为ts,△MN′P与△BMP重叠部分的面积为Scm2,则能表示S与t之间函数关系的大致图象为()A.B.C.D.【答案】A【解答】解:如图1中,当点N′落在AB上时,取CN的中点T,连接MT.∵CM=t(cm),CN=2t(cm),CT=TN,∴CT=TN=t(cm),∵△ABC是等边三角形,∴∠C=∠A=60°,∴△MCT是等边三角形,∴TM=TC=TN,∴∠CMN=90°,∵MP∥AC,∴∠BPM=∠A=∠MPN=60°,∠BMP=∠C=60°,∠C+∠CMP=180°,∴∠CMP=120°,△BMP是等边三角形,∴BM=MP,∵∠CMP+∠MPN=180°,∴CM∥PN,∵MP∥CN,∴四边形CMPN是平行四边形,∴PM=CN=BM=2t,∴3t=6,∴t=2,如图2中,当0<t≤2时,过点M作MK⊥AC于K,则MK=CM•sin60°=t,∴S=•(6﹣t)•t=﹣t2+t.如图3中,当2<t≤6时,S=•MQ•PQ=×(6﹣t)×(6﹣t)=×(6﹣t)2,观察图象可知,选项A符合题意,故选:A.7.(2021•威海)如图,在菱形ABCD中,AB=2cm,∠D=60°,点P,Q同时从点A出发,点P以1cm/s的速度沿A﹣C﹣D的方向运动,点Q以2cm/s 的速度沿A﹣B﹣C﹣D的方向运动,当其中一点到达D点时,两点停止运动.设运动时间为x(s),△APQ的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.【答案】A【解答】解:∵四边形ABCD为菱形,∴AB=BC=CD=DA=2cm,∠B=∠D=60°.∴△ABC、△ACD都是等边三角形,∴∠CAB=∠ACB=∠ACD=60°.如图1所示,当0≤x≤1时,AQ=2xcm,AP=xcm,作PE⊥AB于E,∴PE=sin∠PAE×AP=(cm),∴y=AQ•PE=×2x×=,故D选项不正确;如图2,当1<x≤2时,AP=xcm,CQ=(4﹣2x)cm,作QF⊥AC于点F,∴QF=sin∠ACB•CQ=(cm),∴y===,故B选项不正确;如图3,当2<x≤3时,CQ=(2x﹣4)cm,CP=(x﹣2)cm,∴PQ=CQ﹣CP=2x﹣4﹣x+2=(x﹣2)cm,作AG⊥DC于点G,∴AG=sin∠ACD•AC=×2=(cm),∴y===.故C选项不正确,故选:A.8.(2021•日照)如图,平面图形ABD由直角边长为1的等腰直角△AOD和扇形BOD组成,点P在线段AB上,PQ⊥AB,且PQ交AD或交于点Q.设AP=x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y关于x的大致图象是()A.B.C.D.【答案】D【解答】解:当Q在AD上时,即点P在AO上时,有0<x≤1,此时阴影部分为等腰直角三角形,∴y=,该函数是二次函数,且开口向上,排除B,C选项;当点Q在弧BD上时,补全图形如图所示,阴影部分的面积等于等腰直角△AOD的面积加上扇形BOD的面积,再减去平面图形PBQ的面积即减去弓形QBF的面积,设∠QOB=θ,则∠QOF=2θ,∴,S弓形QBF=﹣S△QOF,当θ=45°时,AP=x=1+≈1.7,S弓形QBF=﹣=﹣,y=+﹣(﹣)=≈1.14,当θ=30°时,AP=x≈1.87,S弓形QBF=﹣=﹣,y=+﹣(﹣)=≈1.24,当θ=60°时,AP=x≈1.5,y≈0.98,在A,D选项中分别找到这两个特殊值,对比发现,选项D符合题意.故选:D.法二、当1<x<2时,即P在OB之间时,设∠QOD=θ,则θ∈(0,),则PQ=cosθ,OP=sinθ,则弧QD的长为θπ,此时S阴影=+θπ+sinθcosθ=+θ+sin2θ,∴y随x的增大而增大,而且增加的速度越来越慢,分析四个选项中的图象,只有选项D符合.故选:D.9.(2021•辽宁)如图,在矩形ABCD中,AB=6,AD=4,E是CD的中点,射线AE与BC的延长线相交于点F,点M从A出发,沿A→B→F的路线匀速运动到点F停止.过点M作MN⊥AF于点N.设AN的长为x,△AMN 的面积为S,则能大致反映S与x之间函数关系的图象是()A.B.C.D.【答案】B【解答】解:如图,∵E是CD的中点,∴CE=DE,∵四边形ABCD是矩形,∴∠D=∠DCF=90°,AD=BC=4,在△ADE与△FCE中,,∴△ADE≌△FCE(SAS),∴CF=AD=4,∴BF=CF+BC=8,∴AF=,当点M在AB上时,在Rt△AMN和Rt△AFB中,tan∠NAM=,∴NM=x=x,∴△AMN的面积S=×x×x=x2,∴当点M在AB上时,函数图象是开口向上、经过原点的抛物线的一部分;当点M在BF上时,如图,AN=x,NF=10﹣x,在Rt△FMN和Rt△FBA中,tan∠F=,∴=﹣,∴△AMN的面积S==﹣,∴当点M在BF上时,函数图象是开口向下的抛物线的一部分;故选:B.10.(2021•苏州)如图,线段AB=10,点C、D在AB上,AC=BD=1.已知点P从点C出发,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动.在点P移动过程中作如下操作:先以点P为圆心,PA、PB的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面,设点P的移动时间为t(秒),两个圆锥的底面面积之和为S,则S关于t的函数图象大致是()A.B.C.D.【答案】D【解答】解:∵AB=10,AC=BD=1,∴CD=10﹣1﹣1=8,∵PC=t,∴AP=t+1,PB=8﹣t+1=9﹣t,设围成的两个圆锥底面圆半径分别为r和R则:2πr=;.解得:r=,R=,∴两个圆锥的底面面积之和为S===,根据函数关系式可以发现该函数图象是一个开口向上的二次函数.故选:D.11.(2021•甘肃)如图1,在△ABC中,AB=BC,BD⊥AC于点D(AD>BD).动点M从A点出发,沿折线AB→BC方向运动,运动到点C停止.设点M的运动路程为x,△AMD的面积为y,y与x的函数图象如图2,则AC的长为()A.3B.6C.8D.9【答案】B【解答】解:由图2知,AB+BC=2,∵AB=BC,∴AB=,∵AB=BC,BD⊥AC,∴AC=2AD,∠ADB=90°,在Rt△ABD中,AD²+BD²=AB²=13①,设点M到AC的距离为h,∴S△ADM=AD•h,∵动点M从A点出发,沿折线AB→BC方向运动,∴当点M运动到点B时,△ADM的面积最大,即h=BD,由图2知,△ADM的面积最大为3,∴AD•BD=3,∴AD•BD=6②,①+2×②得,AD²+BD²+2AD•BD=13+2×6=25,∴(AD+BD)²=25,∴AD+BD=5(负值舍去),∴BD=5﹣AD③,将③代入②得,AD(5﹣AD)=6,∴AD=3或AD=2,∵AD>BD,∴AD=3,∴AC=2AD=6,故选:B.12.(2021•百色)如图,矩形ABCD各边中点分别是E、F、G、H,AB=2,BC=2,M为AB上一动点,过点M作直线l⊥AB,若点M从点A开始沿着AB方向移动到点B即停(直线l随点M移动),直线l扫过矩形内部和四边形EFGH外部的面积之和记为S.设AM=x,则S关于x的函数图象大致是()A.B.C.D.【答案】D【解答】解:①当M点运动在AE段,此时S=S△HAE+S△GHD﹣S△EOM﹣S△GPS,∵四边形ABCD是矩形,直线l⊥AB,H、E、F、G为AD、AB、BC、CD的中点,∴AH=AD==1,AE=AB=,S△HAE=S△GHD,S△EOM=S△GPS,∴S=2S△HAE﹣2S△EOM,∴S△HAE=AE•AH=;∵直线l⊥AB,∴∠OME=∠A=90°,∠HEA=∠OEM,∴△HAE∽△OME,∴,∴OM=,又∵ME=AE﹣AM=﹣x,∴OM=ME=,∴S△EOM=,∴S=2S△HAE﹣2S△EOM=,此时,对应抛物线开口向下;②当M点运动到在BE段,此时,S=S△HAE+S△GHD+S△EO1M1+S△GP1S1,即S=2S△HAE+2S△EO1M1,与①同理,O1M1=,又∵M1E=AM1﹣AE=x﹣,∴O1M1=M1E=,∴S△EO1M1=,∴S=2S△HAE+2S△EO1M1=,此时,对应抛物线开口向上,故选:D.13.(2021•鄂尔多斯)如图①,在矩形ABCD中,H为CD边上的一点,点M 从点A出发沿折线AH﹣HC﹣CB运动到点B停止,点N从点A出发沿AB 运动到点B停止,它们的运动速度都是1cm/s,若点M、N同时开始运动,设运动时间为t(s),△AMN的面积为S(cm2),已知S与t之间函数图象如图②所示,则下列结论正确的是()①当0<t≤6时,△AMN是等边三角形.②在运动过程中,使得△ADM为等腰三角形的点M一共有3个.③当0<t≤6时,S=.④当t=9+时,△ADH∽△ABM.⑤当9<t<9+3时,S=﹣3t+9+3.A.①③④B.①③⑤C.①②④D.③④⑤【答案】A【解答】解:由图②可知:点M、N两点经过6秒时,S最大,此时点M在点H处,点N在点B处并停止不动,如图,①∵点M、N两点的运动速度为1cm/s,∴AH=AB=6cm,∵四边形ABCD是矩形,∴CD=AB=6 cm.∵当t=6s时,S=9cm2,∴×AB×BC=9.∴BC=3cm.∵当6≤t≤9时,S=且保持不变,∴点N在B处不动,点M在线段HC上运动,运动时间为(9﹣6)秒,∴HC=3 cm,即点H为CD的中点.∴BH=cm.∴AB=AH=BH=6cm,∴△ABM为等边三角形.∴∠HAB=60°.∵点M、N同时开始运动,速度均为1cm/s,∴AM=AN,∴当0<t≤6时,△AMN为等边三角形.故①正确;②如图,当点M在AD的垂直平分线上时,△ADM为等腰三角形:此时有两个符合条件的点;当AD=AM时,△ADM为等腰三角形,如图:当DA=DM时,△ADM为等腰三角形,如图:综上所述,在运动过程中,使得△ADM为等腰三角形的点M一共有4个.∴②不正确;③过点M作ME⊥AB于点E,如图,由题意:AM=AN=t,由①知:∠HAB=60°.在Rt△AME中,∵sin∠MAE=,∴ME=AM•sin60°=tcm,∴S=AN×ME=cm2.∴③正确;④当t=9+时,CM=cm,如图,由①知:BC=3cm,∴MB=BC﹣CM=2cm.∵AB=6cm,∴tan∠MAB=,∴∠MAB=30°.∵∠HAB=60°,∴∠DAH=90°﹣60°=30°.∴∠DAH=∠BAM.∵∠D=∠B=90°,∴△ADH∽△ABM.∴④正确;⑤当9<t<9+3时,此时点M在边BC上,如图,此时MB=9+3﹣t,∴S=×AB×MB=×6×(9+3﹣t)=27+9﹣3t.∴⑤不正确;综上,结论正确的有:①③④.故选:A.14.(2021•通辽)如图,在矩形ABCD中,AB=4,BC=3,动点P,Q同时从点A出发,点P沿A→B→C的路径运动,点Q沿A→D→C的路径运动,点P,Q的运动速度相同,当点P到达点C时,点Q也随之停止运动,连接PQ.设点P的运动路程为x,PQ2为y,则y关于x的函数图象大致是()A.B.C.D.【答案】C【解答】解:当0≤x≤3时,在Rt△APQ中,∠QAP=90°,AP=AQ=x,∴PQ2=2x2.∴y=PQ2=2x2;当3≤x≤4时,DQ=x﹣3,AP=x,∴y=PQ2=32+32=18;当4≤x≤7时,CP=7﹣x,CQ=7﹣x,∴y=PQ2=CP2+CQ2=2x2﹣28x+98.故选:C.15.(2021•湖北)如图,AC为矩形ABCD的对角线,已知AD=3,CD=4,点P沿折线C﹣A﹣D以每秒1个单位长度的速度运动(运动到D点停止),过点P作PE⊥BC于点E,则△CPE的面积y与点P运动的路程x间的函数图象大致是()A.B.C.D.【答案】D【解答】解:∵BC∥AD,∴∠ACB=∠DAC,∵∠PEC=∠D=90°,∴△PCE∽△CAD,∴==,∵AD=3,CD=4,∴AC==5,∴当P在CA上时,即当0<x≤5时,PE==x,CE==x,∴y=PE•CE==x2,当P在AD上运动时,即当5<x≤8时,PE=CD=4,CE=8﹣x,∴y=PE•CE=×4×(8﹣x)=16﹣2x,综上,当0<x≤5时,函数图象为二次函数图象,且y随x增大而增大,当5<x≤8时,函数图象为一次函数图象,且y随x增大而减小,故选:D.16.(2021•衡阳)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q 两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O﹣A﹣D﹣O,点Q的运动路线为O﹣C﹣B﹣O.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在A﹣D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为厘米.【答案】(2+3)【解答】解:由图分析易知:当点P从O→A运动时,点Q从O→C运动时,y不断增大,当点P运动到A点,点Q运动到C点时,由图象知此时y=PQ=2cm,∴AC=2cm,∵四边形ABCD为菱形,∴AC⊥BD,OA=OC==cm,当点P运动到D点,Q运动到B点,结合图象,易知此时,y=BD=2cm,∴OD=OB=BD=1cm,在Rt△ADO中,AD===2(cm),∴AD=AB=BC=DC=2cm,如图,当点P在A﹣D段上运动,点P运动到点E处,点Q在C﹣B段上运动,点Q运动到点F处时,P、Q两点的距离最短,此时,OE=OF==,AE=CF===,∴当点P在A﹣D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为:(cm),故答案为:(2+3).17.(2021•武汉)如图(1),在△ABC中,AB=AC,∠BAC=90°,边AB上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x=AD,y=AE+CD,y 关于x的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是.【答案】﹣1【解答】解:∵图象过点(0,2),即当x=AD=BE=0时,点D与A重合,点E与B重合,此时y=AE+CD=AB+AC=2,∵△ABC为等腰直角三角形,∴AB=AC=1,过点A作AF⊥BC于点F,过点B作NB⊥BC,并使得BN=AC,如图所示:∵AD=BE,∠NBE=∠CAD,∴△NBE≌△CAD(SAS),∴NE=CD,又∵y=AE+CD,∴y=AE+CD=AE+NE,当A、E、N三点共线时,y取得最小值,如图所示,此时:AD=BE=x,AC=BN=1,∴AF=AC•sin45°=,\又∵∠BEN=∠FEA,∠=∠AFE∴△NBE∽△AFE∴,即,解得:x=,∴图象最低点的横坐标为:﹣1.故答案为:.18.(2022•营口)如图1,在四边形ABCD中,BC∥AD,∠D=90°,∠A=45°,动点P,Q同时从点A出发,点P以cm/s的速度沿AB向点B运动(运动到B点即停止),点Q以2cm/s的速度沿折线AD→DC向终点C运动,设点Q的运动时间为x(s),△APQ的面积为y(cm2),若y与x之间的函数关系的图象如图2所示,当x=(s)时,则y=cm2.【答案】【解答】解:过点D作DE⊥AB,垂足为E,在Rt△ADE中,∵∠AED=90°,∠EAD=45°,∴,∵点P的速度为cm/s,点Q的速度为2cm/s,∴AP=x,AQ=2x,∴,在△APQ和△AED中,=,∠A=45°,∴△AED∽△APQ,∴点Q在AD上运动时,△APQ为等腰直角三角形,∴AP=PQ=x,∴当点Q在AD上运动时,y=AP•AQ=×x×x=x2,由图像可知,当y=9此时面积最大,x=3或﹣3(负值舍去),∴AD=2x=6cm,当3<x≤4时,过点P作PF⊥AD于点F,如图:此时S△APQ=S△APF+S四边形PQDF﹣S△ADQ,在Rt△APF中,AP=x,∠PAF=45°,∴AF=PF=x,FD=6﹣x,QD=2x﹣6,∴S△APQ=x2+(x+2x﹣6)•(6﹣x)﹣×6×(2x﹣6),即y=﹣x2+6x,当x=时,y=﹣()2+6×=,故答案为:.。
中考数学复习专题讲:动点型问题(含答案)
中考数学复习专题讲座:动点型问题(建立动点问题的函数解析式(或函数图像)、动态几何型压轴题)一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.“动点型问题” 题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。
二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
三、中考考点精讲考点一:建立动点问题的函数解析式(或函数图像)函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.(一)应用勾股定理建立函数解析式(或函数图像)例1 (2012•嘉兴)如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为长为x,AP 长为y,则y关于x的函数图象大致是()A.B.C.D.思路分析:根据题意设出点P运动的路程x与点P到点A的距离y的函数关系式,然后对x从0到2a+2a时分别进行分析,并写出分段函数,结合图象得出答案.解:设动点P按沿折线A→B→D→C→A的路径运动,∵正方形ABCD的边长为a,∴BD=a,则当0≤x<a时,y=x,当a≤x<(1+)a时,y=,当a(1+)≤x<a(2+)时,y=,当a(2+)≤x≤a(2+2)时,y=a(2+2)﹣x,结合函数解析式可以得出第2,3段函数解析式不同,得出A选项一定错误,根据当a≤x<(1+)a时,函数图象被P在BD中点时,分为对称的两部分,故B选项错误,再利用第4段函数为一次函数得出,故C选项一定错误,故只有D符合要求,故选:D.点评:此题主要考查了动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.对应训练1.(2012•内江)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.(二)应用比例式建立函数解析式(或函数图像)例2 (2012•攀枝花)如图,直角梯形AOCD的边OC在x轴上,O为坐标原点,CD垂直于x轴,D(5,4),AD=2.若动点E、F同时从点O出发,E点沿折线OA→AD→DC 运动,到达C点时停止;F点沿OC运动,到达C点是停止,它们运动的速度都是每秒1个单位长度.设E 运动秒x 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为( )A .B .C .D .思路分析: 首先根据点D 的坐标求得点A 的坐标,从而求得线段OA 和线段OC 的长,然后根据运动时间即可判断三角形EOF 的面积的变化情况. 解:∵D (5,4),AD=2. ∴OC=5,CD=4 OA=5 ∴运动x 秒(x <5)时,OE=OF=x , 作EH ⊥OC 于H ,AG ⊥OC 于点G , ∴EH ∥AG ∴△EHO ∽△AGO即:∴EH=x∴S △EOF =OF •EH=×x ×x=x 2,故A 、B 选项错误;当点F 运动到点C 时,点E 运动到点A ,此时点F 停止运动,点E 在AD 上运动,△EOF 的面积不变,点在DC 上运动时,如右图, EF=11﹣x ,OC=5∴S △EOF =OC •CE=×(11﹣x )×5=﹣x+是一次函数,故C 正确,故选C .点评:本题考查了动点问题的函数图象,解题的关键是根据动点确定分段函数的图象.对应训练2.(2012•贵港)如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P在射线AC上运动,过点P作PH⊥AB,垂足为H.(1)直接写出线段AC、AD及⊙O半径的长;(2)设PH=x,PC=y,求y关于x的函数关系式;(3)当PH与⊙O相切时,求相应的y值.(三)应用求图形面积的方法建立函数关系式例3 (2012•桂林)如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.思路分析:(1)利用等腰直角三角形的性质得到∠BAD=∠DAC=∠B=∠C=45°,进而得到AD=BD=DC,为证明△AED≌△CFD提供了重要的条件;(2)利用S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9 即可得到y与x之间的函数关系式;(3)依题意有:AF=BE=x﹣6,AD=DB,∠ABD=∠DAC=45°得到∠DAF=∠DBE=135°,从而得到△ADF≌△BDE,利用全等三角形面积相等得到S△ADF=S△BDE从而得到S△EDF=S△EAF+S△ADB即可确定两个变量之间的函数关系式.解:(1)证明:∵∠BAC=90° AB=AC=6,D为BC中点∴∠BAD=∠DAC=∠B=∠C=45°∴AD=BD=DC (2分)∵AE=CF∴△AED≌△CFD(2)解:依题意有:FC=AE=x,∵△AED≌△CFD∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9∴∴;(3)解:依题意有:AF=BE=x﹣6,AD=DB,∠ABD=∠DAC=45°∴∠DAF=∠DBE=135°∴△ADF≌△BDE∴S△ADF=S△BDE∴S△EDF=S△EAF+S△ADB=∴.点评:本题考查了等腰直角三角形的性质及全等三角形的判定与性质,考查的知识点虽然不是很多但难度较大.对应训练3.(2012•桂林)如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A.B.C.D.考点二:动态几何型压轴题点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
2020中考专题复习:动点函数图像问题
2020中考专题复习:动点函数图像问题一、解题方法归纳:函数图象问题为广东中考的高频考点,2016年和2018年广东中考数学第10题都曾考到,预计2020年中考还会考到此类题型.其中由几何图形中的某些元素(点或线段或其他图形)的变化,从而导致相应的线段长度、线段比值或图形面积发生变化,进而分析两个变量之间的函数关系, 判断函数图象大致形状是这类题型的一个难点。
解决此类问题的关键是“化动为静,以静探动”即首先把动态问题按运动路径分类,每类形成相对静态问题,然后通过对各类相对静态问题的解决从而探究整体问题的解决。
解决这类题目通常按下面的步骤来进行:(1)根据点运动或图形运动的路径的特点进行分类讨论, 得到自变量的取值范围;(2)在某一个确定的范围内,用含自变量x(或t)的代数式表示出所需的线段长,利用面积公式或三角形相似的性质等,表示出所求图形的面积或线段比,化简得出y(或s)关于x(或t)的关系式;(3)根据关系式,结合自变量的取值范围,判断出函数图象.典型例题讲解:类型一:点动问题例1.如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t 时,蚂蚁最终与O点的距离为s,则s关于t的函数图象大致是( )针对性练习:1. (青海)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P 从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A 和点B),则△ABP的面积S随着时间t变化的函数图象大致为( )2. (资阳)如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O 的路线匀速运动,设∠APB=y(单位:度),那么y与P运动的时间x(单位:秒)的关系图是( )3. 如图,等边△ABC的边长为2 cm,点P从点A出发,以1cm/s的速度向点C移动,同时点Q从点A出发,以1 cm/s的速度沿A→B→C的方向向点C移动,若△APQ的面积为S(cm2),则下列最能反映S(cm2)与移动时间t(s)之间函数关系的大致图象是( )4. (泰安)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是( )5. 如图,正方形ABCD边长为1,E、F、G、H分别为AB、BC、CD、DA边上的点,且AE=BF =CG=DH.设小正方形EFGH的面积为y,AE=x,则y关于x的函数图象大致是( )类型二:线动,面动问题例2. 如图,正方形ABCD的顶点A(0,22),B(22,0),顶点C,D位于第一象限,直线l:x=t,(0≤t≤2)将正方形ABCD分成两部分,设位于直线l左侧部分(阴影部分)的面积为S,则函数S与t的图象大致是( )针对性练习:1. (鄂州)如图,O是边长为4 cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A—B—M方向匀速运动,到M时停止运动,速度为1 cm/s,设P点的运动时间为t(s),点P的运动路径与OA,OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是( )2. (莆田)如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD,设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是( )3. (钦州)如图,△ABC中,AB=6,BC=8,tan∠B=43.点D是边BC上的一个动点(点D与点B不重合),过点D作DE⊥AB,垂足为E,点F是AD的中点,连接EF.设△AEF的面积为y,点D从点B沿BC运动到点C的过程中,D与B的距离为x,则能表示y与x的函数关系的图象大致是( )。
中考数学动点的函数图像含详细答案
2019年中考数学总复习专题题型复习题型一几何问题中的函数图象针对演练1. (青海)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致为( )2. (资阳)如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O 的路线匀速运动,设∠APB=y(单位:度),那么y与P运动的时间x(单位:秒)的关系图是( )3. 如图,正方形ABCD的顶点A(0,22),B(22,0),顶点C,D位于第一象限,直线l:x=t,(0≤t≤2)将正方形ABCD分成两部分,设位于直线l左侧部分(阴影部分)的面积为S,则函数S与t的图象大致是( )4. (泰安)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是( )5. 如图,正方形ABCD边长为1,E、F、G、H分别为AB、BC、CD、DA边上的点,且AE =BF=CG=DH.设小正方形EFGH的面积为y,AE=x,则y关于x的函数图象大致是( )6. 如图,等边△ABC的边长为2 cm,点P从点A出发,以1 cm/s的速度向点C移动,同时点Q从点A出发,以1 cm/s的速度沿A→B→C的方向向点C移动,若△APQ的面积为S(cm2),则下列最能反映S(cm2)与移动时间t(s)之间函数关系的大致图象是( )7. 如图,点C是以点O为圆心,AB为直径的半圆上的动点(点C不与点A,B重合),AB=4.设弦AC的长为x,△AB C的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是( )8. (鄂州)如图,O是边长为4 cm的正方形ABCD的中心,M是BC的中点,动点P由A 开始沿折线A—B—M方向匀速运动,到M时停止运动,速度为1 cm/s,设P点的运动时间为t(s),点P的运动路径与OA,OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是( )9. (莆田)如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD,设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是( )10. (钦州)如图,△ABC中,AB=6,BC=8,tan∠B=43.点D是边BC上的一个动点(点D与点B不重合),过点D作DE⊥AB,垂足为E,点F是AD的中点,连接EF.设△AEF的面积为y,点D从点B沿BC运动到点C的过程中,D与B的距离为x,则能表示y与x的函数关系的图象大致是( )11. 如图,两个等腰Rt△ABC、Rt△DEF的斜边都为4 2 cm,点D、M分别是AB、AC 边上的中点,DE与AC(或BC)交于点P,当点P从点M出发以1 cm/s的速度沿M→C运动至点C后又立即沿C→B运动至点B结束.若运动时间为t(单位:s),Rt△ABC和Rt△DEF重叠部分的面积为y(单位:cm2),则y关于t的图象大致是( )12. 如图,在▱ABCD中,∠A=60°,AB=6 cm,BC=12 cm,点P、Q同时从顶点A出发,点P沿A→B→C→D方向以2 cm/s的速度前进,点Q沿A→D方向以1 cm/s的速度前进,当Q到达点D时,两个点随之停止运动.设运动时间为x s,P、Q经过的路径与线段PQ围成的图形的面积为y(单位:cm2),则y与x的函数图象大致是( )13. (天水)如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后把△A′B′C′自左向右沿直线l平移,移出△ABC外(点B′与C重合)停止,设△A′B′C′平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是( )【答案】1.B 【解析】当点P 在AD 上时,△ABP 的底边AB 不变,高增大,所以△ABP 的面积S 随着时间t 的增大而增大;当点P 在DE 上时,△ABP 的底边AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在EF 上时,△ABP 的底边AB 不变,高减小,所以△ABP 的面积S 随着时间t 的增大而减小;当点P 在FG 上时,△ABP 的底边AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在GB 上时,△ABP 的底边AB 不变,高减小,所以△ABP 的面积S 随着时间t 的增大而减小.故选B.2.B 【解析】当点P 在点O 处时,∠APB =∠AOB =90°,当点P 沿OC 运动到点C 时,∠APB =12∠AOB =45°;当点P 在CD ︵上运动时,∠APB =12∠AOB =45°;当点P 沿DO 运动到点O 时,∠APB 从45°增大到90°.结合选项可知B 选项符合.3.C 【解析】根据图形知道,当直线l :x =t 在BD 的左侧时,S =t 2,当直线l :x =t 在BD 右侧时,S =-(t -2)2+1,结合选项,只有选项C 符合.4.C 【解析】∵∠APC 是△ABP 的外角,∴∠APC =∠PAB +∠B ,同理∠BDP =∠PAB +∠APD ,又∵∠B =∠APD ,∴∠APC =∠BDP ,∵∠B =∠C =60°,∴△BDP ∽△CPA ,∴BP AC=BD PC ,即x 4=y 4-x ,整理得,y =-14x 2+x ,故选C. 5.C 【解析】依题意,得y =S 正方形ABCD-S △AEH -S △BEF -S △CFG -S △DGH =1-4×12(1-x )x =2x 2-2x +1,即y =2x 2-2x +1(0≤x ≤1),抛物线开口向上,对称轴为x =12,故选C.6.C 【解析】当0≤t ≤2时,S =12·t ·sin60°·t =34t 2,此函数抛物线开口向上,且函数图象为抛物线右侧的一部分;当2<t ≤4时,S =12×2·sin60°(4-t )=-32t +23,此函数图象是直线的一部分,且S 随t 的增大而减小.所以符合题意的函数图象只有C.7.B 【解析】∵AB =4,AC =x ,∴BC =AB 2-AC 2=16-x 2,∴S △ABC =12AC ·BC =12x 16-x 2,∵此函数不是二次函数,也不是一次函数,∴排除A 、C ,∵AB 为定值,当OC ⊥AB 时,△ABC 面积最大,此时AC =22,即当x =22时,y 最大,故排除D ,选B.8.A 【解析】根据题意,当0<t ≤4时,S =12×AP ×AD 2=12×t ×42=t ,面积S 随时间t 的增大而增大;当4<t ≤6时,S =S 四边形ABMO -S ΔMOP =12×(2+4)×2-12×(6-t )×2=t ,因此S 始终是t 的正比例函数,故选A.9.C 【解析】∵∠ABE =45°,∠A =90°,∴△ABE 是等腰直角三角形,∴AE =AB =2,∴BE =2AB =22,∵BE =DE ,PD =x ,∴PE =DE -PD =22-x ,∵PQ ∥BD ,BE =DE ,∴QE =PE =22-x ,又∵△ABE 是等腰直角三角形,∴点Q 到AD 的距离为22(22-x )=2-22x ,∴y =12x (2-22x )=-24(x 2-22x +2)+22=-24(x -2)2+22,结合选项,只有C 选项符合.10.B 【解析】∵BD =x ,DE ⊥AB ,tan ∠B =43,∴在Rt △BED 中,BE =35x ,DE =45x ,∵AB =6,∴AE =6-35x ,又∵点F 为AD 的中点,∴S △AEF =12S △ADE =12×12AE ·DE ,∴y =S △AEF =14×(6-35x )×45x ,化简得y =-325x 2+65x (0<x ≤8),∴y 与x 的函数关系式为开口向下的二次函数,且自变量x 的取值范围为0<x ≤8,结合题中给出的选项,只有选项B 符合. 11 C 【解析】如解图,连接DM ,过点D 作DH ⊥BC 于点H ,记DF 与BC 相交于点N ,∵点D 、M 分别是AB ,AC 边的中点,∴DM =12BC =2 cm ,MC =12AC =2 cm ,∴DM =MC ,∴四边形DMCH 为正方形,∴DH =DM ,又∵∠NDH +∠HDP =90°,∠HDP +∠PDM =90°,∴∠NDH =∠PDM ,第11题解图∴△DNH ≌△DPM .①当点P 从点M 出发,沿M→C 运动时,即0≤t <2时,y =S △DNH +S 四边形DHCP =S △DPM +S 四边形DHCP =S 正方形DMCH =4 cm 2;②当点P 运动至点C 时,即t =2时,y =S △DBC =4cm 2; ③当点P 从点C 出发沿C →B 运动至B 处时,即2<t ≤6时,y =S △DBP =12×BP ·DH =12(6-t )×2=6-t ,可知y 是t 的一次函数,故选C.12.A 【解析】当点P 在AB 上时,即0≤x ≤3时,P 、Q 经过的路径与线段PQ 围成的图形的面积=12x ×3x =32x 2;当点P 在BC 上时,即3<x ≤9时,P 、Q 经过的路径与线段PQ 围成的图形的面积=12×3×33+12(2x -6+x -3)×33=932x -93,y 随x 的增大而增大;当点P 在CD 上时,即9<x ≤12时,P 、Q 经过的路径与线段PQ 围成的图形的面积=12×33-12(12-x )(123-3x )=-32x 2+123x -36 3.综上,选项A 符合题意. 13.B 【解析】由题意知:在△A′B′C′移动的过程中,阴影部分总为等边三角形.当0≤x ≤1时,重合部分边长为x ,此时y =12x ×32x =34x 2;当1<x ≤2时,重合部分为△A′B′C′,此时y =12×1×32=34;当2<x ≤3时,重合部分边长为3-x ,此时y =12(3-x )×32(3-x )=34(3-x )2.由以上分析可知,这个分段函数的图象左边为开口向上的抛物线的一部分,中间为直线y =34的一部分,右边为开口向上的抛物线的一部分,且顶点为(3,0),最高点为(2,34),结合选项中的图象可知,选项B 符合.。
2020年中考数学 考前大专题复习:函数(解析版)
2020中考数学考前大专题复习:函数(含答案)一、选择题(本大题共6道小题)1. 二次函数y=x2-ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当b=-4时,顶点的坐标为(2,-8)C.当x=-1时,b>-5D.当x>3时,y随x的增大而增大2. 正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,则一次函数y=x+k的图象大致是()3. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P的坐标是()A.(2018,0)B.(2019,1)C.(2019,-1)D.(2020,0)4. 如图,☉O的半径为2,双曲线的解析式分别为y=1x 和y=-1x,则阴影部分的面积为()A.4πB.3πC.2πD.π5. 如图,在Rt☉ABO中,☉OBA=90°,A(4,4),点C在边AB上,且ACCB =13,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC 周长最小的点P的坐标为()A.(2,2)B.52,52C.83,83D.(3,3)6. 如图,函数y={1x(x>0),-1x(x<0)的图象所在坐标系的原点是()A.点MB.点NC.点PD.点Q二、填空题(本大题共6道小题)7. 元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之”,如图K11-3是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.图K11-38. 如图,已知直线y=kx+b过A(-1,2),B(-2,0)两点,则0≤kx+b≤-2x的解集为.9. 已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①b>0;②a-b+c<0;③b+2c>0;④当-1<x<0时,y>0,正确的是(填写序号).10. 如图,矩形OABC的顶点A,C分别在y轴、x轴的正半轴上,D为AB的中点,反比例函数y=kx(k>0)的图象经过点D,且与BC交于点E,连接OD,OE,DE,若☉ODE的面积为3,则k的值为.11. 如图,平行于x轴的直线与函数y=k1x (k1>0,x>0),y=k2x(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若☉ABC的面积为4,则k1-k2的值为.12. 如图,抛物线y=-14x 2+12x+2与x 轴相交于A ,B 两点,与y 轴相交于点C ,点D 在抛物线上,且CD ∥AB.AD 与y 轴相交于点E ,过点E 的直线PQ 平行于x 轴,与拋物线相交于P ,Q 两点,则线段PQ 的长为 .三、解答题(本大题共5道小题)13. 已知二次函数y=2x 2+bx+1的图象过点(2,3). (1)求该二次函数的表达式;(2)若点P (m ,m 2+1)也在该二次函数的图象上,求点P 的坐标.14. 某商店销售一种商品,经市场调查发现,该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w (元)的三组对应值如下表: 售价x (元/件)506080 周销售量y (件) 100 80 40 周销售利润w (元)1000 16001600注:周销售利润=周销售量×(售价-进价)(1)☉求y 关于x 的函数解析式(不要求写出自变量的取值范围);☉该商品进价是 元/件;当售价是 元/件时,周销售利润最大,最大利润是 元;(2)由于某种原因,该商品进价提高了m 元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.15. 如图①,在平面直角坐标系xOy中,已知抛物线y=ax2-2ax-8a与x轴相交于A,B两点(点A在点B的左侧),与y轴交于点C(0,-4).(1)点A的坐标为,点B的坐标为,线段AC的长为,抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.如果在x轴上存在点Q,使得以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.①16. 如图,已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3,抛物线与x轴相交于A,B两点,与y轴相交于点C,已知B点的坐标为(8,0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点,点N为线段BC上的一点,若MN∥y 轴,求MN的最大值;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.17. 如图,在直角坐标系中,抛物线经过点A(0,4)、B(1,0)、C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△P AB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.2020中考数学考前大专题复习:函数-答案一、选择题(本大题共6道小题)1. 【答案】C[解析]选项A,由对称轴为直线x=2可得--a2=2,∴a=4,正确;选项B,∵a=4,b=-4,∴代入解析式可得,y=x2-4x-4,当x=2时,y=-8,∴顶点的坐标为(2,-8),正确;选项C,由图象可知,x=-1时,y<0,即1+4+b<0,∴b<-5,∴错误;选项D,由图象可以看出当x>3时,在对称轴的右侧,y随x的增大而增大,正确,故选C.2. 【答案】A[解析]因为正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,所以k<0,所以一次函数y=x+k的函数值y随着x增大而增大,图象与y轴交于负半轴,故选A.3. 【答案】C[解析]点P运动一个半圆用时为2π2÷π2=2(秒).∵2019=1009×2+1,∴2019秒时,P在第1010个半圆的中点处,∴此时点P坐标为(2019,-1).故选C.4. 【答案】C[解析]根据反比例函数y=1x ,y=-1x及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积.∴S阴影=12π×22=2π.故选C.5. 【答案】C[解析]由题可知:A(4,4),D(2,0),C(4,3),点D关于AO的对称点D'坐标为(0,2),设l D'C:y=kx+b,将D'(0,2),C(4,3)代入,可得y=14x+2,解方程组{y=14x+2,y=x,得{x=83,y=83.∴P83,83.故选C.6. 【答案】A[解析]∵函数y=1x (x>0)与y=-1x(x<0)的图象关于y轴对称,∴直线MP是y轴所在直线,∵两支曲线分别位于一、二象限,∴直线MN是x轴所在直线,∴坐标原点为M.二、填空题(本大题共6道小题)7. 【答案】(32,4800)[解析]根据题意,得{s=240(t-12),s=150t,解得{t=32,s=4800.故答案为(32,4800).8. 【答案】-2≤x≤-1[解析]如图,直线OA的解析式为y=-2x,当-2≤x≤-1时,0≤kx+b≤-2x.9. 【答案】①③④[解析]根据图象可得:a<0,c>0,对称轴:直线x=-b2a=1,∴b=-2a.∵a<0,∴b>0,故①正确;把x=-1代入y=ax2+bx+c,得y=a-b+c.由抛物线的对称轴是直线x=1,且过点(3,0),可得当x=-1时,y=0,∴a -b +c=0,故②错误;当x=1时,y=a +b +c>0.∵b=-2a ,∴-b2+b +c>0,即b +2c>0,故③正确; 由图象可以直接看出④正确.故答案为:①③④.10. 【答案】4[解析]过点D 作DH ⊥x 轴于H 点,交OE 于M ,∵反比例函数y=kx (k>0)的图象经过点D ,E ,∴S ☉ODH =S ☉ODA =S ☉OEC =k2,∴S ☉ODH -S ☉OMH =S ☉OEC -S ☉OMH ,即S ☉OMD =S 四边形EMHC , ∴S ☉ODE =S 梯形DHCE =3,设D (m ,n ),∵D 为AB 的中点,∴B (2m ,n ).∵反比例函数y=kx (k>0)的图象经过点D ,E ,∴E 2m ,n2,∴S 梯形DHCE =12n 2+nm=3, ∴k=mn=4.11. 【答案】8[解析]过点B 作BE ⊥x 轴,垂足为点E ,过点A 作AF ⊥x 轴,垂足为点F ,直线AB 交y 轴于点D ,因为☉ABC 与☉ABE 同底等高, 所以S ☉ABE =S ☉ABC =4, 因为四边形ABEF 为矩形, 所以S 矩形ABEF =2S ☉ABE =8, 因为k 1=S 矩形OF AD ,k 2=S 矩形OEBD , 所以k 1-k 2=S 矩形OF AD -S 矩形OEBD =S 矩形ABEF =8.12. 【答案】2√5[解析]当y=0时,-14x 2+12x +2=0,解得x 1=-2,x 2=4,∴点A 的坐标为(-2,0).当x=0时,y=-14x 2+12x +2=2,∴点C 的坐标为(0,2). 当y=2时,-14x 2+12x +2=2,解得x 1=0,x 2=2, ∴点D 的坐标为(2,2).设直线AD 的解析式为y=kx +b (k ≠0), 将A (-2,0),D (2,2)代入y=kx +b ,得{-2k +b =0,2k +b =2,解得{k =12,b =1,∴直线AD 的解析式为y=12x +1.当x=0时,y=12x +1=1,∴点E 的坐标为(0,1). 当y=1时,-14x 2+12x +2=1,解得x 1=1-√5,x 2=1+√5, ∴点P 的坐标为(1-√5,1),点Q 的坐标为(1+√5,1), ∴PQ=1+√5-(1-√5)=2√5.三、解答题(本大题共5道小题)13. 【答案】解:(1)∵二次函数y=2x 2+bx +1的图象过点(2,3), ∴3=8+2b +1,∴b=-3,∴该二次函数的表达式为y=2x 2-3x +1. (2)∵点P (m ,m 2+1)在该二次函数的图象上, ∴m 2+1=2m 2-3m +1,解得m 1=0,m 2=3, ∴点P 的坐标为(0,1)或(3,10).14. 【答案】解:(1)①设y 与x 的函数关系式为y=kx +b ,依题意,有{50k +b =100,60k +b =80,解得{k =-2,b =200,∴y 与x 的函数关系式是y=-2x +200..②设进价为t 元/件,由题意,1000=100×(50-t ),解得t=40,∴进价为40元/件; 周销售利润w=(x -40)y=(x -40)(-2x +200)=-2(x -70)2+1800,故当售价是70元/件时,周销售利润最大,最大利润是1800元.故答案为40,70,1800. (2)依题意有,w=(-2x +200)(x -40-m )=-2x 2+(2m +280)x -8000-200m=-2xx -m+14022+12m 2-60m +1800.∵m>0,∴对称轴x=m+1402>70,∵-2<0,∴抛物线开口向下, ∵x ≤65,∴w 随x 的增大而增大,∴当x=65时,w 有最大值(-2×65+200)(65-40-m ), ∴(-2×65+200)(65-40-m )=1400, ∴m=5.15. 【答案】[解析](1)令y=0求得点A ,B 坐标,再由点C 坐标求得抛物线的解析式及线段AC 的长;(2)过点C 作x 轴的平行线交抛物线于点P ,通过分类讨论确定点Q 坐标. 解:(1)点A 的坐标为(-2,0),点B 的坐标为(4,0); 线段AC 的长为2√5, 抛物线的解析式为:y=12x 2-x -4. (2)过点C 作x 轴的平行线交抛物线于点P .∵点C (0,-4),∴-4=12x 2-x -4,解得x 1=2,x 2=0,∴P (2,-4). ∴PC=2,若四边形BCPQ 为平行四边形,则 BQ=CP=2,∴OQ=OB +BQ=6,∴Q (6,0).若四边形BPCQ 为平行四边形,则BQ=CP=2, ∴OQ=OB -BQ=2,∴Q (2,0).故以点B ,C ,P ,Q 为顶点的四边形是平行四边形时,Q 点的坐标为(6,0),(2,0).16. 【答案】(1)根据题意得,ab 2 =3,即b =-6a ,则抛物线的解析式为y =ax 2-6ax +4,将B (8,0)代入得,0=64a -48a +4,解得a =-14,b =32,∴抛物线的解析式为y =-14x 2+32x +4; (2)设直线BC 的解析式为y =kx +d ,由抛物线解析式可知:当x =0时,y =4,即点C (0,4), 将B (8,0),C (0,4)代入得:804k d d +=⎧⎨=⎩,解得⎩⎪⎨⎪⎧k =-12d =4, ∴直线BC 的解析式为y =-12x +4,设点M 的横坐标为x (0<x <8),则点M 的纵坐标为-14x 2+32x +4,点N 的纵坐标为-12x +4,∵点M 在抛物线上,点N 在线段BC 上,MN ∥y 轴,∴MN =-14x 2+32x +4-(-12x +4)=-14x 2+32x +4+12x -4=-14x 2+2x=-14(x -4)2+4,∴当x =4时,MN 的值最大,最大值为4;(3)存在.理由如下:令-14x 2+32x +4=0,解得x 1=-2,x 2=8,∴A (-2,0),又∵C (0,4),由勾股定理得,AC =22+42=25,如解图,过点C 作CD ⊥对称轴于点D ,连接AC .解图∵抛物线对称轴为直线x =3,则CD =3,D (3,4).①当AC =CQ 时,DQ =CQ 2-CD 2=(25)2-32=11,当点Q 在点D 的上方时,点Q 到x 轴的距离为4+11,此时,点Q 1(3,4+11),当点Q 在点D 的下方时,点Q 到x 轴的距离为4-11,此时点Q 2(3,4-11);②当AQ =CQ 时,点Q 为对称轴与x 轴的交点,AQ =5,CQ =32+42=5, 此时,点Q 3(3,0);③当AC =AQ 时,∵AC =25,点A 到对称轴的距离为5,25<5,∴不可能在对称轴上存在Q 点使AC =AQ ,综上所述,当点Q 的坐标为(3,4+11)或(3,4-11)或(3,0)时,△ACQ 为等腰三角形.17. 【答案】(1)设抛物线的解析式为y =a (x -1)(x -5)(a ≠0),把点A (0,4)代入上式,解得a =45,∴y =45(x -1)(x -5)=45x 2-245x +4=45(x -3)2-165,∴抛物线的对称轴是直线x =3;(2)存在,P 点坐标为(3,85).理由如下:如解图①,连接AC 交对称轴于点P ,连接BP ,BA ,解图①∵点B 与点C 关于对称轴对称,∴PB =PC ,∴C △P AB =AB +AP +PB =AB +AP +PC =AB +AC ,∴此时△P AB 的周长最小,设直线AC 的解析式为y =kx +b (k ≠0),把A (0,4),C (5,0)代入y =kx +b 中,得⎩⎨⎧=+=054b k b ,解得,454⎪⎩⎪⎨⎧=-=b k∴直线AC 的解析式为y =-45x +4,∵点P 的横坐标为3,∴y =-45×3+4=85,∴P 点坐标为(3,85);(3)在直线AC 下方的抛物线上存在点N ,使△NAC 面积最大.如解图②,设N 点的横坐标为t ,此时点N (t ,45t 2-245t +4)(0<t <5).过点N 作y 轴的平行线,分别交x 轴、AC 于点F 、G ,过点A 作AD ⊥NG ,垂足为点D .解图②由(2)可知直线AC 的解析式为y =-45x +4,把x =t 代入y =-45x +4得y =-45t +4,则G (t ,-45t +4).此时NG =-45t +4-(45t 2-245t +4)=-45t 2+4t ,∵AD +CF =OC =5,∴S △NAC =S △ANG +S △CNG=12NG ·AD +12NG ·CF=12NG ·OC=12×(-45t 2+4t )×5=-2t 2+10t=-2(t -52)2+252, ∴当t =52时,△NAC 的面积最大,最大值为252,由t =52,得y =45t 2-245t +4=-3,∴N 点坐标为(52,-3).。
初中数学知识点复习专题讲练:函数中的动点问题(含答案)
函数中的动点问题考点分析1.点在线段上运动:2.根据线段长或图形面积求函数关系.如:如图所示,点P在线段BC,CD,DA上运动,△ABP 的面积变化情况的图象是什么样的?解析:看清横轴和纵轴表示的量.答案:2. 双动点变化:两动点同时运动,分析图形面积变化图象.如图1,在矩形ABCD中,点E是对角线AC 的三等分点(靠近点A),动点F从点C出发沿C→A→B运动,当点F与点B重合时停止运动.设点F运动的路程为x,△BEF的面积为y,那么图2能表示y与x函数关系的大致图象吗?图1 图2解析:动点问题的函数图象,解决本题应首先看清横轴和纵轴表示的量,然后根据动点的行程判断y的变化情况.答案:能.3. 图形运动变化所形成的函数问题:图形整体运动时,形成的函数问题;如图,边长为1和2的两个正方形,其一边在同一水平线上,小正方形自左向右匀速穿过大正方形,设穿过的时间为t,阴影部分面积为S,那么S与t的函数图象大致是什么?解析:图形运动变化所形成的函数问题.关键是理解图形运动过程中的几个分界点.答案:4. 实际问题中的运动变化图象如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步,能近似刻画小亮到出发点M的距离y与时间x之间关系的函数图象是()解析:解决实际问题中的运动变化图象,要根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义选出正确的图象.答案:总结:研究在不同位置时点的运动变化所产生的线段、面积的变化关系是重点.解题技巧例题 如图,M 是边长为4的正方形AD 边的中点,动点P 自A 点起,由A ⇒B ⇒C ⇒D 匀速运动,直线MP 扫过正方形所形成面积为y ,点P 运动的路程为x ,则表示y 与x 的函数关系的图象为( )A .B .C .D .解析:分别求出P 在AB 段、BC 段、CD 段的函数解析式或判断函数的类型,即可判断.答案:解:点P 在AB 段时,函数解析式是:y =21AP •AM =21×2x =x ,是正比例函数y x =;点P 在BC 段时,函数解析式是:1()242y AM BP AB x =+⋅=-,是一次函数24y x =-;则2,1BC AB k k ==,BC AB k k ∴>.在单位时间内点P 在BC 段上的面积增长要大于点P 在AB 上的面积增长,因此函数图象会更靠近y 轴,也就是图象会比较“陡”,故A 、B 选项错误.点P 在CD 段时,面积是△ABC 的面积加上△ACP 的面积,△ABC 的面积不变,而△ACP 中CP 边上的高一定,因而面积是CP 长的一次函数,因而此段的面积是x 的一次函数,应是线段.故C 错误,正确的是D .故选D .点拨:主要考查了函数的性质,注意分段讨论是解决本题的关键.总结提升利用动点形成的函数图象求解析式例题 (翔安模拟)如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x cm ,△ABP 的面积为 y cm 2,如果y 关于x 的函数图象如图2所示,则y 关于x 的函数关系式为 .解析:根据图2判断出矩形的AB 、BC 的长度,然后分点P 在BC 、CD 、AD 时,分别求出点P 到AB 的距离,然后根据三角形的面积公式列式即可求出y 关于x 的函数关系式.答案:解:由图2可知,x 从4到9的过程中,三角形的面积不变,所以,矩形的边AB =9-4=5 cm ,边BC =4 cm ,则点P 运动的总路程为9+4=13 cm ,分情况讨论:①点P 在BC 上时,0≤x ≤4,点P 到AB 的距离为PB 的长度x cm ,y =21AB •PB =21×5x =25x ;②点P 在CD 上时,4<x <9,点P 到AB 的距离为BC 的长度4 cm ,y =21AB •BC =21×5×4=10;③点P 在AD 上时,9≤x ≤13时,点P 到AB 的距离为P A 的长度(13-x ) cm ,y =21AB •P A =21×5(13-x )=25(13-x );综上,y 关于x 的函数关系式为504210495139132x x y x x x ⎧≤≤⎪⎪=<<⎨⎪⎪≤≤⎩()()(-)(). 故答案为:504210495139132x x y x x x ⎧≤≤⎪⎪=<<⎨⎪⎪≤≤⎩()()(-)().动点综合型问题例题 (苏州中考)如图①,在平行四边形ABCD 中,AD =9 cm ,动点P 从A 点出发,以1 cm/s 的速度沿着A →B →C →A 的方向移动,直到点P 到达点A 后才停止.已知△P AD 的面积y (单位:cm 2)与点P 移动的时间x (单位:s )之间的函数关系如图②所示,试解答下列问题:(1)求出平行四边形ABCD 的周长;(2)请你利用图①解释一下图②中线段M N 表示的实际意义; (3)求出图②中a 和b 的值.解析:(1)由图②知点P 在AB 上运动的时间为10 s ,根据路程=速度×时间列式,求出AB =10 cm ,又AD =9 cm ,根据平行四边形的周长公式即可求解;(2)由线段M N ∥x 轴,可知此时点P 虽然在运动,但是△P AD 的面积y 不变,结合图①,可知此时点P 在BC 边上运动;(3)由AD =9可知点P 在边BC 上的运动时间为9 s ,a 为点P 由A →B →C 的时间;分别过B 点、C 点作BE ⊥AD ,CF ⊥AD ,易证△BAE ≌△CDF ,由此得到AE =DF =6 cm ,AF =15 cm ,从而可求得CA =17 cm ,则点P 在CA 边上从C 点运动到A 点的时间为17 s ,所以b =19+17=36.答案:解:(1)由图②可知点P 从A 点运动到B 点的时间为10 s ,又因为P 点运动的速度为1 cm/s ,所以AB =10×1=10(cm ),而AD =9 cm ,则平行四边形ABCD 的周长为:2·(AB +AD )=2×(10+9)=38(cm );(2)线段M N 表示的实际意义是:点P 在BC 边上从B 点运动到C 点;(3)由AD =9可知点P 在边BC 上的运动时间为9 s ,所以a =10+9=19;分别过B ,C 两点作BE ⊥AD 于E ,CF ⊥AD 于F .由图②知S △ABD =36 cm 2,则21×9×BE =36 cm 2,解得BE =8 cm ,在Rt △ABE 中,由勾股定理,得AE =22BE AB -=6 cm.易证△BAE ≌△CDF ,则BE =CF =8 cm ,AE =DF =6 cm ,AF =AD +DF =9+6=15 cm.在Rt △ACF 中,由勾股定理,得CA 22AF CF +17 cm ,则点P 在CA 边上从C 点运动到A 点的时间为17 s ,所以b =19+17=36.巩固训练(答题时间:45分钟)一、选择题1. (静海中考)如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是()A. B.C. D.2. (营口中考)如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则当x=7时,点E应运动到()A. 点C处B. 点D处C. 点B处D. 点A处3. (绥化中考)如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程S之间的函数关系用图象表示大致是()A. B.C. D.*4. (荆门中考)如下图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()A. B.C. D.**5.(河池中考)如图,在直角梯形ABCD中,AB=2,BC=4,AD=6,M是CD的中点,点P在直角梯形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x 之间的函数关系用图象表示是()A. B.C. D.二、填空题:*6. 如图,是一辆汽车的速度随时间变化的图象,请你根据图象提供的信息填空:(1)汽车在整个行驶过程中,最高速度是km/h(2)汽车第二次减速行驶的“时间段”是;(3)汽车出发后,8 min到10 min之间的运动情况如何?.*7. 如图,在正方形ABCD中,边长为2,某一点E从B-C-D-A-B运动,且速度是1,试求:(1)△BEC的面积S和时间t的关系.**8. (随州中考)在四边形ABCD中,AB边的长为4,设动点P沿折线B⇒C⇒D⇒A由点B向点A运动,设点P运动的距离为x,△P AB的面积为y,y与x的函数图象如图所示.给出下列四个结论:①四边形ABCD的周长为14;②四边形ABCD是等腰梯形;③四边形ABCD是矩形;④当△P AB面积为4时,点P移动的距离是 2.你认为其中正确的结论是.(只填所有正确结论的序号例如①)**9. 已知动点P以每秒2 cm的速度沿图甲的边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S关于时间t的函数图象如图乙,若AB=6 cm,试回答下列问题:(1)图甲中BC的长度是.(2)图乙中a所表示的数是.(3)图甲中的图形面积是.(4)图乙中b所表示的数是.图甲图乙三、解答题:10. (潜江)如图,有一边长为5的正方形ABCD与等腰三角形CEF,其中底边CF=8,腰长EF=5,若等腰△CEF以每秒1个单位沿CB方向平移,B,C,F在直线L上,请画出0<t<6时,两图形重叠部分的不同状态图(重叠部分用阴影标示),并写出对应t的范围.**11. 如图①,在矩形ABCD中,AB=30 cm,BC=60 cm.点P从点A出发,沿A→B→C→D 路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿D→C→B→A路线向点A 匀速运动,到达点A后停止.若点P,Q同时出发,在运动过程中,Q点停留了1 s,图②是P,Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.(1)请解释图中点H的实际意义;(2)求P,Q两点的运动速度;(3)将图②补充完整;(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.参考答案1. B 解析:①当P 在AB 上运动时,所求三角形底为AP ,高为M 到AB 的距离也就是AD 长度因此S △APM =21AD •AP =x ,函数关系为:y =x (0<x ≤1);②当P 在BC 上运动时,S △APM =S 梯形ABCM -S △ABP -S △PCM ,S △ABP =21AB •BP ,BP =x -1,则S △ABP =21x -21,S △PCM =21PC •CM ,CM =12AB =21,PC =3-x ,S △PCM =43x -,S 梯形ABCM =21(AB +CM )•BC =23,因此S △APM =23-21-x -43x -=-4x +45(1<x ≤3);③当P 在CM 上运动时,S △APM =21CM •AD ,CM =27-x ,S △APM =21(27-x )×2=-x +27(3<x <7/2).故该图象分三段.故选B.2. B 解析:当E 在AB 上运动时,△BCE 的面积不断增大;当E 在AD 上运动时,BC 一定,高为AB 不变,此时面积不变;当E 在DC 上运动时,△BCE 的面积不断减小.∴当x =7时,点E 应运动到高不再变化时,即点D 处.故选B .3. D 解析:∵长、宽分别为2和1的矩形ABCD 的边上有一动点P ,沿A →B →C →D →A 运动一周,则点P 的纵坐标y 随点P 走过的路程s 之间的函数关系图象可以分为4部分,∴P 点在AB 上,此时纵坐标越来越小,最小值是1,P 点在BC 上,此时纵坐标为定值1.当P 点在CD 上,此时纵坐标越来越大,最大值是2,P 点在AD 上,此时纵坐标为定值2.故选D.4. A 解析:①当直线l 经过BA 段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l 经过AD 段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l 经过DC 段时,阴影部分的面积越来越大,并且增大的速度越来越小;结合选项可得,A 选项的图象符合.故选A.5. D 解析:连接AC ,过点C 作CE ⊥AD 于点E ,过点M 作MF ⊥AB 于点F ,易得CE =2,MF =5,当点P 与点B 重合,即x =2时,y =21AP ·MF =21×2×5=5;当点P 与点C 重合,即x =6时,y =1122AD CE ⨯⋅=21×21×6×2=3;结合函数图象可判断选项D 正确.故选D.6. 100 km ,22 min -24 min ,8 min 到10 min 之间停止 解析:(1)依题意得:最高速度是100 km/h ;(2)汽车第二次减速行驶的“时间段”是22 min -24v ;(3)汽车出发后,8v 到10 min 之间是停止的.7. 0(02)2(24)2(46)8(68)t t t S t t t ≤≤⎧⎪-<≤⎪=⎨<≤⎪⎪-<≤⎩ 解析:(1)∵在正方形ABCD 中,边长为2,某一点E 从B -C -D -A -B 运动,且速度是1,∴当E 在BC 上时,B ,E ,C 无法构成三角形,此时0≤t ≤2,∴S =0,(0≤t ≤2);当E 在CD 上时,△BEC 的面积为:S =21BC ×CE =21×2×(t -2)=t -2,(2<t ≤4);当E 在AD 上时,△BEC 的面积为:S =21BC ×CD =21×2×2=2,(4<t ≤6);当E 在AB 上时,△BEC 的面积为:S =21BC ×BE =21×2×[2-(t -6)]=8-t ,(6<t ≤8). 8. ①③ 解析:∵AB 边的长为4,设动点P 沿折线B ⇒C ⇒D ⇒A 由点B 向点A 运动,点P 运动的距离为10,∴四边形ABCD 的周长为10+4=14,①成立.当点P 在BC 上运动时,面积在不断增加,当移动的距离是3,面积为6时,面积不再变化,说明CD ∥AB ,此时BC =3,△ABP 面积=21×4×高=6,那么高=3,说明BC ⊥AB .当点P 运动7时,面积停止变化,此时CD =7-3=4,那么CD =AB .根据一组对边平行且相等的四边形是平行四边形得到四边形ABCD 是平行四边形.根据有一个角是直角的平行四边形是矩形得到四边形ABCD 是矩形,③对.由图中可以看出,面积为4的点可在图中找到两处,那么就有相应的两个距离值,④不对.故答案选①③.9. 8 cm ;24;60 cm 2;17 解析:(1)动点P 在BC 上运动时,对应的时间为0到4 s ,易得:BC =2 cm/s×4s =8 cm.故题图甲中BC 的长度是8 cm ;(2)由(1)可得,BC =8 cm ,则:题图乙中a 所表示的数是:21×BC ×AB =21×8×6=24(cm 2).故题图乙中a 所表示的数是24;(3)由题图可得:CD =2×2=4 cm ,DE =2×3=6 cm ,则AF =BC +DE =14 cm ,又由AB =6 cm ,则甲中的梯形面积为AB ×AF -CD ×DE =6×14-4×6=60(cm 2).故题图甲中的图形面积为60 cm 2;(4)根据题意,动点P 共运动了BC +CD +DE +EF +F A =(BC +DE )+(CD +EF )+F A =14+6+14=34(cm ),其速度是2 cm/s ,34÷2=17(s ).故题图乙中b 所表示的数是17.故答案为8 cm ;24;60 cm 2;17.10. 解:∵等腰三角形CEF ,其中底边CF =8,腰长EF =5,∴等腰三角形底边上的高线平分底边,即分为两部分都是4,当0<t ≤4时,如图1所示;当4<t ≤5时,如图2所示;当5<t <6时,如图3所示.11. 解答:(1)图中点H 的实际意义:P 、Q 两点相遇;(2)由函数图象得出,当两点在F 点到G 点两点路程随时间变化减慢得出此时Q 点停留1秒,只有P 点运动,此时纵坐标的值由75下降到45,故P 点运动速度为:30cm/s ,再根据E 点到F 点S 的值由120变为75,根据P 点速度,得出Q 点速度为120-75-30=15(cm/s ),即P 点速度为30cm/s ,Q 点速度为15cm/s ;(3)如图所示:根据4秒后,P 点到达D 点,只有Q 点运动,根据运动速度为15cm/s ,还需要运动120-45=75(cm ),则运动时间为:75÷15=5(s ),画出图象即可;(4)如图1所示,当Q P =PC ,此时21Q C =BP ,即30-30t =21(30-15t ),解得:t =32,故当时间t =32s 时,△PC Q 为等腰三角形,如图2所示,当D 、P 重合,Q D =Q C 时,Q 为AB 中点,则运动时间为:(15+60+30)÷15+1=8(s ),故当时间t =8s 时,△PC Q 为等腰三角形.若PC =C Q 故90-30t =30-15t 解得:t =4则4+1=5(S )综上所述:t =32或t =5或t =8秒时,△PC Q 为等腰三角形.。
2020年中考数学压轴专题:函数的图象与性质专题(含答案)
2020中考数学 压轴专题 函数的图象与性质专题(含答案)1. 如图,在平面直角坐标系中,一次函数y =mx +5(m ≠0)的图象与反比例函数y =足为点M .(1)求一次函数和反比例函数的表达式;(2)求△OAM 的面积S ;(3)在y 轴上求一点P ,使PA +PB 的值最小并求出此时点P 的坐标.第1题图将B (4,1)代入y =mx +5得:1=4m +5,△m =-1,△y =-x +5;(3)如解图,作点A 关于y 轴的对称点N ,则N (-1,4).连接BN 交y 轴于点P ,点P 即为所求.设直线BN的关系式为y=kx+b,第1题解图第2题图△A(4,0),令x=0,则y=3,△等腰Rt△ABC中,△BAC=90°,(2)△如解图,连接PO,△P(a,1),△△S△ABP=S△ABC,第2题解图3.如图△,在直角坐标系中,点A的坐标为(0,12),经过原点的直线l1与经过点A的直线l2相交于点B(m,n).(1)若m=9,n=3,求直线l1和l2的解析式;(2)将△BAO绕点B顺时针旋转180°得△BFE,如图△,连接AE,OF.△证明:四边形OFEA是平行四边形;△若四边形OFEA是正方形,求m和n的值.第3题解图4.如图,在△ABC中,点A(4,0),点B在x轴上,点C在第四象限且横坐标为2,直线l1:y=-3x+3经过点B,C;直线l2经过点C,与x轴交于点P(点P在点B 右侧),设点P的横坐标为m.(2)若P是AB的中点,求m的值;(3)当S△PBC=3时,求直线l2的解析式.第4题图解:(1)(1,0),(2,-3);【解法提示】△y=-3x+3经过点B,C,点B在x轴上,点C横坐标为2,△B(1,0),C(2,-3).(2)△P 是AB 中点,(3)△S△PBC =3,△PB =2,△P (3,0),设直线l 2的解析式为y =kx +b ,则有3=02=3k b k b ++-⎧⎨⎩, 解得=3=9k b -⎧⎨⎩,△直线l 2的解析式为y =3x -9.5. 如图,在平面直角坐标系中,点A 的坐标为(4,0),点B 的坐标为(0,4),点M 是线段AB 上任意一点(A ,B 两点除外).(1)求直线AB 的解析式;(2)过点M 分别作MC △OA 于点C ,MD △OB 于点D ,当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由;(3)当点M 把线段AB 分成的两部分的比为1:3时,请求出点M 的坐标.第5题图解:(1)设直线AB 的解析式为y=kx +b ,由题意可得4=0=4k bb+⎧⎨⎩,解得=1=4kb-⎧⎨⎩,△AB的解析式为y=-x+4;(2)不发生变化.理由:设M点的坐标为(x,-x+4),则MD=|x|=x,MC=|-x+4|=-x+4,△四边形OCMD的周长=2(MD+MC)=2[x+(-x+4)]=8,△四边形OCMD的周长不发生变化;(3)△DM△x轴,则点M的横坐标为1,此时纵坐标=-x+4=-1+4=3,△M(1,3);则点M的横坐标为3,此时纵坐标=-x+4=-3+4=1,△M(3,1),综上可知,点M的坐标为(1,3)或(3,1).6.如图,已知一次函数y=2x-4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.解:(1)对于一次函数y=2x-4,令x=0,得到y=-4;令y=0,得到x=2,△A(2,0),B(0,-4),△P为AB的中点,△P(1,-2),△d1+d2=3;(2)d1+d2≥2;设P(m,2m-4),△d1+d2=|m|+|2m-4|,当0≤m≤2时,d1+d2=m+4-2m=4-m=3,解得m=1,此时P1(1,-2);当m>2时,d1+d2=m+2m-4=3,当m<0时,不存在,(3)设P(m,2m-4),△d1=|2m-4|,d2=|m|,△P在线段AB上,△0≤m≤2,△d1=4-2m,d2=m,△d1+ad2=4,△4-2m+am=4,即(a-2)m=0,△有无数个点,△a=2.7.M,N,高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移,在平移过程中,得到△A1B1C1,当点B1与原点重合时,解答下列问题:(1)求出点A1的坐标,并判断点A1是否在直线l上;(2)求出边A1C1所在直线的解析式;(3)在坐标平面内找一点P,使得以P、A1、C1、M为顶点的四边形是平行四边形,求出P点的坐标.第7题图解:(1)如解图,作A1H△x轴于H.在Rt△A1OH中,△A1H=3,△A1OH=60°,由解图可知,当以P、A1、C1、M为顶点的四边形是平行四边形时,P1 (3第7题解图8.如图,在平面直角坐标系xoy中,平行四边形ABCO的顶点A,B的坐标分别是A(3,0),B(0,2).(1)求点C的坐标及直线AB的解析式;(2)动点P在直线23y x=上运动.△当PB=PC时,求出P点的坐标;△将直线23y x=怎样平移,能将平行四边形ABCO的面积平分?并求出此时它与直线AB交点Q的坐标;(3)在x轴上是否存在两点M、N(M在N左侧),使MN=1,且CM+MN+BN的值最小?若存在,求出M、N两点的坐标,并求出这个最小值;若不存在,请说明理由.第8题图解:(1)△四边形ABCO是平行四边形,△CB△OA,CB=OA=3,△点C的坐标为(-3,2),设直线AB的解析式为y=kx+b,代入A(3,0),B(0,2)得032k bb=+⎧⎨=⎩,解得232kb⎧=-⎪⎨⎪=⎩,△223y x=-+;(2)△当PB=PC时,P点在BC的垂直平分线上,即直线x=-32上,又△点P在直线23y x=上,△23()132y=⨯-=-,△P点的坐标为(-32,-1);△若将平行四边形ABCO的面积平分,则直线必过平行四边形ABCO对角线的交点,即过点(0,1),△将直线23y x=向上平移1个单位即可,此时直线的解析式为213y x=+,联立方程组223213y xy x⎧=-+⎪⎪⎨⎪=+⎪⎩,解得3432xy⎧=⎪⎪⎨⎪=⎪⎩,△它与直线AB 的交点Q 的坐标为(34,32); (3)存在.如解图,将点 C 向右平移1个单位长度得C ',作C '关于x 轴的对称点C '',连接C ''B ,交 x 轴于点 N ,将 N 点向左平移1个单位得M ,M 、N 即为所求作的点. 由题意可知,点C '(-2,2),△以点C '关于x 轴的对称点C ''(-2,-2),设直线C ''B 的解析式为y kx b =+,代入C ''(-2,-2),B (0,2)得222k bb -=-+⎧⎨=⎩,解得22k b =⎧⎨=⎩ , △22yx =+,△点 N 的坐标为(-1,0),点 M 的坐标为(-2,0), △CM +MN +BN 的最小值即为C ''B +MN1+=1+.第8题解图9. 如图,在平面直角坐标系中,O 为坐标原点,直角三角形OBD 的直角顶点D 在(1)求图象经过点B 的反比例函数的解析式;(2)点E 是(1)中反比例函数图象上一点,连接BE 、DE ,若BE =DE ,求四边形OBED 的面积.第9题图△BD =2OD ,△OD =2,BD =4,△B (2,4),(2)如解图,作EF △BD 于点F ,由BD △x 轴, △△EFD =△ODF ,△EF △x 轴, △BE =DE ,EF △BD 于点F ,△x =4,△E (4,2),EF =2,第9题解图10.于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?第10题图解:(1)△直线y=2x+6经过点A(1,m),△m=2×1+6=8,△A(1,8),△k=8,△n=3时,△BMN的面积最大.11.点,且A点的橫坐标为1.(1)求一次函数的函数表达式;(2)当y1>y2时,求x的取值范围;(3)已知反比例函数在第一象限的图象上有一点C橫坐标为3,求△ABC的面积.第11题图将点A(1,6)代入y1=x+m,得:1+m=6,解得m=5,则一次函数解析式为y1=x+5;则点A (1,6)、点B (-6,-1),由图象可知y 1>y 2时-6<x <0或x >1;则点C (3,2),如解图,连接AC ,BC ,则AD =2、CD =4、BE =9、CE =3,第11题解图12. B (m ,n )(m >1),过点B 作y 轴的垂线,垂足为点C . (1)求该反比例函数解析式;(2)当△ABC 面积为2时,求点B 的坐标;(3)P 为线段AB 上一动点(P 不与A 、B 重合),在(2)的情况下,直线y =ax -1与线段AB 交于点P ,直接写出a 的取值范围.第12题图△k=1×2=2,△mn=2,(3)将A(1,2)代入y=ax-1中,2=a-1,解得a=3;△直线y=ax-1与线段AB交于点P,P为线段AB上一动点(P不与点A、B重合),第13题图解:(1)根据题意得点B的横坐标为0,点A的纵坐标为0,△B(0,6),A(-8,0),△OA=8,OB=6,△CB平分△ABO,CD△AB,CO△BO,△CD=CO,△BC=BC,△Rt△BCD△Rt△BCO,△BD=BO=6,△AD=AB-BD=4,△△ADC=△AOB=90°,△CAD=△BAO,△△ACD△△ABO,△AC=5,△OC=OA-AC=3,△C(-3,0),△△EDB=△AOB=90°,BD=BO,△EBD=△ABO,△△EBD△△ABO,△BE=AB=10,△OE=BE-OB=4,△E(0,-4),设直线CE的解析式为y=kx-4,△-3k-4=0,解得(2)存在.第13题解图。
2020年动点与函数图像专题
2020年中考试题权威汇编动点与函数图像(1)1、如图,在平行四边形ABCD中,AB=2,AD=3,∠B=300,.动点P从点B出发,沿B−C−D 的路线向点D运动。
设平行四边形ABCD的面积与△ABP的面积比值为y,,点P运动的路程为x,则y与x之间函数关系的图象大致为()2、在四边形ABCD中,∠B=90O,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为( )A. B. C. D.3、如图,在△ABC中,AC=BC=25,AB=30,D是AB上的一点(不与A,B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y,则下列图象能大致反映y与x之间的函数关系的是( )A B. C. D.4、如图,AC、BD相交于点O,且OA=OC=4,OB=OD=6, 点P是线段BD上一动点,过点P 作EF∥AC,与四边形的两条边分别交于点E,F,设BP=x,EF=y,则下列能表示y与x之间函数关系的图象是( ).A B. C. D.5、如图,在Rt△ACB中,∠C=90∘,∠A=60∘,AB=8.点P是AB边上的一个动点,过点P 作PD⊥AB交直角边于点D,设AP为x,△APD的面积为y,则下列图象中,能表示y与x 的函数关系的图象大致是( )A. B. C. D.6、如图所示,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC 于点F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是___(填序号)7、如图,已知矩形OABC,A(4,0),C(0,3),动点P从点A出发,沿A−B−C−O的路线匀速运动,设动点P的运动时间为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A. B. C. D.8、如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E. 设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.9、如图,等边△ABC边长为2,在平行四边形DEFG中,DG=2,DE=3,∠GDE=60∘,BC和DE 在同一条直线上,且点C与点D重合,现将△ABC沿D→E的方向以每秒1个单位的速度匀速运动,当点B与点E重合时停止,则在这个运动过程中,△ABC与四边形DEFG 的重合部分的面积S与运动时间t之间的函数关系图象大致是( )A. B. C. D.10、如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B,C不重合),连结AE,作EF⊥AE交正方形的外角∠DCG的平分线于点F,设BE=x,△ECF的面积为y,下列图象中,能大致表示y与x的函数关系的是()A. B. C. D.11、在矩形ABCD中,动P从点A出发,沿着“A→B→C→D→A”的路径运动一周,线段AP长度y(cm)与点P运动的路程x(cm)之间的函数图象如图所示,则矩形的面积是( )cm2A.32B.48C. 165D. 32512.如图①,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动。
2020年中考数学压轴题冲刺提升 专题01 动点与函数图象(解析版)
专题01 动点与函数图象【例1】(2019·郑州外国语测试)如图所示,在矩形ABCD中,AB=8,AD=4,E为CD的中点,连接AE、BE,点M从点A出发沿AE方向向E匀速运动,同时点N从点E出发沿EB方向向点B匀速运动,点M、N的速度均为每秒1个单位长度,运动时间为t,连接MN,设△EMN的面积为S,则S关于t的函数图象为()A B C D【答案】D.【解析】解:由题意知,AD=DE=CE=BC=4,AE,△△AED=△BEC=45°,△△MEN=90°,又△EN=t,EM-t,△S=12EM EN ⋅⋅=()12t t ⋅⋅=(2142t -⋅-+,(0≤t )图象为抛物线,开口朝下,当x 时,S 取最大值, 故答案为D .【变式1-1】(2019·洛阳二模)如图,点 P 是边长为 2 cm 的正方形 ABCD 的边上一动点,O 是对角线的交点,当点 P 由 A →D →C 运动时,设 DP =x cm ,则△POD 的面积 y (cm 2) 随 x (cm )变化的关系图象为( )A BC D 【答案】B .【解析】解:当P 点在AD 上运动时,0<x ≤2时, y =12·PD ×1=12x , 当P 点在DC 上运动时,0<x ≤2, y =12·PD ×1=12x , 故答案为:B .【变式1-2】(2019·叶县一模)如图,在△ABC 中,△ABC =60°,△C =45°,点D ,E 分别为边AB ,AC 上的点,且DE △BC ,BD =DE =2,CE =52,BC =245.动点P 从点B 出发,以每秒1个单位长度的速度沿B →D →E →C 匀速运动,运动到点C 时停止.过点P 作PQ △BC 于点Q ,设△BPQ 的面积为S ,点P 的运动时间为t ,则S 关于t 的函数图象大致为( )A .B .C .D .【答案】D .【解析】解:△PQ △BQ △S △BPQ =12PQ •BQ ①当点P 在BD 上(即0s ≤t ≤2s )BP =t ,BQ =PQ •cos 60°=12t ,PQ =BP •sin 60°tS △BPQ =12PQ •BQ=12•12t tt 2 该图象是关于t 的二次函数,其图象为一段开口朝上的抛物线; ②当P 在DE 上时(即2s <t ≤4s )PQ =BD •sin 60°BQ =BD •cos 60°+(t ﹣2)=t ﹣1S △BPQ =12PQ •BQ=12(t ﹣1)=2t ﹣2, 该图象为一条线段,由左向右上升; ③当P 在DE 上时(即4s <t ≤132s )PQ =PC •sin 45°=4﹣2t ,BQ =BC ﹣CQ =245-4+2tS △BPQ =12PQ •BQ =12t )(245t )通过计算可知,此时函数解析式为二次函数,且二次项系数为:14<0,即该段图象为一段开口朝下的抛物线;综上所述,答案为D .【例2】(2019·省实验一模)如图,正方形ABCD ,对角线AC 和BD 交于点E ,点F 是BC 边上一动点(不与点B ,C 重合),过点E 作EF 的垂线交CD 于点G ,连接FG 交EC 于点H .设BF =x ,CH =y ,则y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】A .【解析】解:△四边形ABCD 是正方形, △△EBF =△ECG =45°,AC △BD ,EB =EC , △EF △EG ,△△BEC =△FEG =90°, △△BEF =△CEG , △△BEF △△CEG , △EF =EG , △△EFG =45°, △△CFH =△BEF , △△BEF △△CFH , △BE BECH CF=, △x y =,△y =﹣x 2x (0<x ), 图象为一段开口朝下的抛物线, 即答案为:A .【变式2-1】(2019·名校模考)如图1,在矩形ABCD 中,AB <BC ,点E 为对角线AC 上的一个动点,连接BE ,DE ,过E 作EF △BC 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )A .线段BEB .线段EFC .线段CED .线段DE 【答案】D .【解析】解:A 、由图1可知,若线段BE 是y ,则y 随x 的增大先减小再增大,而BA <BC ,选项A 错误;B、由图1可知,若线段EF是y,则y随x的增大而减小,选项B错误;C、由图1可知,若线段CE是y,则y随x的增大而减小,选项C错误;D、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,选项D正确;故答案为:D.【变式2-2】(2018·洛宁县模拟)如图1,正△ABC的边长为4,点P为BC边上的任意一点,且△APD=60°,PD交AC于点D,设线段PB的长度为x,图1中某线段的长度为y,y与x的函数关系的大致图象如图2,则这条线段可能是图1中的()图1 图2A.线段AD B.线段AP C.线段PD D.线段CD【答案】A.【解析】解:△△APD=60°,△ABC是等边三角形,△△B=△C=60°,△△APB+△CPD=120°,△PDC+△CPD=120°,△△APB=△PDC,△△ABP△△PCD,△AB BP CP CD=,即:44xx CD=-,△CD=()45x x-,当x=0时,CD=0,不符题意;△AD=4-CD=4-()45x x-=()2116255x-+,符合题意,即答案为:A.【例3】(2019·周口二模)如图1,E为矩形ABCD边AD上的一点,点P从点B沿折线BE-ED-DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是2 cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t的函数关系图象如图2,则CDBE的值为()ABCD图1 图2【答案】D.【解析】解:由图象可知,t=8时,P点与E点重合;t=10时,P与D点重合,△P点的运动速度为2cm/s,△DE=4,BE=16,S△BCE=12·BC·CD=8 CD,即8 CD,即CD,△CDBE,故答案为:D.【变式3-1】(2019·枫杨外国语三模)如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K运动过程中,线段AK的长度y与运动时间x的函数关系如图 2 所示,其中点Q为曲线部分的最低点,若△ABC的面积是,则a的值为图1 图2【答案】【解析】解:由图可知,Q点对应的是AK△BC的位置,即△ABC边BC上的高为5,由△ABC的面积是BC=,图1图2由抛物线的两端纵坐标相等,即对应的AK 的长度相等,说明AB =AC ,由勾股定理得:AB =即a =故答案为:【变式3-2】(2019·中原名校大联考)如图1,在矩形ABCD 中,动点M 从点A 出发,沿A →B →C 方向运动,当点M 到达点C 时停止运动,过点M 作MN △AM 交CD 于点N ,设点M 的运动路程为x ,CN =y ,图2表示的是y 与x 的函数关系的大致图象,则矩形ABCD 的面积是( )A .20B .18C .10D .9【答案】A .【解析】解:由图2知:AB +BC =9,设AB =m ,则BC =9﹣m , 如图所示,当点M 在BC 上时,则AB =m ,BM =x ﹣a ,MC =9﹣x ,NC =y , △MN △AM ,则△MAB =△NMC ,tan △MAB =tan △NMC ,即BM CNAB CM=, 即9x m y m x-=-,化简得:y =﹣1m x 2+9m m +x ﹣9, 当x =92m +时,y 取最大值45,即45=()294m m +﹣9, 解得:m =5或m =16.2(舍), △AM =5,BC =4,ABCD的面积为20,故答案为:A.1. (2019·濮阳二模)如图,点A在x轴上,点B,C在反比例函数y=kx(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM△x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.【答案】D.【解析】解:设点P的运动速度为x,(1)当点P在AB上时,S=12·OA·AP=12·OA·at,该段函数图象为一条线段,且S随t的增大而增大,(2)点P在曲线BC上时,S=12k,为一定值,即图象为一条平行于x轴的线段;(3)点P在OC上时,S=12·PM·OM设△AOC=β,P运动全路程为s,则OP=s-at,则S=12·PM·OM=12OPsinβ·OPcosβ=12(s-at)2sinβcosβ函数图象为一段开口朝上的抛物线,且S随t的增大而减小;综上所述,答案为:D.2.(2019·南阳模拟)如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE△AC,交BC于E点;过E点作EF△DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y 与x函数关系的图象是()A.B.C.D.【答案】A.【解析】解:△△ABC是等边三角形,△△A=△C=△ABC=60°,△DE△AC,△△EDF=△A=60°,△DEB=△B=60°△EF△DE,△△DEF=90°,△△F=90°﹣△EDC=30°;△△EDB=△DEB=60°,△△EDB是等边三角形.△ED=DB=2﹣x,在Rt△DEF中,EF ED2﹣x).△y=12 ED•EF=12(2﹣x)(2﹣x),(x﹣2)2,(0≤x≤2),图象为一段开口朝上的抛物线,y随x增大而减小;所以答案为:A.3.(2019·平顶山三模)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.【答案】A.【解析】解:由题意知,(1)当点F在PD上运动时,△AEF的面积为y=12AE•AD=2x(0≤x≤2),为一次函数,图象为直线;(2)当F在AD上运动时,△AEF的面积为:y=12 AE•AF=12x(6-x)=-12x2+3x,为二次函数,且开口朝下;故答案为:A.4.如图甲,点E为矩形ABCD边AD上一点,点P,Q同时从B点出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图乙(曲线OM为抛物线的一部分),则下列结论:△当0<t≤5时,y=25t2 △tan△ABE=34△点H的坐标为(11,0)△△ABE与△QBP不可能相似.其中正确的是(把你认为正确结论的序号都填上)【答案】△△△.【解析】解:△过点P作PF△BC于F,根据面积不变时△BPQ的面积为10,可得:AB=4,△AD△BC,△△AEB=△PBF,△sin△PBF=sin△AEB=45,△PF=PBsin△PBF=45 t,△当0<t≤5时,y=12BQ·PF=25t2即△正确;△由图知:ED=2,△AE=AD﹣ED=5﹣2=3,△tan△ABE=34AEAB=,△正确;△由图象知,在D点时,出发时间为7s,由CD=4,得H(11,0),△正确;△当△ABE与△QBP相似时,点P在DC上,△tan△PBQ=tan△ABE=34,△34PQBQ=,即11354t-=,解得:t=294.△错误;故答案为:△△△.5.(2019·焦作二模)如图1,在等边△ABC中,点D是BC边的中点,点P为AB边上的一个动点,设xAP=,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则等边△ABC的面积为.【答案】【解析】解:由垂线段最短可知,当DP△AB时,y此时,由△B=60°,得:BD tan60°=2,△BC=4,S△ABC24,即答案为:6.(2019·三门峡一模)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( )ABCD .【答案】B .【解析】解:当0≤x ≤1时,重叠部分为△A ’B ’C ’21=当1<x ≤2时,重叠部分为等边三角形,边长B ’C =2-x , ())2222x x -=-,为开口朝上的抛物线, 综上所述,答案为:B .7.(2019·许昌月考)如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A.B.C.D.【答案】B.【解析】解:当点P在AD上时,S=12AB·AP=AP,则S随着时间t的增大而增大;当点P在DE上时,S=2,S保持不变;当点P在EF上时,△ABP的底AB不变,高减小,则S随着时间t的增大而减小;当点P在FG上时,S=1,面积S不变;当点P在GB上时,S=12AB·BP=BP,S随着时间t的增大而减小;故答案为:B.8.(2019·信阳模拟)如图1,在△ABC中,△C=90°,动点P从点C出发,以1cm/s的速度沿折线CA→AB 匀速运动,到达点B时停止运动,点P出发一段时间后动点Q从点B出发,以相同的速度沿BC匀速运动,当点P到达点B时,点Q恰好到达点C,并停止运动,设点P的运动时间为t s,△PQC的面积为S cm2,S 关于t的函数图象如图2所示(其中0<t≤3,3≤t≤4时,函数图象均为线段(不含点O),4<t<8时,函数图象为抛物线的一部分)给出下列结论:△AC=3cm;△当S=65时,t=35或6.下列结论正确的是()A.△△都对B.△△都错C.△对△错D.△错△对【答案】A.【解析】解:由函数图象可知当0<t≤3时,点P在AC上移动,△AC=t×1=3×1=3cm.故△正确;在Rt△ABC中,S△ABC=6,即12BC×3=6,得:BC=4.由勾股定理可知:AB=5.(1)当0<t≤3时,S=12 BC•PC=12×4t=2t.(2)当3<t≤4时,PB=AB-AP=5-(t-3)=8-t,过点P作PH△BC,垂足为H,则35 PH ACPB AB==,△PH=35PB=35(8-t),S=12 BC•PH=12×4×35(8-t)=-65t+485,(3)当4<t<8时,过点P作PH△BC于H.同理:S =2324961055t t -+ 当0<t ≤3时,2t =65,解得t =35, 当3≤t ≤4时,−65t +485=65,解得:t =7(舍去), 当4<t <8时,232496610555t t -+=,解得t =6或t =10(舍去), △当t 为35或6时,△PQC 的面积为65. 故△正确. 故答案为:A .9.(2018·新乡一模)如图,平行四边形ABCD 中,ABcm ,BC =2cm ,△ABC =45°,点P 从点B 出发,以1cm /s 的速度沿折线BC →CD →DA 运动,到达点A 为止,设运动时间为t (s ),△ABP 的面积为S (cm 2),则S 与t 的函数表达式为.【答案】S =()((10221221(8)242t t t t t ⎧≤≤⎪⎪⎪<≤+⎨⎪⎪++<≤+⎪⎩.【解析】解:(1)当点P 在BC 上运动时,即0≤t ≤2时,B过点A 作AH △BC 于H , △AB,△B =45°, △AH =BH =1, S =12BP ·AH =12t ·1=12t ; (2)当点P 在CD 上运动时,即2<t时,S =12S 四边形ABCD =1; (3)当点P 在DA 上运动时,即t时,S =12AP ·AH =12(t -4)·1=12-t ); 综上所述,S =()((10221221(8)242t t t t t ⎧≤≤⎪⎪⎪<≤⎨⎪⎪++≤+⎪⎩10.(2019·郑州外国语模拟)如图,在等腰△ABC 中,AB =AC =4cm ,△B =30°,点P 从点Bcm /s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发以2cm /s 的速度沿B →A →C 运动到点C 停止,若△BPQ 的面积为y ,运动时间为t (s ),则y 与t 的函数关系式为:.BBDBDP【答案】y=()()22023242t t t ≤≤⎨⎪-+<≤⎪⎩.【解析】解:当点Q 在线段AB 上运动时,即0≤t ≤2,过点Q 作QH △BC 于H ,由题意知,BQt ,BP =2t , △△B =30°, △QH=2t , y =12·BP ·QH =12×(2t )t=t 2,当点Q 在线段AC 上运动时,即2<t ≤4,过点Q 作QH △BC 于H ,由题意知,CQ =8,BP =2t , △△C =30°, △QH(8), y =12·BP ·QH =12×(2t )×2(8t )=2(8t2)=232t -+,BB综上所述,y=()()22023242t t t ≤≤⎨⎪-+<≤⎪⎩.11.(2019·安阳一模)如图,在四边形ABCD 中,AD △BC ,DC △BC ,DC =4 cm ,BC =6 cm ,AD =3 cm ,动点P ,Q 同时从点B 出发,点P 以2 cm /s 的速度沿折线BA -AD -DC 运动到点C ,点Q 以1 cm /s 的速度沿BC 运动到点C ,设P ,Q 同时出发t s 时,△BPQ 的面积为y cm 2,则y 与t 的函数图象大致是( )ABCD【答案】B .【解析】解:过A 作AF △BC 于E ,则四边形ADCF 是矩形, △AD =CF =3,CD =AF =4, △BF =3,在Rt △ABF 中,由勾股定理得:AB =5, P 点从B 运动到A 点需2.5 秒,(1)当0≤t ≤2.5时,过P 作PE △BC 于E , △ PE △AF ,BC△BP PE AB AF=,△254t PE=,即PE=85t,y=12·BQ·PE=12t·85t=245t,是一段开口朝上的抛物线;(2)当2.5<t≤4时,P点在AD上运动,y=12·BQ·CD=2t,是一条线段;(3)当4<t≤6时,P点在CD上运动,y=12·BQ·CP=12t(12-2t)=6t-t2,函数图象为一段开口朝下的抛物线,综上所述,选项B符合要求,故答案为:B.12.(2019·开封模拟)如图,菱形ABCD的边长是4 cm,△B=60°,动点P以1 cm/s的速度从点A出发沿AB方向运动至点B停止,动点Q以2 cm/s的速度从点B出发沿折线BCD运动至点D停止.若点P,Q 同时出发,运动了t s,记△BPQ的面积为S cm2,则下面图象中能表示S与t之间的函数关系的是()DA .B .C .D .【答案】C .【解析】解:当点Q 在线段BC 上时,即0≤t ≤2时, S =12BQ ·BP ·sin △B =122t ·(4-t )=)24t t -, 图象为开口朝上的抛物线;当点Q 在线段CD 上时,即2<t ≤4时, S =12·BP ·(BC ·sin △B ) =12(4-t ))4t -,图象为一条直线,S 随t 的增大而减小; 即答案为:C .13. 如图,矩形ABCD 中,AB =2AD =4cm ,动点P 从点A 出发,以lcm /s 的速度沿线段AB 向点B 运动,动点Q 同时从点A 出发,以2cm /s 的速度沿折线AD →DC →CB 向点B 运动,当一个点停止时另一个点也随之停止.设点P的运动时间是x(s)时,△APQ的面积是y(cm2),则能够反映y与x之间函数关系的图象大致是()【答案】A.【解析】解:当点Q在线段AD上时,即0≤t≤1,y=12·AP·AQ=12(2t)t=t2,为开口朝上的抛物线;当点Q在线段DC上时,即1≤t≤3,y=12·AP·AD=12(2t)×2=2t,为一段线段,y随x的增大而增大;当点Q在线段CB上时,即3≤t≤4,y=12·AP·BQ=12(2t)×(8-2t)=-2t2+8t,为开口朝下的抛物线;综上所述,选项A符合要求,即答案为:A.14.(2019·信阳一模)如图,锐角三角形ABC中,BC=6,BC边上的高为4,直线MN交边AB于点M,交AC 于点N,且MN△BC,以MN为边作正方形MNPQ,设其边长为x(x>0),正方形MNPQ与△ABC公共部分的面积为y,则y与x的函数图象大致是()A B C D【答案】D.【解析】解:当PQ在边BC上时,由题意知,MN△BC,过A作AH△BC于H,交MN于G,△MN AGBC AH=,即464x x-=,解得:x=2.4,当0<x≤2.4时,正方形MNQP在△ABC的内部,△y=x2,为开口朝上的抛物线,当2.4<x≤4时,过A作AH△BC于H,交MN于G,则MN AGBC AH=,即64x AG=,解得:AG=23x,△GH=4-23 x,y=MN·GH=x(4-23x),为开口朝下的抛物线,对称轴为:x=3,即选项D符合题意,即答案为:D.15.(2018·开封二模)如图,在平面直角坐标系中,已知A(0,1),B0),以线段AB为边向上作菱形ABCD,且点D在y轴上. 若菱形ABCD以每秒2个单位长度的速度沿射线AB滑行,直至顶点D落在x轴上时停止.设菱形落在x轴下方部分的面积为S,则表示S与滑行时间t的函数关系的图象为()图1 图2A B C D【答案】A .【解析】解:由A (0,1),B 0),得:∠ABO =30°,∠ADC =∠OAB =60 (1)当点A 在x 轴上方时,菱形落在x 轴下方部分为三角形,S =12·(2t )2,图象为开口朝上的抛物线; (2)当点A 在x 轴上方时,点C 在x 轴上方时,菱形落在x 轴下方部分为梯形,S =12·(t +t -1),图象为一段线段;(3)当点C 在x 轴下方时,S 12(6-2t )(6-2t )t -3)2图象为开口朝下的抛物线; 综上所述,选项A 符合要求; 故答案为:A .。
2020中考数学 函数图象的性质(包含答案)
2020中考数学 函数图象的性质(含答案)一、单选题(共有17道小题)1.正比例函数y kx =和反比例函数21y k x=-+(k 是常数且k ≠0)在同一平面直角坐标系中的图象可能是( )参考答案:C2.反比例函数my x=的图象如图所示,下列结论: ①常数1m <-;②在每个象限内,y 随x 的增大而增大; ③若点()1,A h -,()2,B k 在图象上,则h k <; ④若点(),P x y 在图象上,则点()',P x y --也在图象上。
其中正确的结论的个数是( )A.1B.2C.3D.4参考答案:B3.在同一直角坐标系中,函数ay=-与()1,0y ax a =+≠的图象可能是( )参考答案:B4.在同一坐标系中,函数y ax b=+与2y ax b =+的图象可能为下列哪个( )yxDOy xC Oy x A O y xB O参考答案:C5.如果函数()0,2≠-=k kx y 的图象不经过第一象限,那么函数xky=的图象一定在( ) A.第一、二象限 B.第三、四象限 C.第一、三象限 D.第二、四象限 参考答案:D6.在同一直角坐标系中,反比例函数()0ky k x=≠和正比例函数()0y kx k =≠的图象可能是()A. B. C. D. 参考答案:C7.在同一坐标系中,函数xky =和2+=kx y 的图象大致可能是( )x yO xyO xyOxyOC. D.参考答案:A8.在同一平面直角坐标系内,一次函数b ax y +=与二次函数b x ax y ++=82的图象可能是( )参考答案:C9.若0ab <,则正比例函数y ax =和反比例函数y bx=在同一坐标系中的大致图象可能是( )参考答案:B10.若正比例函数()0y mx m =≠,y 随x 的增大而减小,则它和二次函数2y mx m =+的图象大致可能是( )y x A O yxBOyxDOyxCOyxDO yx COyxB OB参考答案:B12.如图,在同一直角坐标系中,一次函数y ax c =-和二次函数2y ax c =-+的图象大致可能为( )参考答案:D13.在同一平面直角坐标系中,一次函数b ax y +=和二次函数c bx ax y ++=2的图象可能为( )参考答案:A14.二次函数bx ax y +=2的图象如图所示,那么一次函数y )参考答案:C15.已知0b <,二次函数22y ax bx a =++-A A BCDyxDOyxCOyxBOy xAOC D试根据图象分析,a 的值应等于( )A .-2B .-1C .1D .2参考答案:C16.二次函数2y ax bx c =++的图象如图所示,反比例函数by x=与一次函数y cx a =+在同一平面直角坐标系中的大致图象是( )参考答案:B17.在同一平面直角坐标系中,函数y mxm =+,和函数222,)0y mx x m m =-++≠(是常数,且的图象可能是( )参考答案:D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020中考复习:简单动点问题的函数图像
1.(2014徐州18题3分)如图①,在正方形ABCD 中,点P 沿边DA 从点D 开始向点A 以1 cm/s 速度移动;同时点Q 沿边AB ,BC 从点A 开始向点C 以2 cm/s 的速度移动,当点P 移动到点A 时,P ,Q 同时停止移动,设点P 出发x s 时,△PAQ 的面积为y cm2,y 与x 的函数图象如图②所示,则线段EF 所在直线对应的函数关系式为____________.
2.(2019甘肃省卷)如图①,在矩形ABCD 中,AB<AD ,对角线AC 、BD 相交于点O ,动点P 由点A 出发,沿AB →BC →CD 向点D 运动,设点P 的运动路程为x ,△AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AD 边的长为( )
A. 3
B. 4
C. 5
D. 6
3. 如图①,点P 从△ABC 的顶点A 出发,沿A -B -C 方向匀速运动,到达点C 时停止运动.设点P 的运动时间为x ,线段AP 的长度为y ,y 与x 的函数图象如图②所示,其中D 为曲线部分的最低点,则△ABC 的面积为________.
【思维教练】当P 点在AB 上时,AP 长度逐渐增大,结合图象可得AB =________,当P 点从B 到C 运动时,AP 长度先逐渐减小,当AP________BC 时,AP 最短,而后AP 逐渐增大,则从图象可得△ABC 为________三角形,则即可通过三线合一求得△ABC 的面积.
4. (2018河南)如图①,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1 cm/s 的速度匀速运动到点B.图②是点F 运动时,△FBC 的面积y(cm2)随时间x(s)变化的关系图象,则a 的值为( )
A. 5
B. 2
C. 2
5 D. 2
5. (2018乌鲁木齐改编)如图①,在矩形ABCD 中,E 是AD 上一点,点P 从点B 沿折线BE -ED -DC 运动到点C 时停止;点Q 从点B 沿BC 运动到点C 时停止,速度均为每秒1个单位长度.若点P 、Q 同时开始运动,设运动时间为t ,△BPQ 的面积为y ,已知y 与t 的函数图象如图②所示,当0≤t ≤10时,y 与t 的函数关系式为________________.
6.(2019云龙区二模)如图,△ABC为直角三角形,∠C=90°,BC=2 cm,∠A=30°,四边形DEFG为矩形,DE=2 3 cm,EF=6 cm,且点C、B、E、F在同一条直线上,点B与点E重合,Rt△ABC以每秒1 cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为y cm2,运动时间为x s.能反映y cm2与x s之间的函数关系的大致图象是()
7.(2019乐山)如图①,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥A B.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x 的函数关系如图②所示,则四边形ABCD的周长是.。