2018年苏教版数学必修3 第2章 学业分层测评9
2018版高中数学 第二章 统计 2.3.2 方差与标准差学业分层测评 苏教版必修3
2.3.2 方差与标准差(建议用时:45分钟)[学业达标]一、填空题1.一组数据1,3,x 的方差为23,则x =________.【解析】 由x -=1+3+x 3=4+x3,且s 2=13×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-4+x 32+⎝ ⎛⎭⎪⎫3-4+x 32+⎝ ⎛⎭⎪⎫x -4+x 32=23,得x 2-4x +4=0,∴x =2. 【答案】 22.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4. 则平均命中环数为________;命中环数的标准差为________.【解析】 平均数为110(7+8+7+9+5+4+9+10+7+4)=7;方差为s 2=110(0+1+0+4+4+9+4+9+0+9)=4,所以s =2.【答案】 7 23.某样本的5个数据分别为x,8,10,11,9,已知这组数据的平均数为10,则其方差为________.【解析】 由题意知x +8+10+11+9=50,解得x =12,故方差s 2=15[(12-10)2+(8-10)2+(10-10)2+(11-10)2+(9-10)2]=2.【答案】 24.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:【解析】 ∵x -甲=7,s 2甲=15(12+02+02+12+02)=25,x -乙=7,s 2乙=15(12+02+12+02+22)=65,∴s 2甲<s 2乙,∴方差中较小的一个为s 2甲,即s 2=25.【答案】 255.对划艇运动员甲、乙两人在相同条件下进行了6次测试,测得他们最大速度(单位:m/s)的数据如下:甲 27,38,30,37,35,31; 乙 33,29,38,34,28,36.根据以上数据,可以判断________更优秀.【解析】 x -甲=16(27+38+30+37+35+31)=33(m/s).s 2甲=16[(27-33)2+(38-33)2+…+(31-33)2]=946≈15.7(m 2/s 2). x -乙=16(33+29+38+34+28+36)=33(m/s),s 2乙=16×[(33-33)2+(29-33)2+…+(36-33)2]=766≈12.7(m 2/s 2). ∴x -甲=x -乙,s 2甲>s 2乙,说明甲乙两人的最大速度的平均值相同,但乙比甲更稳定,乙比甲更优秀.【答案】 乙6.甲、乙两名同学在5次体育测试中的成绩统计如茎叶图238所示,若甲、乙两人的平均成绩分别是X 甲、X 乙,则下列结论正确的有________.(填序号)图238①X 甲<X 乙,乙比甲成绩稳定; ②X 甲>X 乙,甲比乙成绩稳定; ③X 甲>X 乙,乙比甲成绩稳定; ④X 甲<X 乙,甲比乙成绩稳定.【解析】 ∵甲同学的成绩为78,77,72,86,92,乙同学的成绩为78,82,88,91,95, ∴X 甲=78+77+72+86+925=81,X 乙=78+82+88+91+955=86.8,∴X 甲<X 乙,从茎叶图上数据的分布情况看,乙同学的成绩更集中于平均值附近,这说明乙比甲成绩稳定.【答案】 ①7.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图239中以x 表示:图239则7个剩余分数的方差为________.【解析】 根据茎叶图,去掉1个最低分87,1个最高分99,则17[87+94+90+91+90+(90+x )+91]=91,∴x =4.∴s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=367.【答案】3678.若样本x 1+1,x 2+1,…,x n +1的平均数为10,其方差为2,则对于样本x 1+2,x 2+2,…,x n +2的平均数为________,方差为________.【解析】 ∵x 1++x 2++…+x n +n=10,故x 1+x 2+…+x n =10n -n =9n , 故x 1+x 2+…+x n +2n =11n , ∴x 1++x 2++…+x n +n=11,s 21=1n [(x 1+1-10)2+(x 2+1-10)2+…+(x n +1-10)2]=1n[(x 1-9)2+(x 2-9)2+…+(x n -9)2]=1n[(x 1+2-11)2+(x 2+2-11)2+…+(x n +2-11)2]=s 22.故所求的平均数为11,方差为2. 【答案】 11 2 二、解答题9.某盐场有甲、乙两套设备包装食盐,在自动包装传送带上,每隔3分钟抽一包称其重量是否合格,分别记录数据如下:甲套设备:504,510,505,490,485,485,515,510,496,500;乙套设备:496,502,501,499,505,498,499,498,497,505.试确定这是何种抽样方法?比较甲、乙两套设备的平均值与方差,说明哪套包装设备误差较小?【解】 (1)根据三种抽样方法的定义,可知这种抽样方法是系统抽样. (2)甲套设备的平均值、方差分别为 x -1=110(504+510+505+490+485+485+515+510+496+500)=500,s 21=110[(504-500)2+(510-500)2+…+(500-500)2]=103.2, 乙套设备的平均值、方差分别为 x -2=110(496+502+501+499+505+498+499+498+497+505)=500,s 22=110[(496-500)2+(502-500)2+…+(505-500)2]=9. 可见,x -2=x -1,s 21>s 22,所以乙套设备较甲套设备更稳定,误差较小.10.甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图2310所示.图2310(1)分别求出两人得分的平均数与方差;(2)根据图和上面的结果,对两人的训练成绩作出评价. 【解】 (1)甲、乙两人五次测试的成绩分别为: 甲 10分 13分 12分 14分 16分 乙 13分 14分 12分 12分 14分 甲的平均得分为:10+13+12+14+165=13,乙的平均得分为:13+14+12+12+145=13.s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4,s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由s 2甲>s 2乙,可知乙的成绩较稳定.从折线图看,甲的成绩基本上呈上升状态,而乙的成绩在平均线上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.[能力提升]1.甲、乙两名学生六次数学测验成绩(百分制)如图2311所示.图2311①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分比乙同学高; ③甲同学的平均分比乙同学低;④甲同学成绩的极差小于乙同学成绩的极差. 上面说法正确的是________.(填序号) 【答案】 ③④2.某人5次上班途中所花的时间(单位:分钟)分别为x 、y 、10、11、9.已知这组数据的平均数为10,方差为2,则|x -y |的值为________.【解析】 x -=x +y +10+11+95=10,可得x +y =20, ①根据方差的计算公式s 2=15[(x -10)2+(y -10)2+12+12]=2,可得x 2+y 2-20(x +y )+200=8, ②由①②得|x -y |=4. 【答案】 43.由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)【解析】 假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4,则⎩⎪⎨⎪⎧x 1+x 2+x 3+x44=2,x 2+x 32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4.又s =12x 1-2+x 2-2]=1,∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为方程(x -2)2+(y -2)2=2的解,分析知x 1,x 2,x 3,x 4应为1,1,3,3.【答案】 1,1,3,34.师大附中三年级一班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:【解】 设第一组20名学生的成绩为x i (i =1,2,…,20), 第二组20名学生的成绩为y i (i =1,2,…,20), 依题意有x -=120(x 1+x 2+…+x 20)=90,y -=120(y 1+y 2+…+y 20)=80,故全班平均成绩为140(x 1+x 2+…+x 20+y 1+y 2+…+y 20)=140(90×20+80×20)=85;又设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 21=120(x 21+x 22+…+x 220-20x 2), s 22=120(y 21+y 22+…+y 220-20y 2)(此处x -=90,y -=80), 又设全班40名学生的标准差为s ,平均成绩为z (z =85),故有s 2=140(x 21+x 22+…+x 220+y 21+y 22+…+y 220-40z 2)=140(20s 21+20x 2+20s 22+20y 2-40z 2)=12(62+42+902+802-2×852)=51.即s =51.所以全班学生的平均成绩为85分,标准差为51.。
2018版高中数学必修三学业分层测评:第1章 算法初步4
学业分层测评(四)(建议用时:45分钟)[学业达标]一、填空题1.如果执行如图1-2-36所示的流程图,那么输出的p为________.图1-2-36【解析】第1次k=1,p=3;第2次k=2,p=12;第3次k=3,p=60;第4次k=4,p=360;而k=4时不符合条件,终止循环输出p=360.【答案】3602.如图1-2-37,该流程图运行后输出的结果为________.图1-2-37【解析】 依次运行该程序可得:①b =2,a =2;②b =22=4,a =3;③b =24=16,a =4.不满足条件,退出循环.故应输出16.【答案】 163.流程图1-2-38所示的s 的表达式为________.图1-2-38【解析】 由流程图可知该程序表达的是计算并输出1+13+15+…+12N -1的值.【答案】 s =1+13+15+17+…+12N -14.如图1-2-39所示,程序框图的输出结果是________.图1-2-39【解析】 由T =1+2+3+…+k =12(k +1)k >105,得k >14(k <-15舍),故输出k =15.【答案】 155.阅读如图1-2-40所示的流程图,运行相应的程序.若输入m 的值为2,则输出的结果i=________.【导学号:11032011】图1-2-40【解析】第一次循环:i=1,A=2,B=1,A>B;第二次循环:i=2,A =4,B=2,A>B;第三次循环:i=3,A=8,B=6,A>B;第四次循环:i=4,A=16,B=24,A<B;终止循环,输出i=4.【答案】 46.若流程图1-2-41所给的程序运行的结果为S=90,那么判断框中应填入的关于k的判断条件是________.图1-2-41【解析】由流程图可知其作用是计算S=1×10×9×…,当运行结果为S =90时,应有S=1×10×9,∴当k=8时应符合条件且k>8不符合条件,∴条件应为k≤8或k<9.【答案】k≤8或k<97.如图1-2-42所示的流程图,表示的算法功能是________.图1-2-42【解析】该流程图是直到型循环结构流程图,表示的算法是求使12+22+…+n2>2 017成立的最小正整数n.【答案】求使12+22+…+n2>2 017成立的最小正整数n8.阅读如图1-2-43所示的流程图,运行相应的程序,输出的S值等于________.图1-2-43【解析】第1次循环S=1,k=1<4成立,S=2×1-1=1,k=1+1=2<4成立;第2次循环S=2×1-2=0,k=2+1=3<4成立;第3次循环S=2×0-3=-3,k=3+1=4<4不成立,循环结束,此时S=-3.【答案】-3二、解答题9.用循环结构写出计算11×3+12×4+13×5+…+1100×102的流程图.【解】法一:法二:10.某班共有学生50人,在一次数学测试中,要搜索出测试中及格(60分及以上)的成绩,试设计一个算法,并画出流程图.【解】算法步骤如下:S1把计数变量n的初始值设为1;S2输入一个成绩r,比较r与60的大小;若r≥60,则输出r,然后执行S3;若r<60,则执行S3;S3使计数变量n的值增加1;S4判断计数变量n与学生个数50的大小,若n≤50,返回S2,若n大于50,则结束.流程图如下图:[能力提升]1.按如图1-2-44所示的流程图运算,若输出k=2,则输入x的取值范围是________.图1-2-44【解析】第一次运行x=2x+1,k=1,第二次运行x=2(2x+1)+1,k=2,此时输出x的值,则2x+1≤115且2(2x+1)+1>115,解得28<x≤57.【答案】(28,57]2.根据条件把图1-2-45中的流程图补充完整,求区间[1,1 000]内所有奇数的和,①处填________;②处填________.【导学号:11032012】图1-2-45【解析】求[1,1 000]内所有奇数的和,初始值i=1,S=0,并且i<1 000,所以①应填S←S+i,②为i←i+2.【答案】S←S+i i←i+23.某流程图如图1-2-46所示,若输出的S=57,则判断框内为________.图1-2-46【解析】由流程图知k=1时,S=1;当k=2时,S=2×1+2=4;当k=3时,S=2×4+3=11;当k=4时,S=2×11+4=26;当k=5时,S=2×26+5=57,此时与输出结果一致.所以此时k>4(或k≥5).【答案】k>4(或k≥5)4.写出计算2+4+6+…+100的至少两个算法,并画出流程图.【解】算法1(当型循环结构)S1S←0;S2I←2;S3如果I≤100,那么转S4,否则转S6;S4S←S+I;S5I←I+2,转S3;S6输出S.算法2(直到型循环结构)S1S←0;S2I←2;S3S←S+I;S4I←I+2;S5如果I>100,那么转S3;S6输出S.算法3运用公式2+4+6+…+2n=n(n+1)直接计算S1n←50;S2S←n(n+1);S3输出S.。
高中数学学业分层测评9苏教版必修3word版本
学业分层测评(九)(建议用时:45分钟)[学业达标]一、填空题1.关于简单随机抽样的特点,有以下几种说法,其中正确的是________.(填序号)①要求总体的个数有限;②从总体中逐个抽取;③它是一种不放回抽样;④每个个体被抽到的机会不一样,与先后有关.【解析】由简单随机抽样的特点可知④不对,①②③对.【答案】①②③2.从个体数为N的总体中抽取一个容量为k的样本,采用简单随机抽样,当总体的个数不多时,一般用________进行抽样.【解析】由抽签法特点知宜采用抽签法.【答案】抽签法3.下面的抽样方法是简单随机抽样的是________.①从某城市的流动人口中随机抽取100人作调查;②在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方法确定号码的后四位为2 709的为三等奖;③在待检验的30件零件中随机逐个拿出5件进行检验.【解析】①中总体容量较大,不宜用简单随机抽样;②中抽取的个体的间隔是固定的,不是简单随机抽样.【答案】③4.(2015·苏州高一检测)采用抽签法从含有3个个体的总体{a,b,c}中抽取一个容量为2的样本,则所有可能的样本是________.【解析】从三个总体中任取两个即可组成样本,所有可能的样本为{a,b},{a,c},{b,c}.【答案】{a,b},{a,c},{b,c}5.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性、“第二次被抽到”的可能性分别是________. 【导学号:90200035】【解析】简单随机抽样中,每个个体被抽到的机会均等,都为110.【答案】110,1106.某工厂的质检人员对生产的100件产品采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是________.【解析】 根据随机数表法的要求,只有编号时数字位数相同,才能达到随机等可能抽样.故②③正确.【答案】②③7.从总数为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N =________.【解析】 由题意得,30N=25%,∴N =120. 【答案】 1208.一个总体的60个个体编号为00,01,…,59,现需从中抽取一个容量为6的样本,请从随机数表的倒数第5行(如下表,且表中下一行接在上一行右边)第10列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 3879 58 69 32 81 76 80 26 92 82 8084 25 39【解析】 读取的数字两个一组为01,87,47,20,01,83,87,95,86,93,28,17,68,02,…,则抽取的样本号码是01,47,20,28,17,02.【答案】 01,47,20,28,17,02二、解答题9.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?【解】 (1)将元件的编号调整为010,011,012,...,099,100, (600)(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读(见课本随机数表);(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;(4)以上号码对应的6个元件就是要抽取的样本.10.某合资企业有150名职工,要从中随机地抽出20人去参观学习.请用抽签法和随机数表法进行抽取该样本,并写出过程.【解】 (抽签法)先把150名职工编号:1,2,3,…,150,把编号写在小纸片上,揉成小球,放入一个不透明的袋子中,充分搅拌均匀后,从中逐个不放回地抽取20个小球,这样就抽出了去参观学习的20名职工.(随机数表法)第一步,先把150名职工编号:001,002,003, (150)第二步,从随机数表中任选一个数,如第10行第4列数0.第三步,从数字0开始向右连续读数,每3个数字为一组,在读取的过程中,把大于150的数和与前面重复的数去掉,这样就得到20个样本的号码如下:086,027,079,050,074,146,148,093,077,119,022,025,042,045,128,121,038,130,125,033.[能力提升]1.为了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.(填序号)①2 000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤这个抽样方法可采用随机数表法抽样;⑥每个运动员被抽到的机会相等.【解析】①2 000名运动员不是总体,2 000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.【答案】④⑤⑥2.从一群正在游戏的小孩中随机抽出k 人,一人分一个苹果,让他们返回继续做游戏.过了一会儿,再从中任取m 人,发现其中有n 个小孩曾分过苹果,估计参加游戏的小孩的人数为________.【解析】 设参加游戏的小孩有x 人,则k x =n m ,x =km n. 【答案】km n3.一个总体的个体数为60,编号为00,01,02,…,59,现需从中抽取一个容量为7的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列的1开始,依次向下,到最后一行后向右,直到取足样本,则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 9538 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 8082 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 5024 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 4996 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60【解析】 先选取18,向下98不符合要求,下面选取05,向右读数,07、35、59、26、39,因此抽取的样本的号码为18、05、07、35、59、26、39.【答案】18、05、07、35、59、26、394.某电视台举行文艺晚会,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.【解】第一步先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.。
高中数学 第三章 概率 3.3 几何概型学业分层测评 苏教版必修3(2021年最新整理)
2018版高中数学第三章概率3.3 几何概型学业分层测评苏教版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第三章概率3.3 几何概型学业分层测评苏教版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第三章概率3.3 几何概型学业分层测评苏教版必修3的全部内容。
3。
3 几何概型(建议用时:45分钟)[学业达标]一、填空题1.用随机模拟的方法来估计圆周率π的近似值.在正方形中随机撒一把芝麻,如果撒了1 000颗芝麻,落在正方形内切圆内的芝麻点数为778颗,那么这次模拟中π的近似值是________.【解析】 根据几何概型及用频率估计概率的思想,πR 24R2=错误!=错误!,其中R 为正方形内切圆的半径,解得π=3.112。
【答案】 3.1122.已知函数f (x )=log 2x ,x ∈错误!,在区间错误!上任取一点x 0,则使f (x 0)≥0的概率为________.【解析】 欲使f (x )=log 2x ≥0,则x ≥1,而x ∈错误!,∴x ∈[1,2],从而由几何概型概率公式知所求概率P =错误!=错误!.【答案】 错误!3.如图3。
3。
5,在平面直角坐标系中,∠xOT =60°,以O 为端点任作一射线,则射线落在锐角∠xOT 内的概率是________。
图3.3.5【解析】 以O 为起点作射线,设为OA ,则射线OA 落在任何位置都是等可能的,落在∠xOT 内的概率只与∠xOT 的大小有关,符合几何概型的条件.记“射线OA 落在锐角∠xOT 内”为事件A ,其几何度量是60°,全体基本事件的度量是360°,由几何概型概率计算公式,可得P (A )=错误!=错误!.【答案】 164.若将一个质点随机投入如图3.3。
苏教版高中数学必修三版第2章学业分层测评12.docx
高中数学学习材料鼎尚图文*整理制作学业分层测评(十二)(建议用时:45分钟)[学业达标]一、填空题1.对于样本频率分布折线图与总体密度曲线的关系,下列说法中正确的是________.(填序号)①频率分布折线图与总体密度曲线无关;②频率分布折线图就是总体密度曲线;③样本容量很大的频率分布折线图就是总体密度曲线;④如果样本容量无限增大、分组的组距无限减小,那么频率分布折线图就会无限接近总体密度曲线.【解析】由总体密度曲线定义知④正确.【答案】④2.为了解高二年级女生的身高情况,从中抽出20名进行测量,所得结果如下:(单位:cm)149159142160156163145150148151156144148149153143168168152155在列样本频率分布表的过程中,如果设组距为4 cm,那么组数为________.【解析】极大值为168,极小值为142,极差为168-142=26,根据组距=极差组数,知组数为7. 【答案】 73.一个容量为40的样本数据,分组后,组距与频数如下:[5,10)5个;[10,15)14个;[15,20)9个;[20,25)5个;[25,30)4个;[30,35]3个.则样本在区间[20,+∞)上的频率为________.【解析】 由题意知在区间[20,+∞)上的样本数为5+4+3=12个,故所求频率为1240=0.3.【答案】 0.34.如图2-2-5是容量为100的样本的频率分布直方图,试根据图中的数据填空.图2-2-5(1)样本数据在范围[6,10)内的频率为________; (2)样本数据落在范围[10,14)内的频数为________. 【解析】 (1)样本数据在[6,10)内频率为0.08×4=0.32. (2)在[10,14)内的频数为0.09×4×100=36. 【答案】 (1)0.32 (2)365.在样本频率分布直方图中,共有11个小矩形,若中间一个小矩形的面积等于其他10个小矩形的面积的和的14,且样本容量为100,则中间一组的频数为________.【解析】 设中间一个小矩形的面积为x ,由题意得x 1-x =14,解得x =15,故中间一组的频数为100×15=20.【答案】 206.为了了解某地区10 000名高三男生的身体发育情况,抽查了该地区100名年龄为17~18岁的高三男生体重(kg),得到频率分布直方图如图2-2-6.根据图示,请你估计该地区高三男生中体重在[56.5,64.5]的学生人数是________.图2-2-6【解析】 依题意得,该地区高三男生中体重在[56.5,64.5]的学生人数是10 000×(0.03+2×0.05+0.07)×2=4 000.【答案】 4 0007.某班的全体学生参加英语测试,成绩的频率分布直方图如图2-2-7,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是________.【导学号:11032040】图2-2-7【解析】 成绩在[20,40)和[40,60)的频率分别是0.1,0.2,则低于60分的频率是0.3.设该班学生总人数为m ,则15m =0.3,m =50.【答案】 508.对某市“两学一做”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图2-2-8),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:图2-2-8(1)[25,30)年龄组对应小矩形的高度为________;(2)据此估计该市“两学一做”活动中志愿者年龄在[25,35)的人数为________.【解析】 设[25,30)年龄组对应小矩形的高度为h ,则5×(0.01+h +0.07+0.06+0.02)=1,h =0.04.志愿者年龄在[25,35)的频率为5×(0.04+0.07)=0.55,故志愿者年龄在[25,35)的人数约为0.55×800=440.【答案】 (1)0.04 (2)440 二、解答题9.某工厂对一批产品进行了抽样检测,图2-2-9是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是多少?图2-2-9【解】 产品净重小于100克的频率为(0.050+0.100)×2=0.300,已知样本中产品净重小于100克的个数是36,设样本容量为n ,则36n =0.300,所以n =120,净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90.10.下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位:cm).分组 [122, 126) [126, 130) [130, 134) [134, 138) [138, 142) 人数58102233分组 [142, 146) [146, 150) [150, 154) [154, 158] 人数201165(1)列出样本频率分布表; (2)画出频率分布直方图;(3)估计身高小于134 cm 的人数占总人数的百分比. 【解】 (1)样本频率分布表如下:分组 频数 频率 [122,126) 5 0.04 [126,130) 8 0.07 [130,134) 10 0.08 [134,138) 22 0.18 [138,142) 33 0.28 [142,146) 20 0.17 [146,150) 11 0.09 [150,154) 6 0.05 [154,158] 5 0.04 合计1201(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134 cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm的人数占总人数的19%.[能力提升]1.某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下,则表中字母m、n、M、N所对应的数值分别为________、________、________、________.组别频数频率[145.5,149.5)80.16[149.5,153.5)60.12[153.5,157.5)140.28[157.5,161.5)100.20[161.5,165.5)80.16[165.5,169.5]m n合计M N【解析】由题意知样本容量为80.16=50,故M=50,从而m=50-(8+6+14+10+8)=4,所以n=450=0.08;N=1.【答案】40.0850 12.从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图2-2-10).由图中数据可知a=________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.图2-2-10【解析】由题意知1-(0.005+0.035+0.020+0.010)×10=0.3,故a=0.3 10=0.030;由分层抽样的方法知,在[140,150]内的学生中选取的人数为18×0.010.03+0.02+0.01=18×16=3人.【答案】 0.030 33.某市数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图2-2-11所示,已知130~140分数段的人数为90人,求90~100分数段的人数a =________,则下边的流程图(图2-2-12)的功能是________.图2-2-11 图2-2-12【解析】 ①在频率分布图中,由题意可得900.05=a0.45,∴a =810. ②在图2中,∵a =810, n ←1时,S ←1,S ←1×1, n ←2时,S ←1×1,S ←1×1×2, n ←3时,S ←1×2,S ←1×2×3, 依此循环,n >810时终止循环,输出S . 此时S =1×2×3×4× (810)故该流程图的功能是计算并输出1×2×3×4×…×810的值. 【答案】 810 计算并输出1×2×3×…×810的值4.从某学校高三年级800名学生中随机抽取50名测量身高,被抽取的学生的身高全部介于155 cm 和195 cm 之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…;第八组[190,195],如图2-2-13是按上述分组方法得到的频率分布直方图.图2-2-13(1)根据已知条件填写下面表格:组别12345678样本数(2)估计这所学校高三年级800名学生中身高在180 cm以上(含180 cm)的人数.【解】(1)由频率分布直方图得第七组的频率为1-(0.008×2+0.016×2+0.04×2+0.06)×5=0.06,∴第七组的人数为0.06×50=3.同理可得各组人数如下:组别12345678样本数2410101543 2(2)由频率分布直方图得后三组的频率为0.016×5+0.06+0.008×5=0.18.估计这所学校高三年级身高在180 cm以上(含180 cm)的人数为800×0.18=144.。
2018-2019学年高中数学苏教版必修3学业分层测评2 顺序结构
学业分层测评(二)(建议用时:45分钟)[学业达标]一、填空题1.下列关于流程图的说法正确的是________.(填序号)①用流程图表示算法直观、形象,容易理解;②流程图能清楚地展现算法的逻辑结构,是算法的一种表现形式;③在流程图中,起止框是任何流程不可少的;④输入和输出框可用在算法中任何需要输入、输出的位置.【解析】 由流程图的概念知①②③④都正确.【答案】 ①②③④2.如图129所示的流程图最终输出结果是________.图129【解析】 第二步中y=2,第三步中y=22+1=5.【答案】 53.如图1210所示的流程图表示的算法意义是________.图1210【解析】 由平面几何知识知r为三边长分别为3,4,5的直角三角形内切圆半径,S表示内切圆面积.【答案】 求边长为3,4,5的直角三角形内切圆面积4.如图1211所画流程图是已知直角三角形两条直角边a、b求斜边c的算法,其中正确的是________.(填序号)图1211【解析】 根据流程图的功能知,对于②计算顺序不对,对于③输入、输出框不对,对于④处理框不对,所以只有①对.【答案】 ①5.给出下列流程图1212:图1212若输出的结果为2,则①处的处理框内应填的是________.【解析】 由题意知,处理框中应是x 的值,由(2x +3)-3=2,得x =1.故应填x ←1.【答案】 x ←16.阅读下列流程图1213,若输出结果为6,则图中的x =________.图1213【解析】 由流程图可得(x +2)+3=6,解得x =1.【答案】 17.已知两点A (7,-4),B (-5,6),完成下面所给的求线段AB 垂直平分线方程的算法.S1求线段AB 的中点C 的坐标,得C 点坐标为________;S2求线段AB 的斜率,得k AB ←________;S3求线段AB 中垂线的斜率,得k ←________;S4求线段AB 的垂直平分线方程为_________________________.【解析】 (1)由中点坐标公式:设C (x 0,y 0),则x 0==1,y 0=7+(-5)2=1,∴C 点坐标为(1,1).-4+62(2)由斜率公式知:k AB ==-.6-(-4)-5-756(3)直线AB 的中垂线的斜率与直线AB 的斜率互为负倒数,∴k =.65(4)由点斜式方程得y -1=(x -1),即6x -5y -1=0.65【答案】 (1,1) - 6x -5y -1=056658.流程图1214结束时x 、y 的值分别是________.图1214【解析】 当x =1,y =2时y =x +y =3,x =y +1=3+1=4,y =x +1=4+1=5,t =x =4,x =y =5,y =t =4.【答案】 5,4二、解答题9.已知函数y =2x +3,设计一个算法,若给出函数图象上任一点的横坐标x (由键盘输入),求该点到坐标原点的距离,并画出流程图..【解】 算法如下:S1 输入横坐标的值x .S2 计算y ←2x +3.S3 计算d ←.x 2+y 2S4 输出d.流程图如图:10. 如图1215所示的流程图,当输入的x的值为0和4时,输出的值相等,根据该图和下列各小题的条件回答下面几个问题.图1215(1)该流程图解决的是一个什么问题?(2)当输入的x的值为3时,求输出的f(x)的值;(3)要想使输出的值最大,求输入的x的值..【解】 (1)该流程图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4,所以f(x)=-x2+4x.因为f(3)=-32+4×3=3,所以当输入的x 的值为3时,输出的f (x )的值为3.(3)因为f (x )=-x 2+4x =-(x -2)2+4,当x =2时,f (x )max =4,所以要想使输出的值最大,输入的x 的值应为2.[能力提升]1.写出流程图1216的运行结果. 【导学号:90200006】图1216(1)S =________.(2)若R =8,则a =________.【解析】 (1)由流程图知S =+=,故应填.24425252(2)由流程图可得a =32×=32×2=64.故填64.82【答案】 (1) (2)64522.如图1217是计算图中的阴影部分面积的一个流程图,则①中应该填________.图1217【解析】 设阴影部分面积为M ,则M =x 2-π·2=x 2.(x 2)(1-π4)【答案】 M ←x 2(1-π4)3.已知一个三角形三条边长分别为a ,b ,c ,利用海伦—秦九韶公式(令p =,则三角形的面积S =).图1218是一个用海伦—a +b +c2p(p -a )(p -b )(p -c )秦九韶公式求三角形面积的流程图.图1218则当a =5,b =6,c =7时,输出的S =________.【解析】 由流程图的意义知p ==9,5+6+72所以S ===6.9×(9-5)×(9-6)×(9-7)2166【答案】 64.有关专家猜测,在未来几年内,中国的通货膨胀率保持在3%左右,这对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2015年的价格是10 000元,请用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格..【解】 用P表示钢琴的价格,则有:2016年P=10 000×(1+3%)=10 300;2017年P=10 300×(1+3%)=10 609;2018年P=10 609×(1+3%)=10 927.27;2019年P=10 927.27×(1+3%)≈11 255.09.因此,价格的变化情况表为:年份2015年2016年2017年2018年2019年钢琴的价10 00010 30010 60910 927.2711 255.09格P/元流程图如图:。
高中数学 学业分层测评18 苏教版必修3
学业分层测评(十八)(建议用时:45分钟)[学业达标]一、填空题1.已知集合A ={2,5},在A 中可重复地依次取出三个数a ,b ,c ,构成空间直角坐标系内的点,则满足条件的点共________个.【解析】 从集合A 中有重复地取3个数,所有情况有(2,2,2),(5,2,2),(2,5,2),(2,2,5),(2,5,5),(5,2,5),(5,5,2),(5,5,5).共8个点.【答案】 82.从1,2,3三个数字组成的无重复数字的两位数中,任取一个数,恰为偶数的概率为________.【解析】 两位数有12,21,23,32,13,31,偶数有2个,因而任取一个数,恰为偶数的概率为26,即13. 【答案】 133.(2015·南通高一检测)将一枚硬币投掷3次,出现“一个正面、两个反面”的概率是________.【解析】 将一枚硬币投掷3次,所得结果共有(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反)8种,其中“一个正面,两个反面”共包括3种情况,故所求概率为38. 【答案】 384.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.【解析】 从四条线段中任取三条有4种取法:(2,3,4),(2,3,5),(2,4,5),(3,4,5).其中能构成三角形的取法有3种:(2,3,4),(2,4,5),(3,4,5),故所求概率为34. 【答案】 345.(2015·南京高二检测)图321是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为________.图321【解析】 茎叶图中的数据为18,19,21,22,22,27,29,30,30,33,共10个,其中落在区间[22,30)内的数有22,22,27,29,30,30共6个,故所求概率为610=35. 【答案】 356.现有5根竹竿,他们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则他们的长度恰好相差0.3 m 的概率为________. 【导学号:90200071】【解析】 从5根竹竿中,一次随机抽取2根竹竿的方法数为10.而满足他们的长度恰好相差0.3 m 的方法数为2个,即2.5和2.8,2.6和2.9.由古典概型概率的求法得P =210=15. 【答案】 157.在平面直角坐标系内,从横坐标与纵坐标都在集合A ={0,1,2}内取值的点中任取一个,此点正好在直线y =x 上的概率为________.【解析】 由x ,y ∈{0,1,2},这样的点共有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)共9个,其中满足在直线y =x 上的点(x ,y )有(0,0),(1,1),(2,2)3个,所以所求概率为P =39=13. 【答案】 138.用红黄蓝三种不同的颜色给三个矩形随机地涂色,每个矩形只涂一种颜色,则三个矩形颜色都相同的概率是________,三个矩形颜色都不同的概率是________.【解析】 各种涂色的情况列树形图如下:由树形图知共有27种情况,其中三个矩形颜色都相同的有3种情况,故概率为327=19;三个矩形颜色都不同共有6种情况,故概率为627=29.【答案】 19 29二、解答题9.设集合P ={b,1},Q ={c,1,2},P ⊆Q ,若b ,c ∈{2,3,4,5,6,7,8,9}.(1)求b =c 的概率;(2)求方程x 2+bx +c =0有实根的概率.【解】 (1)因为P ⊆Q ,当b =2时,c =3,4,5,6,7,8,9;当b >2时,b =c =3,4,5,6,7,8,9,基本事件总数为14.其中b =c 的事件数为7种,所以b =c 的概率为714=12. (2)记“方程有实根”为事件A ,若使方程有实根,则Δ=b 2-4c ≥0,即b =c =4,5,6,7,8,9 共6种.所以P (A )=614=37. 10.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.【解】 (1)甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E 、F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F )共9种.从中选出的两名教师性别相同的结果有:(A ,D ),(B ,D ),(C ,E ),(C ,F ),共4种,选出的两名教师性别相同的概率为P =49. (2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种,从中选出两名教师来自同一学校的结果有:(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F ),共6种,选出的两名教师来自同一学校的概率为P =615=25. [能力提升]1.从{a ,b ,c ,d ,e }的所有子集中任取一个,这个集合恰是集合{a ,b ,c }的子集的概率是________.【解析】 集合{a ,b ,c ,d ,e }的所有子集共25=32个,集合{a ,b ,c }的子集共23=8个,故所求概率为832=14. 【答案】 142.若将一枚骰子连续掷两次分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 在直线x +y =5下方的概率是________.【解析】 若m +n <5,即点数和小于5,则(m ,n )在x +y =5下方,点(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)满足题意,∴P =636=16. 【答案】 163.把一个体积为n ×n ×n (n ≥3,n ∈N *)cm 3表面涂有红漆的正方体木块锯成n 3个体积为1 cm 3的小正方体,从中任取一块,则这一块至少有一面涂有红漆的概率为________.【解析】 由题意知这n 3个小正方体中,三面涂有红漆的共8个;两面涂有红漆的共12(n -2)个,一面涂有红漆的共6(n -2)2=6(n 2-4n +4),故至少有一面涂有红漆的情况共有8+12(n -2)+6(n 2-4n +4)=6n 2-12n +8(个),所以所求概率为6n 2-12n +8n 3. 【答案】 6n 2-12n +8n 3 4.(2015·苏州高二检测)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. 【导学号:90200072】【解】 列树形图可得所有基本事件总数为27个.(1)设“抽取的卡片上的数字满足a +b =c ”为事件A ,则事件A 包含的基本事件为(1,1,2),(1,2,3),(2,1,3),共3个,∴P (A )=327=19, 即抽取卡片上的数字满足a +b =c 的概率为19. (2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则结合树形图可知事件B 包含的基本事件有24个.∴P (B )=2427=89即抽取的卡片上的数字a ,b ,c 不完全相同的概率为89.。
2018版第2章2.2.2直线方程的几种形式学业分层测评
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.下列说法正确的是()A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示B.经过任意两个不同点P(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示C.不经过原点的直线都可以用方程xa+yb=1表示D.经过定点A(0,b)的直线都可以用方程y=kx+b表示【解析】当直线与y轴重合时,斜率不存在,选项A、D不正确;当直线垂直于x轴或y轴时,直线方程不能用截距式表示,选项C不正确;当x1≠x2,y1≠y2时由直线方程的两点式知选项B正确,当x1=x2,y1≠y2时直线方程为x -x1=0,即(x-x1)(y2-y1)=(y-y1)(x2-x1),同理x1≠x2,y1=y2时也可用此方程表示.故选B.【答案】 B2.直线(m+2)x+(m2-2m-3)y=2m在x轴上的截距为3,则实数m值为()A.65 B.-6C.-65 D.6【解析】将(3,0)代入得(m+2)3=2m解得m=-6.【答案】 B3.若直线ax+by+c=0经过第一、二、三象限,则()A.ab>0,bc>0B.ab>0,bc>0C.ab <0,bc >0D.ab <0,bc <0【解析】 直线经过第一、二、三象限,则由y =-a b x -c b 可知,⎩⎪⎨⎪⎧ -a b >0,-c b >0,⇒⎩⎪⎨⎪⎧ab <0,bc <0,选D. 【答案】 D4.两条直线l 1:x a -y b =1和l 2:x b -y a =1在同一直角坐标系中的图象可以是( )【解析】 化为截距式x a +y -b =1,x b +y -a=1. 假定l 1,判断a ,b ,确定l 2的位置,知A 项符合.【答案】 A5.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 是( )【导学号:45722084】A.1B.2C.-12D.2或-12 【解析】 当2m 2+m -3≠0时,在x 轴上的截距为4m -12m 2+m -3=1,即2m 2-3m -2=0,∴m =2或m =-12.【答案】 D二、填空题6.直线y =ax -3a +2(a ∈R )必过定点________.【解析】 将直线方程变形为y -2=a (x -3),由直线方程的点斜式可知,直线的斜率为a ,过定点(3,2).【答案】 (3,2)7.已知直线l 1过点P (2,1)且与直线l 2:y =x +1垂直,则l 1的点斜式方程为________.【导学号:45722085】【解析】 直线l 2的斜率k 2=1,故l 1的斜率为-1,所以l 1的点斜式方程为y -1=-(x -2).【答案】 y -1=-(x -2)8.已知光线经过点A (4,6),经x 轴上的B (2,0)反射照到y 轴上,则光线照在y 轴上的点的坐标为________.【解析】 点A (4,6)关于x 轴的对称点A 1(4,-6),则直线A 1B 即是反射光线所在直线,由两点式可得其方程为:3x +y -6=0,令x =0,得y =6,所以反射光线经过y 轴上的点的坐标为(0,6).【答案】 (0,6)三、解答题9.若方程(m 2-3m +2)x +(m -2)y -2m +5=0表示直线.(1)求实数m 的范围;(2)若该直线的斜率k =1,求实数m 的值.【解】 (1)由⎩⎪⎨⎪⎧m 2-3m +2=0,m -2=0,解得m =2, 若方程表示直线,则m 2-3m +2与m -2不能同时为0,故m ≠2.(2)由-(m 2-3m +2)m -2=1,解得m =0. 10.求过点(4,-3)且在两坐标轴上截距的绝对值相等的直线l 的方程.【解析】 法一 设直线在x 轴、y 轴上的截距分别为a ,b .①当a ≠0,b ≠0时,设l 的方程为x a +y b =1.∵点(4,-3)在直线上,∴4a +-3b =1,若a =b ,则a =b =1,直线方程为x +y =1.若a =-b ,则a =7,b =-7,此时直线的方程为x -y =7.②当a =b =0时,直线过原点,且过点(4,-3),∴直线的方程为3x +4y =0.综上知,所求直线方程为x +y -1=0或x -y -7=0或3x +4y =0. 法二 设直线l 的方程为y +3=k (x -4),令x =0,得y =-4k -3;令y =0,得x =4k +3k .又∵直线在两坐标轴上的截距的绝对值相等,∴|-4k -3|=⎪⎪⎪⎪⎪⎪4k +3k , 解得k =1或k =-1或k =-34.∴所求的直线方程为x -y -7=0或x +y -1=0或3x +4y =0.[能力提升]1.直线x -y +1=0关于y 轴对称的直线的方程为( )A.x -y -1=0B.x -y -2=0C.x +y -1=0D.x +y +1=0【解析】 令y =0,则x =-1,令x =0,则y =1,∴直线x -y +1=0关于y 轴对称的直线过点(0,1)和(1,0),由直线的截距式方程可知,x +y =1,即x +y -1=0.【答案】 C2.已知两直线的方程分别为l 1:x +ay +b =0,l 2:x +cy +d =0,它们在坐标系中的位置如图2-2-3所示,则( )图2-2-3A.b >0,d <0,a <cB.b >0,d <0,a >cC.b <0,d >0,a >cD.b <0,d >0,a <c【解析】 由题图可知直线l 1、l 2的斜率都大于0,即k 1=-1a >0,k 2=-1c >0且k 1>k 2,∴a <0,c <0且a >c .又l 1的纵截距-b a <0,l 2的纵截距-d c >0,∴b <0,d >0,故选C.【答案】 C3.已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________.【解析】 直线AB 的方程为x 3+y 4=1,设P (x ,y ),则x =3-34y ,∴xy =3y -34y 2=34(-y 2+4y )=34[-(y -2)2+4]≤3.即当P 点坐标为⎝ ⎛⎭⎪⎫32,2时,xy 取得最大值3. 【答案】 34.直线过点P ⎝ ⎛⎭⎪⎫43,2且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件:(1)△AOB 的周长为12;(2)△AOB 的面积为6.若存在,求出直线的方程;若不存在,请说明理由.【导学号:45722086】 【解】 设直线方程为x a +y b =1(a >0,b >0),若满足条件(1),则a +b +a 2+b 2=12. ① 又∵直线过点P ⎝ ⎛⎭⎪⎫43,2,∴43a +2b =1. ②由①②可得5a 2-32a +48=0,解得⎩⎪⎨⎪⎧ a =4,b =3或⎩⎪⎨⎪⎧a =125,b =92,∴所求直线的方程为x 4+y 3=1或5x 12+2y 9=1,即3x +4y -12=0或15x +8y -36=0.若满足条件(2),则ab =12, ③由题意得:43a +2b =1, ④由③④整理得a 2-6a +8=0,解得⎩⎪⎨⎪⎧ a =4,b =3,或⎩⎪⎨⎪⎧a =2,b =6,∴所求直线的方程为x4+y3=1或x2+y6=1,即3x+4y-12=0或3x+y-6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x+4y-12=0.。
苏教版高中数学必修三版第2章学业分层测评15.docx
高中数学学习材料马鸣风萧萧*整理制作学业分层测评(十五)(建议用时:45分钟)[学业达标]一、填空题1.一组数据1,3,x 的方差为23,则x =________. 【解析】 由x -=1+3+x 3=4+x 3,且s 2=13×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-4+x 32+⎝ ⎛⎭⎪⎫3-4+x 32+⎝ ⎛⎭⎪⎫x -4+x 32=23,得x 2-4x +4=0,∴x =2. 【答案】 22.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4. 则平均命中环数为________;命中环数的标准差为________.【解析】 平均数为110(7+8+7+9+5+4+9+10+7+4)=7;方差为s 2=110(0+1+0+4+4+9+4+9+0+9)=4,所以s =2.【答案】 7 23.某样本的5个数据分别为x,8,10,11,9,已知这组数据的平均数为10,则其方差为________.【解析】 由题意知x +8+10+11+9=50,解得x =12,故方差s 2=15[(12-10)2+(8-10)2+(10-10)2+(11-10)2+(9-10)2]=2.【答案】 24.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班67679则以上两组数据的方差中较小的一个为s 2=________. 【解析】 ∵x -甲=7,s 2甲=15(12+02+02+12+02)=25, x -乙=7,s 2乙=15(12+02+12+02+22)=65,∴s 2甲<s 2乙,∴方差中较小的一个为s 2甲,即s 2=25. 【答案】 255.对划艇运动员甲、乙两人在相同条件下进行了6次测试,测得他们最大速度(单位:m/s)的数据如下:甲 27,38,30,37,35,31; 乙 33,29,38,34,28,36.根据以上数据,可以判断________更优秀.【解析】 x -甲=16(27+38+30+37+35+31)=33(m/s). s 2甲=16[(27-33)2+(38-33)2+…+(31-33)2]=946≈15.7(m 2/s 2). x -乙=16(33+29+38+34+28+36)=33(m/s),s 2乙=16×[(33-33)2+(29-33)2+…+(36-33)2]=766≈12.7(m 2/s 2). ∴x -甲=x -乙,s 2甲>s 2乙,说明甲乙两人的最大速度的平均值相同,但乙比甲更稳定,乙比甲更优秀.【答案】 乙6.甲、乙两名同学在5次体育测试中的成绩统计如茎叶图2-3-8所示,若甲、乙两人的平均成绩分别是X 甲、X 乙,则下列结论正确的有________.(填序号)图2-3-8①X 甲<X 乙,乙比甲成绩稳定; ②X 甲>X 乙,甲比乙成绩稳定; ③X 甲>X 乙,乙比甲成绩稳定; ④X 甲<X 乙,甲比乙成绩稳定.【解析】 ∵甲同学的成绩为78,77,72,86,92,乙同学的成绩为78,82,88,91,95,∴X 甲=78+77+72+86+925=81,X 乙=78+82+88+91+955=86.8,∴X 甲<X 乙,从茎叶图上数据的分布情况看,乙同学的成绩更集中于平均值附近,这说明乙比甲成绩稳定.【答案】 ①7.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图2-3-9中以x 表示:图2-3-9则7个剩余分数的方差为________.【解析】 根据茎叶图,去掉1个最低分87,1个最高分99,则17[87+94+90+91+90+(90+x )+91]=91,∴x =4.∴s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=36 7.【答案】36 78.若样本x1+1,x2+1,…,x n+1的平均数为10,其方差为2,则对于样本x1+2,x2+2,…,x n+2的平均数为________,方差为________.【解析】∵(x1+1)+(x2+1)+…+(x n+1)n=10,故x1+x2+…+x n=10n-n=9n,故x1+x2+…+x n+2n=11n,∴(x1+2)+(x2+2)+…+(x n+2)n=11,s21=1n[(x1+1-10)2+(x2+1-10)2+…+(x n+1-10)2]=1n[(x1-9)2+(x2-9)2+…+(x n-9)2]=1n[(x1+2-11)2+(x2+2-11)2+…+(x n+2-11)2]=s22.故所求的平均数为11,方差为2.【答案】11 2二、解答题9.某盐场有甲、乙两套设备包装食盐,在自动包装传送带上,每隔3分钟抽一包称其重量是否合格,分别记录数据如下:甲套设备:504,510,505,490,485,485,515,510,496,500;乙套设备:496,502,501,499,505,498,499,498,497,505.试确定这是何种抽样方法?比较甲、乙两套设备的平均值与方差,说明哪套包装设备误差较小?【解】(1)根据三种抽样方法的定义,可知这种抽样方法是系统抽样.(2)甲套设备的平均值、方差分别为x-1=110(504+510+505+490+485+485+515+510+496+500)=500,s21=110[(504-500)2+(510-500)2+…+(500-500)2]=103.2,乙套设备的平均值、方差分别为x -2=110(496+502+501+499+505+498+499+498+497+505)=500, s 22=110[(496-500)2+(502-500)2+…+(505-500)2]=9. 可见,x -2=x -1,s 21>s 22,所以乙套设备较甲套设备更稳定,误差较小.10.甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图2-3-10所示.图2-3-10(1)分别求出两人得分的平均数与方差;(2)根据图和上面的结果,对两人的训练成绩作出评价. 【解】 (1)甲、乙两人五次测试的成绩分别为: 甲 10分 13分 12分 14分 16分 乙 13分 14分 12分 12分 14分 甲的平均得分为:10+13+12+14+165=13,乙的平均得分为:13+14+12+12+145=13.s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4, s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. (2)由s 2甲>s 2乙,可知乙的成绩较稳定.从折线图看,甲的成绩基本上呈上升状态,而乙的成绩在平均线上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.[能力提升]1.甲、乙两名学生六次数学测验成绩(百分制)如图2-3-11所示.图2-3-11①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分比乙同学高; ③甲同学的平均分比乙同学低;④甲同学成绩的极差小于乙同学成绩的极差. 上面说法正确的是________.(填序号) 【答案】 ③④2.某人5次上班途中所花的时间(单位:分钟)分别为x 、y 、10、11、9.已知这组数据的平均数为10,方差为2,则|x -y |的值为________.【导学号:11032051】【解析】 x -=x +y +10+11+95=10,可得x +y =20, ①根据方差的计算公式s 2=15[(x -10)2+(y -10)2+12+12]=2, 可得x 2+y 2-20(x +y )+200=8, ②由①②得|x -y |=4. 【答案】 43.由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)【解析】 假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4, 则⎩⎪⎨⎪⎧x 1+x 2+x 3+x 44=2,x 2+x 32=2,∴⎩⎨⎧x 1+x 4=4,x 2+x 3=4.又s =122[(x 1-2)2+(x 2-2)2]=1, ∴(x 1-2)2+(x 2-2)2=2.同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为方程(x -2)2+(y -2)2=2的解,分析知x 1,x 2,x 3,x 4应为1,1,3,3.【答案】 1,1,3,34.师大附中三年级一班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:统计量 组别 平均成绩 标准差 第一组 90 6 第二组804求全班学生的平均成绩和标准差.【解】 设第一组20名学生的成绩为x i (i =1,2,…,20), 第二组20名学生的成绩为y i (i =1,2,…,20), 依题意有x -=120(x 1+x 2+…+x 20)=90, y -=120(y 1+y 2+…+y 20)=80,故全班平均成绩为140(x 1+x 2+…+x 20+y 1+y 2+…+y 20)=140(90×20+80×20)=85;又设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则 s 21=120(x 21+x 22+…+x 220-20x 2), s 22=120(y 21+y 22+…+y 220-20y 2)(此处x -=90,y -=80), 又设全班40名学生的标准差为s ,平均成绩为z (z =85),故有s 2=140(x 21+x 22+…+x 220+y 21+y 22+…+y 220-40z 2)=140(20s 21+20x 2+20s 22+20y 2-40z 2)=12(62+42+902+802-2×852)=51.即s =51.所以全班学生的平均成绩为85分,标准差为51.。
苏教版高中数学必修三版第2章学业分层测评11.docx
高中数学学习材料鼎尚图文*整理制作学业分层测评(十一)(建议用时:45分钟)[学业达标]一、填空题1.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是________法.【解析】总体(1 000名学生)中的个体(男、女学生)有明显差异,应采用分层抽样.【答案】分层抽样2.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法________.①简单随机抽样;②系统抽样;③分层抽样.【解析】由于各家庭有明显的差异,所以首先应用分层抽样的方法分别从农民、工人、知识分子这三类家庭中抽出若干户,即36户、2户、2户.又由于农民家庭户数较多,那么在农民家庭这一层宜采用系统抽样;而工人、知识分子家庭户数较少,宜采用简单随机抽样法.故整个抽样过程要用到①②③三种抽样法.【答案】①②③3.一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有________人.【解析】设共抽取n个人,则n56+42×56=8,∴n=14.∴抽取的女运动员有14-8=6(人).【答案】 64.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.【解析】420×300=60(名).【答案】605.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则p1,p2,p3的大小关系是________.【解析】不管是简单随机抽样、系统抽样还是分层抽样,他们都是等概率抽样,每个个体被抽中的可能性相同概率均为nN.则p1=p2=p3.【答案】p1=p2=p36.某校高级职称教师26人,中级职称教师104人,其他教师若干人,为了了解该校教师的工资情况,按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师________人.【解析】设其他教师为x人,则5626+104+x=16x,解得x=52,∴x+26+104=182(人).【答案】1827.某单位共有老年、中年、青年职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为________.【解析】由题意,设老年职工人数为x,则中年职工人数为2x,所以x+2x+160=430,则x=90.故该样本中老年职工人数为90×32160=18.【答案】188.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.【解析】在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n=2+3+5+12×16=88.【答案】88二、解答题9.某单位组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组,在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%,登山组的职工占参加活动的总人数的14,且该组中,青年人占5%,中年人占40%,老年人占10%,为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取一个容量为200的样本,试确定:(1)游泳组中,青年人、中年人、老年人所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.【解】(1)设登山组人数为x;游泳组中,青年人、中年人、老年人各占比例分别为a,b,c;则有x·40%+3xb4x=47.5%,x·10%+3xc4x=10%,解得b=50%,c=10%,故a=100%-50%-10%=40%,即游泳组中、青年人、中年人、老年人各占比例分别为40%、50%、10%.(2)游泳组中,抽取的青年人数为200×34×40%=60(人);抽取的中年人数为200×34×50%=75(人);抽取的老年人数为200×34×10%=15(人).10.一批产品有一级品100个,二级品60个,三级品40个,分别采用系统抽样和分层抽样,从这批产品中抽取一个容量为20的样本.【解】①系统抽样方法:将200个产品编号1,2,…,200,再将编号分为20段,每段10个编号,第一段为1~10号,…,第20段为191~200号.在第1段用抽签法从中抽取1个,如抽取了6号,再按预先给定规则,通常可用加间隔数10,第二段取16号,第三段取26号,…,第20段取196号,这样可得到一个容量为20的样本.②分层抽样方法:因为样本容量与总体的个体数的比为20∶200=1∶10,所以一、二、三级品中分别抽取产品的个数依次是100×110,60×110,40×110,即10,6,4.将一级品的100个产品按00,01,02,…,99编号,将二级品的60个产品按00,01,02,…,59编号,将三级品的40个产品按00,01,02,…,39编号,采用随机数表法,分别抽取10个,6个,4个.这样可得容量为20的一个样本.[能力提升]1.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽样的方法是________.(填序号)①简单随机抽样;②系统抽样;③先从中年人中剔除1人,再用分层抽样;④先从老年人中剔除1人,再用分层抽样.【解析】总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本.【答案】④2.某校对全校男女学生共1 200名进行健康调查,选用分层抽样抽取一个容量为200的样本,已知男生比女生多抽了10人,则该校男生人数为________人.【解析】由男生比女生多抽10人可知样本中有男生105人,女生95人,因此该校男生人数为1 200×105200=630.【答案】6303.从某地区15 000位老人中用分层抽样法抽取500人,其生活能否自理的情况如下表所示: 性别人数生活能否自理男 女能178 278 不能 22 22 则在该地区生活的老人中男性比女性少________人.【解析】 从表中可知,500人中男性有200人,女性有300人.故该地区生活的老年人中男性比女性少15 000×⎝ ⎛⎭⎪⎫35-25=3 000(人). 【答案】 3 0004.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n .【导学号:11032037】【解】 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n 2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6.。
2020-2021学年苏教版高中数学必修三第2章《统计》学业分层测评6及解析
(新课标)2018-2019学年苏教版高中数学必修三学业分层测评(十六)(建议用时:45分钟)[学业达标]一、填空题1.以下关于线性回归的判断,正确的为________.(填序号)①若散点图中所有点都在一条直线附近,则这条直线为回归直线;②已知线性回归方程为y^=0.50x-0.81,则x=25时,y的估计值为11.69;③线性回归方程的意义是它反映了样本整体的变化趋势.【解析】能使所有数据点都在它附近的直线不止一条,而据回归直线的定义知,只有按最小平方法求得直线y^=a+bx才是线性回归方程,①不对,③正确.将x=25代入y^=0.50x-0.81,解得y^=11.69,②正确.【答案】②③2.甲、乙两同学各自独立地考察两个变量X、Y的线性相关关系时,发现两人对X的观察数据的平均值相等,都是s,对Y的观察数据的平均值也相等,都是t,各自求出的回归直线分别是l1,l2,则直线l1与l2必经过同一点________.【解析】由回归方程必过样本中心(x-,y-)知,直线l1,l2经过的同一点为(s,t).【答案】(s,t)3.已知某工厂在2015年每月产品的总成本y(万元)与月产量x(万件)之间有线性相关关系,回归方程为y^=1.215x+0.974,若月产量增加4万件时,则估计成本增加________万元.【解析】由y^1=1.215x1+0.974,y^ 2=1.215(x1+4)+0.974,得y^2-y^1=1.215×4=4.86(万元).【答案】 4.864.对某台机器购置后的运营年限x(x=1,2,3,…)与当年利润y的统计分析知具备线性相关关系,回归方程为y=10.47-1.3x,估计该台机器使用________年最合算.【解析】只要预计利润不为负数,使用该机器就算合算,即y≥0,所以10.47-1.3x≥0,解得x≤8.05,所以该台机器使用8年最合算.【答案】85.已知x,y的取值如下表所示:从散点图分析,y与x线性相关,且y=0.95x+a,则a=________.【解析】由条件知x-=2,y-=4.4,所以4.4=0.95×2+a,解得a=2.5.【答案】 2.56.下表提供了某厂节能降耗技术改造后,在生产A产品过程中记录的产量x(单位:吨)与相应的生产能耗y(单位:103 kJ)几组对应的数据:y=0.7x+0.35,那么表中t的值为________.【解析】由y-=0.7x-+0.35,得2.5+t+4+4.54=0.7×3+4+5+64+0.35,故11+t4=3.5,即t=3.【答案】 37.根据如下样本数据得到的回归方程为y=bx+a,则下列判断正确的是________.①a>0,b>0;②a>0,b<0;③a<0,b>0;④a<0,b<0.【解析】作出散点图如下:观察图象可知,回归直线y^=bx+a的斜率b<0,当x=0时,y^=a>0.故a>0,b<0.【答案】②8.某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm、170 cm和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.【导学号:11032054】【解析】设父亲身高为x cm,儿子身高为y cm,则x =173,y =176,b =∑i =13(x i-x -)(y i-y -)∑i =13(x i-x -)2=0×(-6)+(-3)×0+3×602+(-3)2+32=1,a =y -b x =176-1×173=3, ∴y^=x +3,当x =182时,y ^=185. 【答案】 185 二、解答题9.从某居民区随机抽取10个家庭,经统计第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,得到∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=bx +a ;(2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.【解】 (1)由题意知n =10,x -=1n ∑i =1n x i =8010=8,y -=1n ∑i =1ny i =2010=2,又∑i =1nx 2i -n x -2=720-10×82=80,∑i =1nx i y i -n x -y -=184-10×8×2=24, 由此得b =2480=0.3, a =y --b x -=2-0.3×8=-0.4, 故所求线性回归方程为y^=0.3x -0.4. (2)由于变量y 的值随x 值的增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入线性回归方程可以预测该家庭的月储蓄约为y =0.3×7-0.4=1.7(千元).10.某种产品的广告支出x 与销售额y(单位:百万元)之间有如下的对应关系:(1)假定y 与x (2)若实际销售额不少于60百万元,则广告支出应该不少于多少? 【解】 (1)x -=15(2+4+5+6+8)=5,y -=15(30+40+60+50+70)=50,∑i =15x 2i=22+42+52+62+82=145.∑i =15x i y i =2×30+4×40+5×60+6×50+8×70=1 380.∴b=∑i=15xiyi-5x-y-∑i=15x2i-5x-2=1 380-5×5×50145-5×52=6.5,a=y--b x-=50-6.5×5=17.5,∴线性回归方程为y^=6.5x+17.5.(2)由线性回归方程得y^≥60,即6.5x+17.5≥60,∴x≥8513≈6.54,∴广告费用支出应不少于6.54百万元.[能力提升]1.某产品的广告费用x与销售额y的统计数据如下表:根据上表可得回归方程y=bx+a中的b为9.4,据此模型预测广告费用为6万元时销售额为________万元.【解析】由题意可知x-=3.5,y-=42,则42=9.4×3.5+a,a=9.1,y^=9.4×6+9.1=65.5.【答案】65.52.期中考试后,某校高一(9)班对全班65名学生的成绩进行分析,得到数学成绩y对总成绩x的回归直线方程为y^=6+0.4x.由此可以估计:若两个同学的总成绩相差50分,则他们的数学成绩大约相差________分.【导学号:11032055】【解析】 令两人的总成绩分别为x 1,x 2. 则对应的数学成绩估计为 y ^1=6+0.4x 1,y ^2=6+0.4x 2, 所以|y ^1-y ^2|=|0.4(x 1-x 2)|=0.4×50=20. 【答案】 203.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归方程为y =b x +a ,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则b ^________b ′,a ^________a ′(填“>”“<”或“=”).【解析】 由两组数据(1,0)和(2,2)可求得直线方程为y =2x -2,b ′=2,a ′=-2.而利用线性回归方程的公式与已知表格中的数据,可求得b ^=∑i =16x i y i -6x -·y -∑i =16x 2i -6x -2=58-6×72×13691-6×⎝ ⎛⎭⎪⎫722=57,a ^=y --b ^x -=136-57×72=-13,所以b^<b ′,a ^>a′.【答案】 < >4.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:据求回归直线方程,再对被选取的2组数据进行检验.(1)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的回归直线方程y^=bx+a;(2)若由回归直线方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的回归直线方程是可靠的,试问(1)中所得的回归直线方程是否可靠?【解】(1)由数据求得,x-=12,y-=27,由公式求得,b=52,a=y--b x-=-3.所以y关于x的回归直线方程为y^=52x-3.(2)当x=10时,y^=52×10-3=22,|22-23|<2;当x=8时,y^=52×8-3=17,|17-16|<2.所以该研究所得到的回归直线方程是可靠的.。
2018版高中数学人教A版 必修3第2章 学业分层测评13 含
学业分层测评(十三)用样本的数字特征估计总体的数字特征(建议用时:45分钟)[学业达标]一、选择题1.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图2-2-24所示,则()图2-2-24A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差【解析】由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A错;甲、乙的成绩的中位数分别为6,5,B错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C对;甲、乙的成绩的极差均为4,D错.【答案】 C2.若样本1+x1,1+x2,1+x3,…,1+x n的平均数是10,方差为2,则对于样本2+x1,2+x2,…,2+x n,下列结论正确的是()A.平均数是10,方差为2B .平均数是11,方差为3C .平均数是11,方差为2D .平均数是10,方差为3【解析】 若x 1,x 2,…,x n 的平均数为x ,方差为s ,那么x 1+a ,x 2+a ,…,x n +a 的平均数为x +a ,方差为s .【答案】 C3.如图2-2-25是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,甲、乙两人这几场比赛得分的平均数分别为x 甲,x 乙;标准差分别是s 甲,s 乙,则有( )图2-2-25A.x 甲>x 乙,s 甲>s 乙B.x 甲>x 乙,s 甲<s 乙C.x 甲<x 乙,s 甲>s 乙D.x 甲<x 乙,s 甲<s 乙【解析】 观察茎叶图可大致比较出平均数与标准差的大小关系,或者通过公式计算比较.【答案】 C4.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是x =2,方差是13,那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数和方差分别为( )A .2,13 B .2,1 C .4,13D .4,3【解析】 平均数为x ′=3x -2=3×2-2=4,方差为s ′2=9s 2=9×13=3.【答案】 D5.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如图2-2-26所示.由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a,b的值分别为()图2-2-26A.0.27,78 B.0.27,83C.2.7,78 D.2.7,83【解析】由题意,4.5到4.6之间的频率为0.09,4.6到4.7之间的频率为0.27,后6组的频数成等差数列,设公差为d,则6×0.27+15d=1-0.01-0.03-0.09,∴d=-0.05.∴b=(0.27×4+6d)×100=78,a=0.27.【答案】 A二、填空题6.一个样本数据按从小到大的顺序排列为:13,14,19,x,23,27,28,31,中位数为22,则x=________.【解析】由题意知x+232=22,则x=21.【答案】217.甲、乙两位同学某学科的连续五次考试成绩用茎叶图表示如图2-2-27所示,则平均分数较高的是________,成绩较为稳定的是________.图2-2-27【解析】x甲=70,x乙=68,s2甲=15×(22+12+12+22)=2,s2乙=15×(52+12+12+32)=7.2.【答案】甲甲8.已知样本9,10,11,x,y的平均数是10,标准差为2,则xy=________.【解析】由平均数得9+10+11+x+y=50,∴x+y=20.又由(9-10)2+(10-10)2+(11-10)2+(x-10)2+(y-10)2=(2)2×5=10,得x2+y2-20(x+y)=-192,(x+y)2-2xy-20(x+y)=-192,∴xy=96.【答案】96三、解答题9.从高三抽出50名学生参加数学竞赛,由成绩得到如图2-2-28的频率分布直方图.图2-2-28由于一些数据丢失,试利用频率分布直方图求:(1)这50名学生成绩的众数与中位数;(2)这50名学生的平均成绩.【解】(1)由众数的概念可知,众数是出现次数最多的数.在直方图中高度最高的小长方形的底边中点的横坐标即为所求,所以众数应为75.由于中位数是所有数据中的中间值,故在频率分布直方图中体现的是中位数的左右两边频数应相等,即频率也相等,从而就是小矩形的面积和相等.因此在频率分布直方图中将所有小矩形的面积一分为二的垂直于横轴的直线与横轴交点的横坐标所对应的成绩即为所求.∵0.004×10+0.006×10+0.02×10=0.04+0.06+0.2=0.3,∴前三个小矩形面积的和为0.3.而第四个小矩形面积为0.03×10=0.3,0.3+0.3>0.5,∴中位数应约位于第四个小矩形内.设其底边为x,高为0.03,∴令0.03x=0.2得x≈6.7,故中位数应约为70+6.7=76.7.(2)样本平均值应是频率分布直方图的“重心”,即所有数据的平均值,取每个小矩形底边的中点的横坐标乘以每个小矩形的面积求和即可.∴平均成绩为45×(0.004×10)+55×(0.006×10)+65×(0.02×10)+75×(0.03×10)+85×(0.021×10)+95×(0.016×10)=73.65.10.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:(1)(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?【解】(1)画茎叶图如下:中间数为数据的十位数.从茎叶图上看,甲、乙的得分情况都是分布均匀的,只是乙更好一些.乙发挥比较稳定,总体情况比甲好.(2)x甲=27+38+30+37+35+316=33.x乙=33+29+38+34+28+366=33.s2甲=16[(27-33)2+(38-33)2+(30-33)2+(37-33)2+(35-33)2+(31-33)2]≈15.67.s2乙=16[(33-33)2+(29-33)2+(38-33)2+(34-33)2+(28-33)2+(36-33)2]≈12.67.甲的极差为11,乙的极差为10.综合比较以上数据可知,选乙参加比赛较合适.[能力提升]1.有一笔统计资料,共有11个数据如下(不完全以大小排列):2,4,4,5,5,6,7,8,9,11,x,已知这组数据的平均数为6,则这组数据的方差为()A .6 B.6 C .66D .6.5【解析】 ∵x =111(2+4+4+5+5+6+7+8+9+11+x )=111(61+x )=6,∴x =5.方差为:s 2=42+22+22+12+12+02+12+22+32+52+1211=6611=6.【答案】 A2.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图2-2-29中以x 表示:89⎪⎪⎪7 74 0 1 0 x 9 1图2-2-29则7个剩余分数的方差为( )A.1169B.367C .36D.677【解析】 根据茎叶图,去掉1个最低分87,1个最高分99, 则17[87+94+90+91+90+(90+x )+91]=91, ∴x =4.∴s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=367.【答案】 B3.若40个数据的平方和是56,平均数是22,则这组数据的方差是________,标准差是________.【解析】 设这40个数据为x i (i =1,2,…,40),平均数为x .则s 2=140×[(x 1-x )2+(x 2-x )2+…+(x 40-x )2]=140[x 21+x 22+…+x 240+40x 2-2x (x 1+x 2+…+x 40)] =140⎣⎢⎡⎦⎥⎤56+40×⎝ ⎛⎭⎪⎫222-2×22×40×22=140×⎝ ⎛⎭⎪⎫56-40×12=0.9. ∴s =0.9=910=31010. 【答案】 0.9310104.某地区100位居民的人均月用水量(单位:t)的分组及各组的频数如下: [0,0.5),4;[0.5,1),8;[1,1.5),15;[1.5,2),22;[2,2.5),25;[2.5,3),14;[3,3.5),6;[3.5,4),4;[4,4.5),2.(1)列出样本的频率分布表;(2)画出频率分布直方图,并根据直方图估计这组数据的平均数、中位数、众数;(3)当地政府制定了人均月用水量为3t 的标准,若超出标准加倍收费,当地政府说,85%以上的居民不超过这个标准,这个解释对吗?为什么?【解】 (1)频率分布表(2)众数:2.25,中位数:2.02,平均数:2.02.(3)人均月用水量在3t以上的居民所占的比例为6%+4%+2%=12%,即大约有12%的居民月用水量在3t以上,88%的居民月用水量在3t以下,因此政府的解释是正确的.。
高中数学苏教版必修3学业分层测评10 系统抽样
学业分层测评(十)(建议用时:45分钟)[学业达标]一、填空题1.某超市想通过检查发票及销售记录的2%来快速估计每日的销量总额,采取如下方法:从某发票的存根中随机抽出一张,如15号,然后按顺序往后将65号,115号,165号,…,915号抽出,发票上的销售额组成一个调查样本.这种抽取样本的方法为________.【解析】 上述抽样方法是将发票平均分成若干组,每组50张.从第一组中抽取15号,以后各组抽15+50n (n =1,2,…,18)号,符合系统抽样的特点.【答案】 系统抽样2.从2 013个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的分段间隔为________.【解析】 先从2 013个个体中剔除13个,则分段间隔为2 00020=100.【答案】 1003.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本.已知2号、28号、41号同学在样本中,那么还有一个同学的学号是________.【解析】 由题意知k =524=13,∴还有一个同学的学号为2+13=15.【答案】 154.某企业利用系统抽样的方法抽取一个容量为60的样本,若每一个职工入样的可能性为0.2,则该企业的职工人数为________.【解析】 系统抽样中,每个个体被抽到是等可能的,设该企业职工人数为n ,则60n =0.2,故n =300.【答案】 3005.(2015·扬州高一检测)用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成二十组(1~8号,9~16号,…,153~160号),若第十六组应抽出的号码为125,则第一组中按此抽签方法确定的号码是________.【解析】 因为第十六组的号码在121~128号范围内,所以125是第十六组的第5个号,因此第一组确定的号码为5.【答案】 56.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生.【解析】 ∵组距为5,∴(8-3)×5+12=37.【答案】 377.一个总体有80个个体,编号为0,1,2,…,79,依次将其分成8个小组,组号为0,1,2,…,79,要用系统抽样法抽取一个容量为8的样本,若在第0组随机抽取一个号码为6,则所抽到的8个号码分别为________.【解析】 k =808=10,∴在第1组抽取的号码为16,第2组为16+10=26,第3组6+3×10=36,…,第7组6+10×7=76.则所抽8个号码为6,16,26,36,46,56,66,76.【答案】 6,16,26,36,46,56,66,768.在一次竞选中,规定一个人获胜的条件是:(1)在竞选中得票最多;(2)得票数不低于总票数的一半.如果在计票时,周鹏得票数据丢失,试根据统计数据回答问题:【解析】 根据条件,如果周鹏获胜,周鹏的得票数x 不低于总票数的一半,即x 300+100+30+60+x≥12⇒x ≥490,且x ∈N 即周鹏得票数至少为490票. 【答案】 490二、解答题9.为了调查某路口一个月的车流量情况,交警采用系统抽样的方法,样本距为7,从每周中随机抽取一天,正好抽取的是星期日,经过调查后做出报告.你认为交警这样的抽样方法有什么问题?应当怎样改进?如果是调查一年的车流量情况呢?【解】交警所统计的数据以及由此所推断出来的结论,只能代表星期日的交通流量.由于星期日是休息时间,很多人不上班,不能代表其他几天的情况.改进方法可以将所要调查的时间段的每一天先随机地编号,再用系统抽样方法来抽样,或者使用简单随机抽样来抽样亦可.如果是调查一年的交通流量,使用简单随机抽样法显然不合适,比较简单可行的方法是把样本距改为8.10.某工厂有工人1 021人,其中高级工程师20人,现抽取普通工人40人,高级工程师4人组成代表队去参加某项活动,应怎样抽样?【解】(1)将1 001名普通工人用随机方式编号.(2)从总体中剔除1人(剔除方法可用随机数表法),将剩下的1 000名职工重新编号(分别为0001,0002,…,1000),并平均分成40段,其中每一段包含1 000 40=25个个体.(3)在第一段0001,0002,…,0025这25个编号中用简单随机抽样法抽出一个(如0003)作为起始号码.(4)将编号为0003,0028,0053,…,0978的个体抽出.(5)将20名高级工程师用随机方式编号为1,2, (20)(6)将这20个号码分别写在大小、形状相同的小纸条上,揉成小球,制成号签.(7)将得到的号签放入一个不透明的容器中,充分搅拌均匀.(8)从容器中逐个抽取4个号签,并记录上面的编号.(9)从总体中将与所抽号签的编号相一致的个体取出.以上得到的个体便是代表队成员.[能力提升]1.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________.【解析】抽样间隔为84042=20.设在1,2,…,20中抽取号码x0(x0∈[1,20]),在[481,720]之间抽取的号码记为20k+x0,则481≤20k+x0≤720,k∈N*.∴24120≤k+x020≤36.∵x020∈⎣⎢⎡⎦⎥⎤120,1,∴k=24,25,26, (35)∴k值共有35-24+1=12(个),即所求人数为12.【答案】122.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为________. 【导学号:90200038】【解析】由题意知间隔为60050=12,故抽到的号码为12k+3(k=0,1,…,49),可解得:第Ⅰ营区抽25人,第Ⅱ营区抽17人,第Ⅲ营区抽8人.【答案】25,17,83.采用系统抽样从含有8 000个个体的总体(编号为0000,0001,…,7999)中抽取一个容量为50的样本,则最后一段编号的范围为________,已知最后一个入样编号是7894,则开头5个入样编号是________.【解析】因8 000÷50=160,所以最后一段的编号为编号最后的160个编号,即从7840到7999共160个编号.从7840到7894共55个数,所以从0000到第55个编号应为0054,然后逐个加上160得,0214,0374,0534,0694.【答案】7840~79990054,0214,0374,0534,06944.一个总体中有1 000个个体,随机编号为0,1,2,3,…,999,以编号顺序将其平均分成10个小组,组号依次为0,1,2,3,…,9,要用系统抽样方法抽取一容量为10的样本,规定:如果在第0小组中随机抽取的号码为x,那么依次错位地得到后面各组中的号码,即第k小组中抽取的号码的后两位数字与x+33k的后两位数字相同.(1)当x=24时,写出所抽取样本的10个号码;(2)若所抽取样本的10个号码中有一个号码的后两位数字是87,求x的取值范围.【解】(1)当x=24时,所抽取样本的10个号码依次为24,157,290,323,456,589,622,755,888,921.(2)当k=0,1,2,…,9时,33k的值依次为0,33,66,99,132,165,198,231,264,297.由所抽取样本的10个号码中有一个号码的后两位数字是87,可得x的取值可能为87,54,21,88,55,22,89,56,23,90.所以x的取值范围是{21,22,23,54,55,56,87,88,89,90}.。
2018-2019学年高二数学苏教版必修3学业分层测评1 算法的含义
学业分层测评(一)(建议用时:45分钟)[学业达标]一、填空题1.(2015·淮安月考)下列四个有关算法的说法中:①算法的某些步骤可以不明确或有歧义,以便使算法能解决更多问题;②正确的算法执行后一定得到确定的结果;③解决某类问题的算法不一定是唯一的;④正确的算法一定能在有限步之内结束.其中正确的是________.(要求只填写序号)【解析】结合算法的特征可以知道②③④正确,①错误,故填②③④. 【答案】②③④2.已知数字序列:2,5,7,8,15,32,18,12,52,8.写出从该序列搜索18的一个算法. 第一步输入实数a.第二步______________________________________________.第三步输出a=18.【解析】从序列数字中搜索18,必须依次输入各数字才可以找到.【答案】若a=18,则执行第三步,否则返回第一步3.(2015·镇江检测)在求1+2+3+…+100的值时,可以运用公式1+2+3+…+n=n(n+1)2直接计算.下面给出了一个算法. 【导学号:90200003】第一步____①____;第二步____②____;第三步输出计算结果.则①处应填________;②处应填________.【解析】由算法可知只需确定n的值代入公式计算即可,故①处可填“取n=100”,②处可填“计算n(n+1)2”.【答案】取n=100计算n(n+1)24.已知A(x1,y1),B(x2,y2),求直线AB的斜率的一个算法如下:第一步输入x1,y1,x2,y2的值.第二步计算Δx=x2-x1,Δy=y2-y1.第三步若Δx=0,则输出斜率不存在,否则(Δx≠0),k=____①____. 第四步输出斜率k.则①处应填________.【答案】Δy Δx5.完成解不等式2x+2<4x-1的算法第一步,移项,合并同类项,得________;第二步,在不等式的两边同时除以x的系数,得________. 【解析】由2x+2<4x-1移项合并同类项得-2x<-3;两边同时除以-2得x>32.【答案】-2x<-3x>3 26.对于算法:第一步输入n.第二步判断n是否等于2,若n=2,则n满足条件;若n>2,则执行第三步.第三步依次从2到(n-1)检验能不能被n整除,若不能被n整除,则执行第四步;若能整除n,则结束算法.第四步输出n.满足条件的n是________.【解析】此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n-1)一一验证,看是否有其他约数,来判断其是否为质数.【答案】质数7.已知点P0(x0,y0)和直线l:Ax+By+C=0,求点到直线距离的一个算法有如下几步:①输入点的坐标x 0,y 0;②计算z 1=Ax 0+By 0+C ;③计算z 2=A 2+B 2;④输入直线方程的系数A ,B 和常数C ;⑤计算d =|z 1|z 2; ⑥输出d 的值.其正确的顺序为________.(填序号)【解析】 利用点到直线的距离公式:d =|Ax 0+By 0+C |A 2+B2. 【答案】 ①④②③⑤⑥8.如下算法:第一步 输入x 的值;第二步 若x ≥0成立,则y =2x ,否则执行第三步;第三步 y =log 2(-x );第四步 输出y 的值.若输出结果y 的值为4,则输入的x 的值为________.【解析】 算法执行的功能是给定x ,求分段函数y =⎩⎪⎨⎪⎧2x ,x ≥0,log 2(-x ),x <0对应的函数值. 由y =4知2x =4或log 2(-x )=4.∴x =2或-16.【答案】 2或-16二、解答题9.写出求a ,b ,c 中最小值的算法..【解】 算法如下:第一步:比较a ,b 的大小,当a >b 时,令“最小值”为b ;否则,令“最小值”为a ;第二步:比较第一步中的“最小值”与c 的大小,当“最小值”大于c 时,令“最小值”为c ;否则,“最小值”不变;第三步:“最小值”就是a ,b ,c 中的最小值,输出“最小值”.10.下面给出一个问题的算法:第一步 输入a ;第二步 若a ≥4,则执行第三步,否则执行第四步;第三步 输出2a -1;第四步 输出a 2-2a +3.问题:(1)这个算法解决的是什么问题?(2)当输入a 等于多少时,输出的值最小?.【解】 (1)这个算法解决的问题是求分段函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≥4,x 2-2x +3,x <4的函数值问题.(2)当x ≥4时,f (x )=2x -1≥7,当x <4时,f (x )=x 2-2x +3=(x -1)2+2≥2.∴当x =1时,f (x )min =2.即当输入a 的值为1时,输出的值最小.[能力提升]1.关于一元二次方程x 2-5x +6=0的求根问题,下列说法正确的是________.(填序号)①只能设计一种算法;②可以设计至少两种算法;③不能设计算法;④不能根据解题过程设计算法.【解析】 算法具有不唯一性,对于一个问题,我们可以设计不同的算法.【答案】 ②2.给出下列问题:①解方程x 2-2x -3=0;②解方程组⎩⎨⎧x +y +5=0,x -y +3=0;③求半径为3的圆的面积;④判断y =x 2在R 上的单调性.其中可以设计算法求解的是________.(填上所有正确结论的序号)【解析】 根据算法的特征知,只有④不能设计算法求解.故填①②③.【答案】 ①②③3.下面给出了解决问题的算法:第一步 输入x ;第二步 若x ≤1,则y =2x -1,否则y =x 2+3;第三步 输出y .(1)这个算法解决的问题是________;(2)当输入的x 值为________时,输入值与输出值相等.【解析】 (1)根据算法的功能可以知道,该算法是求分段函数y =⎩⎪⎨⎪⎧ 2x -1,x ≤1x 2+3,x >1的值.(2)当x ≤1时,由2x -1=x ,得x =1;当x >1时,由x 2+3=x 知不成立.故x =1.【答案】 (1)求分段函数y =⎩⎨⎧2x -1(x ≤1)x 2+3(x >1)的函数值 (2)1 4.写出求1×2×3×4×5×6的一个算法..【解】 法一 第一步:计算1×2,得到2.第二步:将第一步的运算结果2乘3,得到6.第三步:将第二步的运算结果6乘4,得到24.第四步:将第三步的运算结果24乘5,得到120.第五步:将第四步的运算结果120乘6,得到720.第六步:输出运算结果.法二第一步:输入n的值6.第二步:令i=1,S=1.第三步:判断“i≤n”是否成立,若不是,输出S,结束算法;若是,执行下一步.第四步:令S的值乘i,仍用S表示,令i的值增加1,仍用i表示,返回第三步.。
2018-2019学年高二数学苏教版必修3学业分层测评18 古典概型
学业分层测评(十八)(建议用时:45分钟)[学业达标]一、填空题1.已知集合A={2,5},在A中可重复地依次取出三个数a,b,c,构成空间直角坐标系内的点,则满足条件的点共________个.【解析】从集合A中有重复地取3个数,所有情况有(2,2,2),(5,2,2),(2,5,2),(2,2,5),(2,5,5),(5,2,5),(5,5,2),(5,5,5).共8个点.【答案】82.从1,2,3三个数字组成的无重复数字的两位数中,任取一个数,恰为偶数的概率为________.【解析】两位数有12,21,23,32,13,31,偶数有2个,因而任取一个数,恰为偶数的概率为26,即13.【答案】1 33.(2015·南通高一检测)将一枚硬币投掷3次,出现“一个正面、两个反面”的概率是________.【解析】将一枚硬币投掷3次,所得结果共有(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反)8种,其中“一个正面,两个反面”共包括3种情况,故所求概率为38.【答案】3 84.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.【解析】从四条线段中任取三条有4种取法:(2,3,4),(2,3,5),(2,4,5),(3,4,5).其中能构成三角形的取法有3种:(2,3,4),(2,4,5),(3,4,5),故所求概率为34.【答案】3 45.(2015·南京高二检测)图3-2-1是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为________.图3-2-1【解析】茎叶图中的数据为18,19,21,22,22,27,29,30,30,33,共10个,其中落在区间[22,30)内的数有22,22,27,29,30,30共6个,故所求概率为610=3 5.【答案】3 56.现有5根竹竿,他们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则他们的长度恰好相差0.3 m的概率为________. 【导学号:90200071】【解析】从5根竹竿中,一次随机抽取2根竹竿的方法数为10.而满足他们的长度恰好相差0.3 m的方法数为2个,即2.5和2.8,2.6和2.9.由古典概型概率的求法得P=210=1 5.【答案】1 57.在平面直角坐标系内,从横坐标与纵坐标都在集合A={0,1,2}内取值的点中任取一个,此点正好在直线y=x上的概率为________.【解析】由x,y∈{0,1,2},这样的点共有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)共9个,其中满足在直线y=x上的点(x,y)有(0,0),(1,1),(2,2)3个,所以所求概率为P=39=13.【答案】1 38.用红黄蓝三种不同的颜色给三个矩形随机地涂色,每个矩形只涂一种颜色,则三个矩形颜色都相同的概率是________,三个矩形颜色都不同的概率是________.【解析】 各种涂色的情况列树形图如下:由树形图知共有27种情况,其中三个矩形颜色都相同的有3种情况,故概率为327=19;三个矩形颜色都不同共有6种情况,故概率为627=29.【答案】 19 29二、解答题9.设集合P ={b,1},Q ={c,1,2},P ⊆Q ,若b ,c ∈{2,3,4,5,6,7,8,9}.(1)求b =c 的概率;(2)求方程x 2+bx +c =0有实根的概率.【解】 (1)因为P ⊆Q ,当b =2时,c =3,4,5,6,7,8,9;当b >2时,b =c =3,4,5,6,7,8,9,基本事件总数为14.其中b =c 的事件数为7种,所以b =c 的概率为714=12.(2)记“方程有实根”为事件A ,若使方程有实根,则Δ=b 2-4c ≥0,即b=c =4,5,6,7,8,9 共6种.所以P (A )=614=37.10.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.【解】 (1)甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D表示,两女教师分别用E、F表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F)共9种.从中选出的两名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F),共4种,选出的两名教师性别相同的概率为P=49.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种,从中选出两名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种,选出的两名教师来自同一学校的概率为P=615=2 5.[能力提升]1.从{a,b,c,d,e}的所有子集中任取一个,这个集合恰是集合{a,b,c}的子集的概率是________.【解析】集合{a,b,c,d,e}的所有子集共25=32个,集合{a,b,c}的子集共23=8个,故所求概率为832=1 4.【答案】1 42.若将一枚骰子连续掷两次分别得到的点数m,n作为点P的横、纵坐标,则点P在直线x+y=5下方的概率是________.【解析】若m+n<5,即点数和小于5,则(m,n)在x+y=5下方,点(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)满足题意,366【答案】 163.把一个体积为n ×n ×n (n ≥3,n ∈N *)cm 3表面涂有红漆的正方体木块锯成n 3个体积为1 cm 3的小正方体,从中任取一块,则这一块至少有一面涂有红漆的概率为________.【解析】 由题意知这n 3个小正方体中,三面涂有红漆的共8个;两面涂有红漆的共12(n -2)个,一面涂有红漆的共6(n -2)2=6(n 2-4n +4),故至少有一面涂有红漆的情况共有8+12(n -2)+6(n 2-4n +4)=6n 2-12n +8(个),所以所求概率为6n 2-12n +8n 3. 【答案】 6n 2-12n +8n 34.(2015·苏州高二检测)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. 【导学号:90200072】【解】 列树形图可得所有基本事件总数为27个.(1)设“抽取的卡片上的数字满足a +b =c ”为事件A ,则事件A 包含的基本事件为(1,1,2),(1,2,3),(2,1,3),共3个,∴P (A )=327=19,即抽取卡片上的数字满足a +b =c 的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则结合树形图可知事件B 包含的基本事件有24个.279即抽取的卡片上的数字a,b,c不完全相同的概率为89.。
高中数学 第二章 统计 2.3.1 平均数及其估计学业分层测评 苏教版必修3(2021年最新整理)
2018版高中数学第二章统计2.3.1 平均数及其估计学业分层测评苏教版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第二章统计2.3.1 平均数及其估计学业分层测评苏教版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第二章统计2.3.1 平均数及其估计学业分层测评苏教版必修3的全部内容。
2.3。
1 平均数及其估计(建议用时:45分钟)[学业达标]一、填空题1.以下茎叶图2 3.4记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).图23。
4已知甲组数据的中位数为15,乙组数据的平均数为16。
8,则x=________,y=________。
【解析】由甲组数据中位数为15知,x=5;而乙组数据的平均数16.8=9+15+10+y+18+245,可得y=8.故填5,8。
【答案】 5 82.x1,x2,…,x10的平均数为a,x11,x12,…,x50的平均数为b,则x1,x2,…,x50的平均数是________.【解析】由题意知前10个数的总和为10a,后40个数的总和为40b,又总个数为50,∴x1,x2,…,x50的平均数为错误!=错误!.【答案】错误!3.某学校高一(5)班在一次数学测验中,全班数学成绩的平均分为91分,其中某生得分为140分,是该班的最高分.若不包括该生的其他同学在这次测验中的平均分为90分,则该班学生的总人数为________.【解析】设该班有n名学生,则有错误!=90。
∴n=50.【答案】504.在一次射击训练中,一小组的成绩如下表:环数789.【解析】设成绩为8环的人数是x,由平均数的概念,得7×2+8x+9×3=8.1×(2+x +3),解得x=5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学业分层测评(九)
(建议用时:45分钟)
[学业达标]
一、填空题
1.关于简单随机抽样的特点,有以下几种说法,其中正确的是________.(填序号)
①要求总体的个数有限;
②从总体中逐个抽取;
③它是一种不放回抽样;
④每个个体被抽到的机会不一样,与先后有关.
【解析】由简单随机抽样的特点可知④不对,①②③对.
【答案】①②③
2.从个体数为N的总体中抽取一个容量为k的样本,采用简单随机抽样,当总体的个数不多时,一般用________进行抽样.
【解析】由抽签法特点知宜采用抽签法.
【答案】抽签法
3.下面的抽样方法是简单随机抽样的是________.
①从某城市的流动人口中随机抽取100人作调查;
②在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方法确定号码的后四位为2 709的为三等奖;
③在待检验的30件零件中随机逐个拿出5件进行检验.
【解析】①中总体容量较大,不宜用简单随机抽样;②中抽取的个体的间隔是固定的,不是简单随机抽样.
【答案】③
4.采用抽签法从含有3个个体的总体{a,b,c}中抽取一个容量为2的样本,则所有可能的样本是________.
【解析】从含有三个个体的总体中任取两个即可组成样本,
所有可能的样本为{a,b},{a,c},{b,c}.
【答案】{a,b},{a,c},{b,c}
5.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性、“第二次被抽到”的可能性分别是________.
【导学号:11032030】
【解析】简单随机抽样中,每个个体被抽到的机会均等,都为1 10.
【答案】1 10,
1
10
6.某工厂的质检人员对生产的100件产品采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是________.
【解析】根据随机数表法的要求,只有编号时数字位数相同,才能达到随机等可能抽样.故②③正确.
【答案】②③
7.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N=________.
【解析】由题意得,30
N=25%,∴N=120.
【答案】120
8.一个总体的60个个体编号为00,01,…,59,现需从中抽取一个容量为6的样本,请从随机数表的倒数第5行(如下表,且表中下一行接在上一行右边)第10列开始,向右读取,直到取足样本,则抽取样本的号码是________.9533952200187472001838
7958693281768026928280
842539
【解析】读取的数字两个一组为
01,87,47,20,01,83,87,95,86,93,28,17,68,02,…,
则抽取的样本号码是01,47,20,28,17,02.
【答案】01,47,20,28,17,02
二、解答题
9.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一
个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?
【解】(1)将元件的编号调整为010,011,012,...,099,100, (600)
(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读(见课本随机数表);
(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;
(4)以上号码对应的6个元件就是要抽取的样本.
10.某合资企业有150名职工,要从中随机地抽出20人去参观学习.请用抽签法和随机数表法进行抽取该样本,并写出过程.
【解】(抽签法)先把150名职工编号:1,2,3,…,150,把编号写在小纸片上,揉成小球,放入一个不透明的袋子中,充分搅拌均匀后,从中逐个不放回地抽取20个小球,这样就抽出了去参观学习的20名职工.
(随机数表法)第一步先把150名职工编号:001,002,003, (150)
第二步从随机数表中任选一个数,如第10行第4列数0;
第三步从数字0开始向右连续读数,每3个数字为一组,在读取的过程中,把大于150的数和与前面重复的数去掉,这样就得到20个样本的号码如下:086,027,079,050,074,146,148,093,077,119,022,025,042,045,128,121,038,130, 125,033.
[能力提升]
1.为了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.(填序号)
①2 000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤这个抽样方法可采用随机数表法抽样;⑥每个运动员被抽到的机会相等.
【解析】①2 000名运动员不是总体,2 000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.
【答案】④⑤⑥
2.从一群正在游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续做游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为________.
【解析】设参加游戏的小孩有x人,则k
x=n
m,x=
km
n.
【答案】km n
3.一个总体的个体数为60,编号为00,01,02,…,59,现需从中抽取一个容量为7的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列的1开始,依次向下,到最后一行后向右,直到取足样本,则抽取样本的号码是________.
95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 95
38 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 80
82 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 50
24 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 49
96 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60
【解析】先选取18,向下98不符合要求,下面选取05,向右读数,07、35、59、26、39,因此抽取的样本的号码为18、05、07、35、59、26、39.
【答案】18、05、07、35、59、26、39
4.某电视台举行文艺晚会,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.【解】第一步先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人;
第二步确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.。