苏科版八年级数学上册第一章全等三角形单元测试题(2).docx
2021-2022学年苏科新版八年级上册数学《第1章全等三角形》单元测试卷(有答案)
2021-2022学年苏科新版八年级上册数学《第1章全等三角形》单元测试卷一.选择题1.如图,△ABC≌△CDA,∠BAC=∠DCA,则BC的对应边是()A.CD B.CA C.DA D.AB2.下列图形中与已知图形全等的是()A.B.C.D.3.如图,△ABC≌△DEF.若BC=5cm,BF=7cm,则EC=()A.1cm B.2cm C.3cm D.4cm4.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个5.如图所示,AB=BD,BC=BE,要使△ABE≌△DBC,需添加条件()A.∠A=∠D B.∠C=∠E C.∠D=∠E D.∠ABD=∠CBE 6.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是()A.HL B.ASA C.SAS D.AAS7.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()A.6cm B.7cm C.8cm D.9cm8.如图,在3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于()A.145°B.180°C.225°D.270°9.如图所示,AD平分∠BAC,AB=AC,连接BD、CD并延长分别交AC、AB于F、E点,则此图中全等三角形的对数为()A.2对B.3对C.4对D.5对10.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE,下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的是()A.①②B.③⑤C.①③④D.①④⑤二.填空题11.能够的两个图形叫做全等图形.12.如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2=度.13.如图为4×4的正方形网格,图中的线段均为格点线段(线段的端点为格点),则∠1+∠2+∠3+∠4+∠5的度数为.14.由同一张底片冲洗出来的五寸照片和七寸照片全等图形(填“是”或“不是”).15.如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC=5cm,CE=6cm,点P以2cm/s的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从E开始,在线段EC上往返运动(即沿E→C→E→C→…运动),当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为.16.如图,在△ABC中,∠A=90°,DE⊥BC,垂足为E.若AD=DE且∠C=50°,则∠ABD=°.17.△ABC≌△DEF,且△ABC的周长为12,若AC=3,EF=4,AB=.18.如图,CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O,且AO平分∠BAC,则图中的全等三角形共有对.19.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是,理由是.20.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为.三.解答题21.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.22.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,AB=DE,BF=CE,AB ∥DE,求证:△ABC≌△DEF.23.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求角F的度数与DH的长;(2)求证:AB∥DE.24.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.25.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.参考答案与试题解析一.选择题1.解:∵△ABC≌△CDA,∠BAC=∠DCA,∴∠BAC与∠DCA是对应角,∴BC与DA是对应边(对应角对的边是对应边).故选:C.2.解:A、圆里面的正方形与已知图形不能重合,错;B、与已知图形能完全重合,正确;C、中间是长方形,与已知图形不重合,错;D、中间是长方形,与已知图形不重合,错.故选:B.3.解:∵BC=5cm,BF=7cm,∴CF=BF﹣BC=2cm,∵△ABC≌△DEF,∴FE=BC=5cm,∴EC=EF﹣CF=5cm﹣2cm=3cm,故选:C.4.解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确的是①③④共3个.故选:C.5.解:∵AB=BD,BC=BE,∴要使△ABE≌△DBC,需添加的条件为∠ABE=∠DBC,又∠ABE﹣∠DBE=∠DBC﹣∠DBE,即∠ABD=∠CBE,∴可添加的条件为∠ABE=∠DBC或∠ABD=∠CBE.综合各选项,D选项符合.故选:D.6.解:∵∠BAD=∠BCD=90°,AB=CB,DB=DB,∴△BAD≌△BCD(HL).故选:A.7.解:设△DEF的面积为s,边EF上的高为h,∵△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米∴两三角形的面积相等即s=18又S=•EF•h=18,∴h=6故选:A.8.解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在△ABD和△AEH中,,∴△ABD≌△AEH(SAS),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故选:C.9.解:图中全等三角形的对数有4对,有△ADB≌△ADC,△ABF≌△ACE,△AED≌△AFD,△EDB≌△FDC,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ADB和△ADC中∴△ADB≌△ADC(SAS),∴∠B=∠C,∠ADB=∠ADC,∵∠EDB=∠FDC,∴∠ADB﹣∠EDB=∠ADC﹣∠FDC,∴∠ADE=∠ADF,在△AED和△AFD中∴△AED≌△AFD(ASA),∴AE=AF,在△ABF和△ACE中∴△ABF≌△ACE(SAS),∵AB=AC,AE=AF,∴BE=CF,在△EDB和△FDC中∴△EDB≌△FDC(AAS),故选:C.10.解:∵AD是△ABC的中线,∴BD=CD,∴△ABD和△ACD面积相等,故①正确;∵AD为△ABC的中线,∴BD=CD,∠BAD和∠CAD不一定相等,故②错误;在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故③正确;∴∠F=∠DEC,∴BF∥CE,故④正确;∵△BDF≌△CDE,∴CE=BF,故⑤错误,正确的结论为:①③④,故选:C.二.填空题11.解:能够完全重合的两个图形叫做全等图形.故答案为完全重合.12.解:在直角△ABC与直角△ADC中,BC=DC,AC=AC ∴△ABC≌△ADC∴∠2=∠ACB在△ABC中∠ACB=180°﹣∠B﹣∠1=50°∴∠2=50°.13.解:在图中标上字母,如图所示.∵四边形ABCD为4×4的正方形,∴∠3=45°.∵四边形ANPE为1×1的正方形,∴AE=AN.∵四边形CDEF和四边形BCMN均为4×3的长方形,∴CE=CN.在△ACE和△ACN中,,∴△ACE≌△ACN(SSS),∴∠AEC=∠ANC,∴∠2+∠4+90°=180°,∴∠2与∠4互余.同理可得:∠1与∠5互余.∴∠1+∠2+∠3+∠4+∠5=(∠1+∠5)+(∠2+∠4)+∠3=90°+90°+45°=225°.故答案为:225°.14.解:由全等形的概念可知:由同一张底片冲洗出来的五寸照片和七寸照片,大小不一样,所以不是全等图形.故答案为:不是.15.解:当点P在AC上,点Q在CE上时,∵以P,C,M为顶点的三角形与△QCN全等,∴PC=CQ,∴5﹣2t=6﹣3t,∴t=1,当点P在AC上,点Q第一次从点C返回时,∵以P,C,M为顶点的三角形与△QCN 全等,∴PC=CQ,∴5﹣2t=3t﹣6,∴t=,当点P在CE上,点Q第一次从E点返回时,∵以P,C,M为顶点的三角形与△QCN 全等,∴PC=CQ,∴2t﹣5=18﹣3t,∴t=,综上所述:t的值为1或或.16.解:∵∠C=50°,∠A=90°,∴∠ABC=40°,∵DE⊥BC,∴∠A=∠BED=90°,在Rt△ABD和Rt△EBD中,,∴Rt△ABD≌Rt△EBD(HL),∴∠ABD=∠DBE,∴∠ABD=∠ABC=20°,故答案为:20.17.解:∵△ABC≌△DEF,∴BC=EF=4,由题意得,AB+BC+AC=12,∴AB=12﹣3﹣4=5,故答案为:5.18.解:①在△AEO与△ADO中∵CE⊥AB于点E,BD⊥AC于点D,AO平分∠BAC,∴∠AEO=∠ADO=90°,∠EAO=∠DAO∵AO=AO∴△AEO≌△ADO(AAS)∴AE=AD,OE=OD;②在△OBE与△OCD中∵∠OEB=∠0DC=90°,∠EOB=∠DOC,OE=OD∴△OBE≌△OCD(AAS)∴OB=OC,BE=DC,∠B=∠C;③在△ABO与△ACO中∵AE=AD∴AB=AC∵AB=AC,AO=AO,BO=CO∴△ABO≌△ACO(SSS)④在△AEC与△ADB中∵∠AEC=∠ADB=90°,AC=AB,AE=AD∴△AEC≌△ADB(HL)所以共有四对全等三角形.19.解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.最省事的方法是应带③去,理由是:ASA.故答案为:带③去,ASA.20.解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC =S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故答案为48.三.解答题21.证明:∵DE∥AC,∴∠EDB=∠A.在△DEB与△ABC中,,∴△DEB≌△ABC(SAS).22.证明:∵BF=CE,∴BF+FC=CE+FC,即BC=EF.∵AB∥DE,∴∠B=∠E.在△ABC和△DEF中,∴△ABC≌△DEF(SAS).23.解:(1)∵∠A=85°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=35°,∵△ABC≌△DEF,AB=8,∴∠F=∠ACB=35°,DE=AB=8,∵EH=2,∴DH=8﹣2=6;(2)证明:∵△ABC≌△DEF,∴∠DEF=∠B,∴AB∥DE.24.解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.25.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.。
苏科版八年级上册数学第1章《全等三角形》单元测试卷(基础卷)(含解析)
第1章 全等三角形(基础卷)一、选择题(每小题3分,共18分)1.如图,,若,则∠B 的度数是( )A .80°B .70°C .65°D .60°2.如图,△ABD ≌△CDB ,若AB ∥CD ,则AB 的对应边是( )A .DB B .BC C .CD D .AD(第2题图)(第3题 图)3.如图,沿直角边所在的直线向右平移得到,下列结论错误的是( )A .B .C .D .4.如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E .BD 与CE 交于O ,连接AO ,则图中共有全等的三角形的对数为( )A .1对B .2对C .3对D .4对(第4题 图) (第5题 图)5.如图,已知,为的中点.若,,,则 A .B .C .D .6.如图,已知长方形ABCD 的边长AB=20cm ,BC=16cm ,点E 在边AB 上,AE=6cm ,如果点P 从点B 出发在线段BC 上以2cm/s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当ABC DEF △≌△80,30A F ∠=︒∠=︒Rt ABC BC DEF ABC ≌DEF 90DEF ∠=︒BE EC =D A∠=∠//AB CF E DF 12AB cm =7CF cm = 4.5FE cm =(B D =)5cm 6cm 7cm 4.5cm(第7题图)已知图中的两个三角形全等,则∠1=①;②;③15.如图,在中,已知AD 是到AB 的最短距离是_________.12∠=∠BE CF =CAN ABC A ∠运动,到达点C 停止,同时,点Q 从点C 出发,以vcm /s 的速度沿CD 边向点D 运动,到达点D 停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v 为______时,△ABP 与△PCQ 全等.三、解答题(共62分)17.(6分)如图,DE ⊥AB ,CF ⊥AB ,垂足分别是点E 、F ,DE=CF ,AE=BF ,求证:AC ∥BD .18.(8分)已知:,且,,,,,求:的度数及DE 的长.19.(8分)如图,已知AB =CB ,BE =BF ,点A ,B ,C 在同一条直线上,∠1=∠2.(1)证明:△ABE ≌△CBF ;(2)若∠FBE =40°,∠C =45°,求∠E的度数.DEF MNP ≌EF NP =F P ∠=∠48D ∠=︒52E ∠=︒12MN =cm P ∠20.(10分)如图,在△ABC 中,已知:点D 是BC 中点,连接AD 并延长到点E ,连接BE.(1)请你添加一个条件使△ACD ≌△EBD ,并给出证明.(2)若,,求边上的中线的取值范围.21.(10分)如图,与的顶点A ,F ,C ,D 共线,与交于点G ,与相交于点,,,.(1)求证:;(2)若,求线段的长.5AB =3AC =BC AD Rt ABC Rt DEF △AB EF BC DEH 90B E ∠=∠=︒AF CD =AB DE =Rt ABC Rt DEF ≌1GF =HC22.(10分)求证:全等三角形的对应角平分线相等.(1)在图②中,作出相应的角平分线,保留作图痕迹;(2)根据题意,写出已知、求证,并加以证明。
苏科版八年级数学上册第1章《全等三角形》单元测试(含答案)
苏科版八年级数学上册第1章《全等三角形》单元测试一.选择题1.下列各组中的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形3.如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是()A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D 4.图中的两个三角形全等,则∠1等于()A.45°B.62°C.73°D.135°5.已知△ABC≌△DEF,∠A=∠B=30°,则∠E的度数是()A.30°B.120°C.60°D.90°6.如图,若△ABC≌△DEF,B、E、C、F在同一直线上,BC=7,EC=4,则CF的长是()A.2 B.3 C.5 D.77.下列说法正确的是()A.周长相等的两个三角形全等B.如果三角形的三个内角满足∠A:∠B:∠C=1:2:3.则这个三角形是直角三角形C.从直找外一点到这条直线的垂线段,叫做这点到直线的距离D.两条直线被第三条直线所截,同位角相等二.填空题8.如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是.9.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.10.如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.11.如图,已知△ABC≌△ABD,且点C与点D对应,点A与点A对应,∠ACB=30°,∠ABC=85°,则∠BAD的度数为.12.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为.13.如图,已知△ABD≌△ACE,∠A=53°,∠B=22°,则∠C=°.14.如图是5×5的正方形网格,△ABC的顶点都在小正方形的顶点上,像△ABC这样的三角形叫格点三角形.画与△ABC有一条公共边且全等的格点三角形,这样的格点三角形最多可以画个.三.解答题15.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).16.如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.17.如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为、,结论为;(2)证明你的结论.18.已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.求证:(1)△ABO≌△DCO;(2)∠OBC=∠OCB.19.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC =4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.20.如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21.如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.参考答案一.选择题1.解:A、两个图形不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确;C、两个图形不能完全重合,故本选项错误;D、两个图形不能完全重合,故本选项错误;故选:B.2.解:A、两个等边三角形相似但不一定全等,故说法错误,不符合题意;B、两个全等图形的面积一定相等,正确,符合题意;C、形状相同的两个图形相似但不一定全等,故说法错误,不符合题意;D、两个正方形相似但不一定全等,故说法错误,不符合题意,故选:B.3.解:在△ABC和△DCB中,∵∠ACB=∠DBC,BC=BC,A:当∠ABC=∠DCB时,△ABC≌△DCB(ASA),故A能证明;B:当AB=DC时,不能证明两三角形全等,故B不能证明;C:当AC=DB时,△ABC≌△DCB(SAS),故C能证明;D:当∠A=∠D时,△ABC≌△DCB(AAS),故D能证明;故选:B.4.解:∵两个三角形全等,∴边长为a的对角是对应角,∴∠1=73°,故选:C.5.解:∵△ABC≌△DEF,∠A=∠B=30°,∴∠D=∠E=∠A=∠B=30°,则∠E的度数是30°.故选:A.6.解:∵△ABC≌△DEF,BC=7,∴EF=BC=7,∴CF=EF﹣EC=3,故选:B.7.解:A、周长相等的两个三角形,不一定全等,说法错误,不符合题意;B.三角形三个内角的比是1:2:3,则这个三角形的最大内角的度数是×180°=90°,即这个三角形是直角三角形,说法正确,符合题意;C.直线外一点到这条直线的垂线段的长度,叫做这点到该直线的距离,说法错误,不合题意;D.两条直线被第三条直线所截,同位角相等,是假命题.两直线不平行,没有这个性质.不符合题意;故选:B.二.填空题8.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣∠B﹣∠C﹣∠D=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.9.解:如图所示:由题意可得:∠1=∠3,则∠1+∠2=∠2+∠3=135°.故答案为:135°.10.解:添加的条件是AD=AB,理由是:在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故答案为:AD=AB(答案不唯一).11.解:在△ABC中,∵∠ACB=30°,∠ABC=85°,∠BAC+∠ACB+∠ABC=180°,∴∠BAC=180°﹣∠ACB+∠ABC=65°,∵△ABC≌△ABD,且点C与点D对应,点A与点A对应,∴∠BAD=∠BAC=65°,故答案为65°.12.解:∵△ABE≌△ACF∴AC=AB=5∴EC=AC﹣AE=5﹣2=3,故答案为:3.13.解:∵△ABD≌△ACE,∴∠C=∠B,∵∠B=22°,∴∠C=22°,故答案为:22.14.解:如图,以BC为公共边可画出△BDC,△BEC,△BFC三个三角形和原三角形全等.以AB为公共边可画出三个三角形△ABG,△ABM,△ABH和原三角形全等.所以可画出6个.故答案为:6.三.解答题15.解:如图所示:.16.证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.17.(1)解:由AAS,选的条件是:①,③,结论是②,故答案为:①,③,②(答案不唯一);(2)证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.18.证明:(1)∵∠AOB=∠COD,∠ABO=∠DCO,AB=DC,在△ABO和△DCO中,,∴△ABO≌△DCO(AAS);(2)由(1)知,△ABO≌△DCO,∴OB=OC∴∠OBC=∠OCB.19.解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.20.(1)证明:∵△ABC≌△DEC,∴CB=CE,∠DCE=∠ACB,∴∠CEB=∠B=65°,在△BEC中,∠CEB+∠B+∠ECB=180°,∴∠ECB=180°﹣65°﹣65°=50°,又∠DCE=∠ACB,∴∠DCA=∠ECB=50°;(2)解:∵△ABC≌△DEC,∴∠D=∠A=20°,在△DFC中,∠DFA=∠DCA+∠D=50°+20°=70°.21.(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.。
苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)
第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。
苏科新版八年级上册数学《第1章 全等三角形》 单元测试卷(,含答案)
苏科新版八年级上册数学《第1章全等三角形》单元测试卷(,含答案)一.选择题(共6小题,满分24分)1.如图所示,某同学把一块三角形的模具不小心打碎成了三块,现在要去商店配一块与原来一样的三角形模具,那么最省事的是带哪一块去()A.①B.②C.③D.①和②2.对于两个图形,下列结论:①两个图形的周长相等;②两个图形的面积相等;③能够完全重合的两个图形.其中能得出这两个图形全等的结论共有()A.0个B.1个C.2个D.3个3.如图,△OAB≌△OCD,若∠A=80°,OB=3,则下列说法正确的是()A.∠COD=80°B.CD=3C.∠D=20°D.OD=34.如图,已知MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN的是()A.AM=CN B.AC=BD C.AB=CD D.AM∥CN5.如图,已知点A、D、C、F在同一条直线上,∠B=∠E=90°,AB=DE,若添加一个条件后,能用“HL”的方法判定Rt△ABC≌Rt△DEF,添加的条件可以是()A.BC=EF B.∠BCA=∠F C.AB∥DE D.AD=CF6.如图,AD是△ABC的中线,CE∥AB交AD的延长于点E,AB=5,AC=7,则AD的取值可能是()A.3B.6C.8D.12二.填空题(共6小题,满分24分)7.如图,AC=DB,AO=DO,CD=200m,则A,B两点间的距离为m.8.如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是.(只写一个)9.如图,△ACE≌△DBF,若∠A=66°,∠E=78°,则∠FBD的度数为.10.如图,已知点A、D、C、F在同一条直线上,∠B=∠E=90°,AB=DE,若添加一个条件后,能用“HL”的方法判定Rt△ABC≌Rt△DEF,添加的条件可以是(只需写一个,不添加辅助线).11.如图,在4×4的正方形网格中,求α+β=度.12.如图,在△ABC中,E是AC边的中点,过点A作∠ABC平分线BD的垂线,垂足为D,连接DE,若DE=2,BC=8,则AB=.三.解答题(共6小题,满分72分)13.找出图中的全等图形.14.如图,已知△DEF的顶点E在△ABC的边BC上,F在BC的延长线上,且BE=CF,∠ABC=∠DEF,请你再添加一个条件,使得△ABC≌△DEF,并说明理由(不再添加其他线条和字母).15.如图2,是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=2.5m.乐乐在荡秋千过程中,当秋千摆动到最高点A时,过点A作AC⊥BD 于C,点A到地面的距离AE=1.5m(AE=CD),当他从A处摆动到A′处时,A′B=AB,若A′B⊥AB,作A′F⊥BD,垂足为F.求A′到BD的距离A′F.16.如图,已知△ABC≌△AEF中,∠EAB=26°,∠F=54°.(1)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(2)求∠AMB的度数.17.求证:一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等.要求:根据给出的Rt△ABC和Rt△A′B′C′(∠C=∠C′=90°,AC=A′C′),(1)在此图形上用尺规作出BC与B′C′边上的中线,不写作法,保留作图痕迹,(2)写出已知、求证和证明过程.18.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.参考答案与试题解析一.选择题(共6小题,满分24分)1.解:由图形可知,③有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形,所以,最省事的做法是带③去.故选:C.2.解:①周长相等的两个图形不一定重合,所以这两个图形不一定全等;②面积相同而形状不同的两个图形不全等;③两个图形能够完全重合,则这两个图形全等.所以只有1个结论正确.故选B.3.解:∵△OAB≌△OCD,∠A=80°,OB=3,∴∠C=∠A=80°,OD=OB=3.所以选项ABC说法错误,选项D说法正确.故选:D.4.解:A、加上AM=CN不能证明△ABM≌△CDN,故此选项符合题意;B、加上AC=BD可得出AB=CD,可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AB=CD,可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;D、加上AM∥CN可证明∠A=∠NCB,可利用AAS定理证明△ABM≌△CDN,故此选项不合题意;故选:A.5.解:∵∠B=∠E=90°,AB=DE,∴当添加AC=DF或AD=CF时,根据“HL”可判定Rt△ABC≌Rt△DEF.故选:D.6.解:∵AD是△ABC的中线,∴CD=BD,∵CE∥AB,∴∠DCE=∠DBA,在△CDE和△BDA中,,∴△CDE≌△BDA(SAS),∴EC=AB=5,∵7﹣5<AE<7+5,∴2<2AD<12,∴1<AD<6,故选:A.二.填空题(共6小题,满分24分)7.解:∵AC=DB,AO=DO,∴BO=CO,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=DC,∵CD=200m,∴AB=200m,即A,B两点间的距离是200m,故答案为:200.8.解:∵OB=OD,∠AOB=∠COD,OA=OC,∴△AOB≌△COD(SAS),∴要使△AOB≌△COD,添加一个条件是OA=OC,故答案为:OA=OC(答案不唯一).9.解:∵△ACE≌△DBF,∠A=66°,∠E=78°,∴∠D=∠A=66°,∠F=∠E=78°,∴∠FBD=180°﹣∠D﹣∠F=36°,故答案为:36°.10.解:∵∠B=∠E=90°,AB=DE,∴当添加AD=CF或AC=DF时,根据“HL”可判定Rt△ABC≌Rt△DEF.故答案为:AD=CF(或AC=DF).11.解:连接BC,∵AB=BC==,AC==,∴AB2+BC2=AC2,∴∠ABC=90°,∴∠BAC=∠ACB=45°,∵AB=BC=,AE=BD=1,BE=CD=2,∴△ABE≌△BCD,∴∠ACD=∠ABE=α,∵AE∥CD,∴∠DCA=∠CAE=β,∴α+β=∠BCA=45°,故答案为:45.12.解:如图,延长AD交BC于点F,∵BD平分∠ABC,∴∠ABD=∠FBD,∵AD⊥BD,∴∠ADB=∠FDB=90°,在△ABD与△FBD中,,∴△ABD≌△FBD(ASA),∴AD=DF,AB=BF,∴点D是AF的中点,∵E是AC的中点,∴DE是△AFC的中位线,∴CF=2DE=4,∴AB=BF=BC﹣CF=8﹣4=4,故答案为:4.三.解答题(共6小题,满分72分)13.解:②与⑦是全等图形.14.证明:添加条件:∠A=∠D;理由如下:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS).15.解:∵A′B⊥AB,作A′F⊥BD,∴∠ACB=∠A'FB=90°,∵∠1+∠3=90°,∠1+∠2=90°,∴∠2=∠3,在△ACB和△BFA'中,,∴△ACB≌△BFA'(AAS),∴A'F=BC,∴BC=BD﹣CD=2.5﹣1.5=1(m),∴A'F=1m,16.解:(1)∵△ABC≌△AEF,∠EAB=26°,∴△ABC绕点A顺时针旋转26°得到△AEF.(2)∵△ABC≌△AEF,∠F=54°,∴∠C=∠F=54°,∠EAF=∠BAC,∴∠FAC=∠EAB=26°,∴∠AMB=∠C+∠FAC=54°+26°=80°.17.解:(1)所作的图形如图所示:(2)已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AC=A′C′,AD 与A′D′分别为BC与B′C′边上的中线,且AD=A′D′,求证:Rt△ABC≌Rt△A′B′C′.证明:∵∠C=∠C′=90°,在Rt△ADC和Rt△A′D′C′中,,∴Rt△ADC≌Rt△A′D′C′(HL),∴CD=C′D′,∵AD与A′D′分别为BC与B′C′边上的中线,∴BC=2CD,B′C′=2C′D′,∴BC=B′C′,在Rt△ABC和Rt△A′B′C′中,,∴Rt△ABC≌Rt△A′B′C′(SAS).18.(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S=BC•DE=×5×4=10,△BCD∴△BCD的面积为10.。
苏科版八年级数学上册《第一章 全等三角形》单元检测卷(带答案)
苏科版八年级数学上册《第一章全等三角形》单元检测卷(带答案)一、选择题1.已知图中的两个三角形全等,则∠α的度数为A. 1050B. 750C. 600D. 4502.根据下列已知条件,能唯一画出△ABC的是( )A. AB=3,BC=4,CA=8B. ∠A=60°C. AB=4,BC=3,∠A=30°D. ∠C=90°3.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是( )A. 带②去B. 带①去C. 带③去D. 三块都带去4.如图,已知AB=AC,点D、E分别在线段AB、AC上,BE与CD相交于点O,添加以下哪个条件仍不能判定△ABE≌△ACD( )A. ∠B=∠CB. AE=ADC. BD=CED. BE=CD5.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M、N重合,过角尺顶点C作射线OC,由此作法便可得△NOC≌△MOC其依据是( )A. SSSB. SASC. ASAD. AAS6.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,BC=EF,∠B=∠E;③∠B=∠E,∠C=∠F,BC=EF;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有A. 1组B. 2组C. 3组D. 4组7.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是( )A. 50B. 62C. 65D. 688.尺规作图作∠AOB的平分线方法如下:如图,以点O为圆心,任意长为半径画弧分别交OA,OB于点C,D再CD长为半径画弧,两弧交于点P,作射线OP,由作法得△OCP≌△ODP的根分别以点C,D为圆心,以大于12据是( )A. SASB. ASAC. AASD. SSS9.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b则斜边BD的长是( )A. √ a2−b22B. √a2+b22C. a+bD. a−b二、填空题10.如图,已知AB=DE,∠B=∠E,请你添加一个适当的条件(填写一个即可),使得△ABC≌△DEC.11.如图△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为______.12.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D②AC=DB③AB=DC其中不能确定△ABC≌△DCB的是_____(只填序号).13.如图,在△ABC中D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C是____度.14.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知DC=3,CE=4.则两条凳子的高度之和为___________.15.如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是秒.三、解答题16.已知:如图,E是BC上一点AB=EC,AB//CD,BC=CD求证:AC=ED.17.如图AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.18.如图,已知∠A=∠D=90°,E,F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF求证:△ABF≌△DCE.19.如图,在△ABC中AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足AE=CF,求证:∠ACB=90°.20.如图(1)AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm点P在线段AB上以1cm/s的速度由点A向点B 运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】【分析】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.根据全等三角形对应角相等可得∠D=∠A=60°,再根据三角形内角和定理可得答案.【解答】解:∵△ABC≌△DEF∴∠D=∠A=60°∴∠α=180°−60°−45°=75°故选:B.2.【答案】B【解析】解:A、错误∵3+4<8,不能构成三角形;B、正确.已知两角夹边,三角形就确定了;C、错误.边边角不能确定三角形;D、错误.一角一边不能确定三角形.故选:B.分析:根据三角形的三边关系以及确定三角形的条件有SAS、AAS、ASA、SSS、HL,即可判断.本题考查全等三角形的判定和性质、三角形的三边关系等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.3.【答案】C【解析】解:带③去,符合“角边角”可以配一块同样大小的三角板.故选:C.根据全等三角形的判定方法ASA即可得出结果.本题考查了全等三角形判定的应用,熟练掌握三角形全等的判定方法是解决问题的关键.4.【答案】D【解析】解:A、当∠B=∠C时,利用ASA定理可以判定△ABE≌△ACD;B、当AE=AD时,利用SAS定理可以判定△ABE≌△ACD;C、当BD=CE时,得到AD=AE,利用SAS定理可以判定△ABE≌△ACD;D、当BE=CD时,不能判定△ABE≌△ACD;故选:D.根据全等三角形的判定定理判断.本题考查的是全等三角形的判定,掌握全等三角形的判定定理是解题的关键.5.【答案】A【解析】【分析】此题主要考查学生对全等三角形判定定理的理解和掌握此题难度不大属于基础题.利用全等三角形判定定理AAS SAS ASA SSS对△MOC和△NOC进行分析即可作出正确选择.【解答】解:由题意可知OM=ON在△MOC和△NOC中{OM=ON CM=CN OC=OC,∴△MOC≌△NOC(SSS).故选A.6.【答案】C【解析】【分析】本题考查了全等三角形的判定熟记全等三角形的判定是解题关键.根据全等三角形判定的条件可得答案.【解答】解:①AB=DE BC=EF AC=DF;②AB=DE BC=EF∠B=∠E;③∠B=∠E∠C=∠F BC=EF;故选C.7.【答案】A【解析】【分析】本题考查的是全等三角形的判定的相关知识由AE⊥AB EF⊥FH BG⊥AG可以得到∠EAF=∠ABG而AE=AB∠EFA=∠AGB由此可以证明△EFA≌△ABG所以AF=BG AG=EF;同理证得△BGC≌△DHC GC=DH CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB EF⊥FH∠EAF+∠BAG=90°∴AE=AB∠EFA=∠AGB∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG AG=EF.同理证得△BGC≌△DHC得GC=DH CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=12(6+4)×16−3×4−6×3=50.故选A.8.【答案】D【解析】【分析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL.注意:AAA SSA不能判定两个三角形全等判定两个三角形全等时必须有边的参与若有两边一角对应相等时角必须是两边的夹角.认真阅读作法从角平分线的作法得出△OCP与△ODP的两边分别相等加上公共边相等于是两个三角形符合SSS判定方法要求的条件答案可得.【解答】解:∵以O为圆心任意长为半径画弧交OA OB于C D即OC=OD;以点C D为圆心以大于12CD长为半径画弧两弧交于点P即CP=DP;∴在△OCP和△ODP中{C=ODOP=OPCP=DP,∴△OCP≌△ODP(SSS).故选D.9.【答案】B【解析】【分析】本题主要考查正方形的面积公式以及全等三角形的判定和性质深入理解题意是解决问题的关键.过A作AN⊥CB交CB的延长线于N作AM⊥EF交EF的延长线于M过D作DR⊥BH交BH于R延长FG 交DR 于Q 则四边形CEMN 是正方形 四边形QGHR 是正方形 四边形ABDF 是正方形 利用这三个正方形之间的面积关系即可求出BD 2 进一步可求BD 的长.【解答】解:如图所示 过A 作AN ⊥CB 交CB 的延长线于N作AM ⊥EF 交EF 的延长线于M 过D 作DR ⊥BH 交BH 于R 延长FG 交DR 于Q∴△ABH △BCD △DEF △AGF 是四个全等的直角三角形∴四边形CEMN 是正方形 四边形QGHR 是正方形 四边形ABDF 是正方形∵CE =a HG =b∴正方形CEMN 的面积为a 2 正方形QGHR 的面积为b 2 正方形ABDF 的面积为BD 2故S △ABH +S △BDR +S △DFQ +S AGF =BD 2−b 2又a 2−b 2=2(S △ABH +S △BDR +S △DFQ +S AGF )即a 2−b 2=2(BD 2−b 2)得BD 2=a 2+b 22∴BD =√ a 2+b 22. 故选B10.【答案】BC =EC 或∠ACB =∠DCE 或∠A =∠D(本题答案不唯一)【解析】【分析】此题主要考查学生对全等三角形的判定这一知识点的理解和掌握 此题难度不大 属于基础题.本题要判定△ABC≌△DEC 已知AB =DE ∠B =∠E 具备了一组对边和一组对角对应相等 利用SAS 或者AAS 或ASA 即可判定两三角形全等了.【解答】解:①添加条件是:BC=EC在△ABC与△DEC中∴△ABC≌△DEC(SAS).故答案为BC=EC.②添加条件是:∠ACB=∠DCE在△ABC与△DEC中∴△ABC≌△DEC(AAS).故答案为∠ACB=∠DCE.③添加条件是:∠A=∠D在△ABC与△DEC中∴△ABC≌△DEC(ASA).故答案为∠A=∠D..故答案为:BC=ECE或∠ACB=∠DCE或∠A=∠D(本题答案不唯一三个答案任选一个) 11.【答案】45°【解析】解:∵∠B=70°∴∠BAC=180°−∠B−∠C=180°−70°−30°=80°∵△ABC≌△ADE∴∠EAD=∠BAC=80°∴∠EAC=∠EAD−∠DAC=80°−35°=45°故答案为:45°由全等三角形的性质可得到∠BAC=∠EAD在△ABC中可求得∠BAC则可求得∠EAC.本题主要考查全等三角形的性质掌握全等三角形的对应边相等对应角相等是解题的关键.12.【答案】②【解析】解:∵已知∠ABC=∠DCB且BC=CB∴若添加①∠A=∠D则可由AAS判定△ABC≌△DCB;若添加②AC=DB则属于边边角的顺序不能判定△ABC≌△DCB;若添加③AB=DC则属于边角边的顺序可以判定△ABC≌△DCB.故答案为:②.一般三角形全等的判定方法有SSS SAS AAS ASA HL据此可逐个对比求解.本题考查全等三角形的几种基本判定方法只要判定方法掌握得牢固此题不难判断.13.【答案】30【解析】【分析】本题主要考查全等三角形的性质以及三角形内角和定理发现并利用∠ADB=∠EDB=∠EDC=60°∠DEC=∠DEB=∠A=90°是正确解决本题的关键.因为三个三角形为全等三角形则对应角相等从而得到∠ADB=∠EDB=∠EDC∠DEC=∠DEB=∠A再利用三角形内角和定理得到∠ADB=∠EDB=∠EDC=60°∠DEC=∠DEB=∠A=90°最后在△DEC中利用三角形内角和定理求得∠C的度数.【解答】解:∵△ADB≌△EDB≌△EDC∴∠ADB=∠EDB=∠EDC又∵∠ADB+∠EDB+∠EDC=180°∴∠ADB=∠EDB=∠EDC=60°在△DEC中∴∠C=30°.故答案为30.14.【答案】7【解析】【分析】此题主要考查了全等三角形的判定与性质得出△ACD≌△CBE是解题关键.利用等腰三角形的性质结合全等三角形的判定方法得出即可.【解答】解:由题意可得:∠ACD+∠BCE=90°则∠DAC=∠ECB在△ACD和△CBE中{∠CDA=∠BEC ∠DAC=∠ECB AC=CB,∴△ACD≌△CBE(AAS)故DC=BE=3则两条凳子的高度之和为:3+4=7.故答案为7.15.【答案】4【解析】【分析】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件 对应角相等 并巧妙地借助两个三角形全等 寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt △ACM≌Rt △BMD .根据题意证明∠C =∠DMB 利用AAS 证明△ACM≌△BMD 根据全等三角形的性质得到BD =AM =12米 再利用时间=路程÷速度即可.【解答】解:∵∠CMD =90°∴∠CMA +∠DMB =90°又∵∠CAM =90°∴∠CMA +∠C =90°∴∠C =∠DMB .在Rt △ACM 和Rt △BMD 中{∠A =∠B ∠C =∠DMB CM =MD∴Rt △ACM≌Rt △BMD(AAS)∴BD =AM =12米∴BM =20−12=8(米)∵该人的运动速度为2m/s∴他到达点M 时 运动时间为8÷2=4(s).故答案为4.16.【答案】证明:因为AB//CD所以∠B =∠DCE .在△ABC 和△ECD 中{AB =EC ∠B =∠DCE BC =CD所以△ABC ≌△ECD(SAS).所以AC =ED .【解析】本题考查了三角形全等的判定与性质平行线的性质比较简单求出∠B=∠DCE是证明三角形全等的关键.根据两直线平行内错角相等可得∠B=∠DCE然后利用“边角边”证明△ABC和△ECD全等再根据全等三角形对应边相等即可得证.17.【答案】(1)证明:∵∠DAE=∠BAC∴∠DAE−∠DAC=∠BAC−∠DAC∴∠1=∠CAE在△ABD和△ACE中∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE∴∠DBA=∠2∵∠2=30°∴∠DBA=30°∵∠1=25°∴∠3=∠1+∠DBA=25°+30°=55°.【解析】本题考查的是全等三角形的判定和性质以及三角形的外角性质掌握全等三角形的判定方法和适当运用三角形的外角定理是关键.(1)由∠BAC=∠DAE可得∠1=∠CAE利用SAS可证明结论;(2)由△ABD≌△ACE得到由∠DBA=∠2最后利用三角形的外角的性质即可解答.18.【答案】证明:∵BE=CF∴BE+EF=CF+EF即BF=CE∵∠A=∠D=90°∴△ABF与△DCE都为直角三角形在Rt△ABF和Rt△DCE中{BF=CE,AB=DC∴Rt△ABF≌Rt△DCE(HL).【解析】此题考查了直角三角形全等的判定解题关键是由BE=CF通过等量代换得到BF=CE.由BE=CF通过等量代换得到BF=CE结合AB=CD根据直角三角形全等的判定的方法即可证明.19.【答案】证明:如图在Rt △ACE 和Rt △CBF 中{AC =BC AE =CF∴Rt △ACE≌Rt △CBF(HL)∴∠EAC =∠BCF∵∠EAC +∠ACE =90°∴∠ACE +∠BCF =90°∴∠ACB =180°−90°=90°.【解析】先利用HL 定理证明△ACE 和△CBF 全等 再根据全等三角形对应角相等可以得到∠EAC =∠BCF 因为∠EAC +ACE =90° 所以∠ACE +∠BCF =90° 根据平角定义可得∠ACB =90°.本题主要考查全等三角形的判定 全等三角形对应角相等的性质 熟练掌握性质是解题的关键. 20.【答案】解:(1)当t =1时 AP =BQ =1又∵∠A =∠B =90°在△ACP 和△BPQ 中AP =BQ ∠A =∠B∴△ACP≌△BPQ(SAS).∴∠ACP =∠BPQ∴∠APC +∠BPQ =∠APC +∠ACP =90°.∴∠CPQ =90°即线段PC 与线段PQ 垂直.(2)①若△ACP≌△BPQ则AC =BP{3=4−t t =xt解得{t =1x =1②若△ACP≌△BQP则AC =BQ{3=xt t =4−t解得{t =2x =32综上所述 存在{t=1x=1或{t=2 x=32使得△ACP与△BPQ全等.【解析】本题主要考查了全等三角形的判定与性质注意分类讨论思想的渗透.(1)利用SAS证得△ACP≌△BPQ得出∠ACP=∠BPQ进一步得出∠APC+∠BPQ=∠APC+∠ACP= 90°得出结论即可;(2)由△ACP≌△BPQ分两种情况:①AC=BP AP=BQ②AC=BQ AP=BP建立方程组求得答案即可.。
苏科版八年级数学上册第一章 全等三角形单元练习(含答案)
第4题图第5题 第一章 全等三角形 单元练习一、选择题(在每小题所给出的四个选项中恰有一项是符合题目要求的)1.下列条件中,不能判定△ABC ≌△A ′B ′C ′的是 ( )A .AB =A ′B ′,∠A =∠A ′,AC =A ′C ′B .AB =A ′B ′,∠A =∠A ′,∠B =∠B ′C .AB =A ′B ′,∠A =∠A ′,∠C =∠C ′D .∠A =∠A ′,∠B =∠B ′,∠C =∠C ′2.如图,小敏做了一个角平分仪ABCD ,其中AB =AD ,BC =DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。
此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE =∠P AE 。
则说明这两个三角形全等的依据是( )A . SASB . ASAC . AASD . SSS3.如图,△ABC 和△DEF 中,AB =DE 、∠B =∠DEF ,添加下列哪一个条件无法证明△ABC ≌△DEF ( )A .AC ∥DFB .∠A =∠DC .AC =DFD .∠ACB =∠F4.如图,在△ABC 中,AQ =PQ ,PR =PS ,PR ⊥AB 于点R ,PS ⊥AC 于点S ,则三个结论:①AS =AR ;②QP ∥AR ;③△BPR ≌△QPS 中 ( )A .全部正确B .仅①和②正确C .仅①正确D .仅①和③正确5.如图是一个风筝设计图,其主体部分(四边形ABCD )关于BD 所在的直线对称,AC 与BD 相交于点O ,且AB ≠AD ,则下列判断不正确的是 ( )A .△ABD ≌△CBDB .△ABC 是等边三角形 C .△AOB ≌△COBD .△AOD ≌△COD6.下列命题中,不正确的是 ( )A .各有一个角为95°,且底边相等的两个等腰三角形全等;B .各有一个角为40°,且底边相等的两个等腰三角形全等;C .各有一个角为40°,且其所对的直角边相等的两个直角三角形全等;D .各有一个角为40°,且有斜边相等的两个直角三角形全等.二、填空题(不需写出解答过程,请把答案直接填写在相应位的置.....上) 7.如图,在Rt △ABC 中,∠C =90°,AC =10,BC =5,PQ =AB ,点P 和点Q 分别在AC 和AC 的垂线ADB ACD E上移动,则当AP =时,才能使△ABC 和△APQ 全等.2第8题图 第9题图8.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD =CD ,BE =CF ,则下列结论:①DE =DF ;②AD 平分∠BAC ;③AE =AD ;④AB +AC =2AE 中正确的是 .9.如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC =90°,AB =AC ,∠1=30°,则∠2的度数为 .10.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S , 若AQ =PQ ,PR =PS ,下面四个结论:①AS =AR②QP ∥AR ③△BRP ≌△QSP ,④AP 垂直平分RS .其中正确结论的序号是 (请将所有正确结论的序号都填上).三、解答题(请在答题的指定区域内作答,解答时应写出必要的文字说明、证明 过程或演算步骤)11.(2015•无锡)已知:如图,AB ∥CD ,E 是AB 的中点,CE =DE .求证:(1)∠AEC =∠BED ; (2)AC =B D .12.如图,ABC ∆为等边三角形,D 为边BA 延长线上一点,连接CD ,以CD 为一边作等边三角形CDE ∆,连接AE .(1)求证:CBD ∆≌CAE ∆.(2)判断AE 与BC 的位置关系,并说明理由.13如图,△ABC 是等边三角形,AE =CD ,BQ ⊥AD 于Q ,BE 交AD 于P . 第7题图D(1)求证:△ABE ≌△CAD ;(2)求∠PBQ 的度数.14.如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点。
苏科版八年级数学上册第一章 全等三角形单元测试(二)及解析
第一章全等三角形单元测试一、选择题1.下列图形中,和所给图全等的图形是()A.B.C.D.2.下列命题中,真命题的个数是()①全等三角形的周长相等;②全等三角形的对应角相等;③全等三角形的面积相等;④全等三角形的对应角平分线相等.A.4 B.3 C.2 D.1(题1题) (题4题) (题7题)3.下列条件中,能判定两个三角形全等的是()A.有三个角对应相等B.有两条边对应相等C.有两边及一角对应相等D.有两角及一边对应相等4.如图,△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.45°C.35°D.25°5.在下列条件中,不能说明△ABC≌△A′B′C的是()A.∠A=∠A′,∠C=∠C′,AC=A′C′B.∠A=∠A′,AB=A′B′,BC=B′C′C.∠B=∠B′,∠C=∠C′,AB=A′B′D.AB=A′B′,BC=B′C,AC=A′C′6.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′,AB=B′A′,则下列结论中正确的是()A.AC=A′C′B.BC=B′C′C.AC=B′C′D.∠A=∠A′7.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL8.如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有()A.1个B.2个C.3个D.4个(题8题)(题9题) (题10题)9.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可10.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10°B.20°C.7.5°D.15°二、填空题11.如果△ABC≌△A′B′C′,AB=24,S△A′B′C′=180,那么△ABC中AB边上的高是.12.一个三角形的三边长分别为2,5,m,另一个三角形的三边长分别为n,6,2,若这两个三角形全等,则m+n=.13.已知,如图∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF(1)若以“SAS”为依据,还要添加的条件为;(2)若以“ASA”为依据,还要添加的条件为.(题13题) (题15题) (题16题)14.下列说法正确的有个.(1)两条边对应相等的两个直角三角形全等.(2)有一锐角和斜边对应相等的两直角三角形全等.(3)一条直角边和一个锐角对应相等的两直角三角形全等.(4)面积相等的两个直角三角形全等.15.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A 且垂直于AC的射线AO上运动,当AP=时,△ABC和△PQA全等.16.如图,△ABC的高BD,CE相交于点O.请你添加一个条件,使BD=CE.你所添加的条件是.(仅添加一对相等的线段或一对相等的角)17.如图,已知BE⊥AD,CF⊥AD,BE=CF,由这三个条件组合运用可以得到若干结论,请你写出三个正确结论:.(题17题) (题18题)18.如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,下面有四个条件:①AB=DE,②AC=DF,③∠ABC=∠DEF,④BE=CF.请你在其中选3个作为题设,余下的1个作为结论,写出所有能组成真命题组合的题设为.(填序号)三、解答题(共46分)19.如图所示,已知∠ACB和∠ADB都是直角,且AC=AD,P是AB上任意一点.求证:CP=DP.20.如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.21.已知:如图所示,AD是△ABC的中线,DE⊥AB于E,DF⊥AC于F且BE=CF.求证:(1)AD是∠BAC的平分线;(2)AB=A C.22.如图所示,施工队在沿AC方向开山修路,为了加快施工进度,要在小山的另一边点E同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55°,要使A,C,E成一直线,那么开挖点E离点B的距离如何求得?请你设计出解决方案.23.如图,∠BAC=∠BAD,点E在AB上.(1)添加一个条件,使△ACE≌△ADE,你添加的条件是;(2)根据(1)中你添加的条件,请再写出另外一对全等三角形,并证明.24.数学作业本发下来了,徐波想“我应该又是满分吧”,翻开作业本,一个大红的错号映入眼帘,徐波不解了,“我哪里做错了呢”下面就是徐波的解法,亲爱的同学,你知道他哪儿错了吗?你能帮他进行正确的说明吗?如图所示,∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.试说明∠ADC=∠AE B.徐波的解法:在△ACD和△ABE中,,所以△ABE≌△ACD,所以∠ADC=∠AE B.25.如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.(1)求证:△ABP≌△CBE;(2)连结AD、BD,BD与AP相交于点F.如图2.①当=2时,求证:AP⊥BD;②当=n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.参考答案与试题解析一、选择题1.下列图形中,和所给图全等的图形是()A.B.C.D.【考点】全等图形.【分析】根据能够完全重合的两个图形是全等形即可判断出答案.【解答】解;如图所示:和左图全等的图形是选项D.故选:D.【点评】本题考查全等形的定义,属于基础题,注意掌握全等形的定义.2.下列命题中,真命题的个数是()①全等三角形的周长相等;②全等三角形的对应角相等;③全等三角形的面积相等;④全等三角形的对应角平分线相等.A.4 B.3 C.2 D.1【考点】命题与定理.【分析】根据全三角形的性质,可以判断各个说法是否正确,从而可以解答本题.【解答】解:全等三角形的周长相等,故①正确;全等三角形的对应角相等,故②正确;全等三角形的面积相等,故③正确;全等三角形的对应角平分线相等,故④正确;故选A.【点评】本题考查命题和定理,解题的关键是明确全等三角形的性质.3.下列条件中,能判定两个三角形全等的是()A.有三个角对应相等 B.有两条边对应相等C.有两边及一角对应相等 D.有两角及一边对应相等【考点】全等三角形的判定.【分析】熟练运用判定方法判断.做题时要按判定全等的方法逐个验证.【解答】解:有三个角对应相等,不能判定全等,A错误;有两条边对应相等,缺少条件不能判定全等,B错误;有两边及一角对应相等不能判定全等,C错误;有两角及一边对应相等可判断全等,符合AAS或ASA,是正确的.故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.如图,△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.45°C.35°D.25°【考点】全等三角形的性质.【分析】由全等三角形的性质可得到∠BAC=∠EAD,在△ABC中可求得∠BAC,则可求得∠EA C.【解答】解:∵∠B=70°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣30°=80°,∵△ABC≌△ADE,∴∠EAD=∠BAC=80°,∴∠EAC=∠EAD﹣∠DAC=80°﹣35°=45°,故选B.【点评】本题主要考查全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.5.在下列条件中,不能说明△ABC≌△A′B′C的是()A.∠A=∠A′,∠C=∠C′,AC=A′C′B.∠A=∠A′,AB=A′B′,BC=B′C′C.∠B=∠B′,∠C=∠C′,AB=A′B′D.AB=A′B′,BC=B′C,AC=A′C′【考点】全等三角形的判定.【分析】根据题意,对选项一一分析,选择正确答案.【解答】解:A、∠A=∠A′,∠C=∠C′,AC=A′C′,可用ASA判定△ABC≌△A′B′C,故选项正确;B、∠A=∠A′,AB=A′B′,BC=B′C′,SSA不能判定两个三角形全等,故选项错误;C、∠B=∠B′,∠C=∠C′,AB=A′B′,可用AAS判定△ABC≌△A′B′C,故选项正确;D、AB=A′B′,BC=B′C,AC=A′C′,可用ASA判定△ABC≌△A′B′C,故选项正确.故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′,AB=B′A′,则下列结论中正确的是()A.AC=A′C′B.BC=B′C′C.AC=B′C′D.∠A=∠A′【考点】全等三角形的判定.【分析】此题难度较小,主要是对应关系的问题,可以采用排除法进行分析确定.【解答】解:如图所示,∵∠C=∠C′=90°,∠A=∠B′,AB=B′A′,∴Rt△ABC≌Rt△A′B′C′,∴AC=B′C′(A不正确,C正确),BC=A′C′(B不正确),∠A=∠B′(已知已给出,D不正确),故选C.【点评】主要考查全等三角形的判定,作此题需考虑对应关系,不能凭主观想象和习惯做题,画个图形,一目了然.7.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL【考点】全等三角形的应用.【分析】结合图形根据三角形全等的判定方法解答.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA).故选B.【点评】本题考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键.8.如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有()A.1个B.2个C.3个D.4个【考点】直角三角形全等的判定;全等三角形的性质.【分析】可以采用排除法对各个选项进行验证,从而得出最后的答案.【解答】解:①∵BE⊥AC,AD⊥BC∴∠AEH=∠ADB=90°∵∠HBD+∠BHD=90°,∠EAH+∠AHE=90°,∠BHD=∠AHE∴∠HBD=∠EAH∵DH=DC∴△BDH≌△ADC(AAS)∴BD=AD,BH=AC②:∵BC=AC∴∠BAC=∠ABC∵由①知,在Rt△ABD中,BD=AD∴∠ABC=45°∴∠BAC=45°∴∠ACB=90°∵∠ACB+∠DAC=90°,∠ACB<90°∴结论②为错误结论.③:由①证明知,△BDH≌△ADC∴BH=AC解④:∵CE=CD∵∠ACB=∠ACB;∠ADC=∠BEC=90°∴△BEC≌△ADC由于缺乏条件,无法证得△BEC≌△ADC∴结论④为错误结论综上所述,结论①,③为正确结论,结论②,④为错误结论,根据题意故选B.故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以 B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了 D.带1、4或2、4或3、4去均可【考点】全等三角形的应用.【专题】应用题.【分析】②④虽没有原三角形完整的边,又没有角,但延长可得出原三角形的形状;带①、④可以用“角边角”确定三角形;带③、④也可以用“角边角”确定三角形.【解答】解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选D.【点评】本题考查了全等三角形判定的应用;确定一个三角形的大小、形状,可以用全等三角形的几种判定方法.做题时要根据实际问题找条件.10.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10°B.20°C.7.5°D.15°【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形.【分析】根据直角三角形两锐角互余求出∠DCE=60°,旋转的性质可得∠BCE1=15°,然后求出∠BCD1=45°,从而得到∠BCD1=∠A,利用“边角边”证明△ABC和△D1CB全等,根据全等三角形对应角相等可得∠BD1C=∠ABC=45°,再根据∠E1D1B=∠BD1C﹣∠CD1E1计算即可得解.【解答】解:∵∠CED=90°,∠D=30°,∴∠DCE=60°,∵△DCE绕点C顺时针旋转15°,∴∠BCE1=15°,∴∠BCD1=60°﹣15°=45°,∴∠BCD1=∠A,在△ABC和△D1CB中,,∴△ABC≌△D1CB(SAS),∴∠BD1C=∠ABC=45°,∴∠E1D1B=∠BD1C﹣∠CD1E1=45°﹣30°=15°.故选:D.【点评】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记性质并求出△ABC和△D1CB全等是解题的关键.二、填空题11.如果△ABC≌△A′B′C′,AB=24,S△A′B′C′=180,那么△ABC中AB边上的高是15.【考点】全等三角形的性质.【分析】运用全等三角形的面积相等得出S△ABC=180,再利用AB=24本题可解.【解答】解:∵△ABC≌△A′B′C′,S△A′B′C′=180,∴S△ABC=180,设AB边上的高是h.则S△ABC=AB•h,又AB=24,∴△ABC中AB边上的高h=180×2÷24=15.故填15.【点评】本题考查了全等三角形的性质,三角形的面积;要牢固掌握这些知识,并能灵活应用.12.一个三角形的三边长分别为2,5,m,另一个三角形的三边长分别为n,6,2,若这两个三角形全等,则m+n=11.【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等求出m、n的值,再相加即可得解.【解答】解:∵两三角形全等,∴m=6,n=5,∴m+n=6+5=11.故答案为:11.【点评】本题考查了全等三角形的性质,熟记性质是解题的关键.13.已知,如图∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF(1)若以“SAS”为依据,还要添加的条件为BE=CF或BC=EF;(2)若以“ASA”为依据,还要添加的条件为∠A=∠D.【考点】全等三角形的判定.【分析】(1)根据全等三角形的SAS定理,只需找出夹角的另一边,即BC=EF,即可证得.(2)要判定△ABC≌△DEF,已知∠ABC=∠DEF,AB=DE,加∠A=∠D即可.【解答】解:(1)∵∠ABC=∠DEF,AB=DE,要使△ABC≌△DEF,且以“SAS”为依据,∴还要添加的条件为:BE=CF或BC=EF;故答案为:BE=CF或BC=EF;(2)∵∠ABC=∠DEF,AB=DE,要使△ABC≌△DEF,且以“ASA”为依据,∴还要添加的条件为:∠A=∠D.故答案为:∠A=∠D.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.14.下列说法正确的有3个.(1)两条边对应相等的两个直角三角形全等.(2)有一锐角和斜边对应相等的两直角三角形全等.(3)一条直角边和一个锐角对应相等的两直角三角形全等.(4)面积相等的两个直角三角形全等.【考点】直角三角形全等的判定.【分析】利用全等三角形的判定方法逐个判断即可.【解答】解:(1)当这两条边都是直角边时,结合直角相等,则可用SAS可判定两个三角形全等,当这两条边一条是斜边一条是直角边时,可用HL判定这两个直角三角形全等,故(1)正确;(2)有一锐角和斜边对应相等时,结合直角,可用AAS来判定这两个直角三角形全等,故(2)正确;(3)当一条直角边和一个锐角对应相等时,结合直角,可用AAS或ASA来证明这两个直角三角形全等,故(3)正确;(4)当两个三角形面积相等时,这两个直角三角形不一定会等,故(4)不正确;综上可知正确的有3个,故答案为:3.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.15.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A 且垂直于AC的射线AO上运动,当AP=5或10时,△ABC和△PQA全等.【考点】直角三角形全等的判定.【分析】当AP=5或10时,△ABC和△PQA全等,根据HL定理推出即可.【解答】解:当AP=5或10时,△ABC和△PQA全等,理由是:∵∠C=90°,AO⊥AC,∴∠C=∠QAP=90°,①当AP=5=BC时,在Rt△ACB和Rt△QAP中∴Rt△ACB≌Rt△QAP(HL),②当AP=10=AC时,在Rt△ACB和Rt△PAQ中∴Rt△ACB≌Rt△PAQ(HL),故答案为:5或10.【点评】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.16.如图,△ABC的高BD,CE相交于点O.请你添加一个条件,使BD=CE.你所添加的条件是BE=CD 或∠EBC=∠DCB或∠DBC=∠BCE或AB=AC.(仅添加一对相等的线段或一对相等的角)【考点】全等三角形的判定与性质.【分析】根据三角形全等的判定方法,从△BCD和△CBE全等,或者△ABD和△ACE全等考虑添加条件.【解答】解:添加BE=CD可以利用“HL”证明△BCD≌△CBE,添加∠EBC=∠DCB可以利用“AAS”证明△BCD≌△CBE,添加∠DBC=∠BCE可以利用“AAS”证明△BCD≌△CBE,添加AB=AC可以利用“HL”证明△ABD≌△ACE,综上所述,所添加的条件可以是BE=CD或∠EBC=∠DCB或∠DBC=∠BCE或AB=A C.故答案为:BE=CD或∠EBC=∠DCB或∠DBC=∠BCE或AB=A C.【点评】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键.17.如图,已知BE⊥AD,CF⊥AD,BE=CF,由这三个条件组合运用可以得到若干结论,请你写出三个正确结论:△BDE≌△CDF,BD=CD,AD是△ABC的中线.【考点】全等三角形的判定与性质.【分析】根据已知条件得到△BDE≌△CDF,根据全等三角形的性质得到BD=C D.AD是△ABC的中线【解答】解:∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,∴△BDE≌△CDF(AAS),∴BD=C D.∴AD是△ABC的中线.故答案为:△BDE≌△CDF,BD=CD,AD是△ABC的中线.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要根据实际情况灵活运用.18.如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,下面有四个条件:①AB=DE,②AC=DF,③∠ABC=∠DEF,④BE=CF.请你在其中选3个作为题设,余下的1个作为结论,写出所有能组成真命题组合的题设为①②④或①③④.(填序号)【考点】命题与定理.【分析】直接利用全等三角形的判定方法分别得出符合题意的答案.【解答】解:∵BE=CF,∴BC=EF,在△ABC和△DEF中∵,∴△ABC≌△DEF(SAS),∴AC=DF,即①③④为题设,可以得出②;∵BE=CF,∴BC=EF,在△ABC和△DEF中∵,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,即①②④为题设,可以得出③;故答案为:①②④或①③④.【点评】此题主要考查了命题与定理,正确掌握全等三角形的判定方法是解题关键.三、解答题(共46分)19.如图所示,已知∠ACB和∠ADB都是直角,且AC=AD,P是AB上任意一点.求证:CP=DP.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先根据HL判定Rt△ACB≌Rt△ADB得出BC=BD,∠CBA=∠DBA,再利用SAS判定△CBP≌△DBP从而得出CP=DP.【解答】证明:在Rt△ACB和Rt△ADB中,,∴Rt△ACB≌Rt△ADB(HL).∴BC=BD,∠CBA=∠DB A.∵BP=BP,∴△CBP≌△DBP(SAS).∴CP=DP.【点评】本题考查三角形全等的判定和性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.【考点】直角三角形全等的判定;全等三角形的性质.【专题】探究型.【分析】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理.【解答】解:AC=ED,理由如下:∵AB⊥BC,DC⊥AC,ED⊥BC,∴∠B=∠EFC=∠DCE=90°.∴∠A+∠ACB=90°,∠CEF+∠ACB=90°.∴∠A=∠CEF.在△ABC和△ECD中,∴△ABC≌△ECD(ASA).∴AC=ED(全等三角形的对应边相等).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.已知:如图所示,AD是△ABC的中线,DE⊥AB于E,DF⊥AC于F且BE=CF.求证:(1)AD是∠BAC的平分线;(2)AB=A C.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)要证AD平分∠BAC,只需证明△ABD≌△ACD即可.(2)由1可证得Rt△AED≌Rt△AFD,然后推出BE=CF可得AB=A C.【解答】证明:(1)AD是△ABC的中线(已知),∴BD=C D.在Rt△EBD和Rt△FCD中,∴Rt△EBD≌Rt△FCD(HL).∴DE=DF(全等三角形的对应边相等),即AD是∠BAC的平分线.(2)在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF(全等三角形的对应边相等).又∵BE=CF(已知),∴AB=A C.【点评】本题考查了全等三角形的判定和性质;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(6分)如图所示,施工队在沿AC方向开山修路,为了加快施工进度,要在小山的另一边点E 同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55°,要使A,C,E成一直线,那么开挖点E离点B的距离如何求得?请你设计出解决方案.【考点】全等三角形的应用.【专题】应用题;方案型.【分析】本题让我们了解测量两点之间的距离的一种方法,设计只要符合全等三角形全等的条件,具有可操作性,需要测量的线段和角度在空地可实施测量.【解答】解:方案设计如图,延长BD到点F,使BD=DF=500米,过F作FG⊥ED于点G.因为∠ABD=145°,所以∠CBD=35°,在△BED和△FGD中所以△BED≌△FGD(ASA),所以BE=FG(全等三角形的对应边相等).所以要求BE的长度可以测量GF的长度.【点评】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题主要是利用了△BED≌△FGD的判定及性质.23.如图,∠BAC=∠BAD,点E在AB上.(1)添加一个条件,使△ACE≌△ADE,你添加的条件是AC=AD;(2)根据(1)中你添加的条件,请再写出另外一对全等三角形,并证明.【考点】全等三角形的判定与性质.【分析】(1)由图形可知AE=AE,结合条件可再添加AC=AD,利用SAS可证明△ACE≌△ADE;(2)利用SAS可证明△ACB≌△AD B.【解答】解:(1)∵在图形中有AE=AE,且∠BAC=∠BAD,∴可添加AC=AD,利用SAS判断△ACE≌△ADE,故答案为:AC=AD;(2)可证明△ACB≌△ADB,证明如下:在△ACB和△ADB中∴△ACB≌△ADB(SAS).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.24.数学作业本发下来了,徐波想“我应该又是满分吧”,翻开作业本,一个大红的错号映入眼帘,徐波不解了,“我哪里做错了呢”下面就是徐波的解法,亲爱的同学,你知道他哪儿错了吗?你能帮他进行正确的说明吗?如图所示,∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.试说明∠ADC=∠AE B.徐波的解法:在△ACD和△ABE中,,所以△ABE≌△ACD,所以∠ADC=∠AE B.【考点】全等三角形的判定与性质.【专题】阅读型.【分析】证明三角形全等,不能用SSA,而徐波正是犯了这个错误,要解决本题,首先证明△ABF≌△ACG(AAS),再证明Rt△BEF≌Rt△CDG(HL),即可推出∠ADC=∠AE B.【解答】解:错在不能用“SSA”说明三角形全等.正确的解法如下:如图所示,因为∠BAC是钝角,故过B、C两点分别作CA、BA的垂线,垂足分别为F,G,在△ABF与△ACG中,∴△ABF≌△ACG(AAS),∴BF=CG,在Rt△BEF和Rt△CDG中,∴Rt△BEF≌Rt△CDG(HL),∴∠ADC=∠AE B.【点评】本题考查了全等三角形的判定和性质;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题要特别注意SSA不能作为全等三角形一种证明方法使用.25.如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.(1)求证:△ABP≌△CBE;(2)连结AD、BD,BD与AP相交于点F.如图2.①当=2时,求证:AP⊥BD;②当=n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.【考点】相似形综合题.【专题】几何综合题.【分析】(1)求出∠ABP=∠CBE,根据SAS推出即可;(2)①延长AP交CE于点H,求出AP⊥CE,证出△CPD∽△BPE,推出DP=PE,求出平行四边形BDCE,推出CE∥BD即可;②分别用S表示出△PAD和△PCE的面积,代入求出即可.【解答】(1)证明:∵BC⊥直线l1,∴∠ABP=∠CBE,在△ABP和△CBE中∴△ABP≌△CBE(SAS);(2)①证明:连结BD,延长AP交CE于点H,∵△ABP≌△CBE,∴∠APB=∠CEB,∵∠PAB+∠APB=90°,∴∠PAB+∠CEB=90°,∴AH⊥CE,∵=2,即P为BC的中点,直线l1∥直线l2,∴△CPD∽△BPE,∴==,∴DP=PE,∴四边形BDCE是平行四边形,∴CE∥BD,∵AH⊥CE,∴AP⊥BD;②解:∵=n,∴BC=n•BP,∴CP=(n﹣1)•BP,∵CD∥BE,易得△CPD∽△BPE,∴==n﹣1,设△PBE的面积S△PBE=S,则△PCE的面积S△PCE满足=n﹣1,即S2=(n﹣1)S,∵S△PAB=S△BCE=n•S,∴S△PAE=(n+1)•S,∵==n﹣1,∴S1=(n﹣1)•S△PAE,即S1=(n+1)(n﹣1)•S,∴==n+1.【点评】本题考查了平行四边形的性质和判定,相似三角形的性质和判定,全等三角形的性质和判定的应用,主要考查了学生的推理能力,题目比较好,有一定的难度.。
苏科版八年级上册数学《第1章全等三角形》单元测试题及答案
苏科版数学八年级上册《第1章全等三角形》单元测试题考试分值:120;考试时间:100分钟一.选择题(共10小题,满分40分)1.(4分)如图所示正方形网格中,连接AB、AC、AD,观测∠1+∠2+∠3=()A.120°B.125°C.130°D.135°2.(4分)长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.B.C.D.3.(4分)如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,一条线段PQ=AB,P,Q两点分别在线段AC和AC的垂线AX上移动,若△ABC和△APQ全等,则AP的值为()A.6cm B.12cm C.12cm或6cm D.以上答案都不对4.(4分)如图,已知△ABC≌△CDA,∠B=∠D,则下列结论中正确的是()①AB=CD,BC=DA.②∠BAC=∠DCA,∠ACB=∠CAD.③AB∥CD,BC∥DA.A.①B.②C.①③D.①②③5.(4分)下列说法正确的是()A.全等三角形是指周长和面积都一样的三角形B.全等三角形的周长和面积都一样C.全等三角形是指形状相同的两个三角形D.全等三角形的边都相等6.(4分)如图,已知点D在AC上,点B在AE上,△ABC≌△DBE,且∠BDA=∠A,若∠A:∠C=5:3,则∠DBC=()A.30°B.25°C.20°D.15°7.(4分)如图所示,△ABC≌△EDF,DF=BC,AB=ED,AE=20,AF=5,则AC的长为()A.20 B.5 C.10 D.158.(4分)下列不能判定三角形全等的是()A.如图(1),线段AD与BC相交于点O,AO=DO,BO=CO.△ABO与△BCO B.如图(2),AC=AD,BC=BD.△ABC与△ABDC.如图(3),∠A=∠C,∠B=∠D.△ABO与△CDOD.如图(4),线段AD与BC相交于点E,AE=BE,CE=DE,AC=BD.△ABC与△BAD9.(4分)如图,在四边形ABCD中,AD∥BC,若∠DAB的角平分线AE交CD于E,连接BE,且BE边平分∠ABC,则以下命题不正确的个数是①BC+AD=AB;②E为CD中点;=S四边形ABCD;⑤BC=CE.()③∠AEB=90°;④S△ABEA.0个B.1个C.2个D.3个10.(4分)一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可二.填空题(共5小题,满分20分)11.(4分)如图,已知△ACF≌△DBE,∠E=∠F,AD=9cm,BC=5cm,AB的长为cm.12.(4分)如图:已知DE=AB,∠D=∠A,请你补充一个条件,使△ABC≌△DEF,并说明你判断的理由:或.13.(4分)七巧板是我们祖先的一项卓越创造,它虽然只有七块,但是可以拼出多种多样的图形,如图就是一个七巧板,七块刚好拼成一个正方形,图中全等的三角形有对.14.(4分)在△ABC和△DEF中,AB=4,∠A=35°,∠B=70°,DE=4,∠D=°,∠E=70°,根据判定△ABC≌△DEF.15.(4分)如图,AB,D相交于点O,已知OC=OA,请你补充的一个条件或使△AOD≌△COB.三.解答题(共5小题,满分60分)16.(10分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.17.(12分)如图,在△ABC和△DCB中AC与BD相交于点O,AB=DC.(1)请你再添加一个条件,使得△ABC≌△DCB;(2)根据(1)中你所添加的条件,求证:△ABC≌△DCB;(3)△OBC的形状是.(直接写出结论,不需证明)18.(12分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.19.(12分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.20.(14分)点D是等边△ABC(即三条边都相等,三个角都相等的三角形)边BA上任意一点(点D与点B不重合),连接DC.(1)如图1,以DC为边在BC上方作等边△DCF,连接AF,猜想线段AF与BD的数量关系?请说明理由.(2)如图2,若以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?请说明理由.参考答案一.选择题1.D.2.A.3.C.4.D.5.B.6.C.7.D.8.C.9.B.10.D.二.填空题11.2.12.∠B=∠E或∠ACB=∠DFE或AF=CD.13.3.14.35,ASA.15.OB=DO或∠A=∠C.三.解答题16.解:(1)3对.分别是:△ABD≌△ACD;△ADE≌△ADF;△BDE≌△CDF.(2)△BDE≌△CDF.证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.又D是BC的中点,∴BD=CD.在Rt△BDE和Rt△CDF中,,∴△BDE≌△CDF(HL).17.解:(1)添加∠ABC=∠DCB,(2)证明如下:∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS).(3)由(2)知△ABC≌△DCB,∴∠ACB=∠DBC,∴△OBC的形状是等腰三角形.18.解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.19.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.20.解:(1)BD=AF,理由:∵△ABC和△DCF都是等边三角形,∴BC=AC,CD=CF,∠ACB=∠DCF=60°,∴∠BCD=∠ACF,在△BCD和△ACF中,,∴△BCD≌△ACF(SAS),∴BD=AF;(2)AB=AF+BF′,理由:∵△ABC和△DCF都是等边三角形,∴BC=AC,CF′=CD,∠F′CD=∠BCA=90°,∴∠F′CB=∠DCA,在△F′CB和△DCA中,,∴△F′CB≌△DCA(SAS),∴BF′=DA,由(1)知,BD=AF,∵AB=BD+AD,∴AB=AF+BF′.。
苏科版八年级上册数学 第一章 全等三角形 单元测试题
第一章全等三角形单元测试题一、选择题1.在如图所示的四个图形中,属于全等形的是( )A. ①和③B. ①和④C. ②和③D. ②和④2.下列说法正确是A. 全等三角形是指形状相同的两个三角形B. 全等三角形是指面积相等的两个三角形C. 两个等边三角形是全等三角形D. 全等三角形是指两个能完全重合的三角形3.如图所示,图中的两个三角形能完全重合,下列写法正确的是( )A. △ABE≌△AFBB. △ABE≌△ABFC. △ABE≌△FBAD. △ABE≌△FAB4.如图,若△ABC ≌△ DEF, BC=6, EC=4,则CF的长为( )A. 1B. 2C. 2.5D. 35.已知△ABC≌△DEF,∠A=110°,∠F=40°,AB=m,EF=n,则下列结论错误的是()A. ∠D=110°B. DE=mC. ∠B=40°D. BC=n6.如图,△ACB≌△DCE,∠BCE=25°,则∠ACD的度数为( )A. 20°B. 25°C. 30°D. 35°7.如图,△ABC≌△AEF且点F在BC上,若AB=AE,∠B=∠E,则下列结论错误的是( )A. AC=AFB. ∠AFE=∠BFEC. EF=BCD. ∠EAB=∠FAC8.已知△ABC≌△A1B1C1,A和A1对应,B和B1对应,∠A=70°,∠B1=50°,则∠C的度数为()A. 70°B. 50°C. 120°D. 60°9.如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是( )A. 70°B. 68°C. 65°D. 60°10.下列所叙述的图形中,全等的两个三角形是()A. 含有45°角的两个直角三角形B. 腰相等的两个等腰三角形C. 边长相等的两个等边三角形D. 一个钝角对应相等的两个等腰三角形11.如图,在△ABC和△DEF中,已有条件AB=DE,还需要添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A. ∠B=∠E,BC=EFB. ∠A=∠D,BC=EFC. ∠A=∠D,∠B=∠ED. BC=EF,AC=DF12.如图,△ABC的一角被墨水污了,但小明很快就画出跟原来一样的图形,他所用定理是()A. SASB. SSSC. ASAD. HL二、填空题13.下列图形中全等图形是________(填标号).14.如图,△ACE≌△DBF,如果∠E=∠F,DA=12,CB=2,那么线段AB的长是________.15.已知△ABC≌△DEF,若∠B=40°,∠D=60°,则∠F=________°.16.如图,若ΔABC≌ΔEFC,且CF=3cm,∠EFC=60º,则BC=________,∠B=________17.一个三角形的三边为6、10、x,另一个三角形的三边为、6、12,如果这两个三角形全等,则=________.18.如图,△ABC≌△ADE,∠EAC=25°,则∠BAD=________。
苏教版八年级上《全等三角形》单元测试题(含答案)
《全等三角形》单元测试题姓名 班级 得分一、填空题(4×10=40分)1、在△ABC 中,AC>BC>AB ,且△ABC ≌△DEF ,则在△DEF 中,______>______>_______(填边)。
2、已知:△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B=∠B ′,∠C=70°,AB=15cm ,则∠C ′=_________,A ′B ′=__________。
3、如图1,△ABD ≌△BAC ,若AD=BC ,则∠BAD 的对应角是________。
4、如图2,在△ABC 和△FED ,AD=FC ,AB=FE ,当添加条件__________时,就可得到△ABC ≌△FED 。
(只需填写一个你认为正确的条件)5、如图3,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形________对。
6、如图4,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是 .7、如图5,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CF= cm.8、如图6,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =_____.9、P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD_____P 点到∠AOB 两边距离之和。
(填“>”,“<”或“=”)10、AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则中线AD 的取值范围是二、选择题:(每小题5分,共30分)11、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等, 其中真命题的个数有( )A 、3个B 、2个C 、1个D 、0个12、如图7,已知点E 在△ABC 的外部,点D 在BC 边上,AD ECB图4ABDE 图1 图2 图3图5图6DE 交AC 于F ,若∠1=∠2=∠3,AC=AE ,则有( ) A 、△ABD ≌△AFD B 、△AFE ≌△ADCC 、△AEF ≌△DFCD 、△ABC ≌△ADE13、下列条件中,不能判定△ABC ≌△A ′B ′C ′的是( ) A 、AB=A ′B ′,∠A=∠A ′,AC=A ′C ′B 、AB=A ′B ′,∠A=∠A ′,∠B=∠B ′C 、AB=A ′B ′,∠A=∠A ′,∠C=∠C ′D 、∠A=∠A ′,∠B=∠B ′,∠C=∠C ′14、如图8所示,90E F ∠=∠=o,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有( )A .1个B .2个C .3个D .4个15、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A →B →C →A ,及A 1→B 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图9),若运动方向相反,则称它们是镜面合同三角形(如图10),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°(如图11),下列各组合同三角形中,是镜面合同三角形的是( )16、如图12,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D , 若BC=64,且BD :CD=9:7,则点D 到AB 边的距离为( ) A 、18 B 、32 C 、28 D 、24三、解答下列各题:(17-18题各8分,19-2280分)17、如图13,点A 、B 、C 、D AB=DC ,AE//DF ,AE=DF ,求证:EC=FB18、如图14,AE 是∠BAC 的平分线,AB=AC 。
苏科版数学八年级上册 全等三角形单元测试题(Word版 含解析)
一、八年级数学全等三角形解答题压轴题(难)1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;(2)如图2,请写出AF 与DG 之间的关系并证明.【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析.【解析】【分析】(1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可.(2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出.【详解】解:(1)证明:设BE 与AD 交于点H..如图,∵AD,BE 分别为BC,AC 边上的高,∴∠BEA=∠ADB=90°.∵∠ABC=45°,∴△ABD 是等腰直角三角形.∴AD=BD.∵∠AHE=∠BHD,∴∠DAC=∠DBH.∵∠ADB=∠FDE=90°,∴∠ADE=∠BDF.∴△DAE ≌△DBF.∴BF=AE,DF=DE.∴△FDE 是等腰直角三角形.∴∠DFE=45°.∵G 为BE 中点,∴BF=EF.∴AE=EF.∴△AEF 是等腰直角三角形.∴∠AFE=45°.∴∠AFD=90°,即AF ⊥DF.(2)AF=2DG,且AF ⊥DG.理由:延长DG 至点M,使GM=DG,交AF 于点H,连接BM,∵点G 为BE 的中点,BG=GE.∵∠BGM ∠EGD,∴△BGM ≌△EGD.∴∠MBE=∠FED=45°,BM=DE.∴∠MBE=∠EFD,BM=DF.∵∠DAC=∠DBE,∴∠MBD=∠MBE+∠DBE=45°+∠DBE.∵∠EFD=45°=∠DBE+∠BDF,∴∠BDF=45°-∠DBE.∵∠ADE=∠BDF,∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD.∵BD=AD,∴△BDM ≌△DAF.∴DM=AF=2DG,∠FAD=∠BDM.∵∠BDM+∠MDA=90°,∴∠MDA+∠FAD=90°.∴∠AHD=90°.∴AF ⊥DG.∴AF=2DG,且AF ⊥DG【点睛】本题考查三角形全等的判定和性质,关键在于灵活运用性质.2.如图,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一动点,连接AD .以AD 为直角边且在AD 的上方作等腰直角三角形ADF .(1)若AB AC =,90BAC ∠=︒①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF 与BD 的位置关系.【答案】(1)①CF ⊥BD ,证明见解析;②成立,理由见解析;(2)CF ⊥BD ,证明见解析.【解析】【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD ,然后利用“边角边”证明△ACF 和△ABD 全等,②先求出∠CAF=∠BAD ,然后与①的思路相同求解即可;(2)过点A 作AE ⊥AC 交BC 于E ,可得△ACE 是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE ,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD ,然后利用“边角边”证明△ACF 和△AED 全等,根据全等三角形对应角相等可得∠ACF=∠AED ,然后求出∠BCF=90°,从而得到CF ⊥BD .【详解】解:(1)①∵∠BAC=90°,△ADF 是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,∴∠CAF=∠BAD ,在△ACF 和△ABD 中,∵AB=AC ,∠CAF=∠BAD ,AD=AF ,∴△ACF ≌△ABD(SAS),∴CF=BD ,∠ACF=∠ABD=45°,∵∠ACB=45°,∴∠FCB=90°,∴CF ⊥BD ;②成立,理由如下:如图2:∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;(2)如图3,过点A作AE⊥AC交BC于E,∵∠BCA=45°,∴△ACE是等腰直角三角形,∴AC=AE,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD,在△ACF和△AED中,∵AC=AE,∠CAF=∠EAD,AD=AF,∴△ACF≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF⊥BD.【点睛】本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.3.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )【答案】(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】 (1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°,在BCE 和CAD 中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29 BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99AF KF CP CF PK CP CP CP==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.4.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=82,BC=16.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)8【解析】【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=12BF,由(1)证明方法可得△PFD≌△QCD 则有CD=12CF,即可得出BE+CD=8.【详解】解:(1)如图①,过P 点作PF ∥AC 交BC 于F ,∵点P 和点Q 同时出发,且速度相同,∴BP=CQ ,∵PF ∥AQ ,∴∠PFB=∠ACB ,∠DPF=∠CQD ,又∵AB=AC ,∴∠B=∠ACB ,∴∠B=∠PFB ,∴BP=PF ,∴PF=CQ ,又∠PDF=∠QDC ,∴△PFD ≌△QCD ,∴DF=CD=12CF , 又因P 是AB 的中点,PF ∥AQ , ∴F 是BC 的中点,即FC=12BC=8, ∴CD=12CF=4; (2)8BE CD λ+==为定值.如图②,点P 在线段AB 上,过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF∵易得△PFD ≌△QCD∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】 此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.5.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q 在BD 上由点B 向点D 运动,它们运动的时间为()t s .(1)如图①,AC AB ⊥,BD AB ⊥,若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP △与BPQ 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图②,将图①中的“AC AB ⊥,BD AB ⊥”为改“60CAB DBA ∠=∠=︒”,其他条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP △与BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.【答案】(1)全等,PC 与PQ 垂直;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP 和△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.6.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E 与点A 重合时,请说明线段BF DC =;②如图2,若点E 不与点A 重合,请说明BF DC AE =+;()2当点E 在线段DA 的延长线上()DE DB >时,用等式表示线段,,AE BF CD 之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF =AE-CD【解析】【分析】(1)①根据等边对等角,求到B C ∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF ∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC ∠=∠=︒,推出ABF ACD ∆∆≌,根据全等三角形的性质即可得出结论;②过点A 做AG ∥EF 交BC 于点G ,由△DEF 为等边三角形得到DA =DG ,再推出AE =GF ,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG ,由(1)可知,AE=GF ,DC=BG ,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC =B C ∴∠=∠,60DF DE ADB =∠=︒,且E 与A 重合,ADF ∴∆是等边三角形60ADF AFD ∴∠=∠=︒120AFB ADC ∴∠=∠=︒在ABF ∆和ACD ∆中AFB ADC B CAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD ∴∆∆≌BF DC ∴=②如图2,过点A 做AG ∥EF 交BC 于点G ,∵∠ADB =60° DE =DF∴△DEF 为等边三角形∵AG ∥EF∴∠DAG =∠DEF =60°,∠AGD =∠EFD =60°∴∠DAG =∠AGD∴DA =DG∴DA -DE =DG -DF ,即AE =GF由①易证△AGB ≌△ADC∴BG =CD∴BF =BG +GF =CD +AE(2)如图3,和(1)中②相同,过点A 做AG ∥EF 交BC 于点G ,由(1)可知,AE=GF ,DC=BG ,BF CD BF BG GF AE ∴+=+==故BF AE CD =-.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.7.如图,在ABC ∆中,5BC = ,高AD 、BE 相交于点O , 23BD CD =,且AE BE = . (1)求线段 AO 的长;(2)动点 P 从点 O 出发,沿线段 OA 以每秒 1 个单位长度的速度向终点 A 运动,动点 Q 从 点 B 出发沿射线BC 以每秒 4 个单位长度的速度运动,,P Q 两点同时出发,当点 P 到达 A 点时,,P Q 两点同时停止运动.设点 P 的运动时间为 t 秒,POQ ∆的面积为 S ,请用含t 的式子表示 S ,并直接写出相应的 t 的取值范围;(3)在(2)的条件下,点 F 是直线AC 上的一点且 CF BO =.是否存在t 值,使以点 ,,B O P 为顶 点的三角形与以点 ,,F C Q 为顶点的三角形全等?若存在,请直接写出符合条件的 t 值; 若不存在,请说明理由.【答案】(1)5;(2)①当点Q 在线段BD 上时,24QD t =-,t 的取值范围是102t <<;②当点Q 在射线DC 上时,42QD t =-,,t 的取值范围是152t <≤;(3)存在,1t =或53. 【解析】【分析】(1)只要证明△AOE ≌△BCE 即可解决问题;(2)分两种情形讨论求解即可①当点Q 在线段BD 上时,QD=2-4t ,②当点Q 在射线DC 上时,DQ=4t-2时;(3)分两种情形求解即可①如图2中,当OP=CQ 时,BOP ≌△FCQ .②如图3中,当OP=CQ 时,△BOP ≌△FCQ ;【详解】解:(1)∵AD 是高,∴90ADC ∠=∵BE 是高,∴90AEB BEC ∠=∠=∴90EAO ACD ∠+∠=,90EBC ECB ∠+∠=,∴EAO EBC ∠=∠在AOE ∆和BCE ∆中,EAO EBC AE BEAEO BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOE ∆≌BCE ∆∴5AO BC ==;(2)∵23BD CD =,=5BC ∴=2BD ,=3CD ,根据题意,OP t =,4BQ t =,①当点Q 在线段BD 上时,24QD t =-,∴21(24)22S t t t t =-=-+,t 的取值范围是102t <<. ②当点Q 在射线DC 上时,42QD t =-,∴21(42)22S t t t t =-=-,t 的取值范围是152t <≤ (3)存在. ①如图2中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴5-4t ═t ,解得t=1,②如图3中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴4t-5=t ,解得t=53. 综上所述,t=1或53s 时,△BOP 与△FCQ 全等. 【点睛】 本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(1)如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE=BD+CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA=∠AEC=∠BAC ,求证:△DEF 是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA=∠CEA=90°,∵∠BAC=90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD,又AB=AC ,∴△ADB≌△CEA∴AE=BD,AD=CE,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB≌△CEA,∴AE=BD,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE∵BF=AF,∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.9.如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE⊥AC,连结DF 交射线 AC 于点 G(1)当 DF⊥AB 时,求 t 的值;(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。
苏科版八年级数学(上册)《第一章 全等三角形》单元检测题(含答案详解)
第1章 全等三角形检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1、要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),能够讲明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )A、边角边 B、角边角C、边边边 D 。
边边角2、如图所示,两个全等的等边三角形的边长为1m ,一个微型机器人由A点开始按A BCDBEA 的顺序沿等边三角形的边循环运动,行走2 012 m 停下,则这个微型机器人停在( )A 、点A 处B 、点B 处C、点C 处 D 、点E 处3、如图,已知A B∥CD ,AD ∥B C,A C与BD 交于点O,AE ⊥B D于点E ,CF ⊥BD 于点F ,那么图中全等的三角形有( ) A、5对 B。
6对C、7对 D 。
8对4。
下列命题中正确的是( )A、全等三角形的高相等B 、全等三角形的中线相等C 、全等三角形的角平分线相等D。
全等三角形对应角的平分线相等5、如图所示,点B 、C、E 在同一条直线上,△ABC与△CDE 都是等边三角形,则下列结论不一定成立的是( )A 、△AC E≌△BCDB 、△BG C≌△AF CC 、△DC G≌△ECFD 、△AD B≌△CE A 6。
如图所示,分不表示△ABC 的三边长,则下面与△一定全等的三角形是( )7、已知:如图所示,B、C 、D 三点在同一条直线上,A C=CD ,∠B =∠E =90°,AC ⊥C D,则不正确的结论是( )A、∠A与∠D互为余角 B 、∠A =∠2C 、△A BC≌△C ED D 、∠1=∠28、如图所示,两条笔直的公路、相交于点O , C村的村民在公路的旁边建三个加工厂 A 、B、D ,已知AB =BC =CD =D A=5 km,村庄C第5题图 第8题图第2题图第7题图第6题图第3题图 第1题图到公路的距离为4 km,则C 村到公路的距离是( )A、3 k m B、4 kmC 。
八年级上册数学单元测试卷-第一章 全等三角形-苏科版(含答案)
八年级上册数学单元测试卷-第一章全等三角形-苏科版(含答案)一、单选题(共15题,共计45分)1、如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,则下列结论:①AC=AF;②EF=BC;③∠FAB=∠EAB;④∠EAB=∠FAC,其中正确结论的个数是()A.4个B.3个C.2个D.1个2、下列结论正确的是()A.面积相等的两个三角形全等B.等边三角形都全等C.底边和顶角对应相等的等腰三角形全等D.两个等腰直角三角形全等3、如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANB=60°,则∠MAC的度数等于()A.120°B.70°C.60°D.50°.4、不能用尺规作图作出唯一三角形的是()A.已知两角和夹边B.已知两边和夹角C.已知两角和其中一角的对边D.已知两边和其中一边的对角5、如图,已知l1∥l2∥l3∥l4,相邻两条平行直线间的距离相等.若等腰直角的三个顶点分别在三条平行直线上,则∠α的正弦值是()A. B. C. D.6、下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两个等腰直角三角形全等7、如图,点B、F、C、E在一条直线上,AB∥DE,AC∥DF,那么添加下列一个条件后,仍无法判断△ABC≌△DEF的是()A.AB=DEB.∠A=∠DC.AC=DFD.BF=EC8、如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BEB.AC=DEC.∠A=∠DD.∠ACB=∠DEB9、用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等10、如图,在中,,以该三角形的三条边为边向形外作正方形,正方形的顶点都在同一个圆上.记该圆面积为,面积为,则的值是()A. B. C. D.11、如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,有如下五个结论:①AO⊥ BC;②OD=OE;③△OEF是等边三角形;④△OEF≌△CEF; ⑤∠OEF=54°则上列说法中正确的个数是()A. 2B. 3C. 4D. 512、已知,如图,为线段上一动点(不与点,重合),在同侧分别作等边三角形和等边三角形,与交于点,与交于点,与交于点,连结,,,以下四个结论:①;②三角形是等边三角形;③;④平分,其中正确的结论是()A.①②B.③④C.①②③D.①②④13、如图,一种测量工具,点 O是两根钢条AC、BD中点,并能绕点O转动 .由三角形全等可得内槽宽AB与CD相等,其中△OAB≌△OCD的依据是()A.SSSB.ASAC.SASD.AAS14、如图,在等腰,,点为内一点,且,若长为6,则的面积为()A.12B.16C.18D.2415、下列说法正确的是()A.全等三角形是指形状相同大小相等的三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.所有的等边三角形都是全等三角形二、填空题(共10题,共计30分)16、如图,在△ABC中,点D为BC的中点,△AEF的边EF过点C,且AE=EF,AB∥EF,AD 平分∠BAE,CE=2,AB=9,则CF=________.17、如图△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,给出下列结论:①DC=DE;②DA平分∠CDE;③DE平分∠ADB;④BE+AC=AB;⑤∠BAC=∠BDE.其中正确的是________(写序号)18、如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=________.19、如图,和中,,在不添加任何辅助线的情况下,请你添加一个条件________,使和全等.20、如图,点E,F在AC上,AE=CF,∠AFD=∠CEB,要使△ADF≌△CBE,需要添加的一个条件是________.21、如图,∠ACB=∠DFE,BC=EF,可以补充一个直接条件________,就能使△ABC≌△DEF.22、如图,在平面直角坐标系中,,,点是第一象限内的点,且是以为直角边的等腰直角三角形,则点的坐标为________.23、如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是________24、如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD≌△CDB.(只需写一个)________25、如图,已知,是平分线上一点,,则 ________°三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、如图,点A,B,C,D在一条直线上,△ABF≌△DCE.你能得出哪些结论?(请写出三个以上的结论)28、如图,△ABC中,点D在AC边上,AE∥BC,连接ED并延长ED交BC于点F,若AD=CD,求证:ED=FD.29、如图,E是的边的中点,连接并延长交的延长线于F,若,求的长.30、如图,,,,且,求证:.参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、D5、A6、C7、B8、B9、A10、C11、B12、D13、C14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
八年级上册数学单元测试卷-第一章 全等三角形-苏科版(含答案)
八年级上册数学单元测试卷-第一章全等三角形-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,和都是等边三角形,且,则的度数是()A. B. C. D.2、如图,在和中,,与相交于点,则的度数为()A. B. C. D.3、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()A.∠AB.∠BC.∠CD.∠D4、如图,在△ABC中,∠ACB=90°,CH⊥AB,垂足为点H,AD平分∠BAC,与CH相交于点D,过点D作DE∥BC,与边AB相交于点E,那么下列结论中一定正确的是()A.DA=DEB.AC=ECC.AH=EHD.CD=ED5、如图,点、、、在同一条直线上,且,添加下列条件后,仍不能判定与全等的是().A. ,B. ,C., D. ,6、如图,点P、Q是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论错误的是()A.BP=CMB.△ABQ≌△CAPC.∠CMQ的度数不变,始终等于60° D.当第秒或第秒时,△PBQ为直角三角形7、如图,点E、F、C、B在同一直线上,AB=DE,∠A=∠D,添加下列一个条件,不能判定△ABC≌△DEF的条件是()A.∠ACB=∠DFEB.AC=DEC.∠B=∠ED.BC=EF8、如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是( )。
A.SSSB.SASC.ASAD.AAS9、如图,在四边形中,,,于点,,,则()A. B. C.2 D.310、如图,AC与BD交于O点,若,用“SAS”证明≌,还需A. B. C. D.11、如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是()A.边角边B.角边角C.边边边D.角角边12、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为()A.40°B.80°C.120°D.不能确定13、如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE ≌△CDF,则添加的条件是()A.AE=CFB.BE=FDC.BF=DED.∠1=∠214、如图所示,在下列条件中,不能判断≌的条件是()A. ,B. ,C. ,D.,15、如图,∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件是()A.∠E=∠BB.ED=BCC.AB=EFD.AF=CD二、填空题(共10题,共计30分)16、如图,在△ABC中,tan∠ABC=,BC=5,∠CAB<90°,D为边AB上一动点,以CD为一边作等腰Rt△CDE,且∠EDC=90°,连接BE,当S△BDE=时,则BD的长度为________.17、如图,∠ABF=∠DCE,BE=CF,请补充一个条件:________,能使用“AAS”的方法得△ABF≌△DCE.18、已知:△ABC≌△FED,若∠B=45°,∠C=40°,则∠F=________度.19、如图,中,.点从点出发沿路径向终点运动;点从点出发沿路径向终点运动.点和分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过和作于,于.则点运动时间等于________时,与全等。
苏科版八年级数学上册第1章《全等三角形》单元测试附答案
苏科版八年级数学上册第1章《全等三角形》单元测试一、选择题t1.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()hA.∠A B.∠B C.∠C D.∠D Y2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()6A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°O3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()5A.SSS B.SAS C.AAS D.ASA I4.如图,已知AB∥DC,AD∥BC,BE=DF,则图中全等的三角形有()aA.3对B.4对C.5对D.6对h5.在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,就能判定△ABC≌△DEF的是()P①AC=DF②BC=EF③∠B=∠E④∠C=∠F.6A.①②③B.②③④C.①③④D.①②④y6.在△ABC中,∠A=90°,CD平分∠ACB,DE⊥BC于点E,若AB=6,则DE+DB=()6A.4B.5C.6D.787.根据下列已知条件,能唯一画出△ABC的是()ZA.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°kC.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=648.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是()0A.AD和BC,点D B.AB和AC,点A C.AC和BC,点C D.AB和AD,点A A9.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()fA.PM>PN B.PM<PN C.PM=PN D.不能确定A10.如图,已知点C是∠AOB的平分线上一点,点P、P′分别在边OA、OB上.如果要得到OP=OP′,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为()=①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.=A.①②B.④③C.①②④D.①④③二、填空题11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.如图,AE=BF,AD∥BC,AD=BC,则有△ADF≌,且DF=.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件,若加条件∠B=∠C,则可用判定.15.把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为米.16.如图,AD=AE,BE=CD,∠1=∠2=100°,∠BAE=60°,那么∠CAE=.17.如图,∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4,则AC=.18.如图,∠C=90°,AC=10,BC=5,AM⊥AC,点P和点Q从A点出发,分别在射线AC和射线AM上运动,且Q点运动的速度是P点运动速度的2倍,当点P运动至处时,△ABC与△APQ全等.19.AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是;中线AD的取值范围是.20.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= cm.三、解答题21.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.22.两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?23.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.求证:AD+AB=BE.24.如图,是一个用六根竹条连接而成的凸六边形风筝骨架,考虑到骨架的稳定性、对称性、实用性等因素,请再加三根竹条与其顶点连接.要求:在图(1)、(2)中分别加三根竹条,设计出两种不同的连接方案.(用直尺连接)25.已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°(1)求证:①AC=BD;②∠APB=50°;(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为,∠APB的大小为26.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.(1)图①中有对全等三角形,并把它们写出来;(2)求证:BD与EF互相平分于G;(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.《第1章全等三角形》参考答案与试题解析一、选择题1.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()A.∠A B.∠B C.∠C D.∠D【考点】全等三角形的性质.【分析】只要牢记三角形只能有一个钝角就易解了.【解答】解:∵一个三角形中只能有一个钝角.∴100°的角只能是等腰三角形中的顶角.∴∠B=∠C是底角,∠A是顶角∴△ABC中与这个角对应的角是∠A.故选A.【点评】本题考查的知识点为:全等的三角形的对应角相等,知道一个三角形中只能有一个钝角是解决本题的关键.2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】全等三角形的判定.【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA 后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.4.如图,已知AB∥DC,AD∥BC,BE=DF,则图中全等的三角形有()A.3对B.4对C.5对D.6对【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行判断.全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.【解答】解:∵AB∥DC,AD∥BC,∴∠DAC=∠BCA,∠CDB=∠ABD,∠DCA=∠BAC,∠ADB=∠CBD,又∵BE=DF,∴由∠ADB=∠CBD,DB=BD,∠ABD=∠CDB,可得△ABD≌△CDB;由∠DAC=∠BCA,AC=CA,∠DCA=∠BAC,可得△ACD≌△CAB;∴AO=CO,DO=BO,由∠DAO=∠BCO,AO=CO,∠AOD=∠COB,可得△AOD≌△COB;由∠CDB=∠ABD,∠COD=∠AOB,CO=AO,可得△COD≌△AOB;由∠DCA=∠BAC,∠COF=∠AOE,CO=AO,可得△AOE≌△COF;由∠CDB=∠ABD,∠DOF=∠BOE,DO=BO,可得△DOF≌△BOE;故选(D)【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,或者是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5.在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,就能判定△ABC≌△DEF的是()①AC=DF②BC=EF③∠B=∠E④∠C=∠F.A.①②③B.②③④C.①③④D.①②④【考点】全等三角形的判定.【分析】根据已知条件,已知一角和一边,所以要证两三角形全等,可以根据角边角、角角边、边角边判定定理添加条件,再根据选项选取答案.【解答】解:如图,∵AB=DE,∠A=∠D,∴根据“边角边”可添加AC=DF,根据“角边角”可添加∠B=∠E,根据“角角边”可添加∠C=∠F.所以补充①③④可判定△ABC≌△DEF.故选C.【点评】本题主要考查三角形全等的判定,根据不同的判定方法可选择不同的条件,所以对三角形全等的判定定理要熟练掌握并归纳总结.6.在△ABC中,∠A=90°,CD平分∠ACB,DE⊥BC于点E,若AB=6,则DE+DB=()A.4B.5C.6D.7【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得AD=DE,然后根据AD+DB=AB等量代换即可得解.【解答】解:∵∠A=90°,CD平分∠ACB,DE⊥BC,∴AD=DE,∵AD+DB=AB,∴DE+DB=AB=6.故选C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.7.根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=6【考点】全等三角形的判定.【专题】作图题;压轴题.【分析】要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.【解答】解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选C.【点评】此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.8.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是()A.AD和BC,点D B.AB和AC,点A C.AC和BC,点C D.AB和AD,点A【考点】全等三角形的应用.【分析】根据全等三角形的判定定理SSS推知△ABD≌△ACD,则∠ADB=∠ADC=90°.【解答】解:根据题意知,∵在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC=90°,∴AD⊥BC,根据焊接工身边的工具,显然是AD和BC焊接点D.故选:A.【点评】本题考查了全等三角形的应用.巧妙地借助两个三角形全等,寻找角与角间是数量关系.9.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PN B.PM<PN C.PM=PN D.不能确定【考点】角平分线的性质;全等三角形的判定与性质.【分析】作PE⊥OB于E,PF⊥OA于F,根据角平分线的性质定理证明PE=PF,根据三角形全等的判定定理证明△PFN≌△PEM,得到答案.【解答】解:作PE⊥OB于E,PF⊥OA于F,∵OQ平分∠AOB,∴PE=PF,∵∠PNO+∠PNA=180°,∠PNO+∠PMO=180°,∴∠PNA=∠PMO,在△PFN和△PEM中,,∴△PFN≌△PEM,∴PM=PN.故选:C.【点评】本题考查的是角平分线的性质和全等三角形的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.如图,已知点C是∠AOB的平分线上一点,点P、P′分别在边OA、OB上.如果要得到OP=OP′,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为()①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.A.①②B.④③C.①②④D.①④③【考点】全等三角形的判定与性质.【分析】根据所加条件,结合已知条件,能够证明OP和OP′所在的三角形全等即可.【解答】解:①若加∠OCP=∠OCP′,则根据ASA可证明△OPC≌△OP′C,得OP=OP′;②若加∠OPC=∠OP′C,则根据AAS可证明△OPC≌△OP′C,得OP=OP′;③若加PC=P′C,则不能证明△OPC≌△OP′C,不能得到OP=OP′;④若加PP′⊥OC,则根据ASA可证明△OPC≌△OP′C,得OP=OP′.故选C.【点评】此题考查全等三角形的判定和性质,熟练掌握判定方法是关键.二、填空题11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=50度.【考点】全等三角形的性质.【分析】先运用三角形内角和定理求出∠C,再运用全等三角形的对应角相等来求∠AED.【解答】解:∵在△ABC中,∠C=180﹣∠B﹣∠BAC=50°,又∵△ABC≌△ADE,∴∠AED=∠C=50°,∴∠AED=50度.故填50【点评】本题考查的是全等三角形的性质,全等三角形的对应边相等,对应角相等.是需要识记的内容.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是∠B=∠C(填上你认为适当的一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】根据题意,易得∠AEB=∠AEC,又AE公共,所以根据全等三角形的判定方法容易寻找添加条件.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).【点评】此题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.如图,AE=BF,AD∥BC,AD=BC,则有△ADF≌△BCE,且DF=CE.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】由题中条件可由ASA判定△ADF≌△BCE,进而得出DF=CE.【解答】解:∵AE=BF,∴AF=BE,∵AD∥BC,∴∠A=∠D,又AD=BC,∴△ADF≌△BCE,∴DF=CE.故答案为:△BCE,CE.【点评】本题主要考查了全等三角形的判定及性质,能够熟练掌握.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件AB=AC,若加条件∠B=∠C,则可用AAS判定.【考点】直角三角形全等的判定.【分析】要使△ABD≌△ACD,且利用HL,已知AD是直边,则要添加对应斜边;已知两角及一对应边相等,显然根据的判定为AAS.【解答】解:添加AB=AC∵AD⊥BC,AD=AD,AB=AC∴△ABD≌△ACD已知AD⊥BC于D,AD=AD,若加条件∠B=∠C,显然根据的判定为AAS.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为0.05米.【考点】全等三角形的应用.【专题】计算题.【分析】连接AB,A′B′,根据O为AB′和BA′的中点,且∠A′OB′=∠AOB即可判定△OA′B′≌△OAB,即可求得A′B′的长度.【解答】解:连接AB,A′B′,O为AB′和BA′的中点,∴OA′=OB,OA=OB′,∵∠A′OB′=∠AOB∴△OA′B′≌△OAB,即A′B′=AB,故A′B′=5cm,5cm=0.05m.故答案为0.05.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中求证△OA′B′≌△OAB是解题的关键.16.如图,AD=AE,BE=CD,∠1=∠2=100°,∠BAE=60°,那么∠CAE=40°.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】求出BD=CE和∠B的度数,根据SAS推出△ADB≌△AEC,推出∠C=∠B=40°,根据三角形内角和定理求出即可.【解答】解:∵BE=CD,∴BE﹣DE=CD﹣DE,∴BD=CE,∵∠2=100°,∠BAE=60°,∴∠B=∠2﹣∠BAE=40°,∵在△ADB和△AEC中∴△ADB≌△AEC,∴∠C=∠B=40°,∵∠2+∠C+∠CAE=180°,∴∠CAE=180°﹣100°﹣40°=40°,故答案为:40°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质,三角形内角和定理的应用,解此题的关键是求出△ADB≌△AEC,注意:全等三角形的对应边相等,对应角相等.17.如图,∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4,则AC=6.【考点】全等三角形的判定与性质.【分析】由AAS证明△ABC≌△EFC,得出对应边相等AC=EC,BC=CF=4,求出EC,即可得出AC的长.【解答】解:∵AC⊥BE,∴∠ACB=∠ECF=90°,在△ABC和△EFC中,,∴△ABC≌△EFC(AAS),∴AC=EC,BC=CF=4,∵EC=BE﹣BC=10﹣4=6,∴AC=EC=6;故答案为:6.【点评】本题考查了全等三角形的判定与性质;证明三角形全等得出对应边相等是解决问题的关键.18.如图,∠C=90°,AC=10,BC=5,AM⊥AC,点P和点Q从A点出发,分别在射线AC和射线AM上运动,且Q点运动的速度是P点运动速度的2倍,当点P运动至P点运动到AC中点处时,△ABC 与△APQ全等.【考点】全等三角形的判定.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置.②Rt △QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5,即P点运动到AC中点;故答案为:P点运动到AC中点.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.19.AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是4<BC<20;中线AD的取值范围是2<AD<10.【考点】全等三角形的判定与性质;三角形三边关系.【专题】计算题.【分析】BC边的取值范围可在△ABC中利用三角形的三边关系进行求解,而对于中线AD的取值范围可延长AD至点E,使AD=DE,得出△ACD≌△EBD,进而在△ABE中利用三角形三边关系求解.【解答】解:如图所示,在△ABC中,则AB﹣AC<BC<AB+AC,即12﹣8<BC<12+8,4<BC<20,延长AD至点E,使AD=DE,连接BE,∵AD是△ABC的边BC上的中线,∴BD=CD,又∠ADC=∠BDE,AD=DE∴△ACD≌△EBD,∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,即AB﹣AC<AE<AB+AC,12﹣8<AE<12+8,即4<AE<20,∴2<AD<10.故此题的答案为4<BC<20,2<AD<10.【点评】本题主要考查了全等三角形的判定及性质以及三角形的三边关系问题,能够理解掌握并熟练运用.20.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= 2cm.【考点】角平分线的性质.【分析】过点D,作DF⊥BC,垂足为点F,根据BD是∠ABC的角平分线,得DE=DF,根据等高的三角形的面积之比等于其底边长之比,得△BDC与△BDA的面积之比,再求出△BDA的面积,进而求出DE.【解答】解:如图,过点D,作DF⊥BC,垂足为点F∵BD是∠ABC的角平分线,DE⊥AB,∴DE=DF∵△ABC的面积是30cm2,AB=18cm,BC=12cm,∴S=•DE•AB+•DF•BC,即×18×DE+×12×DE=30,△ABC∴DE=2(cm).故填2.【点评】本题考查了角平分线的性质;解题中利用了“角的平分线上的点到角的两边的距离相等”、等高的三角形的面积之比等于其底边长之比,三角形的面积计算公式等知识.三、解答题21.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.【解答】证明:∵AC平分∠BCD,BD平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC与△DCB中,,∴△ABC≌△DCB(ASA),∴AB=DC.【点评】本题考查了全等三角形的性质和判定和角平分线性质的应用,关键是推出△ABC≌△DCB,题目比较好,难度适中.22.两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?【考点】全等三角形的判定.【专题】证明题.【分析】根据题意AB=BD,AC=DF,∠A=∠D,AB=BD,AC=DF可得AF=DC,利用AAS即可判定△AOF≌△DOC.【解答】答:△AOF≌△DOC.证明:∵两块完全相同的三角形纸板ABC和DEF,∴AB=DB,BF=BC,∴AB﹣BF=BD﹣BC,∴AF=DC∵∠A=∠D,∠AOF=∠DOC,即,∴△AOF≌△DOC(AAS).【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,解答此题的关键是根据题意得出AF=DC,AO=DO.23.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.求证:AD+AB=BE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】利用同角的余角相等得到一对角相等,再由一对直角相等,CD=CE,利用AAS得到三角形ECB与三角形CDA全等,利用全等三角形对应边相等得到BC=AD,BE=AC,由AB+BC=AC=BE,等量代换即可得证.【解答】证明:∵∠ECB+∠DCA=90°,∠DCA+∠D=90°,∴∠ECB=∠D,在△ECB和△CDA中,,∴△ECB≌△CDA(AAS),∴BC=AD,BE=AC,∴AD+AB=AB+BC=AC=BE.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.24.如图,是一个用六根竹条连接而成的凸六边形风筝骨架,考虑到骨架的稳定性、对称性、实用性等因素,请再加三根竹条与其顶点连接.要求:在图(1)、(2)中分别加三根竹条,设计出两种不同的连接方案.(用直尺连接)【考点】利用轴对称设计图案.【专题】方案型.【分析】本题主要是利用轴对称图形的性质来画,本题为开放题答案不唯一.【解答】解:.【点评】本题主要考查了轴对称图形的性质.25.已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°(1)求证:①AC=BD;②∠APB=50°;(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为AC=BD,∠APB的大小为α【考点】全等三角形的判定与性质.【分析】(1)根据∠AOB=∠COD=50°求出∠AOC=∠BOD,根据SAS推出△AOC≌△BOD,根据全等三角形的性质得出AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,推出∠APB=∠AOB即可.(2)根据∠AOB=∠COD=50°求出∠AOC=∠BOD,根据SAS推出△AOC≌△BOD,根据全等三角形的性质得出AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,推出∠APB=∠AOB即可.【解答】证明:(1)∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=50°.(2)解:AC=BD,∠APB=α,理由是:)∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=α,故答案为:AC=BD,α.【点评】本题考查了全等三角形的性质和判定的应用,解此题的关键是求出△AOC≌△BOD,注意:全等三角形的对应边相等,对应角相等.26.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.(1)图①中有3对全等三角形,并把它们写出来△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD;(2)求证:BD与EF互相平分于G;(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)利用A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD 可判断全等三角形的个数.(2)先根据DE⊥AC,B F⊥AC,AE=CF,求证△ABF≌△CDE,再求证△DEG≌△BFG,即可.(3)先根据DE⊥AC,B F⊥AC,AE=CF,求证△ABF≌△CED,再求证△BFG≌△DEG,即可得出结论.【解答】解:(1)图①中有3对全等三角形,它们是△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD.(2)∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CED(HL),∴ED=BF.由∠AFB=∠CED=90°得DE∥BF,∴∠EDG=∠GBF,∵∠EGD和∠FGB是对顶角,ED=BF,△DEG≌△BFG,∴EG=FG,DG=BG,所以BD与EF互相平分于G;(3)第(2)题中的结论成立,理由:∵AE=CF,∴AE﹣EF=CF﹣EF,即AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CED(HL),∴BF=ED.∵∠BFG=∠DEG=90°,∴BF∥ED,∴∠FBG=∠EDG,∴△BFG≌△DEG,∴FG=GE,BG=GD,即第(2)题中的结论仍然成立.【点评】此题主要考查学生对全等三角形的判定与性质的理解和掌握,此题难度并不大,但是需要证明多次全等,步骤繁琐,是一道综合性较强的中档题.。
第1章 全等三角形 单元测试卷 2021--2022学年苏科版八年级数学上册(word 答案)
苏科新版八年级上册《第1章全等三角形》2021年单元测试卷一.选择题(共7小题,满分21分,每小题3分)1.如图,两个三角形是全等三角形,那么x的值是()A.30°B.45°C.50°D.85°2.如图,△ABC≌△DEF,BC=7,EC=4,则CF的长为()A.2B.3C.5D.73.根据下列已知条件,能作出唯一△ABC的是()A.AB=3,BC=4,CA=8B.AB=4,BC=3,∠A=60°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,∠B=30°,∠A=60°4.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD5.下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等B.有两条边对应相等C.一条边和一锐角对应相等D.一条边和一个角对应相等6.如图,小华书上的三角形被墨水弄污了一部分,他能在作业本上作一个完全一样的三角形,其根据为()A.SSS B.SAS C.ASA D.AAS7.如图,D为△ABC边BC上一点,AB=AC,∠BAC=56°,且BF=DC,EC=BD,则∠EDF等于()A.62°B.56°C.34°D.124°二.填空题(共8小题,满分24分,每小题3分)8.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.9.如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小红从水平位置CD下降40cm时,这时小明离地面的高度是cm.10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于.11.如图,∠BAC=∠ABD,请你添加一个条件:,使AC=BD(只添一个即可).12.如图所示,△BKC≌△BKE≌△DKC,BE与KD交于点G,KE与CD交于点P,BE与CD交于点A,∠BKC=134°,∠E=22°,则∠KPD=.13.如图,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是.14.起重机的吊臂都是用铁条焊成三角形,这是利用了.15.如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是(只填一个).三.解答题(共8小题,满分75分)16.如图,把两根钢条AA′,BB′的中点O连在一起,可以做成一个测量工件内槽宽的工具(工人把这种工具叫卡钳)只要量出A′B′的长度,就可以知道工件的内径AB是否符合标准,你能简要说出工人这样测量的道理吗?17.如图,∠A=∠D=90°,AB=DE,BF=EC.求证:Rt△ABC≌Rt△DEF.18.如图,线段AD、BE相交于点C,且△ABC≌△DEC,点M、N分别为线段AC、CD的中点.求证:(1)ME=BN;(2)ME∥BN.19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程说明△ABD≌△ACD 的理由.20.如图,等腰直角三角形ABC中,∠C=90°,∠A的平分线AD交BC于点D,过B作BE⊥AD,垂足为E,求证:AD=2BE.21.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.22.如图,指出图中的全等图形.23.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.参考答案与试题解析一.选择题(共7小题,满分21分,每小题3分)1.解:180°﹣85°﹣45°=50°,∵两个三角形是全等三角形,∴x=50°,故选:C.2.解:∵△ABC≌△DEF,∴EF=BC=7,∵EC=4,∴CF=3,故选:B.3.解:A.∵AB=3,BC=4,CA=8,AB+BC<CA,∴不能画出三角形,故本选项不合题意;B.AB=4,BC=3,∠A=60°,不能画出唯一三角形,故本选项不合题意;C.当∠A=60°,∠B=45°,AB=4时,根据“ASA”可判断△ABC的唯一性;D.已知三个角,不能画出唯一三角形,故本选项不符合题意;故选:C.4.解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.5.解:∵A、两条直角边对应相等可利用SAS判定两直角三角形全等,B、两边对应相等,可利用HL或SSA判定两直角三角形全等;C、一条边和一锐角对应相等,可利用AAS或ASA判定两直角三角形全等.D、一条边和一个角对应相等不能判定两直角三角形全等.故选:D.6.解:根据图示,得:该三角形的两角及其夹边确定.∴根据全等三角形的判定,由ASA可作出一个完全一样的三角形.故选:C.7.解:∵AB=AC,∴∠B=∠C=(180°﹣∠BAC)=(180°﹣56°)=62°,在△BFD和△EDC中,,∴△BFD≌△EDC(SAS),∴∠BFD=∠EDC,∴∠FDB+∠EDC=∠FDB+∠BFD=180°﹣∠B=180°﹣62°=118°,则∠EDF=180°﹣(∠FDB+∠EDC)=180°﹣118°=62°.故选:A.二.填空题(共8小题,满分24分,每小题3分)8.解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.9.解:在△OCF与△ODG中,,∴△OCF≌△ODG(AAS),∴CF=DG=40,∴小明离地面的高度是50+40=90,故答案为:90.10.解:由题意得:AB=DB,AC=ED,∠A=∠D=90°,∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠1=∠ACB,∵∠ACB+∠2=180°,∴∠1+∠2=180°,故答案为:180°.11.解:∠BAC=∠ABD(已知),∠D=∠C,AB=BA(公共边),∴△DAB≌△CBA(AAS);∴AC=BD,故答案为:∠D=∠C.本题答案不唯一.12.解:∵△BKC≌△BKE,∠BKC=134°,∴∠BKE=∠BKC=134°,∴∠PKC=360°﹣134°﹣134°=92°,∵△BKE≌△DKC,∠E=22°,∴∠DCK=∠E=22°,∴∠KPD=∠PKC+∠DCK=92°+22°=114°,故答案为:114°.13.解:当有1点D时,有1对全等三角形;当有2点D、E时,有3对全等三角形;当有3点D、E、F时,有6对全等三角形;当有4点时,有10个全等三角形;…当有n个点时,图中有个全等三角形.故答案为:.14.解:起重机的臂膀中都有三角形结构,这是利用了三角形的稳定性.故答案为:三角形的稳定性.15.解:欲证两三角形全等,已有条件:BC=AD,AB=AB,所以补充两边夹角∠CBA=∠DAB便可以根据SAS证明;补充AC=BD便可以根据SSS证明.故补充的条件是AC=BD(或∠CBA=∠DAB).故答案是:AC=BD(或∠CBA=∠DAB).三.解答题(共8小题,满分75分)16.解:此工具是根据三角形全等制作而成的.∵O是AA′,BB′的中点,∴AO=A′O,BO=B′O,又∵∠AOB与∠A′OB′是对顶角,∴∠AOB=∠A′OB′,在△AOB和△A′OB′中,∵,∴△AOB≌△A′OB′(SAS),∴A′B′=AB,∴只要量出A′B′的长度,就可以知道工作的内径AB是否符合标准.17.证明:∵BF=EC,∴BF+FC=FC+EC,即BC=EF,∵∠A=∠D=90°,∴△ABC和△DEF都是直角三角形,在Rt△ABC和Rt△DEF中,∴Rt△ABC≌Rt△DEF(HL).18.证明:(1)连接BM、EN,∵△ABC≌△DEC,∴AC=DC,BC=EC,∵点M、N分别为线段AC、CD的中点,∴CM=CN,∴四边形MBNE是平行四边形,∴ME=BN;(2)∵四边形MBNE是平行四边形,∴ME∥BN.19.证明:∵AD平分∠BAC,∴∠BAD=∠CAD(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD(SAS).20.证明:延长BE和AC后相交于点M,如图所示:∵△ABC是等腰直角三角形,∴AC=BC,又∵AD是∠A的平分线,∠MAE=∠BAE,又∵BE⊥AD,∴∠AEB=∠AEM=90°,在△AME和△BAE中∴△AME≌△BAE(ASA)∴BE=ME,∴BM=2BE,又∵∠ACB=90°,∴∠ADC+∠DAC=90°,又∵∠BDE+∠DBE=90°,∠ADC=∠BDE,∴∠DAC=∠MBC,在△ACD和△BCM中,∴△ACD≌△BCM(ASA)∴AD=BM∴AD=2BE.21.(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.22.解:⑤和⑨是全等形;故答案为:⑤和⑨.23.证明:连接AD,∵AB=AC,∠BAC=90°,D为BC中点,∴AD==BD=CD,且AD平分∠BAC,∴∠BAD=∠CAD=45°,在△BDE和△ADF中,∴△BDE≌△ADF,∴DE=DF,∠BDE=∠ADF,∵∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,即:∠EDF=90°,∴△DEF为等腰直角三角形.。
苏科版八年级数学上册第一章 全等三角形单元测试卷( 含答案)-doc
苏科版八年级数学上册第一章 全等三角形单元测试卷第1章 全等三角形(时间:100分钟 总分:120分)一、选择题 (每题3分,共24分)1.下列图形中与如图所示的图形全等的是 ( )A .B .C .D .2.如图,已知,,.则的理由是AD BD ⊥BC AC ⊥AC BD =CAB DBA △△≌( )A .HLB .SASC .AASD .ASA3.如图,,则为的长为 ( )ΔΔ35ABD EBC AB BC ≅==,,DEA .B .C .D .85324.如图所示,的度数是( )ΔΔ,3095,ABC ADE B C EAD ∠=︒∠=︒∠≌,A .44°B .55°C .66°D .77°5.根据下列条件,能画出唯一△ABC 的是 ( )A .AB =3,BC =4,CA =7 B .AC =4,BC =3.5,∠A =60°C .∠A =45°,∠B =60°,∠C =75°D .AB =5,BC =4,∠C =90°6.如图,已知OF 平分,于D 点,于E 点,F 是OF AOB ∠PD OA ⊥PE OB ⊥上的另一点,连接DF 、EF .判断图中有几对全等三角形 ( )A .1B .2C .3D .47.如图,在中,,,是边上的中线,则的取ABC A 5AB =9AC =AD BC AD 值范围是 ( )A .B .C .D .414AD <<014AD <<27AD <<59AD <<8.如果△ABC 的三边长分别为3、5、7,△DEF 的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x 的值为 ( )A .B .4C .3D .573二、填空题(每题3分,共24分)9.已知图中的两个三角形全等,则∠α的大小为______.10.如图,E 是的边的中点,过点C 作,过点E 作直线ABC A AC CF AB ∥交于D ,交于F ,若,则的长为__________. DF AB CF 9 6.5AB CF ,==BD11.如图,小明把一块三角形的玻璃片打碎成三块,现要到玻璃店去配一块完全相同的玻璃片,那么最省事的办法是带_________去.12.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,EF=6,BG=3,DH=4,计算图中实线所围成的图形的面积S是______.13.如图是由4个相同的小正方形组成的网格图,则______.∠+∠=124cm14.如图,小虎用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(,=AC BC ),点在上,点和分别与木墙的顶端重合,则两堵木墙∠=︒C DE A BACB90之间的距离为______.15.如图,在正方形方格中,各正方形的顶点叫做格点,三个顶点都在格点上的三角形称为格点三角形.图中是格点三角形,请你找出方格中AABC所有与全等,且以A为顶点的格点三角形.这样的三角形共有_____ AABC个(除外).AABC16.如图.已知中,厘米,,厘米,D 为ABC A 12AB AC ==B C ∠=∠8BC =的中点.如果点P 在线段上以2厘米/秒的速度由点B 向点C 运动,AB BC 同时,点Q 在线段上由点C 向点A 运动.若点Q 的运动速度为a 厘米/CA 秒,则当与全等时,a 的值为______.BPD △CQP V三、解答题(每题8分,共72分)17.如图所示,点O 为AC 和BD 的中点,求证:.ABO CDO ∆≅∆18.如图,△ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE ∥CF .(1)求证:△BDE ≌△CDF ;(2)若AE =13,AF =7,试求DE 的长.19.已知:如图,,,三点在同一条直线上,,,B C E AC DE ∥AC CE =.B D ∠=∠求证:.ABC CDE ∆≅∆20.问题发现:如图1,已知为线段上一点,分别以线段,为C AB AC BC 直角边作等腰直角三角形,,,,连接,90ACD ∠=︒CA CD =CB CE =AE BD ,线段,之间的数量关系为______;位置关系为_______.AE BD拓展探究:如图2,把绕点逆时针旋转,线段,交于点Rt ACD △C AE BD F ,则与之间的关系是否仍然成立?请说明理由.AE BD 21.如图,于点,点在直线上,90,ABC FA AB ∠=⊥ A D AB ,AD BC AF BD ==.(1)如图1,若点在线段上,判断与的数量关系和位置关系,D AB DF DC 并说明理由;(2)如图2,若点在线段的延长线上,其他条件不变,试判断(1)中D AB 结论是否成立,并说明理由.22.如图,在和中,,,.AOB A COD △OA OB =OC OD =50AOB COD ∠=∠=︒(1)试说明:;AC BD =(2)与相交于点,求的度数.AC BD P APB ∠23.如图,在△ABC 中,∠B=∠C ,点D 是边BC 上一点,CD=AB ,点E 在边AC 上.(1)若∠ADE=∠B ,求证:①∠BAD=∠CDE ;②BD=CE ;(2)若BD=CE ,∠BAC=70°,求∠ADE 的度数.24.(1)阅读理解:如图①,在中,,,,ABC A AB AC =AD BC ⊥CE AB ⊥垂足分别为,,且,与交于点,图中与全等的D E AE EC =AD CE F ABD △三角形是______,与全等的三角形是______;AEF A (2)问题探究:如图②,在中,,,平分ABC A 90A ∠=︒AB AC =BD ABC ∠,,垂足为,探究线段,,之间的关系,并证明;DE BC ⊥E BC AB AD (3)问题解决:如图③,在中,,,平分,ABC A 90A ∠=︒AB AC =CE ACB ∠交的延长线于点,求证:.BD CE ⊥CE D 2CE BD =25.问题背景:如图1:在四边形ABCD 中,AB =AD .∠BAD =120°.∠B =∠ADC =90°.E ,F 分别是BC .CD 上的点,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.(1)小王同学探究此问题的方法是:延长FD 到点G .使DG =BE .连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 ;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠ADF =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =∠BAD ,(1)中结论是否仍然成立,并说明理12由;(3)如图3,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立?若12成立,请证明:若不成立,请直接写出它们之间的数量关系.参考答案:1.解:观察四个选项可知,只有选项B 符合题意,故选:B .2.证明:∵AD ⊥BD ,BC ⊥AC ,∴∠C =∠D =90°,在Rt △CAB 和Rt △DBA 中,, AB BA AC BD=⎧⎨=⎩∴Rt △CAB ≌Rt △DBA (HL ).故选:A .3.解:∵△ABD ≌△EBC ,AB =3,BC =5,∴BE =AB =3,BD =BC =5,∴DE =BD -BE =2,故选D .4.在中,ABC A 3095,B C ∠=︒∠=︒,∴∠CAB =180°-30°-95°=55°,∵,ΔΔABC ADE ≌∴∠EAD =∠CAB =55°,故选B .5.解:A 、不满足三边关系,本选项不符合题意.B 、边边角三角形不能唯一确定.本选项不符合题意.C 、没有边的条件,三角形不能唯一确定.本选项不符合题意.D 、斜边直角边三角形唯一确定.本选项符合题意.故选:D .6. 解:OF 平分,,,AOB ∠PD OA ⊥PE OB ⊥,.DOP EOP ∴∠=∠PDO PEO ∠=∠ ,,,PDO PEO OP OP DOP EOP ∠=∠⎧⎪=⎨⎪∠=∠⎩.DOP EOP ∴≌△△,.PD PE ∴=DPO EPO ∠=∠.180180DPF DPO EPO EPF ∴∠=︒-∠=︒-∠=∠ ,,,PF PF DPF EPF PD PE =⎧⎪∠=∠⎨⎪=⎩.FDP FEP ∴≌△△.DFO EFO ∴∠=∠ ,,,DOP EOP OF OF DFO EFO ∠=∠⎧⎪=⎨⎪∠=∠⎩.FDO FEO ∴≌△△共有3对全等三角形.∴故选:C .7.解:如图,延长AD 至点E ,使得DE =AD ,∵是边上的中线,AD BC ∴,BD CD =在△ABD 和△CDE 中,, AD DE ADB CDE BD CD =⎧⎪∠=∠⎨⎪=⎩∴△ABD △CDE (SAS ),≌∴AB =CE=5,AD =DE ,∵△ACE 中,AC -CE <AE <AC +CE ,∴4<AE <14,∴2<AD <7.故选:C .8.解:此题需要分类讨论.①若,则,325x -=73x =所以 112173x -=≠所以此种情况不符合题意;②若,则,327x -=3x =所以.215x -=所以此种情况符合题意.综上所述:3x =故选C .9.解:∵图中的两个三角形全等,∴边a 所对的角为72°,边c 所对的角是58°,∴边b 所对的角是180°-72°-58°=50°,∴∠α=50°.故答案为:50°.10.证明:∵CF //AB ,∴∠ADE =∠F ,∠FCE =∠A ,∵点E 为AC 的中点,∴AE = EC ,在△ADE 和∆CFE 中,ADE F A FCE AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌∆CFE (AAS ),∴AD = CF = 6.5,∵AB = 9,∴BD = AB - AD =9- 6.5= 2.5,故答案为: 2.5.11.解:第①块和第②块都没有保留完整的边,而全等三角形的判定定理中,至少存在一条边,第③块保留了一边边和两个角,则利用ASA 判定定理可得到一个全等三角形,进而可带③去,故答案为:③.12.解:∵∠EAF +∠BAG =90°,∠EAF +∠AEF =90°,∴∠BAG =∠AEF ,∵在△AEF 和△BAG 中,, 90F AGB AEF BAG AE AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△BAG (AAS ),同理△BCG ≌△CDH ,∴AF =BG ,AG =EF ,GC =DH ,BG =CH ,∵梯形DEFH 的面积=(EF +DH )•FH =80, 12S △AEF =S △ABG =AF •AE =9,12S △BCG =S △CDH =CH •DH =6,12∴图中实线所围成的图形的面积S =80-2×9-2×6=50,故答案为:50.13.解:由题意得:,,,AB ED =BC DC =90D B ∠=∠=︒所以△ABC ≌△EDC(SAS ),, 1BAC ∴∠=∠所以.12180∠+∠=︒故答案为:180°.14.解:由题意得:AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴∠ACD +∠BCE =90°,∠ACD +∠DAC =90°,∴∠BCE =∠DAC ,在△ADC 和△CEB 中,, ADC CEB DAC BCE AC BC ∠∠⎧⎪∠∠⎨⎪⎩===∴△ADC ≌△CEB (AAS );由题意得:AD =EC =12cm ,DC =BE =28cm ,∴DE =DC +CE =40(cm ),答:两堵木墙之间的距离为40cm ,故答案为:40 cm .15.解:如图,根据平移,对称,可得与△ABC 全等的三角形有5个,包括△ADE ,△ANF ,△ANG ,△ACG ,△AEF .故答案为:5.16.解:当BD =PC 时,△BPD 与△CQP 全等,∵点D 为AB 的中点,∴BD =AB =6cm ,12∵BD =PC ,∴BP =8-6=2(cm ),∵点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,∴运动时间时1s ,∵△DBP ≌△PCQ ,∴BP =CQ =2cm ,∴a =2÷1=2;当BD =CQ 时,△BDP ≌△CQP ,∵BD =6cm ,PB =PC ,∴QC =6cm ,∵BC =8cm ,∴BP =4cm ,∴运动时间为4÷2=2(s ),∴a =6÷2=3(m /s ),故答案为:2或3.17.解:点O 为AC 和BD 的中点,∴AO =CO ,BO =DO ,在△ABO 和△CDO 中,, AO CO AOB COD BO DO =⎧⎪∠=∠⎨⎪=⎩∴△ABO ≌△CDO (SAS ).18.(1)证明:∵AD 是BC 边上的中线,∴BD =CD ,∵BE ∥CF ,∴∠DBE =∠DCF ,在△BDE 和△CDF 中,,∴△BDE ≌△CDF (ASA ); DBE DCF BD CD BDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩(2)解:∵AE =13,AF =7,∴EF =AE -AF =13-7=6,∵△BDE ≌△CDF ,∴DE =DF ,∵DE +DF =EF =6,∴DE =3.19.证明:,AC DE ∥ .ACB E ∴∠=∠在和中,ABC ∆CDE ∆∵, ACB E B D AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩.()ABC CDE AAS ∴∆≅∆20.解:问题发现:延长BD ,交AE 于点F ,如图所示:∵,90ACD ︒=∠∴,90ACE DCB ︒∠=∠=又∵,,CA CD CB CE ==∴(SAS ),ACE DCB ∆≅∆,,AE ED CAE CDB ∴=∠=∠∵,90CDB CBD ︒∠+∠=∴,90CAE CBD ︒∠+∠=∴,90AFD ︒∠=∴,AF FB ⊥,AE BD ∴⊥故答案为:,;AE BD =AE BD ⊥拓展探究:成立.理由如下:设与相交于点,如图1所示:CE BD G∵,90ACD BCE ︒∠=∠=∴,ACE BCD ∠=∠又∵,,CB CE =AC CD =∴(SAS ),ACE DCB ∆≅∆∴,,AE BD =AEC DBC ∠=∠∵,90CBD CGB ︒∠+∠=∴,90AEC EGF ︒∠+∠=∴,90AFB ︒∠=∴,BD AE ⊥即,依然成立.AE BD =AE BD ⊥21.(1)解:∵,90,ABC FA AB ∠=⊥ ∴,90ABC DAF ∠∠== 在△ADF 与△BCD 中, AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BCD ,∴DF =DC ,,ADF BCD ∠=∠∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .(2)∵,90,ABC FA AB ∠=⊥∴,90DBC DAF ∠∠== 在△ADF 与△BCD 中, AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BCD ,∴DF =DC ,,ADF BCD ∠=∠∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .22.(1)证明:∵∠AOB =∠COD ,∴∠AOB +∠BOC =∠COD +∠BOC ,即∠AOC =∠BOD ,∵OA =OB ,OC =OD ,∴△AOC ≌△BOD (SAS ),∴AC =BD ;(2)解:如图,设AC 与BO 交于点M ,则∠AMO =∠BMP ,∵△AOC ≌△BOD ,∴∠OAC =∠OBD ,∴180°-∠OAC -∠AMO =180°-∠OBD -∠BMP ,即∠MPB =∠AOM =50°,∴∠APB =50°.23.(1)①∵在△ABC 中,∠BAD +∠B +∠ADB =180°∴∠BAD =180°-∠B -∠ADB ,又∵∠CDE =180°-∠ADE -∠ADB 且∠ADE =∠B ∴∠BAD =∠CDE ② 由①得∠BAD =∠CDE 在△ABD 与△DCE 中, B C AB DC BAD CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABD ≌△DCE (ASA )∴BD =CE(2)∵在△ABD 与△DCE 中,∴△ABD ≌△DCE (SAS)∴∠BAD =∠CDE 又AB DC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∵∠ADE =180°-∠CDE -∠ADB ∴∠ADE =180°-∠BAD -∠ADB =∠B 在△ABC 中,∠BAC =70°,∠B =∠C ∴∠B =∠C =(180°-∠BAC )=1212⨯110°=55°∴∠ADE =55°24.解:(1),AD BC ⊥,90ADB ADC ∠∠∴==︒,,AB AC = AD AD =≌,Rt ABD ∴A ()HL Rt ACD A ,CE AB ⊥ ,90AEC BEC ADB ∠∠∠∴===︒,90BAD B B BCE ∠∠∠∠+=︒=+ ,BAD BCE ∠∠∴=又,AE EC = ≌,AEF ∴A ()ASA CEB A 故答案为:,;ACD △CEB △(2),理由如下:BC AB AD =+,,90A ∠=︒ AB AC =,45ABC C ∠∠∴==︒,DE BC ⊥ ,45CDE C ∠∠∴==︒,CE DE ∴=平分,BD Q ABC ∠,ABD CBD ∠∠∴=又,,A DEB ∠∠= BD BD =≌,ABD ∴A ()AAS EBD A ,,AB BE ∴=AD DE EC ==;BC BE EC AB AD ∴=+=+(3)如图,延长,交于点,BD CA H平分,CE ACB ∠,ACE BCE ∠∠∴=又,,CD CD = 90CDB CDH ∠∠==︒≌,CBD ∴A ()ASA CHD A ,BD DH ∴=,90CDH BAH ∠∠==︒ ,90H HBA H ACE ∠∠∠∠∴+=︒=+,ACE HBA ∠∠∴=又,,AB AC = 90CAE BAH ∠∠==︒≌,ACE ∴A ()ASA ABH A ,CE BH ∴=.2CE BD ∴=25.(1)解:EF =BE +FD .延长FD 到点G .使DG =BE .连接AG ,∵∠ABE =∠ADG =∠ADC =90°,AB =AD ,∴△ABE ≌△ADG (SAS ).∴AE =AG ,∠BAE =∠DAG .∴∠BAE +∠DAF =∠DAG +∠DAF =∠EAF =60°.∴∠GAF =∠EAF =60°.又∵AF =AF ,∴△AGF ≌△AEF (SAS ).∴FG =EF .∵FG =DF +DG .∴EF =BE +FD .故答案为:EF =BE +FD ;(2)解:(1)中的结论EF =BE +FD 仍然成立.证明:如图②中,延长CB 至M ,使BM =DF ,连接AM .∵∠ABC +∠D =180°,∠1+∠ABC =180°,∴∠1=∠D ,在△ABM 与△ADF 中,, 1AB AD D BM DF =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△ADF (SAS ).∴AF =AM ,∠2=∠3.∵∠EAF =∠BAD ,12∴∠2+∠4=∠BAD =∠EAF .12∴∠3+∠4=∠EAF ,即∠MAE =∠EAF .在△AME 与△AFE 中,, AM AF MAE EAF AE AE =⎧⎪∠=∠⎨⎪=⎩∴△AME ≌△AFE (SAS ).∴EF =ME ,即EF =BE +BM ,∴EF =BE +DF ;(3)解:结论EF =BE +FD 不成立,结论:EF =BE -FD . 证明:如图③中,在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .在△ABG 与△ADF 中,, AB AD ABG ADF BG DF =⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△ADF (SAS ).∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =∠BAD . 12∴∠GAE =∠EAF .∵AE =AE ,∴△AEG ≌△AEF (SAS ),∴EG =EF ,∵EG =BE -BG ,∴EF=BE-FD.。
苏科版八年级数学上册《第一章全等三角形》单元测试含答案(K12教育文档)
苏科版八年级数学上册《第一章全等三角形》单元测试含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(苏科版八年级数学上册《第一章全等三角形》单元测试含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为苏科版八年级数学上册《第一章全等三角形》单元测试含答案(word版可编辑修改)的全部内容。
第一章全等三角形单元测试一、单选题(共10题;共30分)1.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A、∠A=∠CB、AD=CBC、BE='DF'D、AD∥BC2。
如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列条件后,不能判定△ABE≌△ACD的是()A、AD=AEB、BE=CDC、∠AEB=∠ADCD、AB=AC3.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D。
AD∥BC,且AD=BC4。
如图,在下列条件中,不能证明△ABD≌△ACD的是()A。
BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC5.已知图中的两个三角形全等,则∠1等于( )A。
72° B。
60° C.50° D.58°6.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=12AC•BD,其中正确的结论有()A.0个B.1个C.2个 D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
鼎尚图文**整理制作
全等三角形单元测试题
班级_______ 姓名________ 学号_______
一、选择题
1、如图,在△ABC和△FED中,AC=FD,BC=ED,要利用SSS来判定△ABC≌△FED时,下面
的四个条件中:①AE=FB;②AB=FE;③AE=BE;④BF=BE,可利用的是()
A. ①或②
B. ②AB或③
C. ③或①
D. ①或④
3、如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,DE平分∠ADE,则∠B等于()
A.22.5°
B.30°
C.25°
D.40°
4、如图,OP平分∠MON,PA⊥ON于点A点Q是射线OM上的一个动点。
若PA=2,
则PQ的最小值为()
A.1
B.2
C.3
D.4
5、如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3cm,BC=7cm,则BD=
()
A.3 cm
B.4 cm
C.5 cm
D.6 cm
6、如图,直线11、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的
距离相等,则可供选择的地址有( )
A.一处
B.二处
C.三处
D.四处
7、到三角形三边距离相等的点是()
A.三条中线的交点
B.三条角平分线的交点
C.三条高线的交点
D.不能确定
8、如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作的
三角形与△ABC全等,这样的三角形最多可画出()
A.2个
B.4个
C.6个
D.8个
9、如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.
那么最省事的办法是带()去配.
A.①
B.②
C.③
D.①和②
10、如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②
AC+BE=AB;③∠BDE=∠BAC;④S△ABD:S△ACD=AB:AC.其中正确的是()
A.5个
B.4个
C.3个
D.2个
二、选择题
11、如图,AC与BD交于点O,且OA=OC,OB=OD,则图中有对全等三角形。
12、如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是1cm和2cm,则EF的
长为。
13、如图,已知AB∥CD,点O是∠BAC与∠ACD的平分线的交点,OE⊥AC于E,OE=2,则AB
与CD之间的距离为。
14、已知△ABC中,∠A=60°,∠ABC、∠ACB的平分线交于点O,则∠BOC的度数为。
15、如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB于E,AB=10cm,
则△DEB的周长为cm。
16、如图所示,∠AOB=60°,∠C=25°,OA=OB,OC=OD,则∠BDE= 。
17、如图,线段AC、BD交于点O,且OA=OC,请添加一个条件使△ABO≌△CDO,应添加的条
件为。
(添加一个条件即可)
18、如图AB∥CD,E为DF的中点,AB=10,CF=6,
则BD= 。
19、在Rt△ABC中,∠C=90°,AC=7,BC=24,AB=25,P
为三个内角平分线交点,则点P到各边的距离都等于。
三、解答题:(每题8分,共40分)
20、如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,连接EF . EF与AD
交于G . AD垂直平分EF吗?证明你的结论.
21、如图,AE∥CF,AG、CG分别平分∠EAC和∠FCA,过点G的直线BD⊥AE,交AE于点B,
交CF于点D .求证:AB+CD=AC.
22、如图,已知CA=CB,AD=BD,M、N分别是CB、CA的中点.求证:DN=DM.
23、两个大小不同的等腰直角三角形ABC、AED如图放置,B、C、E在一条直线上,连接DC,(1)
请找出图中的全等三角形,并给予证明。
(2)求证:DC⊥BE。
25、如图,在△ABC中,∠ACB=90°,AC=BC,过点C作一直线PQ,AM⊥PQ于点M,BN⊥PQ 于点N.
(1)求证:MN=AM+BN;
(2)当过点C的直线PQ旋转到与AB相交,如图所示:AM⊥PQ于点M,BN⊥PQ于点N,则MN、AM、BN之间又有何等量关系,证明你的结论.
如图,已知∠AOB和C、D两点,求作一点P,使PC=PD,且点P到△AOB两边的距离相等(保留
作图痕迹).
参考答案:
一、1、A 3、B 4、B 5、B 6、D 7、B 8、B 9、C 10、A
二、11、4 12、3 cm 13、4 14、120°15、10 16、70°17、OB=OD(或∠A=∠C或∠B=C 等) 18、4 19、(0,4)或(4,0)或(4,4)20、3
三、21、AD垂直平分EF。
证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵AD=AD,∴Rt△ADE≌Rt△AFD,∴∠ADE=∠ADF,∵DE=DF,DG=DG,∴△DEG≌△DFG
∴EG=FG,∠DGE=∠DGF,∵∠DGE+∠DGF=180°,∴∠DGE=∠DGF=90°,
即AD⊥EF,∴AD垂直平分EF .
22、证明:过点G作GH⊥AC于H,∵BD⊥AE,AG平分∠EAC,∴GH=GB,
∵AG=AG,∴Rt△ABG≌Rt△AHG,∴AB=AH,同理CD=CH
∴AB+CD=AH+CH=AC,∴AB+CD=AC.
23、证明:连接CD,在△ACD和△BCD中,
CA=CB
AD=BD
CD=CD
∴△ACD≌△BCD,∴∠A=∠B,∵M、N分别是CB、CA的中点,CA=CB,∴AN=BM
在△ADN和△BDM中
AD=BD
∠A=∠B
AN=BM
∴△ADN≌△BDM,∴DN=DM.
24、解:(1)△ABE≌△ACD.
∵∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,
即∠BAE=∠CAD,∵AB=AC,AE=AD,∴△ABE≌△ACD.
(2)证明:∵△ABE≌△ACD,∴∠ACD=∠B=45°,∵∠ACB=45°,
∴∠BCD=∠ACD+∠ACB=45°+45°=90°,∴DC⊥BE
25、(1)证明∵∠ACB=90°,∴∠ACM+∠BCN=90°,∵AM⊥PQ,
∴∠ACM+∠CAM=90°
∴∠CAM=∠BCN ,在△ACM和△CBN中
∠AMC=∠CNB=90°
∠CAM=∠BCN
AC=BC
∴△ACM≌△CBN ∴MC=BN,AM=CN ,∵MN=CN+MC ,∴MN=AM+BN.
(2)MN=BN-AM
证明:∵∠ACB=90°,∴∠ACM+∠BCN=90°,∵AM⊥PQ,∴∠ACM+∠CAM=90°
∴∠CAM=∠BCN ,在△ACM和△CBN中
∠AMC=∠CNB=90°
∠CAM=∠BCN
AC=BC
∴△ACM≌△CBN ∴MC=BN,AM=CN ,∵MN=MC-CN ,∴MN=BN-AM.
25题变形一、(1)如图(1),正方形ABCD的顶点B在直线
m上,AE⊥m于E,CF⊥m于F.
求证:AE+CF=EF.
(2 )当正方形ABCD绕点B旋转到如图(2)
所示的位置时,(1)中的结论是否成立?若
不成立,请给出正确的结论,并证明你的结
论.
证明:(1)∵ABCD是正方形,∴AB=BC,∠ABC=90°∴∠ABE+∠CBF=90°,∵AE⊥m,
∴∠BAE+∠ABE=90°,∴∠BAE=∠CBF,∵AE⊥m,CF⊥m,∴∠AEB=∠BFC.在△ABE和△BCF中∠AEB=∠BFC
∠BAE=∠CBF ∴△ABE≌△BCF ∴AE=BF,BE=CF
AB=BC
∵BF+BE=EF,∴AE+CF=EF.
(2)AE-CF=EF.
证明:∵ABCD是正方形,∴AB=BC,∠ABC=90°∴∠ABE+∠CBF=90°,∵AE⊥m,
∴∠BAE+∠ABE=90°,∴∠BAE=∠CBF,∵AE⊥m,CF⊥m,∴∠AEB=∠BFC.在△ABE和△BCF中∠AEB=∠BFC
∠BAE=∠CBF ∴△ABE≌△BCF ∴AE=BF,BE=CF
AB=BC
∵BF-BE=EF,∴AE-CF=EF.
25题变形二、如图,∠ACB=90°,AC=BC,BE⊥CD,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.
解:∵∠ACB=90°,∴∠BCE+∠ACE=90°,∵AD⊥CE,∴∠DAC+∠ACE=90°, ∴∠BCE=∠DAC,∵BE⊥CD,AD⊥CE,∴∠BEC=∠ADC=90°,∵AC=BC
∴△BCE≌△CAD,∴BE=CD,CE=AD,∵CD=CE-DE=2.5-1.7=0.8,
∴DE=0.8cm.。