相似图形复习教学案

合集下载

3.8 图形的位似(二)教学设计

3.8  图形的位似(二)教学设计
此活动中的问题(2)、(3)对应着复习提问用中的问题(2)、(3),学生很
容易将一开始总结出来的方法用在这两个问题上。课件展示作图的步骤及过
程,不仅能吸引学生的注意力,同时,让学生学会听课,观察,对比。通过仔
细观察,对比自己的作图过程,掌握在直角坐标系中做多边形位似图形的方
法,并能对作图方法进行初步归纳(用自己的语言描述)。通过问题(4),引导
对于在作图中出现的问题要及时给予解决。教材给出的例题都是多边形其中一
个顶点为原点。有的学生会提出疑问:是不是平面直角坐标系中只有这样的多
边形才会满足结论?或者在学生自己设计时,会出现原点不是多边形顶点的图
形。教师要及时抓住这些学生资源,引发学生思考,引导学生探究,有必要可
课件展示一例,最终形成统一结论。并鼓励和表扬学生的质疑精神和求变思
例放大或缩小,本节课将多边形放到直角坐标系中,探讨通过直角坐标系,如
何寻找它关于原点 O 的位似图形并确定相似比,如何将一个多边形放大或缩
小。同时,也要探讨在直角坐标系中,给出相似比,如何确定一个已知多边形
关于原点 O 的位似图形。通过具有挑战性的内容,促使学生进一步理解位似的
3、将较好的学生作图进行展示,并由学生说明作图的步骤和判断方法。
4、由学生总结自己的发现。
活动目的:
让学生在活动中能够举一反三,触类旁通、善于发现、勤于探究,敢于质
疑,学会总结,形成自主学习的良好学习习惯。
注意事项:
这一环节一定要让学生亲自动手,教师要特别关注学生的动手操作过程,
学生初步发现规律。
注意事项:
教师可以通过小组合作的形式完成前三个问题,给学生充分的思考、交

华东师大版数学九年上23.2《相似图形》教学设计

华东师大版数学九年上23.2《相似图形》教学设计
1.对相似图形的定义理解不够深入,难以把握相似图形的本质特征。
2.在判定相似图形时,对判定方法的选择和应用不够熟练,容易混淆。
3.在解决实际问题时,学生可能难以发现相似图形的应用场景,缺乏将理论知识运用到实际中的能力。
针对以上情况,教师在教学过程中应关注以下几点:
1.加强对相似图形定义的讲解,通过实例让学生直观地感受到相似图形的特点。
"提前预习,有助于同学们在课堂上更好地消化吸收新知识,提高学习效率。"
作业布置要求:
1.作业要按时完成,保持字迹清晰,书写规范。
2.对于难题和疑问,要及时与同学或老师交流,确保作业质量。
3.家长要关注孩子的作业进度,给予适当的指导和支持。
"今天我们学习了相似图形,它们具有对应角相等、对应边成比例的性质。我们通过AA、SAS、SSS相似准则来判断两个图形是否相似。这些知识不仅可以帮助我们解决几何问题,还可以应用到生活中的各种场景。"
2.强调相似图形在实际生活中的重要性,激发学生对数学学科的兴趣。
3.鼓励学生在课后继续探索相似图形的知识,为下一节课的学习打下基础。
(2)准备丰富的实物模型,让学生直观地感受相似图形的性质和判定方法。
(3)提供丰富的练习题库,满足不同层次学生的学习需求。
5.教学关注点:
(1)关注学生的几何直观能力培养,提高学生对几何图形的认识和理解。
(2)关注学生的逻辑推理能力,培养学生的几何思维能力。
(3)关注学生的应用意识,将相似图形知识运用到实际问题中,提高学生的实践能力。
2.教学过程:
(1)导入:以生活中的相似图形为例,引导学生观察、思考,导入新课。
(2)新知传授:详细讲解相似图形的定义、性质和判定方法,结合实例进行分析。

人教版数学九年级下册教学设计27.1《图形的相似》

人教版数学九年级下册教学设计27.1《图形的相似》

人教版数学九年级下册教学设计27.1《图形的相似》一. 教材分析《图形的相似》是人教版数学九年级下册第27.1节的内容,本节主要让学生理解相似图形的概念,掌握相似图形的性质,以及学会运用相似图形解决实际问题。

教材通过生动的实例和丰富的练习,引导学生探索和发现相似图形的性质,培养学生的观察能力、推理能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本概念和性质,如点、线、面的关系,角度、三角形的性质等。

但是,对于相似图形的概念和性质,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生可能对于解决实际问题,尤其是涉及到相似图形的实际问题,感到困难,需要教师的引导和帮助。

三. 教学目标1.了解相似图形的概念,掌握相似图形的性质。

2.学会运用相似图形解决实际问题。

3.培养学生的观察能力、推理能力和解决问题的能力。

四. 教学重难点1.相似图形的概念和性质。

2.运用相似图形解决实际问题。

五. 教学方法1.实例教学:通过生动的实例,引导学生观察和发现相似图形的性质。

2.问题驱动:提出实际问题,引导学生运用相似图形进行解决。

3.分组讨论:学生分组讨论,培养学生的合作能力和解决问题的能力。

4.练习巩固:通过丰富的练习,巩固学生对相似图形的理解和掌握。

六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示实例。

2.练习题:准备相关的练习题,巩固学生的学习效果。

3.实物模型:准备一些实物模型,如相似的三角形、矩形等,帮助学生直观地理解相似图形。

七. 教学过程1.导入(5分钟)利用实物模型或图片,引导学生观察和比较相似的图形,引发学生对相似图形的兴趣。

提问:你们发现这些图形有什么共同的特点?学生回答:形状相同,但大小不同。

教师总结:这就是我们今天要学习的相似图形。

2.呈现(10分钟)展示教学课件,讲解相似图形的概念和性质。

通过实例和图形的变换,引导学生发现相似图形的性质,如对应边的比例关系、对应角的相等关系等。

第1章图形的相似复习教案

第1章图形的相似复习教案

第一章图形的相似复习(1)教学设计【复习目标】1.了解相似图形的概念及性质,掌握平行线分线段成比例定理;2.了解相似三角形的概念,掌握相似三角形的性质并会应用;3.掌握相似三角形的判定方法,并能解决相关题目;4.掌握位似图形的概念及性质,并会应用位似图形将一个图形放大或缩小;5.培养观察、分析、探究、归纳等解决问题的能力.【复习重难点】重点:相似三角形的性质及其判定方法.难点:相似三角形的性质及判定方法的灵活应用.【课时安排】1课时【教学过程】一、导入环节(一)导入新课,板书课题导入语:前面我们已经学完了《图形的相似》一章,本节课我们复习相似图形概念和性质、相似三角形的判定、位似图形的相关知识.(二)出示复习目标课件展示学习目标,学生齐读学习目标.过渡语:让我们带着目标、带着问题进入自主学习环节.二、自主学习环节(一)出示复习指导过渡语:自主复习第一章1、2、4节的内容,记忆所学概念及定理,并完成下面的基础知识填空.1. 相似多边形的定义:两个边数相同的多边形,如果一个多边形的各个角与另一个多边形的各个角__________,各边_______ __,那么这两个多边形叫做相似多边形.用符号_______表示两个多边形相似.2. 相似三角形:对应角相等,对应边成比例的三角形叫做相似三角形.•对应边之比叫做________.当相似比为1时,两个三角形就称为_______.3. 平行线分线段成比例定理:两条直线被一组平行线所截,所得的_________成比例.4.推论:平行与三角形的一边,并且与其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的___________对应成比例.5.相似三角形的判定:(1)两组对应角分别__________的两个三角形相似;(2)两组对应边成比例,且_______相等的两个三角形相似;(3)三组对应边________的两个三角形相似;(二)复习自主检测过渡语:请同学们结合自主复习情况完成下面题目,做题要细心、规范.用时6分钟,完成的交给组长看一下,组长记录好本小组同学做题情况.1.已知=,则=;已知==,则=2. 已知:如图,DE //AC ,DF //AB ,则下列比例式中正确的是( )A .AE EB =BD DC B .DF AC =DC BC C .AE AB =AC FCD .BD DC =FC AF3.在图中,∠1=∠2,则与下列各式不能说明△ABC ∽△ADE 的是( ) A .∠D =∠B B .∠E =∠C C .AC AE AB AD = D .BCDE AB AD =4.如图:已知梯形ABCD 中,AD ∥BC ,对角线AC .BD 相交于O ,腰BA 、CD 的延长线相交于M ,图中相似三角形共有( ).A .1对B .2对C .3对D .4对生生合作,互相纠错组内交流:将自主复习和复习检测中疑难问题进行交流.时间:3分钟,组长掌握组内的情况,记录没能解决的问题.发言要求:大胆讨论、声音洪亮、言简意赅、明确清晰.三、合作探究环节下面进入我们的合作探究环节,老师为你们准备了两个探究题. 大屏幕放映学生展示分工和点评安排,以备学生按要求展开!探究一:如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点都在格点上,建立平面直角坐标系.1.点A 的坐标为 ,点C 的坐标为 __________.2.将△ABC 向左平移7个单位,请画出平移后的△111C B A .若M 为△ABC 内的一点,其坐标为(a ,b ),则平移后点M 的对应点1M 的坐标为 .3.以原点O 为位似中心,将△ABC 缩小,使变换后得到的△222C B A 与△ABC 对应边的比为1:2.请在网格内画出△222C B A ,并写出点2A 的坐标:_____ _____.探究二:如图,Rt △ABC 中,DE 是斜边AB 上的中垂线,交BC 的延长线于E 。

相似图形数学教案

相似图形数学教案

相似图形数学教案
标题:相似图形数学教案
一、教学目标
1. 让学生理解并掌握相似图形的基本概念和性质。

2. 培养学生的观察力和空间想象力,提高他们解决实际问题的能力。

3. 通过探究活动,培养学生的合作精神和创新意识。

二、教学内容
1. 相似图形的基本概念:定义、特征、分类。

2. 相似图形的性质:对应角相等、对应边成比例、周长比等于面积比的平方。

三、教学过程
1. 导入新课:利用生活中的实例引入相似图形的概念,激发学生的兴趣。

2. 新课讲解:通过示例、图解等方式详细解释相似图形的基本概念和性质。

3. 学生实践:设计一些与相似图形相关的练习题,让学生进行独立或小组完成。

4. 总结反馈:对学生的解答进行点评,并对学生的学习情况进行总结。

四、教学方法
1. 探究式学习:鼓励学生主动探索,发现相似图形的规律。

2. 合作学习:通过小组讨论,培养学生的团队协作能力。

3. 实践操作:通过绘制图形,加深学生对相似图形的理解。

五、教学评价
1. 过程评价:关注学生在课堂上的参与度,以及他们在解决问题过程中的思考和表现。

2. 结果评价:通过对学生作业的批改,了解他们对相似图形知识的掌握程度。

六、教学反思
教师应反思自己的教学方法是否有效,是否能激发学生的学习兴趣,是否能让学生真正理解和掌握相似图形的知识。

图形的相似 回顾与思考 优秀教案

图形的相似 回顾与思考 优秀教案

图形的相似回顾与思考【教学目标】1.知识技能(1)了解本章所学的主要内容,建立本章的知识体系。

(2)正确合理地选择适当的判定方法找到相似三角形;运用相似三角形解决数学问题。

2.数学思考(1)经历观察、实验、猜想、证明等“找相似”的过程,进一步发展几何直觉,发展合情推理能力和初步的演绎推理能力。

(2)能有条理地、清晰地阐述自己的学习体验和结果,发展表达能力。

3.问题解决(1)能与同学交流“找相似”的体验和结果,体验“交流”对自己的帮助。

(2)在“找相似”的过程中形成反思意识,获得“找相似”的基本经验。

4.情感态度(1)能积极参与到课堂学习活动中,对复习课有兴趣和热情。

(2)体验数学活动充满着探索与创造,感受数学的严谨性。

(3)形成实事求是的态度以及进行质疑和独立思考的习惯。

【教学重难点】1.正确选择适当的判定方法找到相似三角形,反思感悟“找相似”的一些基本策略。

2.从直观发现到自然说理的过渡。

【教学方法】在教师的组织和引导下,学生独立探索和小组合作探究相结合,小组交流和全班交流相结合的教学方式。

学法指导指导学生沿着“直观—验证”的方式进行,突破本节也是本章的难点。

【教学过程】(一)建立体系,回顾相似先给出本章的七个关键词,然后展示一组图片,请同学们说出每张图片分别对应着哪一个关键词?(共七张图片,它们对应的关键词分别是:线段的比,成比例线段,黄金分割,相似图1D A B C 图2E D A B C图形,相似多边形,相似三角形,位似图形)设计意图:1.通过形象直观的图片让学生迅速回顾本章的重要知识点。

2.让学生再次感受到数学知识与生活实际的紧密联系。

(二)循序渐进,三找相似1.一找相似例1.下面的6个三角形中,哪些三角形相似?你所用的判定方法是什么?设计意图:①网格中的三角形学生比较熟悉,让学生在熟悉的场景中找相似,主要是为达到复习三种判定方法的目的,因为知识点的复习在运用中会更显直观,它能调动起学生的多个感官。

人教版九年级数学下册《第二十七章 相似》教案

人教版九年级数学下册《第二十七章 相似》教案

人教版九年级数学下册《第二十七章相似》教案一. 教材分析人教版九年级数学下册《第二十七章相似》主要讲述了相似图形的性质和判定方法。

本章内容包括相似图形的定义、相似比、相似多边形的性质、相似三角形的性质和判定、相似圆的性质和判定等。

这些内容是学生学习几何学的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的几何基础,对图形有了一定的认识。

但是,对于相似图形的定义和性质,学生可能还比较陌生,需要通过具体的例子和实践活动来加深理解。

此外,学生对于图形的变换和判定方法可能还不够熟练,需要通过大量的练习来提高。

三. 教学目标1.理解相似图形的定义和性质,能够判断两个图形是否相似。

2.掌握相似三角形的性质和判定方法,能够应用到实际问题中。

3.培养学生的空间想象能力和逻辑思维能力,提高解决问题的能力。

四. 教学重难点1.相似图形的定义和性质的理解。

2.相似三角形的性质和判定方法的掌握。

3.图形变换的熟练运用。

五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,激发学生的学习兴趣和积极性。

2.利用多媒体和实物模型,进行直观演示和操作,帮助学生建立直观的空间想象能力。

3.提供丰富的练习题,进行巩固和拓展,提高学生的解题能力。

六. 教学准备1.多媒体教学设备。

2.实物模型和图片。

3.练习题和答案。

七. 教学过程1.导入(5分钟)通过展示一些相似的图形,如字母“A”和“a”,让学生观察和思考,引出相似图形的概念。

2.呈现(10分钟)讲解相似图形的定义和性质,通过具体的例子和实物模型进行演示,让学生理解和掌握相似图形的特征。

3.操练(10分钟)让学生进行一些类似的练习题,巩固对相似图形的理解和判断能力。

可以提供一些提示和指导,帮助学生解决问题。

4.巩固(10分钟)通过一些综合性的练习题,让学生应用相似图形的性质和判定方法,解决实际问题。

教师可以给予一些帮助和指导,鼓励学生独立思考和解决问题。

人教版九年级下册第二十七章相似教学设计

人教版九年级下册第二十七章相似教学设计
(三)情感态度与价值观
1.培养学生对几何图形的审美观念,激发他们对几何学的兴趣。
-通过展示美丽的几何图形,让学生感受几何图形的美,培养他们的审美情趣。
-通过解决实际问题,让学生体会几何学的实用价值,提高他们对几何学的兴趣。
2.培养学生勇于探索、积极思考的学习态度,形成良好的学习习惯。
-在教学过程中,注重鼓励学生提问、质疑,培养他们勇于探索的精神。
1.教学活动设计:
-以生活中的实例导入新课,如展示一组形状相似但大小不同的物体(如照片、玩具等),引导学生观察并思考它们之间的关系。
-提问:“同学们,你们在生活中遇到过形状相似但大小不同的物体吗?它们之间有什么共同特征?”
-通过学生回答,引出相似图形的概念。
2.教学目标:
-激发学生对相似图形的兴趣,调动他们的学习积极性。
-引导学生运用演绎推理和合情推理,证明相似图形的性质,提高他们的逻辑思维能力。
2.学会运用小组合作、讨论交流等学习方法,提高解决问题的能力。
-在课堂教学中,组织学生进行小组合作,共同探讨相似图形的问题,培养他们的团队协作能力和沟通能力。
-鼓励学生在课堂上积极发言,分享自己的思考过程和解决方案,提高他们的表达能力和自信心。
-结合实际案例,让学生了解相似在实际生活中的应用。
(三)学生小组讨论
1.教学活动设计:
-将学生分成小组,针对给定的问题或案例进行讨论,如相似三角形的判定、相似图形的应用等。
-各小组派代表分享讨论成果,其他小组进行评价和补充。
2.教学目标:
-培养学生的团队协作能力和沟通能力。
-通过讨论交流,巩固学生对相似图形性质的理解,提高他们解决问题的能力。
-对本节课的主要内容进行总结,强调相似图形的定义、判定方法及性质应用。

图形的相似复习与小结教案

图形的相似复习与小结教案

复习内容本节课主要是对图形的相似进行系统复习.复习目标1.知识与技能.理解相似图形的概念,研究相似三角形的性质以及判定,会进行图形的变换和坐标表示. 2.过程与方法.经历探究线段比、成比例线段、图形相似以及变换的过程,掌握其应用方法3.情感、态度与价值观.通过培养学生观察、思考、交流、类比、归纳等能力,发展学生的探究精神、合作精神.重难点、关键1.重点:相似三角形性质、判定的应用.3.关键:加强识图意识,从观察、操作等实践活动发现解题思路,•从直观发现到合情推理.复习准备1.教师准备:投影仪、制作投影片.2.学生准备:写一份本单元知识体系结构图和小结,收集有关图片.复习过程一、回顾交流,系统跃进1.问题牵引1.(1)比例的基本性质是什么?试举例说明.(2)请同学们将收集到的黄金分割在建筑、艺术等方面的图片、资料进行交流.互动形式:先将学生分成四人小组,进行交流,而后再全班性汇报.媒体使用:运用投影仪进行展示,展示与学生解说相结合.2.问题牵引2.(1)相似三角形具有哪些性质与判定?(2)什么叫位似图?如何将一个图形放大(缩小)?(3)图形与坐标之间变换具有哪些规律?互动形式:分四人小组,交流各自准备好的单位小结,和本单元结构图,系统地梳理.媒体辅助:使用投影仪,帮助学生在全班进行汇报.面.二、范例学习,应用所学1.例1:如图,等腰梯形ABCD,AB=DC,面对角线AC=BD=BC=2AB,过A•作AE•∥DC交BC于E,求BE:EC的值.E DCBA思路点拨:对于梯形问题,通常可以转化到三角形和平行四边形问题去解决,•因此,本题可过A作AE∥DC,推出△ABE是等腰三角形,四边形AECD是平行四边形.本题特点是CA=CB,则△CAB也是一个等腰三角形,而且△ABE、△CBA有一个公共底角∠ABE=∠CBA,则这两个三角形相似,由此可以推出BE ABAB BC==12,因此可得结论:BE:EC=1:3.点拨:本题特点是当CA=CB时,△CAB也是一个等腰三角形,且△CAB∽△ABE,抓住本题这一特征,问题就解决了.师生互动:教师投影展示例1,引导学生讨论,最后教师再进行归纳.2.例2:如图,为了测量一条河的宽度,测量人员在对岸岸边P•点处观察到一根柱子,再在他们所在的这一侧岸上选点A和B,使得B、A、P在一条直线上,且与河岸垂直,随后确定C、D,使BC⊥BP,AD⊥BP,由观测可以确定CP与AD的交点D.他们测得AB=45m,BC=90m,AD=60m,从而确定河宽PA=90m,你认为他们的结论对吗?•还有其他测量方法吗?思路点拨:运用相似三角形中的比例线段进行求解,因为,•容易推出△PAD•∽△PBC,从而得到比例式:60,4590PA AD PAPB BC PA==+即,即,求出PA=90m.可得结论.点拨:可利用多媒体课件中鲜活的画面,吸引学生注意力,激发学生对解题的兴趣,让学生分小组进行讨论.教师活动:引导学生分析,推荐好的解题方案.媒体使用:多媒体课件.思维拓展:本题若改变点C的位置,结论是否不变?(不变)教师活动:引申问题,拓宽学生的知识面.三、随堂练习,巩固深化投影显示.1.如图,在正方形网格中,每个小正方形边长为1,顺次连结A、B、C、D、E,点A 平移到A1,请画出平移后的图形A1B1C1D1,并指出平移后的图形的坐标.2.如图,在等腰梯形ABCD中,AB∥DC,对角线AC与BD相互垂直,中位线长为5cm,求梯形的高.3.如图,F是BC的中点,E是AF的中点,CE的延长线与AB交于D,求DE:EC的值.(提示:过F作FT∥AB)4.课本P81复习题第13、18题.四、课堂总结,提高认识总结形式:师生互动,先由学生自己概括,再由同伴补充,最后由教师归纳.教师归纳见课本P79小结.1.课本P80复习题第4、5、6、7、9、12、14、19、20题.2.选用课时作业设计.六、课后反思(略)课时作业设计1.如图1,已知∠ABD=∠ACD,图中相似三角形是________.(1) (2) (3)2.如图2,在△ABC中,DE∥BC,AE:EC=2:3,则△ADE的周长:•△ABC•的周长=________,S△ADE:S梯形BCED=_________.3.如图2,在△ABC中,DE∥BC,若AB=4,5,D是AB•的黄金分割点,•则AD=________,DE=________.4.两个相似三角形的对应边上的中线之比为1:4,它们的面积比为()A.1:4 B.1:2 C.1:16 D.1:85.如果△ABC和△A′B′C′面积相等,且AB:A′B′=9:25,那么AB与A′B′边上的高的比为()A.9:25 B.25:9 C.3:5 D.5:36.如图3,自Y ABCD的AD边的延长线上取一点F,BF分别交AC、CD于E、G,如果EF=32,GF=24,那么BE的长为()A.8 B.10 C.12 D.167.如图,E是矩形ABCD的AD上的一点,以CE为折痕将△CDE翻折,点D落在边AB 上的D′处,分别判断两组三角形:△CBD′和△EAD′;△CBD′和△CED′是否一定相似?如果一定相似,请加以说明;如果不一定相似,求出当BCAB为何值时才能相似.答案:1.略 2.2:5 4:25 3.512(5) 4.C 5.B 6.D7.△CBD′∽△EAD′,当3BCAB时,△CBD′∽△CED′.。

人教版图形的相似教案

人教版图形的相似教案

人教版图形的相似教案人教版图形的相似教案篇一:人教版,新课标,九年级,第27章,图形的相似,教案第二十七章相似27.1 图形的相似(一)一、教学目标1( 理解并掌握两个图形相似的概念(2( 了解成比例线段的概念,会确定线段的比(二、重点、难点1( 重点:相似图形的概念与成比例线段的概念(2( 难点:成比例线段概念(3( 难点的突破方法(1)对于相似图形的概念,可用大量的实例引入,但要注意教材中“把形状相同的图形说成是相似图形”,只是对相似图形概念的一个描述,不是定义;还要强调:?相似形一定(((要形状相同,与它的位置、颜色、大小无关(其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形就是全等形,所以全等形是一种特殊的相似形);?相似形不仅仅指平面图形,也包括立体图形的情况,如飞机和飞机模型也是相似形;?两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形((2)对于成比例线段:?我们是在学生小学学过数的比,及比例的基本性质等知识的基础上来学习成比例线段的;?两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;?线段的比是一个没有单位的正数;?四条线段a,b,c,d成比例,记作段满足ac?或a:b=c:d;?若四条线bdac则有ad=bc(为利于今后的学习,可适当补充:反之,若四条线段满足ad=bc,?,bdac则有?,或其它七种表达形式)( bd三、例题的意图本节课的三道例题都是补充的题目,例1是一道判断图形相似的选择题,通过讲解要使学生明确:(1)相似形一定要形状相同,与它的位置、颜色、大小无关;(2)两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形;(3)在识别相似图形时,不要以位置为准,要“形状相同”;例2通过分别采用m、cm、mm三种不同的长度单位,求得的a的值相等,使学生明确:b两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致;例3是求图上距离图距?线段的比的题,要使学生对比例尺有进一步的认识:比例尺=,而求图上实际距离实距距离与实际距离的比就是求两条线段的比(四、课堂引入1((1)请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系,再如下图的两个画面,他们的形状、大小有什么关系((还可以再举几个例子)(2)教材P36引入((3)相似图形概念:把形状相同的图形说成是相似图形((强调:见前面)(4)让学生再举几个相似图形的例子((5)讲解例1(2(问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的长度比是多少,归纳:两条线段的比,就是两条线段长度的比(3(成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如ac,我们就说这四条线段是成比例线段,简称比例线段( ?(即ad=bc)bd【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记作(4)若四条线段满足五、例题讲解 ac?或a:b=c:d;bdac?,则有ad=bc( bd例1(补充:选择题)如图,下面右边的四个图形中,与左边的图形相似的是( )分析:因为图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相似;图B是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而图C是将左图绕正五边形的中心旋转180o后,再按一定比例缩小得到的,因此图C与左图相似,故此题应选C.例2(补充)一张桌面的长a=1.25m,宽b=0.75m,那么长与宽的比是多少,(1)如果a=125cm,b=75cm,那么长与宽的比是多少,(2)如果a=1250mm,b=750mm,那么长与宽的比是多少,解:略((a5?)b3小结:上面分别采用m、cm、mm三种不同的长度单位,求得的a的值是相等的,所b以说,两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致(例3(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm,求北京到上海的实际距离大约是多少km,图上距离分析:根据比例尺=,可求出北京到上海的实际距离( 实际距离解: 略答:北京到上海的实际距离大约是1120 km(六、课堂练习1(教材P37的观察(2(下列说法正确的是( )A(小明上幼儿园时的照片和初中毕业时的照片相似.B(商店新买来的一副三角板是相似的.C(所有的课本都是相似的.D(国旗的五角星都是相似的.3(如图,请测量出右图中两个形似的长方形的长和宽,(1)(小)长是_______cm,宽是_______cm; (大)长是_______cm,宽是_______cm;宽宽??( (2)(小)(大)长长(3)你由上述的计算,能得到什么结论吗,(答:相似的长方形的宽与长之比相等)4(在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少,5(AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少,七、课后练习1(观察下列图形,指出哪些是相似图形:(答:相似图形分别是:(1)和(8);(2)和(6);(3)和(7) )2(教材P37练习1、2(3(教材P40 练习1与习题1 (27.1 图形的相似(二)一、教学目标1(知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等(2(会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算(二、重点、难点1(重点:相似多边形的主要特征与识别(2(难点:运用相似多边形的特征进行相关的计算(3(难点的突破方法(1)判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;可以以矩形、菱形为例说明:仅有对应角相等,或仅有对应边的比相等的两个多边形不一定相似(见例1),也可以借助电脑直观演示,增加效果,从而纠正学生的错误认识((2)由相似多边形的特征可知,如果已知两个多边形相似,就等于知道它们的对应角相等,对应边的比相等(对应边成比例),在计算时要能灵活运用((3)相似比是一个很重要的概念,它实质是把一个图形放大或缩小的倍数(即相似多边形的对应边的长放大或缩小的倍数)(三、例题的意图本节课安排了3个例题,例1与例3都是补充的题目,其中通过例1的学习,要让学生了解判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;而若说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或举出合适的反例,在解决这个问题上,依靠直觉观察是不可靠的;例2是教材P39的例题,它主要考查的是相似多边形的特征,运用相似多边形的对应角相等,对应边的比相等即可求解;例3是相似多边形特征的灵活运用(使用方程思想)的题目,在教学中还可根据自己的学生学习的程度,适当增加一些题目用以巩固相似多边形的性质(四、课堂引入1( 如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形(2( 问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等(3(【结论】:(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等(反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似((2)相似比:相似多边形对应边的比称为相似比(问题:相似比为1时,相似的两个图形有什么关系,结论:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形(五、例题讲解例1(补充)(选择题)下列说法正确的是( )A(所有的平行四边形都相似 B(所有的矩形都相似C(所有的菱形都相似 D(所有的正方形都相似分析:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D说法正确,因此此题应选D(例2(教材P39例题)(分析:求相似多边形中的某些角的度数和某些线段的长,可根据相似多边形的对应角相等,对应边的比相等来解题,关键是找准对应角与对应边,从而列出正确的比例式( 解:略例3(补充)已知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长(分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题( 解:? 四边形ABCD与四边形A1B1C1D1相似,? AB:BC:CD:DA= A1B1:B1C1:C1D1:D1A1(? A1B1:B1C1:C1D1:D1A1=7:8:11:14,? AB:BC:CD:DA= 7:8:11:14(设AB=7m,则BC=8m,CD=11m,DA=14m(? 四边形ABCD的周长为40,? 7m+8m+11m+14m=40(? m=1(? AB=7,则BC=8,CD=11,DA=14(六、课堂练习1(教材P40练习2、3(2(教材P41习题4(3((选择题)?ABC与?DEF相似,且相似比是A(2,则?DEF 与?ABC与的相似比是()( 32324 B( C( D( 32594((选择题)下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形(A(3个 B(4个 C(5个 D(6个5(已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少,篇二:人教版九年级数学相似教案相似形图形的相似教学目标通过一些相似的实例,让生观察相似图形的特点,感受形状相同的意义,理解相似图形的概念(能通过观察识别出相似的图形(能根据直觉在格点图中画出已知图形的相似图形(在获得知识的过程中培养学习的自信心(教学重点引导学生通过观察识别相似的图形,培养学生的观察分析及归纳能力(教学难点理解相似图形的概念(教学过程一、观察课本第42页图24.1.1、图24.1.2,每组图形中的两图之间有什么关系,二、归纳:每组图形中的两个图形形状相同,大小不同(具有相同形状的图形叫相似图形(师可结合实例说明:?相似图形强调图形形状相同,与它们的位置、颜色、大小无关(?相似图形不仅仅指平面图形,也包括立体图形相似的情况(?我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的(?若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形(三、你还见过哪些相似的图形,请举出一些例子与同学们交流(四、观察课本第43页图24.1.3中的三组图形,它们是否相似形,为什么,五、想一想:放大镜下的图形与原来的图形相似吗,放大镜下的角与原来图形中的角是什么关系,可让学生动手实验,然后讨论得出结论(六、观察课本第43页图24.1.4中的三组图形,它们是否相似形,为什么,让学生通过比较图24.1.3与图24.1.4,体会相似图形与不相似图形的“形状”特点(七、课本第43页“试一试”(让生各自独立完成作图,再展示评析(八、巩固:?课本第43页练习(?课本第44页习题24.1(对于第2题,学生的判断是对相似图形的一种直观认识,最好让学生充分交流彼此的看法(九、小结:你通过这节课的学习,有哪些收获,十、作业:略(相似三角形教学目标:使学生掌握相似三角形的判定与性质教学重点:相似三角形的判定与性质教学过程:一知识要点:1、相似形、成比例线段、黄金分割相似形:形状相同、大小不一定相同的图形。

华师大版-数学-九年级上册-23.2 相似图形 教案

华师大版-数学-九年级上册-23.2 相似图形 教案

23.2 相似图形教学目标:1.知道相似图形的两个特征:对应边成比例,对应角相等.2.识别两个多边形是否相似的方法.教学过程:一、复习1.若线段a=6cm,b=4cm,c=3.6cm,d=2.4cm,那么线段A.b,C.d会成比例吗?【答案】会.2.两张相似的地图中的对应线段有什么关系?【答案】都成比例.二、新课相似的两张地图中的对应线段都会成比例,对于一般的相似多边形,这个结论是否成立呢?同学们动手量一量,算一算,用刻度尺和量角器量一量两个相似四边形的边长,量一量它们的内角,由一位同学把量得的结果写在黑板上,其他同学把量得的结果与同伴交流.同学们会发现有什么关系呢?经过观察、计算得出这两个相似四边形的对应边会成比例,对应角会相等,再观察课本中两个相似的五边形,是否也具有一样的结果?反映它们的边之间、角之间的关系是什么关系?同学用格点图画相似的两个三角形,也观察、度量,它们是否也具有这种关?对应边成比例,对应角相等.由此可以得到两个相似多边形的特征:(由同学回答,教师板书)对应边成比例,对应角相等.实际上这两个特征,也是我们识别两个多边形是否相似的方法.即如果两个多边形的对应边都成比例,对应角都分别相等,那么这两个多边形相似.识别两个多边形是否相似的标准有:(边数相同),对应边要(成比例),对应角要(都相等).想一想:(1)两个三角形一定是相似形吗?两个等腰三角形呢?两个等边三角形呢?两个等腰直角三角形呢?(2)所有的菱形都相似吗?所有矩形呢?正方形呢?例1:矩形ABCD与矩形A′B′C′D′中,AB=1.5cm,BC=4.5cm,A′B′=0. 8cm,B′C′=2.4cm,这两个矩形相似吗?为什么?【答案】这两个矩形相似例2:三、练习矩形ABCD与矩形A′B′C′D′中,已知AB=16cm,AD=10cm,A′D′=6cm,矩形A′B′C′D′的面积为57cm2,这两个矩形相似吗?为什么?【答案】这两个矩形不相似四、小结1.两个多边形是否相似的两个标准是什么?2.相似多边形具有什么特征?。

相似图形教学设计

相似图形教学设计

相似图形教学设计教学目标:1、知识目标:①理解相似形的概念。

②理解相似三角形的概念及相关性质。

③理解相似多边形的概念。

④会判断简单几何图形是否相似。

2、情感目标:①利用欣赏溪口的红军树及天宫二号的图片激发学生的爱国热情。

②教学过程中,注重调动学生的学习兴趣和积极性,激发学生学好数学的信心,体验获取知识的成功感。

③培养学生的团队合作意识,以及独立完成学习任务的能力。

3、能力目标:①在学习过程中注意培养学生的观察能力,归纳能力,自我动手能力。

②注意学生知识的迁移与运用能力的培养。

教学重点:1、相似图形、相似三角形及相似多边形三个概念的理解。

2、相似三角形的性质及运用。

教学难点:1、突破几种特殊三角形相似的判断。

2、相似形的相关知识的应用。

教学方法:1、合作交流。

2、讲练结合。

教学准备:学生:直尺教师:若干对相似三角形的卡片。

教学过程:一、创设情境:1、欣赏六幅图片(相似图形)①溪口镇的红军树。

②天宫2号。

③④三幅卡通画⑤⑥两组几何图形(矩形、圆)。

2、学生说出所看到的图形的相同点和不同点。

相同点:形状相同。

不同点:大小不一定相同。

二、探索新知:1、三个知识点:①相似图形的定义。

②全等形(特殊的相似)。

③相似形的传递性。

2、学生辨别三组几何图形是否是相似的图形(学生口答)。

3、提出学习的新目标:相似三角形学生动手测量、计算、验证、相似三角形的性质:相似三角形的对应角相等,对应边成比例。

4、相似三角形的概念、记法、读法及相似比。

5、相似多边形①相似多边形的概念。

②相似多边形的性质。

三、尝试运用:1、小组讨论:①全等三角形一定相似吗?②两个直角三角形?两个等腰直角三角形?③两个等腰三角形?两个等边三角形?2、结论:①两个全等三角形一定相似。

②两个等腰直角三角形一定相似。

③两个等边三角形一定相似。

④两个直角三角形和两个等腰三角形不一定相似。

3、解答以下问题:①相似比为k =1的两个三角形有什么关系?②已知△ABC ∽△DEF ,有什么结论?③下图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形。

初中数学_相似三角形复习教学设计学情分析教材分析课后反思

初中数学_相似三角形复习教学设计学情分析教材分析课后反思

九年级下学期中考复习《相似三角形复习》教学设计相似三角形复习课教学设计一、课标解读课标要求:1.了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似.了解相似三角形判定定理的证明.2.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.3.会利用图形的相似解决一些简单实际问题.数学学习是经历数学活动的过程,学生的数学学习活动是生动活泼的、主动的、富有个性的,动手实践、自主探索、合作交流是主要的学习方式.教师的主要任务是激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助学生成为学习的主人.二、教材分析(一)地位与作用《相似三角形》是继图形的全等之后对图形形状内容的研究,是对图形全等知识的进一步拓广,是从特殊到一般的发展.《相似三角形》又是学习锐角三角函数、投影与视图,圆的知识的基础,例如锐角三角函数的定义、圆的有些性质的证明,都与相似三角形有密切联系.另外,在物理学、工程设计、测量、绘图等许多方面,都要用到相似三角形的知识.相似三角形有关知识的考查在中考中占有重要地位.因此学好相似三角形既是进一步学习的需要,也是工作实践的需要.本节课是九年级下学期中考复习课,学生已经在初三时学过相似三角形的有关知识,回顾相似三角形的定义、判定和性质,不仅可以帮助学生系统地构建知识体系,而且也可以进一步明确它们之间的联系与区别. 更重要的是为后面综合运用相似三角形,全等三角形等知识解决问题做好铺垫.学生在综合运用所学知识解决问题的过程中感悟分类,特殊到一般等数学思想方法,归纳总结解题的基本构图,基本方法,积累活动经验,提高应用数学的意识和合作交流的能力.(二)教学目标1.回顾相似三角形的定义、判定和性质,进一步明确它们之间的联系与区别.2.在综合运用相似三角形的判定定理及性质定理解决问题的过程中,感悟分类,特殊到一般等数学思想方法,归纳总结解题的基本构图,基本方法,积累活动经验.(三)教学重点、难点教学重点:熟悉相似三角形的基本构图.综合运用相似三角形的判定定理及性质定理解决问题.教学难点:灵活运用相似三角形、全等三角形、圆等知识解决问题.三、学情分析本节课是一节中考复习课,学生已经在初三时学过相似三角形的有关知识,虽然初步具有用几何语言对命题进行推理证明的能力,但是对于综合运用相似三角形,全等三角形等知识解决问题的能力有待提高.因此本节课通过关注相似图形的变式,帮助学生自主构建知识网络,将相似三角形的定义,判定,性质,应用等知识形成知识网络,还应与全等形等知识联网.另外,注重相似三角形与全等三角形,圆等知识的综合运用,渗透分类,特殊到一般等数学思想方法,引导学生归纳总结解题的基本方法,积累活动经验.教法设计:兴趣引导、启发思考、小组合作探究的教学方法.学法指导:突出学生的“探索发现”和“合作探究”,在教学过程中立足于让学生自己去观察、去发现、去创造.学生通过观察、猜想、验证、归纳等数学活动,丰富数学活动经验,培养勇于探索、大胆创新的精神.四、评价设计通过基础演练,即时检测达成目标1,通过综合运用达成目标2.五、学习过程:(一)基础演练【教师活动】出示问题1.如图,(1)已知∠A =∠D ,要使△ABC∽△DEF ,还需添加一个条件,你添加的条件是(2)已知AB BC k DE EF ==,要使△ABC ∽△DEF ,还需添加一个条件,你添加的条件是2.如图,已知△ABC ∽△DEF ,(1)你能得到哪些结论?(2)若AM ,DN 分别是BC ,EF 边上的中线,AB =6,AM =4,DE =5, DN =3.已知两个相似三角形的面积比等于4:9,则它们的周长比是【学生活动】独立思考并完成问题.【设计意图】以有代表性的习题为载体,引导学生在问题解决中查缺补漏,形成知识链,建构知识体系,使学生对所学知识进行整体把握.并且从理性上明晰:数学图形的研究通常是从定义、性质、判定、应用几个大方面着手,不但弄清了知识脉络,而且积累了数学研究的方法和经验,真正提高了学生的数学能力和数学素养.【问题应对】学生已经在初三时学过相似三角形的定义,性质,判定,但对于它们的联系和区别有些模糊,通过追问:还可以怎样做?你的依据是什么? 帮助学生形成完整的知识链.(二)即时检测【教师活动一】出示问题1. 如图,在△ABC 中,AB =9,AC =6,点D 在AB上,且AD =4,点E 在AC 上,连接DE ,使△ADE 与△ABC 相似,则AE = .2.如图,在△ABC 中,点D 在AB 上,下列条件能使△ACD 和△ABC 相似的有①∠ACD =∠B ②∠ADC =∠ACB③AC 2=AD •AB ④ 3. △ABC 中,若∠ACB =90°,于D ,(1)写出图中与∆ABC 相似的三角形 .(2)若AD =9,BD =4,则CD = .【学生活动】独立思考并完成问题.【设计意图】通过设置问题,既检测学生运用相似三角形的性质定理和判定定理解决问题,又帮助学生把有关相似的基本图形、基本策略、基本经验进行了简明扼要的整理,有效提高了课堂效率,促进了目标达成.【问题应对】第1题学生可能只想到平行相似一种情况,可以追问学生:还有不同的答案吗?若还有学生存在困难,可让学生分析“△ADE 与△ABC 相似”和“△ABC ∽△DEF ”两种表示三角形相似的方法有何不同?帮助学生得出正确答案.问题2中的④学生可能选错,通过问题让学生明确要证两三角形相似,已经具备了公共角相等,如AC CD AB BC =CD AB ⊥果添加两组边成比例的条件,要注意公共角必须成为夹角.第3题在学生回答准确的情况下再提出:图中还有哪些比例中项的数学式子?帮助学生熟悉常用的几种式子,公共边的平方等于共线边的乘积.【教师活动二】相似中的基本构图有哪些联系?插入微视频.【设计意图】微视频的加入,不但提高了学生的听课效果,而且更完整清晰地再现了各个基本图形及之间的联系.三、综合运用【教师活动一】出示问题1.已知点B ,E ,C 在同一条直线上,∠B =∠AED =∠C =90°,AE =ED ,AB =6,BC =8,求CD .变式训练一上题中,若AE 与ED 不相等,BE =3,其它条件不变,求CD .变式训练二等边∆ABC 的边长为3,点P 为AB 上一点,AP =1,点E 为CB 上一点,∠CPE =60°,求BE 长.【学生活动】独立思考,完成问题.【教师活动一】反思:通过上面的问题,有什么想法?一条直线上只要有三个等角,就能得到两个三角形相似.如何验证你的发现?我们把这种基本构图称为一线三等角,由一线三等角可以得到两三角形相似,从而求出线段的长度.变式训练三Array在∆ABC中,AB=6,AC=BC=5,点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠CPE=∠A,设点P的运动时间为t秒,当以点C为圆心,CE为半径的圆与AB相切时,求t的值.【学生活动】独立思考,小组合作,展示交流,完成问题.【设计意图】设计习题组,让学生亲身经历发现问题、分析问题、解决问题的过程,提炼解决这类问题常用的基本思路,基本构图.通过变式训练,使学生多角度、多层次,灵活的运用所学知识解决问题,让学生体会变化中的不变,弄清条件改变,但解题的思路不变.这也是解决一题多变问题常用的方法.这一环节的题目设计由易到难,循序渐进,最终是为了促进目标2的达成.【问题应对】题目设计由易到难,学生可能没有意识到题目之间的联系,解决后面的问题有困难,可以适时追问,例如:全等和相似有什么联系?这道题和上一道题有什么联系?通过问题引导学生在变式训练中体会变与不变,“优化”解题策略,挖掘知识背后的思想、方法、规律.【教师活动二】出示问题2.链接中考(2015威海中考)(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.【学生活动】独立思考,小组合作,展示交流,完成问题.【设计意图】链接中考题目,拉近了教学与中考的距离,让学生明确相似三角形的有关知识在中考中的常见命题思路,该题第一步考查全等,第二步考查相似.学生在综合运用所学知识解决问题的过程中,进一步体会两道题的条件改变,但解题思路不变.【问题应对】解决这样的综合题学生可能有困难,可以在学生独立思考的基础上进行小组合作,展示交流.四、盘点收获【教师活动】回顾本节课的学习,你有哪些新的收获?说说你的体会.【学生活动】小组内畅谈收获【设计意图】通过这个环节的设计让学生及时盘点所学知识,所积累的经验和方法,便于今后更好的学习.【问题应对】学生在总结时如果有遗漏,要及时补充.五、达标检测【教师活动】1. 如图,已知AB∥EF∥CD,AC、BD相交于点E,AB=6cm,CD=12cm,求EF.F F EDCBA2. (选作)如图,路灯距地面8m ,身高1.6m 的小明从距离路灯的底部O 点20m 的点A 处,沿AO 所在直线行走14m 到达B 点时,影长如何变化?【学生活动】独立完成检测 【设计意图】通过这个环节的设计及时反馈本节课学生的学习情况,便于今后更好的改进教学.第二题供学有余力的学生选作,体现了分层教学.《相似三角形复习》学情分析本节课是一节中考复习课,学生已经在初三时学过相似三角形的有关知识,虽然初步具有用几何语言对命题进行推理证明的能力,但是对于综合运用相似三角形,全等三角形等知识解决问题的能力有待提高.因此本节课通过关注相似图形的变式,帮助学生自主构建知识网络,将相似三角形的定义,判定,性质,应用等知识形成知识网络,还应与全等形等知识联网.另外,注重相似三角形与全等三角形,圆等知识的综合运用,渗透分类,特殊到一般等数学思想方法,引导学生归纳总结解题的基本方法,积累活动经验.教法设计:兴趣引导、启发思考、小组合作探究的教学方法. 学法指导:突出学生的“探索发现”和“合作探究”,在教学过程中立足于让学生自己去观察、去发现、去创造.学生通过观察、猜想、验证、归纳等数学活动,丰富数学活动经验,培养勇于探索、大MN O B A胆创新的精神.《相似三角形复习》效果分析知识体系,使学生对所学知识进行整体把握。

初中几何相似图形教案

初中几何相似图形教案

初中几何相似图形教案教学目标:1. 理解相似图形的概念,能够识别和判断相似图形。

2. 掌握相似图形的性质和判定方法。

3. 能够运用相似图形解决实际问题。

教学重点:1. 相似图形的概念和性质。

2. 相似图形的判定方法。

教学难点:1. 理解和运用相似图形的性质。

2. 灵活运用相似图形解决实际问题。

教学准备:1. 教学课件或黑板。

2. 相关图形资料和练习题。

教学过程:一、导入(5分钟)1. 引导学生观察一些生活中的实例,如大小不同的衣服、鞋子等,让学生注意到这些物品虽然大小不同,但是形状相同。

2. 提问学生:你们能想到一些类似的实例吗?这些实例有什么共同的特点?二、新课讲解(15分钟)1. 引入相似图形的概念:如果两个图形的形状相同,但是大小不同,那么这两个图形叫做相似图形。

2. 讲解相似图形的性质:a. 相似图形的对应边成比例。

b. 相似图形的对应角相等。

3. 讲解相似图形的判定方法:a. 如果两个图形的对应边成比例,对应角相等,那么这两个图形相似。

b. 如果两个三角形的三组对应边成比例,那么这两个三角形相似。

三、练习与讨论(15分钟)1. 让学生分组进行练习,找出一些相似图形,并验证它们的相似性。

2. 邀请几组学生分享他们的练习结果,并解释他们是怎样判断相似图形的。

四、应用与拓展(15分钟)1. 给出一些实际问题,让学生运用相似图形来解决。

例如,一个矩形的长是10cm,宽是5cm,问如果将这个矩形扩大2倍,它的面积会增加多少?2. 让学生思考相似图形在实际生活中的应用,如设计、建筑等领域。

五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结相似图形的概念和性质。

2. 提问学生:你们认为相似图形在数学和生活中有什么重要性?教学评价:1. 课后作业:布置一些有关相似图形的练习题,让学生巩固所学知识。

2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习效果。

以上是一篇关于初中几何相似图形的教案,希望能够帮助到您。

《相似形》复习课教案

《相似形》复习课教案

相似形复习课教案教学目标1.掌握相似形的定义及相关概念。

2.理解并能运用相似形的性质解决实际问题。

3.能够判断两个图形是否相似,并对不同的判断情况进行分析。

教学内容1.相似形的定义。

2.相似形的性质。

3.相似形的判定方法。

教学重难点1.相似形的判定方法。

2.能够将相似形的性质运用到实际问题中。

教学过程复习1.复习前几节课所学内容,包括平移、旋转、翻转等。

2.回顾相似形的定义和性质。

引入1.引导学生观察两个图形,发现它们之间的相似性。

2.提出问题:如何判断两个图形是否相似?讲解1.定义相似形:如果两个图形之间的对应角度相等,对应边成比例,那么这两个图形就是相似形。

2.讲解相似形的性质:–对应角度相等。

–对应边成比例。

–相似形的比值等于对应边的比值。

–相似形的面积比等于对应边长度的平方。

3.讲解相似形的判定方法:–角-边-角相似法:如果两个角分别对应相等,且它们之间夹着一个对应边成比例的边,那么这两个图形相似。

–边-角-边相似法:如果两个边分别对应相等,且它们之间夹着一个对应角相等的角,那么这两个图形相似。

实践1.给出实际问题,如已知一条杆子的长度和另一条杆子与它的夹角,求另一条杆子的长度。

2.让学生自己判断使用哪种相似形的性质解决问题,并进行计算。

总结1.总结相似形的定义,性质,以及两种相似形的判定方法。

2.强调相似形在生活和工作中的应用。

课后作业1.完成课堂练习。

2.按照教师要求完成作业。

数学九年级上相似三角形复习教学案

数学九年级上相似三角形复习教学案

相似三角形复习课[要点复习]要点1:相似三角形的概念、相似比的意义、画图形的放大与缩小要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大与缩小.要点2:平行线分线段成比例定理、三角形一边的平行线的有关定理要求:理解并利用平行线分线段成比例定理解决一些几何证明与几何计算.注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.要点3:相似三角形的概念要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.要点4:相似三角形的判定与性质及其应用要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)与性质,并能较好地应用.要点5:三角形的重心要求:知道重心的定义并初步应用. 【历年考点例析】考点一 比、比例及有关概念,比例的基本性质例1 ① 在比例尺是1:38000的南京交通游览图上,玄武湖隧道长约7cm ,则它的实际长度约为______Km 。

② 若 ba =32 则 bba +=__________ ③ 若b a b a -+22=59则 a :b=__________④ 已知: 2a =3b =5c 且3a+2b-c=14 ,则 a+b+c 的值为_____⑤ 某同学想利用影子的长度测量操场上旗杆的高度,在某一时刻他测得自己影子长为0.8m ,立即去测量旗杆的影子长为5m ,已知他的身高为1.6m ,则旗杆的高度为___m 。

考点二判断四条线段是否成比例例1 已知线段 a=3cm, b=4cm ,c=5cm, d=2cm.则这四条线段是否成比例?例2 一个钢筋三角架的三边长分别是20cm 、60cm 、50cm ,现要作一个与其相似的钢筋三角形。

因为只有长为30cm 与50cm 的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,问有几种截法,并指出余料最少的截法截出的三边长各为多少?提示:分三种.有一种不成立,只有一种最少. 考点三 比例中项与黄金分割例1 如图,已知线段AB ,点C 在AB 上,且有AC:AB=BC:AC ,则AC :AB 的数值为______;若AB 的长度与中央电视台的演播舞台的宽度一样长,则节目主持人应站在_________位置最好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引导、探究、归纳与练习相结合
四、教与学过程:
(一)、回顾已学知识,形成体系:
1、比例的基本性质
线段的比
成比例线段
黄金分割.
2、图形的相似
图形的性质
相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方.
3、三角形相似
两个三角形相似的条件:
4、图形的位似,能够利用位似将一个图形放大或缩小.
5、利用相似测量旗杆的高度).
A.①③B.②③C.①②D.①④
2、要做甲、乙两种形状相同(相似)的三角形框架,已知三角形框架甲的三边长分别为50cm、60cm、80cm三角形框架乙的一边长为20cm,那么符合条件的三角形框架乙共有()
A.1种B.2种C.3种D.4种
3、分别根据下列Biblioteka 知条件,写出各组相似三角形的对应边的比例式:
(1)如图①,△ADE∽△ABC(DE∥BC),则==;
(2)如图②,△OAB∽△OCD(DC∥AB),则==;
(3)如图③,△ABC∽△ACD,则==;
4、如图,两个矩形是否相似?为什么?
5、AD为ΔABC的中线,E为AD的中点,若∠DAC=∠B,CD=CE。试说明ΔACE∽ΔBAD
6、如图,左边格点图中有一个四边形,请在右边的格点图中画出一
个与该四边形相似的图形.
课题
相似图形的复习
课型
复习课
个性化
修改
一、教与学目标:
(1)了解比例的基本性质,了解线段的比、成比例线段,通过实例了解黄金分割.
(2)通过实例认识图形的相似,了解相似图形的性质.知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方.
(3)了解两个三角形相似的概念,掌握两个三角形相似的条件.
9.顺次连接三角形三边的中点,所成的三角形与原三角形对应边上中线的比是
10.在三角形ABC中,D、E分别是AB、AC的中点,则三角形ADE与四边形DEBC面积的比是
五、课堂小结:
1、经历“探索—发现—猜想”,通过实际问题的研究,提高分析问题、解决问题的能力,掌握简单的画图方法;
2、相似图形的特征与识别,相似三角形的有关概念及相似的表示方法和相似比的概念.
3、准确判断出相似三角形的对应边和对应角.
六、作业布置:
《复习指导》对应习题
教学反思:
(4)了解图形的位似,能够利用位似将一个图形放大或缩小.
(5)通过实例了解物体的相似,利用图形的相似解决一些实际问题(如利用相似测量旗杆的高度).
二、教与学重点难点:
学习重点:相似图形的特征与识别,相似三角形的有关概念及相似的表示方法和相似比的概念.
学习难点:准确判断出相似三角形的对应边和对应角.
三、教与学方法:
(四)、达标测评:
1.若x:y=3,则x:(x+y)=_______
2.已知CD是RtΔABC斜边AB上的高,且AC=6cm,BC=8cm,则CD=_____
3.两个相似三角形的面积比为4:9,那么它们周长的比为_____
4.一个三角形的各边之比为2:5:6,和它相似的另一个三角形的最大边为24,它的最小边为_____
(二)、典例精析:
例1、如图,⊿ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F.
(1)试说明⊿ABD≌⊿BCE.
(2)⊿AEF与⊿ABE相似吗?说说你的理由.
(3)BD2=AD·DF吗?请说明理由.(18分)
(三)、巩固训练,拓展提升认识:
1、下列各种图形相似的是()
5.在比例尺为1∶20的图纸上画出的某个零件的长是32mm,这个零件的实际长是_____
6.小颖测得2m高的标杆在太阳下的影长为1.2m,同时又测得一棵树的影长为3.6m,这棵树的高度_____
7.把一矩形纸片对折,假如对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为_____
8.若 ,则k=.
相关文档
最新文档