七年级数学上册312等式性质新版新人教版

合集下载

人教版七年级数学上册3.1.2等式的性质课件

人教版七年级数学上册3.1.2等式的性质课件
若这个方程为 ,情况又是怎样?
18.当x=3时,二次三项式 的值是-19,则当x= 时,这个二次三项式的值是多少?
两边同乘以 , 得
X=-27
注意①两边必须同时进行计算;②加(或减)的数必须是同一个数
的解是x = -27。对吗?
检验方程的解
检验: 把 x= -27 代入原方程的两边 左边= 右边= 因为 左边=右边 所以x= -27 原方程的解
解:整理方程得: (3a-5)x=2a+3b ∵此方程有无数个解 ∴3a-5=0,2a+3b=0 ∴a= ,b=
17.若方程 是一元一次方程,求m的值.
解:当m+3=0或m+3=1的时候方程为一元一次方程 即m的值为-3或-2
综合检测
B.C. D.
2. 运用等式性质进行的变形,正确的是( )
如果 , 那么 B.如果 , 那么 C.如果 , 那么 D.如果 , 那么
根据等式性质2,在等式两边同除(-0.2)
6÷(-0.2)
例1:解方程 x+7=26
x=?
两边同时减去7
分析:
用等式的性质解方程
解方程是把方程化为X=a的形式
明确:
解方程: x+7=26
解:两边都减7,得 x+7-7=26- 7
x=19
解:整理方程得: (2a-3)x=a-2 ∵此方程无解 ∴2a-3=0,a-2≠0 ∴a=
16.已知关于x的方程2a(x-1)=(5-a)x+3b有无数个解,试求a、b的值.
分析:利用等式性质将关于x的方程整理成形如ax=b的形式,由于有无数个解,则a=0,b=0.
分析:设十位上的数字为x,则个位上的数字为8-x这个两位数可写为:10x+(8-x)=9x+8,据题意可列方程:9x+8=11[x-(8-x)]+5解此方程得:x=7,8-x=1故这个两位数为71.

新人教版七年级数学上册 3.1.2 《等式的性质》教学设计

新人教版七年级数学上册 3.1.2 《等式的性质》教学设计

新人教版七年级数学上册 3.1.2 《等式的性质》教学设计一. 教材分析新人教版七年级数学上册3.1.2《等式的性质》一节,主要让学生掌握等式的性质,包括等式的两边同时加减同一个数、等式的两边同时乘除同一个数(0除外)等性质。

这些性质是解决方程和方程组的基础,对于学生后续学习具有重要意义。

二. 学情分析学生在进入七年级之前,已经学习了整数、分数和小数等基础知识,对于数学符号和运算规则有一定的了解。

但对于等式的性质,他们可能还比较陌生,需要通过实例和操作来加深理解。

三. 教学目标1.让学生理解等式的性质,并能够运用性质进行简单的方程求解。

2.培养学生的逻辑思维能力和解决问题的能力。

3.激发学生对数学的兴趣,提高他们的学习积极性。

四. 教学重难点1.教学重点:等式的性质及运用。

2.教学难点:等式性质的推导和灵活运用。

五. 教学方法1.采用问题驱动法,引导学生探索等式的性质。

2.运用实例分析和操作,让学生直观地感受等式性质的应用。

3.采用小组讨论和合作交流的方式,培养学生的团队协作能力。

4.利用多媒体课件,增加课堂的趣味性和互动性。

六. 教学准备1.多媒体课件。

2.教学素材和实例。

3.练习题和测试题。

4.粉笔和黑板。

七. 教学过程1.导入(5分钟)利用多媒体课件展示一些生活中的等式,如“5 + 3 = 8”、“5 km/h = 3.1 m/s”等,引导学生关注等式,并提问:“你们认为等式有哪些性质?”2.呈现(10分钟)展示教材中关于等式性质的定义和例子,引导学生了解等式的两边同时加减同一个数、等式的两边同时乘除同一个数(0除外)等性质。

同时,让学生尝试解释这些性质的含义和应用。

3.操练(10分钟)针对等式的性质,设计一些练习题,让学生独立完成。

题目包括:a.判断题:判断等式的两边同时加减同一个数,等式是否成立。

b.选择题:选择正确的等式性质,使等式成立。

c.填空题:根据等式性质,填空使等式成立。

4.巩固(10分钟)以小组为单位,让学生运用等式的性质,解决实际问题。

人教版七年级数学上3.1.2等式的性质1教案教学设计教学案课时作业同步练习含答案解析

人教版七年级数学上3.1.2等式的性质1教案教学设计教学案课时作业同步练习含答案解析

3.1一元一次方程【目标导航】1.能说出等式的意义,并能举出例子;2.能说出等式的两条性质,并能用它们将等式变形.【预习引领】1.我们已熟悉下面这样的式子,其中是等式有:1+2 = 3,a+b = b+a,S = ab,4+x = 5,x+y = 0,mn = 1【要点梳理】1.等式的概念(1)定义;像这种用等号表示相等关系的式子,叫做等式.(2)例题讲解:例1下列式子中,哪些是等式?哪些是代数式?(1)3x+4,(2)5x-3 = 0,(3)3x+2x = 5x,(4)3+2 = 5,(5)7a-3a-1;(6)a+b > 1.〖说明〗代数式与等式的区别是:等式含有等号,代数式不含等号;等式表示代数式之间有相等关系,代数式不表示大小关系.〖及时巩固〗课本P.183 练习.2.等式的性质:(1)通过天平的实例引入;(2)等式的性质:等式性质1 等式的两边都加上(或减去),所得结果仍是等式.等式性质2 等式的两边都乘(或除以),所得结果仍是等式.〖强调〗运用性质1时,一定要注意等式的两边都加上(或减去)同一个数或同一个整式,才能保证所得结果仍是等式,这里特别要注意“都”和“同一个”.运用性质2时,一定要注意等式的两边都乘以(或除以)同一个数,才能保证所得结果仍是等式,还必须注意,等式两边不能都除以0,因为0不能作为除数.【应用举例】例2用适当的数或整式填空,使所得结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形(改变式子的形状)的:①如果2x = 5-3x,那么2x+= 5;②如果0.2x = 10,那么x = ;③如果5x-7 = 8,那么5x = 8 +;④如果5x = 15,那么x = .〖说明〗解这一类题目的关键是将变形后的等式某一边与原等式的同一边进行比较,找出它们的区别,然后再根据等式性质在另一边作相应的变形.例3 如果ac = ab,那么下列等式中不一定成立的是()A ac-1 = ab-1B ac+a = ab+aC -3ac = -3abD c = b例4利用等式的性质解下列方程:(1)x+7=26;(2)-5x=20;(3)-13x-5=4.(4)-13x-5=4x+21〖及时巩固〗课本P 84 练习例5下列方程的解法对不对?如果不对,错在哪里?应当怎样改正?(1)解方程:x+12=34解:x+12=34=x+12-12=34-12=x=22(2)解方程-9x+3=6解:-9x+3-3=6-3于是-9x=3所以x=-3(3)解方程23x-1=13解:两边同乘以3,得2x-1=-1两边都加上1,得2x-1+1=-1+1化简,得2x=0两边同除以2,得x=0例6回答下列问题:(1)从a+b=b+c,能否得到a=c,为什么?(2)从ab=bc能否得到a=c,为什么?(3)从ab=cb,能否得到a=c,为什么?(4)从a-b=c-b,能否得到a=c,为什么?(5)从xy=1,能否得到x=1y,为什么?【课堂操练】一、填空题.1.在等式2x -1=4,两边同时________得2x =5.2.在等式x -23=y -23,两边都_______得 x =y .3.在等式-5x =5y ,两边都_______得x =-y .4.在等式-13x =4的两边都______,得x =______. 5.如果2x -5=6,那么2x =________, x =______,其根据是 ___.6.如果-14x =-2y ,那么x =________,根据____ . 7.在等式34x=-20的两边都______或______得x=________. 8.已知等式:-7x -1=3x -9,先根据____ ,把等式两边都________,可以使等式的左边不含常数项,右边不含未知数项即______,再根据___ ___把等式的两边都______,就可得x =______.二、判断题.(对的打“∨”,错的打“×”)9.由m -1=4,得m =5. ( )10.由x +1=3,得x =4. ( )11.由3x =3,得x =1. ( ) 12.由2x =0,得x =2 ( ) 13. 在等式2x =3中两边都减去2,得x =1.( )14.下列方程的解是x =2的有( ).A .3x -1=2x +1B .3x +1=2x -1C .3x +2x -2=0D .3x -2x +2=015.下列各组方程中,解相同的是( ).A .x =3与2x =3B .x =3与2x +6=0C .x =3与2x -6=0D .x =3与2x =5三、用等式的性质未知数.16.(1)x +2=5; (2)3=x -3;【课后盘点】四、用等式的性质未知数(3)x -9=8; (4)5-y =-16;(5)-3x =15; (6)-3y -2=10;(7)3x +4=-13; (8)23x -1=5.(9)3-2x =9+x (10)5x -1=2x +3五、检验下列各小题括号里的数哪个是它前面方程的解.17.(2x -1)(x +3)=0(x =12,x =1,x =-3). 18.x 2+2x -3=0(x =1,x =-1,x =-3).19. 利用等式的性质解下列方程并检验. ⑴12142x x -=-⑵12223x x =+20.下列判断错误的是( ).A.若33,-=-=bc ac b a 则B.若1122+=+=c b c a b a 则C.若x x x 2,22==则D.若b a bx ax ==则, 21.下列等式变形不正确的是( )A 、由等式6x =5x +1得到等式x =1B 、由等式7x=2得到等式x =14C 、由等式3232b a =得到等式a =b D 、由等式a =2.5得到等式2a =522.由等式0.2y =6,得y =30,这是由于( )A 、等式两边都加上0.2B 、等式两边都减去0.2C 、等式两边都乘以0.2D 、等式两边都除以0.223.下列几种说法中,正确的是( )A 、若ac =bc ,则a =bB 、若a 2=b 2,则a =bC 、若c b c a =,则a=b D 、631=-x ,则x =-2 24.由等式a =b ,能不能得到x b x a =,为什么?25.关于x 的方程 3x – 10 = mx 的解为2,那么你知道m 的值是多少吗,为什么?26.已知b a a b 23123-=--,利用等式的性质,试比较a 与b 的大小.27.现有9只外表完全相同的小球,其中有一只不合格,且知它的重量较轻,请你用一天平检测,试说明至少用几次就一定能测出这只不合格小球?(设计人:黄本华)No.参考答案:课题:《一元一次方程》【要点梳理】例1答案:(2)(3)(4)例2答案:① 3x ② 50 ③ 7 ④ 3例3答案:D例4答案:(1)解:x=26-7x=19(2)解:x=-4(3)解:x=-27(4)解:x=-6例5答案:(1)不对正解: x+12=34x+12-12=34-12x=22(2)不对正解:-9x+3=6-9x+3-3=6-3-9x=3x=-31(3)不对正解:23x-1=13两边同乘以3,得2x-3=-1两边都加上1,得 2x-3+3=-1+3化简,得 2x=2两边同除以2,得x=1例6答案:(1)对。

人教版数学七年级上册3.1.2《等式的性质》教案

人教版数学七年级上册3.1.2《等式的性质》教案

人教版数学七年级上册3.1.2《等式的性质》教案一. 教材分析《等式的性质》是人教版数学七年级上册第三章第一节的内容,主要介绍了等式的性质,包括等式的两边同时加减同一个数、乘除同一个数不改变等式的成立性。

这一节内容是学生学习方程和不等式的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

二. 学情分析学生在学习这一节内容前,已经掌握了整数、有理数的基本运算和概念,具备一定的逻辑思维能力。

但部分学生对于抽象的等式性质的理解可能存在困难,需要通过具体的例子和操作来加深理解。

三. 教学目标1.理解等式的性质,包括等式两边同时加减同一个数、乘除同一个数不改变等式的成立性。

2.能够运用等式的性质解决简单的问题。

3.培养学生的逻辑思维和解决问题的能力。

四. 教学重难点1.重点:等式的性质的理解和运用。

2.难点:对等式性质的深入理解和运用。

五. 教学方法采用问题驱动法、案例教学法和小组合作法,通过具体例子和操作,引导学生发现和总结等式的性质,并通过练习巩固所学知识。

六. 教学准备1.教学PPT。

2.练习题。

七. 教学过程1.导入(5分钟)通过一个具体的例子,引导学生思考等式的性质,激发学生的学习兴趣。

例子:有一辆汽车从A地出发,以每小时60公里的速度行驶,行驶了3小时后到达B地,问汽车行驶的路程是多少?2.呈现(10分钟)通过PPT呈现等式的性质,引导学生观察和发现等式的性质。

性质1:等式的两边同时加减同一个数,等式仍然成立。

性质2:等式的两边同时乘除同一个数(不为0),等式仍然成立。

3.操练(10分钟)让学生分组进行练习,运用等式的性质解决问题。

练习1:判断等式的正确性。

练习2:运用等式的性质,求解未知数。

4.巩固(10分钟)让学生独立完成练习题,巩固对等式性质的理解。

1.判断等式的正确性。

2.运用等式的性质,求解未知数。

3.拓展(10分钟)引导学生思考等式性质在实际问题中的应用,提高学生解决问题的能力。

人教版七年级数学上册3.1.2等式的性质(教案)

人教版七年级数学上册3.1.2等式的性质(教案)
五、教学反思
今天我们在课堂上一起探讨了等式的性质,这节课让我感受到了同学们的积极性和好奇心。大家在导入环节对于天平平衡的例子很感兴趣,这为后续的学习奠定了良好的基础。我发现,通过生活中的实际情境引入数学概念,确实能够激发学生的学习兴趣。
在讲授新课的过程中,我注意到有的同学对于等式的性质一和性质二的理解还存在一些困难。尤其是在案例分析环节,对于如何正确运用等式性质解题,部分同学还显得有些迷茫。我通过反复举例和引导,帮助他们逐步掌握了这些性质的应用。这也提醒了我,在今后的教学中,对于重点难点内容,需要更加耐心地讲解,让学生有更多的机会去实践和操作。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作可能是使用计数器或其他教具来演示等式的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“等式的性质在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-通过实例,让学生感受等式性质的数学意义,并将其应用于实际问题中。
举例:重点讲解等式2x + 3 = 7的求解过程,强调等式两边同时减去3后,得到2x = 4,再同时除以2得到x = 2的过程。
2.教学难点
-难点一:理解等式性质背后的逻辑原理,为什么等式两边进行相同操作后仍然成立。
-难点二:在解决具体问题时,如何选择合适的等式性质来简化问题,特别是在有多重操作时。
4.培养学生合作交流能力:通过小组讨论、互动交流,培养学生与他人合作解决问题的能力,增强团队协作意识。
三、教学难点与重点
1.教学重点
-理解并掌握等式的性质一和性质二,即等式两边同时进行加减乘除(除数不为零)操作后,等式依然成立。

七年级数学人教版(上册)3.1.2等式的性质课

七年级数学人教版(上册)3.1.2等式的性质课

将x=-27代入方程的左边得,
1 27 5 9 5 4
3
右边也是4,所以x=-27是 得的结果仍然成立

(1)若3x+5=8,则3x=8-_____
(2)若-4x=0.5,则x=_____
(3)若2m-3n=7,则2m=7+_____
第一题比较简单,第二题较复杂,估算比较困难, 上节课方程的解都是估算出来的,但仅靠估算来解 决问题比较困难,因此我们还要讨论怎样解方程。

一 等式的基本性质
学 新 知
像m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y 这样的式子,都是等式,我们可以用a=b表示 一般的等式.
请看图,你能发现什么规律?
化简得: 1 x 9 3
两边同时乘3,得: x=-27

三 方程解的检验


我们如何验证求出的未知数的值是不是方程的解?

根据方程的概念,我们只需要把这个未知数的值代入到
原方程检验,看这个值是否能使方程的两边相等。
我们发现上面的例题(3)不像(1)(2)那么简单,那 么如何验证x=-27是方程的解呢?
(4)若x+4=6,则x+12=_____

固 练
2.下列各式变形正确的是( )

A 由x+7=1,得x=8
B 由x-7=1,得x=8
C 由3x=1,得x=3
D 由0.5x=0,得x=2


练 习
3.检验下列各数是否为方程6x+1=4x-3的解
(1)x=-1;(2)x=-2
总 结 提 升
谢谢!

人教版七年级数学上册同步备课3.1.2等式的性质(教学设计)

人教版七年级数学上册同步备课3.1.2等式的性质(教学设计)

3.1.2 等式的性质教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章“一元一次方程”3.1从算式到方程第2课时,内容包括等式的性质以及利用等式的性质解方程.2.内容解析方程是含有未知数的等式,解方程就是求出方程中未知数的值,解方程需要相应的理论基础说明解法的合理性.本章不涉及方程的同解原理,而以等式的性质作为解方程的依据.本节课通过观察、归纳引出等式的两条性质,并利用它们讨论一些比较简单的一元一次方程的解法,为后面几节进一步讨论比较复杂的一元一次方程的解法作准备.基于以上分析,可以确定本节课的教学重点为:了解等式的两条性质并能运用它们解简单的一元一次方程,初步理解其中的化归思想.二、目标和目标解析1.目标(1)了解等式的概念和等式的两条性质并能运用这两条性质解简单的一元一次方程.(2)经历等式的两条性质的探究过程,培养观察、归纳的能力.(3)在运用等式的性质解简单的一元一次方程的过程中,渗透化归的数学思想.2.目标解析(1)使学生知道等式是用等号表示相等关系的式子;理解等式两边加或减同一个数或式子,乘或除以(除数不为0)同一个数,结果仍相等的性质;能运用等式的两条性质解一些比较简单的一元一次方程.(2)使学生经历通过观察、归纳得出等式的两条性质的探究过程,体会等式的两条性质的合理性,培养学生观察、归纳的能力.(3)使学生在运用等式的两条性质解比较简单的一元一次方程,把一元一次方程转化为x=a的形式的过程中,明确一元一次方程的解的形式,渗透化归的数学思想.三、教学问题诊断分析对于等式的两条性质,借助天平从直观的角度认识,既给出了文字形式的表达,又用式子形式加以描述,这是一个抽象概括的过程,学生能体会到它们的合理性.把等式的性质与解方程结合起来,利用等式的性质研究一元一次方程的解法,这是由一般到特殊的过程,是具体操作层面的问题.怎样运用等式性质把一元一次方程化成x=a的形式,学生会存在一定的困难.基于以上分析,确定本节课的教学难点为:运用等式性质把简单的一元一次方程化成x=a的形式.四、教学过程设计(一)创设情境,复习导入问题1:回答下列问题:(1)什么是方程?(方程是含有未知数的等式)(2)指出下列式子中,哪些是方程,哪些不是,并说明理由;①3+x=5;②3x+2y=7;③2+3=3+2;④a+b=b+a(a、b已知);⑤5x+7= x–5.(3)上面的式子有哪些共同特点?(都是等式;我们可以用a = b来表示一般的等式.)问题2:用估算的方法可以求出简单的一元一次方程的解.你能用估算的方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.师生活动:教师提出问题(1),学生进行估算,寻求正确的答案.学生充分发表意见,教师评价激励.对于(2),学生适当思考后,教师引入新课:用估算的方法解比较复杂的方程是困难的.因此,我们还要讨论怎样解方程.本环节中,教师应重点关注:(1)学生能否估算出第(1)题的解;(2)学生能否意识到估算比较复杂的一元一次方程的解是比较困难的,体会到进一步学习的必要性.【设计意图】第(1)题是为了复习巩固估算比较简单的一元一次方程的方法,第(2)题是为了让学生意识到估算比较复杂的一元一次方程的解是比较困难的,从而引起学生的认知冲突,体会到进一步学习的必要性,引出新课.问题3:方程是含有未知数的等式,那什么叫做等式呢?师生活动:教师出示以下例子:m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y.学生观察以上例子,感知等式.教师指出:像以上这样的式子,都是等式.用等号表示相等关系的式子,叫做等式.通常可以用a=b表示一般的等式,并指出等式的左边和右边.教师请学生自己举出等式的例子,并指出等式的左边和右边.本环节中,教师应重点关注:(1)学生能否举出等式的实际例子;(2)学生能否理解等式的概念并分清等式的左边和右边.【设计意图】等式的概念虽然比较简单,但它是学习等式性质的基础.等式的性质要在等式的两边同时进行某种相同的运算,因此必须让学生分清等式的左边和右边.(二)实验探究学习新知问题4:探究、归纳等式的性质1(借助图1).图1师生活动:教师演示实验,提出问题:由它你能发现什么规律?学生叙述发现规律后,教师进一步引导:把一个等式看作一个天平,等号两边的式子看作天平两边的物体,则等式成立可以看作是天平两边保持平衡.追问1:等式具有与上面的事实同样的性质.你能用文字叙述等式的这个性质吗?师生活动:在学生回答的基础上,教师说明:等式两边加上或减去的可以是同一个数,也可以是同一个式子.归纳等式的性质1.追问2:等式一般可以用a=b来表示,等式的性质1怎样用式子的形式来表示呢?师生活动:师生一起归纳:如果a=b,那么a±c=b±c,并请学生用具体的数字等式验证这条性质.问题5:探究、归纳等式的性质2(借助图2).图 2师生活动:教师演示实验,提出问题:由它你能发现什么规律?师生一起归纳等式的性质2并用式子表示.学生用具体的数字等式验证这条性质.教师应提醒学生注意:(1)等式两边都要参加运算,并且是进行同一种运算;(2)等式两边加或减,乘或除以的数一定是同一个数或同一个式子;(3)等式两边不能都除以0,即0不能作除数或分母.本环节中,教师应重点关注:(1)学生能否理解由天平向等式过渡的合理性;(2)学生能否观察、探究、归纳出等式的两条性质;(3)学生能否用文字语言和符号语言来表示等式的两条性质.【设计意图】借助天平演示,探究等式的性质,可以加强对等式性质的直观理解;用文字语言和符号语言两种形式描述等式的两条性质,让学生一方面切实理解等式的性质,另一方面体会如何用数学的符号语言抽象概括地表示它们,用具体的数字等式验证等式的两条性质,是为了让学生进一步体会等式性质的合理性.(三)针对训练1. 思考回答下列问题:(1)怎样从等式 x -5= y -5 得到等式 x = y ?(2)怎样从等式 3+x =1 得到等式 x =-2?(3)怎样从等式 4x =12 得到等式 x =3?(4)怎样从等式100100a b =得到等式a =b ? 参考答案:(1)依据等式的性质1两边同时加5;(2)依据等式的性质1两边同时减3;(3)依据等式的性质2两边同时除以4或同乘14; (4)依据等式的性质2两边同时除以1100或同乘100. 2. 已知x =y ,则下列各式中,正确的有( C ). ①x -3=y -3; ②3x =3y ; ③-2x =-2y ; ④1y x =. A. 1个 B. 2个 C. 3个 D. 4个3. 已知mx =my ,下列结论错误的是 ( A )A. x =yB. a +mx =a +myC. mx -y =my -yD. amx =amy师生活动:教师出示问题,学生独立思考后同桌交流,学生展示思路,教师点拨.本环节中,教师应重点关注:(1)学生是否理解等式的两条性质;(2)学生能否利用等式的两条性质将方程变形;(3)学生是否认真思考、积极交流、勇于展示.【设计意图】使学生进一步理解并应用等式的两条性质,提高学生运用所学知识解决具体问题的能力.(四)典例分析例:利用等式的性质解下列方程:(1)x +7=26;(2)-5x =20;(3)1543x --=.解:(1)方程两边同时减去7,x +7-7= 26-7于是x =19.(2)解: 方程两边同时除以-5,-5x ÷(-5)= 20 ÷(-5)化简,得x =-4.(3)解:方程两边同时加上5,得 155453x --+=+ 化简,得193x -= 方程两边同时乘-3,得 x =-27.师生活动:师生共同完成第(1)小题,教师板书过程,后两个小题,学生独立完成,两名学生板演并展示思路,教师讲评.教师指出:解以x 为未知数的方程,就是把方程转化为x =a (常数)的形式,等式的性质是转化的重要依据.本环节中,教师应重点关注:(1)学生能否利用等式的两条性质解简单的一元一次方程;(2)学生能否进一步理解等式的两条性质;(3)学生是否进一步体会解一元一次方程就是把方程转化为x =a 的形式.【设计意图】使学生能够利用等式的两条性质解简单的一元一次方程;使学生理解等式的两条性质;使学生进一步体会解一元一次方程就是把方程转化为x =a 的形式,渗透化归的数学思想,进一步培养学生分析问题、解决问题的能力.问题6:怎样检验方程的解?师生活动:教师提出问题,学生回答.教师指出:一般地,从方程解出未知数的值以后,可以代入原方程检验,看这个值能否使方程的两边相等.学生检验x=-27是不是方程1543x--=的解.本环节中,教师应重点关注:(1)学生是否掌握检验一个数值是不是某个一元一次方程的解的方法;(2)学生能否进一步理解方程的解的概念.【设计意图】使学生掌握检验一个数值是不是某个一元一次方程的解的具体方法,并进一步理解方程的解的概念.问题7:用等式的性质对这个等式3a+b-2=7a+b-2进行变形,其过程如下:两边加2,得3a+b=7a+b.两边减b,得3a=7a.两边除以a,得3=7.请同学们检查变形过程,找出错误来.师生活动:教师出示问题,学生独立思考后四人一组交流,学生展示思路,教师点拨.本环节中,教师应重点关注:(1)学生能否进一步理解等式的两条性质;(2)学生是否注意到等式性质2中“除数不为0”的条件.【设计意图】使学生进一步理解等式的两条性质,并注意等式性质2中“除数不为0”的条件,培养学生的严谨思维,避免以后发生类似的错误.(五)当堂巩固1. 下列说法正确的是(B)A. 等式都是方程B. 方程都是等式C. 不是方程的就不是等式D. 未知数的值就是方程的解2. 下列各式变形正确的是(A)A. 由3x-1= 2x+1得3x-2x =1+1B. 由5+1= 6得5= 6+1C. 由2(x+1) = 2y+1得x +1= y +1D. 由2a + 3b = c-6 得2a = c-18b3. 下列变形,正确的是(B)A. 若ac = bc,则a = bB. 若a bc c=,则a = bC. 若a2 = b2,则a = bD. 若163x-=,则x =-24. 填空:(1)将等式x-3=5的两边都_____得到x =8 ,这是根据等式的性质_____;(2)将等式112x=-的两边都乘以___或除以___得到x =-2,这是根据等式性质_____;(3)将等式x + y =0的两边都_____得到x = -y,这是根据等式的性质_____;(4)将等式xy =1的两边都______得到1yx=,这是根据等式的性质_____.答案:(1)加3;1;(2)2;12;2;(3)减y;1;(4)除以x;2.5. 利用等式的性质解下列方程:(1)x+6= 17 ;(2)-3x = 15;(3)2x-1= -3 ;(4)1123x-+=-.解:(1)两边同时减去6,得x=11. (2)两边同时除以-3,得x=-5. (3)两边同时加上1,得2x=-2. 两边同时除以2,得x=-1.(4)两边同时加上-1,得13 3x-=-两边同时乘以-3,得x=9.师生活动:教师出示问题,学生独立完成后同桌同学互查.同时四名学生板演,学生展示思路,教师点拨.本环节中,教师应重点关注:(1)学生能否进一步理解等式的两条性质;(2)学生能否顺利地运用等式的两条性质解简单的一元一次方程;(3)学生是否进一步体会解一元一次方程就是把方程转化为x=a的形式.【设计意图】使学生能够利用等式的两条性质解简单的一元一次方程;使学生进一步理解等式的两条性质;使学生进一步体会解一元一次方程就是把方程转化为x=a的形式,渗透化归的数学思想,进一步培养学生分析问题、解决问题的能力.(六)能力提升1. 已知2a-3=2b+1,试用等式的性质判断a和b的大小.答案:a>b2. 已知关于x的方程17642mx+=和方程3x-10 =5的解相同,求m的值.解:方程3x-10 =5的解为x =5,将其代入方程17642mx+=,得到57642m+=,解得m =2.(七)感受中考1.(2022•青海)根据等式的性质,下列各式变形正确的是()A.若a bc c=,则a=b B.若ac=bc,则a=bC.若a2=b2,则a=b D.若163x-=,则x=-2【解答】解:A、若a bc c=,则a=b,故A符合题意;B、若ac=bc(c≠0),则a=b,故B不符合题意;C、若a2=b2,则a=±b,故C不符合题意;D、163x-=,则x=-18,故D不符合题意;故选:A.2.(2022•滨州)在物理学中,导体中的电流I跟导体两端的电压U、导体的电阻R之间有以下关系:UIR=,去分母得IR=U,那么其变形的依据是()A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质2【解答】解:将等式UIR=,去分母得IR=U,实质上是在等式的两边同时乘R,用到的是等式的基本性质2.故选:B.3.(4分)(2021•安徽7/23)设a,b,c为互不相等的实数,且4155b a c=+,则下列结论正确的是()A.a>b>c B.c>b>a C.a-b=4(b-c) D.a-c=5(a-b)【解答】解:∵4155b ac =+,∴5b=4a+c,在等式的两边同时减去5a,得到5(b-a)=c-a,在等式的两边同时乘-1,则5(a-b)=a-c.故选:D.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(八)课堂小结教师与学生一起回顾本章主要内容,并请学生回答以下问题:(1)等式有哪两条性质,你能举例说明吗?(2)如何根据等式的性质解简单的方程?举出一个例子,并说明每一步变形的依据.【设计意图】巩固所学知识和方法,加深对所学内容的理解,培养学生独立分析、归纳概括的能力,充分发挥学生的主体作用.(九)布置作业1. P83:习题3.1:第4题.2. P84:习题3.1:第8、9题.。

人教版七年级数学上册3.1.2《等式的性质》教学设计

人教版七年级数学上册3.1.2《等式的性质》教学设计

人教版七年级数学上册3.1.2《等式的性质》教学设计一. 教材分析《等式的性质》是人教版七年级数学上册3.1.2的内容,本节课主要让学生了解等式的性质,掌握等式两边同时加减乘除同一个数、等式两边同时乘除同一个不为0的数等操作,并能够运用这些性质解决实际问题。

教材通过具体的例子引导学生探索等式的性质,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析七年级的学生已经掌握了整数、分数和小数的运算,具备了一定的数学基础。

但他们对等式的概念和性质可能还比较陌生,需要通过具体的例子和实际操作来理解和掌握。

学生的学习兴趣和积极性较高,课堂参与度较好。

三. 教学目标1.让学生了解等式的性质,能够运用等式的性质进行简单的运算和解决问题。

2.培养学生的逻辑思维能力和解决问题的能力。

3.提高学生的数学兴趣,增强学生对数学学习的自信心。

四. 教学重难点1.掌握等式的性质,能够灵活运用等式的性质进行运算和解决问题。

2.理解等式两边同时加减乘除同一个数、等式两边同时乘除同一个不为0的数等操作的含义和应用。

五. 教学方法1.采用问题驱动的教学方法,通过具体的例子引导学生探索等式的性质。

2.运用直观演示和实际操作,让学生直观地感受等式的性质。

3.采用小组合作和讨论的方式,培养学生的团队协作能力。

4.通过练习和问题解决,巩固学生对等式性质的理解和运用。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备练习题和问题解决题。

3.准备黑板和粉笔。

七. 教学过程1.导入(5分钟)通过一个具体的例子,引导学生思考如何解决等式的问题,激发学生的学习兴趣。

2.呈现(10分钟)展示等式的性质,引导学生观察和理解等式两边同时加减乘除同一个数、等式两边同时乘除同一个不为0的数等操作的含义。

3.操练(10分钟)让学生进行实际的操作,解决一些简单的等式问题,巩固学生对等式性质的理解。

4.巩固(10分钟)通过一些练习题,让学生运用等式的性质进行计算和解决问题,巩固学生对等式性质的掌握。

3.1.2 等式的性质(人教版七年级上册数学课件)

3.1.2 等式的性质(人教版七年级上册数学课件)

一般地,从方程解出未知数的值以后,可以代
入原方程检验,看这个值能否使方程的两边相等.
例如,
将 x = -27 代入方程 1 x 5 4的左边, 3
1 (27) 5 = 9 5=4. 3
方程的左右两边相等,所以 x = -27 是原方程的解.
(1) x+6 = 17 ;
(2) -3x = 15 ;
3.1 从算式到方程
3.1.2 等式的性质
等式的性质
观察天平有什么特性?
天平两边同时加入相同质量的砝码 天平两边同时拿去相同质量的砝码
天平仍然平衡 天平仍然平衡
天平两边同时
加入 拿去
相同质量的砝码
天平仍然平衡
等式两边同时
加上 减去
相同的数
(或式子) 等式仍然成立
换言之,
等式的性质1
等式两边加 (或减) 同一个数 (或式子),结果仍相等.
如果a=b,那么a±c=b±c.
由天平看等式的性质2
你能发现什么规律?
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结 果仍相等.
如果a=b,那么ac=bc; 如果a=b(c≠0),那么 a b .
cc
c
例1 (1) 怎样从等式 x-5= y-5 得到等式 x = y ?
cc C. 若a2 = b2,则a = b D. 若 1 x 6,则x = -2
3
(B)
4. 填空
(1) 将等式x-3=5 的两边都_加__3__得到x =8 ,这是
根据等式的性质_1_;
1 (2) 将等式 1 x 1的两边都乘以_2__或除以 _2__得
2 到 x = -2,这是根据等式性质 __2_;

《 3.1.2 等式的性质》作业设计方案-初中数学人教版12七年级上册

《 3.1.2 等式的性质》作业设计方案-初中数学人教版12七年级上册

《3.1.2 等式的性质》作业设计方案(第一课时)初中数学课程《3.1.2等式的性质》作业设计方案(第一课时)一、作业目标本作业设计旨在通过实践操作和理论应用,使学生巩固和拓展《3.1.2等式的性质》知识点,加深对等式性质的理解,并能熟练运用等式性质解决实际问题。

通过作业的完成,培养学生分析问题、解决问题的能力,并提高学生的数学思维和逻辑推理能力。

二、作业内容本作业内容主要围绕等式的基本性质展开,包括:1. 复习等式的基本概念,包括等式的定义、等式两边的性质等。

2. 练习等式的基本运算,如加法、减法、乘法、除法等在等式中的应用。

3. 掌握等式性质的应用,包括等式两边同时加减、乘除同一个数或式子时,等式仍然成立的原理。

4. 通过实际问题,运用等式性质解决实际问题,如利用等式性质进行代数式的化简、解一元一次方程等。

三、作业要求1. 学生需独立完成作业,不得抄袭他人答案。

2. 作业需按照规定的格式和要求进行书写,字迹工整,计算步骤完整。

3. 在完成作业时,需注意单位换算和计算精度的准确性。

4. 作业中遇到的问题,学生需独立思考解决,如无法解决可记录下来,待课堂讲解时提问。

5. 按时提交作业,不得拖延。

四、作业评价1. 教师将对作业的完成情况进行批改,包括正确性、规范性、思路清晰度等方面进行评价。

2. 对于完成优秀的同学,将在课堂上进行表扬,并作为其他同学的榜样。

3. 对于出现错误的同学,教师将指出错误原因及改正方法,并要求学生进行订正。

4. 教师将根据学生作业的完成情况,对课堂讲解内容进行调整,以满足学生的需求。

五、作业反馈1. 教师将对学生的作业完成情况进行总结,并在课堂上进行反馈。

2. 对于普遍存在的问题,将在课堂上进行重点讲解和演示。

3. 对于个别学生的问题,教师将进行个别辅导和解答。

4. 通过作业反馈,帮助学生巩固知识点,提高学习效果。

通过以上作业设计,旨在通过系统性的练习和实际应用,使学生全面掌握《3.1.2等式的性质》的知识点,并能够熟练运用等式性质解决实际问题。

3.1.2 等式的性质 初中数学人教版七年级上册课时习题(含答案)

3.1.2 等式的性质 初中数学人教版七年级上册课时习题(含答案)

3.1.2 等式的性质一、选择题(共4小题)1. 根据等式的性质,下列变形正确的是( )A. 如果2x=3,那么2xa =3aB. 如果x=y,那么x―5=5―yC. 如果x=y,那么―2x=―2yD. 如果12x=6,那么x=32. 已知mx=my,下列结论错误的是( )A. x=yB. a+mx=a+myC. mx―y=my―yD. amx=amy3. 如果a=b,那么下列等式中一定成立的是( )A. a―2=b+2B. 2a+2=2b+2C. 2a―2=b―2D.2a―2=2b+24. 下列说法正确的是( )A. 如果ab=ac,那么b=cB. 如果2x=2a―b,那么x=a―bC. 如果2a=3b,那么a+2=b+3D. 如果ba =ca,那么b=c二、填空题(共6小题)5. 根据等式的性质填空:(1)等式x―5=y―5两边同时,得到等式x=y;(2)等式3+x=1两边同时,得到等式x=―2;(3)等式4x=12两边同时,得到等式x=3;(4)等式a100=b100两边同时,得到等式a=b.6. 填空,使所得的结果仍是等式:(1)如果x―2=5,那么x=5+;(2)如果2x=7,那么x=;(3)如果x―12=3,那么x―1=;(4)如果3x=10+2x,那么3x―=10.7. 填空:(1)已知等式x+8=10,根据等式的性质1,两边同时,得x=;(2)已知等式―3x=8,根据等式的性质2,两边同时,得x=;(3)已知等式5x=3x+8,根据等式的性质1,两边同时,得2x=,于是x=.8. 已知2x―3y+1=0,则1―6x+9y=.9. 如图,第一个天平的两侧分别放2个球体和5个圆柱体,第二个天平的两侧分别放2个正方体和3个圆柱体,两个天平都平衡,则12个球体的质量等于个正方体的质量.10. 不论x取何值,等式ax―b―3=4x恒成立,则a+b=.三、解答题(共6小题)11. 利用等式的性质解下列方程:(1)x―3=1;(2)x+3=2;x=―2;(3)13(4)2x=―6.12. 利用等式的性质解下列方程:(1)2+x=5;(2)x―2=5;(3)―3x=9;x=6.(4)―2313. 利用等式的性质解下列方程:(1)2x―1=―3;x+1=―2.(2)―1314. 利用等式的性质解下列方程:(1)5x+1=―4;x―5=5.(2)―5615. 利用等式的性质解下列方程:(1)x―5=6;(2)―2x=0.6;(3)―5x+2=7;x=5;(4)―1+23(5)8x―2=4x―1.16. 等式y=ax3+bx+c中,当x=0时,y=3;当x=―1时,y=5;求当x=1时,y的值.参考答案1. C2. A3. B4. D5. 加 5,减 3,除以 4,乘 1006. 2,72,6,2x7. 减 8,2,乘 ―13,―83,减 3x ,8,48. 49. 2010. 111. (1) 两边加 3,得x ―3+3=1+3.于是x =4.(2) 两边减 3,得x +3―3=2―3.于是x =―1.(3) 两边乘 3,得13x ×3=―2×3.于是x =―6.(4) 两边除以 2,得2x 2=―62.于是x =―3.12. (1) 两边减 2,得2+x ―2=5―2.于是x =3.(2) 两边加 2,得x ―2+2=5+2.于是x =7. (3) 两边除以 ―3,得―3x ―3=9―3.于是x =―3. (4) 两边乘 ―32,得―23x ×=6×于是x =―9.13. (1) 两边加 1,得2x ―1+1=―3+1.化简,得2x =―2.两边除以 2,得x =―1. (2) 两边减 1,得―13x +1―1=―2―1.化简,得―13x =―3.两边乘 ―3,得x =9.14. (1) 两边减 1,得5x +1―1=―4―1.化简,得5x=―5.两边除以5,得x=―1.(2)两边加5,得―56x―5+5=5+5.化简,得―56x=10.两边乘―65,得x=―12. 15. (1)两边加5,得x―5+5=6+5.于是x=11.(2)两边除以―2,得―2x ―2=0.6―2.于是x=―0.3.(3)两边减2,得―5x+2―2=7―2.化简,得―5x=5.两边除以―5,得x=―1.(4)两边加1,得―1+1+23x=5+1.化简,得23x=6.两边乘32,得x=9.(5)两边减4x,得8x―2―4x=4x―1―4x.化简,得4x―2=―1.两边加2,得4x―2+2=―1+2.化简,得4x=1.两边除以4,得x=1 4 .16. 在y=ax3+bx+c中,当x=0时,y=c=3;当x=―1时,y=―a―b+c=5.∴a+b=c―5=3―5=―2.∴当x=1时,y=a+b+c=―2+3=1.。

人教版数学七年级上册《等式的性质》教案

人教版数学七年级上册《等式的性质》教案

人教版数学七年级上册《等式的性质》教案一. 教材分析人教版数学七年级上册《等式的性质》是学生在初中阶段首次接触等式的性质,这是初中数学中的一个重要概念。

本节课的主要内容有等式的性质1和性质2,以及等式的变形。

教材通过具体的例子引导学生探究等式的性质,从而让学生理解并掌握等式的性质,为后续的方程和不等式的学习打下基础。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和探究能力,但是对于等式的性质这一概念还是初次接触,需要通过具体的例子和实践活动来理解和掌握。

学生在学习本节课时,需要具备一定的观察能力和动手能力,能够通过实验和操作来发现和验证等式的性质。

三. 教学目标1.理解等式的性质1和性质2,掌握等式的变形。

2.能够运用等式的性质解决问题。

3.培养学生的观察能力、动手能力和逻辑思维能力。

四. 教学重难点1.重点:等式的性质1和性质2,等式的变形。

2.难点:等式的性质2的理解和运用。

五. 教学方法1.采用探究式教学法,让学生通过实验和操作来发现和验证等式的性质。

2.采用引导式教学法,引导学生通过观察和思考来理解等式的性质。

3.采用实践式教学法,让学生通过解决实际问题来运用等式的性质。

六. 教学准备1.准备PPT,包括等式的性质的定义、例子和练习题。

2.准备实验器材,如尺子、剪刀等,让学生进行实验操作。

3.准备相关的问题和案例,引导学生进行思考和讨论。

七. 教学过程1.导入(5分钟)通过一个简单的例子,引导学生思考等式的性质,激发学生的兴趣。

2.呈现(10分钟)通过PPT呈现等式的性质1和性质2的定义和例子,让学生观察和思考,引导学生发现等式的性质。

3.操练(10分钟)让学生进行实验操作,用尺子、剪刀等工具来验证等式的性质。

教师引导学生观察和思考,解答学生的疑问。

4.巩固(10分钟)通过PPT呈现一些练习题,让学生独立解答,巩固对等式的性质的理解和掌握。

5.拓展(10分钟)引导学生思考等式的性质在实际问题中的应用,呈现一些相关的问题和案例,让学生进行思考和讨论。

人教版七年级数学上册3.1.2等式的性质

人教版七年级数学上册3.1.2等式的性质
如果a=b(c≠0),a那么b . cc
【等式性质1如果a b,那么a c b c.
】 【等式性质2如果a b,那么ac bc. 】
如果a bc 0 ,那么a b .
cc
1.等式两边都要参加运算,并且是作同
注 一种运算. 意 2.等式两边加或减,乘或除以的数一定是
同一个数
或同一个式子.
3a+b-2 =2a+b-2
3a+b=2a+b
第一步
3a=2a
第二步
3=2
第三步
上述变形是否确?若不正确,请指明
错在哪一步?原因是什么?怎么改正?
解:不正确.错在第三步,两边同除以a时, 不能保证a不等于0. 改正:两边同时减2a,得a=0.
下面两位同学解不等式 的过程存在什么问题?
课堂小结
3.等式两边不能都除以0,即0不能作除
归纳
等式的性质1: 等式两边加(或减)同一个数(或式 子),结果仍相等。
如果a=b,那么a+c=b+c
归纳
等式的性质2: 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a=b,那么ac=bc; 如果a=b(c ≠ 0),那么
a c
b c
学以致用:
已知m+a=n+b,根据等式的性质变形为m=n,
解:给等式两边同时减7,得
(1)如果5+x=4,那么x=____(

3a+b-2 =2a+b-2
(6)如果
,那么
.
如果a=b,那么ac=bc.
1. 改正:两边同时减2a,得a=0.
-4x+5x=-5x+5x-9,

新人教版初中数学七年级上册《3.1.2等式的性质》公开课教学设计_2

新人教版初中数学七年级上册《3.1.2等式的性质》公开课教学设计_2

《等式的基本性质》教学设计及课后反思一、教材分析等式的基本性质是学生在刚刚认识了等式与方程的基础上进行教学的。

它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。

本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。

同时培养学生数学思维能力。

二、教学目标:知识与技能:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。

过程与方法:在用算式表示实验结果、讨论、归纳等活动中,经历探索等式基本性质的过程。

情感态度价值观:积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。

三、教学重点是:引导学生探索发现等式的基本性质,利用等式的基本性质解决简单问题。

教学难点是抽象归纳出等式的基本性质。

四、教学程序(分三部分教学)(一)联系实际,激趣引入首先激发探究兴趣:提出问题:“同学们,你用天平做过游戏吗?”这节课我们就利用天平一起来探索天平游戏中所包含的数学知识。

”(二)自主探索,合作交流学习等式的基本性质11、具体情境,感受天平平衡利用多媒体依次展示天平图的各个操作。

让学生通过观察,用语言来描述发现,与同桌交流。

这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。

图1、图2的教学模式:先让学生观察,问:你发现了什么?然后提问:怎样变换,能使天平仍然保持平衡呢?待学生思考片刻,再进一步提问:往两边各放1个球,天平会发生什么变化?生口答,验证。

接下去,继续提问:如果两边各放上2个球,天平还会保持平衡吗?两边各放上同样的一圆柱体呢?生答,再一一演示验证。

图3、图4的教学模式和前面一样。

板书如下:2、总结抽象,认识规律通过上面的观察,先用一句话归纳图1和图2的内容。

(1、等式的两边都加上或减去相同的数,等式不变。

)再以第一句话为基础归纳出图3和图4的内容。

(2、等式的两边都乘或除以相同的数(0除外)等式不变。

人教版七年级数学上册教学设计《第三章一元一次方程3.1.2等式的性质》教学详案

人教版七年级数学上册教学设计《第三章一元一次方程3.1.2等式的性质》教学详案

人教版七年级数学上册教学设计《第三章一元一次方程3.1.2等式的性质》教学详案一. 教材分析人教版七年级数学上册第三章一元一次方程3.1.2等式的性质,主要让学生了解等式的性质,掌握等式两边同时加减乘除同一个数的性质,以及等式两边同时乘除以同一个非零数的性质。

这一节内容是解决方程问题的关键,为学生以后学习更高级的数学知识打下基础。

二. 学情分析七年级的学生已经掌握了基本的算术运算,具备一定的逻辑思维能力,但是对于方程的概念和性质可能还比较陌生。

因此,在教学过程中,需要引导学生从实际问题中抽象出方程,进而探究等式的性质,让学生在实践中理解和掌握知识。

三. 教学目标1.了解等式的概念,掌握等式的性质。

2.能够运用等式的性质解决实际问题。

3.培养学生的逻辑思维能力和团队协作能力。

四. 教学重难点1.重点:等式的性质。

2.难点:如何运用等式的性质解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入等式和方程的概念,让学生在实际问题中感受和理解知识。

2.启发式教学法:引导学生主动探究等式的性质,培养学生的问题解决能力。

3.小组合作学习:鼓励学生之间相互讨论和交流,提高学生的团队协作能力。

六. 教学准备1.PPT课件:制作与教学内容相关的PPT课件,以便于呈现和讲解。

2.练习题:准备一些有关等式性质的练习题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,引导学生从实际问题中抽象出等式,如“小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?”让学生列出等式并求解。

通过这个实例,让学生感受等式的概念和作用。

2.呈现(10分钟)讲解等式的性质,包括:a.等式两边同时加减同一个数,等式仍然成立。

b.等式两边同时乘除同一个数(0除外),等式仍然成立。

通过PPT课件和举例进行讲解,让学生理解和掌握等式的性质。

3.操练(10分钟)让学生练习一些有关等式性质的题目,如:a.判断下列等式是否成立:2x + 3 = 5x - 2b.求解方程:3x - 7 = 2x + 5学生独立完成后,进行讲解和解析。

201X年七年级数学上册 第三章 一元一次方程 3.1.2 等式的性质 新人教版

201X年七年级数学上册 第三章 一元一次方程 3.1.2 等式的性质  新人教版

(2)已知-5x=-5y,两边同时____除___以__-___5_____,
得x=y.
(3)已知-
1 4
x=2y,两边同时____乘__以___-___4______,
得x=-8y.
编辑ppt
13
课后巩固
10.用适当的数或式子填空:
(1)若2x-1=7,则2x=7+___1_______;
(2)若2x+3=5,则2x=5-___3_______;
3.1.2 等式的性质
1 …核…心……目…标..…
2 …课…前……预…习..…
3 …课…堂……导…学..…
4 …课…后……巩…固..…
5 …能…力……培…优..…
编辑ppt
1
核心目标
掌握等式的性质,会用等 式的性质解简单的一元一次方 程.
编辑ppt
2
课前预习
1.如果a=b,那么a±c=____b__±________. c
A.x=y
B.ax+1=ay+1
C.2ax=2ay
D.3-ax=3-ay
编辑ppt
5
课堂导学
3.用适当的数或式子填空:
(1)若2x-3=4,则2x=___7_______;
(2)若2a+b=3,则2a=3__-___b_____;
(3)若3x=6,则x=____2______;
(4)若
1 3
x+2=1,则x+6=___3_______.
为“ax=b”的形式,然后化为“x=
b a
”的
形式,从而得出方程的解.
编辑ppt
7
课堂导学
对点训练二
4.利用等式性质解方程:
(1)x-5=6;
x=11

人教版数学七年级上册3.1.2等式的性质教学设计

人教版数学七年级上册3.1.2等式的性质教学设计
4.解释等式性质2:等式两边同时乘以或除以同一个不为0的数,等式仍然成立。同样通过实例演示,帮助学生理解这一性质。
5.强调等式性质的应用,说明等式性质在解决实际问题中的重要性。
(三)学生小组讨论
在这一环节,我会组织学生进行小组讨论,共同探究等式的性质。具体步骤如下:
1.将学生分成若干小组,每组4-6人,确保每个学生都能参与到讨论中。
2.给每个小组发放讨论题目,如:请举例说明等式性质1和性质2的应用。
3.学生在小组内进行讨论,分享自己的观点和思考,互相学习,共同进步。
4.各小组汇报讨论成果,其他小组进行评价和补充。
5.教师对每个小组的表现给予点评,强调等式性质的实质和应用。
(四)课堂练习
课堂练习环节,我会设计以下步骤:
1.布置一些基础题,让学生巩固等式性质的基本概念。
2.让学生通过等式的性质,感受数学的严谨性和美妙,培养他们追求真理的精神。
3.引导学生将等式的性质应用于解决实际问题,体会数学与现实生活的紧密联系,增强他们学以致用的意识。
在教学过程中,教师应关注学生的个体差异,因材施教,使他们在知识与技能、过程与方法、情感态度与价值观等方面得到全面提高。以下是对本章节内容的具体教学设计:
2.强调等式性质在数学学习和生活中的重要性。
3.鼓励学生提问和发表见解,解答学生在学习过程中遇到的困惑。
4.布置课后作业,巩固学生对等式性质的理解和应用。
五、作业布置
为了巩固学生对等式性质的理解和应用,我设计了以下作业:
1.基础作业:请学生完成课本第36页的练习题1、2、3,这些题目旨在帮助学生掌握等式性质的基本概念和简单应用。
-演示:教师通过实例演示等式的性质,强调操作步骤和注意事项,让学生直观感受性质的魅力。

七年级数学人教版(上册)3.1.2等式的性质

七年级数学人教版(上册)3.1.2等式的性质

易错点 对等式的性质理解不透致错 8.下列利用等式的性质变形的过程中,错误的是( D ) A.由 a=b,得到 1-a=1-b
ab B.由2=2,得到 a=b C.由 a=b,得到 ac=bc D.由 ac=bc,得到 a=b
9.下列变形中,错误的是( C ) A.2x+6=0 变形为 2x=-6
1 4-3x-4=2 -4 .
1 于是-3x= -2 . 根据 等式的性质2 ,两边 乘-3 )8+x=-5. 解:两边减 8,得 x=-13.
1 (2)-5x=2. 解:两边乘-5,得 x=-10.
(3)3x-4=11. 解:两边加 4,得 3x=15. 两边除以 3,得 x=5.
第三章 一元一次方程
3.1 从算式到方程 3.1.2 等式的性质
知识点 1 等式的性质
1 1.把2x=1 变形为 x=2,其方法是( B )
1 A.等式的两边乘2
1 B.等式的两边除以2
1 C.等式的两边减2
1 D.等式的两边加2
2.已知 a=b,下列式子中,不正确的是( C )
A.2a=2b
B.-2a=-2b
x+3 B. 2 =x 变形为 x+3=2x C.-2(x-4)=2 变形为 x-4=1
x+1 1 D.- 2 =2变形为-(x+1)=1
10.若(a-3)x|a|-2-6=0 是关于 x 的一元一次方程,则 a= -3 , 此方程的解是 x=-1 .
1 11.利用等式的性质解方程-4x-3=2,并检验.
C.-a+2=-b-2
D.a-2=b-2
3.将 3x-7=2x 变形正确的是( D )
A.3x+2x=7
B.3x-2x=-7
C.3x+2x=-7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、下列运用等式的性质进行变形,正确 的(C)
A、 若x=y,则x-5=y+5
B、若ac=bc,则a=b
C、若 a b ,则2a 2b
D、
若x=y,则 c c
xx
www.niuwk.caom享牛牛b文档分3、下列结论正确的是( D )
A、x+3=1的解是x=4.
B、3-x=5的解是x=2. C 、5x=3的解是 x 5 .
等式的性质2:
等式两边同乘一个数,或除以同一个
等 _不__为__0__的数,结果仍相等.




如果a=b,那么ac=_b_c____;
ab
如果a=b(c≠0),那么 c列方程:
(1)x 7 26
(2) 5x 20
1、x的4倍等于24,列等式为:_4_x_=_2_4___ 2、x与1的和等于3,列等式为:_x&第82页的内
等 容,完成下面练习,并体验知识点的
式 的
形成过程.
性 质
1、像4x=24,x+1=3这样的式子,都
可以用____a_=_b____的形式表示.
1、(1)方程3x+3=5的两边都_减___得到方
程3x=2,这是根据_等__式__的__性_质__13_;
(2)在方程a-4=b-4两边都_加__4__得到a=b,
这是根据______等__式__的_性; 质1
(3)方程-
1 3
Байду номын сангаас
x
2的两边都_乘__以__-3_得到x=-
6,这是根据_等__式__的_性__质__2_.
___x_+_7_-_7_=_2_6_-7_____ 于是 _x_=_1_9__________________
(2) 两边除以-5,得_____55_x___2_50_____ 于是 ___x_=_-_4________________ (3)两边加5,得____13_x__5 _5__4__5_____

等式的性质1: 等式两边加(或减)同一个数(或式子),结果 仍相等.
如果a=b,那么a±c=__b_±__c_____;
等式的性质2: 等式两边同乘一个数,或除以同一个_不__为__0__的数, 结果仍相等.
如果a=b,那么ac=__b_c___; ab
如果a=b(c
x=150 把x=150代入方程的左边, 得45,等于右边,所4
5
把 x 4 代入方程的左边,
得-4,等5 于右边,所以
x
4 5
是(方4程)的 1解x . 1
4
x 4
把x=-4代入方程的左边,得 1,等于右边,在平衡的天平的 两边都加(或减)同样的量,天平还保 持平衡.从而得到什么规律? 牛牛文档分 享等式的左边b
等式的右边
a
等号
把一个等式看作一个天平,等号两边的式子 看作天平两边的物体,则等式成立可以程并检验:
(1) 3 1 x 2
(2) 2x 1 0
3
解:(1) 1 x 2 3
31 x 1 3
(2) -2x=-1 x=0.5
x=3
把x=0.5代入方程的
把x=3代入方程的左边,左边,得0,等于右
得 x=23,是等方于程右的w边解ww.,.niuw所k.co以m 牛牛边程,的文档所解分 .以x=0.5是方
牛牛文档分 享等 式等式的性质1: 等式两边加(或减)同一个数(或
的 式子),结果仍相等.


如果a=b,那么a±c=_3 2
x
3 2
的解是x=-1
.
4、利用等式的性质解下列方程并检验:
(1) x 5 6
(3) 5x 4 0
(2) 0.3x 45
(4)3;5
x=11
把x=11代入方程的左边, 得6,等于右边,么都知道。 你知道得越多,你就越有力量得 __________3____________ 于是 ____x_=_2_7数的值以 后,可以代入原方程检验,看这个 值能否使方程的两边相等.例如, 将x=-27代入方程 1 x 5 4 的左边得 _____13__(_2_7)__5__4__3__ 方程左右两边相等,所以x=-27是 原方程的解.
相关文档
最新文档