小升初:数学不规则图形面积计算10大经典例题(含做题方法).doc

合集下载

不规则图形面积的估算

不规则图形面积的估算
方法二:转化法
1cm
练习:
1.有一块地近似平行四边形,底是43 m, 高是20.1 m。这块地的面积约是多少平方 米?(得数保留面积是1 cm2, 计算阴影部分的面积。
3.图中每个小方格的面积为1 m2, 请你估计这个池塘的面积。
3.图中每个小方格的面积为1 m2, 请你估计这个池塘的面积。
4.你能像这样估一估手掌的面积吗?
5.图中小方格的边长是1 m,请你估 计涂色部分的面积。
正方形 长方形
平行四边形
梯形
三角形
它们的面积怎么计算?
长 方 形 的 面 积 = 长 ×宽 正 方 形 的 面 积 = 边长×边长 平行四边形的面积= 底×高 三 角 形 的 面 积 = 底×高÷2 梯 形 的 面 积 = (上底+下底)×高÷2
S=ab S=a2 S=ah S=ah÷2 S=(a+b)h÷2
正方形地砖 这两块地砖的面 边长是4分米。 积各是多少平方
分米?
左边地砖的面积: 右边地砖的面积:
4×4=16(dm2) 16÷2=8(dm2)
这枚树叶的面积 怎么求呢?
例5:图中每个小方格的面积是1cm2, 请你估计这片叶子的面积。
1cm
例5:图中每个小方格的面积是1cm2, 请你估计这片叶子的面积。
方法一:数格子法
满格的有18格,不是 满格的也有18格,这 片叶子的面积在 18cm2与36cm2之间。
如果不满一格的都 按半格来计算,它 的面积大约是27cm2。
例5:图中每个小方格的面积是1cm2, 请你估计这片叶子的面积。
方法二:转化法
1cm
例5:图中每个小方格的面积是1cm2, 请你估计这片叶子的面积。

小学数学十大经典不规则图形面积计算方法

小学数学十大经典不规则图形面积计算方法

小学数学十大经典不规则图形面积计算方法
相信很多家长朋友都知道,在小学阶段有很多面积计算题,但是常见的面积计算题也就是那几种,不是三角形、正方形、长方形、梯形或平行四边形等等比较规则的平面图形面积的计算。

如果说有什么比较复杂一些的图形的话,也不外乎就是棱锥、棱柱、圆柱、长方体、正方体等这一些立体图形的一些有关表面积的计算了,而且这些立方体的表面积也是可以拆分为多个规则的平面图形所相加的情况的。

基于上面的这些所说的题型,也是我们小升初所常考的一些题型,下面老师就为大家讲解常见一下一些不规则图形面积计算方法,下面我们就一起来看看吧!各位家长朋友可以为家里的小朋友收藏起来学习看哦!
文章来源:网络。

本文版权归原创作者所有。

小学奥数:不规则图形的面积.专项练习及答案解析

小学奥数:不规则图形的面积.专项练习及答案解析

本讲主要通过求一些不规则图形的面积,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求面积的技巧,提高学生的观察能力、动手操作能力、综合运用能力.【例 1】 你有什么好的方法计算所给图形的面积呢?(单位:厘米)3994399439943994图1 图2 图3 【考点】不规则图形的面积 【难度】1星 【题型】解答 【解析】 (方法一)采用分割法,可给原图分成两个长方形,(图1或图2)两个长方形的总面积就是所求的面积.图1的面积是: 4(93)9375⨯++⨯=(平方厘米).图2的面积是:(94)39475+⨯+⨯=(平方厘米).(方法二)采用补图法,如果补上一个边长是9厘米的正方形(图3),就成了一个面积是:(49)(93)156+⨯+=(平方厘米)的大长方形.因此用这个长方形的面积减去所补正方形的面积,就是要求的图形面积(49)(93)9975+⨯+-⨯=(平方厘米). 【答案】75平方厘米【巩固】如图是学校操场一角,请计算它的面积(单位:米)30203040例题精讲4-2-6.不规则图形的面积【解析】 这是一个不规则图形,怎样使它能转化为我们熟悉的基本图形呢?可以在图中添上一条辅助线,把多边形切割成上下两个长方形或左右两个长方形;也可以把多边形补充完整,成为一个长方形;302030403020304030203040图一 图二 图三方法一:如图一,3040203040120014002600⨯+⨯+=+=()(平方米) 方法二:如图二,203040203060020002600⨯+⨯+=+=()(平方米) 方法三:如图三,40302030303035009002600+⨯+-⨯=-=()()(平方米)【答案】2600平方米【巩固】如右图所示,图中的ABEFGD 是由一个长方形ABCD 及一个正方形CEFG 拼成的,线段的长度如图所示(单位:厘米),求ABEFGD 的周长和面积.F【考点】不规则图形的面积 【难度】1星 【题型】解答 【解析】 方法一:如果求出长方形的宽及正方形的边长,则图形ABEFGD 的周长和面积可以求出.而正方形的边长1046GC DC DG AB DG =-=-=-=(厘米),长方形的宽1064BE CE =-=-=(厘米),所求图形的周长102624440=⨯+⨯++=(厘米) 面积1046676CEFG ABCD S S =+=⨯+⨯=正方形长方形(平方厘米)方法二:可以将线段GF 、DG 向外平移,得一个新的图形ABEH ,因为DG HF =,GF DH =,所以图形ABEH 的周长就是图形ABEFGD 的周长.而10AB BE ==(厘米),所以图形ABEH 是边长为10厘米的正方形. 所求图形的周长=正方形ABEH 的周长10440=⨯=(厘米) 面积10106476ABEH DGFH S S =-=⨯-⨯=正方形长方形(平方厘米)【总结】方法一是利用基本图形的周长及面积公式求解,因此首先要知道长方形的长、宽及正方形的边长.方法二是利用转化的思想方法,将较复杂图形转化为基本图形,图形转化前后的周长不变,面积增加了,在计算时应减去增加的面积. 【答案】76【巩固】求图中五边形的面积.6453【解析】由图可见五边形为矩形切去一角得来,把切去的角补出来,它的一条直角边长633-=,斜边等于5,所以另一直角边为4,所以矩形的长为448+=,五边形面积16843422⨯-⨯⨯=.【答案】42【例 2】这是一个楼梯的截面图,高280厘米,每级台阶的宽和高都是20 厘米.问,此楼梯截面的面积是多少?【考点】不规则图形的面积【难度】2星【题型】解答【关键词】华杯赛、口试【解析】如果把楼梯截面补成右图所示的长方形,那么此长方形高280厘米.宽300厘米,它的面积恰好是所求截面的2倍.所以楼梯截面面积为280300242000⨯÷=()(平方厘米).【答案】42000【巩固】如图是一个楼梯的截面图,每级台阶的宽和高都是20厘米.这楼梯的截面积是多少平方厘米?【考点】不规则图形的面积【难度】2星【题型】解答【解析】先求出大三角形的两条直角边都是208160⨯=(厘米),因此大三角形的面积为160160212800⨯÷=(平方厘米);8个小三角形的面积为2020281600⨯÷⨯=(平方厘米);因此这楼梯的截面积为12800160014400+=(平方厘米).【答案】14400【例 3】有一块菜地长16米,宽8米,菜地中间留了宽2米的路,把菜地平均分成四块,每一块地的面积是多少?【考点】不规则图形的面积【难度】2星【题型】解答【解析】方法一:可以直接求出每小块菜地的长和宽,从而求出每小块菜地的面积;每一块地的面积是:[1622][822]7321-÷⨯-÷=⨯=()()(平方米)方法二:也可以求出这块地的总面积,再减去道路的面积,然后把剩余的面积四等分求出每小块菜地的面积;每一块地的面积是:[1682168222]412844421⨯-⨯+⨯-⨯÷=-÷=()()(平方米)方法三:还可以运用平移的方法,将道路移到菜地的边沿,先求出四个小长方形组成的长方形面积,再求出其中每一小块菜地的面积.如图所示:[16282]484421-⨯-÷=÷=()()(平方米) 【答案】21【例 4】 有10张长3厘米,宽2厘米的纸片,将它们按照下图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?【考点】不规则图形的面积 【难度】3星 【题型】解答 【解析】 通过操作,一张一张的添加,可以发现每多盖一张,遮住的面积增加21⨯平方厘米,所以这10张纸片盖住的面积是:3221924⨯+⨯⨯=(平方厘米).【答案】24【例 5】 下图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积.【考点】不规则图形的面积 【难度】3星 【题型】解答 【解析】 所求面积等于图中阴影部分的面积,为2052082140-+⨯÷=()(平方厘米). 【答案】140【巩固】两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积.FBA【考点】不规则图形的面积 【难度】3星 【题型】解答 【解析】 阴影部分是一个高为3厘米的直角梯形,然而它的上底与下底都不知道,因而不能直接求出它的面积.因为三角形ABC 与三角形DEF 完全相同,都减去三角形DOC 后,根据差不变性质,差应相等,即阴影部分与直角梯形OEFC 面积相等,所以求阴影部分的面积就转化为求直角梯形OEFC 的面积.直角梯形OEFC 的上底为1037-=(厘米),面积为7102217+⨯÷=()(厘米2). 所以,阴影部分的面积是17平方厘米。

不规则图形的面积计算.docx

不规则图形的面积计算.docx

图形的面积计算、基础题:公式法、公式的灵活运用练习:1梯形中的阴影部分的面积是150平方厘米,求梯形的面积2•已知平行四边形的面积是48平方厘米,求阴影部分的面积3•如果用铁丝围成一个平行四边形,需要用铁丝多少厘米4•求阴影部分面积5•梯形ABCD的面积是45平方米,高6米,△ AED的面积是5平方米, 面积。

156.求出图中梯形ABCD的面积,其中BC=56厘米。

(单位:厘米)、不规则图形的面积在图形面积计算时,经常会到一些无法直接求或不规则的图形,这时我们需要转换解题思维,根据图形的基本关系,运用分解、平移、旋转、割补、添辅助线等方法,把不规则图形转化为规则图形。

下面介绍几种常见的面积计算方法一、“大减小”例1 •求右图中阴影部分的面积(单位:厘米)BC=10米,求阴影部分的25第一题第三题58第四题图第五题图解析:阴部部分的面积=“大减小”=两正方形面积-空白部分面积=(4× 4+3 × 3) - ( 4+3)× 4÷ 2 =11 平方厘米练习1如下图,甲、乙两图形都是正方形,它们的边长分别是 2•求阴影部分的面积直角边分别是10厘米和6厘米。

如下图那样重合。

求重合部分(阴二、“补”例1.四边形ABCD 是一个长10厘米,宽6厘米的长方形,三角形 ADE 的面积比三角形 CEF 的面积大 10平方厘米,求CF 的长。

解析:假设三角形 EFC 为1 ,四边形ECBA 为2,三角形ADE 为3。

给1、3同时补上2,它们的面 积差不会发生改变 图形3的面积-图形1的面积=10(图形3+图形2)-(图形1 +图形2) =10即长方形ABCD 勺面积-三角形ABF 的面积=10那么,三角形 ABF 的面积=60-10=5O=AB × BF ÷ 2可算出BF=10厘米,所以 CF=10-6=4厘米例2 .如图,四边形 ACEF 中,角ACE=⅜ EFA=90° ,角CAF=45 , AC=8厘米,EF=2厘米,求四 边形ACEF 的面积解析:分别延长 AF 、CE,交于B 点10厘米和12厘米。

几种不规则图形面积的解题方法

几种不规则图形面积的解题方法

对于不规则图形面积的计算问题,一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。

常用的基本方法有: 1. 直接求面积:这种方法是根据已知条件,从整体出发直接求出组合图形面积。

例1:求下图阴影部分的面积(单位:厘米)。

解答: 通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为:(平方厘米) 2.相加、相减求面积:这种方法是将组合图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加或相减求出该图形的面积。

例2:正方形甲的边长是5厘米,正方形乙的边长是4厘米,阴影部分的面积是多少? 解答: 两个正方形的面积:5×5+4×4=41(平方厘米) 三个空白三角形的面积和:(5+4)×5÷2+4×4÷2+5×(5-4)÷2=33(平方厘米) 阴影部分的面积:41-33=8(平方厘米)除了以上这两种方法,还有其他的几种方法,同学们不妨了解了解。

3.等量代换求面积:一个图形可以用与它相等的另一个图形替换,如果甲乙大小相等,那么求出乙的大小,就知道甲的大小;两个图形同时增加或减少相同的面积,它们的差不变。

例3:平行四边形ABCD的边BC长8厘米,直角三角形ECB的直角边EC长为6厘米。

已知阴影部分的总面积比三角形EFG的面积大8平方厘米,平行四边形ABCD的面积是多少?解答:阴影部分的总面积比三角形EFG的面积大8平方厘米,分别加上梯形FBCG,得出的平行四边形ABCD比三角形EBC的面积大8平方厘米。

平行四边形ABCD的面积:8×6÷2+8=32(平方厘米)4.借助辅助线求面积:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法求面积。

例4:下图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2平方厘米,CD的长是多少?解答:结合已知条件看图,很难有思路,连接DA,就可以发现:三角形ABE 比三角形CDE的面积大2平方厘米,分别加上三角形DAE得到的三角形ABD 比三角形CDA的面积大2平方厘米。

热点:关于不规则或组合立体图形的表面积和体积问题-2024年小升初数学(解析版)

热点:关于不规则或组合立体图形的表面积和体积问题-2024年小升初数学(解析版)

热点:关于不规则或组合立体图形的表面积和体积问题一、计算题。

1求下图立体图形的表面积。

【答案】114.84dm2【分析】由图可知,圆柱的上底面刚好填补正方体的上底面被覆盖的部分面积,因此图中立体图形的表面积可以看作是一个正方体的表面积加上一个圆柱的侧面积;根据正方体的表面积=棱长×棱长×6,圆柱的侧面积=底面周长×高,代入相应数值计算即可解答。

【详解】4×4×6+3.14×2×3=16×6+6.28×3=96+18.84=114.84(dm2)因此这个立体图形的表面积是114.84dm2。

2如图下图,求组合体的表面积。

(单位:厘米;π取3.14)【答案】142.84平方厘米【分析】观察图形可知,组合体的表面积等于长方体的表面积加上圆柱体的侧面积,根据长方体的表面积公式:S=ab+ah+bh×2,圆柱体的侧面积公式:S=πdh,代入数据计算即可。

【详解】8×6+8×1+6×1×2+3.14×2×3=48+8+6×2+3.14×2×3=62×2+3.14×2×3=124+18.84=142.84(平方厘米)即组合体的表面积是142.84平方厘米。

3计算下面圆柱的表面积和体积。

(单位:厘米)【答案】表面积:734.76平方厘米;体积:571.48立方厘米【分析】表面积=大圆直径是20厘米,小圆直径是6厘米的圆环面积×2+底面直径是20厘米,高是2厘米的圆柱的侧面积+底面直径是6厘米,高是2厘米的圆柱的侧面积;根据圆环的面积公式:面积=π×(大圆半径2-小圆半径2),圆柱的侧面积公式:侧面积=底面周长×高,代入数据,即可解答;体积=底面直径是20厘米,高是2厘米的圆柱的体积-底面直径是6厘米,高是2厘米的圆柱的体积,根据圆柱的体积公式:体积=底面积×高,代入数据,即可解答。

五年级奥数专题:不规则图形面积计算(含答案)

五年级奥数专题:不规则图形面积计算(含答案)

不规则图形面积计算我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

一、例题与方法指导例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

思路导航:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG 、△BDE 、△EFG )的面积之和。

例2 如右图,正方形ABCD 的边长为6厘米,△ABE 、△ADF 与四边形AECF 的面积彼此相等,求三角形AEF 的面积. 思路导航: ∵△ABE 、△ADF 与四边形AECF 的面积彼此相等,∴四边形 AECF 的面积与△ABE 、△ADF 的面积都等于正方形ABCD 的13。

在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF 的面积为2×2÷2=2。

所以S △AEF=S 四边形AECF-S △ECF=12-2=10(平方厘米)。

例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

思路导航:在等腰直角三角形ABC 中∵AB=10∵EF=BF=AB-AF=10-6=4,∴阴影部分面积=S △ABG-S △BEF=25-8=17(平方厘米)。

例4 如右图,A 为△CDE 的DE 边上中点,BC=CD ,若△ABC (阴影部分)面积为5平方厘米.求△ABD 及△ACE 的面积. 思路导航:取BD 中点F ,连结AF.因为△ADF 、△ABF 和△ABC 等底、等高,所以它们的面积相等,都等于5平方厘米.∴△ACD 的面积等于15平方厘米,△ABD 的面积等于10平方厘米。

不规则图形面积的计算(方法总结及详解)

不规则图形面积的计算(方法总结及详解)

不规则图形计算的方法总结总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如上页最后一图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。

八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求上图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。

小学数学图形求面积十大方法总结(附例题解析)

小学数学图形求面积十大方法总结(附例题解析)

我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。

我们的面积及周长都有相应的公式直接计算。

如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。

一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

例题分析例1、如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

例2、如下图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积。

一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12平方厘米。

解:S△ABE=S△ADF=S四边形AECF=12(平方厘米)在△ABE中,因为AB=6厘米,所以BE=4厘米,同理DF=4厘米,因此CE=CF=2厘米,∴△ECF的面积为2×2÷2=2(平方厘米)。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3、两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决求面积十大方法1.>>>相加法<<<这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积一句话:半圆的面积+正方形的面积=总面积2.>>>相减法<<<这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。

小升初数学必会的10种图形求面积解题法

小升初数学必会的10种图形求面积解题法

小升初数学必会的10种图形求面积解题法!我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。

它们的面积及周长都有相应的公式直接计算,具体如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。

一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

先看三道例题感受一下:例1如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

例2如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF 的面积.一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米。

解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法1相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。

五年级奥数专题:不规则图形面积计算(含答案)

五年级奥数专题:不规则图形面积计算(含答案)

不规则图形面积计算我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

一、例题与方法指导例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

思路导航:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG 、△BDE 、△EFG )的面积之和。

例2 如右图,正方形ABCD 的边长为6厘米,△ABE 、△ADF 与四边形AECF 的面积彼此相等,求三角形AEF 的面积. 思路导航: ∵△ABE 、△ADF 与四边形AECF 的面积彼此相等,∴四边形 AECF 的面积与△ABE 、△ADF 的面积都等于正方形ABCD 的13。

在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF 的面积为2×2÷2=2。

所以S △AEF=S 四边形AECF-S △ECF=12-2=10(平方厘米)。

例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

思路导航:在等腰直角三角形ABC 中∵AB=10∵EF=BF=AB-AF=10-6=4,∴阴影部分面积=S △ABG-S △BEF=25-8=17(平方厘米)。

例4如右图,A 为△CDE 的DE 边上中点,BC=CD,若△ABC (阴影部分)面积为5平方厘米. 求△ABD 及△ACE 的面积.思路导航:取BD 中点F,连结AF.因为△ADF 、△ABF 和△ABC 等底、等高,所以它们的面积相等,都等于5平方厘米.∴△ACD 的面积等于15平方厘米,△ABD 的面积等于10平方厘米。

不规则图形面积的计算(方法总结及详解)

不规则图形面积的计算(方法总结及详解)

不规则图形计算的方法总结总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如上页最后一图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。

八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求上图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。

不规则图形面积的计算(练习题)及详细讲解

不规则图形面积的计算(练习题)及详细讲解

第一讲不规则图形面积的计算(一)(一)习题一(及详细答案)一、填空题(求下列各图中阴影部分的面积):二、解答题:1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。

2.如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN(阴影部分)的面积.3.如右图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。

4.如右图,已知CF=2DF,DE=EA,三角形BCF的面积为2,四边形BEDF的面积为4.求三角形ABE的面积.5.如右图,直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米.又三角形ABF、三角形BCE和四边形BEDF的面积相等。

求三角形DEF的面积.6.如右图,四个一样大的长方形和一个小的正方形拼成一个大正方形,其中大、小正方形的面积分别是64平方米和9平方米.求长方形的长、宽各是多少?7.如右图,有一三角形纸片沿虚线折叠得到右下图,它的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米.求原三角形面积.8.如右图,ABCD的边长BC=10,直角三角形BCE的直角边EC长8,已知阴影部分的面积比△EFG的面积大10.求CF的长.习题一解答一、填空题:二、解答题:3.CE=7厘米.可求出BE=12.所以CE=BE-5=7厘米.4.3.提示:加辅助线BD∴CE=4,DE=CD-CE=5-4=1。

同理AF=8,DF=AD-AF=14-8=6,6.如右图,大正方形边长等于长方形的长与宽的和.中间小正方形的边长等于长方形的长与宽的差.而大、小正方形的边长分别是8米和3米,所以长方形的宽为(8-3)÷2=2.5(米),长方形的长为8-2.5=5.5(米).7.15平方厘米.解:如右图,设折叠后重合部分的面积为x平方厘米,x=5.所以原三角形的面积为2×5+5=15平方厘米.∴阴影部分面积是:10x-40+S△GEF由题意:S△GEF+10=阴影部分面积,∴10x-40=10,x=5(厘米).。

不规则图形面积的计算(练习题)及详细讲解

不规则图形面积的计算(练习题)及详细讲解

第一讲不规则图形面积得计算(一)习题一(及详细答案)一、填空题(求下列各图中阴影部分得面积):二、解答题:1、如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE、求阴影部分面积。

2、如右图,正方形ABCD与正方形DEFG得边长分别为12厘米与6厘米、求四边形CMGN (阴影部分)得面积、3、如右图,正方形ABCD得边长为5厘米,△CEF得面积比△ADF得面积大5平方厘米、求CE得长。

4、如右图,已知CF=2DF,DE=EA,三角形BCF得面积为2,四边形BEDF得面积为4、求三角形ABE得面积、5、如右图,直角梯形ABCD得上底BC=10厘米,下底AD=14厘米,高CD=5厘米、又三角形ABF、三角形BCE与四边形BEDF得面积相等。

求三角形DEF得面积、6、如右图,四个一样大得长方形与一个小得正方形拼成一个大正方形,其中大、小正方形得面积分别就就是64平方米与9平方米、求长方形得长、宽各就就是多少?7、如右图,有一三角形纸片沿虚线折叠得到右下图,它得面积与原三角形面积之比为2:3,已知阴影部分得面积为5平方厘米、求原三角形面积、8、如右图,ABCD得边长BC=10,直角三角形BCE得直角边EC长8,已知阴影部分得面积比△EFG得面积大10、求CF得长、习题一解答一、填空题:二、解答题:ﻫﻫ3、CE=7厘米、ﻫ可求出BE=12、所以CE=BE-5=7厘米、4、3、提示:加辅助线BD∴CE=4,DE=CD-CE=5-4=1。

同理AF=8,DF=AD-AF=14-8=6,6、如右图,大正方形边长等于长方形得长与宽得与、中间小正方形得边长等于长方形得长与宽得差、而大、小正方形得边长分别就就是8米与3米,所以长方形得宽为(8-3)÷2=2、5(米),长方形得长为8-2、5=5、5(米)、7、15平方厘米、解:如右图,设折叠后重合部分得面积为x平方厘米,ﻫx=5、所以原三角形得面积为2×5+5=15平方厘米、∴阴影部分面积就就是:10x-40+S△GEF由题意:S△GEF+10=阴影部分面积,∴10x-40=10,x=5(厘米)、。

小升初面积问题的经典例题

小升初面积问题的经典例题

小升初面积问题的经典例题问题1:一个底边长为8cm的等腰直角三角形,如果它的斜边旋转一周,会形成一个什么平面图形?解析:对于一个等腰直角三角形,斜边长度等于底边长度乘以√2。

所以这个三角形的斜边长为8√2 cm。

当斜边旋转一周时,形成的平面图形是一个圆。

因为圆的周长等于2πr(r为半径),斜边的长度即为圆的半径。

故该三角形旋转形成的平面图形为半径为8√2 cm的圆。

问题2:一个矩形的长是宽的3倍,如果它的长边增加5cm,宽边增加2cm,那么新的矩形的面积是原矩形的多少倍?解析:设原矩形的长为L,宽为W,则L=3W。

原矩形的面积为A=L*W=3W*W=3W²。

新的矩形的长为L+5,宽为W+2,新矩形的面积为A'=(L+5)*(W+2)=(3W+5)*(W+2)=3W²+11W+10。

则新矩形的面积与原矩形的面积的倍数为A'/A=(3W²+11W+10)/(3W²)=1+(11W+10)/(3W²)。

由于题目中未给出具体的长和宽的数值,无法确定倍数的具体值,但可确定的是新矩形的面积将是原矩形面积的倍数,且倍数大于1。

问题3:一个正方形的面积为36平方单位,如果将它的边长减少一半,那么新的正方形的面积是多少?解析:设原正方形的边长为a,则原正方形的面积为A=a*a=a²。

根据题意,新正方形的边长为原正方形边长的一半,即为a/2。

则新正方形的面积为A'=(a/2)*(a/2)=(a²)/4。

已知原正方形的面积为36平方单位,即A=a²=36。

代入可得新正方形的面积为A'=(36/4)=9。

所以新正方形的面积为9平方单位。

六年级数学-不规则图形面积计算

六年级数学-不规则图形面积计算
1、例题与方法指导
例1.如右图,在一个正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积。
解法1:把上图靠下边的半圆换成(面积与它相等)右边的半圆,得到右图.这时,右图中阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等.所以上图中阴影部分的面积等于正方形面积的一半。
解法2:将上半个“弧边三角形”从中间切开,分别补贴在下半圆的上侧边上,如右图所示.阴影部分的面积是正方形面积的一半。
不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时还常要和“容斥原理”(即:集合A与集合B之间有:SA∪B=SA+Sb-SA∩B)合并使用才能解决。
解法3:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如右图所示.阴影部分的面积是正方形的一半.
例2.如右图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。
解:由容斥原理S阴影=S扇形ACB+S扇形ACD-S正方形ABCD
例3如右图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积。
∴阴影部分面积=S△ABG-S△BEF=25-8=17(平方厘米)。
例4如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.
求△ABD及△ACE的面积.
思路导航:
取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等高,
所以它们的面积相等,都等于5平方厘米.

六年级数学-不规则图形面积计算

六年级数学-不规则图形面积计算
解法3:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如右图所示.阴影部分的面积是正方形的一半.
例2.如右图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。
解:由容斥原理S阴影=S扇形ACB+S扇形ACD-S正方形ABCD
例3如右图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积。
3.如右图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长Hale Waihona Puke G为5厘米,求它的宽DE等于多少厘米?
4.如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.
5.如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.
不规则图形面积计算(2)
九、对称添补法:
这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
十、重叠法:
这种方法是将所求的图形看成是两个或两个以上图形的重叠部分,然后运用“容斥原理”(SA∪B=SA+SB-SA∩B)解决。例如,欲求右图中阴影部分的面积,可先求两个扇形面积的和,减去正方形面积,因为阴影部分的面积恰好是两个扇形重叠的部分.
七、 平移法:
这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如右图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初:数学不规则图形面积计算10大经典例题(含做题方法)
第一题图示
例题:要在一个直径为10米的花园周围铺一条2米宽的小路,请问小路的面积是多少?
答题方法:算出大圆(直径为10+12)的面积,再减小圆(直径为10)的面积即可。

二、四分之一圆减三角形
第二题图示
例题:已知图中三角形为等腰直角三角形,一条直角边长度是2,求阴影部分面积是多少?
答题方法:先求出四分之一的圆(半径为2),再减去三角形面积即可。

三、正方形减四分之一圆
第三题图示
例题:已知图中正方形边长为2,求阴影部分面积是多少?
答题方法:先求出正方形面积(边长为2),再减去四分之一圆(半径为2)即可。

四、正方形减圆形
第四题图示
例题:已知图中正方形边长为2,求阴影部分面积是多
少?
答题方法:先求出正方形面积(边长为2),再减去四个四分之一圆(半径为2)即可。

五、四分之一圆减面积的复杂题型
第五题图示
例题:已知图中正方形边长为2,求阴影部分面积是多少?
答题方法:画一条正方形的对角线使之穿过阴影部分,再按照第二题的方法求出二分之一阴影面积,最后正方形面积减阴影部分面积即可。

六、割补型
第六题图示
例题:已知图中每个正方形的边长均为2,求阴影部分面积是多少?
答题方法:经观察发现,图中阴影部分面积正好等于空白部分的面积,因此,可以把两边的阴影合并在一起,阴影面积就是1个正方形的面积。

类似的题型还有如下图:
第六题附1题图示
七、扇形叠交相减型
第七题图示
例题:图中OA、OB分别是两个小圆的直径,且
OA=OB=2,∠BOA为直角,求图中阴影部分的面积。

答题方法:根据题意,过O点作∠BOA的角平分线,连接AB,观察可发现,示意图中的阴影部分面积正好是三角形ABO的面积。

八、圆形减扇形的类型
第八题示意图
例题:已知图中圆形的半径为2,三角形的一条边为16,求图中阴影部分的面积。

答题方法:如图,作2条辅助线,即可发现三角形外的阴影部分正好等于三角形内与红色辅助线围成的面积相等,因此,只需求出高是2,底是(16÷2)的两个三角形面积即可。

九、梯形减半圆的类型
第九题示意图
例题:图中等腰梯形的高是10,空白部分的半圆直径是5,求阴影部分的面积。

答题方法:求出梯形面积(上底+下底)X高÷2,再减半圆面积即可。

十、八卦图形的类型
第十题图示
例题:求图中阴影部分的面积。

答题方法:按照图中的虚线部分作一条参考线,发现虚
线上方的空白与下方的空白正好相等,因此阴影部分的面积就是半径为8的半圆的面积。

相关文档
最新文档