[精品]2019学年高中数学课时跟踪训练十五微积分基本定理北师大版选修28
人教版高中数学选修2-2课时跟踪检测(十一) 微积分基本定理 Word版含解析
= ([-(-)]= =(-).
()∈(),=[(-)-(-)]
==,
=[(-)-(-)]=
=-+,
所以=+=-+,
′=-=(-),
令′=得=(舍去)或=,
当<<时,′<,单调递减,
当<<时,′>,单调递增,
所以当=时,=.
.如图,直线=分抛物线=-与轴所围成图形为面积相等的两部分,求的值.
..-
..-
解析:选 因为(+)=,
所以=.
所以+=,所以=.
≤,则正数的最大值为()
..
..
解析:选==×=≤,故≤,即<≤.
-=()
解析:选∵=
∴-=(-)+(-)
=+
=+
=--++-=.
(-)=.
解析:∵′=-,∴原式==-=.
答案:
.设()=则()=.
解析:()=+( -)
=+( -)
=+[( -)-( -)]
= -.
答案:-
.已知等差数列{}的前项和为,且=(+),则+=.
解析:=(+)=(+)=+=.
因为{}是等差数列,
所以==(+)=,所以+=.
答案:
.已知()=++(≠),且(-)=,′()=,()=-,求,,的值.
解:由(-)=得-+=,①
又′()=+,∴′()==,②
而()=(++)
==++,
解:抛物线=-与轴两交点的横坐标=,=,所以,抛物线与轴所围图形的面积
=(-)==-=.
抛物线=-与直线=两交点的横坐标为
′=,′=-,
所以= (--)==(-),又知=,所以(-)=.
北师大版高中数学选修微积分基本定理教案(2)
微积分基本定理一:教学目标知识与技能目标:通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分过程与方法:通过实例体会用微积分基本定理求定积分的方法情感态度与价值观:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。
二、教学重难点重点通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。
难点 了解微积分基本定理的含义 三、教学方法:探析归纳,讲练结合 四、教学过程(一)、复习:定积分的概念及用定义计算 (二)、探究新课我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。
我们必须寻求计算定积分的新方法,也是比较一般的方法。
变速直线运动中位置函数与速度函数之间的联系设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为21()T T v t dt ⎰。
另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即21()T T v t dt ⎰=12()()S T S T -而()()S t v t '=。
对于一般函数()f x ,设()()F x f x '=,是否也有()()()baf x dx F b F a =-⎰若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。
注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则()()()baf x dx F b F a =-⎰证明:因为()x Φ=()xaf t dt ⎰与()F x 都是()f x 的原函数,故()F x -()x Φ=C (a x b ≤≤)其中C 为某一常数。
《步步高-学案导学设计》-高中数学苏教版选修-微积分基本定理市公开课获奖课件省名师示范课获奖课件
研一研·问题探究、课堂更高效
本课时栏目开关
由 1213aa+ +12b= b=5167
,
解得 a=4,b=3,故 f(x)=4x+3.
练一练·当堂检测、目标达成落实处
本课时栏目开关
π
1.ʃ
2 -π
(1+cos
x)dx=__π_+__2___.
2
解析 ∵(x+sin x)′=1+cos x,
π
π
∴ =ʃπ2-2+π2(s1in+π2-cos-x)π2d+x=si(nx+-sπ2in=x)|π-2+π2 2.
本课时栏目开关
研一研·问题探究、课堂更高效
问题2 对一个连续函数f(x)来说,是否存在唯一的F(x),使 F′(x)=f(x)? 答案 不唯一,根据导数的性质,若 F′(x)=f(x),则对任 意实数 c,[F(x)+c]′=F′(x)+c′=f(x).
本课时栏目开关
本课时栏目开关
研一研·问题探究、课堂更高效
练一练·当堂检测、目标达成落实处
本课时栏目开关
4.设函数 f(x)=ax2+c (a≠0),若 ʃ10f(x)dx=f(x0),0≤x0≤1,
3 则 x0 的值为____3____.
解析 ʃ 10(ax2+c)dx=ax20+c,∴a3=ax02, ∵a≠0,∴x02=13,
又
0≤x0≤1,∴x0=
本课时栏目开关
研一研·问题探究、课堂更高效
跟踪训练3 f(x)是一次函数,且ʃ01f(x)dx=5,ʃ01xf(x)dx=167, 求f(x)的解析式.
解 设f(x)=ax+b(a≠0),
则ʃ 10(ax+b)dx=ʃ10axdx+ʃ 01bdx =12ax2|10+bx|10=12a+b, ʃ 10x(ax+b)dx=ʃ 10(ax2+bx)dx =13ax3|10+12bx2|01=13a+12b,
2017-2018学年高中数学 课时跟踪训练(十五)微积分基本定理 北师大版选修2-2
课时跟踪训练(十五) 微积分基本定理1.下列积分值等于1的是( ) A.∫10x d x B.∫10(x +1)d xC.∫101d xD.∫1012d x2.(福建高考)⎠⎛01(e x+2x )d x =( )A .1B .e -1C .eD .e +13.∫30|x 2-4|d x =( ) A.213 B.223 C.233D.2534.函数F (x )=∫x0t (t -4)d t 在[-1,5]上( ) A .有最大值0,无最小值 B .有最大值0和最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值5.若∫a -a x 2d x =18(a >0),则a =________. 6.(陕西高考)设f (x )=⎩⎪⎨⎪⎧lg x , x >0,x +⎠⎛0a 3t 2d t ,x ≤0,若f (f (1))=1,则a =________.7.求下列定积分: (1)∫212x 2+x +1xd x ;(2)∫π02sin ⎝⎛⎭⎪⎫x +π4d x .8.A ,B 两站相距7.2 km ,一辆电车从A 站开往B 站,电车开出t s 后到达途中C 点,这一段的速度为1.2t m/s ,到C 点的速度为24 m/s ,从C 点到B 站前的D 点这段路程做匀速行驶,从D 点开始刹车,经t s 后,速度为(24-1.2t ) m/s ,在B 站恰好停车,试求:(1)A ,C 间的距离; (2)B ,D 间的距离.答 案1.选C ∫101d x =x ⎪⎪ 1=1.2.选C ⎠⎛01(e x +2x )d x =(e x +x 2)|1=(e 1+1)-e 0=e.3.选C ∫3|x 2-4|d x =∫20(4-x 2)d x +∫32(x 2-4)d x =⎝⎛⎭⎪⎫4x -13x 3⎪⎪⎪20+⎝ ⎛⎭⎪⎫13x 3-4x ⎪⎪⎪32=233,故选C. 4.选 B F (x )=∫x 0(t 2-4t )d t =⎝ ⎛⎭⎪⎫13t 3-2t 2⎪⎪⎪x=13x 3-2x 2(-1≤x ≤5).F ′(x )=x 2-4x ,由F ′(x )=0,得x =0或4,列表如下:可见极大值F (0)=0,极小值F (4)=-3.又F (-1)=-3,F (5)=-3,所以最大值为0,最小值为-323.5.解析:∫a-a x 2d x =x 33| a-a =a 33--a33=18⇒a =3.答案:36.解析:显然f (1)=lg 1=0,f (0)=0+∫a03t 2d t =t 3⎪⎪⎪a=1,得a =1.答案:17.解:(1)∫212x 2+x +1xd x=∫21(2x +1x+1)d x=∫212x d x +∫211xd x +∫211d x=x 2|21+ln x |21+x |21=(4-1)+ln 2-ln 1+2-1 =4+ln 2.(2)∵2sin(x +π4)=2⎝ ⎛⎭⎪⎫sin x ·22+cos x ·22=sin x +cos x ,(-cos x +sin x )′=sin x +cos x , ∴∫π2sin(x +π4)d x =∫π0(sin x +cos x )d x=(-cos x +sin x ) |π=(-cos π+sin π)-(-cos 0+sin 0)=2.8.解:(1)设从A 到C 的时间为t 1 s ,则1.2t 1=24,解得t 1=20, 则AC =∫2001.2t d t =0.6t 2|200=240(m).即A ,C 间的距离为240 m.(2)设从D 到B 的时间为t 2 s ,则24-1.2t 2=0, 解得t 2=20,则BD =∫200(24-1.2t )d t =(24t -0.6t 2) |200=240(m).即B ,D 间的距离为240 m.。
2014-2015学年高中数学 4.2 微积分基本定理课时作业 北师大版选修2-2
§2 微积分基本定理课时目标 1.了解微积分基本定理的内容与含义.2.会利用微积分基本定理求函数的定积分.微积分基本定理:如果连续函数f (x )是________________________,则有ʃba f (x )d x =__________.一、选择题1.设f (x )在[a ,b ]上连续,且(F (x )+C )′=f (x )(C 为常数),则lim Δx →0F x +Δx -F xΔx等于( )A .F (x )B .f (x )C .0D .f ′(x )2.由曲线y =x 3,直线x =0,x =1及y =0所围成的曲边梯形的面积为( )A .1B.12C.13D.143.220sin cos 22x x dx π⎛⎫ ⎪⎝⎭⎰的值是( )A.π2B.π2+1C .-π2D .04.ʃ0-4|x +3|d x 的值为( ) A .-2B .0C .5D.125.若m =ʃ10e x d x ,n =ʃe 11xd x ,则m 与n 的大小关系是( )A .m >nB .m <nC .m =nD .无法确定6.ʃ421xd x 等于( )A .-2ln 2B .2ln 2C .-ln 2D .ln 2 二、填空题7.ʃ10(2x k+1)d x =2,则k =________. 8.定积分ʃ10x1+x 2d x 的值为________.9.定积分20π⎰1-sin 2x d x 的值为__________.三、解答题10.计算:(1)ʃ5-5(sin 5x +x 13)d x ;(2) 22ππ-⎰(cos 2x +8)d x .11.已知f (x )=a sin x +b cos x ,20π⎰f (x )d x =4,60π⎰f (x )d x =7-332,求f (x )的最大值和最小值.能力提升12.f (x )是一次函数,且ʃ10f (x )d x =5,ʃ10xf (x )d x =176,那么f (x )的解析式是( ) A .4x +3 B .3x +4 C .-4x +2 D .-3x +413.已知ʃ1-1(x 3+ax +3a -b )d x =2a +6且f (t )=ʃt 0(x 3+ax +3a -b )d x 为偶函数,求a ,b .1.用微积分基本定理求定积分,关键是找到满足F ′(x )=f (x )的函数F (x ),即找到被积函数的原函数.2.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)求被积函数是分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和.(3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分. 答 案知识梳理函数F (x )的导函数,即f (x )=F ′(x ) F (b )-F (a ) 作业设计 1.B2.D [曲边梯形面积A =ʃ10x 3d x =⎝ ⎛⎭⎪⎫14x 4|10=14.]3.B [20π⎰⎝⎛⎭⎪⎫sin x 2+cos x 22d x =20π⎰(1+sin x )d x=x |20π+(-cos x )20π=π2+1.] 4.C [原式=ʃ-3-4(-x -3)d x +ʃ0-3(x +3)d x =⎝ ⎛⎭⎪⎫-12x 2-3x |-3-4+⎝ ⎛⎭⎪⎫12x 2+3x |0-3=5.] 5.A [∵m =ʃ10e x d x =e x |10=e -1,n =ʃe 11xd x =ln x |e1=ln e -ln 1=1,m -n =e -1-1=e -2>0,∴m >n .]6.D [ʃ421xd x =ln x |42=ln 4-ln 2=ln 2.]7.1解析 ∵ʃ10(2x k +1)d x =ʃ102x k d x +ʃ10d x=2ʃ10x k d x +x |10=2x k +1k +1|10+1 =2k +1+1=2,∴2k +1=1, 即k =1. 8.12ln 2 解析 ∵⎣⎢⎡⎦⎥⎤12ln 1+x 2′=x 1+x 2, ∴ʃ10x 1+x 2d x =12ln(1+x 2)|10=12ln 2. 9.2(2-1) 解析 20π⎰cos 2x +sin 2x -2sin x cos x d x =20π⎰sin x -cos x2d x=20π⎰|cos x -sin x |d x =40π⎰(cos x -sin x )d x +24ππ⎰(sin x -cos x )d x=(sin x +cos x ) 40π-(cos x +sin x )24ππ=2(2-1).10.解 (1)∵f (x )=sin 5x +x 13,x ∈[-5,5]是奇函数, ∴由定积分的几何意义知 ʃ0-5(sin 5x +x 13)d x =-ʃ50(sin 5x +x 13)d x ,∴ʃ5-5(sin 5x +x 13)d x =ʃ0-5(sin 5x +x 13)d x +ʃ50(sin 5x +x 13)d x =0.(2)∵f (x )=cos 2x +8,x ∈⎣⎢⎡⎦⎥⎤-π2,π2是偶函数,∴22ππ-⎰(cos 2x +8)d x =220π⎰(cos 2x +8)d x=20π⎰2cos 2x d x +20π⎰16d x=20π⎰(1+cos 2x )d x +16x20π=⎝ ⎛⎭⎪⎫x +12sin 2x 20π+16x2π=172π. 11.解20π⎰f (x )d x =20π⎰(a sin x +b cos x )d x=(b sin x -a cos x ) 20π=b +a =4.60π⎰f (x )d x =(b sin x -a cos x )60π=12b -32a +a =7-332, 解得a =3,b =1.所以f (x )=3sin x +cos x =10sin(x +φ),(其中tan φ=13).故f (x )的最大值为10,最小值为-10. 12.A [设f (x )=ax +b ,则ʃ1(ax +b )d x =⎝ ⎛⎭⎪⎫ax 22+bx |10=a2+b ,ʃ10xf (x )d x =ʃ10(ax 2+bx )d x =⎝ ⎛⎭⎪⎫ax 33+bx 22|10=a 3+b 2, ∴⎩⎪⎨⎪⎧a 2+b =5a 3+b 2=176,∴⎩⎪⎨⎪⎧a =4b =3.∴f (x )=4x +3.]13.解 ∵f (x )=x 3+ax 为奇函数,∴ʃ1-1(x 3+ax )d x =0, ∴ʃ1-1(x 3+ax +3a -b )d x =ʃ1-1(x 3+ax )d x +ʃ1-1(3a -b )d x=0+(3a -b )[1-(-1)]=6a -2b . ∴6a -2b =2a +6,即2a -b =3. ① 又f (t )=⎪⎪⎪⎣⎢⎡⎦⎥⎤x 44+a 2x 2+3a -b x t 0 =t 44+at 22+(3a -b )t 为偶函数,∴3a -b =0. ② 由①②得a =-3,b =-9.。
北师大版2017-2018学年高中数学选修2-3全册课时跟踪训练
北师大版2017-2018学年高中数学选修2-3全册课时跟踪训练目录课时跟踪训练(一) 分类加法计数原理和分步乘法计数原理1 课时跟踪训练(二)排列与排列数公式 (4)课时跟踪训练(三)排列的应用 (7)课时跟踪训练(四)组合与组合数公式 (10)课时跟踪训练(五)组合的应用 (13)课时跟踪训练(六)简单计数问题 (16)课时跟踪训练(七)二项式定理 (19)课时跟踪训练(八)二项式系数的性质 (22)课时跟踪训练(九)离散型随机变量及其分布列 (25)课时跟踪训练(十)超几何分布 (28)课时跟踪训练(十一)条件概率与独立事件 (31)课时跟踪训练(十二)二项分布 (35)课时跟踪训练(十三)离散型随机变量的均值 (39)课时跟踪训练(十四)离散型随机变量的方差 (44)课时跟踪训练(十五)正态分布 (48)阶段质量检测(一) (51)阶段质量检测(二) (56)阶段质量检测(三) (64)阶段质量检测(一) 计数原理 (72)阶段质量检测(二) 概率 (78)阶段质量检测(三) 统计案例 (86)阶段质量检测(四) 模块综合检测 (94)课时跟踪训练(一) 分类加法计数原理和分步乘法计数原理1.一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中任取一本,则不同的取法共有( )A .37种B .1 848种C .3种D .6种2.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a +b i ,其中虚数有( )A .30个B .42个C .36个D .35个3.现有高一学生9人,高二学生12人,高三学生7人,自发组织参加数学课外活动小组,从中推选两名来自不同年级的学生做一次活动的主持人,不同的选法共有( )A .756种B .56种C .28种D .255种4.用4种不同的颜色给矩形A ,B ,C ,D 涂色,要求相邻的矩形涂不同的颜色,则不同的涂色方法共有( )A .12种B .24种C .48种D .72种5.为了对某农作物新品种选择最佳生产条件,在分别有3种不同土质,2种不同施肥量,4种不同的种植密度,3种不同的种植时间的因素下进行种植试验,则不同的实验方案共有________种.6.如图,A →C ,有________种不同走法.7.设椭圆x 2a 2+y 2b 2=1,其中a ,b ∈{1,2,3,4,5}.(1)求满足条件的椭圆的个数;(2)如果椭圆的焦点在x 轴上,求椭圆的个数.8.某艺术小组有9人,每人至少会钢琴和小号中的1种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴和会小号的各1人,有多少种不同的选法?答案1.选A根据分类加法计数原理,得不同的取法为N=12+14+11=37(种).2.选C完成这件事分为两个步骤:第一步,虚部b有6种选法;第二步,实部a有6种选法.由分步乘法计数原理知,共有虚数6×6=36 个.3.选D推选两名来自不同年级的两名学生,有N=9×12+12×7+9×7=255(种).4.选D先涂C,有4种涂法,涂D有3种涂法,涂A有3种涂法,涂B有2种涂法.由分步乘法计数原理,共有4×3×3×2=72种涂法.5.解析:根据分步乘法计数原理,不同的方案有N=3×2×4×3=72(种).答案:726.解析:A→C的走法可分两类:第一类:A→C,有2种不同走法;第二类:A→B→C,有2×2=4种不同走法.根据分类加法计数原理,得共有2+4=6种不同走法.答案:67.解:(1)由椭圆的标准方程知a≠b,要确定一个椭圆,只要把a,b一一确定下来这个椭圆就确定了.∴要确定一个椭圆共分两步:第一步确定a,有5种方法;第二步确定b,有4种方法,共有5×4=20个椭圆.(2)要使焦点在x轴上,必须a>b,故可以分类:a=2,3,4,5时,b的取值列表如下:故共有1+2+38.解:由题意可知,在艺术小组9人中,有且仅有1人既会钢琴又会小号(把该人称为“多面手”),只会钢琴的有6人,只会小号的有2人,把选出会钢琴、小号各1人的方法分为两类:第一类:多面手入选,另1人只需从其他8人中任选一个,故这类选法共有8种.第二类:多面手不入选,则会钢琴者只能从6个只会钢琴的人中选出,会小号者也只能从只会小号的2人中选出,故这类选法共有6×2=12种.因此有N=8+12=20种不同的选法.课时跟踪训练(二) 排列与排列数公式1.5A 35+4A 24等于( )A .107B .323C .320D .3482.A 345!等于( ) A.120 B.125 C.15D.1103.设a ∈N +,且a <27,则(27-a )(28-a )·…·(34-a )等于( ) A .A 827-a B .A 27-a34-aC .A 734-aD .A 834-a4.若从4名志愿者中选出2人分别从事翻译、导游两项不同工作,则选派方案共有( ) A .16种 B .6种 C .15种D .12种5.已知9!=362 880,那么A 79=________. 6.给出下列问题:①从1,3,5,7这四个数字中任取两数相乘,可得多少个不同的积? ②从2,4,6,7这四个数字中任取两数相除,可得多少个不同的商?③有三种不同的蔬菜品种,分别种植在三块不同的试验田里,有多少种不同的种植方法?④有个头均不相同的五位同学,从中任选三位同学按左高右低的顺序并排站在一排照相,有多少种不同的站法?上述问题中,是排列问题的是________.(填序号)7.(1)计算4A 48+2A 58A 88-A 59;(2)解方程3A x 8=4A x -19.8.从语文、数学、英语、物理4本书中任意取出3本分给甲、乙、丙三人,每人一本,试将所有不同的分法列举出来.答案1.选D 原式=5×5×4×3+4×4×3=348. 2.选C A 345!=4×3×25×4×3×2×1=15.3.选D 8个括号里面是连续的自然数,依据排列数的概念,选D.4.选D 4名志愿者分别记作甲、乙、丙、丁,则选派方案有:甲乙,甲丙,甲丁,乙甲,乙丙,乙丁,丙甲,丙乙,丙丁,丁甲,丁乙,丁丙,即共有A 24=12种方案.5.解析:A 79=9!(9-7)!=362 8802=181 440. 答案:181 4406.解析:对于①,任取两数相乘,无顺序之分,不是排列问题;对于②,取出的两数,哪一个作除数,哪一个作被除数,其结果不同,与顺序有关,是排列问题;对于③,三种不同的蔬菜品种任一种种植在不同的试验田里,结果不同,是排列问题;对于④,选出的三位同学所站的位置已经确定,不是排列问题.答案:②③7.解:(1)原式=4A 48+2×4A 484×3×2A 48-9A 48=4+824-9=1215=45. (2)由3A x 8=4A x -19,得3×8!(8-x )!=4×9!(10-x )!,化简,得x 2-19x +78=0,解得x 1=6,x 2=13. 又∵x ≤8,且x -1≤9,∴原方程的解是x =6.8.解:从语文、数学、英语、物理4本书中任意取出3本,分给甲、乙、丙三人,每人一本,相当于从4个不同的元素中任意取出3个元素,按“甲、乙、丙”的顺序进行排列,每一个排列就对应着一种分法,所以共有A 34=4×3×2=24种不同的分法.不妨给“语文、数学、英语、物理”编号,依次为1,2,3,4号,画出下列树形图:由树形图可知,按甲乙丙的顺序分的分法为:语数英语数物语英数语英物语物数语物英数语英数语物数英语数英物数物语数物英英语数英语物英数语英数物英物语英物数物语数物语英物数语物数英物英语物英数课时跟踪训练(三)排列的应用1.6个人站成一排,甲、乙、丙3人必须站在一起的所有排列的总数为()A.A66B.3A33C.A33·A33D.A44·A332.(北京高考)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24 B.18C.12 D.63.由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23 145且小于43 521的数共有()A.56个B.57个C.58个D.60个4.(辽宁高考)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为() A.144 B.120C.72 D.245.(大纲全国卷)6个人排成一行,其中甲、乙两人不相邻的不同排法共有________种.(用数字作答)6.有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次,A,B 两位学生去问成绩,老师对A说:“你的名次不知道,但肯定没得第一名”;又对B说:“你是第三名”.请你分析一下,这五位学生的名次排列共有________种不同的可能.7.由A,B,C等7人担任班级的7个班委.(1)若正、副班长两职只能由这三人中选两人担任,有多少种分工方案?(2)若正、副班长两职至少要选三人中的1人担任,有多少种分工方案?8.如图,某伞厂生产的“太阳”牌太阳伞蓬是由太阳光的七种颜色组成的,七种颜色分别涂在伞蓬的八个区域内,且恰有一种颜色涂在相对区域内,则不同的颜色图案的此类太阳伞至多有多少种?答案1.选D甲、乙、丙3人站在一起有A33种站法,把3人作为一个元素与其他3人排列有A44种,共有A33·A44种.2.选B若选0,则0只能在十位,此时组成的奇数的个数是A23;若选2,则2只能在十位或百位,此时组成的奇数的个数是2×A23=12,根据分类加法计数原理得总个数为6+12=18.3.选C首位为3时,有A44=24个;首位为2时,千位为3,则有A12A22+1=5个,千位为4或5时有A12A33=12个;首位为4时,千位为1或2有A12A33=12个,千位为3时,有A12A22+1=5个.由分类加法计数原理知,共有符合条件的数字24+5+12+12+5=58(个).4.选D剩余的3个座位共有4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.5.解析:法一:先把除甲、乙外的4个人全排列,共有A44种方法.再把甲、乙两人插入这4人形成的五个空位中的两个,共有A25种不同的方法.故所有不同的排法共有A44·A25=24×20=480(种).法二:6人排成一行,所有不同的排法有A66=720(种),其中甲、乙相邻的所有不同的排法有A55A22=240(种),所以甲、乙不相邻的不同排法共有720-240=480(种).答案:4806.解析:先安排B有1种方法,再安排A有3种方法,最后安排C,D,E共A33种方法.由分步乘法计数原理知共有3A33=18种方法.答案:187.解:(1)先安排正、副班长有A23种方法,再安排其余职务有A55种方法,依分步乘法计数原理,共有A23A55=720种分工方案.(2)7人的任意分工方案有A77种,A,B,C三人中无一人任正、副班长的分工方案有A24 A55种,因此A,B,C三人中至少有1人任正、副班长的方案有A77-A24A55=3 600种.8.解:如图,对8个区域进行编号,任选一组对称区域(如1与5)同色,用7种颜色涂8个区域的不同涂法有7!种,又由于1与5,2与6,3与7,4与8是对称的,通过旋转后5,6,7,8,1,2,3,4与1,2,3,4,5,6,7,8是同一种涂色,即重复染色2次,故此种图案至多有7!2=2 520种.课时跟踪训练(四)组合与组合数公式1.给出下面几个问题:①10人相互通一次电话,共通多少次电话?②从10个人中选出3个作为代表去开会,有多少种选法?③从10个人中选出3个不同学科的课代表,有多少种选法?④由1,2,3组成无重复数字的两位数.其中是组合问题的有()A.①③B.②④C.①②D.①②④2.若A3n=12C2n,则n等于()A.8 B.5或6C.3或4 D.43.下列四个式子中正确的个数是()(1)C m n=A m nm!;(2)A m n=n A m-1n-1;(3)C m n÷C m+1n =m+1n-m;(4)C m+1n+1=n+1m+1C m n.A.1个B.2个C.3个D.4个4.若C7n+1-C7n=C8n,则n等于()A.12 B.13C.14 D.155.从2,3,5,7四个数中任取两个不同的数相乘,有m个不同的积,任取两个不同的数相除,有n个不同的商,则m∶n=________.6.方程C x28=C3x-828的解为________.7.计算:(1)C58+C98100C77;(2)C05+C15+C25+C35+C45+C55.8.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加; (3)甲、乙、丙三人不能参加; (4)甲、乙、丙三人只能有1人参加.答案1.选C ①是组合问题,因为甲与乙通了一次电话,也就是乙与甲通了一次电话,没有顺序的区别;②是组合问题,因为三个代表之间没有顺序的区别;③是排列问题,因为三个人担任哪一科的课代表是有顺序区别的;而④中选出的元素还需排列,有顺序问题是排列.所以①②是组合问题.2.选A ∵A 3n =12C 2n ,∴n (n -1)(n -2)=12×n (n -1)2.解得n =8. 3.选D 因为C m n =n !m !(n -m )!=1m !·n !(n -m )!=A m nm !,故(1)正确;因为n A m -1n -1=n ·(n -1)!(n -m )!=n !(n -m )!=A m n ,故(2)正确; 因为Cmn÷Cm +1n=n !m !(n -m )÷n !(m +1)!(n -m -1)!=n !m !(n -m )!×(m +1)!(n -m -1)!n !=m +1n -m,故(3)正确.因为C m +1n +1=(n +1)!(m +1)!(n -m )!,n +1m +1C m n =n +1m +1·n !m !(n -m )!=(n +1)!(m +1)!(n -m )!,所以C m +1n +1=n +1m +1C m n,故(4)正确. 4.选C C 7n +1-C 7n =C 8n ,即C 7n +1=C 8n +C 7n =C 8n +1,所以n +1=7+8,即n =14.5.解析:∵m =C 24,n =A 24,∴m ∶n =12. 答案:126.解析:当x =3x -8,解得x =4;当28-x =3x -8,解得x =9. 答案:4或97.解:(1)原式=C 38+C 2100×1=8×7×63×2×1+100×992×1 =56+4 950=5 006.(2)原式=2(C 05+C 15+C 25)=2(C 16+C 25)=2×⎝ ⎛⎭⎪⎫6+5×42×1=32. 8.解:(1)C 512=792种不同的选法.(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有C 29=36种不同的选法. (3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有C 59=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,分两步:第一步从甲、乙、丙中选1人,有C 13=3种选法;第二步从另外的9人中选4人有C 49种选法.共有C 13C 49=378种不同的选法.课时跟踪训练(五)组合的应用1.9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品,抽出产品中至少有2件一等品的抽法种数为()A.81B.60C.6 D.112.以一个正三棱柱的顶点为顶点的四面体有()A.6个B.12个C.18个D.30个3.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85 B.56C.49 D.284.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10 B.11C.12 D.155.(大纲全国卷)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有________种.(用数字作答)6.某校开设9门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门.学校规定,每位同学选修4门,共有________种不同选修方案.(用数字作答) 7.12件产品中,有10件正品,2件次品,从这12件产品中任意抽出3件.(1)共有多少种不同的抽法?(2)抽出的3件中恰好有1件次品的抽法有多少种?(3)抽出的3件中至少有1件次品的抽法有多少种?8.10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现如下结果:(1)4只鞋子没有成双的;(2)4只鞋子恰成两双;(3)4只鞋中有2只成双,另2只不成双.答案1.选A分三类:恰有2件一等品,有C24C25=60种取法;恰有3件一等品,有C34C15=20种取法;恰有4件一等品,有C44=1种取法.∴抽法种数为60+20+1=81.2.选B从6个顶点中任取4个有C46=15种取法,其中四点共面的有3种.所以满足题意的四面体有15-3=12个.3.选C由条件可分为两类:一类是甲、乙两人只有一人入选,有C12·C27=42种不同选法,另一类是甲、乙都入选,有C22·C17=7种不同选法,所以共有42+7=49种不同选法.4.选B与信息0110至多有两个位置上的数字对应相同的信息包括三类:第一类:与信息0110只有两个对应位置上的数字相同有C24=6个;第二类:与信息0110只有一个对应位置上的数字相同有C14=4个;第三类:与信息0110没有一个对应位置上的数字相同有C04=1个.∴与信息0110至多有两个对应位置上的数字相同的信息有6+4+1=11个.5.解析:第一步决出一等奖1名有C16种情况,第二步决出二等奖2名有C25种情况,第三步决出三等奖3名有C33种情况,故可能的决赛结果共有C16C25C33=60种情况.答案:606.解析:分两类完成:第一类,A,B,C三门课程都不选,有C46种不同的选修方案;第二类,A,B,C三门课程恰好选修一门,有C13·C36种不同选修方案.故共有C46+C13·C36=75种不同的选修方案.答案:757.解:(1)有C312=220种抽法.(2)分两步:先从2件次品中抽出1件有C12种方法;再从10件正品中抽出2件有C210种方法,所以共有C12C210=90种抽法.(3)法一(直接法):分两类:即包括恰有1件次品和恰有2件次品两种情况,与(2)小题类似共有C12C210+C22C110=100种抽法.法二(间接法):从12件产品中任意抽出3件有C312种方法,其中抽出的3件全是正品的抽法有C310种方法,所以共有C312-C310=100种抽法.8.解:(1)从10双鞋子中选取4双,有C410种不同选法,每双鞋子中各取一只,分别有2种取法,根据分步乘法计数原理,选取种数为N=C410·24=3 360(种).即4只鞋子没有成双有3 360种不同取法.(2)从10双鞋子中选取2双有C210种取法,所以选取种数为N=C210=45(种),即4只鞋子恰成双有45种不同取法.(3)先选取一双有C110种选法,再从9双鞋中选取2双有C29种选法,每双鞋只取一只各有2种取法.根据分步乘法计数原理,不同取法为N=C110C29·22=1 440(种).课时跟踪训练(六)简单计数问题1.从4名男生和3名女生中选3人分别从事三项不同的工作,若这3人中至少有1名女生,则选派的方案共有()A.108种B.186种C.216种D.270种2.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.C28A23B.C28A66C.C28A26D.C28A253.(大纲全国卷)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种4.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法有() A.40种B.50种C.60种D.70种5.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有________种.6.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法.7.如图,在∠AOB的两边上,分别有3个点和4个点,连同角的顶点共8个点.这8个点能作多少个三角形?8.有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?(1)甲得4本,乙得3本,丙得2本;(2)一人得4本,一人得3本,一人得2本.答案1.选B(1)直接法:从4名男生和3名女生中选出3人,至少有1名女生的选派方案可分为三类:①恰好有1名女生,2名男生,有C13C24A33种方法;②恰好有2名女生,1名男生,有C23C14A33种方法;③恰好有3名女生,有C33A33种方法;由分类加法计数原理得共有C13 C24A33+C23C14A33+C33A33=186种不同的选派方案.(2)间接法:从全部方案数中减去只派男生的方案数,则有A37-A34=186种不同的选派方案.2.选C从后排8人中选2人安排到前排6个位置中的任意两个位置即可,所以选法种数是C28A26.3.选A由分步乘法计数原理,先排第一列,有A33种方法,再排第二列,有2种方法,故共有A33×2=12种排列方法.4.选B先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以共有(15+10)×2=50种不同的乘车方法.5.解析:有两种满足题意的放法:(1)1号盒子里放2个球,2号盒子里放2个球,有C24C22种放法;(2)1号盒子里放1个球,2号盒子里放3个球,有C14C33种放法.综上可得,不同的放球方法共有C24C22+C14C33=10种.答案:106.解析:区域5有4种种法,区域1有3种种法,区域4有2种种法,若1,3同色,区域2有2种种法,或1,3不同色,区域2有1种种法,所以共有4×3×2×(1×2+1×1)=72种不同的种法.答案:727.解:从8个点中,任选3点共有C38种选法,其中有一个5点共线和4点共线,故共有C38-C34-C35=42个不同的三角形.8.解:(1)分三步完成:第一步:从9本不同的书中,任取4本分给甲,有C49种方法;第二步:从余下的5本书中,任取3本给乙,有C35种方法;第三步:把剩下的书给丙,有C22种方法.∴共有不同的分法为C49C35C22=1 260种.(2)分两步完成:第一步:按4本、3本、2本分成三组有C49C35C22种方法;第二步:将分成的三组书分给甲、乙、丙三个人,有A33种方法.∴共有C49C35C22A33=7 560种.课时跟踪训练(七) 二项式定理1.(x -2y )7的展开式中的第4项为( ) A .-280x 4y 3 B .280x 4y 3 C .-35x 4y 3D .35x 4y 32.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610B .27C 410 C .-9C 610D .9C 4103.(大纲全国卷)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ) A .56 B .84 C .112D .1684.已知⎝⎛⎭⎫2x 3+1x n 的展开式中的常数项是第7项,则正整数n 的值为( ) A .7 B .8 C .9D .105.(安徽高考)若⎝ ⎛⎭⎪⎫x +a 3x 8的展开式中x 4的系数为7,则实数a =________. 6.(浙江高考)设二项式⎝ ⎛⎭⎪⎫x -13x 5的展开式中常数项为A ,则A =________.7.⎝⎛⎭⎪⎫x +23x n展开式第9项与第10项二项式系数相等,求x 的一次项系数.8.在⎝⎛⎭⎪⎫2x 2-13x 8的展开式中,求:(1)第5项的二项式系数及第5项的系数; (2)倒数第3项.答案1.选A (x -2y )7的展开式中的第4项为T 4=C 37x 4(-2y )3=(-2)3C 37x 4y 3=-280x 4y 3. 2.选D T k +1=C k 10·x 10-k (-3)k ,令10-k =6,知k =4,∴T 5=C 410x 6(-3)4,即x 6的系数为9C 410.3.选D 在(1+x )8展开式中含x 2的项为C 28x 2=28x 2,(1+y )4展开式中含y 2的项为C 24y2=6y 2,所以x 2y 2的系数为28×6=168,故选D.4.选B ⎝⎛⎭⎫2x 3+1x n 的展开式的通项T r +1=C r n 2n -r x 3n -4r,由r =6时,3n -4r =0.得n =8.5.解析:二项式⎝⎛⎭⎪⎫x +a 3x 8展开式的通项为T r +1=C r 8a rx 8-43r ,令8-43r =4,可得r =3,故C 38a 3=7,易得a =12. 答案:126.解析:T r +1=(-1)r C r 5x 15-5r 6,令15-5r =0,得r =3,故常数项A =(-1)3C 35=-10.答案:-107.解:由题意知,C 8n =C 9n .∴n =17.∴T r +1=C r 17x 17-r 2·2r ·x -r 3=C r 17·2r ·x 17-r 2-r 3. ∴17-r 2-r3=1. 解得r =9.∴T r +1=C 917·x 4·29·x -3, 即T 10=C 917·29·x . 其一次项系数为C 917·29. 8.解:法一:利用二项式的展开式解决.(1)⎝ ⎛⎭⎪⎫2x 2-13x 8=(2x 2)8-C 18(2x 2)7·13x+C 28(2x 2)6·⎝ ⎛⎭⎪⎫13x 2-C 38(2x 2)5·⎝ ⎛⎭⎪⎫13x 3+C 48(2x 2)4·⎝ ⎛⎭⎪⎫13x 4-C 58(2x 2)3·⎝ ⎛⎭⎪⎫13x 5+C 68(2x 2)2·⎝ ⎛⎭⎪⎫13x 6-C 78(2x 2)·⎝ ⎛⎭⎪⎫13x 7+C 88⎝ ⎛⎭⎪⎫13x 8,则第5项的二项式系数为C 48=70,第5项的系数C 48·24=1 120. (2)由(1)中⎝ ⎛⎭⎪⎫2x 2-13x 8的展开式可知倒数第3项为C 68·(2x 2)2·⎝ ⎛⎭⎪⎫13x 6=112x 2. 法二:利用二项展开式的通项公式.(1)T 5=C 48(2x 2)8-4·⎝⎛⎭⎪⎫-13x 4=C 48·24·x 203, 则第5项的二项式系数是C 48=70, 第5项的系数是C 48·24=1 120. (2)展开式中的倒数第3项即为第7项, T 7=C 68·(2x 2)8-6·⎝⎛⎭⎪⎫-13x 6=112x 2.课时跟踪训练(八) 二项式系数的性质1.(x -1)11展开式中x 的偶次项系数之和是( ) A .-2 048 B .-1 023 C .-1 024D .1 0242.若C 1n x +C 2n x 2+…+C n n x n能被7整除,则x ,n 的值可能为( )A .x =4,n =3B .x =4,n =4C .x =5,n =4D .x =6,n =53.若⎝⎛⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( ) A .10 B .20 C .30D .1204.在⎝⎛⎭⎫ax -1x 4的展开式中各项系数之和是16.则a 的值是( ) A .2 B .3 C .4D .-1或35.若(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为________.6.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为________. 7.已知(1+3x )n 的展开式中,末三项的二项式系数的和等于121,求展开式中二项式系数最大的项.8.对二项式(1-x )10,(1)展开式的中间项是第几项?写出这一项. (2)求展开式中各二项式系数之和.(3)求展开式中除常数项外,其余各项的系数和.答案1.选C 令f (x )=(x -1)11,偶次项系数之和是f (1)+f (-1)2=(-2)112=-1 024.2.选C 由C 1n x +C 2n x 2+…+C n n x n =(1+x )n-1分别将选项A ,B ,C ,D 代入检验知,仅有x =5,n =4适合.3.选B 由2n =64,得n =6,∴T k +1=C k 6x 6-k ⎝⎛⎭⎫1x k =C k 6x6-2k(0≤k ≤6,k ∈N ).由6-2k =0,得k =3.∴T 4=C 36=20.4.选D 由题意可得(a -1)4=16,a -1=±2, 解得a =-1或a =3.5.解析:令x =-1,则原式可化为[(-1)2+1][2×(-1)+1]9=-2=a 0+a 1(2-1)+…+a 11(2-1)11,∴a 0+a 1+a 2+…+a 11=-2.答案:-26.解析:(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 2+a 4+a 1+a 3)·(a 0+a 2+a 4-a 1-a 3)=(a 0+a 1+a 2+a 3+a 4)·(a 0-a 1+a 2-a 3+a 4),令x =1,则a 0+a 1+a 2+a 3+a 4=(2+3)4,令x =-1,则a 0-a 1+a 2-a 3+a 4=(-2+3)4=(2-3)4,于是(2+3)4·(2-3)4=1.答案:17.解:由题意知C n n +C n -1n +C n -2n =121,即C 0n +C 1n +C 2n =121,∴1+n +n (n -1)2=121,即n 2+n -240=0,解得n =15或-16(舍).∴在(1+3x )15的展开式中二项式系数最大的项是第八、九两项.且T 8=C 715(3x )7=C 71537x 7, T 9=C 815(3x )8=C 81538x 8.8.解:(1)展开式共11项,中间项为第6项,T 6=C 510(-x )5=-252x 5. (2)C 010+C 110+C 210+…+C 1010=210=1 024.(3)设(1-x )10=a 0+a 1x +a 2x 2+…+a 10x 10. 令x =1,得a 0+a 1+a 2+…+a 10=0. 令x =0,得a 0=1.∴a1+a2+…+a10=-1.课时跟踪训练(九)离散型随机变量及其分布列1.一个袋子中有质量相等的红、黄、绿、白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是()A.小球滚出的最大距离B.倒出小球所需的时间C.倒出的三个小球的质量之和D.倒出的三个小球的颜色种数2.袋中有大小相同的5个钢球,分别标有1,2,3,4,5五个号码.在有放回地抽取条件下依次取出2个球,设两个球号码之和为随机变量X,则X所有可能值的个数是() A.25B.10C.9 D.53.设随机变量X等可能取值1,2,3,…,n,若P(X<4)=0.3,则n=()A.3 B.4C.10 D.不确定4.设随机变量X等可能地取值1,2,3,4,…,10.又设随机变量Y=2X-1,P(Y<6)的值为()A.0.3 B.0.5C.0.1 D.0.25.随机变量Y的分布列如下:则(1)x=(3)P(1<Y≤4)=________.6.随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,其中C为常数,则P(X≥2)=________.7.若离散型随机变量X的分布列为:求常数a8.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)记“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举A 包含的基本事件; (2)设X =m 2,求X 的分布列.答案1.选D A ,B 不能一一列举,不是离散型随机变量,而C 是常量,是个确定值,D 可能取1,2,3,是离散型随机变量.2.选C 第一次可取1,2,3,4,5中的任意一个,由于是有放回抽取,第二次也可取1,2,3,4,5中的任何一个,两次的号码和可能为2,3,4,5,6,7,8,9,10.3.选C ∵X 等可能取1,2,3,…,n , ∴X 的每个值的概率均为1n.由题意知P (X <4)=P (X =1)+P (X =2)+P (X =3)=3n =0.3,∴n =10.4.选A Y <6,即2X -1<6,∴X <3.5.X =1,2,3,P =310.5.解析:(1)由 i =16p i =1,∴x =0.1.(2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6) =0.1+0.15+0.2=0.45.(3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4) =0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.556.解析:由P (X =1)+P (X =2)+P (X =3)=1,得C 1×2+C 2×3+C 3×4=1,∴C =43.P (X ≥2)=P (X =2)+P (X =3)=432×3+433×4=13.答案:137.解:由离散型随机变量的性质得 ⎩⎪⎨⎪⎧9a 2-a +3-8a =1,0≤9a 2-a ≤1,0≤3-8a ≤1,解得a =13,或a =23(舍).所以随机变量X 的分布列为:8.解:(1)由x 2-x -6≤0,得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0,所以A 包含的基本事件为(-2,2),(2,-2),(-1,1),(1,-1),(0,0).(2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以X =m 2的所有不同取值为0,1,4,9, 且有P (X =0)=16,P (X =1)=26=13,P (X =4)=26=13,P (X =9)=16.故X 的分布列为课时跟踪训练(十) 超几何分布1.一个小组有6人,任选2名代表,求其中甲当选的概率是( ) A.12 B.13 C.14D.152.在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少摸到2个黑球的概率等于( )A.27 B.38 C.37D.9283.某12人的兴趣小组中,有5名“三好生”,现从中任意选6人参加竞赛,用X 表示这6人中“三好生”的人数,则C 35C 37C 612是表示的概率是( )A .P (X =2)B .P (X =3)C .P (X ≤2)D .P (X ≤3)4.从一副不含大、小王的52张扑克牌中任意抽出5张,则至少有3张A 的概率为( )A.C 34C 248C 552B.C 348C 24C 552C .1-C 148C 44C 552D.C 34C 248+C 44C 148C 5525.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为________.6.知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,小张抽4题,则小张抽到选择题至少2道的概率为________.7.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,求X 的分布列.8.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的分布列. (2)顾客乙从10张奖券中任意抽取2张. ①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值Y 元,求Y 的分布列.答案1.选B 设X 表示2名代表中有甲的个数,X 的可能取值为0,1, 由题意知X 服从超几何分布,其中参数为N =6,M =1,n =2,则P (X =1)=C 11C 15C 26=13.2.选A 黑球的个数X 服从超几何分布,则至少摸到2个黑球的概率P (X ≥2)=P (X =2)+P (X =3)=C 23C 15C 38+C 33C 05C 38=27.3.选B 6人中“三好生”的人数X 服从超几何分布,其中参数为N =12,M =5,n=6,所以P (X =3)=C 35C 37C 612.4.选D 设X 为抽出的5张扑克牌中含A 的张数.则P (X ≥3)=P (X =3)+P (X =4)=C 34C 248C 552+C 44C 148C 552.5.解析:至少有1名女生当选包括1男1女,2女两种情况,概率为C 13C 17+C 23C 210=815. 答案:8156.解析:由题意知小张抽到选择题数X 服从超几何分布(N =10,M =6,n =4), 小张抽到选择题至少2道的概率为:P (X ≥2)=P (X =2)+P (X =3)+P (X =4)=C 26C 24C 410+C 36C 14C 410+C 46C 04C 410=3742.答案:37427.解:由题意知,旧球个数X 的所有可能取值为3,4,5,6.则P (X =3)=C 33C 312=1220,P (X =4)=C 23C 19C 312=27220,P (X =5)=C 29C 13C 312=108220=2755,P (X =6)=C 39C 312=84220=2155.所以X 的分布列为8.解:(1)抽奖一次,只有中奖和不中奖两种情况,故X 的取值只有0和1两种情况. P (X =1)=C 14C 110=410=25,则P (X =0)=1-P (X =1)=1-25=35.因此X 的分布列为(2)①顾客乙中奖可分为互斥的两类:所抽取的2张奖券中有1张中奖或2张都中奖.故所求概率P =C 14C 16+C 24C 06C 210=3045=23. ②Y 的所有可能取值为0,10,20,50,60,且P (Y =0)=C 04C 26C 210=1545=13,P (Y =10)=C 13C 16C 210=1845=25,P (Y =20)=C 23C 06C 210=345=115,P (Y =50)=C 11C 16C 210=645=215,P (Y =60)=C 11C 13C 210=345=115.因此随机变量Y 的分布列为课时跟踪训练(十一) 条件概率与独立事件1.抛掷一颗骰子一次,A 表示事件:“出现偶数点”,B 表示事件:“出现3点或6点”,则事件A 与B 的关系是( )A .相互互斥事件B .相互独立事件C .既相互互斥又相互独立事件D .既不互斥又不独立事件2.设A ,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为( )A.25 B.35 C.45D.3103.某农业科技站对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地取出一粒,则这粒水稻种子发芽能成长为幼苗的概率为( )A .0.02B .0.08C .0.18D .0.724.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为15,身体关节构造合格的概率为14,从中任挑一儿童,这两项至少有一项合格的概率是(假定体型与身体关节构造合格与否相互之间没有影响)( )A.1320B.15C.14D.255.有一个数学难题,在半小时内,甲能解决的概率是12,乙能解决的概率是13,两人试图独立地在半小时内解决它,则两人都未解决的概率为________,问题得到解决的概率为________.6.从编号为1,2,…,10的10个大小相同的球中任取4个,已知选出4号球的条件下,选出球的最大号码为6的概率为________.7.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1。
北师大版高中数学选修2-2课时训练微积分基本定理
课堂练习(十六)(建议用时:60分钟)[基础达标练]一、选择题1.⎠⎛241xd x 等于( )A .-2ln 2B .2ln 2C .-ln 2D .ln 2D [⎠⎛241xd x =ln x |42=ln 4-ln 2=ln 2.]2.设a =⎠⎛01x 13d x ,b =⎠⎛01x 2d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系是( )A .a >b >cB .c>a >bC .a >c>bD .c>b >aA [∵a =⎠⎛01x 13d x =x 4343⎪⎪⎪1=34, b =⎠⎛01x 2d x =x 33⎪⎪⎪1=13,c =⎠⎛01x 3d x =x 44⎪⎪⎪1=14, ∴a >b >c.]3.已知⎠⎛01(kx +1)d x =k ,则实数k =( )A .2B .-2C .1D .-1A [⎠⎛01(kx +1)d x =⎝ ⎛⎭⎪⎫12kx 2+x | 10=12k +1=k ,∴k =2.]4.已知f (x )=2-|x |,则⎠⎛-12f (x )d x =( )A .3B .4 C.72D.92C [因为f (x )=2-|x |=⎩⎪⎨⎪⎧2+x ,x ≤0,2-x ,x ≥0,所以⎠⎛-12f (x )d x =⎠⎛0-1(2+x )d x +⎠⎛02(2-x )d x =⎝ ⎛⎭⎪⎫2x +x 22| 0-1+⎝ ⎛⎭⎪⎫2x -x 22| 20=32+2=72.]5.设f (x )=⎩⎪⎨⎪⎧x 2,0≤x <1,2-x ,1<x ≤2,则⎠⎛02f (x )d x =( )A.23 B.34 C.45D.56D [⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x=13x 3| 10+⎝ ⎛⎭⎪⎫2x -12x 2 ⎪⎪⎪21=13+12=56.] 二、填空题6.若⎠⎛0k(2x -3x 2)d x =0,则k 等于__________.1 [⎠⎛0k(2x -3x 2)d x =(x 2-x 3)|k0=k 2-k 3=0,∴k =0(舍)或k =1.]7.⎠⎜⎜⎛-π2π2(1+cos x )d x 等于________. π+2 [∵(x +sin x )′=1+cos x ,8.已知f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,若f (f (1))=1,则a =__________.1 [因为f (1)=lg 1=0, 且⎠⎛0a3t 2dt =t 3|a0=a 3-03=a 3,所以f (0)=0+a 3=1,所以a =1.] 三、解答题9.已知f (x )=⎠⎛x-a (12t +4a )dt ,F (a )=⎠⎛01[f (x )+3a 2]d x ,求函数F (a )的最小值.[解] 因为f (x )=⎠⎛-a x(12t +4a )dt =(6t 2+4at )⎪⎪⎪x-a=6x 2+4ax -(6a 2-4a 2)=6x 2+4ax -2a 2,F (a )=⎠⎛01[f (x )+3a 2]d x =⎠⎛01(6x 2+4ax +a 2)d x=(2x 3+2ax 2+a 2x )⎪⎪⎪1=2+2a +a 2=(a +1)2+1≥1.∴当a =-1时,F (a )有最小值1.10.已知f (x )是一次函数,且⎠⎛01f (x )d x =1.(1)如果f (x )的图像经过点(3,4),求f (x )的解析式; (2)求证:⎠⎛01[f (x )]2d x >1.[解] (1)设f (x )的解析式为f (x )=kx +b (k ≠0).因为⎠⎛01f (x )d x =⎠⎛10(kx +b )d x =⎝ ⎛⎭⎪⎫k 2x 2+bx | 10=k2+b . 所以k2+b =1.①又因为f (x )的图像经过点(3,4). 所以3k +b =4. ②由①②解得k =65,b =25.所以y =65x +25.(2)证明:因为⎠⎛01 [f (x )]2d x =⎠⎛01(kx +b )2d x=⎠⎛01(k 2x 2+2kbx +b 2)d x=⎝ ⎛⎭⎪⎫13k 2x 3+kbx 2+b 2x | 10 =13k 2+kb +b 2, 由①可得k =2(1-b ). 因为k ≠0,所以b ≠1. 所以⎠⎛01[f (x )]2d x=43(1-b )2+2b (1-b )+b 2 =13(b -1)2+1>1. [能力提升练]1.已知等比数列{}a n ,且a 4+a 8=⎠⎛024-x 2d x ,则a 6(a 2+2a 6+a 10)的值为( ) A .π2B .4C .πD .-9πA [⎠⎛24-x 2d x 表示以原点为圆心,半径r =2在第一象限的面积,因此⎠⎛24-x 2d x =π,a 6(a 2+2a 6+a 10)=a 6·a 2+2a 6·a 6+a 6·a 10=a 24+2a 4·a 8+a 28=(a 4+a 8)2=π2,故选A .]2.⎠⎛01(x -e x)d x 等于( )A.32-e B.12-e C.32+e D.12+e A [⎠⎛01(x -e x )d x =⎝⎛⎭⎪⎫12x 2-e x | 10=⎝⎛⎭⎪⎫12-e -(-1)=32-e.]3.计算:⎠⎛-22(2|x |+1)d x =__________.12 [⎠⎛-22(2|x |+1)d x =⎠⎛-2(-2x +1)d x +⎠⎛02(2x +1)d x =(-x 2+x )|0-2+(x 2+x )|20 =-(-4-2)+(4+2)=12.]4.已知⎠⎛-11(x 3+ax +3a -b )d x =2a +6且f (t )=⎠⎛0t(x 3+ax +3a -b )d x 为偶函数,则a =________,b =________.-3 -9 [∵f (x )=x 3+ax 是奇函数,∴⎠⎛-11(x 3+ax )d x =0,∴⎠⎛-11(x 3+ax +3a -b )d x=⎠⎛-11(x 3+ax )d x +⎠⎛-11(3a -b )d x=0+(3a -b )[1-(-1)] =6a -2b ,∴6a -2b =2a +6,即2a -b =3.①又f (t )=⎠⎛t0(x 3+ax +3a -b )d x =⎣⎢⎡⎦⎥⎤x 44+ax 22+(3a -b )x t |0=t 44+a t22+(3a -b )t 为偶函数,∴3a -b =0. ②由①②得a =-3,b =-9.]5.定义F (x ,y )=(1+x )y ,x ,y ∈(0,+∞).令函数f (x )=F (1,log 2(x 2-4x +9))的图像为曲线C 1,曲线C 1与y 轴交于点A (0,m ),过坐标原点O 作曲线C 1的切线,切点为B (n ,t )(n >0),设曲线C 1在点A ,B 之间的曲线段与O A ,O B 所围成图形的面积为S ,求S 的值.[解] ∵F (x ,y )=(1+x )y, ∴f (x )=F (1,log 2(x 2-4x +9)) =2log 2(x 2-4x +9)=x 2-4x +9, 故A (0,9),f ′(x )=2x -4. 又∵过O 作C 1的切线, 切点为B (n ,t )(n >0), ∴⎩⎪⎨⎪⎧t =n 2-4n +9,tn=2n -4,解得B (3,6).∴S =⎠⎛03(x 2-4x +9-2x )d x=⎝ ⎛⎭⎪⎫13x 3-3x 2+9x ⎪⎪⎪3=9.。
高中数学选修2-2 北师大版 微积分基本定理 课时作业(含答案)
2015-2016学年高中数学 第4章 2微积分基本定理课时作业 北师大版选修2-2一、选择题1.⎠⎜⎜⎛-π2π2 (1+cos x )d x 等于( ) A .π B .2 C .π-2 D .π+2[答案] D[分析] 利用微积分基本定理求定积分.[解析]⎠⎜⎜⎛-π2π2 (1+cos x )d x =(x +sin x )⎪⎪⎪⎪π2 -π2=(π2+sin π2)-[-π2+sin(-π2)]=π+2,故选D.2.(2014·昆明一中模拟)曲线y =sin x (0≤x ≤π)与x 轴所围成图形的面积为( ) A .1 B .2 C .π2D .π[答案] B[解析] ⎠⎛0πsin x d x =(-cos x )|π0=-cos π+cos0=2.3.若⎠⎛1a (2x +1x)d x =3+ln2,则a 的值是( )A .6B .4C .3D .2[答案] D[解析] ⎠⎛1a (2x +1x )d x =⎠⎛1a 2x d x +⎠⎛1a 1xd x=x 2|a 1+ln x |a 1=a 2-1+ln a =3+ln2. ∴a =2.4.(2014·山东理,6)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A .2 2B .4 2C .2D .4[答案] D [解析] 如图所示⎩⎪⎨⎪⎧y =4x y =x3∴第一象限的交点坐标为(2,8) 由定积分的几何意义:S =⎠⎛02(4x -x 3)dx=(2x 2-x 44)|20=8-4=4.求曲边图形的面积通常是应用定积分计算.5.(2014·大连模拟)已知f (x )为偶函数且⎠⎛06f (x )d x =8,则⎠⎛-66f (x )d x 等于( )A .0B .4C .8D .16[答案] D[解析] 因为f (x )为偶函数,图像关于y 轴对称,所以⎠⎛-66f (x )d x =2⎠⎛06f (x )d x =8×2=16.二、填空题6.若⎠⎛0T x 2d x =9,则常数T 的值为________.[答案] 3[解析] 由⎠⎛0T x 2dx =x 33|T0=T 33=9,解得T =3.7.已知函数f (x )=3x 2+2x +1,若⎠⎛-11f (x )d x =2f (a )成立,则a =________.。
2017-2018学年北师大版高中数学选修2-1同步配套课时跟踪训练含解析
2017-2018学年高中数学北师大版选修2-1同步配套课时跟踪训练目录课时跟踪训练(一) 命题 (1)课时跟踪训练(二)充分条件与必要条件 (4)课时跟踪训练(三)全称量词与存在量词 (8)课时跟踪训练(四)逻辑联结词“且”“或”“非” (11)课时跟踪训练(五)从平面向量到空间向量 (15)课时跟踪训练(六)空间向量的运算 (18)课时跟踪训练(七)空间向量的标准正交分解与坐标表示空间向量基本定理 (22)课时跟踪训练(八)空间向量运算的坐标表示 (26)课时跟踪训练(九)空间向量与平行关系 (29)课时跟踪训练(十)空间向量与垂直关系 (33)课时跟踪训练(十一)直线间的夹角、平面间的夹角 (38)课时跟踪训练(十二)直线与平面的夹角 (43)课时跟踪训练(十三)距离的计算 (48)课时跟踪训练(十四)椭圆及其标准方程 (54)课时跟踪训练(十五)椭圆的简单性质 (58)课时跟踪训练(十六)抛物线及其标准方程 (62)课时跟踪训练(十七)抛物线的简单性质 (65)课时跟踪训练(十八)双曲线及其标准方程 (68)课时跟踪训练(十九)双曲线的简单性质 (71)课时跟踪训练(二十)曲线与方程 (75)课时跟踪训练(二十一)圆锥曲线的共同特征直线与圆锥曲线的交点 (78)课时跟踪训练(一) 命 题1.命题“若x >1,则x >-1”的否命题是( ) A .若x >1,则x ≤-1 B .若x ≤1,则x >-1 C .若x ≤1,则x ≤-1 D .若x <1,则x <-12.给出下列三个命题:( )①“全等三角形的面积相等”的否命题; ②“若lg x 2=0,则x =-1”的逆命题;③“若x ≠y ,或x ≠-y ,则|x |≠|y |”的逆否命题. 其中真命题的个数是( ) A .0 B .1 C .2D .33.(湖南高考)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π44.已知命题“若ab ≤0,则a ≤0或b ≤0”,则下列结论正确的是( ) A .真命题,否命题:“若ab >0,则a >0或b >0” B .真命题,否命题:“若ab >0,则a >0且b >0” C .假命题,否命题:“若ab >0,则a >0或b >0” D .假命题,否命题:“若ab >0,则a >0且b >0”5.已知命题:弦的垂直平分线经过圆心,并平分弦所对的弧.若把上述命题改为“若p ,则q ”的形式,则p 是____________________________,q 是__________________________.6.命题“若x 2<4,则-2<x <2”的逆否命题为________________,为________(填“真、假”)命题.7.把命题“两条平行直线不相交”写成“若p ,则q ”的形式,并写出其逆命题、否命题、逆否命题.8.证明:已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.答 案1.选C 原命题的否命题是对条件“x >1”和结论“x >-1”同时否定,即“若x ≤1,则x ≤-1”,故选C.2.选B ①的否命题是“不全等的三角形面积不相等”,它是假命题;②的逆命题是“若x =-1,则lg x 2=0”,它是真命题;③的逆否命题是“若|x |=|y |,则x =y 且x =-y ”,它是假命题,故选B.3.选C 以否定的结论作条件、否定的条件作结论得出的命题为逆否命题,即“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”. 4.选B 逆否命题“若a >0且b >0,则ab >0”,显然为真命题,又原命题与逆否命题等价,故原命题为真命题.否命题为“若ab >0,则a >0且b >0”,故选B.5.答案:一条直线是弦的垂直平分线 这条直线经过圆心且平分弦所对的弧 6.答案:若x ≥2或x ≤-2,则x 2≥4 真7.解:原命题:若直线l 1与l 2平行,则l 1与l 2不相交; 逆命题:若直线l 1与l 2不相交,则l 1与l 2平行; 否命题:若直线l 1与l 2不平行, 则l 1与l 2相交; 逆否命题:若直线l 1与l 2相交,则l 1与l 2不平行.8.证明:法一:原命题的逆否命题为“已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若a +b <0,则f (a )+f (b )<f (-a )+f (-b )”.∵a +b <0,∴a <-b ,b <-a . 又∵f (x )在(-∞,+∞)上是增函数, ∴f (a )<f (-b ),f (b )<f (-a ).∴f(a)+f(b)<f(-a)+f(-b),即逆否命题为真命题.∴原命题为真命题.法二:假设a+b<0,则a<-b,b<-a,又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a).∴f(a)+f(b)<f(-a)+f(-b).这与已知条件f(a)+f(b)≥f(-a)+f(-b)相矛盾.因此假设不成立,故a+b≥0.课时跟踪训练(二) 充分条件与必要条件1.“1<x <2”是“x <2”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2.函数f (x )=x 2+mx +1的图像关于直线x =1对称的充要条件是( ) A .m =-2 B .m =2 C .m =-1D .m =13.已知命题p :“a ,b ,c 成等差数列”,命题q :“a b +cb =2”,则命题p 是命题q的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件4.“a >3”是“函数f (x )=ax +2在区间[-1,2]上存在零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.直线l :x -y +m =0与圆C :(x +1)2+y 2=2有公共点的充要条件是_________ _______________.6.在下列各项中选择一项填空: ①充分不必要条件 ②必要不充分条件 ③充要条件④既不充分也不必要条件(1)记集合A ={-1,p,2},B ={2,3},则“p =3”是“A ∩B =B ”的________; (2)“a =1”是“函数f (x )=|2x -a |在区间[12,+∞)上为增函数”的________.7.指出下列各组命题中,p 是q 的什么条件(充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件)?(1)p :△ABC 中,b 2>a 2+c 2,q :△ABC 为钝角三角形; (2)p :△ABC 有两个角相等,q :△ABC 是正三角形; (3)若a ,b ∈R ,p :a 2+b 2=0,q :a =b =0; (4)p :△ABC 中,A ≠30°,q :sin A ≠12.8.求方程ax 2+2x +1=0有两个不相等的负实根的充要条件.答 案1.选A 当1<x <2时,必有x <2;而x <2时,如x =0,推不出1<x <2,所以“1<x <2”是“x <2”的充分不必要条件.2.选A 函数f (x )=x 2+mx +1的图像关于x =1对称⇔-m2=1⇔m =-2.3.选A 若a b +cb =2,则a +c =2b ,由此可得a ,b ,c 成等差数列;当a ,b ,c 成等差数列时,可得a +c =2b ,但不一定得出a b +cb =2,如a =-1,b =0,c =1.所以命题p 是命题q 的必要不充分条件,故选A.4.选A 当a >3时,f (-1)f (2)=(-a +2)(2a +2)<0,即函数f (x )=ax +2在区间[-1,2]上存在零点;但当函数f (x )=ax +2在区间[-1,2]上存在零点;不一定是a >3,如当a =-3时,函数f (x )=ax +2=-3x +2在区间[-1,2]上存在零点.所以“a >3”是“函数f (x )=ax +2在区间[-1,2]上存在零点”的充分不必要条件,故选A.5.解析:直线l 与圆C 有公共点⇔|-1+m |2≤2⇔|m -1|≤2⇔-1≤m ≤3.答案:m ∈[-1,3]6.解析:(1)当p =3时,A ={-1,2,3},此时A ∩B =B ;若A ∩B =B ,则必有p =3.因此“p =3”是“A ∩B =B ”的充要条件.(2)当a =1时,f (x )=|2x -a |=|2x -1|在⎣⎡⎭⎫12,+∞上是增函数;但由f (x )=|2x -a |在区间[12,+∞)上是增函数不能得到a =1,如当a =0时,函数f (x )=|2x -a |=|2x |在区间⎣⎡⎭⎫12,+∞上是增函数.因此“a =1”是“函数f (x )=|2x -a |在区间⎣⎡⎭⎫12,+∞上为增函数”的充分不必要条件. 答案:(1)③ (2)①7.解:(1)△ABC 中,∵b 2>a 2+c 2,∴cos B =a 2+c 2-b 22ac<0,∴B 为钝角,即△ABC 为钝角三角形,反之若△ABC 为钝角三角形,B 可能为锐角,这时b 2<a 2+c 2. ∴p ⇒q ,q ⇒/ p ,故p 是q 的充分不必要条件. (2)有两个角相等不一定是等边三角形,反之一定成立, ∴p ⇒/ q ,q ⇒p ,故p 是q 的必要不充分条件.(3)若a 2+b 2=0,则a =b =0,故p ⇒q ;若a =b =0,则a 2+b 2=0,即q ⇒p ,所以p 是q 的充要条件.(4)转化为△ABC 中sin A =12是A =30°的什么条件.∵A =30°⇒sin A =12,但是sin A =12⇒/ A =30°,∴△ABC 中sin A =12是A =30°的必要不充分条件.即p 是q 的必要不充分条件.8.解:①当a =0时,方程为一元一次方程,其根为x =-12,不符合要求;②当a ≠0时,方程ax 2+2x +1=0为一元二次方程,有两个不相等的负实根的充要条件为⎩⎪⎨⎪⎧4-4a >0,-2a <0,1a >0,解得0<a <1.所以ax 2+2x +1=0有两个不相等的负实根的充要条件是0<a <1.课时跟踪训练(三)全称量词与存在量词1.将命题“x2+y2≥2xy”改写成全称命题为()A.对任意x,y∈R,都有x2+y2≥2xy成立B.存在x,y∈R,使x2+y2≥2xy成立C.对任意x>0,y>0,都有x2+y2≥2xy成立D.存在x<0,y<0,使x2+y2≤2xy成立2.“关于x的不等式f(x)>0有解”等价于()A.存在x∈R,使得f(x)>0成立B.存在x∈R,使得f(x)≤0成立C.对任意x∈R,使得f(x)>0成立D.对任意x∈R,f(x)≤0成立3.下列命题为真命题的是()A.对任意x∈R,都有cos x<2成立B.存在x∈Z,使log2(3x-1)<0成立C.对任意x>0,都有3x>3成立D.存在x∈Q,使方程2x-2=0有解4.给出四个命题:①末位数字是偶数的整数能被2整除;②有的菱形是正方形;③存在实数x,使x>0;④对于任意实数x,2x+1都是奇数.下列说法正确的是() A.四个命题都是真命题B.①②是全称命题C.②③是特称命题D.四个命题中有两个假命题5.下列命题中全称命题是__________;特称命题是________.①正方形的四条边相等;②有两个角是45°的三角形是等腰直角三角形;③正数的平方根不等于0;④至少有一个正整数是偶数.6.命题“偶函数的图像关于y轴对称”的否定是_________________________________ ______________________________.7.写出下列命题的否定并判断其真假.(1)有的四边形没有外接圆;(2)某些梯形的对角线互相平分;(3)被8整除的数能被4整除.8.(1)若命题“对于任意实数x ,不等式sin x +cos x >m 恒成立”是真命题,求实数m 的取值范围;(2)若命题“存在实数x ,使不等式sin x +cos x >m 有解”是真命题,求实数m 的取值范围.答 案1.选A 本题中的命题仅保留了结论,省略了条件“任意实数x ,y ”,改成全称命题为:对任意实数x ,y ,都有x 2+y 2≥2xy 成立.2.选A “关于x 的不等式f (x )>0有解”等价于“存在实数x ,使得f (x )>0成立”,故选A.3.选A A 中,由于函数y =cos x 的最大值是1,又1<2,所以A 是真命题;B 中,log 2(3x -1)<0⇔0<3x -1<1⇔13<x <23,所以B 是假命题;C 中,当x =1时,31=3,所以C 是假命题;D 中,2x -2=0⇔x =2∈/ Q ,所以D 是假命题,故选A.4.选C ①④为全称命题;②③为特称命题;①②③为真命题;④为假命题. 5.解析:①③是全称命题,②④是特称命题. 答案:①③ ②④6.解析:本题中的命题是全称命题,省略了全称量词,加上全称量词后该命题可以叙述为:所有偶函数的图像关于y 轴对称.将命题中的全称量词“所有”改为存在量词“有些”,结论“关于y 轴对称”改为“关于y 轴不对称”,所以该命题的否定是“有些偶函数的图像关于y 轴不对称”.答案:有些偶函数的图像关于y 轴不对称7.解:(1)命题的否定:所有的四边形都有外接圆,是假命题. (2)命题的否定:任一个梯形的对角线不互相平分,是真命题. (3)命题的否定:存在一个数能被8整除,但不能被4整除,是假命题. 8.解:(1)令y =sin x +cos x ,x ∈R , ∵y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4≥-2, 又∵任意x ∈R ,sin x +cos x >m 恒成立, ∴只要m <-2即可.∴所求m 的取值范围是(-∞,-2). (2)令y =sin x +cos x ,x ∈R ,∵y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4∈[-2,2]. 又∵存在x ∈R ,使sin x +cos x >m 有解,∴只要m <2即可,∴所求m 的取值范围是(-∞,2).课时跟踪训练(四)逻辑联结词“且”“或”“非”1.已知命题p,q,若命题綈p是假命题,命题p∨q是真命题,则()A.p是真命题,q是真命题B.p是假命题,q是真命题C.p是真命题,q可能是真命题也可能是假命题D.p是假命题,q可能是真命题也可能是假命题2.对命题p:1∈{1},命题q:1∉∅,下列说法正确的是()A.p且q为假命题B.p或q为假命题C.非p为真命题D.非q为假命题3.命题“若a∉A,则b∈B”的否定是()A.若a∉A,则b∉B B.若a∉A,则b∈BC.若a∈A,则b∉B D.若b∉A,则a∈B4.已知命题p:若(x-1)(x-2)≠0,则x≠1且x≠2;命题q:存在实数x,使2x<0.下列选项中为真命题的是()A.綈p B.綈p或qC.綈q 且p D.q5.分别用“p或q”,“p且q”,“非p”填空:(1)命题“非空集A∩B中的元素既是A中的元素,也是B中的元素”是________的形式;(2)命题“非空集A∪B中的元素是A中的元素或B中的元素”是________的形式;(3)命题“非空集∁U A的元素是U中的元素但不是A中的元素”是________的形式.6.已知p:函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,若綈p是假命题,则a的取值范围是______________________.7.在一次模拟打飞机的游戏中,小李接连射击了两次,设命题p是“第一次击中飞机”,命题q是“第二次击中飞机”.试用p,q以及逻辑联结词“或”“且”“非”表示下列命题:(1)命题s:两次都击中飞机;(2)命题r:两次都没击中飞机;(3)命题t:恰有一次击中了飞机;(4)命题u:至少有一次击中了飞机.8.已知p:关于x的方程x2-ax+4=0有实根;q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数.若“p或q”是真命题,“p且q”是假命题,求实数a的取值范围.答案1.选C由于綈p是假命题,所以p是真命题,由于命题p或q一真则真,所以q可能是真命题也可能是假命题,故选C.2.选D由已知易得命题p和q均是真命题,所以p且q为真命题,p或q为真命题,非p为假命题,非q为假命题,故选D.3.选A命题的否定只否定其结论,为:若a∉A,则b∉B.故应选A.4.选C很明显命题p为真命题,所以綈p为假命题;由于函数y=2x,x∈R的值域是(0,+∞),所以q是假命题,所以綈q是真命题.所以綈p或q为假命题,綈q且p为真命题,故选C.5.解析:(1)命题可以写为“非空集A∩B中的元素是A中的元素,且是B中的元素”,故填p且q;(2)“是A中的元素或B中的元素”含有逻辑联结词“或”,故填p或q;(3)“不是A中的元素”暗含逻辑联结词“非”,故填非p.答案:p且q p或q非p6.解析:綈p:函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上不是减函数.∵綈p为假,则p为真,即函数在(-∞,4]上为减函数,∴-(a-1)≥4,即a≤-3,∴a的取值范围是(-∞,-3].答案:(-∞,-3]7.解:(1)两次都击中飞机表示:第一次击中飞机且第二次击中飞机,所以命题s表示为p且q.(2)两次都没击中飞机表示:第一次没有击中飞机且第二次没有击中飞机,所以命题r 表示为綈p且綈q.(3)恰有一次击中了飞机包含两种情况:一是第一次击中飞机且第二次没有击中飞机,此时表示为p且綈q,二是第一次没有击中飞机且第二次击中飞机,此时表示为綈p且q,所以命题t表示为( p且綈q)或(綈p且q).(4)法一:命题u表示:第一次击中飞机或第二次击中飞机,所以命题u表示为p或q.法二:綈u:两次都没击中飞机,即是命题r,所以命题u是綈r,从而命题u表示为綈(綈p且綈q).法三:命题u表示:第一次击中飞机且第二次没有击中飞机,或者第一次没有击中飞机且第二次击中飞机,或者第一次击中飞机且第二次击中飞机,所以命题u表示为(p且綈q)或(綈p且q)或(p且q).8.解:由“p或q”是真命题,“p且q”是假命题可知p,q一真一假.p为真命题时,Δ=a2-16≥0,∴a≥4或a≤-4;q 为真命题时,对称轴x =-a4≤3,∴a ≥-12.当p 真q 假时,⎩⎪⎨⎪⎧a ≥4或a ≤-4,a <-12,得a <-12;当p 假q 真时,⎩⎪⎨⎪⎧-4<a <4,a ≥-12,得-4<a <4.综上所述,a 的取值范围是(-∞,-12)∪(-4,4).课时跟踪训练(五) 从平面向量到空间向量1.空间向量中,下列说法正确的是( )A .如果两个向量的长度相等,那么这两个向量相等B .如果两个向量平行,那么这两个向量的方向相同C .如果两个向量平行, 并且它们的模相等,那么这两个向量相等D .同向且等长的有向线段表示同一向量 2.下列说法中正确的是( )A .若|a |=|b |,则a ,b 的长度相同,方向相同或相反B .若a 是b 的相反向量,则|a |=|b |C .如果两个向量平行,则这两向量相等D .在四边形ABCD 中,AB =DC3.在四边形ABCD 中,若AB =DC ,且|AC |=|BD|,则四边形ABCD 为( ) A .菱形 B .矩形 C .正方形D .不确定4.在正方体ABCD -A 1B 1C 1D 1中,平面ACC 1A 1的法向量是( )A .BDB .1BCC .1BD D .1A B5.在正方体ABCD -A 1B 1C 1D 1中,以A 1为起点,以正方体的其余顶点为终点的向量中,与向量1BC垂直的向量有________.6.如图正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是AB ,AD ,BC ,CC 1的中点,则〈EF ,GH〉=________.7.如图所示,在平行六面体ABCD -A 1B 1C 1D 1顶点为起点或终点的向量中:(1)写出与1BB相等的向量;(2)写出与BA相反的向量;(3)写出与BA平行的向量.8.如图,在正方体ABCD -A 1B 1C 1D 1中,11A B=a ,11A D =b ,1A A =c ,E ,F ,G ,H ,P ,Q 分别是AB ,BC ,CC 1,C 1D 1,D 1A 1,A 1A 的中点,求〈PQ ,EF 〉,〈PQ ,GH〉,〈GH ,FE 〉.答 案1.选D 只有两个向量方向相同且长度相等,才能为相等向量.故D 正确. 2.选B 模相等的两向量,方向不一定相同或相反;相反向量模相等,方向相反;平行向量并不一定相等;若AB =DC,则四边形ABCD 是平行四边形.3.选B 若AB =DC,则AB =DC ,且AB ∥DC ,∴四边形ABCD 为平行四边形,又|AC |=|BD|,即AC =BD ,∴四边形ABCD 为矩形. 4.选A ∵BD ⊥AC ,BD ⊥AA 1, ∴BD ⊥面ACC 1A 1,故BD为平面ACC 1A 1的法向量.5.解析:A 1B 1⊥面BCC 1B 1,∴11A B ⊥1BC;A 1D ⊥AD 1,而AD 1∥BC 1,∴1A D ⊥1BC.答案:11A B 1A D6.解析:连接DB ,BC 1,DC 1,在正方体ABCD -A 1B 1C 1D 1中, △BDC 1为等边三角形.∵E ,F ,G ,H 分别是AB ,AD ,BC ,CC 1的中点, ∴EF ∥BD ,GH ∥BC 1.∴〈EF ,GH 〉=〈BD ,1BC〉=60°.答案:60°7.解:(1) 1CC ,1DD ,1AA . (2)DC ,11D C ,11A B ,AB .(3)AB ,CD,DC ,11D C ,11C D ,11A B ,11B A .8.解:由题意知,六边形EFGHPQ 为正六边形,所以〈PQ ,EF 〉=∠HPQ =2π3;〈PQ ,GH 〉=∠FGH =2π3;〈GH ,FE 〉等于∠QEF 的补角,即〈GH ,FE 〉=π3.课时跟踪训练(六) 空间向量的运算1.如图,在平行六面体ABCD -A ′B ′C ′D ′中,设AB =a , AD=b ,1AA =c ,则下列与向量A C相等的表达式是( )A .-a +b +cB .-a -b +cC .a -b -cD .a +b -c2.已知i ,j ,k 是两两垂直的单位向量,a =2i -j +k ,b =i +j -3k ,则a·b =( ) A .-2 B .-1 C .±1D .23.如图,已知空间四边形ABCD ,连接AC ,BD .设M ,N 分别是BC ,CD 的中点,则AB +12(BD +BC)=( )A .ANB .CNC .BCD.12BC 4.设A ,B ,C ,D 是空间不共面的四点,且满足AB ·AC =AC ·AD =AB ·AD=0,则△BCD 为( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定5.如图,▱ABCD 的对角线AC 和BD 交于点E ,P 为空间任意一点,若PA +PB +PC +PD =x PE,则x =________.6.设a ,b ,c 满足a +b +c =0,且a ⊥b ,|a |=1,|b |=2,则|c |=________.7.在四面体O -ABC 中,棱OA ,OB ,OC 两两互相垂直,且|OA |=1,|OB |=2,|OC|=3,G 为△ABC 的重心,求OG ·(OA +OB +OC)的值.8.如图,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,将它沿对角线AC 折起,使〈BA ,CD〉=60°,求B ,D 间的距离.答 案1.选D A C ' =A A ' +AB +BC=-c +a +b =a +b -c .2.选A a·b =(2i -j +k )(i +j -3k )=2i 2-j 2-3k 2=-2.3.选A AB +12(BD +BC )=AB +BN =AN .4.选B BD =BA +AD ,BC =BA +AC ,CD =CA +AD,∴cos 〈BD ,BC 〉=(BA +AD )·(BA +AC)|BA+AD |·|BA +AC |=2BA | BA +AD ||BA +AC |>0,∴〈BD ,BC 〉为锐角,同理cos 〈CB ,CD〉>0,∴∠BCD 为锐角,cos 〈DB ,DC〉>0,∴∠BDC 为锐角,即△BCD 为锐角三角形.5.解析:过E 作MN ∥AB 分别交BC ,AD 于点M ,N .∴PA +PB +PC +PD =(PA +PD )+(PB +PC )=2PN +2PM =2(PN+PM )=4PE .答案:46.解析:∵a +b +c =0,∴c =-a -b . ∴|c |=(-a -b )2=a 2+2a ·b +b 2=1+4= 5. 答案: 57.解:∵OG =OA +AG =OA +13(AC +AB)=13(OA+OB +OC ). ∴OG ·(OA +OB +OC )=13(OA +OB +OC )2=13(|OA |2+|OB |2+|OC |2+2OA ·OB +2OA ·OC +2OB ·OC )=13(1+4+9)=143.8.解:∵∠ACD =90°,∴AC ·CD =0.同理,BA ·AC=0.∵BD =BA +AC+CD ,∴BD 2=BA 2+2AC +CD 2+2BA ·AC +2BA ·CD +2AC ·CD =2BA +2AC +2CD +2BA ·CD =3+2×1×1×cos 〈BA ,CD〉=4.∴|BD|=2,即B ,D 间的距离为2.课时跟踪训练(七) 空间向量的标准正交分解与坐标表示空间向量基本定理1.在以下三个命题中,真命题的个数是( )①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面;②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线; ③若a ,b 是两个不共线的向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则a ,b ,c 构成空间的一个基底.A .0个B .1个C .2个D .3个2.如图,已知正方体ABCD -A ′B ′C ′D ′中,E 是平面A ′B ′C ′D ′的中心,a =12AA ,b =12AB ,c =13AD ,AE=x a +y b +z c ,则( )A .x =2,y =1,z =32B .x =2,y =12,z =12C .x =12,y =12,z =1D .x =12,y =12,z =323.如图,在正方体ABCD -A 1B 1C 1D 1中,棱长为1,则1AB 在1CB上的投影为( )A .-22B.22C .- 2 D. 24.如图,在三棱柱ABC -A 1B 1C 1中,D 是面BB 1C 1C 的中心,且1AA=a ,AB=b ,1AC =c ,则1A B =( )A.12a +12b +12c B.12a -12b +12c C.12a +12b -12c D .-12a +12b +12c5.如图,在长方体ABCD -A1B 1C 1D 1中,AB =2,BC =1,CC 1=1,则1AC 在BA上的投影是________.6.在三棱锥O -ABC 中,OA =a ,OB =b ,OC=c ,D 为BC 的中点,E 为AD 的中点,则OE=________(用a ,b ,c 表示).7.已知ABCD -A 1B 1C 1D 1是棱长为1的正方体,建立如图所示的空间直角坐标系,试写出A ,B ,C ,D ,A 1,B 1,C 1,D 1各点的坐标,并写出DA ,DB ,DC ,1DC ,1DD ,1DA,1DB 的坐标表示.8.如右图,已知P A ⊥平面ABCD ,四边形ABCD 为正方形,G 为△PDC的重心,AB =i ,AD =j ,AP=k ,试用基底i ,j ,k 表示向量PG ,BG .答 案1.选C ③中向量a ,b ,c 共面,故a ,b ,c 不能构成空间向量的一个基底,①②均正确.2.选A AE =AA ' +A E ' =AA ' +12(A B '' +A D '' )=2a +b +32c .3.选B ∵正方体ABCD -A 1B 1C 1D 1的棱长为1,∴|1AB |=2,|AC |=2,|1B C|= 2.∴△AB 1C 是等边三角形.∴1AB 在1CB 上的投影为|1AB |cos 〈1AB ,1CB 〉=2×cos 60°=22.4.选D 1A D =11A C +1C D =AC +12(1C C +11C B)=c +12(-1AA +CA +AB )=c -12a +12(-c )+12b=-12a +12b +12c .5.解析:1AC 在BA 上的投影为|1AC |cos 〈1AC ,BA〉,在△ABC 1中,cos ∠BAC 1 =|AB ||AC 1|=222+12+12=26=63, 又|1AC|= 6.∴|1AC |cos 〈1AC ·BA 〉=6×⎝⎛⎭⎫-63=-2. 答案:-26.解析:如图,OE =OA +AE =OA +12AD =OA +14(AB +AC)=OA +14(OB -OA +OC -OA).=12OA+14OB +14OC =12a +14b +14c . 答案:12a +14b +14c7.解:∵正方体ABCD -A 1B 1C 1D 1的棱长为1,∴A (1,0,0), B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),B 1(1,1,1),C 1(0,1,1),D 1(0,0,1).∴DA =(1,0,0),DB =(1,1,0),DC =(0,1,0),1DC=(0,1,1),1DD =(0,0,1),1DA =(1,0,1),1DB=(1,1,1).8.解:∵G 是△PDC 的重心,∴PG =23PN =13(PD +PC )=13(PA+AD +PA +AB +BC ) =13(-k +j -k +i +j )=13i +23j -23k , BG =BA +AP +PG=-i +k +13i +23j -23k=-23i +23j +13k .课时跟踪训练(八) 空间向量运算的坐标表示1.下列各组向量中不平行的是( ) A .a =(1,2,-2),b =(-2,-4,4) B .c =(1,0,0),d =(-3,0,0) C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,-24,40)2.已知a =(2,-1,3),b =(-4,2,x ),c =(1,-x,2),若(a +b )⊥c ,则x =( ) A .4 B .-4 C.12D .-63.若a =(1,λ,-1),b =(2,-1,2),且a 与b 的夹角的余弦为19,则|a |=( )A.94B.102C.32D. 64.如图,在空间直角坐标系中有四棱锥P -ABCD ,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且P A =2,E 为PD 的中点,则|BE|=( )A .2 B. 5 C. 6 D .2 25.已知向量a =(-1,0,1),b =(1,2,3),k ∈R ,若k a -b 与b 垂直,则k =________. 6.若空间三点A (1,5,-2),B (2,4,1),C (p,3,q +2)共线, 则p =________,q =________.7.已知A (1,0,0),B (0,1,0),C (0,0,2),问是否存在实数x ,y ,使得AC =x AB+y BC 成立?若存在,求x ,y 的值.8.如图,在长方体OABC -O 1A 1B 1C 1中,|OA |=2,|AB|=3,|1AA|=2,E 为BC 的中点.(1)求1AO 与1B E所成角的余弦值;(2)作O 1D ⊥AC 于D ,求O 1D 的长.答 案1.选D 对D 中向量g ,h ,16-2=-243≠405,故g ,h 不平行.2.选B ∵a +b =(-2,1,3+x )且(a +b )⊥c , ∴-2-x +6+2x =0,∴x =-4.3.选C 因为a·b =1×2+λ×(-1)+(-1)×2=-λ,又因为a·b =|a||b |·cos 〈a ,b 〉=2+λ2×9×19=132+λ2,所以132+λ2=-λ.解得λ2=14,所以|a |=1+14+1=32. 4.选C 由题意可得B (2,0,0),E (0,1,1),则BE =(-2,1,1),|BE|= 6.5.解析:因为(k a -b )⊥b , 所以(k a -b )·b =0, 所以k a·b -|b |2=0,所以k (-1×1+0×2+1×3)-(12+22+32)2=0, 解得k =7. 答案:76.解析:由A ,B ,C 三点共线,则有AB 与AC 共线,即AB=λAC .又AB=(1,-1,3),AC =(p -1,-2,q +4),所以⎩⎪⎨⎪⎧1=λ(p -1),-1=-2λ,3=λ(q +4).所以⎩⎪⎨⎪⎧λ=12,p =3,q =2.答案:3 27.解:∵AB=(-1,1,0),AC =(-1,0,2),BC =(0,-1,2).假设存在x ,y ∈R 满足条件,由已知得(-1,0,2)=x (-1,1,0)+y (0,-1,2),即(-1,0,2)=(-x ,x,0)+(0,-y,2y )=(-x ,x -y,2y ),∴⎩⎪⎨⎪⎧-1=-x ,0=x -y ,2=2y⇒⎩⎪⎨⎪⎧x =1,y =1.即存在实数x =1,y =1使结论成立. 8.解:建立如图所示的空间直角坐标系.(1)由已知得A (2,0,0),O 1(0,0,2),B 1(2,3,2),E (1,3,0),所以1AO =(-2,0,2),1B E=(-1,0,-2),所以cos 〈1AO ,1B E 〉=1AO ·1B E|1AO ||1B E |=-2210=-1010.(2)因为1O D ⊥AC,AD ∥AC ,而C (0,3,0),设D (x ,y,0),则1O D=(x ,y ,-2),AD =(x -2,y,0),AC =(-2,3,0),所以⎩⎪⎨⎪⎧-2x +3y =0,x -2-2=y 3⇒⎩⎨⎧x =1813,y =1213.所以D ⎝⎛⎭⎫1813,1213,0,所以O 1D =|1O D |=228613.课时跟踪训练(九) 空间向量与平行关系1.已知向量a =(2,4,5),b =(3,x ,y )分别是直线l 1,l 2的方向向量,若l 1∥l 2,则( ) A .x =6,y =15 B .x =3,y =152C .x =3,y =15D .x =6,y =1522.已知l ∥π,且l 的方向向量为(2,m,1),平面π的法向量为⎝⎛⎭⎫1,12,2,则m =( ) A .-8 B .-5 C .5D .83.若两个不同平面π1,π2的法向量分别为n 1=(1,2,-2),n 2=(-3,-6,6),则( ) A .π1∥π2B .π1⊥π2C .π1,π2相交但不垂直D .以上均不正确4.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,则λ的值是( )A .-103B .6C .-6D.1035.已知两直线l 1与l 2的方向向量分别为v 1=(1,-3,-2),v 2=(-3,9,6),则l 1与l 2的位置关系是________.6.若平面π1的一个法向量为n 1=(-3,y,2),平面π2的一个法向量为n 2=(6,-2,z ),且π1∥π2,则y +z =________.7.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC=π4,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点. 证明:直线MN ∥平面OCD .8.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.答 案1.选D ∵l 1∥l 2,设a =λb , ∴(2,4,5)=λ(3,x ,y ), ∴x =6,y =152.2.选A ∵l ∥π,∴直线l 的方向向量与平面π的法向量垂直. ∴2+m2+2=0,m =-8.3.选A ∵n 1=-13n 2,∴n 1∥n 2,∴π1∥π2.4.选B ∵α∥β,∴α的法向量与β的法向量也互相平行, ∴24=3λ=-1-2,∴λ=6. 5.解析:∵v 2=-3v 1, ∴l 1∥l 2或l 1与l 2重合. 答案:平行或重合6.解析:∵π1∥π2,∴n 1∥n 2.∴-36=y -2=2z.∴y =1,z =-4. ∴y +z =-3. 答案:-37.证明:作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.则A (0,0,0),B (1,0,0),P⎝⎛⎭⎫0,22,0,D ⎝⎛⎭⎫-22,22,0,O (0,0,2),M (0,0,1),N ⎝⎛⎭⎫1-24,24,0. MN =⎝⎛⎭⎫1-24,24,-1,OP =⎝⎛⎭⎫0,22,-2,OD =⎝⎛⎭⎫-22,22,-2.设平面OCD 的法向量为n =(x ,y ,z ),则n ·OP =0,n ·OD =0.即⎩⎨⎧22y -2z =0,-22x +22y -2z =0,取z =2,解得n =(0,4,2).∵MN ·n =(1-24,24,-1)·(0,4,2)=0,∴MN ⊥n .又MN ⃘平面OCD ,∴MN ∥平面OCD .8.解:依题意,建立如图所示的空间直角坐标系,设正方体ABCD -A 1B 1C 1D 1的棱长为1,则A 1(0,0,1),B (1,0,0),B 1(1,0,1),E ⎝⎛⎭⎫0,1,12, 1BA =(-1,0,1),BE =⎝⎛⎭⎫-1,1,12.设n =(x ,y ,z )是平面A 1BE 的一个法向量,则由n ·1BA=0,n ·BE =0,得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0. 所以x =z ,y =12z .取z =2,得n =(2,1,2).设棱C 1D 1上存在点F (t,1,1)(0≤t ≤1)满足条件,又B 1(1,0,1),所以1B F =(t -1,1,0).而B 1F ⃘平面A 1BE ,于是B 1F ∥平面A 1BE ⇔1B F·n=0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为C 1D 1的中点.这说明在棱C 1D 1上存在点F (C 1D 1的中点),使B 1F ∥平面A 1BE .课时跟踪训练(十) 空间向量与垂直关系1.若直线l 1,l 2的方向向量分别为a =(1,2,-2),b =(-2,3,2),则( ) A .l 1∥l 2 B .l 1⊥l 2 C .l 1与l 2相交但不垂直D .不确定2.若直线l 的方向向量为a =(1,0,2),平面π的法向量为n =(-3,0,-6),则( ) A .l ∥π B .l ⊥π C .l πD .l 与π斜交3.如图,P A ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 等于( )A .1∶2B .1∶1C .3∶1D .2∶14.已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP=(x -1,y ,-3),且BP⊥平面ABC ,则向量BP=( )A.⎝⎛⎭⎫337,-157,-3 B.⎝⎛⎭⎫407,-157,-3 C.⎝⎛⎭⎫407,-2,-3D.⎝⎛⎭⎫4,407,-3 5.已知a =(1,2,3),b =(1,0,1),c =a -2b ,d =m a -b ,若c ⊥d ,则m =________. 6.在直角坐标系O -xyz 中,已知点P (2cos x +1,2cos 2x +2,0)和点Q (cos x ,-1,3),其中x ∈[0,π],若直线OP 与直线OQ 垂直,则x 的值为________.7.如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 于点F .(1)证明:P A ∥平面EDB ; (2)证明:PB ⊥平面EFD .8.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC =90°,A 1A ⊥平面ABC .A 1A =3,AB =AC =2A 1C 1=2,D 为BC 中点.求证:平面A 1AD ⊥平面BCC 1B 1.答 案1.选B ∵直线l 1,l 2的方向向量分别为a =(1,2,-2),b =(-2,3,2), ∴a·b =(1,2,-2)·(-2,3,2)=1×(-2)+2×3+(-2)×2=0. ∴a ⊥b ,∴l 1⊥l 2.2.选B a =-13n ,∴a ∥n ,∴l ⊥π.3.选B 建立如图所示的空间直角坐标系,设正方形边长为1,P A =a .则B (1,0,0),E ⎝⎛⎭⎫12,1,0,P (0,0,a ). 设点F 的坐标为(0,y,0),则BF =(-1,y,0),PE =⎝⎛⎭⎫12,1,-a .∵BF ⊥PE ,∴BF ·PE =0,解得y =12,则F 点坐标为⎝⎛⎭⎫0,12,0, ∴F 为AD 中点,∴AF ∶FD =1∶1.4.选A AB ·BC =3+5-2z =0,故z =4,由BP ·AB =x -1+5y +6=0,且BP ·BC=3(x -1)+y -12=0,得x =407,y =-157.BP=⎝⎛⎭⎫337,-157,-3. 5.解析:∵c =a -2b ,∴c =(1,2,3)-2(1,0,1)=(-1,2,1), ∵d =m a -b ,∴d =m (1,2,3)-(1,0,1)=(m -1,2m,3m -1). 又c ⊥d ,∴c ·d =0,即(-1,2,1)·(m -1,2m,3m -1)=0, 即1-m +4m +3m -1=0,∴m =0. 答案:06.解析:由OP ⊥OQ ,得OP ·OQ=0.即(2cos x +1)·cos x +(2cos 2x +2)·(-1)=0. ∴cos x =0或cos x =12.∵x ∈[0,π],∴x =π2或x =π3.答案:π2或π37.证明:如图所示,建立空间直角坐标系,D 是坐标原点,设DC =a .(1)连接AC ,AC 交BD 于G ,连接EG .依题意得A (a,0,0),P (0,0,a ),E ⎝⎛⎭⎫0,a 2,a2. ∵底面ABCD 是正方形, ∴G 是此正方形的中心. 故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,且PA =()a ,0,-a ,EG =⎝⎛⎭⎫a 2,0,-a2. ∴PA=2EG ,则P A ∥EG .又EG 平面EDB 且P A ⃘平面EDB . ∴P A ∥平面EDB .(2)依题意得B (a ,a,0),PB=(a ,a ,-a ), DE =⎝⎛⎭⎫0,a 2,a2, 故PB ·DE =0+a 22-a 22=0.∴PB ⊥DE ,又EF ⊥PB ,且EF ∩DE =E , ∴PB ⊥平面EFD .8.证明:如图,建立空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,2,0),A 1(0,0,3),C 1(0,1,3), ∵D 为BC 的中点, ∴D 点坐标为(1,1,0).∴1AA=(0,0,3),AD =(1,1,0), BC =(-2,2,0),1CC=(0,-1,3).设平面A 1AD 的法向量n 1=(x 1,y 1,z 1), 平面BCC 1B 1的法向量为n 2=(x 2,y 2,z 2).由⎩⎪⎨⎪⎧ n 1·1AA =0,n 1·AD=0, 得⎩⎨⎧3z 1=0,x 1+y 1=0.令y 1=-1,则x 1=1,z 1=0, ∴n 1=(1,-1,0).由⎩⎪⎨⎪⎧n 2·BC =0,n 2·1CC =0, 得⎩⎨⎧-2x 2+2y 2=0,-y 2+3z 2=0.令y 2=1,则x 2=1,z 2=33, ∴n 2=⎝⎛⎭⎫1,1,33. ∵n 1·n 2=1-1+0=0,∴n 1⊥n 2. ∴平面A 1AD ⊥平面BCC 1B 1.。
学高中数学定积分微积分基本定理学案含解析北师大版选修修订稿
学高中数学定积分微积分基本定理学案含解析北师大版选修Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】§4.2 微积分基本定理1.了解微积分基本定理的含义.(难点)2.会利用微积分基本定理求函数的定积分.(重点)[基础·初探]教材整理 微积分基本定理 阅读教材P 82~P 84,完成下列问题. 1.微积分基本定理如果连续函数f (x )是函数F (x )的导函数,即f (x )=F ′(x ),则有⎠⎛ab f (x )dx =F (b )-F (a ).2.定积分和曲边梯形面积的关系设曲边梯形在x 轴上方的面积为S 上,x 轴下方的面积为S 下,则(1) 图4-2-1(1)当曲边梯形的面积在x 轴上方时,如图4-2-1(1),则⎠⎛a b f (x )dx =S 上.(2)当曲边梯形的面积在x 轴下方时,如图4-2-1(2),则⎠⎛ab f (x )dx =-S 下.(2) (3)图4-2-1(3)当曲边梯形的面积在x 轴上方、x 轴下方均存在时,如图4-2-1(3),则⎠⎛ab f (x )dx =S 上-S 下,若S 上=S 下,则⎠⎛ab f (x )dx =0.1.判断(正确的打“√”,错误的打“×”)(1)微积分基本定理中,被积函数f (x )是原函数F (x )的导数.( )(2)应用微积分基本定理求定积分的值时,为了计算方便通常取原函数的常数项为0.( )(3)应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.( )【答案】 (1)√ (2)√ (3)√ 2.⎠⎛02π(-sin x )dx 等于( )A.0B.2C.-2D.4【解析】⎠⎛2π(-sin x)dx=cos x⎪⎪⎪2π=cos 2π-cos 0=0.【答案】 A[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]利用微积分基本定理求定积分(1)⎠⎛12(x2+2x+3)dx;(2)⎠⎛-π0(cos x-e x)dx;(3)⎠⎛122x2+x+1xdx;(4)⎠⎜⎛π2sin2x2dx.【思路探究】(1)、(2)先求被积函数的一个原函数F(x),然后利用微积分基本定理求解;(3)、(4)则需先对被积函数变形,再利用微积分基本定理求解.【自主解答】(1)⎠⎛12(x2+2x+3)dx=⎠⎛12x2dx+⎠⎛122xdx+⎠⎛123dx=x33⎪⎪⎪21+x2⎪⎪⎪21+3x⎪⎪⎪21=253.(2)⎠⎛-π0(cos x-e x)dx=⎠⎛-π0cos xdx-⎠⎛-π0e x dx=sin x⎪⎪⎪0-π-e x⎪⎪⎪0-π=1eπ-1.(3)2x2+x+1x=2x+1+1x,而(x2+x+ln x)′=2x+1+1x.∴⎠⎛122x2+x+1xdx=(x2+x+ln x)⎪⎪⎪21=4+ln 2.(4)原式=⎠⎜⎛0π2 12(1-cos x )dx =12⎠⎜⎛0π2(1-cos x )dx=12⎠⎜⎛0π21dx -12⎠⎜⎛0π2cos xdx =x 2⎪⎪⎪⎪π20-sin x 2⎪⎪⎪⎪π20=π-24. 求简单的定积分应注意两点:(1)掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解;(2)精确定位积分区间,分清积分下限与积分上限. [再练一题] 1.⎠⎛12x -1x2dx =________. 【解析】 ⎠⎛12x -1x 2dx =⎠⎛12⎝ ⎛⎭⎪⎫1x -1x 2dx =⎝⎛⎭⎪⎫ln x +1x ⎪⎪⎪20 =⎝⎛⎭⎪⎫ln 2+12-(ln 1+1)=ln 2-12. 【答案】 ln 2-12求分段函数的定积分(1)f (x )=⎩⎪⎨⎪⎧sin x ,0≤x <π2,1,π2≤x ≤2,x -1,2<x ≤4,求⎠⎛04f (x )dx ;(2)⎠⎛02|x 2-1|dx .【精彩点拨】 (1)按f (x )的分段标准,分成⎣⎢⎡⎭⎪⎫0,π2,⎣⎢⎡⎦⎥⎤π2,2,(2,4]三段求定积分,再求和.(2)先去掉绝对值号,化成分段函数,再分段求定积分.【自主解答】 (1)⎠⎛04f (x )dx =⎠⎜⎛0π2sin xdx +⎠⎜⎛π221dx +⎠⎛24(x -1)dx=(-cos x )⎪⎪⎪⎪π20+x ⎪⎪⎪⎪2π2+⎝ ⎛⎭⎪⎫12x 2-x ⎪⎪⎪42=1+⎝⎛⎭⎪⎫2-π2+(4-0)=7-π2.(2)⎠⎛02|x 2-1|dx =⎠⎛01(1-x 2)dx +⎠⎛12(x 2-1)dx=⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪10+⎝ ⎛⎭⎪⎫13x 3-x ⎪⎪⎪21=2.1.本例(2)中被积函数f (x )含有绝对值号,可先求函数f (x )的零点,结合积分区间,分段求解.2.分段函数在区间[a ,b ]上的定积分可分成n 段定积分和的形式,分段的标准可按照函数的分段标准进行.3.带绝对值号的解析式,可先化为分段函数,然后求解. [再练一题]2.计算定积分:⎠⎛-33(|2x +3|+|3-2x |)dx .【解】 设f (x )=|2x +3|+|3-2x |,x ∈[-3,3],则f (x )=⎩⎪⎨⎪⎧-4x ,-3≤x <-32,6,-32≤x ≤32,4x ,32<x ≤3.所以⎠⎛-33(|2x +3|+|3-2x |)dx =⎠⎜⎛-3-32(-4x )dx +⎠⎜⎜⎛-3232 6 dx +⎠⎜⎛3234x dx=-2x 2⎪⎪⎪⎪-32-3+6x ⎪⎪⎪⎪32-32+2x 2⎪⎪⎪⎪332=-2×⎝ ⎛⎭⎪⎫94-9+6×⎝ ⎛⎭⎪⎫32+32+2×⎝ ⎛⎭⎪⎫9-94=45. [探究共研型]探究1【提示】 不唯一,它们相差一个常数,但不影响定积分的值. 探究2 如何求对称区间上的定积分?【提示】 在求对称区间上的定积分时,应首先考虑函数性质和积分的性质,使解决问题的方法尽可能简便.(1)设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )dx=f (x 0),0≤x 0≤1,求x 0的值;(2)已知f (x )是一次函数,其图像过点(3,4),且⎠⎛01f (x )dx =1,求f (x )的解析式. 【精彩点拨】 (1)先利用微积分基本定理求出定积分⎠⎛01f (x )dx ,然后列出关于x 0的方程,求出x 0的值.(2)设出f (x )的解析式,再根据已知条件列方程组求解. 【自主解答】 (1)因为f (x )=ax 2+c (a ≠0),且⎝ ⎛⎭⎪⎫a3x 3+cx ′=ax 2+c , 所以⎠⎛01f (x )dx =⎠⎛01(ax 2+c )dx =⎝ ⎛⎭⎪⎫a 3x 3+cx |10=a3+c =ax 20+c ,解得x 0=33或x 0=-33(舍去). (2)依题意设一次函数f (x )的解析式为f (x )=kx +b (k ≠0).∵函数图像过点(3,4),∴3k +b =4. ①∵⎠⎛01f (x )dx =⎠⎛01(kx +b )dx =⎝ ⎛⎭⎪⎫k 2x 2+bx |10=k2+b ,∴k2+b =1.②由①②得,k =65,b =25,∴f (x )=65x +25.1.含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.2.计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.[再练一题]3.已知⎠⎛0k (2x -3x 2)dx =0,则k 等于( )A.0B.1C.0或1D.以上都不对【解析】 ∵⎠⎛0k (2x -3x 2)dx =(x 2-x 3)|k=k 2-k 3, ∴k 2-k 3=0,解得k =1或k =0(舍去),故选B . 【答案】 B[构建·体系]微积分基本定理—⎪⎪⎪⎪—定理—定积分的计算—定积分的几何意义 1.下列定积分的值等于1的是( ) A.⎠⎛01xdxB.⎠⎛01(x +1)dxC.⎠⎛011dxD.⎠⎛0112dx 【解析】 选项A ,因为⎝ ⎛⎭⎪⎫x 22′=x , 所以⎠⎛01xdx =x 22⎪⎪⎪10=12;选项B ,因为⎝ ⎛⎭⎪⎫x 22+x ′=x +1,所以⎠⎛01(x +1)dx =⎝ ⎛⎭⎪⎫x 22+x ⎪⎪⎪10=32;选项C ,因为x ′=1,所以⎠⎛011dx =x ⎪⎪⎪10=1;选项D ,因为⎝ ⎛⎭⎪⎫12x ′=12,所以⎠⎛0112dx =12x ⎪⎪⎪10=12.【答案】 C2. ⎠⎜⎜⎛-π2π2 (sin x +cos x )dx 的值是( )A.0B.π4C.2D.4【解析】 ⎠⎜⎜⎛-π2π2 (sin x +cos x )dx =⎠⎜⎜⎛-π2π2sin xdx +⎠⎜⎜⎛-π2π2cos xdx =(-cos x )⎪⎪⎪⎪π2-π2+sin x ⎪⎪⎪⎪π2-π2=2. 【答案】 C3.计算⎠⎛01x 2dx =________.【解析】 由于⎝ ⎛⎭⎪⎫13x 3′=x 2,所以⎠⎛01x 2dx =13x 3⎪⎪⎪10=13.【答案】 134.已知2≤⎠⎛12(kx +1)dx ≤4,则实数k 的取值范围为________.【解析】 ⎠⎛12(kx +1)dx =⎝ ⎛⎭⎪⎫12kx 2+x ⎪⎪⎪21=(2k +2)-⎝ ⎛⎭⎪⎫12k +1=32k +1,所以2≤32k +1≤4,解得23≤k ≤2.【答案】 ⎣⎢⎡⎦⎥⎤23,2 5.已知f (x )=ax +b ,且⎠⎛-11f 2(x )dx =1,求f (a )的取值范围.【解】 由f (x )=ax +b ,⎠⎛-11f 2(x )dx =1,得2a 2+6b 2=3,2a 2=3-6b 2≥0, 所以-22≤b ≤22, 所以f (a )=a 2+b =-3b 2+b +32=-3⎝ ⎛⎭⎪⎫b -162+1912,所以-22≤f (a )≤1912.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。
金优课高中数学北师大选修课时作业: 微积分基本定理 含解析
选修2-2 第四章 §2 课时作业21一、选择题1.⎠⎛02π|sin x |d x 等于( )A .0B .2C .4D .-4解析:∫2π0|sin x |d x =⎠⎛0πsin x d x +∫2ππ(-sin x )d x=(-cos x )⎪⎪⎪π0+cos x ⎪⎪⎪2ππ=1-(-1)+1-(-1)=4.故选C.答案:C2. (1-2sin 2θ2)dθ的值为( )A .-32B .-12C .12D .32解析:(1-2sin 2θ2)dθ=cosθdθ=sinθ⎪⎪⎪⎪π30=32,故选D.答案:D3. 下列各式中错误的是( )A .sinφdφ=1B .cosφdφ=1C .⎠⎛1e e x d x =-1D .⎠⎛1e 1xd x =1解析:sinφdφ=(-cosφ)⎪⎪⎪⎪π20=-0-(-1)=1,cosφdφ=sinφ⎪⎪⎪⎪π20=1-0=1,⎠⎛1e e x d x =e x ⎪⎪⎪e 1=e e -e , ⎠⎛1e 1xd x =ln x ⎪⎪⎪ e 1=lne -0=1.故选C. 答案:C4. 已知f (x )是一次函数且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,则f (x )的解析式为( )A .4x +3B .3x +4C .-4x +3D .-3x +4解析:设f (x )=ax +b (a ≠0),则xf (x )=ax 2+bx , ⎠⎛01f (x )d x =(a 2x 2+bx )⎪⎪⎪10=a 2+b =5, ① ⎠⎛01xf (x )d x =(a 3x 3+b 2x 2)⎪⎪⎪10=a 3+b 2=176,②联立①②得⎩⎨⎧a2+b =5a 3+b 2=176⇒⎩⎪⎨⎪⎧a =4,b =3. ∴f (x )=4x +3. 故选A. 答案:A 二、填空题5.[2013·湖南高考]若⎠⎛0T x 2d x =9,则常数T 的值为________.解析:∵⎠⎛0T x 2d x =13T 3=9,T >0,∴T =3.答案:36.⎠⎛2-1|x 2-x |d x =__________.解析:⎠⎛2-1|x 2-x |d x =⎠⎛0-1(x 2-x )d x +⎠⎛01(x -x 2)d x +⎠⎛12(x 2-x )d x= ⎪⎪⎝⎛⎭⎫13x 3-x 220-1+⎪⎪⎝⎛⎭⎫x 22-13x 310+⎪⎪⎝⎛⎭⎫13x 3-x 2221=116. 答案:1167.设函数f (x )=ax 2+c (a ≠0).若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为__________.解析:⎠⎛01(ax 2+c )d x =⎪⎪⎝⎛⎭⎫13ax 3+cx 10=13a +c =ax 20+c ⇒x 0=33⎝⎛⎭⎫由0≤x 0≤1,则x 0=-33舍去. 答案:33三、解答题8.计算下列定积分. (1)⎠⎛12⎝⎛⎭⎫2x 2-1x d x ; (2)⎠⎛23⎝⎛⎭⎫x +1x 2d x ; (3)(sin x -sin2x )d x .解:(1)∵⎝⎛⎭⎫23x 3-ln x ′=2x 2-1x , ∴⎠⎛12⎝⎛⎭⎫2x 2-1x d x =⎪⎪⎝⎛⎭⎫23x 3-ln x 21 =⎝⎛⎭⎫23×23-ln2-⎝⎛⎭⎫23×13-ln1 =143-ln2. (2)∵⎝⎛⎭⎫x +1x 2=x +1x +2,且⎝⎛⎭⎫x 22+ln x +2x ′=x +1x +2, ∴⎠⎛23⎝⎛⎭⎫x +1x 2d x =⎪⎪⎝⎛⎭⎫x 22+ln x +2x 32 =⎝⎛⎭⎫322+ln 3+6-⎝⎛⎭⎫222+ln 2+4 =92+ln 32. (3)∵(-cos x +12cos2x )′=sin x -sin2x ,∴(sin x -sin2x )d x =(-cos x +⎪⎪12cos2x )π30=⎝⎛⎭⎫-cos π3+12cos 2π3-⎝⎛⎭⎫-cos0+12cos0 =-12-14+1-12=-14.9.设f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2. (1)求y =f (x )的表达式;(2)若直线x =-t (0<t <1)把y =f (x )的图像与两坐标轴所围成图形的面积二等分,求t 的值.解:(1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b , 由已知f ′(x )=2x +2,所以a =1,b =2,所以f (x )=x 2+2x +c . 又方程f (x )=0有两个相等的实根, 所以Δ=4-4c =0,即c =1. 所以f (x )=x 2+2x +1.(2)依题意知:⎠⎛-1-t (x 2+2x +1)d x =⎠⎛0-t (x 2+2x +1)d x ,所以 ⎪⎪⎝⎛⎭⎫13x 3+x 2+x -t -1=⎪⎪⎝⎛⎭⎫13x 3+x 2+x 0-t .-13t 3+t 2-t +13=13t 3-t 2+t ,所以2t 3-6t 2+6t -1=0, 即2(t -1)3+1=0.于是t =1-132.。
高中数学课时跟踪训练五组合的应用北师大版选修28
课时跟踪训练(五) 组合的应用1.9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品,抽出产品中至少有2件一等品的抽法种数为( )A.81 B.60C.6 D.112.以一个正三棱柱的顶点为顶点的四面体有( )A.6个B.12个C.18个D.30个3.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )A.85 B.56C.49 D.284.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )A.10 B.11C.12 D.155.(大纲全国卷)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有________种.(用数字作答)6.某校开设9门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门.学校规定,每位同学选修4门,共有________种不同选修方案.(用数字作答) 7.12件产品中,有10件正品,2件次品,从这12件产品中任意抽出3件.(1)共有多少种不同的抽法?(2)抽出的3件中恰好有1件次品的抽法有多少种?(3)抽出的3件中至少有1件次品的抽法有多少种?8.10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现如下结果:(1)4只鞋子没有成双的;(2)4只鞋子恰成两双;(3)4只鞋中有2只成双,另2只不成双.答案1.选A 分三类:恰有2件一等品,有C24C25=60种取法;恰有3件一等品,有C34C15=20种取法;恰有4件一等品,有C44=1种取法.∴抽法种数为60+20+1=81.2.选B 从6个顶点中任取4个有C46=15种取法,其中四点共面的有3种.所以满足题意的四面体有15-3=12个.3.选C 由条件可分为两类:一类是甲、乙两人只有一人入选,有C12·C27=42种不同选法,另一类是甲、乙都入选,有C22·C17=7种不同选法,所以共有42+7=49种不同选法.4.选B 与信息0110至多有两个位置上的数字对应相同的信息包括三类:第一类:与信息0110只有两个对应位置上的数字相同有C24=6个;第二类:与信息0110只有一个对应位置上的数字相同有C14=4个;第三类:与信息0110没有一个对应位置上的数字相同有C04=1个.∴与信息0110至多有两个对应位置上的数字相同的信息有6+4+1=11个.5.解析:第一步决出一等奖1名有C16种情况,第二步决出二等奖2名有C25种情况,第三步决出三等奖3名有C33种情况,故可能的决赛结果共有C16C25C33=60种情况.答案:606.解析:分两类完成:第一类,A,B,C三门课程都不选,有C46种不同的选修方案;第二类,A,B,C三门课程恰好选修一门,有C13·C36种不同选修方案.故共有C46+C13·C36=75种不同的选修方案.答案:757.解:(1)有C312=220种抽法.(2)分两步:先从2件次品中抽出1件有C12种方法;再从10件正品中抽出2件有C210种方法,所以共有C12C210=90种抽法.(3)法一(直接法):分两类:即包括恰有1件次品和恰有2件次品两种情况,与(2)小题类似共有C12C210+C22C110=100种抽法.法二(间接法):从12件产品中任意抽出3件有C312种方法,其中抽出的3件全是正品的抽法有C310种方法,所以共有C312-C310=100种抽法.8.解:(1)从10双鞋子中选取4双,有C410种不同选法,每双鞋子中各取一只,分别有2种取法,根据分步乘法计数原理,选取种数为N=C410·24=3 360(种).即4只鞋子没有成双有3 360种不同取法.(2)从10双鞋子中选取2双有C210种取法,所以选取种数为N=C210=45(种),即4只鞋子恰成双有45种不同取法.(3)先选取一双有C110种选法,再从9双鞋中选取2双有C29种选法,每双鞋只取一只各有2种取法.根据分步乘法计数原理,不同取法为N=C110C29·22=1 440(种).。
高中数学 4.2 微积分基本定理课时作业 北师大版选修22
高中数学 4.2 微积分基本定理课时作业 北师大版选修22课时目标 1.了解微积分基本定理的内容与含义.2.会利用微积分基本定理求函数的定积分.微积分基本定理:如果连续函数f (x )是________________________,则有ʃba f (x )d x =__________.一、选择题1.设f (x )在[a ,b ]上连续,且(F (x )+C )′=f (x )(C 为常数),则lim Δx →0F x +Δx -F xΔx等于( )A .F (x )B .f (x )C .0D .f ′(x )2.由曲线y =x 3,直线x =0,x =1及y =0所围成的曲边梯形的面积为( )A .1B.12C.13D.143.220sin cos 22x x dx π⎛⎫ ⎪⎝⎭⎰的值是( )A.π2B.π2+1C .-π2D .04.ʃ0-4|x +3|d x 的值为( ) A .-2B .0C .5D.125.若m =ʃ10e x d x ,n =ʃe 11xd x ,则m 与n 的大小关系是( )A .m >nB .m <nC .m =nD .无法确定6.ʃ421xd x 等于( )A .-2ln 2B .2ln 2C .-ln 2D .ln 2 二、填空题7.ʃ10(2x k+1)d x =2,则k =________. 8.定积分ʃ10x1+x 2d x 的值为________.9.定积分20π⎰1-sin 2x d x 的值为__________.三、解答题10.计算:(1)ʃ5-5(sin 5x +x 13)d x ;(2) 22ππ-⎰ (cos 2x +8)d x .11.已知f (x )=a sin x +b cos x ,20π⎰f (x )d x =4,60π⎰f (x )d x =7-332,求f (x )的最大值和最小值.能力提升12.f (x )是一次函数,且ʃ10f (x )d x =5,ʃ10xf (x )d x =176,那么f (x )的解析式是( ) A .4x +3 B .3x +4 C .-4x +2 D .-3x +413.已知ʃ1-1(x 3+ax +3a -b )d x =2a +6且f (t )=ʃt 0(x 3+ax +3a -b )d x 为偶函数,求a ,b .1.用微积分基本定理求定积分,关键是找到满足F ′(x )=f (x )的函数F (x ),即找到被积函数的原函数.2.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)求被积函数是分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和.(3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.答 案知识梳理函数F (x )的导函数,即f (x )=F ′(x ) F (b )-F (a ) 作业设计 1.B2.D [曲边梯形面积A =ʃ10x 3d x =⎝ ⎛⎭⎪⎫14x 4|10=14.]3.B [20π⎰⎝ ⎛⎭⎪⎫sin x 2+cos x 22d x =20π⎰(1+sin x )d x =x |20π+(-cos x )20π=π2+1.] 4.C [原式=ʃ-3-4(-x -3)d x +ʃ0-3(x +3)d x =⎝ ⎛⎭⎪⎫-12x 2-3x |-3-4+⎝ ⎛⎭⎪⎫12x 2+3x |0-3=5.] 5.A [∵m =ʃ10e x d x =e x |10=e -1,n =ʃe 11xd x =ln x |e1=ln e -ln 1=1,m -n =e -1-1=e -2>0,∴m >n .]6.D [ʃ421xd x =ln x |42=ln 4-ln 2=ln 2.]7.1解析 ∵ʃ10(2x k +1)d x =ʃ102x k d x +ʃ10d x=2ʃ10x k d x +x |10=2x k +1k +1|10+1 =2k +1+1=2,∴2k +1=1, 即k =1. 8.12ln 2 解析 ∵⎣⎢⎡⎦⎥⎤12ln 1+x 2′=x 1+x 2, ∴ʃ10x 1+x 2d x =12ln(1+x 2)|10=12ln 2. 9.2(2-1) 解析 20π⎰cos 2x +sin 2x -2sin x cos x d x =20π⎰sin x -cos x2d x=20π⎰|cos x -sin x |d x =40π⎰(cos x -sin x )d x +24ππ⎰(sin x -cos x )d x=(sin x +cos x ) 40π-(cos x +sin x ) 24ππ=2(2-1).10.解 (1)∵f (x )=sin 5x +x 13,x ∈[-5,5]是奇函数, ∴由定积分的几何意义知 ʃ0-5(sin 5x +x 13)d x =-ʃ50(sin 5x +x 13)d x , ∴ʃ5-5(sin 5x +x 13)d x =ʃ0-5(sin 5x +x 13)d x +ʃ50(sin 5x +x 13)d x =0.(2)∵f (x )=cos 2x +8,x ∈⎣⎢⎡⎦⎥⎤-π2,π2是偶函数,∴22ππ-⎰ (cos 2x +8)d x =220π⎰(cos 2x +8)d x=20π⎰2cos 2x d x +20π⎰16d x=20π⎰(1+cos 2x )d x +16x20π=⎝ ⎛⎭⎪⎫x +12sin 2x 20π+16x 20π=172π. 11.解20π⎰f (x )d x =20π⎰(a sin x +b cos x )d x=(b sin x -a cos x ) 20π=b +a =4.60π⎰f (x )d x =(b sin x -a cos x )60π=12b -32a +a =7-332, 解得a =3,b =1.所以f (x )=3sin x +cos x =10sin(x +φ),(其中tan φ=13).故f (x )的最大值为10,最小值为-10. 12.A [设f (x )=ax +b ,则ʃ1(ax +b )d x =⎝ ⎛⎭⎪⎫ax 22+bx |10=a2+b ,ʃ10xf (x )d x =ʃ10(ax 2+bx )d x =⎝ ⎛⎭⎪⎫ax 33+bx 22|10=a 3+b 2, ∴⎩⎪⎨⎪⎧a 2+b =5a 3+b 2=176,∴⎩⎪⎨⎪⎧a =4b =3.∴f (x )=4x +3.]13.解 ∵f (x )=x 3+ax 为奇函数,∴ʃ1-1(x 3+ax )d x =0, ∴ʃ1-1(x 3+ax +3a -b )d x =ʃ1-1(x 3+ax )d x +ʃ1-1(3a -b )d x=0+(3a -b )[1-(-1)]=6a -2b . ∴6a -2b =2a +6,即2a -b =3. ① 又f (t )=⎪⎪⎪⎣⎢⎡⎦⎥⎤x 44+a 2x 2+3a -b x t 0=t44+at22+(3a-b)t为偶函数,∴3a-b=0. ②由①②得a=-3,b=-9.。
2019-2020学年高中数学北师大版选修2-2同步训练:(13)微积分基本定理
2
|
1
8、
2 1
1 x
1 x2
1 x3
dx
(
)
A. ln 2 7 8
B. ln 2 7 2
C. ln 2 5 8
D. ln 2 17 8
2
sin 2
x
dx
(
9、 0
2
)
A.
4
B. 1 2
C. 2
2
D.
4
10、自由落体的运动速度 v gt ( g 为常数),则当 t 1, 2时,物体下落的距离为( )
)
A. 2
B. 3
5
C.
2
D. 4
2
sin x cos xdx 的值是( )
4、 2
A. 0
B.
4
C. 2
D. 4
5、设
f
x
x { 2
2,
0
x,
1
x
x
1, 2, 则
2
0
f
x dx
等于(
)
3
A.
4
4
B.
5
5
C.
6
D.不存在
6、下列值等于 1 的积分是( )
2
2
5 答案及解析: 答案:C 解析:
6 答案及解析: 答案:C 解析:
7 答案及解析: 答案:D 解析:
8 答案及解析: 答案:A 解析:
9 答案及解析: 答案:D 解析:
10 答案及解析:
课堂新坐标高中数学北师大版选修学案微积分基本定理含解析
§2 微积分基本定理1.了解微积分基本定理的含义.(难点)2.会利用微积分基本定理求函数的定积分.(重点)[基础·初探]教材整理 微积分基本定理 阅读教材P 82~P 84,完成下列问题. 1.微积分基本定理如果连续函数f (x )是函数F (x )的导函数,即f (x )=F ′(x ),则有⎠⎛a b f (x )dx =F (b )-F (a ).2.定积分和曲边梯形面积的关系设曲边梯形在x 轴上方的面积为S 上,x 轴下方的面积为S 下,则(1) 图4-2-1(1)当曲边梯形的面积在x 轴上方时,如图4-2-1(1),则⎠⎛a b f (x )dx =S 上.(2)当曲边梯形的面积在x 轴下方时,如图4-2-1(2),则⎠⎛ab f (x )dx =-S 下.(2) (3)图4-2-1(3)当曲边梯形的面积在x 轴上方、x 轴下方均存在时,如图4-2-1(3),则⎠⎛a bf (x )dx =S 上-S 下,若S 上=S 下,则⎠⎛ab f (x )dx =0.1.判断(正确的打“√”,错误的打“×”)(1)微积分基本定理中,被积函数f (x )是原函数F (x )的导数.( )(2)应用微积分基本定理求定积分的值时,为了计算方便通常取原函数的常数项为0.( )(3)应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.( )【答案】 (1)√ (2)√ (3)√ 2.⎠⎛02π(-sin x )dx 等于( ) A.0 B.2 C.-2D.4【解析】 ⎠⎛02π(-sin x )dx =cos x ⎪⎪⎪2π0=cos 2π-cos 0=0.【答案】 A[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型](1)⎠⎛12(x 2+2x +3)dx ;(2)⎠⎛-π0(cos x -e x )dx ; (3)⎠⎛122x 2+x +1x dx ;(4) ⎠⎛0π2 sin 2x 2dx . 【思路探究】 (1)、(2)先求被积函数的一个原函数F (x ),然后利用微积分基本定理求解;(3)、(4)则需先对被积函数变形,再利用微积分基本定理求解.【自主解答】 (1)⎠⎛12(x 2+2x +3)dx=⎠⎛12x 2dx +⎠⎛122xdx +⎠⎛123dx =x 33⎪⎪⎪21+x 2⎪⎪⎪21+3x ⎪⎪⎪21=253.(2)⎠⎛-π0(cos x -e x )dx =⎠⎛-π0cos xdx -⎠⎛-π0e x dx =sin x ⎪⎪⎪0-π-e x ⎪⎪⎪0-π=1e π-1.(3)2x 2+x +1x =2x +1+1x ,而(x 2+x +ln x )′=2x +1+1x .∴⎠⎛122x 2+x +1x dx =(x 2+x +ln x )⎪⎪⎪21=4+ln 2. (4)原式=⎠⎛0π2 12(1-cos x )dx =12⎠⎛0π2 (1-cos x )dx =12⎠⎛0π21dx -12⎠⎛0π2cos xdx =x 2⎪⎪⎪π20-sinx 2⎪⎪⎪π20=π-24.求简单的定积分应注意两点:(1)掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解;(2)精确定位积分区间,分清积分下限与积分上限.[再练一题]1.⎠⎛12x -1x 2dx =________. 【解析】 ⎠⎛12x -1x 2dx =⎠⎛12⎝ ⎛⎭⎪⎫1x -1x 2dx=⎝ ⎛⎭⎪⎫ln x +1x ⎪⎪⎪20=⎝ ⎛⎭⎪⎫ln 2+12-(ln 1+1)=ln 2-12. 【答案】 ln 2-12(1)f (x )=⎩⎪⎨⎪⎧sin x ,0≤x <π2,1,π2≤x ≤2,x -1,2<x ≤4,求⎠⎛04f (x )dx ;(2)⎠⎛02|x 2-1|dx . 【精彩点拨】 (1)按f (x )的分段标准,分成⎣⎢⎡⎭⎪⎫0,π2,⎣⎢⎡⎦⎥⎤π2,2,(2,4]三段求定积分,再求和.(2)先去掉绝对值号,化成分段函数,再分段求定积分. 【自主解答】 (1)⎠⎛04f (x )dx =⎠⎜⎛0π2sin xdx +⎠⎜⎛π221dx +⎠⎛24(x -1)dx =(-cos x )⎪⎪⎪⎪π20+x ⎪⎪⎪⎪2π2+⎝ ⎛⎭⎪⎫12x 2-x ⎪⎪⎪42=1+⎝ ⎛⎭⎪⎫2-π2+(4-0)=7-π2.(2)⎠⎛02|x 2-1|dx =⎠⎛01(1-x 2)dx +⎠⎛12(x 2-1)dx=⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪10+⎝ ⎛⎭⎪⎫13x 3-x ⎪⎪⎪21=2.1.本例(2)中被积函数f (x )含有绝对值号,可先求函数f (x )的零点,结合积分区间,分段求解.2.分段函数在区间[a ,b ]上的定积分可分成n 段定积分和的形式,分段的标准可按照函数的分段标准进行.3.带绝对值号的解析式,可先化为分段函数,然后求解.[再练一题]2.计算定积分:⎠⎛-33(|2x +3|+|3-2x |)dx .【解】 设f (x )=|2x +3|+|3-2x |,x ∈[-3,3],则f (x )=⎩⎪⎨⎪⎧-4x ,-3≤x <-32,6,-32≤x ≤32,4x ,32<x ≤3.所以⎠⎛-33(|2x +3|+|3-2x |)dx =⎠⎜⎛-3-32(-4x )dx +⎠⎜⎜⎛-32326 dx +⎠⎜⎛3234x dx =-2x 2⎪⎪⎪⎪-32-3+6x ⎪⎪⎪⎪32-32+2x 2⎪⎪⎪⎪332=-2×⎝ ⎛⎭⎪⎫94-9+6×⎝ ⎛⎭⎪⎫32+32+2×⎝ ⎛⎭⎪⎫9-94=45. [探究共研型]探究1 【提示】 不唯一,它们相差一个常数,但不影响定积分的值. 探究2 如何求对称区间上的定积分?【提示】 在求对称区间上的定积分时,应首先考虑函数性质和积分的性质,使解决问题的方法尽可能简便.(1)设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )dx =f (x 0),0≤x 0≤1,求x 0的值;(2)已知f (x )是一次函数,其图像过点(3,4),且⎠⎛01f (x )dx =1,求f (x )的解析式.【精彩点拨】 (1)先利用微积分基本定理求出定积分⎠⎛01f (x )dx ,然后列出关于x 0的方程,求出x 0的值.(2)设出f (x )的解析式,再根据已知条件列方程组求解. 【自主解答】 (1)因为f (x )=ax 2+c (a ≠0), 且⎝ ⎛⎭⎪⎫a 3x 3+cx ′=ax 2+c , 所以⎠⎛01f (x )dx =⎠⎛01(ax 2+c )dx =⎝ ⎛⎭⎪⎫a 3x 3+cx |10=a 3+c =ax 20+c ,解得x 0=33或x 0=-33(舍去). (2)依题意设一次函数f (x )的解析式为 f (x )=kx +b (k ≠0).∵函数图像过点(3,4),∴3k +b =4.①∵⎠⎛01f (x )dx =⎠⎛01(kx +b )dx =⎝ ⎛⎭⎪⎫k 2x 2+bx |10=k2+b ,∴k2+b =1.②由①②得,k =65,b =25, ∴f (x )=65x +25.1.含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.2.计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.[再练一题]3.已知⎠⎛0k (2x -3x 2)dx =0,则k 等于( )【导学号:94210072】A.0B.1C.0或1D.以上都不对【解析】 ∵⎠⎛0k (2x -3x 2)dx =(x 2-x 3)|k=k 2-k 3, ∴k 2-k 3=0,解得k =1或k =0(舍去),故选B . 【答案】 B[构建·体系]微积分基本定理—⎪⎪⎪⎪—定理—定积分的计算—定积分的几何意义1.下列定积分的值等于1的是( ) A.⎠⎛01xdx B.⎠⎛01(x +1)dx C.⎠⎛011dx D.⎠⎛0112dx 【解析】 选项A ,因为⎝ ⎛⎭⎪⎫x 22′=x ,所以⎠⎛01xdx =x 22⎪⎪⎪10=12;选项B ,因为⎝ ⎛⎭⎪⎫x 22+x ′=x +1,所以⎠⎛01(x +1)dx =⎝ ⎛⎭⎪⎫x 22+x ⎪⎪⎪10=32;选项C ,因为x ′=1,所以⎠⎛011dx =x ⎪⎪⎪10=1;选项D ,因为⎝ ⎛⎭⎪⎫12x ′=12,所以⎠⎛0112dx =12x ⎪⎪⎪10=12.【答案】 C2. ⎠⎜⎛-π2π2 (sin x +cos x )dx 的值是( ) A.0 B.π4 C.2D.4【解析】 ⎠⎜⎛-π2π2 (sin x +cos x )dx =⎠⎜⎛-π2π2sin xdx +⎠⎜⎛-π2π2cos xdx =(-cos x )⎪⎪⎪⎪π2-π2+sin x ⎪⎪⎪⎪π2-π2=2. 【答案】 C3.计算⎠⎛01x 2dx =________.【导学号:94210073】【解析】 由于⎝ ⎛⎭⎪⎫13x 3′=x 2,所以⎠⎛01x 2dx =13x 3⎪⎪⎪10=13.【答案】 134.已知2≤⎠⎛12(kx +1)dx ≤4,则实数k 的取值范围为________.【解析】 ⎠⎛12(kx +1)dx =⎝ ⎛⎭⎪⎫12kx 2+x ⎪⎪⎪21=(2k +2)-⎝ ⎛⎭⎪⎫12k +1=32k +1,所以2≤32k +1≤4,解得23≤k ≤2.【答案】 ⎣⎢⎡⎦⎥⎤23,25.已知f (x )=ax +b ,且⎠⎛-11f 2(x )dx =1,求f (a )的取值范围.【解】 由f (x )=ax +b ,⎠⎛-11f 2(x )dx =1,得2a 2+6b 2=3,2a 2=3-6b 2≥0, 所以-22≤b ≤22,所以f (a )=a 2+b =-3b 2+b +32 =-3⎝ ⎛⎭⎪⎫b -162+1912, 所以-22≤f (a )≤1912.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)学业分层测评(十六)(建议用时:45分钟)[学业达标]一、选择题 1.⎠⎛241x d x 等于( ) A.-2ln 2 B.2ln 2 C.-ln 2D.ln 2【解析】 ⎠⎛241x d x =ln x |42=ln 4-ln 2=ln 2.【答案】 D2.设a =⎠⎛01x 13d x ,b =⎠⎛01x 2d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系是( )A.a>b>cB.c>a>bC.a>c>bD.c>b>a【解析】 ∵a =⎠⎛01x 13d x =x 4343⎪⎪⎪10=34,b =⎠⎛01x 2d x =x 33⎪⎪⎪10=13,c =⎠⎛01x 3d x =x 44⎪⎪⎪10=14,∴a >b >c . 【答案】 A3.(2016·东莞高二检测)已知⎠⎛01(kx +1)d x =k ,则实数k =( )A.2B.-2C.1D.-1【解析】 ⎠⎛01(kx +1)d x =⎝ ⎛⎭⎪⎫12kx 2+x ⎪⎪⎪10=12k +1=k ,∴k =2.【答案】 A4.已知f (x )=2-|x |,则⎠⎛-12f (x )d x =( ) A.3 B.4 C.72D.92【解析】 因为f (x )=2-|x |=⎩⎨⎧2+x ,x ≤0,2-x ,x ≥0,所以⎠⎛-12f (x )d x =⎠⎛-10(2+x )d x +⎠⎛02(2-x )d x =⎝ ⎛⎭⎪⎫2x +x 22⎪⎪⎪0-1+⎝ ⎛⎭⎪⎫2x -x 22⎪⎪⎪20=32+2=72. 【答案】 C5.设f (x )=⎩⎨⎧x 2,0≤x <1,2-x ,1<x ≤2,则⎠⎛02f (x )d x =( )A.23B.34C.45D.56【解析】 ⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x=13x 3⎪⎪⎪10+⎝ ⎛⎭⎪⎫2x -12x 2⎪⎪⎪21=13+12=56. 【答案】 D 二、填空题6.(2015·长沙高二检测)若f (x )=sin x +cos x , 则⎠⎜⎛-π2π2f (x )d x =________. 【解析】 因为f (x )=sin x +cos x ,所以f (x )的一个原函数F (x )=sin x -cos x , 则⎠⎜⎛-π2π2 (sin x +cos x )d x =F ⎝ ⎛⎭⎪⎫π2-F ⎝ ⎛⎭⎪⎫-π2=⎝ ⎛⎭⎪⎫sin π2-cos π2-⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫-π2-cos ⎝ ⎛⎭⎪⎫-π2=2. 【答案】 27.(2016·长沙高二检测)f (x )=sin x +cos x ,则⎠⎜⎛-π2π2f (x )d x =__________. 【解析】⎠⎜⎛-π2π2f (x )d x =⎠⎜⎛-π2π2 (sin x +cos x )d x =(-cos x +sin x )⎪⎪⎪⎪π2-π2=⎝⎛⎭⎪⎫-cos π2+sin π2-⎣⎢⎡⎦⎥⎤-cos ⎝ ⎛⎭⎪⎫-π2+sin ⎝ ⎛⎭⎪⎫-π2=sin π2+sin π2=1+1=2. 【答案】 28.已知f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2dt ,x ≤0,若f (f (1))=1,则a =__________.【导学号:94210074】【解析】 因为f (1)=lg 1=0,且⎠⎛0a 3t 2d t =t 3|a 0=a 3-03=a 3, 所以f (0)=0+a 3=1,所以a =1. 【答案】 1 三、解答题9.已知f (x )=⎠⎛-a x (12t +4a )d t ,F (a )=⎠⎛01[f (x )+3a 2]d x ,求函数F (a )的最小值.【解】 因为f (x )=⎠⎛-a x (12t +4a )d t =(6t 2+4at )⎪⎪⎪x-a=6x 2+4ax -(6a 2-4a 2)=6x 2+4ax -2a 2, F (a )=⎠⎛01[f (x )+3a 2]d x =⎠⎛01(6x 2+4ax +a 2)d x=(2x 3+2ax 2+a 2x )⎪⎪⎪10=2+2a +a 2=(a +1)2+1≥1.∴当a =-1时,F (a )有最小值1.10.设f (x )=ax 2+bx +c (a ≠0),f (1)=4,f ′(1)=1,⎠⎛01f (x )d x =196,求f (x ).【解】 因为f (1)=4,所以a +b +c =4,① f ′(x )=2ax +b ,因为f ′(1)=1,所以2a +b =1,② ⎠⎛01f (x )d x =⎝ ⎛⎭⎪⎫13ax 3+12bx 2+cx ⎪⎪⎪1=13a +12b +c =196,③由①②③可得a =-1,b =3,c =2. 所以f (x )=-x 2+3x +2.[能力提升]1.已知等比数列{}a n ,且a 4+a 8=⎠⎛024-x 2d x ,则a 6(a 2+2a 6+a 10)的值为( )A.π2B.4C.πD.-9π【解析】 ⎠⎛024-x 2d x 表示以原点为圆心,半径r =2在第一象限的面积,因此⎠⎛024-x 2d x =π,a 6(a 2+2a 6+a 10)=a 6·a 2+2a 6·a 6+a 6·a 10=a 24+2a 4·a 8+a 28=(a 4+a 8)2=π2,故选A .【答案】 A2.如图4-2-2所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为()图4-2-2A.14 B.15 C.16D.17【解析】 因为S 正方形=1,S 阴影=⎠⎛01(x -x )d x =⎝ ⎛⎭⎪⎫23x 32-12x 2⎪⎪⎪10=23-12=16,所以点P 恰好取自阴影部分的概率为161=16. 【答案】 C3.计算:⎠⎛-22(2|x |+1)d x =__________.【解析】 ⎠⎛-22(2|x |+1)d x =⎠⎛-20(-2x +1)d x +⎠⎛02(2x +1)d x =(-x 2+x )|0-2+(x 2+x )|20 =-(-4-2)+(4+2)=12. 【答案】 124.定义F (x ,y )=(1+x )y ,x ,y ∈(0,+∞).令函数f (x )=F (1,log 2(x 2-4x +9))的图像为曲线C 1,曲线C 1与y 轴交于点A (0,m ),过坐标原点O 作曲线C 1的切线,切点为B (n ,t )(n >0),设曲线C 1在点A ,B 之间的曲线段与OA ,OB 所围成图形的面积为S ,求S 的值.【解】 ∵F (x ,y )=(1+x )y , ∴f (x )=F (1,log 2(x 2-4x +9)) =2log 2(x 2-4x +9)=x 2-4x +9,故A (0,9),f ′(x )=2x -4. 又∵过O 作C 1的切线, 切点为B (n ,t )(n >0),∴⎩⎪⎨⎪⎧t =n 2-4n +9,t n=2n -4,解得B (3,6).∴S =⎠⎛03(x 2-4x +9-2x )d x =⎝ ⎛⎭⎪⎫13x 3-3x 2+9x ⎪⎪⎪30=9.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪训练(十五) 微积分基本定理
1.下列积分值等于1的是( ) A.∫1
0x d x B.∫1
0(x +1)d x C.∫101d x
D.∫1012
d x
2.(福建高考)⎠⎛01
(e x
+2x )d x =( )
A .1
B .e -1
C .e
D .e +1
3.∫3
0|x 2
-4|d x =( ) A.213 B.223 C.233
D.253
4.函数F (x )=∫x
0t (t -4)d t 在[-1,5]上( ) A .有最大值0,无最小值 B .有最大值0和最小值-32
3
C .有最小值-32
3,无最大值
D .既无最大值也无最小值
5.若∫a -a x 2
d x =18(a >0),则a =________.
6.(陕西高考)设f (x )=⎩⎪⎨⎪
⎧
lg x , x >0,x +⎠⎛0a 3t 2d t ,x ≤0,
若f (f (1))=1,则a =________.
7.求下列定积分: (1)∫2
1
2x 2
+x +1
x
d x ;
(2)∫π
02sin ⎝
⎛⎭
⎪⎫x +π4
d x .
8.A ,B 两站相距7.2 km ,一辆电车从A 站开往B 站,电车开出t s 后到达途中C 点,这一段的速度为1.2t m/s ,
到C 点的速度为24 m/s ,从C 点到B 站前的D 点这段路程做匀速行驶,从D 点开始刹车,经t s 后,速度为(24-1.2t ) m/s ,在B 站恰好停车,试求:
(1)A ,C 间的距离; (2)B ,D 间的距离.
答 案
1.选C ∫1
01d x =x ⎪
⎪ 1
=1.
2.选C ⎠⎛01
(e x +2x )d x =(e x +x 2
)
|1
=(e 1
+1)-e 0
=e.
3.选C ∫30|x 2-4|d x =∫20(4-x 2)d x +∫32(x 2
-4)d x =⎝
⎛⎭⎪⎫4x -13x 3⎪⎪⎪
2
0+⎝ ⎛⎭⎪⎫13x 3-4x ⎪⎪
⎪
3
2
=
23
3
,故选C. 4.选B F (x )=∫x 0(t 2
-4t )d t =⎝ ⎛⎭⎪⎫13t 3
-2t 2⎪⎪
⎪
x
=13
x 3-2x 2(-1≤x ≤5).F ′(x )=x 2
-4x ,由F ′(x )=0,得x =0或4,列表如下:
可见极大值F (0)=0,极小值F (4)=-3.又F (-1)=-3,F (5)=-3,所以最大值为0,最小值为-32
3.
5.解析:∫a
-a x 2
d x =x 3
3| a
-a =a 3
3-
-a
3
3
=18⇒a =3.
答案:3
6.解析:显然f (1)=lg 1=0,f (0)=0+∫a 03t 2d t =t 3⎪⎪
⎪
a
=1,得a =1.
答案:1
7.解:(1)∫2
1
2x 2
+x +1
x
d x
=∫2
1(2x +1x
+1)d x
=∫212x d x +∫211x
d x +∫2
11d x
=x 2
|2
1+ln x |2
1+x |2
1
=(4-1)+ln 2-ln 1+2-1 =4+ln 2.
(2)∵2sin(x +π4)=2⎝ ⎛
⎭⎪⎫sin x ·22+cos x ·22
=sin x +cos x ,
(-cos x +sin x )′=sin x +cos x , ∴∫π
2sin(x +π4
)d x =∫π
0(sin x +cos x )d x
=(-cos x +sin x ) |π
=(-cos π+sin π)-(-cos 0+sin 0)=2.
8.解:(1)设从A 到C 的时间为t 1 s ,则1.2t 1=24,解得t 1=20, 则AC =∫20
01.2t d t =0.6t 2
|20
0=240(m).
即A ,C 间的距离为240 m.
(2)设从D 到B 的时间为t 2 s ,则24-1.2t 2=0, 解得t 2=20,
则BD =∫200(24-1.2t )d t =(24t -0.6t 2) |20
0=240(m).
即B ,D 间的距离为240 m.。