第六章 分子动力学模拟ppt课件

合集下载

化工过程模拟与分析(第六章分子模拟简介)

化工过程模拟与分析(第六章分子模拟简介)
假设
假设有N个质量为m的分子处于体积为V,温度为T 的封闭区域内,它们的轨迹由向量 r 描述。
体系能量
m K 2
m
牛顿运动方程
i 1 d 2r j t 2

dt
N
v2 j
U U r1 t , r2 t ,..., rN t

r j U r , j 1,2,..., N
1. Hit & miss 法
2. 抽样平均值法
1、2各对应哪个?
二、分子模拟的MC法
MC法模拟自然现象的步骤 1. 建立能够描述系统特性的理论模型,导出该模型的某 些特征量的概率密度函数; 2. 从概率密度函数出发进行随机抽样,得到特征量的一 些模拟结果; 3. 对模拟结果进行分析总结,预言系统的某些特性。
系综平均示例
对于一个含有N个粒子的巨正则系综,设含N个粒 子的微观态的热力学量为XN,则对应体系的宏观热力 学量为:
X
N 0
P

N
XN
ห้องสมุดไป่ตู้
其中PN为含N个粒子的微观态出现的概率。
1 exp N / kT PN ... exp T / kT dr1...drN 3N Q , V , T N!

宏观物理量A(是系统中所有粒子的位置和动量的函 数)的值可以通过系综平均获得:
A lim 1 A r ( N ) , p ( N ) d t t t 0
t0

t


二、MD法分子模拟实例 对微孔中氩和氪流体混合物的扩散系数的计算机 模拟和关联模型研究。 体系为包含了72个氩分子和72个氪分子的长方体盒子, 体系势能由LJ公式计算,计算机模拟的时间步长为 10^(-14)s,模拟时间为7.5~10.5 ns。 计算出所有速度后,扩散系数为:

分子动力学模拟入门ppt课件

分子动力学模拟入门ppt课件

0.5 μm
Fig. 2. The effect of converging geometry obtained by MD simulation
of one million particles in the microscale.
34
Dzwinel, W., Alda, W., Pogoda, M., and Yuen, D.A., 2000, Turbulent mixing in the microscale: a 2D molecular dynamics
r r
V (r)
4
r
1
/
12
r
1
/
6
记 V / V;r / r
9
分子间势能及相互作用
▪ 一些气体的参数
Neon (nm) 0.275 /kB(K) 36
Argon Krypon Xenon Nitrogen
0.3405 0.360 0.410 0.370
119.8 171 221
i
m vi2
22
i
宏观性质的统计
▪ 系统的势能
Ep
V (rij )
1i j N
▪ 系统的内能
Ek
i
p2 2mi
▪ 系统的总能 E = Ep+Ek
▪ 系统的温度
1
T dNkB
i
mivi2
23
模拟
• 热容 定义热容
E:系统总能
Cv
E T
V
计算系统在温度T和T+T时的总能ET、ET +T,
26
模拟
模拟
▪ 气、液状态方程
维里定理(Virial Theorem)

第6章 分子动理论优秀课件

第6章 分子动理论优秀课件

m l1
N
v
2 ix
i 1
N
vi2xv12xv22xvN 2 x
i1
故若令
vx2
v12xv22xvN 2 x N
表示分子在X方向速率平 方的平均值,
N
那么
v2 Nv2
ix
x
i1
于是所有分子在单位时间内施于A1面的冲力为
N
FA1
i1
m l1vi2xm l1 iN 1vi2x
m l
1
N v2 x
在状态图中,一条光滑的曲 P 线代表一个由无穷多个平衡态
所组成的变化过程,如右图所
示。 0
曲线上的箭头表示过程进
行的方向。
AP,V,T 1 11
BP,V,T 2 22 V
由于非平衡态不能用一组确切的状态参量来描述,因此在 状态图中,非平衡态过程也就无法找到相应的过程曲线与之 对应。
§6-2 理想气体压强公式
N
P[m/l(1l2l3)]
i1
Vix23 2nw
在上述四步过程中,哪几步用到了理想气体的假设?哪几步用
到了平衡态的条件?哪几步用到了统计平均的概念?(l1、l2、l3 分别为长方形容器的三个边长)
答:(1),(2),(3) 用到了理想气体的假设,
(2),(4) 用到了平衡态的条件,
(4) 用到了统计平均的概念。
M O 2 3 21 0 3kgmol 氢分子和氧分子的平均平动动能相等,均为
3kT31.381023273
22 5.651021J 3.53102eV
氢分子的方均根速率
v2 H2
3RT
M H2
32 8. 31 1 0 2 3 71 3.8 4130

分子动力学模拟.pptx

分子动力学模拟.pptx
这种系综称巨正则系综。
进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟
的 基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后 要赋 予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分
布符合 玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原
能说关注的切入点不同罢了。常见的有三类力场:全原子力场,联合力场,粗粒化力场;当
然还有所谓的第一代,第二代,第三代力场的说法,这里就不一一列举了。
再次提醒注意:必须选择适合我们所关注体系和我们所感兴趣的性质及现象的力场。 3 通过实验数据或者是某些工具得到体系内的每一个分子的初始结构坐标文件,之后,
乏明确的表达 式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用
中,通过第一性 原理计算结果拟合势函数的 L-J,morse 等势模型的应用仍非常广泛。 分子动力学计算的基本思想是赋予分子体系初始运动状态之后,利用分子的自然运动在相 空 间中抽取样本进行统计计算,时间步长就是抽样的间隔,因而时间步长的选取对动力学
模拟 非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步
长会降 低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短 运动周期 的十分之一。但是通常情况下,体系各自由度中运动周期最短的是各个化学键的 振动,而这 种运动对计算某些宏观性质并不产生影响5 年:第一原理分子动力学法(→カー・パリネロ法)
1991 年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为 T、化学势为μ的很大的热源、粒子源 相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,

《分子动力学》课件

《分子动力学》课件
感谢观看
它基于经典力学原理,采用数值方法 求解分子体系的运动方程,模拟分子 的运动轨迹和相互作用,从而得到体 系的宏观性质和微观结构信息。
分子动力学的发展历程
分子动力学的起源可以追溯到20世纪50年代,当时科学家开始尝试使用计算机模拟 分子体系的运动行为。
随着计算机技术和算法的发展,分子动力学模拟的精度和规模不断得到提高,应用 领域也日益广泛。
详细描述
水分子动力学模拟可以揭示水分子在不同环境下的动态行为,例如在生物膜、催化剂表面或纳米孔中 的水分子行为。通过模拟,可以深入了解水分子与周围物质的相互作用,从而为理解生命过程、药物 设计和纳米技术提供重要依据。
蛋白质折叠模拟
总结词
预测蛋白质的三维结构
详细描述
蛋白质折叠模拟是利用分子动力学模拟预测蛋白质的三维结 构的过程。通过模拟蛋白质在溶液中的动态行为,可以预测 其可能的折叠方式,从而为理解蛋白质的功能和设计新药物 提供帮助。
目前,分子动力学已经成为材料科学、化学、生物学、药物设计等领域的重要研究 工具。
分子动力学模拟的应用领域
01
02
03
04
材料科学
研究材料的力学、热学、电学 等性质,以及材料的微观结构
和性能之间的关系。
化学
研究化学反应的机理和过程, 以及化学键的性质和变化规律

生物学
研究生物大分子的结构和功能 ,以及蛋白质、核酸等生物大
高分子材料模拟
总结词
优化高分子材料的性能和设计
VS
详细描述
高分子材料模拟利用分子动力学模拟来研 究高分子材料的结构和动态行为。通过模 拟,可以深入了解高分子材料的性能和行 为,从而优化其性能、提高稳定性或开发 新型高分子材料。这对于材料科学、化学 工程和聚合物科学等领域具有重要意义。

【精编】分子动力学模拟.PPT课件

【精编】分子动力学模拟.PPT课件

rij f ij
2 K 3 Nk b T
PV 2 K 1 33
rij
f ij
2 3
K
2 3
P 2 [K ] 3V
1 2
rij fij
x new υ x old
V new υ 3V old
P 1 V 1 [υ 3 1 ]
TV
T
t P τ [ P0 P ]
P
υ {1
广义朗之万方程
miv•i(t)Fi(t)Ri(t)mi 0ti(tt')vi(t)d't
Ri(0)Rj(t) mik0 T ijij(t)
16、第六章、带传动(带传 动的张紧、使用和维护)资

复习旧课
1、带传动的失效形式和设计准则是什么? 失效形式是:1)打滑;2)带的疲劳破坏。 设计准则是保证带在不打滑的前提下,具有足
Verlet 算法
r n 1 r n v n t 1 2 (m fn) t2 3 1 !d d 3 r 3 n tO ( t4 )
+ r n 1 r n v n t 1 2 (m fn ) t2 3 1 !d d 3 r 3 n tO ( t4 )
r n 1 2 r n r n 1 (m fn) t2 O ( t4)
d d i(t)v tfm i(it) k c b τ v dTT f0 T (T t)(t)v i(t)fm i(it) 1 2 T 0 T (T t)(t)v i(t)
c
df v
不能精确知道,假设
c
df v
= 1/2kb
压强
维里:作用在第 i个粒子上的力 Fi与坐标 ri乘积加和的期望值 维里定理:
n=0 中心盒

分子动力学简介ppt课件

分子动力学简介ppt课件

27
均方位移与扩散系数关系式推导
那么在△t内,面1跳向面二和面二跳向面1的原子数为:
N12 n1Pft
N21 n2Pft
两式相减并利用扩散通量J的定义有:
N12 N21 t
J
Pf (n1 n2 )
把面密度n1,n2改为体密度C1,C2
J
(n1
n2 )Pf
(C1d
C2d)Pf
C x
/m
④计算第n步的速度,Vi ( n )(ri(n1)源自r (n1) i)
/
2h
⑤返回步骤2,开始下一次模拟计算。
• 改进:
把N个粒子的初始位置放置在网格的格点上,然后加以扰 动,给出的初始条件是粒子的空间位置和运动速度,可用
如下公式计算粒子位置: ri(1) 2ri(0) hvi0 Fi(0)h2 / 2m 20
2m
④返回到步骤3,进行下一步的模拟计算。
这样的优点是成功的得到了同一时间步长上的空间位置和
速度,另外,数值计算的稳定性也加强了。
• 总述
一般来说,一个给定的系统并不知道其精确的初始条件,
需要给出一个合理的初始条件,然后在模拟过程中对能量 进行增减调节。具体,先算出若干步的动能和势能,如果 不符合给定的恒定量,则乘以一个标度因子,再回到第一 步。
由n+1步位置算出n步的速度,可见动能的计算比势能落后一步。
19
微正则系综
• 具体模拟步骤:
①给定初始空间位置:
r (0)
i
,ri(1)
②在n步时计算粒子所受的力: Fi(n) Fi (tn )
③计算粒子第n+1步的位置
r (n1) i
r (n1) i
2ri ( n )

第六章 分子动力学模拟 Molecular Dynamics

第六章 分子动力学模拟  Molecular Dynamics

第六章 分子动力学模拟 Molecular Dynamics –MD 6.1引言分子动力学模拟方法是在牛顿力学的理论框架下,根据体系内分子之间的相互作用势,获得每个原子随时间运动的轨迹,通过系综平均,可以得到感兴趣的与结构和动力学性质有关的物理量,如:平均原子坐标,平均能量、平均温度及原子运动的自相关函数等。

这些物理量是通过对每个原子的运动轨迹,即微观量求平均而得到的宏观量,因此可以与实验观测量进行比较。

用计算机模拟方法在向空间采样方法有两种: (1) 随机采样 MC (2) 确定性方法MD以上讲过的MC (Monte Carlo )采样方法就是随机方法,与随机方法不同,确定性方法是按照动力学规律使系统在相空间运动。

分子动力学模型就是一种确定性方法。

它的基本出发点是从一个完全确定的物理模型出发,通过解牛顿运动方程而得到原子运动的轨迹。

我们感兴趣的可测量的客观物理量可以通过相空间的采样求系综平均而得到。

在多态历经假设成立的情况下,系综平均与长时间平均是相同的。

⎰∞→∞==τττ01))(),((limdt t p t q A A A系综其中q,p 为t 的函数。

A 表示系综平均,∞A 表示无穷长时间平均。

因模拟时间总是有限的。

对耦分子体系,当模拟时间大于分子的弛豫时间时,有限观测时间可以变成为无穷长的。

当弛豫模拟〉τt ,模拟t 可认为∞,因物理上的∞是不可能的。

6.2基本原理 1.动力学方程基本动力学方程包括在经典力学(CM )框架下的牛顿方程和在量子动力学(QM )框架下的薛定谔方程。

在常温下,经典的牛顿方程对研究生物分子体系的结构和动力学性质已经足够了,因为这时体系的量子效应并不十分重要。

但是,对研究包含隧道效应的反应时间问题时,量子效应十分明显,这时就必须用QM 方程来模拟体系的量子动力学性质。

QM:含时薛定谔方程为),(),(t r i t r H t→∂∂→∧-=ψψ (2.1)其中∧H 为哈密顿算符,),(t r →ψ为波函数,→r 表示一系列原子坐标,即),,(21→→→→=N r r r r 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4 Equations of motion
分子动力学模拟
为了在计算机上解运动方程,必须为微分方程建立一个 有限差分格式,从差分方程中再导出位置和速度的递推关系 式。这些算法是一步一步执行的,先算t 时刻的位置和速度, 然后在此基础上计算t+1时刻的位置和速度。
微分方程最为直接的离散化格式来自泰勒展开: r(th)r(t)n i 1 1hi!ir(i)(t)Rn
1.5
1
间间
0.5
rij 6 2
0
-0.5
-1
0.8
1
1.2 1.4 1.6 1.8 间间
2
2.2 2.4 2.6
对势能的最大贡献来自于粒子的近邻区域,位势截断
常用的方法是球形截断,截断半径一般取2.5σ或3.6 σ,对
截断距离之外分子间相互作用能按平均密度近似的方法进
行校正。
分子动力学模拟
The disk processed after the simulation is finished. It contains at least all the positions and velocities of all particles. This information is sufficient to calculate all the properties of the system. However, it is more economical to calculate properties during the simulation and store them in the than reading the calculating them afterwards.
➢二、分子动力学方法
分子动力学模拟
2.1 Newtonian mechanics
In the MD method, every new distribution is derived from the previous one by using the interactions between the particles. The interactions depends on the position of the particles.
分子动力学模拟
2.3 Calculations of force, velocity, position
The initial distribution of the Molecular dynamics simulation is generated in a random distribution.
粒子数密度: 温度: 能量:
* 3
T*kBT/
E*E/
1 m3
TK
EJ
压强:
p* p3 /
p N/m2
时间: 力:
t*t(48/m2)12 t s
f*f/
f N
➢四、参量的计算
分子动力学模拟
A simulation run produces the raw data in form of a very large disk file, The the complete state of the system at each step.
1、有限差分方法-预测校正法
rp(tt)r(t)tv(t)t2a(t)/2t3b(t)/6 vp(tt)v(t)ta(t)t2b(t)/2 ap(tt)a(t)tb(t) bp(tt)b(t)
2、有限差分方法-Verlet算法
分子动力学模拟
①、Verlet算法的一般形式
fma 为了用数值方法求解微分方程, i
有效两体势 VV1(ri)V2eff(rij) V (rij )
i
i ji
它包含多体效应,可很好地反映系统粒子间的相互作用。
分子动力学模拟 下面仅对简单系统的相互作用模型给予简介
1、Lennard-Joans势
Lennard-Jones 间间间间 2
1.5
1
间间
0.5
rij 6 2
0
-0.5
-1
①、简单立方晶格
②、体心立方晶格 ③、面心立方晶格
c b
a
c b
a
c c
分子动力学模拟
c c
c ca a
bc bca a
a a
b ba a
b b
b b
初始速度
分子动力学模拟
模拟时,各粒子的初始速度按麦克斯韦速度分布取样。
Maxwell’s distribution law of velocity
分子动力学模拟
本章主要内容
分子动力学模拟
➢一、系综理论
➢二、分子动力学方法
➢三、模拟细节
➢四、参量的计算 ➢五、液态水的MD模拟
➢六、误差分析 ➢七、分子动力学模拟方法的应用
➢一、系综理论
分子动力学模拟
分子动力学模拟(molecular dynamics simulation,简称MD) 方法首先是由Alder和Wainwright提出的,现已逐渐成为预测系统特性、 验证理论和改进模型的计算工具。
在计算势能时必须考虑相互作用的力程,对粒子数为 N的模拟系统,原则上任何两个粒子间都有相互作用,在 计算体系势能时须进行N(N-1)/2次运算。
为了提高计算效率,实际模拟 过程中通常在一个方便的力程上 将位势截断,用以减少计算势能 所消耗的时间。
Lennard-Jones 间间间间 2
分子动力学模拟
Each particle is also assigned an initial velocity vi
In simulation:
fx48 2(xi xj)[ ri(j)141 2( rij)8] fy48 2(yi yj)[ ri(j)141 2( rij)8] fz4 82(zi zj)[ ri(j)141 2( rij)8]
对于正则系综,体系趋衡是通过增减体系能量来实现的。如果 在进行足够多的运算步数以后,系统能持续给出确定的平均动能和 平均势能的数值,那么就认为平衡已经建立。
间间间间 间间间间
间1 间间间间间间间间间间
-2900
-3000
-3100
-3200
-3300
-3400
T=293K
-3500
0
1
2
3
4
5
6
7
8
ri(th)2ri(t)ri(th)m 1h2fi(t)
rin12rinrin1m 1h2fin
速度对轨道计算没有关系,但对 估算动能及速度相关函数(用来研 究粒子的输运特性)非常有用。速 度形式为
vin
rin1 rin1 2h
②、Verlet 蛙跳格式(leap-frog)
分子动力学模拟
The velocity varies so one has to choose a reasonable average value to be used. The velocity at the middle of the step ought to be a good compromise,
The force causes an acceleration
fi mai
分子动力学模拟
Which in turn modifies the initial velocity vi as
v i' v i a i t v i a ih
And modifies the initial position ri as
对一个由N个原子构成的简单系统,其势能项由下式给出
V V 1 ( r i) V 2 ( r i,r j) V 3 ( r i,r j,r k )
i
ij i
ij ik j i
式中右端第一项是外场(如电场、 磁场、声场等)对系统的作用;第二项 是两体势即系统中每两个粒子间的相互 作用;第三项是三体势,表示系统中每 三个粒子间的相互作用……
0.8
1
1.2 1.4 1.6 1.8 间间
2
2.2
2.4 2.6
2. 硬球势(Hard-Sphere)
VHS(r) 0
r r
分子动力学模拟
3. 软球势(Soft-Sphere)
VSS(r)() r
r
通常,v 是为整数的参数。
4. 方阱势(Square-Well)
VSW(r)
0
r 1 1 r2 r 2
61
61
61
5D 2
5C 2
5B 2
3 4
3 4
3 4
61
61
61
5E
2
2 5基本元胞
5A
2
3 4
3 4
3 4
61
61
61
5F
2
5G 2
5H 2
3 4
3 4
3 4
L
3.3 Calculation of interactions 分子动力学模拟
i , j 两个离子的相互作用势
体系总势能可表示为:
U u(rij) ij
指平衡状态下理想气体分子 速度分布的统计规律。在平衡状 态下,分布在任一速率区间内的 分子数与总分子数的比率为
f(v)dv 42m kT 3/2exp2 m k2T vv2dv
分子动力学模拟
3.2 Periodic boundary conditions
通常选取小数体系(几十个到数千个分子)作为研究 对象,但由于位于表面和内部的分子受力差别较大,将会 产生表面效应。
指定的体系温度,T*是每一时间步的瞬时动能温度。
Ekin12mi
vi2
3Nk*T 2
相关文档
最新文档