南京市届高三年级第三次模拟测验数学试题

合集下载

江苏省五校2024年高三第三次诊断考试数学试题

江苏省五校2024年高三第三次诊断考试数学试题

江苏省五校2024年高三第三次诊断考试数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若函数32()2()f x x mx x m R =-+∈在1x =处有极值,则()f x 在区间[0,2]上的最大值为( )A .1427B .2C .1D .32.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P 表示π的近似值),若输入10n =,则输出的结果是( )A .11114(1)35717P =-+-+⋅⋅⋅+ B .11114(1)35719P =-+-+⋅⋅⋅- C .11114(1)35721P =-+-+⋅⋅⋅+D .11114(1)35721P =-+-+⋅⋅⋅-3.821x y x ⎛⎫++ ⎪⎝⎭的展开式中12x y -的系数是( )A .160B .240C .280D .3204.已知不重合的平面,,αβγ 和直线l ,则“//αβ ”的充分不必要条件是( ) A .α内有无数条直线与β平行B .l α⊥ 且l β⊥C .αγ⊥ 且γβ⊥D .α内的任何直线都与β平行5.设O 为坐标原点,P 是以F 为焦点的抛物线24y x =上任意一点,M 是线段PF 上的点,且PM MF =,则直线OM 的斜率的最大值为( )A .1B .12C .22D .526.已知抛物线C :24x y =的焦点为F ,过点F 的直线l 交抛物线C 于A ,B 两点,其中点A 在第一象限,若弦AB 的长为254,则AF BF =( ) A .2或12B .3或13C .4或14D .5或157.若a >b >0,0<c <1,则 A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b8.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )A .甲的数据分析素养优于乙B .乙的数据分析素养优于数学建模素养C .甲的六大素养整体水平优于乙D .甲的六大素养中数学运算最强9.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .10.函数()sin()(0)4f x A x πωω=+>的图象与x 轴交点的横坐标构成一个公差为3π的等差数列,要得到函数()cos g x A x ω=的图象,只需将()f x 的图象( )A .向左平移12π个单位 B .向右平移4π个单位 C .向左平移4π个单位 D .向右平移34π个单位 11.设一个正三棱柱ABC DEF -,每条棱长都相等,一只蚂蚁从上底面ABC 的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为10P ,则10P 为( )A .10111432⎛⎫⋅+ ⎪⎝⎭B .111132⎛⎫+ ⎪⎝⎭C .111132⎛⎫- ⎪⎝⎭D .10111232⎛⎫⋅+ ⎪⎝⎭12.已知定点,A B 都在平面α内,定点,,P PB C αα∉⊥是α内异于,A B 的动点,且PC AC ⊥,那么动点C 在平面α内的轨迹是( ) A .圆,但要去掉两个点 B .椭圆,但要去掉两个点 C .双曲线,但要去掉两个点D .抛物线,但要去掉两个点二、填空题:本题共4小题,每小题5分,共20分。

南京市届高三第三次模拟考试数学试题及答案

南京市届高三第三次模拟考试数学试题及答案

南京市2017届高三年级第三次模拟考试数 学参考公式:方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数.柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高. 锥体的体积公式:V =13Sh ,其中S 为锥体的底面积,h 为锥体的高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上.1.已知全集U ={1,2,3,4},集合A ={1,4},B ={3,4},则∁U(A ∪B )= .2.甲盒子中有编号分别为1,2的2个乒乓球,乙盒子中有编号分别为3,4,5,6的41个乒乓球,则取出的乒乓球的编号之和大于63.若复数z 满足z +2-z =3+2i ,其中i 复数z 的共轭复数,则复数z 的模为 .4.执行如图所示的伪代码,若输出y 的值为1,则输入x 的值为 .5.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为 .6.在同一直角坐标系中,函数y =sin(x +π3) (x ∈[0,2π])的图象和直线y =12的交点的个数是 .7.在平面直角坐标系xOy 中,双曲线x 22m 2-y 23m=1的焦距为6,则所有满足条件的实数m 构成的集合是 .8.已知函数f (x )是定义在R 上且周期为4的偶函数.当x ∈[2,4]时,f (x )=|log 4(x -32)|,则f (12)的值为 .9.若等比数列{a n }的各项均为正数,且a 3-a 1=2,则a 5的最小值为 .10.如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,BB 1=3,∠ABC =90°,点D 为侧棱BB 1上的动点.当AD +DC 1最小时, 三棱锥D -ABC 1的体积为 .11.若函数f (x )=e x (-x 2+2x +a )在区间[a ,a +1]上单调递增,则实数a 的最大值为 .12.在凸四边形ABCD 中, BD =2,且AC →·BD →=0,(AB →+→DC )•(→BC +→AD )=5,则四边形ABCD 的面积为 .13. 在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆M :(x +a +3)2+(y -2a )2=1(a 为实数).若圆O 与圆M 上分别存在点P ,Q ,使得∠OQP =30,则a 的取值范围为 .14.已知a ,b ,c 为正实数,且a +2b ≤8c ,2a +3b ≤2c ,则3a +8b c的取值范围为 .二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)如图,在三棱锥A -BCD 中,E ,F 分别为棱BC ,CD 上的点,且BDACBA B CD A∥平面AEF .(1)求证:EF ∥平面ABD ;(2)若BD ⊥CD ,AE ⊥平面BCD ,求证:平面AEF ⊥平面ACD .16.(本小题满分14分)已知向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈(0,π2).(1)若a -b =(25,0),求t 的值;(2)若t =1,且a • b =1,求tan(2α+π4)的值.17.在一水域上建一个演艺广场.演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC ,及矩形表演台BCDE 四个部分构成(如图).看台Ⅰ,看台Ⅱ是分别以AB ,AC 为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍;矩形表演台BCDE 中,CD =10的面积为4003平方米.设∠BAC =θ.(1)求BC 的长(用含θ的式子表示);A(2)若表演台每平方米的造价为万元, 求表演台的最低造价.18.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点分别为A ,B ,M 为线段AB 的中点,且OM →·AB →=-32b 2. (1)求椭圆的离心率;(2)已知a =2,四边形ABCD BC的斜率分别为k 1,k 2,求证:k 1·k 2为定值.19.已知常数p >0,数列{a n }满足a n +1=|p -a n |+2 a n +p ,n ∈N *.(1)若a 1=-1,p =1,①求a 4的值; ②求数列{a n }的前n 项和S n .(2)若数列{a n}中存在三项a r,a s,a t (r,s,t∈N*,r<s<t)依次成等差数列,求a1p的取值范围.20.已知λ∈R,函数f (x)=e x-e x-λ(x ln x-x+1)的导函数为g(x).(1)求曲线y=f (x)在x=1处的切线方程;(2)若函数g (x)存在极值,求λ的取值范围;(3)若x≥1时,f (x)≥0恒成立,求λ的最大值.南京市2017届高三第三次模拟考试数学参考答案及评分标准一、填空题(本大题共14小题,每小题5分,计70分.)1.{2} 2.383.54.-15. 6.27.{32} 8.129.8 10.1311.-1+5212.313.[-65,0] 14.[27,30]二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤) 15.(本小题满分14分) 证明:(1)因为BD ∥平面AEF ,BD 平面BCD ,平面AEF ∩平面BCD =EF ,所以BD ∥EF . …………………… 3分因为BD 平面ABD ,EF 平面ABD , 所以EF ∥平面ABD . …………………… 6分(2)因为AE ⊥平面BCD ,CD 平面BCD , 所以AE ⊥CD . …………………… 8分因为 BD ⊥CD ,BD ∥EF , 所以CD ⊥EF , …………………… 10分又 AE ∩EF =E ,AE 平面AEF ,EF 平面AEF , 所以CD ⊥平面AEF . …………………… 12分又 CD 平面ACD , 所以平面AEF ⊥平面ACD . …………………… 14分16.(本小题满分14分)解:(1)因为向量a =(2cos α,sin 2α),b =(2sin α,t ),且a -b =(25,0),所以cos α-sin α=15,t =sin 2α. …………………… 2分由cos α-sin α=15 得 (cos α-sin α)2=125,即1-2sin αcos α=125,从而2sin αcos α=2425.所以(cos α+sin α)2=1+2sin αcos α=4925.因为α∈(0,π2),所以cos α+sin α=75. …………………… 5分 所以sin α=(cos α+sin α)-(cos α-sin α)2=35,从而t =sin 2α=925. …………………… 7分 (2)因为t =1,且a • b =1,所以4sin αcos α+sin 2α=1,即4sin αcos α=cos 2α. 因为α∈(0,π2),所以cos α≠0,从而tan α=14. …………………… 9分 所以tan2α=2tan α1-tan 2α=815. …………………… 11分 从而tan(2α+π4)=tan2α+tan π41-tan2α·tan π4=815+11-815=237. …………………… 14分17.(本小题满分14分)解:(1)因为看台Ⅰ的面积是看台Ⅱ的面积的3倍,所以AB=3AC.在△ABC中,S△ABC=12AB•AC•sinθ=4003,所以AC2=800sinθ. (3)分由余弦定理可得BC2=AB2+AC2-2AB•AC•cosθ,=4AC2-23AC2 cosθ.=(4-23cosθ) 800sinθ,即BC=(4-23cosθ)•800sinθ=402-3cosθsinθ.所以BC=402-3cosθsinθ,θ∈(0,π).…………………… 7分(2)设表演台的总造价为W万元.因为CD=10m,表演台每平方米的造价为万元,所以W =3BC =1202-3cos θsin θ,θ∈(0,π). …………………… 9分记f (θ)=2-3cos θsin θ,θ∈(0,π).则f ′(θ)=3-2cos θsin 2θ. (11)分由f ′(θ)=0,解得θ=π6.当θ∈(0,π6)时,f ′(θ)<0;当θ∈(π6,π)时,f ′(θ)>0.故f (θ)在(0,π6)上单调递减,在(π6,π)上单调递增,从而当θ=π6 时,f (θ)取得最小值,最小值为f (π6)=1.所以W min =120(万元). 答:表演台的最低造价为120万元. …………………… 14分18.(本小题满分16分)解:(1)A (a ,0),B (0,b ),由M 为线段AB 的中点得M (a 2,b2).所以OM →=(a 2,b 2),AB →=(-a ,b ). 因为OM →·AB →=-32b 2,所以(a 2,b 2)·(-a ,b )=-a 22+b 22=-32b 2,整理得a 2=4b 2,即a =2b . …………………… 3分因为a 2=b 2+c 2,所以3a 2=4c 2,即3a =2c .所以椭圆的离心率e =ca=32. …………………… 5分 (2)方法一:由a =2得b =1,故椭圆方程为x 24+y 2=1.从而A (2,0),B (0,1),直线AB 的斜率为-12. …………………… 7分 因为AB ∥DC ,故可设DC 的方程为y =-12x +m .设D (x 1,y 1),C (x 2,y 2).联立⎩⎨⎧y =-12x +m ,x24+y 2=1,消去y ,得x 2-2mx +2m 2-2=0,所以x 1+x 2=2m ,从而x 1=2m -x 2. ……………………… 9分直线AD 的斜率k 1=y 1x 1-2=-12x 1+m x 1-2,直线BC 的斜率k 2=y 2-1x 2=-12x 2+m -1x 2,……………………… 11分所以k 1·k 2=-12x 1+m x 1-2·-12x 2+m -1x 2=14x 1x 2-12(m -1)x 1-12mx 2+m (m -1)(x 1-2)x 2=14x 1x 2-12m (x 1+x 2)+12x 1+m (m -1)x 1x 2-2x 2=14x 1x 2-12m ·2m +12(2m -x 2)+m (m -1)x 1x 2-2x 2=14x 1x 2-12x 2x 1x 2-2x 2=14,即k 1·k 2为定值14. ………………………16分 方法二:由a =2得b =1,故椭圆方程为x 24+y 2=1.从而A (2,0),B (0,1),直线AB 的斜率为-12. …………………… 7分 设C (x 0,y 0),则x 024+y 02=1.因为AB ∥CD ,故CD 的方程为y =-12(x -x 0)+y 0.联立⎩⎨⎧y =-12(x -x 0)+y 0,x24+y 2=1,消去y ,得x 2-(x 0+2y 0)x +2x 0y 0=0,解得x =x 0(舍去)或x =2y 0.所以点D 的坐标为(2y 0,12x 0). ……………………… 13分所以k1·k2=12x02y0-2·y0-1x0=14,即k1·k2为定值14.……………………… 16分19.(本小题满分16分)解:(1)因为p=1,所以a n+1=|1-a n|+2 a n+1.①因为a1=-1,所以a2=|1-a1|+2 a1+1=1,a3=|1-a2|+2 a2+1=3,a4=|1-a3|+2a3+1=9.…………………………… 3分②因为a2=1,a n+1=|1-a n|+2 a n+1,所以当n≥2时,a n≥1,从而a n+1=|1-a n|+2 a n+1=a n-1+2 a n+1=3a n,于是有a n=3n-2(n≥2) .…………………………… 5分当n=1时,S1=-1;当n ≥2时,S n =-1+a 2+a 3+…+a n =-1+1-3n -11-3=3n -1-32.所以 S n =⎩⎨⎧1,n =1,3n-1-32,n ≥2,n ∈N *,即S n =3n -1-32,n ∈N *. …………………………8分(2)因为a n +1-a n =|p -a n |+a n +p ≥p -a n +a n +p =2 p >0,所以a n +1>a n ,即{a n }单调递增. ………………………… 10分(i )当a 1p≥1时,有a 1≥p ,于是a n ≥a 1≥p ,所以a n +1=|p -a n |+2 a n +p =a n -p +2 a n +p =3a n ,所以a n =3n -1a 1. 若{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列,则有2 a s =a r +a t ,即2×3s -1=3r -1+3t -1. (*)因为s ≤t -1,所以2×3s -1=23×3s <3t -1<3r -1+3t -1,即(*)不成立.列.……………………… 12分(ii)当-1<a1p<1时,有-p<a1<p.此时a2=|p-a1|+2 a1+p=p-a1+2 a1+p=a1+2 p>p,于是当n≥2时,a n≥a2>p,从而a n+1=|p-a n|+2 a n+p=a n-p+2 a n+p=3a n.所以a n=3n-2a2=3n-2(a1+2p) (n≥2).若{a n}中存在三项a r,a s,a t (r,s,t∈N*,r<s<t)依次成等差数列,同(i)可知,r=1,于是有2×3s-2(a1+2 p)=a1+3t-2(a1+2p).因为2≤s≤t-1,所以a1a1+2 p =2×3s-2-3t-2=29×3s-13×3t-1<0.因为2×3s-2-3t-2是整数,所以a1a1+2 p≤-1,于是a1≤-a1-2p,即a1≤-p,与-p<a1<p相矛盾.列.………………… 14分(iii)当a1p≤-1时,则有a1≤-p<p,a1+p≤0,于是a2=| p-a1|+2a1+p=p-a1+2 a1+p=a1+2p,a3=|p-a2|+2a2+p=|p+a1|+2a1+5p=-p-a1+2a1+5p=a1+4p,此时有a1,a2,a3成等差数列.综上可知:a1p≤-1.……………………………… 16分20.(本小题满分16分)解:(1)因为f′(x)=e x-e-λln x,所以曲线y=f (x)在x=1处的切线的斜率为f′(1)=0,又切点为(1,f (1)),即(1,0),所以切线方程为y=0.………………………… 2分(2)g (x )=e x -e -λln x ,g ′(x )=e x-λx.当λ≤0时,g ′(x )>0恒成立,从而g (x )在(0,+∞)上单调递增, 故此时g (x )无极值. ………………………… 4分当λ>0时,设h (x )=e x-λx,则h ′(x )=e x+λx 2>0恒成立,所以h (x )在(0,+∞)上单调递增. ………………………… 6分 ①当0<λ<e 时,h (1)=e -λ>0,h (λe)=e λe -e <0,且h (x )是(0,+∞)上的连续函数,因此存在唯一的x 0∈(λe ,1),使得h (x 0)=0.②当λ≥e 时,h (1)=e -λ≤0,h (λ)=e λ-1>0,且h (x )是(0,+∞)上的连续函数,因此存在唯一的x 0∈[1,λ),使得h (x 0)=0.故当λ>0时,存在唯一的x0>0,使得h(x0)=0.…………………… 8分且当0<x<x0时,h(x)<0,即g′(x)<0,当x>x0时,h(x)>0,即g′(x)>0,所以g (x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,因此g (x)在x=x0处有极小值.所以当函数g(x)存在极值时,λ的取值范围是(0,+∞).…………………… 10分(3)g (x)=f′(x)=e x-e-λln x,g′(x)=e x-λx.若g′(x)≥0恒成立,则有λ≤x e x恒成立.设φ(x)=x e x(x≥1),则φ′(x)=(x+1) e x>0恒成立,所以φ(x)单调递增,从而φ(x)≥φ(1)=e,即λ≤e.于是当λ≤e时,g (x)在[1,+∞)上单调递增,此时g (x)≥g (1)=0,即f′(x)≥0,从而f (x)在[1,+∞)上单调递增.所以f(x)≥f(1)=0恒成立.…………………………… 13分当λ>e时,由(2)知,存在x0∈(1,λ),使得g(x)在(0,x0)上单调递减,即f′(x)在(0,x0)上单调递减.所以当1<x<x0时,f′(x)<f′(1)=0,于是f (x)在[1,x0)上单调递减,所以f (x0)<f (1)=0.这与x≥1时,f (x)≥0恒成立矛盾.因此λ≤e,即λ的最大值为e.…………………………… 16分南京市2017届高三第三次模拟考试数学附加参考答案及评分标准21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲 证明:连结BE .因为AD 是边BC 上的高,AE 是△ABC 所以∠ABE =∠ADC =90°. ……………∠AEB =∠ACD , …………… 6分 所以△ABE ∽△ADC , …………… 8分所以AB AD = AEAC.即AB ·AC =AD ·AE . …………… 10分 B .选修4—2:矩阵与变换解:(1)AX =⎣⎢⎢⎡⎦⎥⎥⎤2 x y 2 ⎣⎢⎡⎦⎥⎤-1 1 =⎣⎢⎡⎦⎥⎤x -22-y . …………… 2分 因为AX =⎣⎢⎡⎦⎥⎤12,所以⎩⎨⎧x -2=1,2-y =2,解得x =3,y =0. …………… 4分(2)由(1)知A =⎣⎢⎢⎡⎦⎥⎥⎤2 30 2 ,又B =⎣⎢⎢⎡⎦⎥⎥⎤1 -10 2 , 所以AB = ⎣⎢⎢⎡⎦⎥⎥⎤2 30 2 ⎣⎢⎢⎡⎦⎥⎥⎤1 -102 =⎣⎢⎢⎡⎦⎥⎥⎤2 40 4 . …………… 6分 设(AB )-1= ⎣⎢⎢⎡⎦⎥⎥⎤a b c d ,则 ⎣⎢⎢⎡⎦⎥⎥⎤2 40 4 ⎣⎢⎢⎡⎦⎥⎥⎤a b c d = ⎣⎢⎢⎡⎦⎥⎥⎤1 00 1 , 即 ⎣⎢⎢⎡⎦⎥⎥⎤2a +4c 2b +4d 4c 4d =⎣⎢⎢⎡⎦⎥⎥⎤1 00 1 . …………… 8分 所以 ⎩⎨⎧2a +4c =1,4c =0,2b +4d =0,4d =1,解得a =12,b =-12,c =0,d =14,即 (AB )-1=⎣⎢⎢⎡⎦⎥⎥⎤12 -120 14 .…………… 10分(说明:逆矩阵也可以直接使用公式求解,但要求呈现公式的结构)C.选修4—4:坐标系与参数方程解:由于 2 =x2+y2,cosθ=x,所以曲线C的直角坐标方程为x2+y2-8x+15=0,即 (x-4)2+y2=1,所以曲线C是以 (4,0) 为圆心,1为半径的圆.…………… 3分直线l的直角坐标方程为y=x ,即x-y=0.…………… 6分因为圆心(4,0) 到直线l的距离d=|4-0|2=22>1.…………… 8分所以直线l与圆相离,从而PQ的最小值为d-1=22-1. (10)分D.选修4—5:不等式选讲证明:因为x>0,所以x3+2 =x3+1+1 ≥ 33x3×1×1 = 3x,当且仅当x3=1,即x=1时取“=”.…………… 4分因为y 2+1-2y =(y -1)2≥0,所以y 2+1≥2y , 当且仅当y =1时取“=”. …………… 8分 所以 (x 3+2)+(y 2+1)≥3x +2y ,即x 3+y 2+3≥3x +2y ,当且仅当x =y =1时,取“=”. …………… 10分【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡..指定区域内.....作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)解:(1)设P (x ,y )为曲线C 上任意一点 .因为PS ⊥l ,垂足为S ,又直线l :x =-1,所以S (-1,y ). 因为T (3,0),所以OP→=(x ,y ), ST →=(4,-y ). 因为OP →·ST →=0,所以4x -y 2=0,即y 2=4x . 所以曲线C 的方程为y 2=4x . …………… 3分 (2)因为直线PQ 过点(1,0),故设直线PQ 的方程为x =my +1.P (x 1,y 1),Q (x 2,y 2).联立⎩⎨⎧y 2=4x ,x =my +1,消去x ,得y 2―4my ―4=0.所以y 1+y 2=4m ,y 1y 2=―4. …………… 5分因为M 为线段PQ 的中点,所以M 的坐标为(x 1+x 22,y 1+y 22),即M (2m 2+1,2m ).又因为S (-1,y 1),N (-1,0),所以SM →=(2m 2+2,2m -y 1),NQ →=(x 2+1,y 2)=(my 2+2,y 2). …………… 7分因为(2m 2+2) y 2-(2m -y 1)(my 2+2)=(2m 2+2) y 2-2m 2y 2+my 1y 2-4m +2y 1=2(y 1+y 2)+my 1y 2-4m =8m -4m -4m =0. 所以向量SM→与NQ→共线. …………… 10分 23.(本小题满分10分)解:(1)由题意,当n =2时,数列{a n }共有6项.要使得f(2)是2的整数倍,则这6项中,只能有0项、2项、4项、6项取1,故T2=C06+C26+C46+C66=25=32.……………………… 3分(2)T n=C03n+C33n+C63n+…+C3n3n.……………………… 4分当1≤k≤n,k∈N*时,C3k 3n+3=C3k3n+2+C3k-13n+2=C3k-13n+1+C3k3n+1+C3k-13n+1+C3k-23n+1=2C3k-13n+1+C3k 3n+1+C3k-23n+1=2 (C3k-13n+C3k-23n)+C3k-13n+C3k3n+C3k-33n+C3k-23n= 3 (C3k-13n+C3k-23n)+C3k3n+C3k-33n,……………………… 6分于是T n+1=C03n+3+C33n+3+C63n+3+…+C3n+33n+3=C03n+3+C3n+33n+3+3(C13n+C23n+C43n+C53n+…+C3n-23n+C3n-13n)+T n-C03n+T n-C3n3n=2 T n+3(23n-T n)=3×8n-T n.……………………… 8分下面用数学归纳法证明T n =13[8n+2(-1)n ].当n =1时,T 1=C 03+C 33=2=13[81+2(-1)1],即n =1时,命题成立.假设n =k (k ≥1,k ∈N *) 时,命题成立,即T k =13[8k+2(-1)k ].则当n =k +1时,T k +1=3×8k-T k =3×8k-13[8k +2(-1)k]=13[9×8k -8k -2(-1)k]=13[8k +1+2(-1)k +1],即n =k +1时,命题也成立.于是当n ∈N *,有T n =13[8n +2(-1)n ].。

南京市2025届高三年级学情调研数学参考答案

南京市2025届高三年级学情调研数学参考答案

南京市2025届高三年级学情调研数学参考答案 2024.09一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上.全部选对得6分,部分选对得部分分,不选或有错选的得0分.三、填空题:本大题共3小题,每小题5分,共15分.请把答案填写在答题卡相应位置上. 12.240 13.3π14.33四、解答题:本大题共5小题,共77分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤. 15.(本小题满分13分)解:(1)假设H 0:8点前到单位与方案选择无关,则χ2=100×(28×30-12×30)240×60×42×58······································································ 2分=800203≈3.94>3.841, ············································································ 4分 所以有95%的把握认为8点前到单位与路线选择有关. ······································ 6分 (2)选择A 方案上班,8点前到单位的概率为0.7,选择B 方案上班,8点前到单位的概率为0.5. ················································ 8分 当X =3时,则分两种情况: ①若周一8点前到单位,则P 1=0.7×C 24(1-0.5)2×0.52=2180. ····························································· 10分 ②若周一8点前没有到单位,则P 2=(1-0.7)×C 34(1-0.5)×0.53=680. ·························································· 12分DABC EFMNO xy z 综上,P (X =3)=P 1+P 2=2780. ····································································· 13分16.(本小题满分15分)解:(1)因为E ,F 分别为线段AB ,BC 中点,所以EF ∥AC . ························································································· 2分 因为AM →=2MD →,CN →=2ND →,即DM DA =DN DC =13,所以MN ∥AC ,所以EF ∥MN . ···································································· 4分 又MN ⊂平面MNB ,EF ⊄平面MNB ,所以EF ∥平面MNB . ················································································· 6分 (2)取AC 中点O ,连接DO ,OE . 因为△ACD 为正三角形,所以DO ⊥AC .因为平面ACD ⊥平面ABC ,平面ACD ∩平面ABC = AC ,DO ⊂平面ACD ,所以DO ⊥平面ABC . ·············································································· 8分因为O ,E 分别为AC ,AB 中点,则OE ∥BC .又因为AC ⊥BC ,所以OE ⊥AC .以O 为坐标原点,OE ,OC ,OD 所在直线分别为x ,y ,z 轴建立空间直角坐标系, ······································································································· 10分 则D (0,0,332),B (3,32,0),M (0,-12,3),N (0,12,3),故→BM =(-3,-2,3),→MN =(0,1,0),→BD =(-3,-32,332).设平面MNB 的法向量为n =(x ,y ,z ),直线BD 与平面MNB 所成角为θ, 则⎩⎪⎨⎪⎧n ·→BM =0,n ·→MN =0,即⎩⎨⎧-3x -2y +3z =0,y =0.取n =(3,0,3). ··················································································· 12分 则sin θ=|cos<→BD ,n >|=|→BD ·n ||→BD ||n |=|-33+0+932|9+94+274×3+9=33232×23=28,所以BD 与平面MNB 所成角的正弦值为28. ·················································· 15分17.(本小题满分15分)解:(1)因为a n =(-1)n +2n ,则a 1=1,a 2=5,a 3=7,a 4=17.又b n =a n +1-λa n ,则b 1=a 2-λa 1=5-λ,b 2=a 3-λa 2=7-5λ,b 3=a 4-λa 3=17-7λ. ····················· 2分 因为{b n }为等比数列,则b 22=b 1·b 3,所以(7-5λ)2=(5-λ)(17-7λ),…………………4分整理得λ2-λ-2=0,解得λ=-1或2. 因为λ>0,故λ=2.当λ=2时,b n =a n +1-2a n =(-1)n +1+2n +1-2[(-1)n +2n ]=(-1)×(-1)n +2n +1-2×(-1)n -2n +1=-3×(-1)n . ····································· 6分则b n +1b n =-3×(-1)n +1-3×(-1)n=-1,故{b n }为等比数列, 所以λ=2符合题意. ············································································· 7分 (2) b n ·n 2=-3×(-1)n ·n 2,当n 为偶数时,T n =-3×[-12+22-32+42-52+62-…-(n -1)2+n 2]=-3×(1+2+…+n )=-32n (n +1). ······················································ 10分当n 为奇数时,T n =T n +1-b n +1(n +1)2=-32(n +1)(n +2)+3(n +1)2=32n (n +1).······················································································· 12分 综上,T n =⎩⎨⎧32n (n +1),n 为奇数,-32n (n +1),n 为偶数.因为T i ·T i +2>0,又T i ·T i +2=15T i +1,故T i +1>0,所以i 为偶数. ··································································· 13分 所以[-32i (i +1)]·[-32(i +2)(i +3)]=15×32(i +1)(i +2),整理得i 2+3i -10=0,解得i =2或i =-5(舍),所以i =2. ························································································ 15分18.(本小题满分17分)解:(1)由题意可知c =6,点T 在C 上,根据双曲线的定义可知|TF 1|-|TF 2|=2a ,即2a =(36)2+(10)2-(6)2+(10)2=4,所以a =2, ··························· 2分则b 2=c 2-a 2=2,所以C 的方程为x 24-y 22=1. ····································································· 3分(2)①设B (x 0,y 0),DB →=(x 0-1,y 0). 因为DA →=3DB →,所以DA →=(3x 0-3,3y 0),所以A 点坐标为(3x 0-2,3y 0), ··································································· 5分 因为A ,B 在双曲线C 上,所以⎩⎨⎧x 204-y 202=1,(3x 0-2)24-(3y 0)22=1,解得x 0=3,y 0=±102, ········································································ 7分 所以A 点坐标为(7,±3102),所以S ΔF 1F 2A =12|y A |×|F 1F 2|=12×3102×26=315. ··································· 8分②当直线l 与y 轴垂直时,此时PQ =4不满足条件.设直线l 的方程为x =ty +1,A (x 1,y 1),B (x 2,y 2),P (x P ,0),Q (x Q ,0).直线l 与C 联立⎩⎪⎨⎪⎧ x 24-y 22=1, x =ty +1,消去x ,得(t 2-2)y 2+2ty -3=0,所以y 1+y 2=-2t t 2-2,y 1y 2=-3t 2-2. ····················································· 10分由⎩⎨⎧Δ=4t 2+12(t 2-2)>0,t 2-2≠0.,得t 2>32且t 2≠2.以AB 为直径的圆方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0,令y =0,可得x 2-(x 1+x 2)x +x 1x 2+y 1y 2=0,则x P ,x Q 为方程的两个根,所以x P +x Q =x 1+x 2,x P x Q =x 1x 2+y 1y 2, ··················································· 13分 所以PQ =|x P -x Q |=(x P +x Q )2-4x P x Q =(x 1+x 2)2-4(x 1x 2+y 1y 2)=(x 1-x 2)2-4y 1y 2=t 2(y 1-y 2)2-4y 1y 2 =t 2(y 1+y 2)2-4(t 2+1)y 1y 2=4t 4(t 2-2)2+12(t 2+1)t 2-2=16t 4-12t 2-24(t 2-2)2=2. ··························································· 15分解得t 2=-2(舍)或t 2=53,即t =±153,所以直线l 的方程为:3x ±15y -3=0. ·················································· 17分19.(本小题满分17分)解:(1)当a=1时,f(x)=e x-1+x2-3x+1,则f'(x)=e x-1+2x-3,所以曲线y=f(x)在x=1处切线的斜率k=f'(1)=0.又因为f(1)=0,所以曲线y=f(x)在x=1处切线的方程为y=0.···················································3分(2)f(1)=e1-a-2a+1,f'(x)=e x-a+2ax-3a,则f'(1)=e1-a-a,当a>1时,f''(x)=e x-a+2a>0,则f'(x)在(1,+∞)上单调递增.因为f'(1)=e1-a-a<e1-1-1=0,f'(a)=1+2a2-3a=(2a-1)(a-1)>0,所以存在唯一的x0∈(1,a),使得f'(x0)=0.·······················································5分当x∈(1,x0)时,f'(x)<0,所以f(x)在[1,x0)上单调递减;当x∈(x0,+∞)时,f'(x)>0,所以f(x)在(x0,+∞)上单调递增.又因为f(1)=e1-a-2a+1<e0-2+1=0,所以f(x0)<f(1)<0.又因为f(3)=e3-a+1>0,所以当a>1时,f(x)在[1,+∞)上有且只有一个零点.··································· 8分(3)①当a>1时,f(1)=e1-a-2a+1<e0-2+1=0,与当x≥0时,f(x)≥0矛盾,所以a>1不满足题意. ··········································································· 9分②当a≤1时,f(0)=e-a+1>0,f'(x)=e x-a+2ax-3a,f''(x)=e x-a+2a,f''(0)=e-a+2a.记函数q(x)=e-x+2x,x≤1,则q'(x)=-e-x+2,当x∈(-ln2,1)时,q'(x)>0,所以q(x)在(-ln2,1)单调递增;当x∈(-∞,-ln2)时,q'(x)<0,所以q(x)在(-∞,-ln2)单调递减,所以q(x)≥q(-ln2)=2-2ln2>0,所以f''(0)>0.又因为f''(x)在[0,+∞)上单调递增,所以f''(x)≥f''(0)>0,所以f'(x)在[0,+∞)上单调递增.································ 11分(i)若f'(0)=e-a-3a≥0,则f'(x)≥f'(0)≥0,所以f(x)在[0,+∞)上单调递增,则f(x)≥f(0)>0,符合题意;··································································· 13分(ii)若f'(0)=e-a-3a<0,可得a>0,则0<a≤1.因为f'(1)=e1-a-a≥0,且f'(x)在[0,+∞)上单调递增,所以存在唯一的x1∈(0,1],使得f'(x1)=0.当x∈(0,x1)时,f'(x)<0,所以f(x)在(0,x1)上单调递减,当x∈(x1,+∞)时,f'(x)>0,所以f(x)在(x1,+∞)上单调递增,其中x1∈(0,1],且e x1-a+2ax1-3a=0. ························································15分所以f(x)≥f(x1)=e x1-a+ax12-3ax1+1=3a-2ax1+ax12-3ax1+1=ax12-5ax1+3a+1=a(x12-5x1+3)+1,因为x1∈(0,1],所以x12-5x1+3∈[-1,3).又因为a∈(0,1],所以a(x12-5x1+3)≥-1,所以f(x)≥0,满足题意.结合①②可知,当a≤1时,满足题意.综上,a的取值范围为(-∞,1]. ····························································· 17分。

2023届江苏省南京市高三三模联考数学试题【含答案】

2023届江苏省南京市高三三模联考数学试题【含答案】

一、单选题1.已知复数z 满足()1i 5i z +=+,则复数z 在复平面内所对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限D【分析】利用复数除法求出z ,即可判断.【详解】因为()()5i 1i 5i 64i32i 1i 22z +-+-====-+,所以点()3,2-位于第四象限.故选:D.2.如图,直线l 和圆C ,当l 从l 0开始在平面上绕点O 按逆时针方向匀速转到(转到角不超过90°)时,它扫过的圆内阴影部分的面积S 是时间t 的函数,这个函数的图像大致是A .B .C .D .D【分析】由题意可知:S 变化情况为“一直增加,先慢后快,过圆心后又变慢”,据此确定函数的大致图像即可.【详解】观察可知面积S 变化情况为“一直增加,先慢后快,过圆心后又变慢”,对应的函数的图象是变化率先变大再变小,由此知D 符合要求.故选D .本题主要考查实际问题中的函数图像,函数图像的变化趋势等知识,意在考查学生的转化能力和计算求解能力.3.已知非零向量a ,b满足()3,1b =,π,3a b = ,若()a b a -⊥ ,则向量a 在向量b 方向上的投影向量为()A .14bB .12bC .32b D .bA【分析】依题意可得()0a a b -⋅= ,根据数量积的定义及运算律求出a r ,即可求出a b ⋅ ,最后根据a b b b b⋅⋅⋅计算可得.【详解】因为()a b a -⊥ ,所以()20a b a a a b -⋅=-⋅=,∴2102a a b -=,又()3,1b =,所以()22312b =+=,∴1a = 或0a =(舍去),所以21a b a ⋅== ,所以a 在b方向上的投影向量为14a b b b b b⋅⋅=⋅.故选:A.4.已知集合{}1,2,3,4U =,若A ,B 均为U 的非空子集且A B ⋂=∅,则满足条件的有序集合对(),A B 的个数为()A .16B .31C .50D .81C【分析】根据集合A 中元素的个数分类讨论,利用组合以及计数原理知识直接求解.【详解】1°A 中有1个元素,4种情况,B 有321-=7种情况,此时有4728⨯=种情况;2°A 中有2个元素,24C 种情况,B 有221-=3种情况,此时有24C 318⨯=种情况;3°A 中有3个元素,34C 种情况,B 有1种情况,此时有34C 14⨯=种情况.所以满足条件的有序集合对(),A B 一共有2818450++=个.故选:C.5.已知一组数据丢失了其中一个,另外六个数据分别是10,8,8,11,16,8,若这组数据的平均数、中位数、众数依次成等差数列,则丢失数据的所有可能值的和为A .12B .20C .25D .27D【分析】设出未知数,根据这组数的平均数、中位数、众数依次成等差数列,列出关系式,因为所写出的结果对于x 的值不同所得的结果不同,所以要讨论x 的三种不同情况.【详解】设这个数字是x ,则平均数为617x+,众数是8,若8x ,则中位数为8,此时5x =-,若810x <<,则中位数为x ,此时61287xx +=+,9x =,若10x ,则中位数为10,6121087x+⨯=+,23x =,所有可能值为5-,9,23,其和为27.故选D .本题考查众数,中位数,平均数,考查等差数列的性质,考查未知数的分类讨论,是一个综合题目,这是一个易错题目.6.约翰·开普勒是近代著名的天文学家、数学家、物理学家和哲学家,有一次在上几何课时,突然想到,一个正三角形的外接圆与内切圆的半径之比2:1恰好和土星与木星轨道的半径比很接近,于是他想,是否可以用正多面体的外接球和内切球的半径比来刻画太阳系各行星的距离呢?经过实践,他给出了以下的太阳系模型:最外面一个球面,设定为土星轨道所在的球面,先作一个正六面体内接于此球面,然后作此正六面体的内切球面,它就是木星轨道所在的球面.在此球面中再作一个内接的正四面体,接着作该正四面体的内切球面即得到火星轨道所在的球面,继续下去,他就得到了太阳系各个行星的模型.根据开普勒的猜想,土星轨道所在的球面与火星轨道所在球面半径的比值为()A .3B .3C .33D .9C【分析】根据正方体的性质可得内接球的半径,再由正四面体的外接球半径求出正四面体棱长,再由等体积法求正四面体的内切球半径即可得解.【详解】设土星轨道所在球面半径为R ,内接正六面体边长为a ,则32a R=,∴23a R =,所以正六面体内切球半径1123a R =,设正四面体边长b ,外接球球心为O ,G为底面中心,如图,正四面体中,323=233AG b b ⨯=,226=3PG PA AG b -=,在Rt AOG △中,222()AO AG PG AO =+-,则6143b R =,223b R =,设正四面体内切球半径r ,利用等体积法可得2213136434343V b r b b =⨯⨯⋅=⨯⋅,解得62231239r R R =⋅=,∴3339R R r R ==,故选:C.7.有一直角转弯的走廊(两侧与顶部封闭),已知两侧走廊的高度都是6米,左侧走廊的宽度为33米,右侧走廊的宽度为1米,现有不能弯折的硬管需要通过走廊.设可通过的最大极限长度为l 米(不计硬管粗细).为了方便搬运,规定允许通过此走廊的硬管的最大实际长度为0.9m l =米,则m 的值是()A .7.2B .27210C .2725D .9D【分析】先研究铁管不倾斜时,令PAM θ∠=,建立()133sin cos AB f θθθ=+=,π0,2θ⎛⎫∈ ⎪⎝⎭,利用导数求出min ()8f θ=;再研究铁管倾斜后能通过的最大长度.【详解】如图,铁管不倾斜时,令PAM θ∠=,1sin PA θ=,33cos PB θ=,()133sin cos AB f θθθ=+=,π0,2θ⎛⎫∈ ⎪⎝⎭,()332222cos 33sin 33sin cos sin cos sin cos f θθθθθθθθθ--'=+=.令()0f θ'<,解得:π06θ<<,令()0f θ'>,解得:ππ62θ<<,所以()f θ在π0,6⎛⎫ ⎪⎝⎭上单调递减,在ππ,62⎛⎫⎪⎝⎭上单调递增,所以min ()86f f πθ⎛⎫== ⎪⎝⎭,此时通过最大长度l AB '≤,∴8l '≤,∴倾斜后能通过的最大长度228610+=,∴0.9109m =⨯=.故选:D.8.已知函数()f x 的导函数()f x '满足:2()()e x f x f x -=',且()02f =.若函数2ππ()e ()e (1)sin 36x x g x f x a x --⎛⎫=++-+ ⎪⎝⎭有且只有一个零点,则实数a 的值为()A .e -B .2e-C .eD .2eB【分析】由函数()f x 的性质设()2e e x xf x =+,得到()()()22ππe e e e 1sin 36x x x x g x a x --⎛⎫=+++-+ ⎪⎝⎭.由零点的定义得到()2ππe e 11sin 36x xa x -⎛⎫++=-+ ⎪⎝⎭,利用基本不等式和正弦函数的有界性求出a 的值.【详解】由函数()f x 的导函数()f x '满足:2()()e x f x f x -=',且()02f =,不妨设()2e e x xf x =+满足条件.此时()()()22ππeee e 1sin 36xxx x g x a x --⎛⎫=+++-+ ⎪⎝⎭.令()0g x =,即()2ππe 1e 1sin 036x x a x -⎛⎫+++-+= ⎪⎝⎭,()2ππe e 11sin 36x xa x -⎛⎫++=-+ ⎪⎝⎭有且仅有一个零点.因为22e e 12e 12e 1x x -++≥+=+,当且仅当2e e x x -=即1x =时取“=”,当1x ≠时,2e e 12e 1x x -++>+,又ππ1sin 136x ⎛⎫-≤+≤ ⎪⎝⎭,所以()ππ11sin 136a a x a ⎛⎫--≤-+≤- ⎪⎝⎭,此时()2ππe e 11sin 36x xa x -⎛⎫++=-+ ⎪⎝⎭要么没零点,要么不仅一个零点,所以1x =是()g x 的唯一零点,此时()()11ππ1e 1e 1sin 2e 11036g a a ⎛⎫=+++-+=++-= ⎪⎝⎭,解得2a e =-,所以2a e =-.故选:B.二、多选题9.已知m ,n ,l 为空间中三条不同的直线,α,β,γ,δ为空间中四个不同的平面,则下列说法中正确的有()A .若m l ⊥,n l ⊥,则//m nB .已知l αβ= ,m βγ= ,n γα=I ,若l m P = ,则P n ∈C .若m α⊥,m β⊥,//αγ,则//βγD .若αβ⊥,γα⊥,δβ⊥,则γδ⊥BC【分析】对于A ,由空间中的两直线的位置关系判断,对于B ,由平面的性质分析判断,对于C ,由线面垂直的性质和面面平行的判定方法分析判断,对于D ,在正方体模型中分析判断.【详解】m l ⊥,n l ⊥,则m 与n 可能平行,可能相交,也可能异面,A 错.因为l αβ= ,m βγ= ,l m P = ,所以,P P αγ∈∈,因为n γα=I ,所以P n ∈,B 对.m α⊥,m β⊥,则αβ∥,又αγ∥,则βγ∥,C 对.正方体中,设面α为面ABCD ,平面β为面11BCC B ,面γ为面11ABB A ,面δ为面11CDD C ,则αβ⊥,αγ⊥,δβ⊥,但γδ∥,D 错,故选:BC.10.记A ,B 为随机事件,下列说法正确的是()A .若事件A ,B 互斥,()12P A =,()13P B =,()56P A B = B .若事件A ,B 相互独立,()12P A =,()13P B =,则()23P A B ⋃=C .若()12P A =,()34P A B =,()38P A B =,则()13P B =D .若()12P A =,()34P A B =,()38P A B =,则()14P B A =BC【分析】对于A ,根据互斥事件和对立事件的性质分析判断即可,对于B ,根据相互独立事件的性质分析判断,对于CD ,根据条件概率的公式和对立事件的性质分析判断.【详解】11()()()()1()23P A B P A P B P AB P AB =+-=-+- 1()()()()3P B P AB P AB P AB =+==,∴1()2P A B = ,A 错.11112()()()()()()()()23233P A B P A P B P AB P A P B P A P B =+-=+-=+-⨯= ,B 对.令()P B x =,()1P B x =-,()()()()34P AB P AB P A B P B x===,∴()34P AB x =,()()()()318P AB P AB P A B x P B ===-,∴()()318P AB x =-,331()()()(1)1482P A P AB P AB x x =+=+-=-,∴13x =,C 对.()()()()()()1311343162P B P AB P AB P B A P A P A -⨯-====,D 错,故选:BC.11.已知双曲线2214y x -=,直线l :()2y kx m k =+≠±与双曲线有唯一的公共点M ,过点M 且与l垂直的直线分别交x 轴、y 轴于()0,0A x ,()00,B y 两点.当点M 变化时,点()00,P x y 之变化.则下列结论中正确的是()A .224k m =+B .002y kx =C .P 点坐标可以是()7,6D .220011x y -有最大值125ACD【分析】联立双曲线和直线方程并根据有唯一公共点可得224k m =+,可判断A 正确;利用直线的点斜式方程写出直线AB 的直线方程可解得05k x m =-,05y m =-,所以B 错误;易知55,kP m m ⎛⎫-- ⎪⎝⎭,可知当56m -=时,57km-=,所以P 点坐标可以是()7,6,即C 正确;由4222222001154412525255k k k x y k k ⎛⎫-+--==-++ ⎪⎝⎭可利用基本不等式得当2k =±时,220011x y -有最大值125,即D 正确.【详解】对于A ,联立2214y x y kx m ⎧-=⎪⎨⎪=+⎩消y 可得()2224240k x kmx m ----=,直线与双曲线只有一个公共点,且2k ≠±,则Δ0=,∴()()222244440k m k m ----=,∴224k m =+,即选项A 正确;对于B ,由方程可得M k x m =-,则2224M k m k y m m m m --=-+==,∴4,k M m m ⎛⎫-- ⎪⎝⎭,则AB 的直线方程为41k y x m k m ⎛⎫+=-+ ⎪⎝⎭,令0y =,05kx m=-,令0x =,05y m=-,所以00y kx =,即B 错误;对于C ,则易知55,kP mm ⎛⎫-- ⎪⎝⎭,若56m -=,则56m =-,22549466k =+=,取76k =,7565756k m -=-⨯=-,即()7,6P ,所以C 正确;对于D ,可得()()222222242222222004111542525252525k k m m m m k k k x y k k k k ----+--=-===22414112252552525525k k ⎛⎫=-++≤-+= ⎪⨯⎝⎭,当且仅当2k =±时,等号成立,即D 正确;故选:ACD12.三角函数表最早可以追溯到古希腊天文学家托勒密的著作《天文学大成》中记录的“弦表”,可以用来查询非特殊角的三角函数近似值,为天文学中很多复杂的运算提供了便利,有趣的是,很多涉及三角函数值大小比较的问题却不一定要求出准确的三角函数值,就比如下面几个选项,其中正确的是()A .sin 3sin1cos1>B .3tan12>C .()()ln cos1sin cos 2<D .1sin 412sin 43⎛⎫<⎪⎝⎭BC【分析】对于A ,利用三角函数的性质判断出sin 30.3<,sin1cos10.3⋅>,即可判断;对于B ,判断出5tan111>,即可判断;对于C ,令cos1x =,1222x <<,利用导数判断单调性即可判断;对于D ,构造函数()ln f x x x =,利用导数判断出2()ln 3f x >,即可判断,【详解】对于A ,∵62sin 3sin171sin 9sin150.34-<︒=︒<︒=<,11112sin1cos1sin 2sin115sin 65sin 450.322224⋅=>︒=︒>︒=>,∴sin 3sin1cos1<,故A 错误;对于B ,记()3sin 6x g x x x ⎛⎫=-- ⎪⎝⎭,0x >,则()2cos 12x g x x ⎛⎫'=-- ⎪⎝⎭,记()2cos 12x p x x ⎛⎫=--⎪⎝⎭,0x >,则()sin p x x x '=-+,令()sin m x x x =-+,0x >,则()cos 10m x x '=-+≥恒成立,所以()m x 在()0,∞+上单调递增,所以()()00m x m >=,所以()0p x '>,所以()p x 在()0,∞+上单调递增,而()()200cos 0102p x p ⎛⎫>=--= ⎪⎝⎭,所以()0g x '>,所以()g x 在()0,∞+上单调递增,所以()()00g x g >=,所以3sin 6x x x >-,0x >,所以5sin16>,所以11cos16<,5tan111>,53211>,故3tan12>,故B 正确;对于C ,记()()ln 1f x x x =--,则()111x f x x x-'=-=,令()0f x ¢>,得01x <<;令()0f x '<,得1x >;函数()f x 在()0,1上单调递增,在()1,+∞上单调递减,所以对任意0x >,都有()()10f x f ≤=,即ln 1≤-x x 恒成立,令cos1x =,1222x <<,所以ln(cos1)ln 1x x =<-,对于函数()sin n x x x =-+,0x <,因为()cos 10n x x '=-+≥恒成立,所以()n x 在(),0∞-上单调递增,所以()()00n x n <=,即sin x x <在0x <上恒成立,因为cos20<,即2210x -<,所以()22sin(cos 2)sin 2121x x =->-,因为2121(12)0x x x x --+=-<,所以()22ln 121sin 21ln(cos1)sin(cos 2)x x x x <-<-<-⇒<,故C 正确,对于D ,令1sin4x =,若22ln ln 33x x x x <⇒<,令()ln f x x x =,()1ln 10ef x x x '=+=⇒=,由()0f x ¢>解得:1e x >,()0f x '<解得:10e x <<,所以()f x 在10,e ⎛⎫⎪⎝⎭上单调递减;1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,所以1()0.4e f x ≥->-,记()()21ln ,01x x x x x ϕ-=->+,因为()()()()222114011x x x x x x ϕ-'=-=≥++,所以()x ϕ在()0,∞+上单调递增,因为()()2111ln1011ϕ-=-=+,所以()2103ϕϕ⎛⎫<= ⎪⎝⎭,即22123ln 0.42313⎛⎫- ⎪⎝⎭<=-+,所以2()ln 3f x >,则1sin412sin 43⎛⎫> ⎪⎝⎭,故D 错.故选:BC.方法点睛:比较大小类题目解题方法:(1)结构相同的,构造函数,利用函数的单调性比较大小;(2)结构不同的,寻找“中间桥梁”,通常与0、1比较.三、填空题13.设随机变量()~3,2,10X H ,则()1P X ==______.715【分析】根据超几何分布计算公式可得2182310C C 7(1)C 15P X ===.【详解】由随机变量X 服从超几何分布()~3,2,10X H ,可知3表示选出3个,2表示有2个供选择,总数为10,根据超几何分布公式可得2182310C C 7(1)C 15P X ===.故71514.74212x y xy ⎛⎫++ ⎪⎝⎭展开式中的常数项为______.10516/6.5625【分析】利用组合知识处理二项式展开问题即可得解.【详解】74212x y xy ⎛⎫++ ⎪⎝⎭可看作7个4212x y xy ++相乘,要求出常数项,只需提供一项4x ,提供4项12xy,提供2项2y ,相乘即可求出常数项,即()421442761105C C 216x y xy ⎛⎫⋅= ⎪⎝⎭.故1051615.已知抛物线1C :216y x =,圆2C :()2241x y -+=,点M 的坐标为()8,0,P Q 、分别为1C 、2C 上的动点,且满足PM PQ =,则点P 的横坐标的取值范围是______.3955,106⎡⎤⎢⎥⎣⎦【分析】利用抛物线的定义和圆的性质得到4141x PM x +-≤≤++,转化为222691664161025x x x x x x x ++≤-++≤++,即可解得.【详解】因为抛物线:216y x =的焦点()4,0,准线:4x =-,所以圆心2C 即为抛物线的焦点F ,设(),P x y ,∴11PF PQ PF -≤≤+,∴4141x PQ x +-≤≤++.∵PM PQ =,∴4141x PM x +-≤≤++,2241(8)41x x y x +-≤-+≤++,∴222691664161025x x x x x x x ++≤-++≤++,∴3955106x ≤≤.故3955,106⎡⎤⎢⎥⎣⎦四、双空题16.已知数列{}n a 满足1a a =,()*12,21N 1,22n n n a n k a k a n k ++=-⎧⎪=∈⎨=⎪⎩,当1a =时,10a =______;若数列{}n a 的所有项仅取有限个不同的值,则满足题意的所有实数a 的值为______.63162【分析】先利用递推公式求出121(2)42n n a a -⎛⎫=-⋅+ ⎪⎝⎭,1211(2)22n n a a --⎛⎫=-⋅+ ⎪⎝⎭,再由1a =,求出10a ;利用通项公式判断出a 的值为2.【详解】∵()*12,21N 1,22n n n a n k a k a n k ++=-⎧⎪=∈⎨=⎪⎩∴222121222n n n a a a ++=+=+∴()2221442n n a a +-=-.∵1a a =,∴2122a a a =+=+,∴1122114(2)(2)422n n n n a a a a --⎛⎫⎛⎫-=-⋅⇒=-⋅+ ⎪⎪⎝⎭⎝⎭.∴当1a =时,()410163124216a ⎛⎫=-+= ⎪⎝⎭.因为2212n n a a -=+,所以1211(2)22n n a a --⎛⎫=-⋅+ ⎪⎝⎭.要使{}n a 的所有项仅取有限个不同的值,则2a =,此时24n a =,212n a -=.否则2a ≠时,{}n a 取值有无穷多个.故6316;2.五、解答题17.已知()sin ,cos a x x ωω= ,()cos ,3cos b x x ωω= ,其中0ω>,函数()32f x a b a ⎛⎫=⋅- ⎪ ⎪⎝⎭的最小正周期为π.(1)求函数()f x 的单调递增区间;(2)在锐角ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且满足322A f ⎛⎫= ⎪⎝⎭,求a b 的取值范围.(1)单调递增区间为5πππ,π1212k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z(2)3,32a b ⎛⎫∈ ⎪ ⎪⎝⎭【分析】(1)根据向量数量积的坐标表示可知()sin 23f x x πω⎛⎫=+ ⎪⎝⎭,由最小正周期为π可得1ω=,即可知()sin 23f x x π⎛⎫=+ ⎪⎝⎭,再利用三角函数单调性即可求得()f x 的单调递增区间为5πππ,π1212k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z ;(2)根据三角形形状可得ππ62B <<,再由正弦定理得sin 3sin 2sin a A b B B==,又1sin ,12B ⎛⎫∈ ⎪⎝⎭,所以3,32a b ⎛⎫∈ ⎪ ⎪⎝⎭.【详解】(1)因为(sin ,cos )a x x ωω=,(cos ,3cos )b x x ωω= ,则22sin cos 1a x x ωω=+= ,(sin ,cos )(cos ,3cos )a b x x x x ωωωω⋅=⋅2sin cos 3cos x x xωωω=+133sin 2cos 2222x x ωω=++π3sin 232x ω⎛⎫=++ ⎪⎝⎭,故2333()sin 22223f x a b a a b a a b x πω⎛⎫⎛⎫=⋅-=⋅-=⋅-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为()f x 最小正周期为π,所以2ππ2T ω==,所以1ω=,故()sin 23f x x π⎛⎫=+ ⎪⎝⎭,由πππ2π22π232k x k -+≤+≤+,k ∈Z ,解得5ππππ1212k x k -+≤≤+,k ∈Z ,所以()f x 的单调递增区间为5πππ,π1212k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z .(2)由(1)及322A f ⎛⎫= ⎪⎝⎭,即ππ3sin 2sin 2332A A ⎛⎫⎛⎫⨯+=+= ⎪ ⎪⎝⎭⎝⎭,又π0,2A ⎛⎫∈ ⎪⎝⎭,所以π2π33A +=,解得π3A =,又ABC 为锐角三角形,即π02π02B C ⎧<<⎪⎪⎨⎪<<⎪⎩,即π02π0π2B B A ⎧<<⎪⎪⎨⎪<--<⎪⎩,解得ππ62B <<;由正弦定理得sin 3sin 2sin a A b B B==,又ππ62B <<,则1sin ,12B ⎛⎫∈ ⎪⎝⎭,所以3,32a b ⎛⎫∈ ⎪ ⎪⎝⎭.18.已知正项数列{}n a 满足11a =,2218n n a a n +-=.(1)求{}n a 的通项公式;(2)记sin π2n n n a b a ⎛⎫=⋅⋅ ⎪⎝⎭,求数列{}n b 的前2023项的和.(1)()221n a n =-(2)2023【分析】(1)由递推关系式,结合累加法求得2n a 的通项公式,分析可得{}n a 的通项公式;(2)根据n b 的关系式,结合并项求和即可得{}n b 的前2023项的和.【详解】(1)对任意的*n ∈N ,因为2218n n a a n +-=,当2n ≥时,()()2222221211n n n a a a a a a -=-++-+ ()81811n =-+⋅⋅⋅+⨯+()812311n =+++⋅⋅⋅+-+⎡⎤⎣⎦(1)812n n -=⨯+()221n =-,因为0n a >,故21n a n =-.当1n =时,11a =符合21n a n =-,所以21n a n =-,*n ∈N .(2)1sin π(1)(21)2n n n n a b a n +⎛⎫=⋅⋅=-- ⎪⎝⎭,所以当*k ∈N 时,()22141412k k b b k k ++=--++=,故1232023b b b b +++⋅⋅⋅+()()()1234520222023b b b b b b b =+++++⋅⋅⋅++1210112023=+⨯=.19.如图,圆锥DO 中,AE 为底面圆O 的直径,AE AD =,ABC 为底面圆O 的内接正三角形,圆锥的高18DO =,点P 为线段DO 上一个动点.(1)当36PO =时,证明:PA ⊥平面PBC ;(2)当P 点在什么位置时,直线PE 和平面PBC 所成角的正弦值最大.(1)证明见解析;(2)P 点在距离O 点36处【分析】(1)利用勾股定理证明出AP BP ⊥和AP CP ⊥,再用线面垂直的判定定理证明出PA ⊥平面PBC ;(2)建立空间直角坐标系,利用向量法求解.【详解】(1)因为AE AD =,AD DE =,所以ADE V 是正三角形,则3DAO π∠=,又DO ⊥底面圆O ,AE ⊂底面圆O ,所以DO AE ⊥,在Rt AOD 中,18DO =,所以633DO AO ==,因为ABC 是正三角形,所以32633182AB AO =⨯⨯=⨯=,2292AP AO PO =+=,BP AP =,所以222AP BP AB +=,AP BP ⊥,同理可证AP CP ⊥,又BP PC P = ,BP ,PC ⊂平面PBC ,所以PA ⊥平面PBC .(2)如图,建立以O 为原点的空间直角坐标系O xyz -.设PO x =,(018x ≤≤),所以()0,0,P x ,()33,9,0E -,()33,9,0B ,()63,0,0C -,所以()33,9,EP x =- ,()33,9,PB x =- ,()63,0,PC x =--,设平面PBC 的法向量为(),,n a b c = ,则3390630n PB a b cx n PC a cx ⎧⋅=+-=⎪⎨⋅=--=⎪⎩ ,令a x =,则3b x =-,63c =-,故(),3,63n x x =--,设直线PE 和平面PBC 所成的角为θ,则2222233936363sin cos ,10831081084108x x x x EP n x x x x x θ+-===+⋅+++⋅+ 222222636313108108454024540x x xx=≤=++⋅+,当且仅当2221084x x=,即36PO x ==时,直线PE 和平面PBC 所成角的正弦值最大,故P 点在距离O 点36处.20.一只不透朋的袋中装有10个相同的小球,分别标有数字0~9,先后从袋中随机取两只小球.用事件A 表示“第二次取出小球的标号是2”,事件B 表示“两次取出小球的标号之和是m ”.(1)若用不放回的方式取球,求()P A ;(2)若用有放回的方式取球,求证:事件A 与事件B 相互独立的充要条件是9m =.(1)110;(2)证明见解析.【分析】(1)根据给定条件,利用全概率公式计算作答.(2)利用列举法求出概率,结合独立性推理判断充分性,再利用条件概率公式推理判断必要性作答.【详解】(1)用C 表示“第一次取出小球的标号是2”,则1()10P C =,(|)0P A C =,9()10P C =,1(|)9P A C =,所以()()()()P A P CA CA P CA P CA =+=+()()()()P C P A C P C P A C =⨯+⨯191101010910=⨯+⨯=.(2)记第一次取出的球的标号为x ,第二次的球的标号为y ,用数组(),x y 两次取球,则()100n Ω=,充分性:当9m =时,事件B 发生包含的样本点为)(,(,5),(4,)),((,6),(3,)),((,7),921),,0,827,36,45()(81,9,0,,因此()101()()10010n B P B n ===Ω,事件AB 发生包含的样本点为()7,2,则()1()()100n AB P AB n ==Ω,又1()10P A =,于是()()()P AB P A P B =,所以事件A 与事件B 相互独立;必要性因为事件A 与事件B 相互独立,则()()()P AB P A P B =,即()()()P AB P A P B =,而1()10P A =,()()()()P AB n AB P B n B =,于是()1()10n AB n B =,事件AB 发生包含的样本点为()2,2m -,即()1n AB =,则()10n B =,又x y m +=,09x ≤≤,09y ≤≤,因此关于x 的不等式组0909x m x ≤≤⎧⎨≤-≤⎩,有10组整数解,即关于x 的不等式组099x m x m ≤≤⎧⎨-≤≤⎩,有10组整数解,从而990m m =⎧⎨-=⎩,得9m =,所以事件A 与事件B 相互独立的充要条件是9m =.21.已知椭圆E :221164x y +=,椭圆上有四个动点A ,B ,C ,D ,//CD AB ,AD 与BC 相交于P 点.如图所示.(1)当A ,B 恰好分别为椭圆的上顶点和右顶点时,试探究:直线AD 与BC 的斜率之积是否为定值?若为定值,请求出该定值;否则,请说明理由;(2)若点P 的坐标为()8,6,求直线AB 的斜率.(1)是定值,定值为14(2)13-【分析】(1)由题意求出直线AB 的斜率,再求//CD AB 可设直线CD 的方程为()122y x t t =-+≠,设()11,D x y ,()22,C x y ,将直线方程代入椭圆方程化简,利用根与系数的关系,然后求解AD BC k k 即可;(2)设()33,A x y ,()44,B x y ,(),D x y ,记PD DA λ=,表示出点D 的坐标,将A ,D 两点的坐标代入椭圆方程,化简得3331220x y λλλ++-=,再由CD AB ∥可得PC CB λ=,从而可得4431220x y λλλ++-=,进而可得直线AB 的方程,则可求出其斜率.【详解】(1)由题意知,4a =,2b =,所以(0,2)A ,()4,0B ,所以12AB k =-,设直线CD 的方程为()122y x t t =-+≠,设()11,D x y ,()22,C x y ,联立直线CD 与椭圆的方程22116412x y y x t ⎧+=⎪⎪⎨⎪=-+⎪⎩,整理得222280x tx t -+-=,由()2244280t t ∆=-->,解得2222t -<<,且2t ≠,则122x x t +=,21228x x t =-,所以()()12121212111222244AD BCx t x t y y k kx x x x x ⎛⎫⎛⎫-+--+ ⎪⎪-⎝⎭⎝⎭==--21212212111()2424x x t x x t x tx x x -+++-=-2221121121442222244t t x t t x t x x x x x x --+-+--==--21214122844t x t x --==--,故直线AD 与BC 的斜率之积是定值,且定值为14.(2)设()33,A x y ,()44,B x y ,(),D x y ,记PD DA λ=(0λ≠),得3386x x x y y y λλλλ-=-⎧⎨-=-⎩.所以338161x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩.又A ,D 均在椭圆上,所以22332233116486111164x y x y λλλλ⎧+=⎪⎪⎪⎨++⎛⎫⎛⎫⎪ ⎪ ⎪++⎝⎭⎝⎭⎪+=⎪⎩,化简得3331220x y λλλ++-=,因为CD AB ∥,所以PC CB λ=,同理可得4431220x y λλλ++-=,即直线AB :31220x y λλλ++-=,所以AB 的斜率为13-.关键点睛:此题考查直线与椭圆的位置关系,考查椭圆中的定值问题,解题的关键是设出直线CD 的方程,代入椭圆方程中消元化简,再利用根与系数的关系,再利用直线的斜率公式表示出AD BC k k ,结合前面的式子化简计算可得结果,考查计算能力和数形结合的思想,属于较难题.22.已知函数21()ln 2f x x x ax =-,()(R)g x x a a =-+∈.(1)若y x =与()f x 的图象恰好相切,求实数a 的值;(2)设函数()()()F x f x g x =+的两个不同极值点分别为1x ,2x (12x x <).(i )求实数a 的取值范围;(ii )若不等式112e x x λλ+<⋅恒成立,求正数λ的取值范围(e 2.71828=⋅⋅⋅为自然对数的底数)(1)22e a =(2)(i )10,e ⎛⎫⎪⎝⎭(ii )[)1,+∞【分析】(1)求导得到导函数,设出切点,根据切线方程的公式得到方程组,解得答案.(2)求导得到导函数,构造函数ln ()x h x a x=-,求导得到单调区间,计算极值确定1e a <,再排除0a ≤的情况,得到取值范围,确定1212lnx x a x x =-,设12x t x =,转化得到(1)(1)ln 0()t t t λλ+--<+,设出函数,求导计算单调区间,计算最值得到答案.【详解】(1)21()ln 2f x x x ax =-,()ln 1f x x ax =+-',设y x =与()f x 的图象的切点为()00,x x ,则0020000ln 11 1ln 2x ax x x ax x +-=⎧⎪⎨-=⎪⎩,解得20e x =,22e a =.(2)(i )21()()()ln 2F x f x g x x x x ax a =+=--+,定义域为()0,∞+,()ln F x x ax '=-.()ln 0F x x ax '=-=有两个不等实根1x ,2x ,考察函数ln ()x h x a x =-,21ln ()xh x x-'=,所以()e 0h '=,当0e x <<时,()0h x '>,所以()h x 在区间()0,e 上单调递增;当e x >时,()0h x '<,所以()h x 在区间()e,+∞上单调递减.故()h x 的极大值也是最大值为()1e eh a =-.因为()h x 有两个不同的零点,所以()e 0h >,即10ea ->,即1ea <;当0a ≤时,当e x >时,()0h x >恒成立,故()h x 至多一个零点,不符合题意,综上所述10ea <<下证:当10ea <<时,()h x 有两个不同的零点.()10h a =-<,()e 0h >,所以()h x 在区间()0,e 内有唯一零点;222111ln h a aaa ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,令1t a =,考察函数()2ln t t t ϕ=-,2()1t t ϕ'=-,可得max ()2ln 220t ϕ=-<,所以210h a⎛⎫⎪⎭<⎝,所以()h x 在区间()e,+∞内有唯一零点.综上所述:a 的取值范围为10,e ⎛⎫⎪⎝⎭(ii )由题设条件和(i )可知:121x e x <<<,11ln x ax =,22ln x ax =,所以:11221212lnln ln x x x x a x x x x -==--,若不等式112ex x λλ+<⋅恒成立,两边取对数得12ln ln 1x x λλ-<-,所以()1112221212121122ln ln1ln ln 1x x x x x x x x ax a x x x x x x x λλλλλ⎛⎫+ ⎪⎝⎭+<+=+=⋅+=--,令12x t x =,则()0,1t ∈,()ln 11t t t λλ++<-恒成立,所以(1)(1)ln 0()t t t λλ+--<+在()0,1t ∈时恒成立.令(1)(1)()ln ()t h t t t λλ+-=-+,()0,1t ∈,则()2222(1)1(1)()()()t t h t t t t t λλλλ--+'=-=++.若21λ≥,即1λ≥,则当()0,1t ∈时()0h t '>,故()h t 在()0,1上单调递增,所以()()10h t h <=恒成立,满足题意;若01λ<<,则当()2,1t λ∈时有()0h t '<,故()h t 在()2,1λ上单调递减,所以当()2,1t λ∈时,()()10h t h <=,不满足题意.综上所述,正数λ的取值范围为[)1,+∞.关键点睛:本题考查了利用切线求参数,根据极值点求参数,不等式恒成立问题,意在考查学生的计算能力,转化能力和综合应用能力,其中变换得到1212lnx x a x x =-,再利用换元法构造函数求最值是解题的关键.。

江苏省南京市2023届高三上学期期末模拟数学试题(解析版)

江苏省南京市2023届高三上学期期末模拟数学试题(解析版)

南京市2023届高三年级期末调研模拟数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}113,202x M x x N x =+-≤<=<≤则M N ⋂=()A.{}04x x ≤<B.{}04x x <<C.{}14x x ≤< D.{}14x x <<【答案】D 【解析】【分析】将集合,M N 分别化简,然后结合交集的运算即可得到结果.【详解】因为{}113M x x =+-≤<,则[)0,4M =,又因为{}202xN x =<≤,则(]1,4N =,所以()1,4M N ⋂=.故选:D.2.若复数z 满足||2,3z z z z -=⋅=,则2z 的实部为()A.2- B.1- C.1D.2【答案】C 【解析】【分析】设复数i,(,R)z x y x y =+∈,则i z x y =-,故根据||2,3z z z z -=⋅=可求得222,1x y ==,结合复数的乘方运算,可求得答案.【详解】设复数i,(,R)z x y x y =+∈,则i z x y =-,则由||2,3z z z z -=⋅=可得|2i |2y =且223x y +=,解得222,1x y ==,故2222(i)2i x y x y x z y =+=-+,其实部为22211x y -=-=.故选:C.3.若等差数列{}n a 的前5项和为75,422a a =,则9a =()A.40B.45C.50D.55【答案】B【解析】【分析】设等差数列{}n a 的公差为d ,根据等差数列前n 项和与基本量1a 和d 的关系将题目条件全部转化为基本量的关系,即可求解.【详解】设等差数列{}n a 的公差为d ,根据题意可得()11154575232a d a d a d ⨯⎧+=⎪⎨⎪+=+⎩,解得15a =,5d =,91845a a d ∴=+=.故选:B.4.已知随机变量X 服从正态分布()22,N σ,且()()1235P X P X -<≤=>,则()150.75P X -<≤==()A.0.5B.0.625C.0.75D.0.875【答案】C 【解析】【分析】根据正态分布的对称性,由题中条件,直接求解即可.【详解】因为()22,X N σ,()()1225P X P X -<≤=≤<并且()20.5P X ≥=又因为()()1235P X P X -<≤=>,所以()()()()2255450.5P X P X P X P X ≥=≤<+>=>=,所以()50.125P X >=所以()250.50.1250.375P X ≤<=-=,所以()150.75P X -<≤=故选:C5.若正n 边形12n A A A L 的边长为2,21121n i i i i i A A A A -+++=⋅=∑,则n =()A.6 B.8 C.10D.12【答案】D 【解析】【分析】设正n 边形的内角为θ,根据数量积公式可得1124cos i i i i A A A A θ+++⋅=-,由于21121n i i i i i A A A A -+++=⋅=∑ ()cos 22πn n n -=--,分别代入各选项的n 即可判断正误.【详解】解:设正n 边形的内角为θ,则()2πn nθ-=,()11222cos π4cos i i i i A A A A θθ+++∴⋅=⨯-=-,()2112142cos n i i i i i A A A A n θ-+++=⋅=--∑即()()()42cos cos22π2πn n n n n n--=---=⇒-,当6n =时,()262ππ21cos cos 3662-==-≠--,A 选项错误;当8n =时,()282ππ3coscos 4882-==-≠--,B 选项错误;当10n =时,()43coscos sin sin 51032102ππππ10==-->-=-,由于82-<,所以4cos 5π8-≠,C 选项错误;当12n =时,()5co 122ππs cos 6212122-==-=--,D 选项正确;故选:D.6.已知O 为坐标原点,椭圆C :2221(1)x y a a+=>,C 的两个焦点为F 1,F 2,A 为C 上一点,其横坐标为1,且|OA |2=|AF 1|·|AF 2|,则C 的离心率为()A.14B.24C.12D.22【答案】D 【解析】【分析】设()01,A y ,由220||1OA y =+,10||AF a ex =+,20||AF a ex =-,根据题意列方程可得结果.【详解】设0(1,)A y ,则20211y a +=,即:20211y a =-,∴2202211||1112OA y a a =+=+-=-.又∵10||AF a ex a e =+=+,20||AF a ex a e =-=-,∴2212||||AF AF a e =-.又∵212||||||OA AF AF =,∴22212a e a-=-.①又∵222222111c a e a a a -===-②,1a >③,∴由①②③得:22a =,212e =.又∵01e <<,∴22e =.故选:D.7.若()()sin 2sin ,sin tan 1αβαβαβ=+⋅-=,则tan tan αβ=()A.2B.32C.1D.12【答案】A 【解析】【分析】由三角恒等变换化简结合已知条件求解即可【详解】因为()()cos cos cos sin sin cos cos cos sin sin αβαβαβαβαβαβ⎧+=-⎪⎨-=+⎪⎩,所以()()1sin sin cos cos 2αβαβαβ⎡⎤=--+⎣⎦,所以()()()1sin sin cos 2cos 22αβαββα+-=-,又()()sin tan 1αβαβ+⋅-=,所以()()()sin sin 1cos αβαβαβ-+⋅=-即()()()sin sin cos αβαβαβ+-=-,所以()()1cos 2cos 2cos 2βααβ-=-,所以()()22112sin 12sin cos 2βααβ--+=-即()22sin sin cos αβαβ-=-,又sin 2sin αβ=,所以224sin sin cos cos sin sin ββαβαβ-=+,所以2224sin sin cos cos 2sin ββαββ-=+,所以2sin cos cos βαβ=,所以1sin sin cos cos 2αβαβ=即sin sin 2cos cos αβαβ=,又易知cos cos 0αβ≠,所以sin sin 2cos cos αβαβ=,即tan tan 2αβ=,故选:A8.若函数()f x 的定义域为Z ,且()()()[()()]f x y f x y f x f y f y ++-=+-,(1)0(0)(2)1f f f -===,,则曲线|()|y f x =与2log y x =的交点个数为()A.2B.3C.4D.5【答案】B 【解析】【分析】利用赋值法求出当Z x ∈,且x 依次取0,1,2,3 ,时的一些函数值,从而找到|()|y f x =函数值变化的规律,同理找到当Z x ∈,且x 依次取1,2,3--- ,时,|()|y f x =函数值变化的规律,数形结合,即可求得答案.【详解】由题意函数()f x 的定义域为Z ,且()()()[()()]f x y f x y f x f y f y ++-=+-,(1)0(0)(2)1f f f -===,,令1y =,则[]()(1)(1)()(1)1(1())f x f x f x f f x f f ++-==+-,令1x =,则2(2)(0)(1)f f f +=,即2(1)2f =,令2x =,则(3)(1)(2)(1)f f f f +=,即(3)0f =,令3x =,则(4)(2)(3)(1)f f f f +=,即(4)1f =-,令4x =,则(5)(3)(4)(1)f f f f +=,即(5)(1)f f =-,令5x =,则(6)(4)(5)(1)f f f f +=,即2(6)1(1),(6)1f f f -=-∴=-,令6x =,则(7)(5)(6)(1)f f f f +=,即(7)(1)(1),(7)0f f f f -=-∴=,令7x =,则(8)(6)(7)(1)f f f f +=,即(8)10,(8)1f f -=∴=,依次类推,可发现此时当Z x ∈,且x 依次取0,1,2,3 ,时,函数|()|y f x =的值依次为1 ,,即每四个值为一循环,此时曲线|()|y f x =与2log y x =的交点为(2,1);令=1x -,则(0)(2)(1)(1)0,(2)1f f f f f +-=-=∴-=-,令2x =-,则(1)(3)(2)(1)(1),(3)(1)f f f f f f f -+-=-=-∴-=-,令3x =-,则2(2)(4)(3)(1)(1),(4)1f f f f f f -+-=-=-∴-=-,令4x =-,则(3)(5)(4)(1)(1),(5)0f f f f f f -+-=-=-∴-=,令5x =-,则(4)(6)(5)(1)0,(6)1f f f f f -+-=-=∴-=,令6x =-,则(5)(7)(6)(1)(1),(7)(1)f f f f f f f -+-=-=∴-=,令7x =-,则2(6)(8)(7)(1)(1),(8)1f f f f f f -+-=-=∴-=,依次类推,可发现此时当Z x ∈,且x 依次取1,2,3--- ,时,函数|()|y f x =的值依次为0,11 ,,即每四个值为一循环,此时曲线|()|y f x =与2log y x =的交点为(1,0),(2,1)--;故综合上述,曲线|()|y f x =与2log y x =的交点个数为3,故选:B【点睛】难点点睛:确定曲线|()|y f x =与2log y x =的交点个数,要明确函数|()|y f x =的性质,因此要通过赋值求得|()|y f x =的一些函数值,从中寻找规律,即找到函数|()|y f x =的函数值循环的规律特点,这是解答本题的难点所在.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知点()cos ,sin A αα,()2cos B ββ,其中[),0,2αβπ∈,则()A.点A 的轨迹方程为221x y +=B.点B 的轨迹方程为22143x y +=C.AB 1D.AB 1【答案】ABC 【解析】【分析】将,A B 点坐标代入方程,即可判断A 、B 项;根据三角形三边关系,结合图象,即可求出AB 的最小值与最大值,即可判断C 、D 项.【详解】对于A 项,将A 点坐标代入,可得22cos sin 1αα+=成立,故A 项正确;对于B 项,将B 点坐标代入,可得())22222cos cos sin 143ββββ+=+=成立,故B 项正确;对于C 项,A 点轨迹为以()0,0为圆心,1为半径的圆.B 点轨迹为椭圆.两者位置关系如下图:显然1BO AO >=,因为1AB BO AO BO ≥-=-,当且仅当,,A B O 三点共线时(如图11,A B 或22,A B ),等号成立.所以,min min 1AB BO =-,当点B 为短轴顶点时,取得最小值,即min BO b ==,所以min 1AB =,故C 项正确;对于D 项,因为1AB AO BO BO ≤+=+,当且仅当,,A B O 三点共线时(如图33,A B 或44,A B ),等号成立.所以,max max 1AB BO =+,当点B 为长轴顶点时,取得最大值,max 2BO a ==,所以max 3AB =,故D 项错误.故选:ABC.10.记函数()πcos (0)4f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为T ,且()*2ππN 3n T n n ≤≤∈.若π6x =为()f x 的零点,则()A.23n nω≤≤B.321n ω<-C.π2x =为()f x 的零点D.7π6x =为()f x 的极值点【答案】AD 【解析】【分析】利用周期2πT ω=,计算出ω的范围;结合ππcos 0664f ωπ⎛⎫⎛⎫=+=⎪⎪⎝⎭⎝⎭计算出ω的值,结合余弦函数的零点,极值等性质可判断是否正确.【详解】2πT ω=Q ,()*22πN 3n n n ππω∴≤≤∈得23n nω≤≤,故A 正确;由题意得ππcos 0664f ωπ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,πππ,Z 642k k ωπ∴+=+∈,36,Z 2k k ω∴=+∈,又*23n N n nω≤≤∈ ,,则*1111N ,Z 3424k n k n n -≤≤-∈∈,,当2n =有唯一解0k =,则32ω=,故B 错误;()3πcos 24f x x ⎛⎫=+ ⎪⎝⎭ ,则π3πcos 12224f π⎛⎫⎛⎫=⋅+=-⎪ ⎪⎝⎭⎝⎭,故C 错误;7π37πcos 16264f π⎛⎫⎛⎫=⋅+= ⎪ ⎪⎝⎭⎝⎭,故D 正确;故选:AD11.对于伯努利数()N n B n ∈,有定义:001,C (2)nkn nkk B B B n ===∑ .则()A.216B =B.4130B =C.6142B =D.230n B +=【答案】ACD 【解析】【分析】根据伯努利数的定义以及二项式定理,将()N n B n ∈写成递推公式的形式,逐一代入计算即可判断选项.【详解】由001,C (2)nk n nkk B B B n ===∑ 得,012301230C C C C C +(2)C nk n n k n n n k nn n n B B B B B B n B ==+++⋅⋅⋅⋅⋅⋅+≥=∑,所以,0123101231C )C +C 0(2C C n n n n n n n B B B B n B --+++⋅⋅⋅⋅⋅⋅+=≥,同理,0123101213111111C )C +0(1C C C C n nn n n n n n n n n B B B B B B +++++-+-+++⋅⋅⋅⋅⋅⋅++=≥,所以,()1012311211311011+(1)C C C C C C nn n n n n n n n n B B B B n B B +++--+++=-+++⋅⋅⋅⋅⋅⋅+≥,()1012311101231111+(1)C C C C C 1n n n n n n n n B B n n B B B B ++-+++-=-+++⋅⋅⋅⋅⋅⋅+≥+其中第1m +项为111(1)(1)(2)(1)(2)C 11123123n m mm m n n n n m n n n m B B B n n m m ++--+--+=⨯=++⨯⨯⨯⋅⨯⋅⋅⋅⋅⋅⋅⋅⨯⨯⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⨯⋅⋅⋅⋅⋅⋅⨯(1)(2)(1)C 12311m mm nB B n n n m n m n m n m m ⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅--+-+=⨯⨯⨯⋅+-⨯-+即可得01201211C +C +C C C 11(1)1m m nn n n n n n n B B B B B n B n n n n m --⎛⎫=-+⋅⋅⋅⋅⋅⋅++⋅⋅⋅⋅-⋅⋅+ ⎝⎭++≥-⎪令1n =,得11002C 111B B ⎛⎫= +-=-⎪⎝⎭;令2n =,得0101222C C 31113262B B B ⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭+⎝⎭;令3n =,得012012333310C C 11C 434224B B B B ⎛⎫⎛⎫=-=--+= ⎪ ⎪⎝⎭⎝++⎭同理,可得45678910111115,0,,0,,0,,030423066B B B B B B B B =-====-===;即可得选项AC 正确,B 错误;由上述前12项的值可知,当n 为奇数时,除了1B 之外其余都是0,即210(1)n B n +=≥,也即230,N n B n +=∈;所以D 正确.故选:ACD.12.已知函数()1πsin ,(,)()(2)2ni xf xg x n f x i n ===+∑ ,则()A.(),40g x n =B.()(),42n ng x f x ++=C.()()()1,0g x nf n f x ++=D.()()(),0g x n nf n f x ++=【答案】ACD 【解析】【分析】首先理解1(,)()(2)ni g x n f x i n ==+∑,并写出(,4)g x n ,再利用函数()πsin 2xf x =的周期,结合()()()()1234f x f x f x f x +++++++的值,即可判断选项A;代特殊值,判断B ;CD 选项注意2n ≥这个条件,则可判断()nf n 中的()1f n =,则可得*41,N n k k =+∈,这样结合条件和A 的证明,即可判断CD.【详解】1(,)()(2)ni g x n f x i n ==+∑,()πsin 2x f x = ,函数的周期2π4π2T ==,()()()()1234f x f x f x f x +++++++ππππ3ππsin sin πsin sin 2π222222x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ππππcossin cos sin 02222x x x x =--+=,()()()()()41(,4)()1234...4ni g x n f x i f x f x f x f x f x n=∴=+=++++++++++∑00n =⨯=,故A 正确;B.当1n =时,()()()()()11,42,612...6g x g x f x f x f x +==++++++()()ππ12cos sin 22f x f x x x =+++=-,()()11ππππ,42cossin sin cos 2222g x f x x x x ∴++=-+=不恒为0,故B 错误;C.1(,)()(2)ni g x n f x i n ==+∑,()()1,g x nf n ∴+中,()1f n =,*41,N n k k =+∈,()()()()()()1,1,4123...42g x nf n g x k f x f x f x k ∴+=++=+++++++,由A 的证明过程可知,相邻四项和为0,所以()()()()π23...422sin 2f x f x f x k f x +++++++=+=-,()()()ππ1,sinsin 022g x nf n f x x x ∴++=-+=,故C 正确;D.()()(),0g x n nf n f x ++=,由C 的证明过程可知,()()(),0g x n nf n f x ++=()()()()()411412413...4141f x k f x k f x k f x k k f x =++++++++++++++++++()()()()()234...42f x f x f x f x k f x =++++++++++()()2sinsin 022f x f x x x ππ=++=-+=,故D 正确.故选:ACD【点睛】关键点点睛:本题考查函数新定义,关键是理解1(,)()(2)ni g x n f x i n ==+∑,并会展开,但重点考查三角函数的周期,利用周期求和,问题就会迎刃而解.三、填空题:本题共4小题,每小题5分,共20分.13.小颖和小星在玩抽卡游戏,规则如下:桌面上放有5张背面完全相同的卡牌,卡牌正面印有两种颜色的图案,其中一张为紫色,其余为蓝色.现将这些卡牌背面朝上放置,小颖和小星轮流抽卡,每次抽一张卡,并且抽取后不放回,直至抽到印有紫色图案的卡牌停止抽卡.若小颖先抽卡,则小星抽到紫卡的概率为__________.【答案】25##0.4【解析】【分析】小星只可能在第二次和第四次抽到紫卡,将所有情况列表排列可得答案.【详解】按照规则,两人依次抽卡的所有情形如下表所示,小颖小星小颖小星小颖情形一紫情形二蓝紫情形三蓝蓝紫情形四蓝蓝蓝紫情形五蓝蓝蓝蓝紫其中情形二和情形四为小星最终抽到紫卡,则小星抽到紫卡的概率为25.故答案为:25.14.已知O 为坐标原点,抛物线C :214y x =的焦点为F ,过点O 的直线与C 交于点A ,记直线OA ,FA 的斜率分别为k 1,k 2,且k 1=3k 2,则|FA |=__________.【答案】52##2.5【解析】【详解】首先设直线OA 为1y k x =,与抛物线方程联立,并根据123k k =,求得点A 的坐标,利用两点间距离求FA .【点睛】设过原点的直线OA 为1y k x =,联立1214y k xy x =⎧⎪⎨=⎪⎩,解得00x y =⎧⎨=⎩或12144x k y k =⎧⎨=⎩,即()2114,4A k k ,()0,1F ,所以2121414k k k -=,因为123k k =,所以21114134k k k =⨯,解得:164k =±,则32A ⎛⎫ ⎪⎝⎭,所以52FA =.故答案为:5215.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,平面PAB ⊥平面PCD ,则P ABCD -体积的最大值为__________.【答案】43【解析】【分析】先做PE CD,PF AB ⊥⊥交,CD AB 于点,E F ,PO ⊥平面ABCD ,垂足为O ,连接,OE OF ,根据线面垂直的判定定理证明CD OE ⊥,即OE BC ∥,同理可得OF BC ∥,即EF BC ∥,且2EF BC ==,再根据面面垂直的性质定理得PE PF ⊥,再设各个长度,在直角三角形PEF 中得到等式进行化简,即可得关于OP 的式子,进而求得体积的表达式,求得最值即可.【详解】解:由题过点P 做PE CD,PF AB ⊥⊥分别交,CD AB 于点,E F ,过P 做PO ⊥平面ABCD ,垂足为O ,连接,OE OF ,画图如下:PO ⊥ 平面ABCD ,PO CD ∴⊥,,PE CD PO ⊥⊂ 平面POE ,PE ⊂平面POE ,CD \^平面POE ,CD OE ∴⊥,底面ABCD 是边长为2的正方形,,CD BC ∴⊥OE ⊂ 平面ABCD ,BC ⊂平面ABCD ,OE BC ∴ ,同理可得:OF BC ∥,故,,O E F 三点共线,且有EF BC ∥,2EF BC ==,设平面PAB ⋂平面PCD l =,,AB CD AB ⊂ ∥平面PAB ,CD ⊂平面PCD ,l AB CD ∴∥∥,,PE CD PE l ⊥∴⊥ ,平面PAB ⊥平面PCD ,平面PAB ⋂平面PCD l=PE ∴⊥平面PAB ,PF ⊂ 平面PAB,PE PF ∴⊥,不妨设(),,,2,02PE x PF y OF m OE m m ====-≤≤,224x y ∴+=①,且22222OP PF OF PE OE =-=-,即()22222y m x m -=--,化简即:2244y x m -=-②,联立①②可得:222,42y m x m ==-,22222OP y m m m ∴=-=-,∴四棱锥P ABCD -的体积1223V =⨯⨯=,()02m ≤≤,当1m =时,max 43V =,故P ABCD -体积的最大值为43.故答案为:4316.若函数()e sin x f x a x =-,()e sin x g x a x x =-,且()f x 和()g x 在[]0,π一共有三个零点,则=a __________.【答案】sin1e 或4π2e 2-【解析】【分析】考虑a<0,0a =,0a >三种情况,设()1e xF x a =,()2sin F x x =,()3e xa F x x=,求导得到导函数,根据公切线计算得到1π4x =,π4e 2a -=,再根据a 的范围讨论零点的个数,计算得到答案.【详解】当a<0时,()e sin 0xf x a x =<-,()e sin 0xg x a x x -=<,不成立;当0a =时,()sin f x x =-,()sin g x x x =-,在[]0,π上有0,π两个零点,不成立;当0a >时,()00f a =≠,(]0,πx ∈时,()e sin 0xf x a x ==-,即e sin x a x =;()00g a =≠,当(]0,πx ∈时,()e sin 0xg x a x x -==,即e sin xa x x=,设()1e xF x a =,()2sin F x x =,()3e xa F x x=,则()1e xF x a '=,()2cos F x x '=,()()32e 1x a x F x x -'=当()1e xF x a =,()2sin F x x =相切时,设切点为()11,x y ,则1111e sin e cos x x a x a x ⎧=⎨=⎩,解得1π4x =,π42e 2a -=;当[)0,1x ∈时,()30F x '<,函数单调递减;当(]1,πx ∈时,()30F x '>,函数单调递增.画出()2sin F x x =,()3e xa F x x=的简图,如图所示:()2sin F x x =,()3e xa F x x =最多有两个交点,故()g x 最多有2个零点,当π4e 2a ->时,()f x 没有零点,()g x 最多有2个零点,不成立;当π42e 2a -=时,()f x 有1个零点,π432π2e π12π2F F ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭,()g x 有2个零点,成立;现说明π42e 1π<,即π44e π<,构造函数,()44e x h x x =-,[]3,3.5x ∈,()()334e 44e x x h x x x '=-=-,设()31e x h x x =-,()21e 3x h x x '=-,设()22e 3xh x x =-,()2e 6x h x x '=-,设()3e 6xh x x =-,()3e 60x h x '=->恒成立,故()3e 6xh x x =-单调递增,()()333e 630h x h >=-⨯>,故()22e 3xh x x =-单调递增,()() 3.52223.5e3 3.50h x h <=-⨯<,故()31e x h x x =-单调递减,()()3313e 30h x h <=-<,故()h x 函数单调递减,()()343π34e 34e 810h h <=-=-<,故π42e π<,当4π2e 20a -<<,()f x 有2零点,()g x 有2个零点,若1x =是一个零点,则有两个零点重合,满足,此时sin1ea =.综上所述:sin1e a =或π42e 2a -=故答案为:sin1e 或4π2e 2-【点睛】关键点睛:本题考查了利用导数解决函数的零点问题,意在考查学生的计算能力,转化能力和综合应用能力,解题的关键是将函数的零点问题转化为交点问题,利用公切线解决参数.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设(X ,Y )是一个二维离散型随机变量,其所有可能取值为(a i ,b j ),其中i ,j ∈N *.记p ij =P (X =a i ,Y =b j )是随机变量(X ,Y )的联合分布列.与一维的情形相似,二维分布列可以如下形式表示:Y ,求(X ,Y )的联合分布列.【答案】(),X Y 32103---182--38-1-38--018---【解析】【分析】易知(),X Y 的所有可能取值为()()()()0,3,1,2,2,1,3,0,A 盒中的卡片数一旦确定则B 盒中的卡片数就唯一确定了,利用二项分布考查A 盒中的卡片数为0,1,2,3时的概率即可.【详解】由题意,(),X Y 的所有可能取值为()()()()0,3,1,2,2,1,3,0,且330103303122131113C ,C 2828p p p p ⎛⎫⎛⎫==⨯===⨯= ⎪ ⎪⎝⎭⎝⎭,所以(),X Y 的联合分布列为:(),X Y 32103---182--38-1-38--18---18.在长方体ABCD -A 1B 1C 1D 1中,114,AC AB AC ⋅==(1)求四面体ACB 1D 1体积的最大值;(2)若二面角B -AC -D 1的正弦值为53,求ABCD -A 1B 1C 1D 1的体积.【答案】(1)23;(2)2.【解析】【分析】(1)根据数量积和余弦定理得到214AC AB a ⋅==,即2a =,然后根据1AC =得到222b c +=,最后利用不等式求四面体11ACB D 体积的最大值即可;(2)根据二面角的定义得到1DED ∠为二面角1D AC D --的平面角,然后根据二面角1B AC D --的正弦值为53列方程得到()()221100c c --=,1c =,最后求体积即可.【小问1详解】设AB a =,BC b =,1BB c =,且111cos AC AB AC AB CAB ∠⋅=⋅⋅,由余弦定理得:22211211142AC AB B CAC AB AC AB a AC AB +-⋅=⋅⋅==⋅,则2a =,又1AC ==222b c +=,且11222223323ACB Db c V bc +=⨯= ,当且仅当1b c ==时等号成立,即四面体11ACB D 23;【小问2详解】过点D 作AC 的垂线,垂足为E ,连接1D E ,因为1DD ⊥平面ABCD ,AC ⊂平面ABCD ,所以1DD AC ⊥,且AC DE ⊥,又1DE DD D =I ,1,DE DD ⊂平面1DED ,所以AC ⊥平面1DED ,且1D E ⊂平面1DED ,所以1AC D E ⊥,即1DED ∠为二面角1D AC D --的平面角,记二面角1B AC D --的平面角为θ,则二面角1D AC D --的平面角为πθ-,所以11sin 3DD D Eθ==,则()()221100c c --=,且22c <,所以1c =,且111122ABCD A B C D V bc -==,所以1111ABCD A B C D -的体积为2.19.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为直径的三个圆的面积依次为1S ,2S ,3S .已知123S S S A B +-=+.(1)若π4C =,求ABC 的面积;(2)若ABC的面积为3,求ABC 周长的最小值.【答案】(1)34(2)【解析】【分析】(1)由已知条件123S S S A B +-=+和π4C =可得到2223a b c +-=,根据余弦定理可求得2ab =,即可由面积公式求得ABC 的面积;(2)由已知得()2ππcos C ab C-=,从而可得π02C <<,由面积公式可得πtan πC S C -=,构造函数()πtan πC f C C -=确定其在π02C <<上单调性,由特殊值π33f ⎛⎫=⎪⎝⎭,即可得π3C =,83ab =,结合基本不等式得263c ≥,463a b +≥=,从而可求得ABC 周长的最小值.【小问1详解】解:记ABC 的面积为S ,因为()222123π3ππ44S S S a b c A B C +-=+-=+=-=,所以2223a b c +-=,由余弦定理得222cos 2a b c C ab +-=,所以2222cos 3a b c ab C +-===,则322ab =,所以1123sin 2224S ab C ===;【小问2详解】解:因为()222123ππ4S S S a b c A B C +-=+-=+=-,得()2224ππC a b c -+-=又由余弦定理得2222cos a b c ab C +-=,所以()2π0πcos C ab C-=>,所以cos 0C >,则π02C <<,又1πsin tan 2πC S ab C C -==,设()πtan πC f C C -=,π02C <<所以()221πsin 2tan π20ππcos πcos C CC C f C C C---=-+=>',所以()f C 在π0,2⎛⎫ ⎪⎝⎭单调递增,且ππππ3tan 3π33f -⎛⎫== ⎪⎝⎭π3C =,所以83ab =则22282cos 3ab C a b c =+-=,所以2228882333c a b ab =+-≥-=,即3c ≥,且3a b +≥=,当且仅当3a b c ===时,取等号,所以ABC 周长a b c ++的最小值2633⨯=.20.已知数列{a n },{b n }满足a 1=b 1=1,n n a b ⎧⎫⎨⎬⎩⎭是公差为1的等差数列,{}1n n b b +-是公差为2的等差数列.(1)若b 2=2,求{a n },{b n }的通项公式;(2)若2N b *∈,2n b a a ,证明:121113n b b b +++<L .【答案】(1)3222n a n n n =-+;2(1)1n b n =-+(2)证明见解析【解析】【分析】(1)根据已知求得n n a nb =,121n n b b n +-=-,通过累加法求得2(1)1n b n =-+,进而求得n a ;(2)根据已知求得n a ,构造()322222254f b b b b =-+,求导后得()20f b ' ,结合2N b *∈得21b a a,又21b a a ,从而求得21b =,进而证得结论.【小问1详解】解:因为111,n n a a b b ⎧⎫=⎨⎬⎩⎭是公差为1的等差数列,所以n na nb =,即n n a nb =,且211b b -=,所以121n n b b n +-=-,累加得211n b b n +-=,所以2(1)1n b n =-+,则3222n n a nb n n n ==-+;【小问2详解】解:因为1223n n b b n b +-=+-,累加得21122n b b n n nb +-=-+,所以()22441n b n n n b =-++-,则()322441n a n n n n n b =-++-,则23212221,254b a a b b b ==-+,令()()3222222N 254f b b b b b *=-+∈,且()222261040f b b b =-+' ,所以21b a a,且21b a a ,所以21b =,所以233n b n n =-+,且22121,3332n b b b n n n n ===-+>-+,从而()22111113333221n n b n n n n n n =<=--+-+-- ,所以()1211113331n n b b b n +++<-<- ,当1n =时,1113,2n b =<=时,121123b b +=<,所以121113nb b b +++<L .21.已知双曲线C :2221(0)y x b b-=>的准线方程为12x =±,C 的两个焦点为F 1,F 2.(1)求b ;(2)若直线l 与C 相切,切点为A ,过F 2且垂直于l 的直线与AF 1交于点B ,证明:点B 在定曲线上.【答案】(1)b =(2)证明见解析【解析】【分析】(1)由双曲线的准线方程计算c ,再求b 即可;(2)先以A 点坐标表示直线l 的方程,进而表示出直线1AF 和2BF 的方程,联立表示出B 点坐标,再表示出1AF 的长度,列出关于A 点坐标的方程,最后代换成B 点坐标表示,即可求得B 点的轨迹方程.【小问1详解】由题可知,21a =,又双曲线C 的准线方程为12x =±,所以2112a c c ==,则2c =,所以b ==【小问2详解】由(1)知22:13y C x -=,设点()()()0012,,2,0,2,0A x y F F -,首先证明:00:13y y l x x -=,并将l 斜率不存在的情况舍弃,即01x ≠±,联立2213y x -=消去x 得:22002330y y y x -+-=,且()2200Δ44330y x =--=,所以00:13y y l x x -=,即00033x y x y y =-,所以直线()()002100:2,:232y y F B y x F A y x x x =--=++,联立直线21,F B F A ,解得0000222,1212x y B x x ⎛⎫- ⎪++⎝⎭,且0022112x x -≠-+,注意到()()22221000221AF x y x =++=+,从而220000112122x y x x ⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭+,即22000022412124x y x x ⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭+,也即220000222241212x y x x ⎛⎫⎛⎫-++= ⎪ ⎪++⎝⎭⎝⎭所以点B 的轨迹方程为22(2)4x y ++=,其中1x ≠-,即点B 在定曲线22(2)4x y ++=上.22.已知函数()()2ln ,2ln 2a f x ax x g x x =+=+.(1)若()()f x g x ≥,求a 的取值范围;(2)记()f x 的零点为12,x x (12x x <),()g x 的极值点为0x ,证明:1024e x x x >.【答案】(1)44ln2,12ln2∞+⎡⎫+⎪⎢+⎣⎭(2)证明见解析【解析】【分析】(1)构造函数()()()h x f x g x =-,然后分类讨论,即可得到a 的取值范围(2)()f x 和()g x 分别求导,求出()g x 的极值点0x 的关系式,()f x 单调区间,()f x 零点所在区间,即可证明.【小问1详解】记()()()21ln 202a h x f x g x x ax x ⎛⎫=-=-+- ⎪⎝⎭,①当2a 时,取102h ⎛⎫< ⎪⎝⎭,不符条件;②当2a >时,()()221122122a a x ax ax x h x x x ⎛⎫--+-+-⎪⎝⎭==',令()0,()0h x h x ''<>,∴()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,2⎛⎫+∞ ⎪⎝⎭单调递增,所以11ln210224a a h ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,即44ln212ln2a ++ ,则a 的取值范围为44ln2,12ln2∞+⎡⎫+⎪⎢+⎣⎭;【小问2详解】∵()22a g x x='+,令()0g x '=,则00,4e e 4a x x a =-=-,且()12f x ax x '=+,令()()0,0f x f x ''><,∴()f x在⎛ ⎝单调递增,在∞⎫+⎪⎪⎭单调递减,且111ln 0222f a ⎛⎫=-+-> ⎪⎝⎭,∴102a e-<<,取1x =,则()10f a =<,∴121x x <<<<,取1e x a=-,则2111ln e e e f a a a ⎛⎫⎛⎫-=+- ⎪ ⎪⎝⎭⎝⎭,记1,02e t t a=-<<,在()ln e t t t ϕ=-中,()11e 0e e t t t t ϕ-'=-=>,∴()t ϕ在()0,e 单调递增,∴()()e e ln e 0e t ϕϕ<=-=,即222211111ln 0()e e e e e f f x x a a a a a x ⎛⎫⎛⎫-=+-<=⇒->⇒>- ⎪ ⎪⎝⎭⎝⎭∵121x x <<<<∴1221x x x >从而10221e 4e x a x x x >>-=.【点睛】本题考查构造函数,求导,考查单调区间的求法,具有很强的综合性.。

南京市2022届高三年级第三次模拟考试数学试题参考答案 (1)

南京市2022届高三年级第三次模拟考试数学试题参考答案 (1)
故以{ , , }为正交基底,建立空间直角坐标系.
易得A(1,0,0),C(0,2 ,0),
D(1,3 ,0),P(0,0, ),
所以 =(0,2 ,- ), =(-1,0, ),
=(0,3 ,0).5分
设 =λ =(0,2 λ,- λ),λ∈[0,1],
则 = + =(-1,2 λ, - λ).6分
因为x1≠t,所以x1=-t③.11分
由①②③,得3t2+4t-20=0,解得t1=2,t2=- .
所以,点P的坐标为(2,-3)或(- ,- ).12分
所以∠PEC为平面PAE与平面AECD所成角的平面角.
因为平面PAE与平面AECD所成的角为90º,所以∠PEC=90º,即PE⊥CE.2分
又PE⊥AE,AE∩CE=E,AE平面AECD,CE平面AECD,所以PE⊥平面AECD.
因为CD平面AECD,所以PE⊥CD.4分
(2)方法1
由(1)得PE⊥平面AECD,AE⊥EC,
由(*)式得e =,代入(**)式得m==.
因为x0∈(1,2),且函数y=在(1,2)上递减,
所以m=∈(2,3).10分
方法1
由(*)式得(x0-1)e =x02e -3,代入(**)式得m==x0e .
因为x0∈(1,2),且函数y=xex在(1,2)上递增,所以m=x0e >e.12分
方法2
所以切线PA的方程为y- = (x-1),即y= x- .
联立方程组 解得x= ,y= ,即P( , ).3分
所以AP= |1- |= .4分
方法2
设切线PA的方程为y- =k(x-1),即y=kx-k+ .
联立方程组 消元y,得x2-4kx+(4k-1)=0.

江苏省南京市、盐城市2022-2023学年高三下学期2月开学摸底考试数学试卷及答案

江苏省南京市、盐城市2022-2023学年高三下学期2月开学摸底考试数学试卷及答案

2022~2023学年高三年级模拟试卷数 学(满分:150分 考试时间:120分钟)2023.2一、 选择题:本题共8小题,每小题5分,共40分.在每小题给出的选项中只有一个选项符合要求. 1. “a 3+a 9=2a 6”是“数列{a n }为等差数列”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件2. 若复数z 满足|z -1|≤2,则复数z 在复平面内对应点组成图形的面积为( ) A. π B. 2π C. 3π D. 4π3. 已知集合A ={x |x -1x -a <0},若A ∩N *=∅,则实数a 的取值范围是( )A. {1}B. (-∞,1)C. [1,2]D. (-∞,2]4. 把5个相同的小球分给3个小朋友,使每个小朋友都能分到小球的分法有( ) A. 4种 B. 6种 C. 21种 D. 35种5. 某研究性学习小组发现,由双曲线C :x 2a 2 -y 2b 2 =1(a >0,b >0)的两渐近线所成的角可求离心率e 的大小,联想到反比例函数y =k x (k ≠0)的图象也是双曲线,据此可进一步推断双曲线y =5x的离心率为( )A. 2B. 2C. 5D. 56. 在△ABC 中,AH 为边BC 上的高且BH → =3HC → ,动点P 满足AP → ·BC →=-14 BC → 2,则点P 的轨迹一定过△ABC 的( )A. 外心B. 内心C. 垂心D. 重心7. 若函数f (x )=x 3+bx 2+cx +d 满足f (1-x )+f (1+x )=0对一切实数x 恒成立,则不等式f ′(2x +3)<f ′(x -1)的解集为( )A. (0,+∞)B. (-∞,-4)C. (-4,0)D. (-∞,-4)∪(0,+∞)8. 已知四边形ABCD 是矩形,AB =3AD ,E ,F 分别是AB ,CD 的中点,将四边形AEFD 绕EF 旋转至与四边形BCFE 重合,则直线ED ,BF 所成角α在旋转过程中( )A. 逐步变大B. 逐步变小C. 先变小后变大D. 先变大后变小二、 选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 若X ~N (μ,σ2),则下列说法正确的是( ) A. P (X <μ+σ)=P (X >μ-σ)B. P (μ-2σ<X <μ+σ)<P (μ-σ<X <μ+2σ)C. P (X <μ+σ)不随μ,σ的变化而变化D. P (μ-2σ<X <μ+σ)随μ,σ的变化而变化10. 已知函数f (x ) =3sin x -4cos x ,若f (α),f (β)分别为f (x )的极大值与极小值,则( ) A. tan α=-tan β B. tan α=tan β C. sin α=-sin β D. cos α=-cos β11. 已知直线l 的方程为(a 2 -1)x -2ay +2a 2+2=0,a ∈R ,O 为原点,则( )A. 若OP ≤2,则点P 一定不在直线l 上B. 若点P 在直线l 上,则OP ≥2C. 直线l 上存在定点PD. 存在无数个点P 总不在直线l 上12. 如图,圆柱OO ′的底面半径为1,高为2,矩形ABCD 是其轴截面,过点A 的平面α与圆柱底面所成的锐二面角为θ,平面α截圆柱侧面所得的曲线为椭圆Ω,截母线EF 得点P ,则( )A. 椭圆Ω的短轴长为2B. tan θ的最大值为2C. 椭圆Ω的离心率的最大值为22D. EP =(1-cos ∠AOE )tan θ三、 填空题:本题共4小题,每小题5分,共20分. 13. (2x +1x)5展开式中x 3的系数为________.14. 设函数f (x )=sin (ωx +π3 )(ω>0),则使f (x )在(-π2 ,π2 )上为增函数的ω的值可以为________(写出一个即可).15. 在概率论中常用散度描述两个概率分布的差异.若离散型随机变量X ,Y 的取值集合均为{0,1,2,3,…,n }(n ∈N *),则X ,Y 的散度D (X ‖Y )=P (X =i )lnP (X =i )P (Y =i ).若X ,Y 的概率分布如下表所示,其中0<p<1,则D(X‖Y)的取值范围是________.16. 已知数列{a n },{b n }满足b n =⎩⎪⎨⎪⎧a n +12,n =2k -1,a n +1,n =2k ,其中k ∈N *,{b n }是公比为q 的等比数列,则a n +1a n=________(用q 表示);若a 2+b 2=24,则a 5=________. 四、 解答题:本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤. 17. (本小题满分10分)已知数列{a n }满足a 1=3,a n +1=3a n -4n ,n ∈N *.(1) 试判断数列{a n -2n -1}是否是等比数列,并求{a n }的通项公式;(2) 若b n =(2n -1)2na n a n +1 ,求数列{b n }的前n 项和S n .18. (本小题满分12分)在△ABC 中,已知AC =2,∠BAC =π3 ,P 为△ABC 内的一点,满足AP ⊥CP ,∠APB =2π3 .(1) 若AP =PC ,求△ABC 的面积; (2) 若BC =7 ,求AP .某校从2022年起积极推进劳动课程改革,先后开设了具有地方特色的家政、烹饪、手工、园艺、非物质文化遗产等劳动实践类校本课程.为调研学生对新开设劳动课程的满意度并不断改进劳动教育,该校从2022年1月到10月每两个月从全校3 000名学生中随机抽取150名学生进行问卷调查,统计数据如下表:(1) 由表中看出,可用线性回归模型拟合满意人数y与月份x之间的关系,求y关于x的回归直线方程y=b x+a,并预测12月份该校全体学生中对劳动课程的满意人数.(2) 10月份时,该校为进一步深化劳动教育改革,了解不同性别的学生对劳动课程是否满意,经调研得如下统计表:请根据上表判断是否有95%的把握认为该校的学生性别与对劳动课程是否满意有关?参考公式和数据:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.如图,在四棱锥PABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,平面PAC ⊥平面PBD ,AB =AD =AP =2,四棱锥PABCD 的体积为4.(1) 求证:BD ⊥PC ;(2) 求平面PAD 与平面PCD 所成锐二面角的余弦值.21. (本小题满分12分)如图,已知椭圆x 24 +y 2=1的左、右顶点分别为A ,B ,点C 是椭圆上异于A ,B 的动点,过原点O平行于AC 的直线与椭圆交于点M ,N ,AC 的中点为点D ,直线OD 与椭圆交于点P ,Q ,点P ,C ,M 在x 轴的上方.(1) 当AC = 5 时,求cos ∠POM ; (2) 求PQ·MN 的最大值.已知函数f(x)=x +1ex .(1) 当x>-1时,求函数g(x)=f(x)+x 2-1的最小值; (2) 已知x 1≠x 2,f(x 1)=f(x 2)=t ,求证:|x 1-x 2|>21-t .2022~2023学年高三年级模拟试卷(南京、盐城)数学参考答案及评分标准1. B2. D3. D4. B5. A6. A7. C8. D9. AC 10. BCD 11. BD 12. ACD 13. 80 14. 13 (答案不唯一,满足0<ω≤13即可) 15. [0,+∞) 16. q 2 1 02417. 解:(1) 因为a 1=3,所以a 1-2×1-1=0,所以数列{a n -2n -1}不是等比数列.(2分)由a n +1=3a n -4n ,得a n +1-2(n +1)-1=3(a n -2n -1),因为a 1-2×1-1=0, 所以a n -2n -1=0,即a n =2n +1.(5分)(2) 因为b n =(2n -1)·2n (2n +1)(2n +3) =2n +12n +3 -2n2n +1,(7分)所以S n =(2n +12n +3 -2n 2n +1 )+(2n 2n +1 -2n -12n -1 )+…+(225 -213 )=2n +12n +3 -23.(10分)18. 解:(1) 因为AP ⊥CP ,且AP =CP ,所以∠CAP =π4,又∠BAC =π3 ,所以∠BAP =π12 ,因为∠APB =2π3 ,所以∠ABP =π4 .由AC =2,所以AP =2 ,在△ABP 中,由正弦定理,得AB sin 2π3 =2sinπ4, 解得AB =3 ,所以S △ABC =12 ×AC ×AB sin ∠BAC =12 ×3 ×2×32 =32 . (5分)(2) 在△ABC 中,由余弦定理,得7=4+AB 2-2AB ,所以AB =3.(7分) 令∠CAP =α,则∠BAP =π3 -α,∠ABP =α,在△APC 中,AP =2cos α.(9分)在△ABP 中,由正弦定理,得3sin2π3 =2cos αsin α ,所以tan α=33 ,(11分) 因为α∈(0,π3 ),所以α=π6 ,所以AP =2×32=3 .(12分)19. 解:(1) x =15 (2+4+6+8+10)=6,y =15(80+95+100+105+120)=100,i =15(x i -x )(y i -y )=(2-6)(80-100)+(4-6)(95-100)+(6-6)(100-100)+(8-6)(105-100)+(10-6)(120-100)=80+10+0+10+80=180,错误!错误!=错误!=错误!,(2分)a =100-92×6=73,(3分)得y 关于x 的回归直线方程为y =92 x +73,(4分)令x =12,得y =127,(5分)据此预测12月份该校全体学生中对劳动课程的满意人数为3 000×127150=2 540(人).(6分)(2) 提出假设H 0:该校的学生性别与对劳动课程是否满意无关.(8分)则K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ) =150(65×20-55×10)2120×30×75×75=256 ≈4.17,(10分)因为P(K 2≥3.841)=0.05,而4.17>3.841,故有95%的把握认为该校的学生性别与对劳动课程是否满意有关.(12分)20. (1) 证明:设AC ∩BD =O ,在平面PAC 内过点A 作AH ⊥PO ,垂足为H , 因为平面PAC ⊥平面PBD ,平面PAC ∩平面PBD =PO , 所以AH ⊥平面PBD.(3分)又BD ⊂平面PBD ,所以BD ⊥AH.因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA.因为BD ⊥AH ,PA ∩AH =A ,PA ⊂平面PAC ,AH ⊂平面PAC , 所以BD ⊥平面PAC ,又因为PC ⊂平面PAC ,所以BD ⊥PC.(6分) (2) 解:由AB =AD =2,AB ⊥AD 知BD =2 2 ,由(1)知BD ⊥AC ,所以V PABCD =13 S 四边形ABCD ×PA =13 ×12 ×2 2 ×AC ×2=4,所以AC =3 2 .(8分)以{AB → ,AD → ,AP →}为基底建立如图所示空间直角坐标系Axyz ,则A(0,0,0),B(2,0,0),D(0,2,0),C(3,3,0),P(0,0,2),易知平面PAD 的一个法向量为n 1=(1,0,0),设平面PCD 的法向量为n 2=(x ,y ,z ),又PD → =(0,2,-2),PC →=(3,3,-2),得⎩⎪⎨⎪⎧2y -2z =0,3x +3y -2z =0, 取z =3,则x =-1,y =3,则n 2=(-1,3,3),(10分) 所以cos 〈n 1,n 2〉=-11+9+9=-1919 ,(11分)所以平面P AD 与平面PCD 所成锐二面角的余弦值为1919.(12分) 21. 解:(1)由AC =5 知点C (0,1),因为D 为AC 的中点,且A (-2,0),所以D (-1,12 ),所以k AC =12 ,k OP =-12 ,(2分)(解法1)直线MN 的方程为y =12x ,联立方程⎩⎨⎧y =12x ,x24+y 2=1,得yM =22 ,所以M (2 ,22 ),同理P (-2 ,22),所以cos ∠POM =-2+122+12×2+12=-35 .(4分)(解法2)由k OM =12 ,k OP =-12 知∠POM =π-2∠MOB ,由k OM =12 知tan ∠BOM =12 ,所以cos ∠BOM =255 ,所以cos ∠POM =cos (π-2∠MOB )=-35 .(4分)(解法3)由∠POM =〈OP → ,OM → 〉=〈OP → ,AC → 〉=〈OD → ,AC →〉求解. (2) 设点C (x 0,y 0),由A (-2,0)知D (x 0-22 ,y 02),则k AC =k OM =y 0x 0+2 ,k OP =k OD =y 0x 0-2 ,k OM ·k OP =y 0x 0+2 ·y 0x 0-2 =y 20 x 20 -4 =1-x 204x 20 -4 =-14 ,(6分)设直线OM 的方程为y =kx ,联立方程⎩⎪⎨⎪⎧y =kx ,x 24+y 2=1, 得x 2=41+4k 2 ,y 2=4k 21+4k 2 ,则OM 2=4+4k 21+4k 2 ,(8分) 由k OM ·k OP =-14 ,知OP 2=1+16k 21+4k 2 ,(解法1)OM 2·OP 2=4+4k 21+4k 2 ·1+16k 21+4k 2,(10分)令1+4k 2=t ,t >1,则OM 2·OP 2=(t +3)(4t -3)t 2=-9(1t )2+9t +4≤254 (当t =2时取等号), 所以PQ ·MN 的最大值为10.(12分)(解法2)由OM 2+OP 2=4+4k 21+4k 2 +1+16k 21+4k 2=5,知OM ·OP ≤OM 2+OP 22 =52 ,当且仅当OM =OP =102时取等号,所以PQ ·MN 的最大值为10.(12分) 22. (1) 解:当x >-1时,g ′(x )=2x e x (e x -12 ),(1分)令g ′(x )=0,可得x 1=-ln 2>-1,x 2=0,列表分析如下:可知g (x )min =g (-1)=g (0)=0,故函数的最小值为0.(5分)(2) 证明:由(1)可知,当x >-1时,g (x )≥0,即x +1e x ≥1-x 2(当且仅当x =0时取等号),不妨取h (x )=1-x 2,则在区间(-1,0)和(0,+∞)上,都有f (x )>h (x ),且h (x )在(-1,0)上单调递增,在(0,+∞)上单调递减,又由f ′(x )=-xe x 可知f (x )在(-1,0)上单调递增,在(0,+∞)上单调递减,且f (x )>0在(-1,0)和(0,+∞)上恒成立.(8分)由x 1≠x 2,f (x 1)=f (x 2)=t ,得0<t <1,不妨设-1<x 1<0<x 2,设h (x 3)=h (x 4)=t 且x 3<0<x 4,则f (x 1)=h (x 3)<f (x 3),所以-1<x 1<x 3<0,同理0<x4<x2,故|x1-x2|>|x3-x4|,其中x3,x4为方程h(x)=t的两个实根,而x3,4=±1-t ,所以|x1-x2|>21-t 成立.(12分)。

南京市2020届高三年级数学第三次模拟考试含附加及参考答案

南京市2020届高三年级数学第三次模拟考试含附加及参考答案

南京市2020届高三年级数学第三次模拟考试含附加及参考答案work Information Technology Company.2020YEAR南京市2020届高三年级第三次模拟考试数 学注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题卡的密封线内.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题卡.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题卡的指定位置....上) 1.已知集合A ={x |2<x <4},B ={x |1<x <3},则A ∪B = ▲ . 2.若z =a 1+i+i (i 是虚数单位)是实数,则实数a 的值为 ▲ . 3.某校共有教师300人,男学生1200人,女学生1000人,现用分层抽样从所有师生中抽取一个容量为125的样本,则从男学生中抽取的人数为 ▲ .4.如图是一个算法的伪代码,其输出的结果为 ▲ .5.将甲、乙、丙三人随机排成一行,则甲、乙两人相邻的概率为 ▲ .6.已知函数f (x )=2sin(ωx +φ) (其中ω>0,-π2<φ<π2)的部分图象如图所示,则f (π2)的值为 ▲ .7.已知数列{a n }为等比数列.若a 1=2,且a 1,a 2,a 3-2成等差数列,则{a n }的前n 项和为 ▲ .(第6题图)8.在平面直角坐标系xOy 中,已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F .若以F 为圆心,a 为半径的圆交该双曲线的一条渐近线于A ,B 两点,且AB =2b ,则该双曲线的离心率为 ▲ .9.若正方体ABCD -A 1B 1C 1D 1的棱长为2,则三棱锥A -B 1CD 1的体积为 ▲ .10.已知函数f (x )=⎩⎨⎧x +2, x ≤0,f (-x ),x >0,g (x )=f (x -2).若g (x -1)≥1,则x 的取值范围为 ▲ .11.在平面直角坐标系xOy 中,A ,B 是圆O :x 2+y 2=2上两个动点,且OA →⊥OB →.若A ,B 两点到直线l :3x +4y -10=0的距离分别为d 1,d 2,则d 1+d 2的最大值为 ▲ .12.若对任意a ∈[e ,+∞) (e 为自然对数的底数) ,不等式x ≤e ax +b 对任意x ∈R 恒成立,则实数b 的取值范围为 ▲ .13.已知点P 在边长为4的等边三角形ABC 内,满足AP →=λAB →+μAC →,且2λ+3μ=1,延长AP 交边BC 于点D .若BD =2DC ,则PA →·PB →的值为 ▲ .14.在△ABC 中,∠A =π3,D 是BC 的中点.若AD ≤22BC ,则sin B sin C 的最大值为 ▲ .二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指.定区域...内. 15.(本小题满分14分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,E ,F 分别为AD ,PB 的中点.求证:(1)EF∥平面PCD;(2)平面PAB⊥平面PCD.16.(本小题满分14分)已知向量m=(cos x,sin x),n=(cos x,-sin x),函数f(x)=m·n+1 2.(1)若f(x2)=1,x∈(0,π),求tan(x+π4)的值;(2)若f(α)=-110,α∈(π2,3π4),sinβ=7210,β∈(0,π2),求2α+β的值.17.(本小题满分14分)如图,港口A在港口O的正东100海里处,在北偏东方向有一条直线航道OD,航道和正东方向之间有一片以B为圆心,半径85海里的圆形暗礁群(在这片海域行船有触礁危险),其中OB=2013海里,tan∠AOB=2 3,cos∠AOD=55.现一艘科考船以105海里/小时的速度从O出发沿OD方向行驶,经过2个小时后,一艘快艇以50海里/小时的速度准备从港口A 出发,并沿直线方向行驶与科考船恰好相遇.(1)若快艇立即出发,判断快艇是否有触礁的危险,并说明理由;(2)在无触礁危险的情况下,若快艇再等x小时出发,求x的最小值.18.(本小题满分16分)如图,在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)经过点 (-2,0)和 (1,32),椭圆C上三点A,M,B与原点O构成一个平行四边形AMBO.(1)求椭圆C的方程;(2)若点B是椭圆C的左顶点,求点M的坐标;(3)若A,M,B,O四点共圆,求直线AB的斜率.19.(本小题满分16分)已知函数f(x)=e xx2-ax+a(a∈R) ,其中e为自然对数的底数.(第18题图)(第17题图)(1)若a=1,求函数f(x)的单调减区间;(2)若函数f(x)的定义域为R,且f(2)>f(a),求a的取值范围;(3)证明:对任意a∈(2,4),曲线y=f(x)上有且仅有三个不同的点,在这三点处的切线经过坐标原点.20.(本小题满分16分)若数列{a n}满足n≥2,n∈N*时,a n≠0,则称数列{a na n+1}(n∈N*)为{a n}的“L数列”.(1)若a1=1,且{a n}的“L数列”为{12n},求数列{a n}的通项公式;(2)若a n=n+k-3(k>0),且{a n}的“L数列”为递增数列,求k的取值范围;(3)若a n=1+p n-1,其中p>1,记{a n}的“L数列”的前n项和为S n,试判断是否存在等差数列{c n},对任意n∈N*,都有c n<S n<c n+1成立,并证明你的结论.南京市2020届高三年级第三次模拟考试数学附加题注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题卡的密封线内.试题的答案写在答题..卡.上对应题目的答案空格内.考试结束后,交回答题卡.21.【选做题】在A 、B 、C 三小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—2:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤1 -1a 0,a ∈R .若点P (1,1)在矩阵A 的变换下得到点P ′(0,-2).(1)求矩阵A ;(2)求点Q (0,3)经过矩阵A 的2次变换后对应点Q ′的坐标.B .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎨⎧x =3t ,y =1+t (t 为参数),求曲线C 上的点到直线l 的距离的最大值.C .选修4—5:不等式选讲已知a ,b 为非负实数,求证:a 3+b 3≥ab (a 2+b 2).【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域.......内.作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =3,AC =4,B 1C ⊥AC 1.(1)求AA 1的长.(2)试判断在侧棱BB 1上是否存在点P ,使得直线PC 与平面AA 1C 1C 所成角和二面角B -A 1C -A 的大小相等,并说明理由.(第22题图) A 1CABB 1C 1P23.(本小题满分10分)口袋中有大小、形状、质地相同的两个白球和三个黑球.现有一抽奖游戏规则如下:抽奖者每次有放回的从口袋中随机取出一个球,最多取球2n+1(n∈N*)次.若取出白球的累计次数达到n+1时,则终止取球且获奖,其它情况均不获奖.记获奖概率为P n.(1)求P1;(2)证明:P n+1<P n.南京市2020届高三年级第三次模拟考试数学参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.{x|1<x<4} 2.2 3.60 4.10 5.23 6. 37.2-2 8.62 9.83 10.[2,4] 11.6 12. [-2,+∞)13.-9414.38二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.(本小题满分14分)证明:(1)取PC中点G,连接DG、FG.在△PBC中,因为F,G分别为PB,PC的中点,所以GF∥BC,GF=1 2BC.因为底面ABCD为矩形,且E为AD的中点,所以DE ∥BC ,DE =12BC , ······························································· 2分所以GF ∥DE ,GF =DE ,所以四边形DEFG 为平行四边形, 所以EF ∥DG . ······························································· 4分 又因为EF ⊄平面PCD ,DG ⊂平面PCD ,所以EF ∥平面PCD . ······································································ 6分(2)因为底面ABCD 为矩形,所以CD ⊥AD .又因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,CD ⊂平面ABCD ,所以CD ⊥平面PAD . ····················································· 10分 因为PA ⊂平面PAD ,所以CD ⊥PA . ·································· 12分又因为PA ⊥PD ,PD ⊂平面PCD ,CD ⊂平面PCD ,PD ∩CD =D ,所以PA ⊥平面PCD .因为PA ⊂平面PAB ,所以平面PAB ⊥平面PCD . ·················· 14分16.(本小题满分14分)解:(1) 因为向量m =(cos x ,sin x ),n =(cos x ,-sin x ),所以 f (x )=m ·n +12=cos 2x -sin 2x +12=cos2x +12. ····················· 2分因为f (x 2)=1,所以cos x +12=1,即cos x =12.又因为x ∈(0,π) ,所以x =π3, ················································· 4分所以tan(x +π4)=tan(π3+π4)=tan π3+ tan π41-tan π3tanπ4=-2-3. ······················ 6分(2)若f (α)=-110,则cos2α+12=-110,即cos2α=-35.因为α∈(π2,3π4),所以2α∈(π,3π2),所以sin2α=-1-cos 22α=-45.··························································································· 8分 因为sin β=7210,β∈(0,π2),所以cos β=1-sin 2β=210, ········· 10分 所以cos(2α+β)=cos2αcos β-sin2αsin β=(-35)×210-(-45)×7210=22.·························································································· 12分 又因为2α∈(π,3π2),β∈(0,π2),所以2α+β∈(π,2π), 所以2α+β的值为7π4. ························································ 14分17.(本小题满分14分)解:如图,以O 为原点,正东方向为x 轴,正北方向轴,建立直角坐标系xOy .因为OB =2013,tan ∠AOB =23,OA =100,所以点B (60,40),且A (100,0). 2分(1)设快艇立即出发经过t 小时后两船相遇于点C , 则OC =105(t +2),AC =50t . 因为OA =100,cos ∠AOD =55, 所以AC 2=OA 2+OC 2-2OA ·OC ·cos ∠AOD , 即(50t )2=1002+[105(t +2)]2-2×100×105(t +2)×55.化得t 2=4,解得t 1=2,t 2=-2(舍去), ················································· 4分 所以OC =405. 因为cos ∠AOD =55,所以sin ∠AOD =255,所以C (40,80), 所以直线AC 的方程为y =-43(x -100),即4x +3y -400=0. ·························· 6分因为圆心B 到直线AC 的距离d =|4×60+3×40-400|42+32=8,而圆B 的半径r =85,所以d <r ,此时直线AC 与圆B 相交,所以快艇有触礁的危险.答:若快艇立即出发有触礁的危险. ·························································· 8分 (2)设快艇所走的直线AE 与圆B 相切,且与科考船相遇于点E . 设直线AE 的方程为y =k (x -100),即kx -y -100k =0.因为直线AE 与圆B 相切,所以圆心B 到直线AC 的距离d =|60k -40-100k |12+k 2=85,即2k 2+5k +2=0,解得k =-2或k =-12. ················································ 10分由(1)可知k =-12舍去.因为cos ∠AOD =55,所以tan ∠AOD =2,所以直线OD 的方程为y =2x . 由⎩⎨⎧y =2x , y =-2(x -100),解得⎩⎨⎧x =50,y =100,所以E (50,100),所以AE =505,OE =505, ·································································· 12分 此时两船的时间差为505105-50550=5-5,所以x ≥5-5-2=3-5.答:x 的最小值为(3-5)小时.································································ 14分18.(本小题满分16分)解:(1)因为椭圆x 2a 2+y 2b 2=1(a >b >0)过点(-2,0)和 (1,32),所以a =2,1a 2+34b 2=1,解得b 2=1,所以椭圆C 的方程为x 24+y 2=1. ············································ 2分(2)因为B 为左顶点,所以B (-2,0).因为四边形AMBO 为平行四边形,所以AM ∥BO ,且AM =BO =2. · 4分设点M (x 0,y 0),则A (x 0+2,y 0).因为点M ,A 在椭圆C 上,所以⎩⎪⎨⎪⎧x 024+y 02=1, (x 0+2)24+y 02=1,解得⎩⎪⎨⎪⎧x 0=-1, y 0=±32, 所以M (-1,±32). ·························································· 6分(3) 因为直线AB 的斜率存在,所以设直线AB 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(4k 2+1)x 2+8kmx +4m 2-4=0, 则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2. ······································ 8分因为平行四边形AMBO ,所以OM →=OA →+OB →=(x 1+x 2,y 1+y 2). 因为x 1+x 2=-8km 1+4k 2,所以y 1+y 2=k (x 1+x 2)+2m =k ·-8km1+4k 2+2m =2m1+4k 2, 所以M (-8km 1+4k 2,2m1+4k 2). ···················································· 10分 因为点M 在椭圆C 上,所以将点M 的坐标代入椭圆C 的方程, 化得4m 2=4k 2+1.① ·························································· 12分 因为A ,M ,B ,O 四点共圆,所以平行四边形AMBO 是矩形,且OA ⊥OB ,所以OA →·OB →=x 1x 2+y 1y 2=0.因为y 1y 2=(kx 1+m )(kx 1+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-4 k21+4k 2,所以x 1x 2+y 1y 2=4m 2-41+4k 2+m 2-4k 21+4k 2=0,化得5m 2=4k 2+4.② ···· 14分 由①②解得k 2=114,m 2=3,此时△>0,因此k =±112. 所以所求直线AB 的斜率为±112. ······································· 16分19. (本小题满分16分)解:(1)当a =1时,f (x )=e xx 2-x +1,所以函数f (x )的定义域为R ,f'(x )=e x (x -1)(x -2)(x 2-x +1)2.令f'(x )<0,解得1<x <2,所以函数f (x )的单调减区间为(1,2). ····································· 2分 (2)由函数f (x )的定义域为R ,得x 2-ax +a ≠0恒成立,所以a 2-4a <0,解得0<a <4. ··········································· 4分 方法1由f (x )=e x x 2-ax +a ,得f'(x )=e x(x -a )(x -2)(x 2-ax +a )2.①当a =2时,f (2)=f (a ),不符题意. ②当0<a <2时,因为当a <x <2时,f ′(x )<0,所以f (x )在(a ,2)上单调递减, 所以f (a )>f (2),不符题意. ················································ 6分 ③当2<a <4时,因为当2<x <a 时,f ′(x )<0,所以f (x )在(2,a )上单调递减, 所以f (a )<f (2),满足题意.综上,a 的取值范围为(2,4). ············································ 8分方法2由f (2)>f (a ),得e 24-a >e aa.因为0<a <4,所以不等式可化为e 2>e aa(4-a ).设函数g (x )=e xx(4-x )-e 2, 0<x <4. ···································· 6分因为g'(x )=e x ·-(x -2)2x 2≤0恒成立,所以g (x )在(0,4)上单调递减.又因为g (2)=0,所以g (x )<0的解集为(2,4).所以,a的取值范围为(2,4). ············································· 8分(3)证明:设切点为(x0,f(x0)),则f'(x0)=e(x0-2)(x0-a) (x02-ax0+a)2,所以切线方程为y-ex02-ax0+a=e(x0-2)(x0-a)(x02-ax0+a)2×(x-x0).由0-ex02-ax0+a=e(x0-2)(x0-a)(x02-ax0+a)2×(0-x0),化简得x03-(a+3)x02+3ax0-a=0. ····································· 10分设h(x)=x3-(a+3)x2+3ax-a,a∈(2,4),则只要证明函数h(x)有且仅有三个不同的零点.由(2)可知a∈(2,4)时,函数h(x)的定义域为R,h'(x)=3x2-2(a+3)x+3a.因为△=4(a+3)2-36a=4(a-32)2+27>0恒成立,所以h'(x)=0有两不相等的实数根x1和x2,不妨x1<x2.因为所以函数h(x)最多有三个零点.··········································· 12分因为a∈(2,4),所以h(0)=-a<0,h(1)=a-2>0,h(2)=a-4<0,h(5)=50-11a>0,所以h(0)h(1)<0,h(1)h(2)<0,h(2)h(5)<0.因为函数的图象不间断,所以函数h(x)在(0,1),(1,2),(2,5)上分别至少有一个零点.综上所述,函数h(x)有且仅有三个零点.······························· 16分20.(本小题满分16分)解:(1) 因为{a n }的“L 数列”为{12n },所以a n a n +1=12n ,n ∈N *,即a n +1a n=2n ,所以n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=2(n -1)+(n -2)+…+1=2.又a 1=1符合上式,所以{a n }的通项公式为a n =2,n ∈N *. ········· 2分 (2)因为a n =n +k -3(k >0),且n ≥2,n ∈N *时,a n ≠0,所以k ≠1. 方法1设b n =a n a n +1,n ∈N *,所以b n =n +k -3(n +1)+k -3=1-1n +k -2.因为{b n }为递增数列,所以b n +1-b n >0对n ∈N*恒成立,即1n +k -2-1n +k -1>0对n ∈N*恒成立. ······························· 4分因为1n +k -2-1n +k -1=1(n +k -2)(n +k -1),所以1n +k -2-1n +k -1>0等价于(n +k -2)(n +k -1)>0.当0<k <1时,因为n =1时,(n +k -2)(n +k -1)<0,不符合题意. 6分当k >1时,n +k -1>n +k -2>0,所以(n +k -2)(n +k -1)>0, 综上,k 的取值范围是(1,+∞). ··········································· 8分 方法2 令f (x )=1-1x +k -2,所以f (x )在区间(-∞,2-k )和区间(2-k ,+∞)上单调递增. 当0<k <1时,f (1)=1-1k -1>1,f (2)=1-1k <1,所以b 2<b 1,不符合题意. ····· 6分当k >1时,因为2-k <1,所以f (x )在[1,+∞)上单调递增,所以{b n }单调递增,符合题意.综上,k 的取值范围是(1,+∞). ··········································· 8分(3)存在满足条件的等差数列{c n },证明如下:因为a k a k +1=1+p k -11+p k =1p +1-1p 1+p k,k ∈N*, ································· 10分所以S n =n p +(1-1p )·(11+p +11+p 2+…+11+p n -1+11+p n).又因为p >1,所以1-1p >0,所以n p <S n <n p +(1-1p )·(1p +1p 2+…+1pn -1+1p n), 即n p <S n <n p +1p ·[1-(1p)n ]. ···················································· 14分 因为1p ·[1-(1p )n ]<1p ,所以np <S n <n +1p.设c n =np ,则c n +1-c n =n +1p -n p =1p,且c n <S n <c n +1,所以存在等差数列{c n }满足题意. ········································· 16分南京市2020届高三年级第三次模拟考试数学附加题参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.21.【选做题】在A 、B 、C 三小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—2:矩阵与变换解:(1) ⎣⎢⎡⎦⎥⎤1 -1a 0 ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0a . ······················································ 2分 因为点P (1,1)在矩阵A 的变换下得到点P ′(0,-2),所以a =-2,所以A =⎣⎢⎡⎦⎥⎤1 -1-2 0. ··············································································· 4分 (2)因为A =⎣⎢⎡⎦⎥⎤1 -1-2 0,所以A 2=⎣⎢⎡⎦⎥⎤1 -1-2 0 ⎣⎢⎡⎦⎥⎤1 -1-2 0=⎣⎢⎡⎦⎥⎤3 -1-2 2, ····················· 6分 所以A 2⎣⎡⎦⎤03=⎣⎢⎡⎦⎥⎤3 -1-2 2 ⎣⎡⎦⎤03=⎣⎢⎡⎦⎥⎤-36, 所以,点Q ′的坐标为(-3,6). ················································ 10分B .选修4—4:坐标系与参数方程解:由l 的参数方程⎩⎨⎧x =3t ,y =1+t (t 为参数)得直线l 方程为x -3y +3=0. 2分 曲线C 上的点到直线l 的距离d =|1+cos θ- 3 sin θ+3|2················ 4分 =|2cos(θ+π3)+1+3|2. ·························································· 6分 当θ+π3=2k π,即θ=-π3+2k π(k ∈Z )时, ···································· 8分 曲线C 上的点到直线l 的距离取最大值3+32. ··························· 10分 C .选修4—5:不等式选讲证明:因为a ,b 为非负实数, 所以a 3+b 3-ab (a 2+b 2)=a 2a (a -b )+b 2b (b -a )=(a -b )[(a )5-(b )5]. ·················································· 4分 若a ≥b 时,a ≥b ,从而(a )5≥(b )5,得(a -b )·[(a )5-(b )5]≥0. ···························································· 6分 若a <b 时,a <b ,从而(a )5<(b )5,得(a -b )·[(a )5-(b )5]>0. ···························································· 8分 综上,a 3+b 3≥ab (a 2+b 2). ··············································· 10分22.(本小题满分10分)解:(1)因为三棱柱ABC -A 1B 1C 1为直三棱柱,所以AA 1⊥平面ABC ,所以AA 1⊥AB ,AA 1⊥AC .又AB ⊥AC ,所以以{AB →,AC →,AA 1→}为正交基底建立如图所示的空间直角坐标系A —xyz .设AA 1=t (t >0),又AB =3,AC =4,则A (0,0,0),C 1(0,4,t ),B 1(3,0,t ),C (0,4,0),所以AC 1→=(0,4,t ),B 1C →=(-3,4,-t ). ································ 2分因为B 1C ⊥AC 1,所以B 1C →·AC 1→=0,即16-t 2=0,解得t =4,所以AA 1的长为4. ································································ 4分(2)由(1)知B (3,0,0),C (0,4,0),A 1(0,0,4),所以A 1C →=(0,4,-4),BC →=(-3,4,0).设n =(x ,y ,z )为平面A 1CB 的法向量,则n ·A 1C →=0,n ·BC →=0,即⎩⎨⎧4y -4z =0,-3x +4y =0.取y =3,解得z =3,x =4,所以n =(4,3,3)为平面A 1CB 的一个法向量.又因为AB ⊥面AA 1C 1C ,所以AB →=(3,0,0)为平面A 1CA 的一个法向量,则cos <n ,AB →>=AB →·n |AB →|·|n |=123·42+32+32=434, ······················ 6分 所以sin <n ,AB →>=317. 设P (3,0,m ),其中0≤m ≤4,则CP →=(3,-4,m ).因为AB →=(3,0,0)为平面A 1CA 的一个法向量,所以cos <CP →,AB →>=AB →·CP →|AB →|·|CP →|=93·32+(-4)2+m2=3m 2+25, 所以直线PC 与平面AA 1C 1C 的所成角的正弦值为3m 2+25. ··········· 8分 因为直线PC 与平面AA 1C 1C 所成角和二面角B -A 1C -A 的大小相等, 所以3m 2+25=317,此时方程无解,。

南京市2022届高三年级第三次模拟考试数学试题

南京市2022届高三年级第三次模拟考试数学试题

南京市2022届高三年级第二次(5月)模拟考试数学2022.05注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.第Ⅰ卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知R 是实数集,集合A ={x ∈Z ||x |≤1},B ={x |2x -1≥0},则A ∩(∁R B )=A .{-1,0}B .{0,1}C .{-1,0,1}D . 2.已知i 为虚数单位,复数z 满足z (1-i)=4-3i ,则|z |=A .52B .52 C .102 D .5223.为庆祝中国共青团成立100周年,某校计划举行庆祝活动,共有4个节目,要求A 节目不排在第一个,则节目安排的方法数为 A .9B .18C .24D .274.函数f (x )=(x -1x)cos x 的部分图象大致为ABCD5.我们知道,对于一个正整数N 可以表示成N =a ×10n (1≤a <10,n ∈Z ),此时lg N =n +lg a (0≤lg a <1).当n ≥0时,N 是一个n +1位数.已知lg5≈0.69897,则5100是位数. A .71B .70C .69D .686.在(1+x )4(1+2y )a (a ∈N )的展开式中,记x m y n 项的系数为f (m ,n ).若f (0,1)+f (1,0)=8,则a 的值为 A .0B .1C .2D .37.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π2) 的图象与y 轴的交点为M (0,1),与x 轴正半轴最靠近y 轴的交点为N (3,0),y 轴右侧的第一个最高点与第一个最低点分别为B ,C .若xyOxyOxyOyxO△OBC 的面积为32(其中O 为坐标原点),则函数f (x )的最小正周期为 A .5B .6C .7D .88.已知函数f (x )=⎩⎨⎧x 2,x ≥0,-x 2,x <0.若∀x ≥1,f (x +2m )+mf (x )>0,则实数m 的取值范围是A .(-1,+∞)B .(-14,+∞)C .(0,+∞)D .(-12,1)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.设P =a +,a ∈R ,则下列说法正确的是A .P ≥22B .“a >1”是“P ≥22”的充分必要条件C .“P >3”是“a >2”的必要不充分条件D .∃a ∈(3,+∞),使得P <310.在平面直角坐标系xOy 中,已知圆C :x 2+y 2-2ax -6y +a 2=0(a ∈R ),则下列说法正确的是A .若a ≠0,则点O 在圆C 外B .圆C 与x 轴相切C .若圆C 截y 轴所得弦长为42,则a =1D .点O 到圆C 上一点的最大距离和最小距离的乘积为a 211.连续抛掷一枚质地均匀的硬币3次,每次结果要么正面向上,要么反面向上,且两种结果等可能.记事件A 表示“3次结果中有正面向上,也有反面向上”,事件B 表示“3次结果中最多一次正面向上”,事件C 表示“3次结果中没有正面向上”,则 A .事件B 与事件C 互斥B .P (A )=34C .事件A 与事件B 独立D .记C 的对立事件为 ̄C ,则P (B | ̄C )=12.在一个圆锥中,D 为圆锥的顶点,O 为圆锥底面圆的圆心,P 为线段DO 的中点,AE 为底面圆的直径,△ABC 是底面圆的内接正三角形,AB =AD =3,则下列说法正确的是 A .BE ∥平面PAC B .PA ⊥平面PBCC .在圆锥侧面上,点A 到DB 中点的最短距离为32D .记直线DO 与过点P 的平面α所成的角为θ,当cos θ∈(0,33)时,平面α与圆锥侧面的交线为椭圆第Ⅱ卷(非选择题共90分)三、填空题:本题共4小题,每小题5分,共20分.13.在平面直角坐标系xOy 中,P 是直线3x +2y +1=0上任意一点,则向量→OP 与向量n =(3,2)的数量积为▲________.14.写出一个同时具有下列性质(1)(2)(3)的数列{a n }的通项公式:a n =▲________.(1){a n }是无穷等比数列;(2)数列{a n }不单调;(3)数列{|a n |}单调递减.15.在平面直角坐标系xOy 中,已知椭圆C 1与双曲线C 2共焦点,双曲线C 2实轴的两顶点将椭圆C 1的长轴三等分,两曲线的交点与两焦点共圆,则双曲线C 2的离心率为▲________. 16.19世纪,美国天文学家西蒙·纽康在翻阅对数表时,偶然发现表中以1开头的数出现的频率更高.约半个世纪后,物理学家本福特又重新发现这个现象,从实际生活得出的大量数据中,以1开头的数出现的频率约为总数的三成,接近期望值19的3倍,并提出本福特定律,即在大量b进制随机数据中,以n 开头的数出现的概率为P b (n )=log b ,如斐波那契数、阶乘数、素数等都比较符合该定律.后来常有数学爱好者用此定律来检验某些经济数据、选举数据等大数据的真实性. 根据本福特定律,在某项大量经济数据(十进制)中,以6开头的数出现的概率为▲________;若n =k 9∑P 10(n )=P 10(1),k ∈N *,k ≤9,则k 的值为▲________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程戓演算步骤. 17.(本小题满分10分)在△ABC 中,记角A ,B ,C 所对的边分别为a ,b ,c ,已知3a sin C =c cos A +c . (1)求A ;(2)若a =7b ,AD →=AB →,求sin ∠ADC . 18.(本小题满分12分)已知数列{a n }的前n 项和为S n ,a 2=2.从下面①②③中选取两个作为条件,剩下一个作为结论.如果该命题为真,请给出证明;如果该命题为假,请说明理由.①a 3=3a 1;②{}为等差数列;③a n +2-a n =2.注:若选择不同的组合分别解答,则按第一个解答计分. 19.(本小题满分12分)如图1,在平行四边形ABCD 中,AB =2,AD =33,∠ABC =30º,AE ⊥BC ,垂足为E .以AE 为折痕把△ABE 折起,使点B 到达点P 的位置,且平面PAE 与平面AECD 所成的角为90º(如图2).(1)求证:PE ⊥CD ;(2)若点F 在线段PC 上,且二面角F -AD -C 的大小为30º,求三棱锥F -ACD 的体积.20.(本小题满分12分)空气质量指数AQI 与空气质量等级的对应关系如下:空气质量指数AQI空气质量等级[0,50] 优 (50,100] 良 (100,150] 轻度污染 (150,200] 中度污染 (200,300] 重度污染 (300,+∞)严重污染下列频数分布表是某场馆记录了一个月(30天)的情况: 空气质量指数AQI [0,50] (50,100](100,150](150,200]频数(单位:天)36156(1)利用上述频数分布表,估算该场馆日平均AQI 的值;(同一组中的数据以这组数据所在区间的中点值作代表)(2)如果把频率视为概率,且每天空气质量指数相互独立,求未来一周(7天)中该场馆至少有两天空气质量等级达到“优或良”的概率;(参考数据:0.77≈0.0824,结果精确到0.01) (3)为提升空气质量,该场馆安装了2套相互独立的大型空气净化系统.已知每套净化系统一年需要更换滤芯数量情况如下: 更换滤芯数量(单位:个)3 4 5 概率0.20.30.5已知厂家每年年初有一次滤芯促销活动,促销期内每个滤芯售价1千元,促销期结束后每个滤芯恢复原价2千元.该场馆每年年初先在促销期购买n (n ≥8,且n ∈N *)个滤芯,如果不够用,则根据需要按原价购买补充.问该场馆年初促销期购买多少个滤芯,使当年购买滤芯的总费用最合理,请说明理由.(不考虑往年剩余滤芯和下一年需求)21.(本小题满分12分)EPC FADBCE AD(第19题图1)(第19题图2)已知函数f (x )=(x 2-x +1)e x -3,g (x )=x e x -f (x )x ,e 为自然对数的底数.(1)求函数f (x )的单调区间;(2)记函数g (x )在(0,+∞)上的最小值为m ,证明:e <m <3. 22.(本小题满分12分)在平面直角坐标系xOy 中,已知抛物线C :x 2=4y ,直线l 与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线的切线,两切线的交点P 在直线y =x -5上. (1)若点A 的坐标为(1,),求AP 的长; (2)若AB =2AP ,求点P 的坐标.。

南京市中华中学南京师范大学附属中学2023届高三联考一模数学试题含答案

南京市中华中学南京师范大学附属中学2023届高三联考一模数学试题含答案

南京市中华中学、南京师范大学附属中学2023届高三联考一模数学试题一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数1i1i+-(i 为虚数单位)的共轭复数的虚部等于( ) A .1B .1-C .iD .i -2.已知,M N 为全集R 的两个不相等的非空子集,若()()R R N M ⊆痧,则下列结论正确的是( )A .,x N x M ∀∈∈B .,x M x N ∃∈∉C .,x N x M ∃∉∈D .,R x M x N ∀∈∉ð3.过圆O :225x y +=外一点(P 作圆O 的切线,切点分别为A 、B ,则AB =( )A .2B C D .34.已知数列{}n a 是等比数列,()()247869a a a a a λ+⋅=-且公比()1,2q ∈,则实数λ的取值范围为( ) A .()1,9B .()2,10C .()1,8D .()1,6-5.某学校有6个数学兴趣小组,每个小组都配备1位指导老师,现根据工作需要,学校准备将其中4位指导老师由原来的小组均相应的调整到其他兴趣小组,其余的2位指导老师仍在原来的兴趣小组(不作调整),如果调整后每个兴趣小组仍配备1位指导老师,则不同的调整方案为( ) A .135种B .360种C .90种D .270种6.正方形ABCD 的四个顶点都在椭圆()222210x y a b a b +=>>上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .⎛ ⎝⎭D .⎫⎪⎪⎝⎭7.已知函数()π2sin 03y x ωω⎛⎫=-> ⎪⎝⎭图象与函数()π2sin 06y x ωω⎛⎫=+> ⎪⎝⎭图象相邻的三个交点依次为A ,B ,C ,且ABC 是锐角三角形,则ω的取值范围是( )A .⎫+∞⎪⎪⎝⎭B .π,4⎛⎫+∞ ⎪⎝⎭C .π0,4⎛⎫⎪⎝⎭D .⎛ ⎝⎭8.设2154113,,8520a eb ec ===,则,,a b c 的大小关系为( )A .a c b <<B .a b c <<C .b c a <<D .c < a < b二、选择题:本题共4小题,每小题5分,共20分。

2017年江苏省高考数学模拟应用题选编(三)

2017年江苏省高考数学模拟应用题选编(三)

2017年江苏省高考数学模拟应用题大全(三)1、(江苏省连云港、徐州、宿迁2017届高三年级第三次模拟考试)某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(F ,G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,且12AB AD ≥.设EOF θ∠=,透光区域的面积为S .(1)求S 关于θ的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值 越大越好.当该比值最大时,求边AB 的长度.2、(江苏省南京、淮安市2017届高三第三次模拟考试数学试题)在一水域上建一个演艺广场.演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC ,及矩形表演台BCDE 四个部分构成(如图).看台Ⅰ,看台Ⅱ是分别以AB ,AC 为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍;矩形表演台BCDE 中,CD =10米;三角形水域ABC 的面积为4003平方米.设∠BAC =θ.(1)求BC 的长(用含θ的式子表示);(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价.3、(江苏省南京师范大学附属中学2017届高三考前模拟考试数学试题)园林管理处拟在公园某区域规划建设一半径为r 米,圆心角为θ(弧度)的扇形观景水池,其中O 为扇形AOB 的圆心,同时紧贴水池周边建设一圈理想的无宽度步道.要求总预算费用不超过24万元,水池造价为每平米400元,步道造价为每米1000元.(1)当r 和θ分别为多少时,可使得广场面积最大,并求出最大面积;A BCDFEO(第1题)G θ(第2题图)(2)若要求步道长为105米,则可设计出的水池最大面积是多少.4、(江苏省南京市、盐城市2017届高三年级第二次模拟考试)在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD ,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x 厘米,矩形纸板的两边AB ,BC 的长分别为a 厘米和b 厘米,其中a ≥b .(1)当a =90时,求纸盒侧面积的最大值;(2)试确定a ,b ,x 的值,使得纸盒的体积最大,并求出最大值.5、(江苏省南通、扬州、泰州2017届高三第三次调研考试数学试题)如图,半圆AOB 是某爱国主义教育基地一景点的平面示意图,半径OA 的长为1百米.为了保护景点,基地管理部门从道路l 上选取一点C ,修建参观线路C -D -E -F ,且CD ,DE ,EF 均与半圆相切,四边形CDEF 是等腰梯形.设DE =t 百米,记修建每1百米参 观线路的费用为()f t 万元,经测算150()118 2.3t f t t t ⎧<⎪=⎨⎪-<<⎩,,≤,(1)用t 表示线段EF 的长; (2)求修建该参观线路的最低费用.(第4题图)DCB AO(第5题)6、(江苏省南通、扬州、泰州、徐州、淮安、宿迁2017届高三二模数学试题)一缉私艇巡航至距领海边界线l (一条南北方向的直线)3.8海里的A 处,发现在其北偏东30°方向相距4海里的B 处有一走私船正欲逃跑,缉私艇立即追击.已知缉私艇的最 大航速是走私船最大航速的3倍.假设缉私艇和走私船均按直线方向以最大航速航行. (1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截 成功;(参考数据:sin17°≈5.7446)(2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由.7、(江苏省如皋市2017届高三下学期语数英学科联考(二)数学试题)如图所示,在一半径等于1千米的圆弧及直线段道路AB 围成的区域内计划建一条商业街,其起点和终点均在道路AB 上,街道由两条平行于对称轴l 且关于l 对称的两线段EF 、CD ,及夹在两线段EF 、CD 间的弧组成.若商业街在两线段EF 、CD 上收益为每千米2a 元,在两线段EF 、CD 间的弧上收益为每千米a 元.已知2AOB π∠=,设2EOD θ∠=,(1) 将商业街的总收益()f θ表示为θ的函数; (2) 求商业街的总收益的最大值.北(第6题)8、(江苏省苏州大学2017届高考数学考前指导卷 1)如图,某地区有一块(百米),植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为.(1(2,若计划9、舞,试求这块圆形广场的最大面积.(10、(江苏省泰州市2017届高三考前参考题数学试题)甲、乙分别位于扇形居民区弧⌒AB合)处建造一个大型快件集散中心,经过前期的调查,发现可以分别用抗拒系数⌒AB的中点时,(1(211、(上海市崇明区2017届高三第二次(4月)模拟考试数学试卷)某校兴趣小组在如图所示的矩形区域ABCD内举行机器人拦截挑战赛,在E器人甲,同时在A处按某方向释放机器人乙,设机器人乙在Q处成功拦截机器人甲.若点Q在矩形区域ABCD内(包含边界),则挑战成功,否则挑战失败.E为A B中点,机器人乙的速度是机器人甲的速度的2倍,比(1AD足够长,则如何设置机器人乙的释放角度才能挑战成功?(结(2)如何设计矩形区域ABCD的宽AD的长度,甲?12、(江苏省学大教育2017届高考数学密2)13、(江苏省学大教育2017届高考数学密1)某单位为端正工作人员仪容,在单位设置一面仪容镜(仪容镜为平面镜),如图,仪容2米,(1(2答案1、(12分分,所以定义域为10分12分所以,所以,故有最大,此时(2)1m .………16分2、(1)因为看台Ⅰ的面积是看台Ⅱ的面积的3倍,所以AB =3AC .在△ABC 中,S △ABC =12AB •AC •sin θ=4003,所以AC 2=800sin θ . …………………… 3分由余弦定理可得BC 2=AB 2+AC 2-2AB •AC •cos θ,=4AC 2-23AC 2 cos θ.=(4-23cos θ) 800sin θ ,即BC =(4-23cos θ)•800sin θ =402-3cos θsin θ.所以 BC =402-3cos θsin θ ,θ∈(0,π). …………………… 7分(2)设表演台的总造价为W 万元.因为CD =10m ,表演台每平方米的造价为0.3万元,所以W =3BC =1202-3cos θsin θ ,θ∈(0,π). …………………… 9分记f (θ)=2-3cos θsin θ,θ∈(0,π).则f ′(θ)=3-2cos θsin 2θ. …………………… 11分由f ′(θ)=0,解得θ=π6.当θ∈(0,π6)时,f ′(θ)<0;当θ∈(π6,π)时,f ′(θ)>0.故f (θ)在(0,π6)上单调递减,在(π6,π)上单调递增,从而当θ=π6 时,f (θ)取得最小值,最小值为f (π6)=1.所以W min =120(万元).答:表演台的最低造价为120万元. …………………… 14分34、解:(1)因为矩形纸板ABCD 的面积为3600,故当a =90时,b =40,从而包装盒子的侧面积S =2×x (90-2x )+2×x (40-2x )=-8x 2+260x ,x ∈(0,20) . ………………… 3分因为S =-8x 2+260x =-8(x -654)2+42252,故当x =654 时,侧面积最大,最大值为 42252 平方厘米.答:当x =654 时,纸盒的侧面积的最大值为42252平方厘米. ………………… 6分(2)包装盒子的体积V =(a -2x )(b -2x ) x =x [ab -2(a +b )x +4x 2],x ∈(0,b 2),b ≤60.…………… 8分V =x [ab -2(a +b )x +4x 2]≤x (ab -4abx +4x 2)=x (3600-240x +4x 2)=4x 3-240x 2+3600x . ………………… 10分当且仅当a =b =60时等号成立.设f (x )=4x 3-240x 2+3600x ,x ∈(0,30).则f ′ (x )=12(x -10)(x -30).于是当0<x <10时,f ′ (x )>0,所以f (x )在(0,10)上单调递增;当10<x <30时,f ′ (x )<0,所以f (x )在(10,30)上单调递减.因此当x =10时,f (x )有最大值f (10)=16000, ……………… 12分 此时a =b =60,x =10.答:当a =b =60,x =10时纸盒的体积最大,最大值为16000立方厘米.……………… 14分5、【解】设DE 与半圆相切于点QDQ=QE,以OF所在直线为x轴,OQ所在直线为y轴,建立如图所示的平面直角坐标系xOy.(1)方法一:由题意得,点E……1分设直线EF,因为直线EF与半圆相切,所以圆心O到直线EF (3)分F……5分即.……7分方法二:切圆所以Rt△EHF≌Rt△OGF,……3分……5分所以.……7分(2①所以当时,取最小值为……11分②……13分且当时,;当时,调递增.由①②知,取最小值为……15分答:(1(2)修建该参观线路的最低费用为万元.……16分6、解:(1,……2分.……5分又B到边界线l……8分(2AB C图甲走私……12分1.55所以缉私艇能在领海内截住走私船.……14分答:(1(2)缉私艇总能在领海内成功拦截走私船.……16分18.7、1)①3分②6分由①②8分(2)①列表:11分所以在时单调递减所以…………………14分10分的面积最大值为分⌒AB(2由(119.11、解:(1分分.....................................................6分(2)以所在直线为轴,中垂线为分分6为半径的上半圆在矩形区域人乙的释放角度使机器人乙在矩形区域ABCD内成功拦截机器人甲...........................................14分12、13由正弦定理,)2,21(tan 2321sin )32sin(sin sin ∈+=-==C C C C B AB AC π即的取值范围为AB AC 的取值范围为(2,21)(2)易知AD A A 2='、又由三角形ABC 的面积A AC AB AD BC S sin 2121⋅=⋅=,可得AC AB AD ⋅=43由余弦定理,AC AB AC AB AC AB A AC AB AC AB BC ⋅=⋅-⋅≥⋅⋅-+==2cos 24222, 解得4≤⋅AC AB ,当且仅当2==AC AB 时。

江苏省南京市南京师范大学附属中学2025届高考仿真模拟数学试卷含解析

江苏省南京市南京师范大学附属中学2025届高考仿真模拟数学试卷含解析

江苏省南京市南京师范大学附属中学2025届高考仿真模拟数学试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,148AB AA ==,.若E F ,分别是棱1BB CC,上的点,且1BE B E =,1114C F CC =,则异面直线1A E 与AF 所成角的余弦值为( )A .210B .2613C .1313D 13 2.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫ ⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( ) A .4B .6C .3D .83.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了B .乙被录用了C .甲被录用了D .无法确定谁被录用了4.已知函数3(1),1()ln ,1x x f x x x ⎧-≤=⎨>⎩,若()()f a f b >,则下列不等关系正确的是( )A .221111a b <++ B 33a bC .2a ab <D .()()22ln 1ln 1a b +>+5.设函数'()f x 是奇函数()()f x x R ∈的导函数,当0x >时,1'()ln ()<-f x x f x x,则使得2(1)()0x f x ->成立的x 的取值范围是( ) A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-6.已知函数()()()2ln 14f x ax x ax =-+-,若0x >时,()0f x ≥恒成立,则实数a 的值为( )A .2eB .4eC .2ee - D .4ee- 7.在ABC ∆中,D 为AC 的中点,E 为AB 上靠近点B 的三等分点,且BD ,CE 相交于点P ,则AP =( ) A .2132AB AC + B .1124AB AC + C .1123AB AC + D .2133AB AC + 8.已知集合M ={y |y =,x >0},N ={x |y =lg (2x -)},则M∩N 为( ) A .(1,+∞)B .(1,2)C .[2,+∞)D .[1,+∞)9.在正项等比数列{a n }中,a 5-a 1=15,a 4-a 2 =6,则a 3=( ) A .2B .4C .12D .810.已知函数()(2)3,(ln 2)()32,(ln 2)xx x e x f x x x ⎧--+≥⎪=⎨-<⎪⎩,当[,)x m ∈+∞时,()f x 的取值范围为(,2]e -∞+,则实数m的取值范围是( )A .1,2e -⎛⎤-∞⎥⎝⎦B .(,1]-∞C .1,12e -⎡⎤⎢⎥⎣⎦D .[ln 2,1]11.设变量,x y 满足约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则目标函数2z x y =+的最大值是( )A .7B .5C .3D .212.ABC 中,点D 在边AB 上,CD 平分ACB ∠,若CB a =,CA b =,2a =,1b =,则CD =( ) A .2133a b + B .1233a b +C .3455a b + D .4355a b + 二、填空题:本题共4小题,每小题5分,共20分。

江苏省“五校联考”2021-2022学年高三第三次模拟考试数学试卷含解析

江苏省“五校联考”2021-2022学年高三第三次模拟考试数学试卷含解析

2021-2022高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数y=sin x+x在x∈[-2π,2π]上的大致图象是()A.B.C.D.2.若函数y=2sin (2x+ϕ)ϕ<对称轴的方程可以为() A.x=-⎛⎝π⎫2⎭⎪的图象经过点⎛π⎫,0⎪,则函数f(x)=sin(2x-ϕ)+cos(2x-ϕ)图象的一条12⎝⎭π24B.x=37π24C.x=17π24D.x=-13π243.在等差数列{an}中,a2=-5,a5+a6+a7=9,若bn=A.-3 C.1B.-D.33(n∈N*),则数列{bn}的最大值是()an134.已知a,b∈R,3+ai=b-(2a-1)i,则|3a+bi|=()A.10B.232C.3D.45.设函数f (x)=2cos x+23sin x cos x+m,当x∈⎢0,A.⎡π⎤⎡17⎤f x∈,⎥,则m=()()时,⎢⎥⎣22⎦⎣2⎦D.12B.32C.1726.已知ω>13,函数f (x )=sin ⎛⎝2ωx -π⎫3⎪⎭在区间(π,2π)内没有最值,给出下列四个结论:①f (x )在(π,2π)上单调递增;②ω∈⎢⎡511⎣12,⎤24⎥⎦③f (x )在[0,π]上没有零点;④f (x )在[0,π]上只有一个零点.其中所有正确结论的编号是()A .②④B .①③C .②③D .①②④7.已知直线l :x +m 2y =0与直线n :x +y +m =0则“l //n ”是“m =1”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是()A .B .C .D .9.已知定义在R 上的奇函数f (x ),其导函数为f '(x ),当x ≥0时,恒有x3f '(x )+f (x )>0.则不等式x 3f (x )-(1+2x )3f (1+2x )<0的解集为().A .{x |-3<x <-1}B .{x |-1<x <-13}C .{x |x <-3或x >-1}D .{x |x <-1或x >-13}610.(x 3-1)⎛ ⎝x +2⎫x ⎪的展开式中的常数项为()⎭A .-60B .240C .-80D .18011.在复平面内,复数z =i 对应的点为Z ,将向量OZ 绕原点O 按逆时针方向旋转π6,所得向量对应的复数是(A .-132+32i B .-312+2i C .-12-32i D .-2-12i )12.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且AE =2EO ,则ED =()12AD -AB3321C .AD -AB33A .21AD +AB3312D .AD +AB33B .二、填空题:本题共4小题,每小题5分,共20分。

江苏省南京市示范名校2024年高三下学期第三次联考数学试题

江苏省南京市示范名校2024年高三下学期第三次联考数学试题

江苏省南京市示范名校2024年高三下学期第三次联考数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.要得到函数3sin 12y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数3sin 23y x π⎛⎫=- ⎪⎝⎭图象上所有点的横坐标( )A .伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移4π个单位长度 B .伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移4π个单位长度 C .缩短到原来的12倍(纵坐标不变),再将得到的图象向左平移524π个单位长度 D .缩短到原来的12倍(纵坐标不变),再将得到的图象向右平移1124π个单位长度2.执行如图所示的程序框图,输出的结果为( )A .78B .158C .3116D .15163.已知函数2ln(2),1,()1,1,x x f x x x -⎧=⎨-+>⎩若()0f x ax a -+恒成立,则实数a 的取值范围是( )A .1,12⎡⎤-⎢⎥⎣⎦B .[0,1]C .[1,)+∞D .[0,2]4.已知,m n 表示两条不同的直线,αβ,表示两个不同的平面,且,m n αβ⊥⊂,则“αβ⊥”是“//m n ”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要5.设实数满足条件则的最大值为( ) A .1B .2C .3D .46.若复数1a iz i-=+在复平面内对应的点在第二象限,则实数a 的取值范围是( ) A .()1,1-B .(),1-∞-C .()1,+∞D .()0,∞+7.函数()2xx e f x x=的图像大致为( )A .B .C .D .8.设集合{}2A x x a =-<<,{}0,2,4B =,若集合A B 中有且仅有2个元素,则实数a 的取值范围为A .()0,2B .(]2,4C .[)4,+∞D .(),0-∞9.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,过点1F 的直线与椭圆交于P 、Q 两点.若2PF Q ∆的内切圆与线段2PF 在其中点处相切,与PQ 相切于点1F ,则椭圆的离心率为( ) A .22B 3C .23D 310.已知函数1222,0,()log ,0,x x f x x x +⎧+≤⎪=⎨>⎪⎩若关于x 的方程[]2()2()30f x af x a -+=有六个不相等的实数根,则实数a 的取值范围为( )A .163,5⎛⎫⎪⎝⎭B .163,5⎛⎤⎥⎝⎦C .(3,4)D .(]3,411.设()'f x 函数()()0f x x >的导函数,且满足()()2'f x f x x>,若在ABC ∆中,34A π∠=,则( )A .()()22sin sin sin sin f A B f B A <B .()()22sinC sin sin sin f B f B C<C .()()22cos sin sin cos f A B f B A > D .()()22cosC sin sin cos f B f B C >12.当0a >时,函数()()2xf x x ax e =-的图象大致是( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

2024届江苏南京市高三年级学情调研数学试题及答案

2024届江苏南京市高三年级学情调研数学试题及答案

南京市2-024届高三年级学情调研数学2023.09 注意事项,1.本试卷共6页,包括单项选择题(第1题~第8题)、多项选择题(第9题~第12题)、填空题(第13题~第16题)、解答题(第17题~第22题)四部分.本试卷满分为150分,考试时间为120分钟.2.答卷前,考生务必将自己的学校、姓名、考生号填涂在答题卡上指定的位登.3.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦于净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上指定位登,在其他位置作答一律无效.一、选择题:本题共8小题.每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.L已知集合A=位1工s_七十3�0},B={xl2<x<心,则AnB=A.位13<工<4} B.{工|1竺3} C.位I z<工�3} D.(工\l�x<4}2.若z=-3l一+—i ,则%的虚部为A.2B.-2C.2iD.-2i3.(工-一工2 )`的展开式中常数项为A.-24B.一4C.4D. Z44在!::.ABC中,点D为边AB的中点.记忒=m,击=n,则啼=A.Zm+nB.m+2nC. 2m-nD.-m+2n5.设0为坐标原点,A为圆C:夕十J-七十2=0上一个动点,则乙AOC的最大值为A工穴·12 B.工6 C.一D.王4 36.在正方体ABC D-A1B1C心中,过点B的平面G与直线A1C垂宜汛la截该正方体所得截面的形状为A.三角形B.四边形c.五边形D.六边形高三数学试卷第1页(共6页)7.新风机的工作原理是,从室外吸入空气,净化后输入室内,同时将等体积的室内空气排向室外假设某房间的体积为力。

,初始时刻室内空气中含有颗粒物的质惫为m.巳知某款新风机工作时,单位时间内从室外吸入的空气体积为v (v>l),室内空气中颗粒物的浓度与时刻t的函4数关系为p(t)=(I-入)竺丑实一,其中常数入为过滤效率.若该款新风机的过滤效率为t·v 。

南京市第29中学2022届高三学情调研(第三次)数学评分细则

南京市第29中学2022届高三学情调研(第三次)数学评分细则

所以球 O1 的体积为 V=43πR3=43π.
分析:利用△PO2E∽△PO1F 求得球 O2 的半径 r.
作截面图如图所示,可知 O1O=O1N=1,OP=3,则 PN=1,PO1=2,PO2=1-r.
因为△PO2E∽△PO1F,则
2= 2 ,即1− = ,解得 r=1,
11
21
3
所以球
O2
的表面积为
南京市第 29 中学 2022 届高三学情调研(第三次)
数学试题评分细则
1-8 BACB CDCD 9BC 10 CD 11BD
13. 12; 14. 2 5
5
5 ;15 .13
5
16.43π,49π
14 解:设圆心为 A,直线与圆的切点为 B,
12BCD

1的直线和圆(
−1
2
)2 +
2=
2相切的直线为 l,
55
16. 4π 4π 分析:球是由球心与半径确定的,为此,研究球的相关问题时,要紧
39
紧抓住这两个要素.解决本题首先要作出一个简图,注意到本题的原图很复杂,因 此,通过作截面图来把握相互的位置关系.根据题意可知两球必与正三棱锥的斜高 相切,故作出过球心以及切点的截面图.
设 O 为△ABC 外接圆的圆心.因为△ABC 是边长为 6 的等边三角形, 所以 OA=6× 23×23=2 3.因为 OP2+OA2=PA2,解得 OP=3. 设球 O1 的半径为 R,球 O2 的半径为 r.
3=1.
2
+1
+1
=13R(S△PAB+S△PAC+S△PBC+S
解法 2(直接法求球 O1 的半径) 分析:由△O1FP∽△DOP 得到关于 R 的等量关
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京市届高三年级第三次模拟 测验数学试题
———————————————————————————————— 作者: ———————————————————————————————— 日期:
南京市 2016 届高三年级第三次模拟考试
数学
2016.05
一、填空题(本大题共 14小题,每小题 5 分,计70分. 不需写出解答过程,请把答案写在答题纸的
=2
错误!.若错误!·错误!=-3,则错误!·错误!=错误!.
12.在平面直角坐标系 xOy中,圆 M:(x-a)2+(y+a-3)2=1(a>0),点 N 为圆 M 上任意一
点.若以 N 为圆心,ON为半径的圆与圆M至多有一个公共点,则a的最小值为
错误!.
错误! 13.设函数 f(x)=
g(x)=f(x)-b.若存在实数 b,使得函数 g(x)恰有 3 个零点,
错误!=错误!,求 q 的值.
南京市 2016 届高三年级第三次模拟考试
S
←S×I 8.设 F 是双曲线的一个焦点,点P在双曲线上,且线段 PF的中点恰为双曲线虚轴的一个
错误! 端点,则双曲线的离心率为
.
End
错误! While 9.如图,已知A,B 分别是函数 f(x)=
sinωx(ω>0)在 y 轴右侧图象上的第一个最高
错误! Print 点和第一个最低点,且∠AOB=2π,则该函数的周期是
(1)若 AB=AC,D 为棱 BC 的中点,求证:平面ADC1⊥平面 BCC1B1;
错误! (2)若A1B∥平面 ADC1,求
的值.
A1
(第 16 题图)
17. (本小题满分 14 分)
错误! 错误! 如图,在平面直角坐标系 xOy 中,已知椭圆 C:
+
=1(a>b>0)的离
心率为 2 2
给出下列命题: ①α∥β⇒l⊥m; ②α⊥β⇒l∥m; ③m∥α⇒l⊥β; ④l⊥β⇒m∥α. 其中正确的命题是\s\do1(▲________). (填.写.所.有.正.确.命.题.的.序. 号.).
S←1 I←2
While
S≤100 I (第 5 题图)
←I+2
7.设数列{an}的前 n 项和为 Sn,满足 Sn=2an-2,则\f(a8,a6)= ▲ .
20.(本小题满分 16分) 已知数列{an}的前n项的和为 Sn,记 bn=\F(Sn+1,n).
(1)若{an}是首项为 a,公差为 d 的等差数列,其中a,d 均为正数. ①当 3b1,2b2,b3 成等差数列时,求ad的值; ②求证:存在唯一的正整数 n,使得 an+1≤bn<an+2. (2)设数列{an}是公比为 q(q>2)的等比数列,若存在 r,t(r,t∈N*,r<t)使得
指定位置上)
错误! 1.已知全集U={-1,2,3,a},集合 M={-1,3}.若∁UM={2,5},则实数 a 的值为
.
2.设复数z满足z(1+i)=2+4i,其中 i 为虚数单位,则复数 z 的共轭复数为 ▲ .
3.甲、乙两位选手参加射击选拔赛,其中连续5轮比赛的成绩(单位:环)如下表:
选手 第1轮 第 2 轮 第 3 轮 第4轮 第 5 轮
在△ABC 中,已知 a,b,c 分别为角 A,B,C 的对边.若向量m=(a,cosA),向量 n
=(cosC,c),且 m·n=3bcosB.
(1)求 cosB 的值;
(2)若 a,b,c成等比数列,求\F(1,tanA)+\F(1,tanC)的值.
16.(本小题满分 14 分)
如图,在直三棱柱ABC-A1B1C1 中,D 为棱BC上一点.
.
I
10.已知f(x)是定义在 R 上的偶函数,当 x≥0 时,f(x)=2x-2,则不等式 f(x-1)≤2 的解
集是错误!.
yA DC
O
x
M
(第 9 题图) B
A B (第 11 题图)
错误! 1 1 . 如 图 , 在 梯 形 ABC D 中 ,AB∥ CD, A B =4 , AD= 3 , C D = 2 ,
错误! 则实数 a 的取值范围为

错误! 14.若实数 x,y满足 2x2+xy-y2=1,则\F(x-2y,5x2-2xy+2y2)的最大值为

二、解答题(本大题共 6 小题,计 90 分.解答应写出必要的文字说明,证明过程或演算步骤,请把
答案写在答题纸的指定区域内)
15.(本小题满分 14 分)
=90°,AB=5千米,BC=8 千米,CD=3 千米.现甲、乙两管理员同时从 A 地出发
匀速前往 D 地,甲的路线是 AD,速度为6千米/小时,乙的路线是 ABCD,速度为 v千米/小时. (1)若甲、乙两管理员到达 D 的时间相差不超过 15 分钟,求乙的速度 v 的取值范围; (2)已知对讲机有效通话的最大距离是 5 千米.若乙先到达D,且乙从 A 到D的过程
中始终能用对讲机与甲保持有效通话,求乙的速度v的取值范围.
B
C
A
(第 18 题图)
D
19.(本小题满分 16 分) 设函数f(x)=-x3+mx2-m(m>0). (1)当m=1 时,求函数 f(x)的单调减区间; (2)设 g(x)=|f(x)|,求函数 g(x)在区间[0,m]上的最大值; (3)若存在 t≤0,使得函数 f(x)图象上有且仅有两个不同的点,且函数 f(x)的图象在 这两点处的两条切线都经过点(2,t),试求 m 的取值范围.

9.8
9.9
10.1
10
10.2

9.4
10.3 10.8 9.7 9.8
错误! 则甲、乙两位选手中成绩最稳定的选手的方差是

4.从 2 个白球,2 个红球,1 个黄球这 5 个球中随机取出两个球,则取出的两球中恰有一个红球的
概率是错误!.
5.执行如图所示的伪代码,输出的结果是 ▲ . 6.已知 α,β 是两个不同的平面,l,m 是两条不同直线,l⊥α,m⊂β.
点(2,1)在椭圆 C 上.
(1)求椭圆 C 的方程;
(2)设直线 l 与圆 O:x2+y2=2相切,与椭圆C相交于 P,Q 两点.
①若直线l过椭圆C的右焦点 F,求△OPQ 的面积;
y
②求证: OP⊥OQ.
P
F
O
x
Q
18.(本小题满分 16 分) 如图,某森林公园有一直角梯形区域 ABCD,其四条边均为道路,AD∥BC,∠ADC
相关文档
最新文档