第2章电阻电路的等效变换

合集下载

第二章 电阻电路的等效变换

第二章 电阻电路的等效变换

i

… i
+ -
u

K=1,2 , i
+ -
u
Reg
u
G1
in Gn
u

Geg
分流公式: 分流公式:ik=Gku=Gk/Geg i n=2时,Reg=R1R2/(R1+R2) 时 ( i1=R2/(R1+R2), 2=R1/(R1+R2)×i ),i ( ( *混联:有串,又有并 混联:有串, 混联 1 R1 R2 R3 R4
对于△ 对于△形,各电阻中电流为:i12=u12/R12 i23=u23/R23 i31=u31/R31 各电阻中电流为:
i ′ =i12-i31=u12/R12-u31/R31 1
i ′2 =u23/R23-u12/R12
i ′3 =u31/R31-u23/R23
i1 + i 2 + i 3 = 0

2
2 i31 1 i12

2

i′2
1
1
R2
3
自已补充:R 自已补充 4与1串,R3与2串,然 串 串然 后再并 i2
R4 R3 2
3
i3 2
1
1
2-5
电压源和电流源的串联和并联

1、n个电压源串联:us=∑usk--------等效电压源 、 个电压源串联: 等效电压源 个电压源串联 + - + ○ ○ -○ us1 us2 usn。 。 注:正、负号取 。 。 。 2、n个电流源的并联: 个电流源的并联: 、 个电流源的并联 is1 is=is1+is2+…is=∑isk 。 。
αi
+ uS - i +

第二章电阻电路的等效变换

第二章电阻电路的等效变换

ab
20 100 60
120 60
ab 20 100
100 Rab=70
ab
20 100 60
40
例2 求: Rab
5
15 6
a 20
b
缩短无
电阻支路
7
6
Rab=10
4 a b
15
10
20
5
a
15 b
7 6 6 4 a
b
15 7
3
例6
求: Rab c
对称电路 c、d等电位
R
R
R
c R
a R
断路 a
+a
2 +
U
6V –
(a)
b
3 9V +
(b)
解: a
+
+a U b
a +
3A 2 U
3A 3 U
b
(a)
b
(b)
例1: 求下列各电源等效变换
+a
3A 1 U
解:
(c)
b
a
+
1 +
U
3V –
(c)
b
+a
2A 5 U
(d) b
a
+
5 -
U
10V +
(d)
b
例2: 试用电压源与电流源等效变换的方法,计算2
2.1 概述
1 一些概念
1)电阻电路 仅由电源和线性电阻构成的电路。
2)等效的概念:
若结构、元件参数不相同的两部分电路N1、N2,具 有相同的电压、电流关系,则称它们彼此等效。
i

高等教育出版社第六版《电路》第2章_电阻电路的等效变换课件

高等教育出版社第六版《电路》第2章_电阻电路的等效变换课件
k 1
n
顺之者正,逆之者负。
2、串联: is1 is2
isn
is = is1= is2 = isn is
(1)电流相同的电流源能串联,但每个电源中的电压不确定。 (2)电流不相等,则不能串联,否则,违背KCL。 3、电流源is 和R、 us的串联: us is + – + u1 – R 注意:电压变化了。
第二章 电阻电路的等效变换
§2-1 引言
线性电路:由线性无源元件(R、L、C·)、线性受控 · · 源和独立电源组成。 线性电阻电路:由线性电阻、线性受控源和独立电源组成。 直流电路:独立电源为直流电源的线性电阻电路。
§2-2 电路的等效变换
一、等效的概念:
R R R1 §2-2 电路的等效变换 1 1 R2 i + R4 u R _ 3 ,
解:用电源变换法。受控源和独立源一样可以进行电源转换。 R i R _ + uR_ i R + uR + + ic + uc _ uS R _uS _
uc Ric 2 2 uR 4uR
Ri + Ri + uc = us
2uR 4uR us us uR 2V 6 在进行电源变换时,为避免出错控制量一般不要转换掉!
i2
i3
i3
u31 u23 R31 R23
R1u23 R3u12 R1R2 R2 R3 R3 R1 R1R2 R2 R3 R3 R1
R2u31 R1u23 R1R2 R2 R3 R3 R1 R1R2 R2 R3 R3 R1
由Y : R R R2 R3 R3 R1 R12 1 2 R3 R1R2 R2 R3 R3 R1 R23 R1 R R R2 R3 R3 R1 R31 1 2 R2

第02章电阻电路的等效变换(丘关源)

第02章电阻电路的等效变换(丘关源)
(1-29)
(6)恒压源并联任何元件其两端电压不变;
恒流源串联任何元件其流出电流不变;
a a
+ us

+ +

对外等效
us

b
c
b c
对外等效
is
+

d
is
d
(1-30)
例1 用电源等效变换法求i R5
R1 u1 + R2 R3 i
+
i=?
解:
-u3
R4
is
R5 u3 — R3 i
应 用 举 例
一、理想电压源的串联和并联
1、串联 + uS1_ _ uS2 +
+ 注意参考方向
º uS=+uS1 …-uS2 i + uS _ º
等效
+
uS _
º +
_ º
2、并联
条件:uS=uS1=uS2 方向相同 º 恒压源中的电流由外电路决定。相同的恒压源才能并联 。
(1-21)
uS1_
u S2
+ _
i
º
3、恒压源与任意支路(非恒压源)并联的等效 i i + + + + 任意 uS 对外等效 uS _ u _ u 元件 _ _ 4、实际电压源的串联等效
+ i +
uS1 _
R1
_ uS2 + u
R2 _
等效
uS _ R + i +
u
_
uS=+uS1-uS2
R=R1 + R2
(1-22)
二、理想电流源的串联和并联

电路理论基础第二章电阻电路的等效变换.

电路理论基础第二章电阻电路的等效变换.

■ _________________________________________________秦二五五阻竜賂鬲看效交鎭5 MT\ 2-2『WL略g*j»c凭. r -「电m 的■!»"井JBi 1-「削血的、知联结*>^洒联结的帶玻^^换'2-5 f 电压■、电汶4K的*税加井联11 2-6「4&际他sRftdKjn.st及如nat. 72-7r«r入电》1•重点:1.电路等效的概念2.电阻的串、并联3.电阻的Y・A变换4.电压源和电流源的等效变换2-1引言•电阻电路仅由电源和线性电阻构成的电路。

①欧姆定律和基尔霍夫定律是分析电•分析方法阻电路的依据.②等效变换的方法,也称化简的方法・IW回,『Wk I下賈***yuj^" ...... .... . 一組由从旨•麦以2-2电路的等效变换1 •二端电路(网络)任何一个复杂的电路,向外引出两个端钮,且从一个端子流入的电流等于从另一个端子流出的电流,则称这一电路为二端网络(或一端口网络)。

・回「王廣r下V2-3电阻的串联和并联1.电阻串联R\①电路特点+ HI - + W & - + 冷(a)各电阻顺序连接,流过同一电流(KCL)。

(b)总电压等于各串联电阻的电压之和(KVL)。

以=叫+••• + '" --- + 叫t 回,:上贡「下IT.. ....2. 电阻并联(a)各电阻两端为同一电压(KVL)。

(b)总电流等于流过各并联电阻的电流之和(KCL).i =八 + 02+ + L+「込回,:上贡「下IT② 等效电阻■:~I/. RH 血人dij KCL: / = /1 +,2+ …+ S+ ' * +/…= U/R\ +M /7?2 + 十 M /R n=M (1//?]+ 1/7?2—H '/RJ=uG 門na = G + G ----------- <7 =牙 G > aoq12nk k①电路特点HiIO — +ftU迟回,上黃丨下帀《隽捡 等效电导等于并联的各电导之和.例3-2两电阻的分流.R 显心1冬_叽 刊 \R +1/ RjR\ + RjlR\ .二 RJ1//?+1做,一 R\+Rjz, = —―~~—— i = -----1 R + \ K 、 & +&------- 1 --------- 1 -------- hR' RRfI ③并联电阻的分流 IL u/R,kk_一 一/ ~ u! R eq上黃丨下帀1/尺2即 <老II --------- ---- ------- ——亠“ • 亠亠J 亠亠A 亠亠—亠■亠▲ »■■■■•亠令午+亠▲亠▲▲亠▲▲“ 亠亠.亠亠 S 亠亠1 从以上例题可得求解串、并联电路的一般步骤:①求出等效电阻或等效电导.②应用欧姆定律求出总电压或总电流.③应用欧姆定律或分压.分流公式求各电阻上的削流和电压《以上的关键在于识别各电阻的串联.并联关系!求"Rah,Red o(5 + 5)x 15 +(y (5 + 5)+ 15(15 • 5)X 5uh —例3・6求:。

第2章电阻电路的等效变换

第2章电阻电路的等效变换

总电流
U S 18 I= = A = 6A R 3
由分流公式得
6 I1 = I = × 6A = 4A 4× 4 9 6 + (1 + ) 4+4
再分流得
6
1 I x = I 1 = 2A 2
返回
电路分析基础
第2章 电阻电路的等效变换
2.2.4 Y形电路和Δ形电路之间 的等效变换
返回
电路分析基础
如何等效化简电桥测温电路? 如何等效化简电桥测温电路?
返回
电路分析基础
第2章 电阻电路的等效变换
2.1 等效变换
电阻电路
线性电阻电路
非线性电阻电路
简化线性电阻电路的主要依据是等效变换
返回
电路分析基础
第2章 电阻电路的等效变换
2.1.1 一端口网络的定义
二端网络
一端口网络
流入一个端子的电流必定等于流出另一端子的电流
Ig =
Rp Rg + R p
× 10 × 10 −3 = 1 × 10 −3 mA
解之得应并联的电阻为
0.1RG 2 × 10 3 Rp = = Ω ≈ 222.22Ω 0.9 9
返回
电路分析基础
第2章 电阻电路的等效变换
2.2.3 电阻的混联
判别电路的串并联关系根据以下原则: 判别电路的串并联关系根据以下原则: (1)看电路的结构特点。 看电路的结构特点。 (2)看电压、电流关系。 看电压、电流关系。 (3)对电路作变形等效。 对电路作变形等效。 (4)找出等电位点。 找出等电位点。
R4 R5 R2(R3 + ) R4+R5 R = R1 + R4 R5 R2 + (R3 + ) R4 + R5

第二章电阻电路的等效变换

第二章电阻电路的等效变换

(2)R1增大,Uis增大,对其它元件均无影响
26
$2-5 电压源及电流源串联和并联(39)
1、电压源串联(如图): 1 + 等效电压源符号: 1 + Us 2 +Us1+ Us2 Us 2 +Usn -
Us=Us1+Us2+….+Usn Usk与Us方向一致取“+”,否则,取“-”
27
2、电流源并联(如图)
22
R 23 R 31
R23
2
2、 △ 型连接等效变换为Y型连接
1
23
R13
R23
R12 2
R R
1

R R R
3
12
R 1 2 R 31 R 23 R R 12 R 23 R 23 R R 31 R 23 R 23 R
31
2
1 R1 R3 3 R2 2
12
31
R
3
• 端口施加电压法求Rin: 端口施加电压源U,则有端口电流I, 求出端口伏安特性表达式:U=IR 则Rin=R=U/I
C)若端口内部有独立电源 先将电压源短路,电流源开路, 求输入电阻归结为 a)b)情况 34
二、实例: 例2-5( 44页)(自学)
练习题 2-12 :试求图(a)图(b)中的Rab
则: I Req=U 等效电路: 结论:串联电阻,等效电阻为各电阻之和。
例2-3-1 电路如图,求U1
I + U1 R1 R2 -
+
Us -
KVL:IR IR U 1 2 S + US I U2 R1 R2 R 1 U R *I Us 1 1 R R 1 2

第二章电阻电路的等效变

第二章电阻电路的等效变

第二章-电阻电路的等效变第二章 电阻电路的等效变换2.1 学习要点1. 电阻的等效变换:电阻的串并联, Y 与△的等效变换。

2. 电源的串联、并联及等效变换。

3. “实际电源”的等效变换。

4. 输入电阻的求法。

2.2 内容提要 2.2.1 电阻的等效变换1. 电阻的串联:等效电阻: R eq =∑1=k nk R ;分压公式:u k =eqkeq ×R R u ; 2. 电阻的并联:等效电导:G eq =∑1=k nk G ;分流公式:qe G G i i keqk ×=;2.2.2. 电阻的Y 与△的等效变换1. △→Y :一般公式:Y 形电阻=形电阻之和形相邻电阻的乘积∆∆;即31232331*********231231212311++=++=++R R R R R R R R R R R R R R R R R R 2312=2. Y →△:一般公式:形不相邻电阻形电阻两两乘积之和形电阻=Y Y ∆;即:213322131113322123313322112++=++=++=R R R R R R R RR R R R R R R R R R R R R R R R2.2.3 电源的串联、并联等效变换 电源的串联、并联等效变换见表2.1。

表2.1 电源的串联、并联等效变换图2.2.4 “实际电源”的等效变换 1. “实际电压源”→“实际电流源” R i =R u 或 G i =1/R u i s =u s /R u 2. “实际电流源”→“实际电压源”R u =R i =1/G i u s =i s R i =i s /G i两者等效互换的原则是保持其端口的V AR 不变。

2.2.5 输入电阻的求法一端口无源网络输入电阻的定义(见图2.2):R in =u/ i1. 当一端口无源网络由纯电阻构成时,可用电阻的 串并联、Y 形与△形等效变换化简求得。

2. 当一端口无源网络内含有受控源时,可采用外加电压法或外加电流法求得: 即输入电阻R in =u s /i 或 R in =u/ i s方法是:在端口处加一电压源u s (或电流源i s ), 再求比值u s /i 或u/ i s ,该比值即是一端口无源网络的输入电阻。

第二章电阻电路等效变换

第二章电阻电路等效变换

3、在同样的条件下,等效电路的形式也不是唯 一的。
4、电路进行等效变换的目的是为了简化电路以 方便地求解未知量。
3
§2-2 电阻的串联、并联和混联
一、电阻的串联 (Series connection of resistors)
1、电阻的串联 特点:在串联电路中,各元件流过的电流相同。
由欧姆定律及KVL得: i u = u 1 + u 2 + + u n a =R1i+R2i+ +Rni + u =(R1+R2+ +Rn)i 令R eq=R1+R2+…+Rn=Rk b 则有 u= R eqi
27
电压源: u U s Rs i 电流源: u i Is Rs I s Rs i u Rs
电源模型等效的条件为: 电压源 I RS + US a Uab b
Is
US
RS
Is
电流源 I' a
RS ' RS
Uab' RS'
b
U s I s Rs' Rs Rs'
即形电阻 电阻两两乘积之和 Rmn i' 接在与 Rmn相对端钮的电阻 31

R31
i3'
i'1 2
R23
i'2 3

21
2)形等效为Y形,有:
i1'
R12
i2'
R31 R12 R1 R12 R23 R31 R12 R23 R2 R12 R23 R31 R23 R31 R3 R R R 12 23 31

第二章 电阻电路的等效变换

第二章 电阻电路的等效变换

4
Rab=10
15 10
a b
a b
7
20
15
3
返 回
上 页
下 页
例 2-8 求图 2-5电路 a b 端的等效电阻。
Req (2 // 2 (4 // 4 2) // 4) // 3 (1 4 // 4) // 3 1.5
21
复习
1、电阻的串联 等效电阻、分压
23
例2-4 图2-7所示电路每个电阻都是2Ω, 求a, b两端的等效电阻
解:
c
d
e
根据电路的对称性, 可知 c, d, e三点等电位, 故可用导线短接。
8 2 8 2 16 3 3 2 Req [(2//1) 2]// 2//1 2 // 2 8 2 3 3 15 3 3
26
R12 ( R23 + R31 ) R12 + R23 + R31
i1
i1
i3
i2
i3
i2
R12 R31 R12 + R23 + R31 R23 R12 R12 + R23 + R31 R31 R23 R12 + R23 + R31
27
同理,令i1=0, 可得: R23 ( R12 + R31 ) R2 + R3 = R12 + R23 + R31 同理,令i2=0, 可得:
25
二、 等效变换:保证伏安特性相同
对应端口电压、电流分别相等
i1
u12 = f1 ( i1 , i2 , i3 ) u23 = f 2 ( i1 , i2 , i3 ) u31 = f3 (i1 , i2 , i3 )

第2章 电阻电路的等效变换

第2章 电阻电路的等效变换

方法2:加流看压法
原理图:
R in
+
u
-
i 列u、iS为变量的方程
S
u
⇒ Rin = iS
练习1:求端口的最简等效形式
R i1
i
+
βi1
_uS
Rin
判断:是无源网络吗? 最简形式是什么?
由KCL(设流入为正): i + i1 − βi1 = 0
由VCR:i1
=

uS R
得:
R in
=
uS i
=R
1− β
王馨梅
第二章 电阻电路的等效变换
“电阻电路”:由电阻、独立源、受控源组成 (不含L或C) 等效变换的目的:为了化简电路!
课件符号: ★ 重要 * 大纲之外的知识扩展
§§22--11、、§§22--22 等等效效概概念念
2Ω 1Ω 2Ω
i
+
u
i
+

u
-
-
N1
N2
★概念:两个网络的端口伏安特性曲线完全相同,则 称这两个网络对外等效。
但等效电导好求:
n
∑ G eq =
Gk
k =1
i k = G k u = G k × ( R eq ⋅ i ) ⇒
并联分流公式: i k
=
Gk G eq
i
并联电导越大 则分流越大
思考:电阻除了串并联关系之外,还有其它连接方式吗?
三、Δ⎯Y之间的等效变换
引例:
A
B
A
B
A
B
R1
R2
R3
1
R12
2
R31

第二章 电阻电路的等效变换

第二章 电阻电路的等效变换

最后求得
10 10 i= = = 4A R 2.5
§ 2.5 电压源、电流源的串联和并联
一、理想电压源的串并联
+ uS1 _ + uSn _ º I + 5V _ + 5V _ º I º + 5V _ º º + uS _ º º
1.串联:
可等效成一个理想电压源uS
uS=us1+us2+…+usn=∑ uSk ( 注意参考方向) 2.并联:
§ 2. 3 电阻的串联、并联和串并联
一、电阻串联(Series Connection of Resistors) 1.电路特点:
R1 i + Rk Rn + un _ _
+ u1 _ + u k _ u
(a)各电阻顺序连接,流过同一电流(KCL); (b)总电压等于各串联电阻的电压之和 (KVL)。
§ 2.1 引言
时不变线性电路:由时不变线性无源元件、线性受 控源和独立电源组成的电路,简称线性电路。本书 大部分是线性电路。 线性电阻电路:电路的无源元件均为线性电阻构成 的电路,简称电阻电路。本书2、3、4章介绍电阻 电路分析。 直流电路:电路中的独立电源都是直流电源。
§ 2.2 电路的等效变换
3× 5 R1 = = 1.5Ω 3+ 2+ 5 3× 2 R2 = = 0.6Ω 3+ 2+ 5 2× 5 R3 = = 1Ω 3+ 2+5
再 用电阻串联和并联公式,求 出连 接到电压源两 端单口的等效电阻
(0.6 + 1.4)(1 + 1) R = 1.5 + = 2.5Ω 0.6 + 1.4 + 1 + 1

第02章 电阻电路的等效变换

第02章 电阻电路的等效变换
u i is R0
i
R0=R , is=us/R
u us Ri
u is R0 R0 i
i
i
i' Ru 0 O
u
is
i
R=R0, us=Ris
所以,如果令
R R0
us R is
电压源、电阻的串联组合与电流源、电阻的并联组合 可以相互等效变换。 i R + + u i +
1
1
R3
3
R1
R2
2 3
R31
R12
R23
2
星接(Y接)
三角接(△接)
R1 R2 R2 R3 R3 R1 R12 R3 R1 R2 R2 R3 R3 R1 R23 R1 R1 R2 R2 R3 R3 R1 R31 R2
三式相加后通分可 得,Δ形连接变Y形 连接的电阻等效变 换关系式为(下页)
例2-2 求电流i 和 i5

i5
② ①

i5


① i1

等效电阻 R = 1.5Ω
i5

④ ③
i = 2A
i1

×
i5
-
i1 1A
2 1 - 6 2 1 1
1 A 3

*电阻的混联
电阻串并联的组合称为电阻混联。处理混联电路问 题的方法是:利用电阻串联或并联的公式对电路进 行等效变换,将复杂的混联电路转化成简单的电路 。 〖例1-6〗 求图1-19所示电路的等效电阻Rab, 已知图中各电阻的阻值均为20Ω 。
R2
2
3
R31
R12
R23

第2章 电阻电路的等效变换

第2章 电阻电路的等效变换

结论 串联电路的等效电阻等于各分电阻之和。
等效:对外部电路(端钮以外)效果相同。
2.串联电阻上电压的分配
R1
Rk
Rn
i + u1 _ + uk_ + un _
+
u
_
表明
uk

Rk i

Rk
u Req

Rk u Req
u
电压与电阻成正比,因此串联电阻电路可作分压电路。
两个电阻的分压:
i
+ u
u-+__1
等效的目的:化简电路
电阻的串联: Req= Rk
电 阻 电
2.2 电阻的等效变换 ( ,★ )
电阻的并联:Geq= Gk 电阻的Y- 等效变换
uk
ik
Rk GRk eqi
Geq
u

电压源串联:uS= uSk
的 等 效
2.3 独立源的等效变换 (,★)
电流源并联: iS= iSk 实际电源两种模型间的等效: uS=iSRS
(3)等效电导等于并联的各电导之和。
Geq=G1+G2+ ... +Gk+ ... +Gn= Gk = 1/Rk
3. 并联电阻的分流: 由 ik u/Rk Gk i u/Req Geq
ik

Gk i Geq
电流分配与
电导成正比
对于两电阻并联,有:
i
+ i1
i2
u_ R1
R2
1 Req
思考与练习
1.等效变换的概 念是什么?“电 路等效就是相等” 这句话对吗?为 什么?
2.电路等效变 换的目的是 什么?

第二章电阻电路的等效

第二章电阻电路的等效

电路的等效变换就是用一个较为简单的电路
替代原电路;其替代条件为:替代(简化)的电路
与原电路具有相同的伏安特性。
如图所示:
R1
1-1'以左的
RS i 1 R2
电路未被替换,uS+_
+u -
R4 R3
R5
1' 原电路
RS i 1
+
+
uS -
u_ Req
1' 替代电路
而1-1' 以右的电路用等效电阻Req 替代。 两个电路的u,i相同,
? u12 ? R1i1 ? R2i2 ?
联立以上几式:
? ?
u
23
?
R2i2
?
R3i
? ?
? ?
i1
?
i2
?
i3
?
0
? ?
?
可解 ? i1 ?
?
R 3 u 12
Δ 型联结
? ? ?
ab..对流应入的对端应子端之子间的具电有 流相分同别的相电等压;;???
则两种联接方式可以相互等效变换。
3.Y—Δ 变换公式
i1 - 1+
如图Y形联结时有 u31 R1 u12
两两端子之间的电压:+ 3
? u 12 ? R1i1 ? R 2 i2 ?
? ?
u
23
?
R2i2 ?
=(R1+R2+······Rn)i=Reqi
u Req ? i ? R1 ? R2 ?
n
? ? Rn ? Rk k?1
若n个相同的电阻R串联时则有Req=nR
由此可得:电阻串联时的等效电阻等于各电阻之和;

二章电阻电路等效变换

二章电阻电路等效变换
2、理想电流源
(1)并联: 所连接的各电流源端为同一电压。
保持端口电流、电 压相同的条件下,图
(a)等效为图(b)。等效 is1
变换式:
i
is2
is
is = is1 - is2
(a)
(b)
(2)串联:只有电流数值、方向完全相同的理想电流 源才可串联。
1
二、实际电源模型:
1、实际电压源模型
(1)伏安关系:
i=1.5A Uab=6(i-1)=3V R=Uab/1=3Ω
13
四、三个电阻的星形、三角形连接及等效变换 1、电阻的星形、三角形连接
(a) 星形连接(T形、Y形)
(b) 三角形连接(形、形)
14
2、从星形连接变换为三角形连接
R1
R3
R2
R31 R12 R23
变换式:R12
R1
R2
R1R2 R3
∴i3=i2/3 KCL: i2+i3=I
∴i3=i/4 ∴u=3i+2i = 5i
- 2i0 +
i0
i1 i2
i3
R= u/I=5Ω
21
二、含受控源简单电路的分析:
基本分析思想:运用等效概念将含受控源电路化简、 变换为只有一个单回路或一个独立节点的最简形式, 然后进行分析计算。 例1:求电压u、电流i。
R23
R2
R3
R2 R3 R1
15
3、从三角形连接变换为星形连接
R1
R3
R2
变换式:R1
R12
R12 R31 R23
R31
R31 R12 R23
R2
R12
R23 R23
R31

[工学]第2章 电阻电路的等效变化

[工学]第2章 电阻电路的等效变化

2、电压源、电流源 、受控源
US 3、KCL—— IS ∑ i=0 或 ∑ i入= ∑ i出 推广到闭合面
KVL——
∑ u=0
或 ∑u压降= ∑ u压升
沿不同路径两点间的压降相同
二、电阻电路的等效变换
1、电阻串并联: Req、分压、分流 2、Y—△ :
R Δ相邻电阻乘积 R GΔ Y相邻电导乘积 GY
Rn + un _ _ 等效 i
Req
u
Req=( R1+ R2 +…+Rn) = Rk 结论: 串联电路的总电阻等于各分电阻之和。 3. 串联电阻上电压的分配 º + + u1 u u2 _ + º
例:两个电阻分压, 如下图 i
R1
R1 u1 u R1 R2
R2 u2 u R1 R2
即 R IS R 2R R 2R RL + UL _
I S RRL UL 4 R RL
P44例2-4.
求UR 2
受控源和独立源一样可以进行电源转换,但要 注意保存控制量。
12V
+ _
+u _
R
i
2 uR 12V
2
2
+
_
+u _
R
i
2 + 4 uR _
U R 2i 4U R 2i 2i 8i 12V
i = i1+ i2+ …+ ik+ …+in
2. 等效电阻Req
i
i i2 Rk ik Rn in 等效 + u _
+ u _ R1
i1 R2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u2 6i1 6 15 90V u3 6i3 6 10 60V u4 3i3 30V
i5 10 7.5 2.5 A
例 a
20
求: Rab b
100 60 80 10
a
20
b
100 60 120 60
40
50
a
20
b
100
a
(1) 电路特点
R1
Rk
Rn
+ un _ _
i
+
+ u1 _ + u k _
u
(a) 各电阻顺序连接,流过同一电流 (KCL); (b) 总电压等于各串联电阻的电压之和 (KVL)。
u u1 uk un
(2) 等效电阻
R1 Rk Rn 等效
R eq
i
+
+ u1
包含
1
R12
a
R3 1
d
R4
b
R31
R2
R1
R3 3 Y型网络
三端 网络
2
R23 型网络
3
2
2. —Y 变换的等效条件
R1 R2 R12 R1 R2 R3 R2 R3 R23 R2 R3 R1 R3 R1 R31 R3 R1 R2
简记方法:
R12 R31 R1 R12 R23 R31 R23 R12 R2 R12 R23 R31 R3 R31 R23 R12 R23 R31
R1 +
R3
R2
+
US _
US _ + _
i1
ri1/R3
R2//R3
i1
ri1
R2 R3 R R1 R2 R3
注:
+
US _
i1
R
+
(R2//R3)ri1/R3 _
Ri1 ( R2 // R3 )ri1 / R3 U S US 受控源和独立源一样可以进行电 i1 R ( R2 // R3 )r / R3 源转换;转换过程中注意不要丢 失控制量。
1/3k
1/3k 1/3k
E
R 1k
E
1k 3k i E 3k 3k R

1
+ 20V 1
计算90电阻吸收的功率
4
9 90 1 4 3 3 3 9 9 9
1
i
+
i1
20V
90 10
-
10 90 Req 1 10 10 90
+
20V 90 1
+
转换
u _
us
is Gi
, Ri 1
Gi
i + uS _ Ri
注意 (1) 变换关系 数值关系: 方向:电流源电流方向与电压源电压方向相反。 (2) 等效是对外部电路等效,对内部电路是不等效的。 开路的电压源中无电流流过 Ri; 表 开路的电流源可以有电流流过并联电导Gi 。 现 电压源短路时,电阻中Ri有电流; 在 电流源短路时, 并联电导Gi中无电流。 (3) 理想电压源与理想电流源不能相互转换。
第2章 电阻电路的等效变换
重点: 1. 电路等效的概念; 2. 电阻的串、并联; 3. Y— 变换; 4. 电压源和电流源的等效变换;
2.1
电阻电路 分析方法
引言
仅由电源和线性电阻构成的电路
(1)欧姆定律和基尔霍夫定律是分 析电阻电路的依据;
(2)等效变换的方法,也称化简的方法
2.2
等效电路
+
uS _
º +
_ º
并联 +
º
uS1_
u S2
+ _ º
us us1 us 2
相同的电压 源才能并联, 电源中的电 流不确定。
电压源支路的串、并联及其等效
+ i +
uS1 _
R1
+
uS2 _ R2 _
uS _ R + i +
u
u
_
u us1 R1i us 2 R2 i (uS1 uS 2 ) ( R1 R2 )i uS Ri
i = i1+ i2+ …+ ik+ …+in
(2) 等效电阻
i + u _ R1 i1 R2 i2 Rk ik Rn in
等效
i
+ u _
Req
由KCL:
i = i1+ i2+ …+ ik+ …+in =u/R1 +u/R2 + …+u/Rn=u(1/R1+1/R2+…+1/Rn)=uGeq
Geq G1 G2 Gn Gk Gk
例5.
求电流i1 R1
R3 +
R3
US/R1 R2
R2//R1
+
US _
ri1
_
i1
ri1
+
_ + R US(R2//R1)/R1 _
i
+ ri1 _
i1
R1 US/R1
R3 + R2
ri1
_
R2 R1 R R3 R2 R1
Ri ri1 U S ( R2 // R1 ) / R1
相同的理想电流源才能串联, 每个电流源的端电压不能确定
2.6
电压源和电流源的等效变换
实际电压源、实际电流源两种模型可以进行等效变换, 所谓的等效是指端口的电压、电流在转换过程中保持不变。
i
+ uS _
Ri
端口特性
+
u _
实 际 电 压 源
iS Gi i =iS – Giu
i + u _
实 际 电 流 源
p1=G1u2, p2=G2u2,, pn=Gnu2 p1: p2 : : pn= G1 : G2 : :Gn
总功率
p=Gequ2 = (G1+ G2+ …+Gn ) u2
=G1u2+G2u2+ +Gnu2
=p1+ p2++ pn 表明
(1) 电阻并联时,各电阻消耗的功率与电阻大小成反比 (2) 等效电阻消耗的功率等于各串联电阻消耗功率的总和
例6. 把电路转换成一个电压源和一个电阻的串连。
1k
1k I 2k º + U _ º 10V
500I - I +
0.5I 10V
º
+ U _ º
U 500I 2000I 10 1500I 10
10V
1.5k
I
º
+ U _ º
2.7 输入电阻
1. 定义 无 源
i
+ u -
Rk u uk Rk i Rk uu Req Req
说明电压与电阻成正比,因此串连电阻电路可作分压电路
例 i
两个电阻的分压:
º + + u1 R1 u u2 R2 _ + º
R1 u1 u R1 R2 R2 u2 u R1 R2
注意方向 !
(4) 功率
p1=R1i2, p2=R2i2,, pn=Rni2 p1: p2 : : pn= R1 : R2 : :Rn 总功率 p=Reqi2 = (R1+ R2+ …+Rn ) i2 =R1i2+R2i2+ +Rni2 表明 =p1+ p2++ pn
3. 电阻的串并联

电路中有电阻的串联,又有电阻的并联, 这种连接方式称电阻的串并联。
6
计算各支路的电压和电流。
i1
+
165V
5
i1 5
i2
6
i3 i4 i5
12
+
165V
i2
18 9
i3
-
18
4
-
i1 165 11 15 A i2 90 18 5 A i3 15 5 10 A i4 30 4 7.5 A
10
+ 10V _
6A
10
+
70V
_
+ 6V _
10
2A 6A
10
+
66V
_
例4.
10 6
6
I=?
4
2A 10
2A
10 4
I=? +
+
40V
+
40V
+
2A
30V
_
_
30V
_ I=?
_
30 60 I 1.5 A 20
10 10
+
60V
+
30V
_
_
例5.
求电流i1 R1
电路的等效变换
1. 二端电路(网络)
任何一个复杂的电路, 向外引出两个端钮,且从一个 端子流入的电流等于从另一端子流出的电流,则称这一电 路为二端络网(或一端口网络)。 无 源 i 无 一 i 源 端 口
2. 二端电路等效的概念
两个二端电路,端口具有相同的电压、电流关系,则 称它们是等效的电路。
B
1 R1 1 R2 R1 R2 Req 1 R1 1 R2 R1 R2
相关文档
最新文档