【高考模拟】普通高等学校2018届高三招生全国统一考试仿真卷(三)数学(文)(word版有答案)

合集下载

2018年普通高等学校招生全国统一考试数学试题文(全国卷3,含答案)-精选.pdf

2018年普通高等学校招生全国统一考试数学试题文(全国卷3,含答案)-精选.pdf

解答: cos2 1 2sin 2
5.答案: B
27
1
. 故选 B.
99
解答:由题意 P 1 0.45 0.15 0.4 . 故选 B.
6.答案: C
解答:
f (x)
tan x
2
1 tan x
sin x
cos x
2
sin x
1
2
cos x
sin x cos x
2
2
sin x cos x
sin x cos x 1 sin 2x ,∴ f (x) 的周期
3
1
D ABC 体积最大值 VD ABC
9 3 (2 4) 18
3
42 3.
(2 3) 2
2 ,∴三棱锥
8
二、填空题
13.答案: 1 2
解答:
2a b (4,2) ,∵ c / /(2 a b) ,∴ 1 2
14.答案:分层抽样
4 0 ,解得
1
.
2
解答:由题意,不同龄段客户对其服务的评价有较大差异,故采取分层抽样法
该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样, 则最合适的抽样方法是 ________.
15.若变量 x,y 满足约束条件
2x y 3≥ 0,
x 2 y 4 ≥ 0 , 则 z x 1 y 的最大值是 ________.
x 2 ≤ 0.
3
16.已知函数 f x ln 1 x2 x 1 , f a 4 ,则 f a ________.
AM 的中点; ∴ OP / /MC ,∵ OP 在平面 PDB 内, MC 不在平面 PDB 内,∴ MC / / 平面 PDB .

2018年普通高等学校招生全国统一考试仿真卷 理科数学

2018年普通高等学校招生全国统一考试仿真卷 理科数学

绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷理科数学(三)本试题卷共2页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.[2018·乌鲁木齐质检]若集合{}|11A x x =-<<,{}|02B x x =<<,则A B =( ) A .{}|11x x -<< B .{}|12x x -<< C .{}|02x x << D .{}|01x x <<【答案】D【解析】根据集合的交集的概念得到{} |01A B x x =<<,故答案为:D . 2.[2018·海南期末]设复数12i z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为( )班级 姓名 准考证号 考场号 座位号此卷只装订不密封A .()3,4-B .()5,4C .()3,2-D .()3,4【答案】A【解析】()2212i 12i 144i 34i z z =+⇒=+=-+=-+,所以复数2z 对应的点为()3,4-,故选A .3.[2018·赣州期末]()()6221x x -+的展开式中4x 的系数为( ) A .-160 B .320 C .480 D .640【答案】B【解析】()()6622121x x x +-+,展开通项()666166C 21C 2kk k kk k k T x x ---+==⨯⨯,所以2k =时,2462C 2480⨯⨯=;3k =时,336C 2160⨯=,所以4x 的系数为480160320-=,故选B .4.[2018·晋城一模]某几何体的三视图如图所示,则该几何体的表面积为( )A .52π+B .42π+C .44π+D .54π+【答案】C【解析】由三视图可知该几何体为1个圆柱和14个球的组合体,其表面积为C . 5.[2018·滁州期末]过双曲线221916x y -=的右支上一点P ,分别向圆1C :()2254x y ++=和圆2C :()2225x y r -+=(0r >)作切线,切点分别为M ,N ,若22PM PN -的最小值为58,则r =( )A .1BCD .2【答案】B【解析】设1F ,2F 是双曲线的左、右焦点,也是题中圆的圆心,所以()22222124PM PN PF PF r -=---()()()22121212464PF PF PFPF r PF PF r =-++-=++-,显然其最小值为()26254r ⨯⨯+-58=,r =B .6.[2018·天津期末]其图象的一条对称轴在()f x 的最小正周期大于π,则ω的取值范围为( )A .1,12⎛⎫ ⎪⎝⎭B .()0,2C .()1,2D .[)1,2【答案】C【解析】k ∈Z k ∈Z ,k ∈Z ,∴3162k k ω+<<+,k ∈Z . 又()f x 的最小正周期大于π,∴02ω<<. ∴ω的取值范围为()1,2.选C .7.[2018·渭南质检]在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( )A B C D 【答案】C【解析】函数()()3222113f x x bx a c ac x =+++-+无极值点,则导函数无变号零点,()2222f x x bx a c ac +++'=-()0,B ∈π,0,3B π⎛⎤∴∈ ⎥⎝⎦C .8.[2018·荆州中学]公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为( ) (参考数据:sin150.2588≈,sin7.50.1305≈)A .12B .20C .24D .48【答案】C【解析】模拟执行程序,可得:6n =,333sin 60S == 不满足条件 3.10S ≥,12n =,6sin 303S =⨯=;不满足条件 3.10S ≥,24n =,12sin15120.2588 3.1056S =⨯=⨯=; 满足条件 3.10S ≥,退出循环,输出n 的值为24.故选C . 9.[2018·昌平期末]设π02x <<,则“2cos x x <”是“cos x x <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】作图cos y x =,2y x =,y x =,0,2x π⎛⎫∈ ⎪⎝⎭,可得2cos x x <cos x x <A .10.[2018·济南期末]欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为( )A B C .19D 【答案】B【解析】如图所示,1S =正,23924S π⎛⎫=π= ⎪⎝⎭圆B .11.[2018·闽侯六中]已知()cos23,cos67AB =,()2cos68,2cos22BC =,则ABC △的面积为( )A .2BC .1D 【答案】D【解析】根据题意,()cos23,cos67AB =,则()cos23,sin23BA =-︒︒,有|AB |=1, 由于,()2cos68,2cos22BC =︒︒()=2cos68,sin 68,则|BC |=2, 则()2cos 23cos 68sin 23sin 682cos 452BA BC ⋅=-⋅+⋅=-⨯=-,可得:cos 2BA BC B BA BC⋅∠==-, 则135B ∠=,则11sin 122222ABC S BA BC B =∠=⨯⨯⨯=△,故选:D . 12.[2018·晋城一模]已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数x 均有()()()10x f x xf x '-+>成立,且()1e y f x =+-是奇函数,则不等式()e 0x xf x ->的解集是( ) A .(),e -∞ B .()e,+∞C .(),1-∞D .()1,+∞【答案】D【解析】()'g x =()g x ∴在R 上是增函数,又()1e y f x =+-是奇函数,()1e f ∴=,()11g ∴=,原不等式为()()1g x g >,∴解集为()1,+∞,故选D .第Ⅱ卷本卷包括必考题和选考题两部分。

普通高等学校2018届高三招生全国统一考试仿真卷(三)数学(文)试题(含答案)

普通高等学校2018届高三招生全国统一考试仿真卷(三)数学(文)试题(含答案)

绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(三)本试题卷共2页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合{}|11A x x =-<<,{}|02B x x =<<,则A B =( ) A .{}|11x x -<< B .{}|12x x -<<C .{}|02x x <<D .{}|01x x <<2.设复数12i z =+(是虚数单位),则在复平面内,复数2z 对应的点的坐标为( ) A .()3,4-B .()5,4C .()3,2-D .()3,43.若向量()1,1,2=-a ,()2,1,3=-b ,则 )AB .C .3D4.某几何体的三视图如图所示,则该几何体的表面积为( )班级 姓名 准考证号 考场号 座位号A .52π+B .42π+C .44π+D .54π+5.已知双曲线22221x y a b-=()0,0a b >>的一个焦点为()2,0F -双曲线的方程为( )A .2213x y -=B .2213y x -=C .2213y x -=D .2213x y -=6()102f =-,则图中m 的值为( )A .1B .43C .2D .43或2 7.在ABC △中,内角A ,B ,C 的对边分别为,,,若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( )A B C D 8.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(参考数据:sin150.2588≈,sin7.50.1305≈)A .12B .20C .24D .489.设π02x <<,则“2cos x x <”是“cos x x <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件10.欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为( )ABC .19D 8π11.已知点()4,3A 和点()1,2B,点O (OA tOB t +∈R ) A .B .5C .3D12.已知函数()f x =()2220 1102x xx f x x +--+<⎧⎪⎨⎪⎩≤≤≤,则关于的方程()15x f x -=在[]2,2-上的根的个数为( ) A .3 B .4 C .5 D .6第Ⅱ卷本卷包括必考题和选考题两部分。

2018年普通高等学校招生全国统一考试数学试题文(全国卷3含解析)

2018年普通高等学校招生全国统一考试数学试题文(全国卷3含解析)

丰富丰富纷繁2018 年一般高等学校招生全国一致考试数学试题文(全国卷3)注意事项:1.答卷前,考生务势必自己的姓名和准考据号填写在答题卡上。

2.回答选择题时,选出每题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需变动,用橡皮擦洁净后,再选涂其余答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:此题共12 小题,每题 5 分,共 60 分.在每题给的四个选项中,只有一项为哪一项切合题目要求的.1.已知会合,,则A. B. C. D.【答案】 C【分析】剖析:由题意先解出会合A, 从而获得结果。

详解:由会合 A 得,所以故答案选 C.点睛:此题主要观察交集的运算,属于基础题。

2.A. B. C. D.【答案】 D【分析】剖析:由复数的乘法运算睁开即可。

应选 D.点睛:此题主要观察复数的四则运算,属于基础题。

3.中国古建筑借助榫卯将木构件连结起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右侧的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图能够是丰富丰富纷繁A.AB.BC.CD.D【答案】 A【分析】剖析:察看图形可得。

详解:观擦图形图可知,俯视图为故答案为 A.点睛:此题主要考擦空间几何体的三视图,观察学生的空间想象能力,属于基础题。

4.若,则A. B. C. D.【答案】 B【分析】剖析:由公式可得。

详解:故答案为 B.点睛:此题主要观察二倍角公式,属于基础题。

5.若某集体中的成员只用现金支付的概率为0.45 ,既用现金支付也用非现金支付的概率为0.15 ,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】 B【分析】剖析:由公式计算可得详解:设设事件 A 为只用现金支付,事件 B 为只用非现金支付,则因为所以应选 B.点睛:此题主要观察事件的基本关系和概率的计算,属于基础题。

2018年高三第三次模拟考数学测试卷(文科)含答案

2018年高三第三次模拟考数学测试卷(文科)含答案

2017 — 2018学年度高三第三次调研测试文科数学本试卷共23小题,共150分,共6页,考试时间120分钟,考试结束后,将答题卡和试 题卷一并交回。

注意事项:1 •答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条 形码、姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案 的标号;非选择题答案必须使用 0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3•请按照题号在各题的答题区域 (黑色线框)内作答,超出答题区域书写的答案无效。

4. 作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮 纸刀。

本大题共 12题,每小题5分,共60分,在每小题给出的四个选项中,只有个是符合题目要求。

设全集 U =Z , A ={-1,1,3,5,7,9}, B ={-1,5,7},贝V AplG u B)二B. {-1,5,7}D. {-1,1,3,5,9}__nA . -P : X 。

R,X o 2 乞3X oB . -p: x R,x 22< 3x2C . — p: 一x R,x ■ 2 3xnD . _p: x 0 R,x 0 2 _ 3x 。

2. 已知复数 i z =1—i(i 为虚数单位),则z 的虚部为3.1 .A. i2已知命题P :X o1 .B.i 2R,x ; 2 3x 0,则命题 1 C.2p 的否命题为D.4. F 列各组向量中,可以作为基底的是A. q =(0,0), e ? =(1,2)B.eiC.e 1 = (3,5), e 2 = (6,10)D.6 = (-1,2),0 = (5,7)、选择题: 1.A. {1,3,9}C.{-1,1,3x - y 3 _ 0设x, y 满足约束条件*x + yZ0,则z = 3x + y 的最小值是x 兰2S n ,则 S n =,定点的坐标是是某几何体的三视图,则该几何体的体积为C. D.5.6. A. -5 B. 4 C. -3D. 11已知等差数列{务}的公差不为0,可=1,且32,34,38成等比数列,设{a n }的前n 项和A.n( n 1) 2B.2C. n 2 12 D.n(n 3) 47.以抛物线y 2=8x 上的任意一点为圆心作圆与直线X 二-2相切,这些圆必过一定点,则8. 9. A. (0,2)B. (2, 0)执行如图所示的程序框图,当输出则输入n 的值可以为A.B. C. D.如图,网格纸上小正方形的边长为 C.S =210 时,1,粗实线画出的 (4, 0) D. (0, 4)——n = n - 1否甲S = n ・S(■结束2)A.14二B.310二3 5-J IS = 1C 开始3*/ 输入n // 输岀S /n < 5 ?是俯视图正视图F I +•B 8;侧视图-10.已知锐角:•满足cos( ) =cos2>,则sin〉cos 等于414 411.朱世杰是历史上最伟大的数学家之一, 他所著的《四元玉鉴》卷中如像招数”五问有如下问题:今有官司差夫一千八百六十四人筑堤•只云初日差六十四人,次日转多七人,每 人日支米三升,共支米四百三石九斗二升, 问筑堤几日”.其大意为:官府陆续派遣1864人前往修筑堤坝,第一天派出 64人,从第二天开始,每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3升,共发出大米40392升,问修筑堤坝多少天”.这个问题中, 前5天应发大米12•对于定义域为 R 的函数f(x),若同时满足下列三个条件:①且 X = 0 时,都有 xf (x)0 ;③当 x 1 ::: 0 x 2,且 I 片 |=| x 2 |时,都有 f (xj ::: f (x 2),则称f(x)为偏对称函数”.现给出下列三个函数:3 3 2 x ] ln(1—x), x 兰 0 f i (x)-X x ; f 2(x) = e - x-1; f 3(x)二212x, x > 0则其中是偏对称函数”的函数个数为 A. 0B. 1C. 2D. 3二、填空题:本大题共 4个小题,每小题5分。

2018年高三最新 高考仿真试题(三)试卷及答案 精品

2018年高三最新 高考仿真试题(三)试卷及答案 精品

试卷类型:A2018年高考数学仿真试题(三)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷 (选择题 共60分)一、 选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式(1+x )(1-|x |)>0的解集是A.{x |-1<x <1}B.{x |x <1}C.{x |x <-1或x >1=D.{x |x <1且x ≠-1=2.对一切实数x ,不等式x 2+a |x |+1≥0恒成立,则实数a 的取值范围是 A.(-∞,-2) B.[-2,+∞) C.[-2,2] D.[0,+∞)3.设O 为矩形ABCD 的边CD 上一点,以直线CD 为旋转轴,旋转这个矩形所得体积为V ,其中以OA 为母线的圆锥体积为4V,则以OB 为母线的圆锥的体积等于A.12V B. 9VC. 15VD. 4V4.设偶函数f (x )=log a |x -b |在(-∞,0)上递增,则f (a +1)与f (b +2)的大小关系是A.f (a +1)=f (b +2)B.f (a +1)>f (b +2)C.f (a +1)<f (b +2)D.不确定5.复数z 1、z 2在复平面上对应点分别是A 、B ,O 为坐标原点,若z 1=2(cos60°+i sin 60°)z 2,|z 2|=2,则△AOB 的面积为A.43B.23C.3D.26.如果二项式(xx 23-)n的展开式中第8项是含3x 的项,则自然数n 的值为 A.27 B.28 C.29 D.30 7.A 、B 、C 、D 、E ,5个人站成一排,A 与B 不相邻且A 不在两端的概率为 A.103B.53 C.101D.以上全不对8.把函数y =cos x -3sin x 的图象向左平移m 个单位(m >0)所得的图象关于y 轴对称,则m 的最小值是A.6π B.3π C.32π D.65π 9.已知抛物线C 1:y =2x 2与抛物线C 2关于直线y =-x 对称,则C 2的准线方程是 A.x =-81 B.x =21 C.x =81 D.x =-21 10.6人一个小组,其甲为组长,乙为副组长,从6人中任选4人排成一排,若当正、副组长都入选时,组长必须排在副组长的左边(可以不相邻),则所有不同排法种数是A.288B.276C.252D.7211.如图△ABD ≌△CBD ,则△ABD 为等腰三角形,∠BAD =∠BCD =90°,且面ABD ⊥面BCD ,则下列4个结论中,正确结论的序号是①AC ⊥BD ②△ACD 是等边三角形 ③AB 与面BCD 成60°角 ④AB 与CD 成60°角A.①②③B.①②④C.①③④D.②③④12.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为A.0.5小时B.1小时C.1.5小时D.2小时第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.在△ABC 中,3cos(B +C )+cos(2π+A )的取值范围是 . 14.函数f (x )= 13+-x ax (x ≠-1),若它的反函数是f -1(x )= xx -+13,则a = .15.S n 是等差数列{a n }的前n 项和,a 5=2,a n -4=30(n ≥5,n ∈N ),S n =336,则n 的值是 .16.给出四个命题:①两条异面直线m 、n ,若m ∥平面α,则n ∥平面α ②若平面α∥平面β,直线m ⊂α,则m ∥β ③平面α⊥平面β,α∩β=m ,若直线m ⊥直线n ,n ⊂β,则n ⊥α ④直线n ⊂平面α,直线m ⊂平面β,若n ∥β,m ∥α,则α∥β,其中正确的命题是 .三、解答题(本大题共6小题,共74 17.(本小题满分12分)解关于x 的方程:log a (x 2-x -2)=log a (x -a2)+1(a >0且a ≠1). 18.(本小题满分12分)已知等差数列{a n }中,a 2=8,S 10=185. (Ⅰ)求数列{a n }的通项公式a n ;(Ⅱ)若从数列{a n }中依次取出第2,4,8, (2),…项,按原来的顺序排成一个新数列{b n },试求{b n }的前n 项和A n .19.(本小题满分12分)在Rt △ABC 中,∠ACB =30°,∠B =90°,D 为AC 中点,E 为BD 的中点,AE 的延长线交BC 于F ,将△ABD 沿BD 折起,二面角A —BD —C 大小记为θ.(Ⅰ)求证:面AEF ⊥面BCD ; (Ⅱ)θ为何值时,AB ⊥CD . 20.(本小题满分12分)某公司取消福利分房和公费医疗,实行年薪制工资结构改革,该公司从2000年起每人的工资由三个项目并按下表规定实施如果公司现有5名职工,计划从明年起每年新招5(Ⅰ)若今年(2000年)算第一年,试把第n 年该公司付给职工工资总额y (万元)表示成年限n 的函数;(Ⅱ)试判断公司每年发给职工工资总额中,房屋补贴和医疗费的总和能否超过基础工资总额的20%? 21.(本小题满分12分)设双曲线C 的中心在原点,以抛物线y 2=23x -4的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线.(Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线l:y =2x +1与双曲线C 交于A 、B 两点,求|AB |;(Ⅲ)对于直线y =kx +1,是否存在这样的实数k ,使直线l 与双曲线C 的交点A 、B 关于直线y =ax (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由.22.(本小题满分14分)已知函数f (x )=ax 2+bx +c (a >b >c )的图象上有两点A (m ,f (m 1))、B (m 2,f (m 2)),满足f (1)=0且a 2+(f (m 1)+f (m 2))·a +f (m 1)·f (m 2)=0.(Ⅰ)求证:b ≥0;(Ⅱ)求证:f (x )的图象被x 轴所截得的线段长的取值范围是[2,3); (Ⅲ)问能否得出f (m 1+3)、f (m 2+3)中至少有一个为正数?请证明你的结论.2018年高考数学仿真试题(三)答案一、1.D 2.B 3.A 4.B 5.B 6.C 7.D 8.C9.C 10.A 11.B 12.B二、13.[-2,3] 14. 1 15. 21 16.②③ 三、17.解:原方程可化为log a (x 2-x -2)=log a (ax -2)2分 ⎩⎨⎧-=---⇔22022ax x x ax 4分 由②得x =a +1或x =0,当x =0时,原方程无意义,舍去.8分 当x =a +1由①得1022 a a a a ⇒⎩⎨⎧-+10分 ∴a >1时,原方程的解为x =a +112分18.解:(Ⅰ)设{a n }首项为a 1,公差为d ,则⎪⎩⎪⎨⎧=+=+1852)92(10811d a d a ,解得⎩⎨⎧==351d a∴a n =5+3(n -1),即a n =3n +26分(Ⅱ)设b 1=a 2,b 2=a 4,b 3=a 8, 则b n =a 2n =3×2n +2∴A n =(3×2+2)+(3×22+2)+…+(3×2n +2) =3×(2+22+…+2n )+2n=3×12)12(2--n +2n=6×2n -6+2n12分① ②19.(Ⅰ)证明:在Rt △ABC 中,∠C =30°,D 为AC 的中点,则△ABD 是等边三角形 又E 是BD 的中点,∵BD ⊥AE ,BD ⊥EF , 折起后,AE ∩EF =E ,∴BD ⊥面AEF ∵BD ⊂面BCD ,∴面AEF ⊥面BCD 6分(Ⅱ)解:过A 作AP ⊥面BCD 于P ,则P 在FE 的延长线上,设BP 与CD 相交于Q ,令AB =1,则△ABD 是边长为1的等边三角形,若AB ⊥CD ,则BQ ⊥CD 6331==⇒AE PE ,又AE =23∴折后有cos AEP =31=AE PE 由于∠AEF =θ就是二面角A —BD —C 的平面角, ∴当θ=π-arccos31时,AB ⊥CD12分20.解:(Ⅰ)第n 年共有5n 个职工,那么基础工资总额为5n (1+101)n(万元) 医疗费总额为5n ×0.16万元,房屋补贴为5×0.18+5×0.18×2+5×0.18×3+…+5×0.18×n =0.1×n (n +1)(万元)2分∴y =5n (1+101)n+0.1×n (n +1)+0.8n =n [5(1+101)n+0.1(n +1)+0.8](万元)6分(Ⅱ)5(1+101)n×20%-[0.1(n +1)+0.8]=(1+101)n -101(n +9)=101[10(1+101)n -(n +9)] ∵10(1+101)n =10(1+C n 1C n 1101+C n 21001+…)>10(1+10n)>10+n >n +9故房屋补贴和医疗费总和不会超过基础工资总额的20% 12分21.解:(Ⅰ)由抛物线y 2=23x -4,即y 2=23 (x -32),可知抛物线顶点为(32,0),准线方程为x =63.在双曲线C 中,中心在原点,右焦点(32,0),右准线x =63,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧===⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧+===33213363322222c b a b a c c a c ∴双曲线c 的方程3x 2-y 2=14分(Ⅱ)由0241)12(3131222222=++⇒=+-⇒⎩⎨⎧=-+=x x x x y x x y ∴|AB |=2108分(Ⅲ)假设存在实数k ,使A 、B 关于直线y =ax 对称,设A (x 1,y 1)、B (x 2,y 2),则⎪⎪⎩⎪⎪⎨⎧+⋅=+++=+-=222)(121212121x x a y y x x k y y ka 由022)3(1312222=---⇒⎩⎨⎧-=+=kx x k x y kx y ④ 由②③,有a (x 1+x 2)=k (x 1+x 2)+2 ⑤ 由④知:x 1+x 2=232kk-代入⑤ 整理得ak =3与①矛盾,故不存在实数k ,使A 、B 关于直线y =ax 对称. 12分 22.(Ⅰ)证明:因f (m 1),f (m 2)满足a 2+[f (m 1)+f (m 2)]a +f (m 1)f (m 2)=0 即[a +f (m 1)][a +f (m 2)]=0 ∴f (m 1)=-a 或f (m 2)=-a ,∴m 1或m 2是f (x )=-a 的一个实根, ∴Δ≥0即b 2≥4a (a +c ). ∵f (1)=0,∴a +b +c =0 且a >b >c ,∴a >0,c <0, ∴3a -c >0,∴b ≥0 5分 (Ⅱ)证明:设f (x )=ax 2+bx +c =0两根为x 1,x 2,则一个根为1,另一根为ac, 又∵a >0,c <0, ∴ac<0, ∵a >b >c 且b =-a -c ≥0, ∴a >-a -c >c ,∴-2<ac≤-1 2≤|x 1-x 2|<310分(Ⅲ)解:设f (x )=a (x -x 1)(x -x 2)=a (x -1)(x -ac ) 由已知f (m 1)=-a 或f (m 2)=-a 不妨设f (m 1)=-a 则a (m 1-1)(m 1-ac)=-a <0, ∴ac<m 1<1 ∴m 1+3>ac+3>1②③∴f(m1+3)>f(1)>0∴f(m1+3)>0 12分同理当f(m2)=-a时,有f(m2+3)>0,∴f(m2+3)或f(m1+3)中至少有一个为正数14分。

2018届高三模拟考试(三)数学(文)试题 含答案

2018届高三模拟考试(三)数学(文)试题 含答案

陕西省咸阳市2018届高三模拟考试(三)文科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|12A x x =-<<,12|B x y x -⎧⎫==⎨⎬⎩⎭,则A B =( )A .(0,)+∞B .(1,2)-C .(0,2)D .(2,)+∞2.欧拉,瑞士数学家,18世纪数学界最杰出的人物之一,是有史以来最多遗产的数学家,数学史上称十八世纪为“欧拉时代”.1735年,他提出了欧拉公式:cos sin i e i θθθ=+.被后人称为“最引人注目的数学公式”.若23πθ=,则复数i z e θ=对应复平面内的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限3.某人从甲地去乙地共走了500m ,途经一条宽为xm 的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品未掉在河里,则能找到,已知该物品能被找到的概率为45,则河宽大约为( ) A .80mB .50mC .40mD .100m4.设等差数列{}n a 的前n 项和为n S ,若954S =,则159a a a ++=( ) A .9B .15C .18D .365.已知(3,1)a =-,(1,2)b =-,则a ,b 的夹角是( ) A .6π B .4π C .3π D .2π 6.抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,连接PF 并延长交抛物线C 于点Q ,若4||||5PF PQ =,则||QF =( ) A .3B .4C .5D .67.已知如图所示的程序框图的输入值[]1,4x ∈-,则输出y 值的取值范围是( )A .[]1,2-B .[]1,15-C .[]0,2D .[]2,158.若147()9a -=,159()7b =,27log 9c =,则( )A .b a c <<B .b c a <<C .c a b <<D .c b a <<9.某几何体的三视图如图所示,则这个几何体的体积为( )A .2163π-B .483π-C .4163π-D .16(1)3π-10.已知双曲线22221(0x y a a b-=>,0)b >的两条渐进线均与圆C :22650x y x +-+=相切,则该双曲线离心率等于( )A B C .32D 11.给出下列四个命题:①回归直线y bx a =+恒过样本中心点(,)x y ; ②“6x =”是“2560x x --=”的必要不充分条件;③“0x R ∃∈,使得200230x x ++<”的否定是“对x R ∀∈,均有2230x x ++>”; ④“命题p q ∨”为真命题,则“命题p q ⌝∧⌝”也是真命题. 其中真命题的个数是( ) A .0B .1C .2D .312.设'()f x 是函数()y f x =的导数,''()f x 是'()f x 的导数,若方程''()0f x =有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.已知:任何三次函数既有拐点,又有对称中心,且拐点就是对称中心.设3218()2133f x x x x =-++,数列{}n a 的通项公式为27n a n =-,则128()()()f a f a f a +++=…( )A .5B .6C .7D .8第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知正项等比数列{}n a 中,11a =,其前n 项和为(*)n S n N ∈,且123112a a a -=,则4S = .14.将函数sin(2)23y x π=++的图象向右平移6π个单位,再向下平移2个单位所得图象对应函数的解析式是 .15.已知函数()f x ax b =+,0(1)2f <<,1(1)1f -<-<,则2a b -的取值范围是 .16.学校艺术节对同一类的A ,B ,C ,D 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品获奖情况预测如下: 甲说:“C 或D 作品获得一等奖” 乙说:“B 作品获得一等奖”丙说:“A ,D 两项作品未获得一等奖” 丁说:“C 作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在ABC ∆中,1tan 3A =,1tan 2C =. (Ⅰ)求角B 的大小;(Ⅱ)设B αβ+=(0α>,0β>)sin αβ-的取值范围.18.根据国家环保部新修订的《环境空气质量标准》规定:居民区 2.5PM 的年平均浓度不得超过35微克/立方米, 2.5PM 的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2018年30天 2.5PM 的24小时平均浓度(单位:微克/立方米)的监测数据,将这30天的测量结果绘制成样本频率分布直方图如图.(Ⅰ)求图中a 的值;(Ⅱ)由频率分布直方图中估算样本平均数,并根据样本估计总体的思想,从 2.5PM 的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.19.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2PA AB ==,E 为PA 的中点,60BAD ∠=︒(Ⅰ)求证://PC 平面EBD ; (Ⅱ)求三棱锥P EDC -的体积.20.已知椭圆C :22221x y a b+=(0a b >> )的左右焦点分别为1F ,2F ,离心率为12,点A在椭圆C 上,1||2AF =,1260F AF ∠=︒,过2F 与坐标轴不垂直的直线l 与椭圆C 交于P ,Q 两点,N 为P ,Q 的中点.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知点1(0,)8M ,且MN PQ ⊥,求直线MN 所在的直线方程.21.已知函数()xe f x x=.(Ⅰ)求曲线()y f x =在点2(2,)2e P 处的切线方程;(Ⅱ)证明:()2(ln )f x x x >-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程已知曲线1C 的参数方程为55cos 45sin x ty t =+⎧⎨=+⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=. (Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤<). 23.选修4-5:不等式选讲 已知函数1()|4|||f x x m x m=-++(0m >). (Ⅰ)证明:()4f x ≥;(Ⅱ)若k 为()f x 的最小值,且a b k +=(0a >,0b >),求14a b+的最小值.文科数学答案一、选择题1-5:CBDCB 6-10:CADCA 11、12:BD 二、填空题13.15 14.sin 2y x = 15.35(,)22- 16.B 三、解答题17.解:(Ⅰ)∵A B C π++=,∴()B A C π=-+,又1tan 3A =,1tan 2C =, 则[]tan tan tan tan ()tan()11tan tan A CB AC A C A Cπ+=-+=-+=-=--,∵B 为ABC ∆的内角,∴34B π=. (Ⅱ)∵B αβ+=(0α>,0β>),∴34παβ+=.3sin sin())4παβααααα-=--=-sin()4πα=-,又B αβ+=(0α>,0β>),则3(0,)4πα∈,(,)442πππα-∈-,∴sin()(42πα-∈-sin αβ-的范围是(2-. 18.解:(Ⅰ)由题意知(0.0060.0240.006)251a +++⨯=,则0.004a =.(Ⅱ)25(0.00612.50.02437.50.00662.50.00487.5)42.5⨯⨯+⨯+⨯+⨯=(微克/立方米),因为42.535>,所以该居民区的环境质量需要改善. 19.证明:(Ⅰ)设AC 与BD 相交于点O ,连接OE . 由题意知,底面ABCD 是菱形,则O 为AC 的中点,又E 为AP 的中点,所以//OE CP ,且OE ⊂≠平面BDE ,PC ⊄平面BDE , 则//PC 平面BDE .(Ⅱ)1112222PCE PAC S S ∆∆==⨯⨯= 因为四边形ABCD 是菱形,所以AC BD ⊥, 又因为PA ⊥平面ABCD , 所以PA BD ⊥, 又PAAC A =,所以DO ⊥平面PAC ,即DO 是三棱锥D PCE -的高,1DO =,则113P CDE D PCE V V --===20.解:(Ⅰ)由12e =,得2a c =, 因为1||2AF =,2||22AF a =-,由余弦定理得22121212||||2||||cos ||AF AF AF AF A F F +-⋅=,解得1c =,2a =,∴2223b a c =-=,∴椭圆C 的方程为22143x y +=. (Ⅱ)因为直线PQ 的斜率存在,设直线方程为(1)y k x =-,11(,)P x y ,22(,)Q x y ,联立22(1),1,43y k x x y =-⎧⎪⎨+=⎪⎩整理得2222(34)84120k x k x k +-+-=,由韦达定理知2122834k x x k +=+,121226()234ky y k x x k k -+=+-=+,此时22243(,)3434k k N k k-++,又1(0,)8M ,则22222132434834432034MN kk k k k k k k ++++==--+, ∵MN PQ ⊥,∴1MN k k =-,得到12k =或32. 则2MN k =-或23MN k =-, MN 的直线方程为16810x y +-=或162430x y +-=.21.解:(Ⅰ)∵()x e f x x =,∴2(1)'()x e x f x x -=,2'(2)4e f =,又切点为2(2,)2e , 所以切线方程为22(2)24e e y x -=-,即240e x y -=. (Ⅱ)设函数()()2(ln )22ln x e g xf x x x x x x =--=-+,2(2)(1)'()x e x x g x x --=,(0,)x ∈+∞,设()2x h x e x =-,(0,)x ∈+∞,则'()2x h x e =-,令'()0h x =,则ln 2x =, 所以(0,ln 2)x ∈,'()0h x <;(ln 2,)x ∈+∞,'()0h x >. 则()(ln 2)22ln 20h x h ≥=->,令2(2)(1)'()0x e x x g x x --==1x =, 所以(0,1)x ∈,'()0g x <;(1,)x ∈+∞,'()0g x >;则min ()(1)20g x g e ==->,从而有当(0,)x ∈+∞,()2(ln )f x x x >-. 22.解:(Ⅰ)曲线1C 的参数方程为55cos 4sin x ty t t=+⎧⎨=+⎩(t 为参数),则曲线1C 的普通方程为22(5)(4)25x y -+-=,曲线1C 的极坐标方程为210cos 8sin 160ρρθρθ--+=.(Ⅱ)曲线1C 的极坐标方程210cos 8sin 160ρρθρθ--+=,曲线2C 的极坐标方程为2cos ρθ=,联立得sin(2)42πθ+=[0,2)θπ∈,则0θ=或4πθ=,当0θ=时,2ρ=;当4πθ=时,ρ=(2,0),)4π.23.证明:(Ⅰ)111()|4||||4|4||||4f x x m x m m m m m=-++≥+=+≥, 当且仅当1||2m =时取“=”号. (Ⅱ)由题意知,4k =,即4a b +=,即144a b+=, 则1414559()()1444444a b b a a b a b a b +=++=++≥+=, 当且仅当43a =,83b =时取“=”号.。

2018年高考数学模拟试卷(3)参考答案

2018年高考数学模拟试卷(3)参考答案

2018年高考模拟试卷(3)参考答案一、填空题:本大题共14小题,每小题5分,共70分.1.答案:{}|0x x > 解析:由并集定义可得A B = {}|0x x >. 2.答案:25 解析:因为22a b +即为复数a +b i 模的平方,且2534a bi i+=+,所以25534a bi i+===+,即22a b +的值为25 3.答案:18 解析:由题意可得:甲、乙、丙、丁四个专业人数之比为3:3:8:6,所以 100名学生中丁专业抽取人数为6601820⨯=人. 4.答案:310解析:将黑球标记为a ,黄球标记为b ,红球标记为123,,c c c 基本事件 有123122313122313123,,;,,;,,;,,;,,;,,;,,;,,;,,;,,a b c a b c a b c a c c a c c a c c b c c b c c b c c c c c 共计10种, 其中颜色互不相同有3种,故所求事件概率为310. 5.答案:7 解析:第1次,1S =,3k =;第2次,3S =,5k =;第三次,1510S =>,7k =.6. 答案:125解析:顶点坐标为()4,0±,渐近线方程为34x y =±,由对称性不妨取顶点()4,0,渐近线方程为34y x =,故顶点到其渐近线的距离为125d =.7.84,故6,即m =方法二:设正四棱锥与正四棱柱的高分别为12,h h .因为正四棱锥与正四棱柱的底面积相同,所以体积之比为121332h h ==.8. 答案:80解析:因为137,,a a a 成等比数列,所以2317a a a =⋅.又26a =,设公差为d ,故()()()26665d d d +=-⋅+,即22d d =,又公差不为零,故2d =.即42210a a d =+=. 所以72421780S S a a a +=++=. 9. 答案:154解析:将所给约束条件画出如下图所示的可行域.yz x=的几何意义为可行域中的任一点与原点连线的斜率.由图形可得:在点A 处取到最大值.又()2,6A ,故m a x 3z =.在点C 处取到最小值.又()4,3C ,故min 34z =.所以z 的最大值与最小值之和为315344+=10.答案:(02), 解析:10()4102x f x x x ⎧⎪=⎨--<⎪-⎩≥,,,, 所以)(x f 在(0)-∞,上单调递增,在[0)+∞,上为常数函数,则222220x x xx x ⎧-<-⎪⎨-<⎪⎩,解得20<<x .11.答案:2-解析:将函数()π4y x =的图象向左平移3个单位,得函数()π3π44y x +,所以((3π,3,,4M N ON ϕ=-=由余弦定理可得,5cos π6θθ===, ()()35tan tan ππ46ϕθ=-=-35tan πtan π462351tan πtan π46-==-++⋅12.答案:7+解析:方法一:因为111x y+=,所以11111,1x y y x -=-=.又343434111111x y y x x y x y+=+=+----,所以()113434777y x y x x y x y ⎛⎫++=++≥++ ⎪⎝⎭当且仅当2x 时取等号.方法二:因为111x y+=,所以xy x y =+,即()()111x y -⋅-=.故()()3134143434777111111x y x y x y x y x y -+-++=+=++≥+=+------当且仅当2x =时取等号.方法三:因为()34343347411111111x y x x x x x y x x x y+=+=+=++-------,所以34711x yx y +≥+--2x 时取等号. 13.答案:1解析:设直线,PA PB 的倾斜角分别为,αβ,则2παβ+=,∴tan tan 1αβ=,记直线l :2r x c=与x 轴的交点为H ,()()OM ON OH HM OH HN ⋅=+⋅+ ,则2(,0)r H c ,0,0OH HN OH HM ⋅=⋅=,∴22||||OM ON OH HM HN OH HM HN ⋅=+⋅=-⋅22422|||||||tan ||||tan |()()r r r HM HN AH BH r r r c c cαβ⋅==+-=-∴242222()()r r OM ON r r c c ⋅=--= .即2OM ONr⋅的值为114.【答案】【解析】方程2|21|0x x t ---=有四个不同的实数根,在同一坐标系内作出函数2()|21|f x x x =--与函数()g x t =的图象如下图所示,所以14,x x 是方程221x x t --=的两根,23,x x 是方程221x x t --=-的两根,由求根公式得4132x x x x -=-=,且02t <<,所以41322()()x x x x -+-=,令()f t =,由()0f t '==得65t =,函数()f t 在区间6(0,]5递增,在区间6[,2)5递减,又6(0)()(2)85f f f ===,所以所求函数的取值范围是.二、解答题:本大题共6小题,共90分. 15.(本小题满分14分)证:(1)因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥. 因为底面ABCD 是矩形,所以CD BC ⊥.因为CD PD D = ,,CD PD ⊂平面PCD ,所以BC ⊥平面PCD . 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PCD . (2)底面ABCD 是矩形,所以AD ∥BC , 因为BC ⊂平面PBC ,AD ⊄平面PBC ,所以AD ∥平面PBC .因为AD ⊂平面ADFE ,平面ADFE 平面PBC EF =,所以AD ∥EF . 16.(本小题满分14分)解:(1)因为π1sin()cos 62C C +-=11cos 22C C -=,所以π1sin()62C -=.又因为0πC <<,所以π3C =.(2)法一:因为D 是AB 中点,所以1()CD CA CB =+,所以2221(2)4CD CA CA CB CB =+⋅+ ,即2221()4CD a b ab =++,所以224()CD a b ab =+-23()124a b +=≥,当且仅当2a b ==时等号成立.所以CD法二:在ABC △中,由余弦定理得2222cos CD AC AD AC AD A =+-⋅⋅,可设22214cos b c CD A bc+-=. 在ABC △中,由余弦定理得2222cos CB AC AB AC AB A =+-⋅⋅,可设222cos 2b c a A bc+-=.所以222222142b c CD b c a bc bc +-+-=,所以2221()4CD a b ab =++.下同法一.法三:以C 为原点,CA 为x 轴,建立如图所示的平面直角坐标系,所以(0)(2a A b B ,,,所以(42a b D +,所以2221()4CD a b ab =++, 下同法一.17.(本小题满分14分)解:(1)因为MN ∥l ,设直线MN 的方程为430x y c ++=, 由条件得,43430c ⨯+⨯+=,解得5c =-,即直线MN 的方程为4350x y +-=.因为34OA k =,43MN k =-,所以1OA MN k k ⋅=-,即OA MN ⊥,所以MN == 又因为直线MN 与直线l间的距离3d ==,即点P 到直线MN 的距离为3,所以△PMN的面积为132⨯=(2)直线PM 与圆O 相切,证明如下: 设00()M x y ,,则直线MN 的斜率000035354545y y k x x --==--,因为OP ⊥MN ,所以直线OP 的斜率为005453x y ---,所以直线OP 的方程为005453x y x y -=--.联立方程组00545343200x y x y x y -⎧=-⎪-⎨⎪+-=⎩,,解得点P 的坐标为()0000004(53)4(54)4343y x y x y x -----,, 所以()000000004(53)4(54)4343y x PM x y y x y x --=--- --,, 由于()00OM x y = ,,22004x y +=,所以2200000000004(53)4(54)4343x y y x PM OM x y y x y x --⋅=--- -- 0000004(53)4(54)443x y y x y x ---=--000012164043x y y x -+=-=-,所以PM OM ⊥,即PM OM ⊥,所以直线PM 与圆O 相切,得证.18.(本小题满分16分)解:(1)由题意,水平方向每根支条长为302152x m x -==-cm ,竖直方向每根支条长为261322y y n -==-cm2cm .从而,所需木料的长度之和L 2(15)4(13)822yx =-+-+=822()x y ++cm .(2)由题意, 1132xy =,即260y x =,又由152,132,2x y--⎧⎪⎨⎪⎩≥≥可得1301311x ≤≤.所以260822()L x x=++.令260t x x =+,其导函数226010x-<在1301311x ≤≤上恒成立,故260t x x =+在130[,13]11上单调递减,所以可得372[33,]11t ∈.则26082()]L x x =++82]t =+=82+.因为函数y =y =在372[33,]11t ∈上均为增函数,所以82L =+在372[33,]11t ∈上为增函数,故当33t =,即13,20x y ==时L有最小值16+答:做这样一个窗芯至少需要16+长的条形木料.19.(1)2()36(2)f x x x a '=-+-,其判别式2(6)12(2)12(+1)a a ∆=---=.①当1a -≤时,0∆≤,()0f x '≥恒成立,所以()f x 的单调增区间为(,)-∞+∞.………………………………………1分②当1a >-时,由()0f x '>,得x <或x >所以()f x的单调增区间为(-∞,)+∞. 3分综上,当1a -≤时,()f x 的单调增区间为(,)-∞+∞;当1a >-时,()f x 的单调增区间为(-∞,)+∞.4分(2)(ⅰ)方程()0f x =,即为323(2)0x x a x -+-=,亦即2[3(2)]0x x x a -+-=,由题意1t ,2t 是方程23(2)0x x a -+-=的两个实根, ………………5分 故123t t +=,122t t a =-,且判别式21(3)4(2)0a ∆=--->,得14a >-. 由213t t =,得134t =,294t =, ………………………………………8分 故1227216t t a =-=,所以516a =.………………………………………9分(ⅱ)因为对任意的12[]x t t ∈,,()16f x a -≤恒成立. 因为123t t +=,12t t <,所以1232t t <<, 所以120t t <<或120t t <<.①当120t t <<时,对12[]x t t ∈,,()0f x ≤, 所以016a ≤-,所以16a ≤.又1220t t a =->,所以2a <.………………………………………12分②当120t t <<时,2()36(2)f x x x a '=-+-,由(1)知,存在()f x 的极大值点11(0)x t ∈,,且1x =(方法1)由题得321111()3(2)16f x x x a x a =-+--≤,将1x =(72a +,解得11a ≤.…14分又1220t t a =-<,所以2a >.因此211a <≤.…………………………15分综上,a 的取值范围是1(2)(211]4- ,,.………………………………………16分 (方法2)211362a x x =-+,由题得321111()3(2)16f x x x a x a =-+--≤, 将211362a x x =-+,代入化简得31(1)8x --≥,得11x -≥,故110x -<≤,因为211362a x x =-+在1[10)x ∈-,上递减,故(211]a ∈,. 综上,a 的取值范围是1(2)(211]4- ,,. ……………………………………16分 20.(本小题满分16分)解:(1)将1n =代入111(1)n n nn a a n ++=++λ,得2122a a =+, 由11a =,283a =,得3=λ.(2)由111(1)3n n n n a a n ++=++,得1113n n n a a n n +-=+,即113n nnb b +-=. 当2n ≥时,111221()()()n n n n n b b b b b b b b ----=-+-+⋅⋅⋅+-111[1()]3311n --=-111223n -=-⨯,因为1111a b ==,所以131223n n b -=-⨯. 因为11b =也适合上式,所以131223n n b -=-⨯.(3)由(2)知,3()23n nn a n =-.假设存在正整数r s t ,,且r s t <<,使得r s t ,,与r s t a a a ,,同时成等差数列, 则2r t s +=且2r t s a a a +=,即()()()333333r t s r t s r t s -+-=-,整理得2333r t sr t s +=, (*) 设3n nn c =,*n ∈N ,则1111120333n n nn n n n n c c ++++--=-=< 所以{}n c 单调递减数列. ① 若1r =,当3s ≥时,则2293ss ≤, 所以()*左边13>,右边29≤,显然等式不成立,当2s =时,得313933t t ==,解得3t =, 所以1r =,2s =,3t =符合题意. ② 若2r ≥,因为s r >,所以1s r +≥, 所以1s r c c +≤,所以()112122033333r sr r r r r s r r +++---=≥≥,所以03tt ≤,所以t 不存在, 即2r ≥时,不存在符合题意的r s t ,,.综上,存在1r =,2s =,3t =,使得r s t ,,与r s t a a a ,,同时成等差数列.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内 作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)证:连接OA ,因为OD AB ⊥,OA OB =,所以12BOD AOD AOB ∠=∠=∠, 又12ACB AOB ∠=∠,所以ACB DOB ∠=∠, 又因为180BOP DOP ∠=-∠ ,180QCP ACB ∠=-∠,所以BOP QCP ∠=∠,所以B ,O ,C ,Q 四点共圆,所以OBP CQP ∠=∠. B .[选修4—2:矩阵与变换](本小题满分10分) 解:由题意,3=A αα,即2113411a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以2343a b +=⎧⎨+=⎩,,解得11a b ==-,,所以1214⎡⎤=⎢⎥-⎣⎦A . 设l 上一点()P x y ,在A 的作用下得到直线l '上一点()P x y ''',, 则1214x x y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'-⎣⎦⎣⎦⎣⎦,即24x x y y x y '=+⎧⎨'=-+⎩,, 所以1(2)1()6x x y y x y ⎧''=-⎪⎨⎪''=+⎩,,代入直线:230l x y --=,得75180x y ''--=, 即直线l '的方程为75180x y --=. C .[选修4—4:坐标系与参数方程](本小题满分10分) 解:由()πcos 2ρθ-=cos sin 2θθ=, 所以直线l直角坐标方程为0x y +-=. 由4sin 2cos ρθθ=-,得24sin 2cos ρρθρθ=-, 所以圆C 的直角坐标方程为22240x y x y ++-=,即()()22125x y ++-=. …… 8分所以圆心到直线的距离2d ==<所以直线l 与圆C 相交. D .[选修4—5:不等式选讲](本小题满分10分)解:设()|3||21|f t t t =-++,即13221()432323t t f t t t t t ⎧-+<-⎪⎪⎪=+-⎨⎪->⎪⎪⎩,,,≤≤,,,所以()f t 的最小值为72,所以7|21||2|2x x -++≤.当2x <-时,不等式即为7(21)(2)2x x ---+≤,解得32x -≥,矛盾;当122x -≤≤时,不等式即为7(21)(2)2x x --++≤,解得12x -≥,所以1122x -≤≤;当12x >时,不等式即为7(21)(2)2x x -++≤,解得56x ≤,所以1526x <≤. 综上,实数x 的取值范围是1526x -≤≤.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时 应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)解:(1)由已知得,甲中奖的概率为23,乙中奖的概率为P 0,且两人中奖与否互不影响.记“这2人的累计得分X ≤3”的事件为C ,则事件C 的对立事件为“X =5”. 因为P (X =5)=23P 0,所以P (C )=1-P (X =5)=1-23P 0=79,所以P 0=13.(2)设甲、乙都选择方案A 抽奖的中奖次数为X 1,都选择方案B 抽奖的中奖次数 为X 2,则这两人选择方案A 抽奖累计得分的均值为E (2X 1), 选择方案B 抽奖累计得分的均值为E (3X 2).由已知可得,X 1~B (2,23),X 2~B (2,P 0),所以E (X 1)=2×23=43,E (X 2)=2P 0,从而E (2X 1)=2E (X 1)=83,E (3X 2)=3E (X 2)=6P 0.若E (2X 1)>E (3X 2),则83>6P 0⇒0<P 0<49,若E (2X 1)<E (3X 2),则83<6P 0⇒49<P 0<1,若E (2X 1)=E (3X 2),则83=6P 0⇒P 0=49.综上所述,当0<P 0<49时,他们都选择方案A 进行抽奖时,累计得分的均值较大;当49<P 0<1时,他们都选择方案B 进行抽奖时,累计得分的均值较大; 当P 0=49时,他们都选择方案A 或都选择方案B 进行抽奖时,累计得分的均值相等.23.(本小题满分10分)解:(1)在△ABC 中,1AB =,2BC AD ==,π3ABC ∠=,则AC =222AB AC BC +=,即90BAC ∠= .因为四边形ACEF 为矩形,所以FA AC ⊥,因为平面ACEF ⊥平面ABCD ,平面ACEF ABCD AC =ACEF ,所以FA ⊥平面ABCD .建立如图所示的空间直角坐标系,则(0,0,0)A ,(1,0,0)B,C ,(D -E ,(0,0,1)F ,当12λ=时,12EM EF =,所以M .所以(BM =- ,(1,0,1)DE = ,所以(1,0,1)(0BM DE ⋅=⋅-=,所以BM DE ⊥ ,即异面直线DE 与BM 所成角的大小为90 . (2)平面ECD 的一个法向量1(0,1,0)=n , 设000(,,)M x y z ,由000(0,,1)(0,,0)(EM x y z λ===-,得0000)1x y z λ=⎧⎪=-⎨⎪=⎩,,,即),1)M λ-,所以(1),1)BM λ--=,(BC =-. 设平面MBC 的法向量2(,,)x y z =n ,因为22,,BC BM ⎧⊥⎪⎨⊥⎪⎩ n n即0,)0,x x y z λ⎧-=⎪⎨--+=⎪⎩ 取1y =,则x =z ,所以平面MBC的一个法向量2)=n , 因为π02θ<≤,所以1212cos θ⋅==⋅n n n n .因为01λ≤≤,所以1cos 2θ⎤∈⎥⎣⎦,.。

2018年高考文科数学全国卷3(含答案与解析)

2018年高考文科数学全国卷3(含答案与解析)

数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前2018年普通高等学校招生全国统一考试课标全国卷III数学(文科)本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ( ) A .{}0B .{}1C .{}1,2D .{}0,1,2 2.(1)(2)i i +-=( )A .3i --B .3i -+C .3i -D .3i + 3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )AB CD4.若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 ( ) A .0.3B .0.4C .0.6D .0.76.函数2tan ()1tan xf x x=+的最小正周期为( )A .π4B .π2C .πD .2π7.下列函数中,其图象与函数ln y x =的图象关于直线1x =对称的是 ( )A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+8.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( )A .[]2,6B .[]4,8C .2,32⎡⎤⎣⎦D .22,32⎡⎤⎣⎦9.函数422y x x =-++的图象大致为( )ABCD10.已知双曲线22221x yC a b-=:(00a b >>,)的离心率为2,则点(4,0)到C 的渐近线的距离为( )A .2B .2C .322D .2211.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224a b c +-,则C =( )A .π2B .π3C .π4D .π6毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)12.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .543第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(1,2)a =,(2,2)b =-,(1,)c λ=.若(2)c a b +∥,则λ= . 14.某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是 .15.若变量x ,y 满足约束条件23024020.x y x y x ++⎧⎪-+⎨⎪-⎩≥,≥,≤则13z x y =+的最大值 .16.已知函数2()ln(1)1f x x x =+-+,()4f a =,则()f a -= .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题.考生根据要求作答. (一)必考题:共60分.17.(12分)等比数列{}n a 中,11a =,534a a =.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超 过m 和不超过m 的工人数填入下面的列联表;超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?22()()()()()n ad bc K a b c d a c b d -=++++,附:2()P K k ≥0.050 0.010 0.001 k3.8416.63510.82819.(12分)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.数学试卷 第5页(共16页) 数学试卷 第6页(共16页)20.(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:12k -<; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=. 证明:2FP FA FB =+.21.(12分)已知函数21()e xax x f x +-=.(1)求由线()y f x =在点()0,1-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O ⊙的参数方程为cos ,sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,2)-且倾斜角为α的直线l 与O ⊙交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.[选修4—5:不等式选讲](10分) 设函数()121f x x x =-++. (1)画出()y f x =的图像;(2)当[0,)x +∞∈时,()f x ax b +≤,求a b +的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共16页) 数学试卷 第8页(共16页)2018年普通高等学校招生全国统一考试课标全国卷III文科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵{}{}|10=|1A x x x x =-≥≥,{}0,1,2B =,∴{}1,2A B =,故选C .【考点】集合的运算 2.【答案】D【解析】2(1)(2)=223i i i i i i +--+-=+,故选D . 【考点】复数的运算 3.【答案】A【解析】两木构件咬合成长方体时,榫头完全进入卯眼,易知咬合时带卯眼的木构件的俯视图为A ,故选A . 【考点】空间几何体的三视图 4.【答案】B【解析】因为1sin 3α=,2cos212sin αα=-,所以2127cos212()1399α=-⨯=-=.故选B .【考点】三角恒等变换 5.【答案】B【解析】设事件A 为“不用现金支付”,事件B 为“既用现金支付也用非现金支付”,事件C 为“只用现金支付”,则()1()()10.150.450.4P A P B P C =--=--=.故选B . 【考点】互斥事件,对立事件的概率 6.【答案】C【解析】解法1:()f x 定义域为π|π+,Z 2x x k k ⎧⎫∈⎨⎬⎩⎭≠,2sin 1cos ()sin cos sin 2sin 21()cos xx f x x x x x x===+,∴()f x 的最小正周期2ππ2T ==.解法二:22tan(π)tan (π)()1tan (π)1tan x xf x f x x x ++===+++,∴π是()f x 的周期,2πtan()π2()π21tan ()2x f x x ++=++,而πsin()cos 12tan()π2sin tan cos(+)2x x x x x x π++===--,∴2πtan (+)()21tan xf x f x x =-+≠,∴π2不是()f x 的周期,∴π4也不是()f x 的周期,故选C . 【考点】三角函数的周期 7.【答案】B【解析】解法一:ln y x =图象上的点(1,0)P 关于直线1x =的对称点是它本身,则点P 在ln y x =关于直线1x =对称的图像上,结合选项可知,B 正确.故选B .解法二:设(,)Q x y 是所求函数图象上任一点,则关于直线1x =的对称点(2,)P x y -,在函数ln y x =图象上,∴ln(2)yx =-.故选B. 【考点】函数图象的对称性 8.【答案】A【解析】圆心(2,0)到直线20x y ++=,设点P 到直线的距离为d ,则min d ==max d =又易知(2,0)A -,B(0,2)-,∴||AB = ∴min min 11()||222ABP S AB d ==⨯=△, maxmax 11() || 622ABP S AB d ==⨯=△. ∴ABP △面积的取值范围是[]2,6.故选A .9.【答案】D数学试卷 第9页(共16页) 数学试卷 第10页(共16页)【解析】令42()2y f x x x ==-++,则3()42f x x x '=-+,当22x <-或202x <<时,()0f x '>,()f x 递增; 当202x <<-或22x <时,()0f x '<,()f x 递减.由此可得()f x 的图像大致为D 中的图像.故选D .【考点】函数图象的识辨 10.【答案】D 【解析】∵21()2c b e a a ==+=,且0a >,0b >,∴1ba=, ∴C 的渐近线方程为y x =±, ∴点(4,0)到C 的渐近线的距离为|4|=222.【考点】双曲线的几何性质及点到直线的距离公式 11.【答案】C【解析】因为2222cos a b c ab C +-=,且2224ABC a b c S +-=△, 所以2cos 1sin 42ABC ab C S ab C ==△, 所以tan 1C =,又(0,π)C ∈, 所以π4C =.故选C . 12.【答案】B【解析】设等边ABC △的边长为a ,则有°1sin60=932ABC S a a =△,解得6a =.设ABC △外接圆的半径为r ,则°62sin60r =,解得23r =,则球心到平面ABC 的距离为224(23)2-=,所以点D 到平面ABC 的最大距离为246+=,所以三棱锥D ABC -体积最大值为19361833⨯⨯=,故选B .【考点】空间几何体的体积及与球有关的切接问题第Ⅱ卷二、填空题13.【答案】12【解析】由题意得2(4,2)a b +=,因为(1,)c λ=,(2)c a b +∥,所以420λ-=,解得12λ=. 14.【答案】分层抽样【解析】因为不同年龄段客户对其服务的评价有较大差异,所以根据三种抽样方法的特点可知最合适的抽样方法是分层抽样.【考点】抽样方法 15.【答案】3【解析】解法一:根据约束条件作出可行域,如图所示.13z x y =+可化为33y x z =-+.求z 的最大值可转化为求直线33y x z =-+纵截距的最大值,显然当直线33y x z =-+过(2,3)A 时,纵截距最大,故max 12333z =+⨯=.解法二:画出可行域(如上图),由图可知可行域为三角形区域,易求得顶点坐标分别为(2,3),(2,7)-,(2,1)-,将三点坐标代入,可知max 12333z =+⨯=. 【考点】简单的线性规划 16.【答案】2-【解析】易知()f x 的定义域为R ,令22()ln(1)g x x x =+,数学试卷 第11页(共16页) 数学试卷 第12页(共16页)则()()0g x g x +-=,∴()g x 为奇函数,∴()()2f a f a +-=,又()4f a =,∴()2f a -=-. 【考点】函数的奇偶性 三、解答题17.【答案】(1)1(2)n n a -=-或12n n a -= (2)6m =【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-,此方程没有正整数解. 若12n n a -=,则21n n S =-.由63m S =得264m=,解得6m =.综上,6m =.【考点】等比数列的通项公式、前n 项和公式18.【答案】(1) 第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟.因此第二种生产方式的效率更高.(iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布.又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高. (2) 由茎叶图知7981802m +==. 列联表如下:超过m 不超过m第一种生产方式 15 5 第二种生产方式515(3)由于2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.【解析】(1)根据茎叶图中的数据大致集中在哪个茎,作出判断; (2)通过茎叶图确定数据的中位数,按要求完成22⨯列联表;(3)根据(2)中22⨯列联表,将有关数据代入公式计算得2K 的值,借助临界值表作出统计推断.【考点】统计图表的含义及应用,独立性检验的基本思想及其应用19.【答案】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC CD ⊥,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC DM ⊥.因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM CM ⊥. 又BCCM C =,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点.数学试卷 第13页(共16页) 数学试卷 第14页(共16页)连结OP ,因为P 为AM 中点,所以MC OP ∥.MC ⊄平面PBD ,OP 平面PBD ,所以MC ∥平面PBD .【解析】(1)通过观察确定点或直线的位置(如中点、中线),再进行证明. (2)把要得的平行当作已知条件,用平行的性质去求点、线.【考点】本题考查平面与平面垂直的判定与性质,直线与平面平行的判定与性质.20.【答案】(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得 1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-.(2)由题意得()1,0F .设33()P x y ,,则331122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=. 由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =, 从而3(1,)2P -,3||=2FP .于是1(22xFA x ===-.同理2=22xFB -.所以1214()32FA FB x x +=-+=.故2=+FP FA FB .【解析】本题考查椭圆的几何性质、直线与椭圆的位置关系.21.【答案】(1)2(21)2()e xax a x f x -+-+'=,(0)2f '=.因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-+≥+-+. 令21()1e x g x x x +=+-+,则1()21e x g x x +'=++. 当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 所以()g x (1)=0g ≥-.因此()e 0f x +≥. 【解析】构造函数证明不等式的策略:(1)转化为()f x C ≥(C 为常数)型,证明()min f x 或临界值大于或等于C . (2)转化为()()f x g x ≥型,利用导数判断()f x ,()g x 的单调性,是而求出函数()f x ,()g x 的最值或临界值,用原不等式成立的充分条件证明.(3)转化为()()()()f a g a f b g b +≥+型,构造函数()()()h x f x g x =+,利用()h x 单调性及,a b 的大小证明.【考点】导数的几何意义,导数的综合应用 22.【答案】(1)O 的直角坐标方程为221x y +=.当2απ=时,l 与O 交于两点. 当2απ≠时,记tan k α=,则l 的方程为y kx =l 与O 交于两点当且仅当|1<,解得 1k <-或1k >,即(,)42αππ∈或(,)24απ3π∈.综上,α的取值范围是(,)44π3π.(2)l 的参数方程为cos ,(sin x t t y t αα=⎧⎪⎨=⎪⎩为参数,44απ3π<<). 设A ,B ,P 对应的参数分别为A t,B t ,P t ,则2A B P t tt +=,且At ,B t 满足2sin 10tα-+=.于是A B t t α+=,P t α=.又点P 的坐标(,)x y 满足cos ,sin ,P P xt y t αα=⎧⎪⎨=⎪⎩所以点P 的轨迹的参数方程是2,222x y αα⎧=⎪⎪⎨⎪=-⎪⎩(α为参数,)44απ3π<<.数学试卷 第15页(共16页) 数学试卷 第16页(共16页)【解析】以角θ为参数的参数方程,一般利用三角函数的平方关系22sin cos 1θθ+=化为普通方程;而弦的中点问题常用根与系数的关系或“点差法”进行整体运算求解.【考点】参数方程与普通方程的互化、直线与圆的位置关系23.【答案】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图象如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[0,)+∞成立,因此a b+的最小值为5.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图象如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[0,)+∞成立,因此a b +的最小值为5.【考点】含绝对值不等式的解法,函数图象。

山东省临沂市2018届高三第三次高考模拟考试数学(文)试题有答案

山东省临沂市2018届高三第三次高考模拟考试数学(文)试题有答案

2018年普通高考模拟考试文科数学本试卷共5页,23题(含选考题).全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中。

只有一项是符合题目要求的. 1.设全集{}{}{}=12571,5,2,7U U M a C M =-=,,,,,则实数a 的值为 (A)10(B)9(C)7(D)62.已知12ia i++为纯虚数,i 为虚数单位,则实数a = (A)2 (B)1 (C) 1- (D) 2-3.函数()f x =(A)(0,3] (B)(0,3) (C)(3,+∞) (D)[3,+∞)4.我国古代数学算经《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣 (A)104人 (B)108人 (C)112人 (D)120人5.已知双曲线()222210,0x y a b a b-=>>的一条渐近线平行于直线:2l y x =+,一个焦点在直线l 上,则双曲线的方程为(A)22122x y -= (B) 22144x y -= (C) 22133x y -= (D) 221x y -= 6.已知数列{}n a 满足11255,,n n a a a a a +-=,且成等比数列,则该数列的前六项和6S =(A)60 (B)75 (C)90 (D)1057.下列命题中正确的是(A)若p q ∧为假命题,则p q ∨为假命题(B)“1m =-”是“直线()602320x my m x y ++=-++=与平行”的充分必要条件(C)命题“若234014x x x x --==-=,则或”的逆否命题为“若14x x ≠-≠或,则2340x x --≠”(D)若命题0:p x R ∃∈,使得220010:10x x p x R x x --<⌝∀∈--≥,则,使得 8.设,x y 满足约束条件1,230,,y x x y z y x x t ⎧≥⎪⎪+-≤=-⎨⎪≥⎪⎩且的最大值是1,则t 的值为(A) 1- (B)1 (C)2 (D) 2- 9.已知,,01a b R a b ∈<<<,则下列不等式错误的是 (A) 33a b < (B) 2a b <2 (C) 23log log a b > (D) log 2log 2a b >10.如图是某几何体的三视图:则该几何体的体积为(A) 13π+(B) 223π+(C) 23π+(D) 123π+11.函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象如图所示,为得到函数()cos g x x ω=的图象,可将函()f x 的图象(A)向左平移12π个单位长度 (B)向左平移6π个单位长度(C)向右平移12π个单位长度(D)向右平移6π个单位长度12.设抛物线24y x =的焦点为F ,过F 的直线l 交抛物线于A ,B 两点,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若32PF =,则直线l 的方程为(A)0y --=(B) 10x -=(C) 0y += (D) 10x +-= 二、填空题:本题共4小题。

黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(三)(文)数学试题及答案解析

黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(三)(文)数学试题及答案解析

黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(三)数学试题(文)第Ⅰ卷一、选择题1. 设全集,集合,,则()A. B. C. D.2. 设为复数的共轭复数,则()A. B. C. D.3. 已知函数,则下列结论正确的是()A. 是偶函数,递增区间是B. 是偶函数,递减区间是C. 是奇函数,递增区间是D. 是奇函数,递增区间是4. 已知双曲线的一条渐近线方程是,它的一个焦点坐标为,则双曲线方程为()A. B. C. D.5. 从数字,,,,中任取个,组成一个没有重复数字的两位数,则这个两位数大于的概率是()A. B. C. D.6. 已知函数的部分图象如图所示,且,,则()A. B. C. D.7. 我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有坦厚十尺,两鼠对穿,初日各一尺,大鼠日自信,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果()A. B. C. D.8. ()A. B. C. D.9. 不等式组的解集为,下列命题中正确的是()A. ,B. ,C. ,D. ,10. 已知抛物线的焦点为,准线为,是上一点,是直线与的一个交点,若,则()A. B. C. D.11. 设函数,若存在,使,则的取值范围是()A. B. C. D.12. 已知,则A. B. C. D.第Ⅱ卷二、填空题13. 已知单位向量,的夹角为,则向量与的夹角为__________.14. 在某次数学考试中,甲、乙、丙三名同学中只有一个人得了优秀,当他们被问到谁得到了优秀时,丙说:“甲没有得优秀”;乙说:“我得了优秀”;甲说:“丙说的是真话”.事实证明:在这三名同学中,只有一人说的是假话,那么得优秀的同学是__________.15. 已知函数则__________.16. 在中,角、、所对的边分别为、、,且,当取最大值时,角的值为__________.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17. 已知数列中,,又数列是首项为、公差为的等差数列.(1)求数列的通项公式;(2)求数列的前项和.18. 某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(个月)和市场占有率()的几组相关对应数据:10.02(1)根据上表中的数据,用最小二乘法求出关于的线性回归方程;(2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过(精确到月).19. 如图,矩形和梯形所在的平面互相垂直,,,.(1)若为的中点,求证:平面;(2)若,求四棱锥的体积.20. 已知椭圆的离心率为,其左顶点在圆上.(1)求椭圆的方程;(2)若点为椭圆上不同于点的点,直线与圆的另一个交点为.是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.21. 设函数.(1)讨论的单调性;(2)若为正数,且存在使得,求的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,圆的参数方程为(为参数).(1)以原点为极点、轴正半轴为极轴建立极坐标系,求圆的极坐标方程;(2)已知,,圆上任意一点,求面积的最大值.23. 选修4-5:不等式选讲(1)已知,都是正数,且,求证:;(2)已知,,都是正数,求证:.【参考答案】第Ⅰ卷一、选择题1. 【答案】A【解析】由已知中全集,根据补集的性质及运算方法,先求出,再求出其补集,即可求出答案.全集,集合,,,,故选:A.2. 【答案】A【解析】先求出,从而求出的值即可.,共轭复数,则.故选:A.3. 【答案】D【解析】由奇偶性的定义可得函数为奇函数,去绝对值结合二次函数可得单调性.由题意可得函数定义域为R,函数,,为奇函数,当时,,由二次函数可知,函数在单调递增,在单调递减;由奇函数的性质可得函数在单调递增,在单调递减.综合可得函数的递增区间为.故选:D.4. 【答案】C【解析】直接利用双曲线的渐近线方程以及焦点坐标,得到关系式,求出、,即可得到双曲线方程.双曲线的一条渐近线方程是,可得,它的一个焦点坐标为,可得,即,解得,所求双曲线方程为:.故选:C.5. 【答案】C【解析】可以构成的两位数的总数为20种,因为是“任取”两个数,所以每个数被取到的概率相同,可以采用古典概型公式求解,其中大于40的两位数有以4开头的:41,42,43,45共4种;以5开头的:51,52,53,54共4种.所以所求概率为.本题选择B选项.6. 【答案】D【解析】由图象可得A值和周期,由周期公式可得,代入点可得值,从而得解析式,再由和同角三角函数基本关系可得.由图象可得,,解得,故,代入点可得,,即有,,又,,故.又,.,.故选:D.7. 【答案】A【解析】模拟执行程序,依次写出每次循环得到的的值,当,满足条件,退出循环,输出的值为4,从而得解.模拟执行程序,可得,,不满足条件,执行循环体,,不满足条件,执行循环体,,不满足条件,执行循环体,,满足条件,退出循环,输出的值为4.故选:A.8. 【答案】B【解析】原式.9. 【答案】B【解析】如下图所示,画出不等式组所表示的区域,作直线:,平移,从而可知当,时,,即,故只有B成立,故选B.10. 【答案】A【解析】设与x轴的交点为M,过Q向准线作垂线,垂足为N,由,可得,又,根据抛物线的定义即可得出.设与x轴的交点为M,过Q向准线作垂线,垂足为N,,,又,,,.故选:A.11. 【答案】D【解析】求出函数的导数,通过讨论的范围,确定函数的单调性,求出的最大值,得到关于的不等式,解出即可.的定义域是,,当时,,则在上单调递增,且,故存在,使;当时,令,解得,令,解得,在上单调递增,在上单调递减,,解得.综上,的取值范围是.故选:D.12. 【答案】D【解析】先将用两角和正弦公式化开,然后与合并后用辅助角公式化成一个三角函数,最后再由三角函数的诱导公式可得答案.,,,.故选:D.第Ⅱ卷二、填空题13. 【答案】【解析】分别求出,,,从而代入求余弦值,从而求角.单位向量,的夹角为,,,,设向量与的夹角为,则,.故答案为:.14. 【答案】丙【解析】利用反证法,即可得出结论.假设丙说的是假话,即甲得优秀,则乙也是假话,不成立;假设乙说的是假话,即乙没有得优秀,又甲没有得优秀,故丙得优秀.故答案为:丙.15. 【答案】【解析】根据分段函数由里到外逐步求解即可.∵∴f(﹣3)=e﹣3+2=e﹣1,f(f(﹣3)=f(e﹣1)=lne﹣1=﹣1.故答案为:﹣1.16. 【答案】【解析】由正弦定理得,即,,,故最大角为.考点:解三角形.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17. 解:(1)∵数列是首项为,公差为的等差数列,∴,解得.(2)∵.∴.18. 解:(1)经计算,,所以线性回归方程为;(2)由上面的回归方程可知,上市时间与市场占有率正相关,即上市时间每增加个月,市场占有率都增加个百分点;由,解得,19. (1)证明:设与交于点,连接,在矩形中,点为中点,∵为的中点,∴,又∵平面,平面,∴平面.(2)解:取中点为,连接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的长即为四棱锥的高,在梯形中,,∴四边形是平行四边形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.20. 解:(1)因为椭圆的左顶点在圆上,令,得,所以,又离心率为,所以,所以,所以,所以的方程为.(2)设点,,设直线的方程为,与椭圆方程联立得化简得到,因为为方程的一个根,所以,所以,所以.因为圆心到直线的距离为,所以,因为,代入得到,显然,所以不存在直线,使得.21. 解:(1),(),①当时,,在上单调递增;②当时,,;,,所以在上单调递减,在上单调递增.(2)因为,由(1)知的最小值为,由题意得,即.令,则,所以在上单调递增,又,所以时,,于是;时,,于是.故的取值范围为.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 解:(1)圆的参数方程为(为参数)所以普通方程为.圆的极坐标方程:.(2)点到直线:的距离为的面积所以面积的最大值为23. (1)证明:.因为都是正数,所以.又因为,所以.于是,即所以;(2)证明:因为,所以. ①同理. ②. ③①②③相加得从而.由都是正数,得,因此.。

2018年高考数学文科课标版仿真模拟卷三 含解析 精品

2018年高考数学文科课标版仿真模拟卷三 含解析 精品

2018高考仿真卷·文科数学(三)(考试时间:120分钟试卷满分:150分)一、选择题(本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={0,1,2,3},B={x|-1≤x<3},则A∩B=()A.{1,2}B.{0,1,2}C.{0,1,2,3}D.⌀2.已知命题p:∀x∈R,2x>1,命题q:∃x0∈R,sin x0=cos x0,则下列命题中的真命题为()A.qB.p∧qC.p∧qD.p∨q3.已知a=log20.3,b=20.3,c=0.32,则()A.a>b>cB.c>b>aC.b>a>cD.b>c>a4.已知sin 2α=<α<,则sin α-cos α的值是()A. B.- C. D.-5.若x,y满足约束条件---则z=2x+y的最大值是()A.1B.3C.5D.76.设a,b表示直线,α,β表示平面,则下列命题正确的是()A.若a∥α,b∥α,则a∥bB.若a⊥α,α⊥β,则a∥βC.若a∥α,b⊥α,则a⊥bD.若a∥α,α⊥β,则a⊥β7.已知数列{a n}满足a n+1+(-1)n+1a n=2,则其前100项和为()A.250B.200C.150D.1008.函数y=sin x(1+cos 2x)在区间[-2,2]上的图象大致为()9.已知双曲线=1(a>0,b>0)的左焦点为F(-c,0),O为坐标原点,P,Q为双曲线的渐近线上两点,若四边形PFQO是面积为c2的菱形,则该渐近线方程为()A.y=±2xB.y=±xC.y=±4xD.y=±x10.如图,“大衍数列”:0,2,4,8,12来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项都代表太极衍生过程中曾经经历过的两仪数量总和.右图是求大衍数列前n项和的程序框图.执行该程序框图,输入m=8,则输出的S=()A.44B.68C.100D.14011.在△ABC中,AB=2,AC=1,∠BAC=120°,=λ.若,则实数λ的值为()A.-2B.C. D.12.函数y=2cos x(0<x<π)和函数y=3tan x的图象相交于A,B两点,O为坐标原点,则△OAB的面积为()A. B. C. D.二、填空题(本题共4小题,每小题5分,共20分)13.若复数z满足z·i=2-i,则|z|=.14.如图,网格纸上小正方形的边长为1,粗实线画出的是一个三棱锥的三视图,则该三棱锥的体积为.15.已知函数f(x)=---若函数g(x)=f(x)-ax+a存在零点,则实数a的取值范围为.16.已知椭圆=1(a>b>0)的左、右焦点分别为F1,F2,点P在椭圆上,且PF2垂直于x轴,若直线PF1的斜率为,则该椭圆的离心率为.三、解答题(共70分.解答须写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.(12分)在△ABC中,D是边BC上的点,AB=AD=∠BAD=.(1)求sin B;(2)若AC=4,求△ADC的面积.18.(12分)为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂随机各选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;(2)轮胎的宽度在[194,196]内,则称这个轮胎是标准轮胎.试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个厂的轮胎相对更好?19.(12分)如图,四棱锥P-ABCD中,侧面PAB⊥底面ABCD,PA=PB,CD=2AB=4,CD∥AB,∠BPA=∠BAD=90°.(1)求证:PB⊥平面PAD;(2)若三棱锥C-PBD的体积为2,求△PAD的面积.20.(12分)在直角坐标系xOy中,F(1,0),动点P满足:以PF为直径的圆与y轴相切.(1)求点P的轨迹方程;(2)设点P的轨迹为曲线Γ,直线l过点M(4,0)且与Γ交于A,B两点,当△ABF与△AOF的面积之和取得最小值时,求直线l的方程.21.(12分)已知函数f(x)=a ln x+x2-(a2+1)x.(1)讨论函数f(x)的单调性;(2)当a>1时,记函数f(x)的极小值为g(a),若g(a)<b-(2a3-2a2+5a)恒成立,求满足条件的最小整数b.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.22.选修4—4:坐标系与参数方程(10分)在直角坐标系xOy中,曲线C的参数方程为(φ为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,A,B为C上两点,且OA⊥OB,设射线OA:θ=α,其中0<α<.(1)求曲线C的极坐标方程;(2)求|OA|·|OB|的最小值.23.选修4—5:不等式选讲(10分)函数f(x)=|x-1|+|2x+a|.(1)当a=1时,求证:f(x)+|x-1|≥3;(2)若f(x)的最小值为2,求实数a的值.2018高考仿真卷·文科数学(三)1.B2.C3.D4.A5.D6.C7.D8.B9.A10.C11.D12.A13.14.15.-∞,-∪[e2,+∞)16.17.解(1)在△ABD中,BD2=AB2+AD2-2AB·AD·cos∠BAD=7+7-2×=12,所以BD=2.由cos∠BAD=,得sin∠BAD=.在△ABD中,由正弦定理得,所以sin B=.(2)因为sin B=,B是锐角,所以cos B=,设BC=x,在△ABC中,AB2+BC2-2AB·BC·cos B=AC2,即7+x2-2·x·=16,化简得x2-29=0,解得x=3或x=-(舍去),则CD=BC-BD=3-2.由∠ADC和∠ADB互补,得sin∠ADC=sin∠ADB=sin B=,所以△ADC的面积S=·AD·DC·sin∠ADC=.18.解(1)甲厂这批轮胎宽度的平均值为=195(mm), 甲乙厂这批轮胎宽度的平均值为=194(mm).乙(2)甲厂这批轮胎宽度都在[194,196]内的数据为195,194,196,194,196,195,平均数为195,方差为,乙厂这批轮胎宽度都在[194,196]内的数据为195,196,195,194,195,195,平均数为195,方差为,由于两厂标准轮胎宽度的平均数相等,但乙的方差更小,所以乙厂的轮胎相对更好.19.解(1)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AD⊂平面ABCD,且AD⊥AB,∴AD⊥平面PAB.又∵PB⊂平面PAB,∴PB⊥AD.又∵PB⊥PA,PA∩AD=A,PA,PD⊂平面PAD,∴PB⊥平面PAD.(2)取AB中点E,连接PE.∵PA=PB,∴PE⊥AB.又∵PE⊂平面PAB,平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,∴PE⊥平面ABCD.∴PE为三棱锥P-BCD的高,且PE=AB=1.又∵CD∥AB,AD⊥CD,∴S=CD·AD=2AD.△BCD∴V C-PBD=V P-BCD=·S△BCD·PE=AD=2,得AD=3.PA=AB·cos 45°=.又∵AD⊥平面PAB且PA⊂平面PAB,∴PA⊥AD.∴S=PA·AD=.△PAD20.解(1)设点P(x,y),圆心N(x0,y0),圆与y轴相切于点C,则|PF|=2|NC|,所以-=2|x0|,又点N为PF的中点,所以x0=,所以-=|x+1|,整理得y2=4x.所以点P的轨迹方程为y2=4x.(2)①当直线l的斜率不存在时,方程为x=4,易得S△ABF+S△AOF=14.②当直线l的斜率存在时,设方程为:y=k(x-4),A(x1,y1),B(x2,y2),由消去x并整理得ky2-4y-16k=0,-所以y1+y2=,y1y2=-16,所以S+S△AOF=S△AOM+S△BFM=·4·|y1|+·3·|y2|≥·2=8, △ABF当且仅当4|y1|=3|y2|时等号成立,又|y1||y2|=16,所以y1=2,y2=-或y1=-2,y2=,所以y1+y2==±,解得k=±2,因为8≤14,所以当两个三角形的面积和最小时,直线l的方程为y=±2x-4).21.解(1)f(x)的定义域为(0,+∞),f'(x)=+ax-(a2+1)=---.①若a≤0,当x∈(0,+∞)时,f'(x)≤0,故f(x)在(0,+∞)单调递减,②若a>0,由f'(x)=0,得x1=,x2=a.(ⅰ)若0<a<1,当x∈a,时,f'(x)<0,当x∈(0,a)∪,+∞时,f'(x)>0,故f(x)在a,单调递减,在(0,a),,+∞单调递增.(ⅱ)若a=1,f'(x)≥0,f(x)在(0,+∞)单调递增,(ⅲ)若a>1,当x∈,a时,f'(x)<0,当x∈0,∪(a,+∞)时,f'(x)>0,故f(x)在,a单调递减,在0,,(a,+∞)单调递增.(2)由(1)得若a>1,f(x)在,a单调递减,在0,,(a,+∞)单调递增,所以x=a时,f(x)的极小值为g(a)=f(a)=a ln a--a,由g(a)<b-a(2a2-2a+5)恒成立,即b>a ln a-恒成立.设h(x)=x ln x-(x>1),h'(x)=ln x-x+,令φ(x)=h'(x)=ln x-x+,当x∈(1,+∞)时,φ'(x)=-1<0,所以h'(x)在(1,+∞)单调递减,且h'(1)=>0,h'(2)=ln 2-(ln 6-ln e3)<0.所以∃x0∈(1,2),h'(x0)=ln x0-x0+=0,且x∈(1,x0),h'(x0)>0,x∈(x0,2),h'(x0)<0,所以h(x)max=h(x0)=x0ln x0-,因为ln x0=x0-,得h(x)max=-x0,其中x0∈(1,2),因为y=x2-x在(1,2)上单调递增,所以h(x)max∈-,0.因为b>h(x)max,b∈Z,所以b min=0.22.解(1)将C1的方程化为直角坐标方程为2+y2=1,即+y2=1.将x=ρcos θ,y=ρsin θ代入可得+(ρsin θ)2=1,化简得ρ2=.(2)根据题意,射线OB的极坐标方程为θ=α+或θ=α-.|OA|=ρ1=,|OB|=ρ2=.则|OA|·|OB|=ρ1·ρ2=,当且仅当sin2α=cos2α,即α=时,取得最小值.故|OA|·|OB|的最小值为.23.解(1)依题意,f(x)+|x-1|=|x-1|+|2x+1|+|x-1|=|2x-2|+|2x+1|≥|(2x-2)-(2x+1)|=3,当且仅当2x-2=-(2x+1),即x=时,等号成立.(2)①当1>-,即a>-2时,f(x)=-----则当x=-时,f(x)min=f-=--+1=2,故a=2.②当1<-,即a<-2时,f(x)=--------则当x=-时,f(x)min=f-=--=--1=2,故a=-6.③当1=-时,即a=-2时,f(x)=3|x-1|有最小值0,不符合题意,舍去.。

2018年高考文科数学全国卷3(含答案与解析)

2018年高考文科数学全国卷3(含答案与解析)

2018年高考文科数学全国卷3(含答案与解析)2018年普通高等学校招生全国统一考试课标全国卷III数学(文科)本试卷满分150分,考试时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合$A=\{x|x-1\geq0\}$,$B=\{0,1,2\}$,则$AB=$A。

$\emptyset$ B。

$\{1\}$ C。

$\{1,2\}$ D。

$\{0,1,2\}$2.$(1+i)(2-i)=$A。

$-3-i$ B。

$-3+i$ C。

$3-i$ D。

$3+i$3.中国古建筑借助榫卯将木构件连接起来。

构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头。

若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是ABCD4.若$\sin\alpha=\frac{1}{3}$,则$\cos2\alpha=$A。

$\frac{8}{9}$ B。

$\frac{7}{99}$ C。

$-\frac{7}{9}$ D。

$-\frac{8}{9}$5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A。

0.3 B。

0.4 C。

0.6 D。

0.76.函数$f(x)=\frac{\tan x}{1+\tan^2x}$的最小正周期为A。

$\frac{\pi}{4}$ B。

$\frac{\pi}{2}$ C。

$\pi$ D。

$2\pi$7.下列函数中,其图象与函数$y=\ln x$的图象关于直线$x=1$对称的是A。

$y=\ln(1-x)$ B。

$y=\ln(2-x)$ C。

$y=\ln(1+x)$ D。

$y=\ln(2+x)$成任务的时间,得到以下数据:第一组:12.15.13.14.16.18.17.14.16.15.13.12.14.15.13.16.17.14.15.13第二组:16.17.14.18.15.16.13.14.15.16.17.15.14.16.15.17.15.16.18.141)分别计算两组工人完成任务的平均时间和标准差;2)根据以上数据,判断两种生产方式哪一种更有效,并说明理由.19.(12分)已知函数f(x)在区间[0,1]上连续,且f(0)=f(1)=0.证明:对于任意正整数n。

2018年高等学校招生全国统一考试押题卷文科数学试卷(三)含解析

2018年高等学校招生全国统一考试押题卷文科数学试卷(三)含解析

【答案】 C
【解析】 函数 f x asin x b cosx( x R ),若 x x0 是函数 f x 的一条对称轴,
则 x x0 是 函 数 f x 的 一 个 极 值 点 , f x a cos x bsin x , 根 据 题 意 有
f x0 a cosx0 b sin x0 0 ,又 tan x0 2 ,故 a b tan x 0 2b ,结合选项,点 a, b
2
2 m 3 18≤18 ,当且仅当 m 3 , n 6 等号
成立,故选 B.
8.已知函数 f x a sin x bcosx ( x R ),若 x x0 是函数 f x 的一条对称轴,
且 tan x0 2 ,则 a,b 所在的直线为(

A. 2x y 0
B. x 2y 0
C. x 2 y 0
D. 2x y 0
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用
2B 铅笔涂黑。答案
写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无
效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中, 只有一项是符合题目要求的。 1.已知全集 U 1,2,3, 4 ,若 A 1,3 , B 3 ,则 痧U A U B 等于( )
号 位
封座




场 考

装号 证 考 准


名 姓 此
级 班
绝密 ★ 启用前
2018 年普通高等学校招生全国统一考试押题卷
文科数学(三)
本试题卷共 2 页, 23 题(含选考题) 。全卷满分 150 分。考试用时 120 分钟。

2018年高考第三次模拟考试文科数学试卷及答案

2018年高考第三次模拟考试文科数学试卷及答案

** 2017—2018学年度高三年级第三次模拟考试;;文科数学试卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}13,0M x x N x x =-≤<=<,则集合()R M C N ⋂=( )A .{}03x x ≤<B .{}10x x -≤< C.{}1x x <- D .{1x x <-或}0x ≥ 2.复数z 满足()234i z i --=+(i 为虚数单位),则z =( ) A .2i -+ B .2i - C. 2i -- D .2i +3.如图反映了全国从2013年到2017年快递业务量及其增长速度的变化情况,以下结论正确的是( )A.快递业务量逐年减少,增长速度呈现上升趋势B.快递业务量逐年减少,增长速度呈现下降趋势C.快递业务量逐年增加,增长速度呈现上升趋势D.快递业务量逐年增加,增长速度呈现下降趋势4.已知tan 16πα⎛⎫+= ⎪⎝⎭,则tan 6πα⎛⎫-= ⎪⎝⎭( )A .2.2--2-+.2 5.已知双曲线()2222:10,0x y E a b a b-=>>的两条渐近线分别为12,l l ,若E 的一个焦点F 关于1l 的对称点F '在2l 上,则E 的离心率为( )A B . D 6.某几何体的三视图如图所示,则该几何体的体积为( )A .6B .7 C. 152 D .2337.已知函数()()sin 203f x x πωωω⎛⎫=+-> ⎪⎝⎭的图象与x 轴相切,则()f π=( )A .32-B .12-1- D .1- 8.已知,αβ是两个平面,,m n 是两条直线,下列命题中正确的是( )A .若,,m n m n αβ⊥⊂⊂,则αβ⊥B .若//,//,//m n αβαβ,则//m n C. 若//,,m n m n αβ⊂⊂,则//αβ D .若,,m n αβαβ⊥⊥⊥,则m n ⊥ 9.利用随机模拟的方法可以估计圆周率π的值,为此设计如图所示的程序框图,其中()rand 表示产生区间[]0,1上的均匀随机数(实数),若输出的结果为786,则由此可估计π的近似值为( )A .3.134B .3.141 C.3.144 D .3.147 10.已知233,log 3,log 42a b c ===,则,,a b c 的大小关系是( )A .a b c <<B .b c a << C. c a b << D .c b a <<11.设ABC ∆的内角,,A B C 的对边分别为,,a b c ,24c b ==,角A 的内角平分线交BC 于点D ,且AD cos A =( )A .716-B .78-C. D .916-12.设函数()()2211x x f x e x e-=++-,则使得()()23f x f x >+成立的x 的取值范围是( )A .()(),13,-∞-⋃+∞B .()1,3- C.()1,3,3⎛⎫-∞-⋃+∞ ⎪⎝⎭ D .1,33⎛⎫- ⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()2,0,0,xx f x x ⎧<⎪=⎨≥⎪⎩,若()()112f f -+=,则a =.14.设,x y 满足约束条件10,240,x y x y --≤⎧⎨+-≥⎩若2z x y =-+,则z 的最小值为.15.已知P 是抛物线24y x =上任意一点,Q 是圆()2241x y -+=上任意一点,则PQ 的最小值为. 16.在ABC ∆中,点G 满足0GA GB GC ++= .若存在点O ,使得()0OG BC λλ=>,且()0OA mOB nOC mn =+>,则m n -的取值范围是.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列{}n a 是等差数列,{}n b 是等比数列,111,2a b ==,22337,13a b a b +=+=. (1)求{}n a 和{}n b 的通项公式;(2)若,,n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n c 的前2n 项和2n S .18. 某球迷为了解,A B 两支球队的攻击能力,从本赛季常规赛中随机调查了20场与这两支球队有关的比赛.两队所得分数分别如下:A 球队:122 110 105 105 109 101 107 129 115 100114 118 118 104 93 120 96 102 105 83B 球队:114 114 110 108 103 117 93 124 75 10691 81 107 112 107 101 106 120 107 79(1)根据两组数据完成两队所得分数的茎叶图,并通过茎叶图比较两支球队所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可); (2)现将球队的攻击能力从低到高分为三个等级:根据两支球队所得分数,估计哪一支球队的攻击能力等级为较弱的概率更大一些,并说明理由. 19.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,90BAC PAD PCD ∠=∠=∠=︒.(1)求证:平面PAB ⊥平面ABCD ;(2)若2,4AB AC PA ===,E 为棱PB 上的点,若//PD 平面ACE ,求点P 到平面ACE 的距离. 20.已知点,A B 分别是x 轴,y 轴上的动点,且3AB =,点P 满足2BP PA =,点P 的轨迹为曲线Γ,O为坐标原点. (1)求Γ的方程;(2)设点P 在第一象限,直线AB 与Γ的另一个交点为Q ,当POB ∆的面积最大时,求PQ . 21.已知0a >,函数()4ln 21f x a x x =+-+. (1)若()f x 的图象与x 轴相切于()1,0,求a 的值; (2)若()y f x =有三个不同的零点,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程已知点A 在椭圆22:24C x y +=上,将射线OA 绕原点O 逆时针旋转2π,所得射线OB 交直线:2l y =于点B .以O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求椭圆C 和直线l 的极坐标方程;(2)证明::Rt OAB ∆中,斜边AB 上的高h 为定值,并求该定值. 23.选修4-5:不等式选讲 已知函数()123f x x x =---. (1)求不等式()0f x ≥的解集;(2)设()()()g x f x f x =+-,求()g x 的最大值.试卷答案一、选择题1-5: DBBAC 6-10: BDCBA 11、12:CA 二、填空题13.1- 16.12π 三、解答题17.解:(Ⅰ)由3a -3bcos C =csin B 及正弦定理得,3sin A -3sin Bcos C =sin Csin B ,因为sin A =sin (B +C)=sin Bcos C +sin Ccos B , 所以3sin Ccos B =sin Csin B . 因为sin C ≠0,所以tan B =3, 又因为B 为三角形的内角, 所以B = π3.(Ⅱ)由a ,b ,c 成等差数列得a +c =2b =4, 由余弦定理得a 2+c 2-2accos B =b 2, 即a 2+c 2-ac =4, 所以(a +c)2-3ac =4, 从而有ac =4.故S △ABC =12acsin B =3.(18)解:(Ⅰ)(ⅰ)由图中表格可知,样本中每周使用移动支付次数超过3次的男用户有45人, 女用户30人,在这75人中,按性别用分层抽样的方法随机抽取5名用户,其中男用户有3人,女用户有2人.…2分(ⅱ)记抽取的3名男用户分别A ,B ,C ;女用户分别记为d ,e . 再从这5名用户随机抽取2名用户,共包含 (A ,B),(A ,C),(A ,d),(A ,e),(B ,C), (B ,d),(B ,e),(C ,d),(C ,e),(d ,e),10种等可能的结果,其中既有男用户又有女用户这一事件包含(A ,d),(A ,e), (B ,d),(B ,e),(C ,d),(C ,e),共计6种等可能的结果, 由古典概型的计算公式可得P = 6 10= 35.(Ⅱ)由图中表格可得列联表将列联表中的数据代入公式计算得k =n(ad -bc)2(a +b)(c +d)(a +c)(b +d)=100(45×15-30×10)225×75×55×45≈3.03<3.841,所以,在犯错误概率不超过0.05的前提下,不能认为是否喜欢使用移动支付与性别有关.(19)解:(Ⅰ)因为平面ABCD ⊥平面CDEF , 平面ABCD ∩平面CDEF =CD ,AD ⊥CD , 所以AD ⊥平面CDEF ,又CF 平面CDEF , 则AD ⊥CF .又因为AE ⊥CF ,AD ∩AE =A , 所以CF ⊥平面AED ,DE 平面AED , 从而有CF ⊥DE .(Ⅱ)连接FA ,FD ,过F 作FM ⊥CD 于M , 因为平面ABCD ⊥平面CDEF 且交线为CD ,FM ⊥CD , 所以FM ⊥平面ABCD .因为CF =DE ,DC =2EF =4,且CF ⊥DE , 所以FM =CM =1,所以五面体的体积V =V F -ABCD +V A -DEF =163+ 4 3=203.(20)解:(Ⅰ)由题设可知k ≠0,所以直线m 的方程为y =kx +2,与y 2=4x 联立, 整理得ky 2-4y +8=0,① 由Δ1=16-32k >0,解得k < 12.直线n 的方程为y =- 1 k x +2,与y 2=4x 联立,整理得y 2+4ky -8k =0,由Δ2=16k 2+32k >0,解得k >0或k <-2.所以⎩⎨⎧k ≠0,k < 1 2,k >0或k <-2,故k 的取值范围为{k|k <-2或0<k < 12}.(Ⅱ)设A(x 1,y 1),B(x 2,y 2),M(x 0,y 0).由①得,y 1+y 2= 4 k ,则y 0= 2 k ,x 0= 2 k 2- 2 k ,则M ( 2 k 2- 2 k , 2k ).同理可得N(2k 2+2k ,-2k).直线MQ 的斜率k MQ =2k 2k 2-2k -2=-kk 2+k -1,直线NQ 的斜率k NQ =-2k 2k 2+2k -2=-kk 2+k -1=k MQ ,所以直线MN 过定点Q(2,0).(21)解:(Ⅰ)由f (x)=e xsin x -ax ,得f (0)=0. 由f (x)=e x(cos x +sin x)-a ,得f (0)=1-a , 则1-a =-a2,解得a =2.(Ⅱ)由(Ⅰ)得f (x)=e x(cos x +sin x)-a , 令g (x)=f (x),则g (x)=2e xcos x ,所以x ∈[0,2]时,g (x)≥0,g (x)单调递增,f (x)单调递增.(ⅰ)当a ≤1时,f (0)=1-a ≥0,所以f (x)≥f (0)≥0,f (x)单调递增, 又f (0)=0,所以f (x)≥0.(ⅱ)当a ≥e π2时,f ( 2)≤0,所以f (x)≤f (2)≤0,f (x)单调递减,又f (0)=0,所以f (x)≤0,故此时舍去.(ⅲ)当1<a <e π2时,f (0)<0,f ( 2)>0,所以存在x 0∈(0,2),使得f (x 0)=0,所以x ∈(0,x 0)时,f (x)<0,f (x)单调递减, 又f (0)=0,所以f (x)≤0,故此时舍去. 综上,a 的取值范围是a ≤1.(22)解:(Ⅰ)由A (6,3π4)得直线OA 的倾斜角为3π4, 所以直线OA 斜率为tan3π4=-1,即OA :x +y =0. 由x =ρcos α,y =ρsin α可得A 的直角坐标为(-3,3), 因为椭圆C 关于坐标轴对称,且B(23,0), 所以可设C :x 212+y2t=1,其中t >0且t ≠12,将A(-3,3)代入C ,可得t =4,故椭圆C 的方程为x 212+y24=1,所以椭圆C 的参数方程为⎩⎨⎧x =23cos α,y =2sin α(α为参数).(Ⅱ)由(Ⅰ)得M(23cos α,2sin α),0<α<π2.点M 到直线OA 的距离d =6cos α+2sin α. 所以S =S △MOA +S △MOB =(3cos α+3sin α)+23sin α =3cos α+33sin α =6sin (α+ π6),所以当α= π3时,四边形OAMB 面积S 取得最大值6.(23)解:(Ⅰ)不等式|x +1|-|x -1|≥x 2+3x -2等价于⎩⎨⎧x >1,2≥x 2+3x -2,或⎩⎨⎧-1≤x≤1,2x ≥x 2+3x -2,或⎩⎨⎧x <-1,-2≥x 2+3x -2.解得 ,或-1≤x≤1,或-3≤x<-1.所以不等式f (x)≥g (x)的解集是{x|-3≤x≤1}.(Ⅱ)x ∈[-1,1],令F (x)=g (x)-f (x)=x 2+(a -2)x -2 不等式f (x)≥g (x)的解集包含[-1,1]等价于⎩⎨⎧F (1)=a -3≤0,F (-1)=1-a ≤0,解得1≤a ≤3, 所以a 的取值范围为[1,3].。

2018年普通高等学校招生全国统一考试考前适应性试题(三)数学(文)含答案解析

2018年普通高等学校招生全国统一考试考前适应性试题(三)数学(文)含答案解析

绝密 ★ 启用前2018届高考考前适应性试卷文 科 数 学(三)注意事项:、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}220M x x x =->,{}2,1,0,1,2N =--,则等于MN =( )A .∅B .{}1C .{}0,1D .{}1,0,1-【答案】B【解析】由M 中不等式变形得()20x x -<,解得02x <<,即()02M =,,{}1MN ∴=,故选B .2.下列命题中,x ,y 为复数,则正确命题的个数是( )①若220x y +=,则0x y ==;②若i x a =+,i y b =+,a ,b ∈R 且a b >,则x y >;③i 1i x y +=+的充要条件是1x y ==. A .0 B .1 C .2D .3【答案】A卷只装订不密封姓名 准考证号 考场号 座位号【解析】由x ,y 在复数集中可得,对于①,若220x y +=,则0x y ==,错误,如1x =,i y =,故①错误;②中的复数不能比较大小,故②错误.③i 1i x y +=+中i x =,i y =-时也成立,故③错误.故选A .3.设n S 为等比数列{}n a的前n 项和,4816a a =,则63S S =( )A .98B .9C .98或78D .9或7-【答案】C【解析】根据题意,在等比数列{}n a中有4116q =,解得12q =或12-,则6398S S =或78.故选C .4.某几何体的三视图如图所示,则其体积为( )12正视图侧视图A .4B .8C .12D .24【答案】A【解析】由三视图可知:该几何体为四棱锥,由体积公式易得()()111232134322V ⎡⎤=⨯+⨯⨯=⎢⎥⎣⎦.故选A .5.已知1tan 4tan θθ+=,则2πcos 4θ⎛⎫+= ⎪⎝⎭( ) A .12B .13C .14D .15【答案】C【解析】根据诱导公式得到2π1sin 2cos 42θθ-⎛⎫+= ⎪⎝⎭,1sin cos 1tan 4sin 2tan cos sin 2θθθθθθθ+==+⇒=, 结合两式得到2π1cos 44θ⎛⎫+=⎪⎝⎭.故答案为:C . 6.已知函数()22f x x x=+,执行如图所示的程序框图,则输出的k 值是( )A .4B .5C .6D .8【答案】C【解析】()22f x x x=+,()111122f x x x ⎛⎫∴=- ⎪+⎝⎭,从而模拟程序运行,可得程序框图的功能是求111111112511232221242S k k k k ⎛⎫⎛⎫=-++-=+-->⎪ ⎪+++⎝⎭⎝⎭时k 的最小值,解得5k >,k ∈N ,则输出k 的值是6.故选C .7.如图,在圆O 中,若3AB =,4AC =,则AO BC ⋅的值等于( )A .8-B .72-C .72D .8【答案】C【解析】如图所示,过点O 作OD BC ⊥交BC 于点D ,连接AD ,则D 为BC 的中点,0OD BC ⋅=, ∴()12AD AC AB =+.又AO AD DO =+,BC AC AB =-,()()()12AO BC AD DO BC AD BC AC AB AC AB⋅=+⋅=⋅=+⋅-()()222211743222AC AB =-=⋅-=,故选C .8.实数a ,b ,c 满足221a a c b =+--且210a b ++=,则下列关系式成立的是( )A .c b a >>B .c a b >>C .a c b >>D .c a b >>【答案】A【解析】∵210a b ++=,∴211a b --≤-=,又∵221a a c b =+--,∴()2120a cb -=-≥>,∴c b >,∴22131024b a b b b ⎛⎫-=++=++> ⎪⎝⎭,∴b a >,综上,可得c b a >>.故选A .9.已知变量x ,y 满足约束条件302303x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则112y x ≥+的概率是( )A .34B .35C .12D .59【答案】D【解析】由变量x ,y 满足约束条件302303x y x y x +-≥-+≥≤⎧⎪⎨⎪⎩,画出可行域如图所示,则112y x ≥+的几何意义是可行域内的点与()10Q -,连线的斜率不小于12,由图形可知,直线3x =与直线210x y -+=的交点为()32B ,,直线230x y -+=与3x =的交点为()33C ,,∴112y x <+的概率是2249AB AC =,则112y x ≥+的概率是45199-=.故选D .10.已知()f x 是定义在R 上的奇函数,当0x >时,()22x f x x =+,则不等式()213f x -<的解集为( )A .()1-∞,B .()2-∞,C .()22-,D .()12-,【答案】A 【解析】由于()f x 是定义在R 上的奇函数,∴()00f =,且在(0+∞,)上为增函数,∴()f x 是R 上的增函数,∵()13f =,所以()()211f x f -<,∴211x -<,∴1x <.故选A .11.如图,在底面为矩形的四棱锥E ABCD -中,DE ⊥平面ABCD ,F ,G 分别为棱DE ,AB 上一点,已知3CD DE ==,4BC =,1DF =,且FG ∥平面BCE ,四面体A FDG -的每个顶点都在球O 的表面上,则球O 的表面积为( )AB DFEGA .12πB .16πC .18πD .20π【答案】C【解析】在棱CD 上取一点H ,使得1HD =,CD DE =,FH CE ∴∥,则FH ∥平面BCE , 又FG ∥平面BCE ,FGFH F =,∴平面FGH ∥平面BCE ,又平面FGH 平面ABCD GH =,平面BCE平面ABCD BC =,BC GH ∴∥,1AG HD ∴==,故四面体A FDG -可以补成一个长方体,且长,宽,高分别为4,1,1,所以球O 的表面积为22221144π18π++=.故选C .A BD CFEGH12.在双曲线2222:1(00)x y C a b a b -=>>,的右支上存在点A ,使得点A 与双曲线的左、右焦点1F ,2F 形成的三角形的内切圆P 的半径为a ,若12AF F △的重心G 满足12PG F F ∥,则双曲线C 的离心率为( ) ABC .2D【答案】C 【解析】如图,由PG 平行于x 轴得G P y y a ==,则33A G y y a ==,所以12AF F △的面积()121123222S c a AF AF c a =⋅⋅=⋅++⋅,又122AF AF a-=,则12AF c a=+,22AF c a=-,由焦半径公式1AAF a ex =+,得2A x a =,因此()23A a a ,代入双曲线方程得2222491a a a b -=,可得b =,2c a ==,即2ce a ==.故选C .第Ⅱ卷卷包括必考题和选考题两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2018届普通高等学校招生全国统一考试仿真卷文科数学(三)本试题卷共2页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合{}|11A x x =-<<,{}|02B x x =<<,则A B = () A .{}|11x x -<< B .{}|12x x -<< C .{}|02x x <<D .{}|01x x <<2.设复数12i z =+(是虚数单位),则在复平面内,复数2z 对应的点的坐标为() A .()3,4-B .()5,4C .()3,2-D .()3,43.若向量()1,1,2=-a ,()2,1,3=-b ,则AB .C .3D4.某几何体的三视图如图所示,则该几何体的表面积为()A .52π+B .42π+C .44π+D .54π+5.已知双曲线22221x y a b-=()0,0a b >>的一个焦点为()2,0F -,,则该双曲线的方程为()A .2213x y -=B .2213y x -=C .2213y x -=D .2213x y -=6()102f =-,则图中m 的值为()A .1B .43C .2D .43或2 7.在ABC △中,内角A ,B ,C 的对边分别为,,,若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是()A B C D 8.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:sin150.2588≈ ,sin7.50.1305≈ )A .12B .20C .24D .489.设π02x <<,则“2cos x x <”是“cos x x <”的() A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件10.欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为()ABC .19D11.已知点()4,3A 和点()1,2B ,点OA.B .5 C .3 D12.已知函数()f x =()2220 1102x xx f x x +--+<⎧⎪⎨⎪⎩≤≤≤,则关于的方程()15x f x -=在[]2,2-上的根的个数为() A .3 B .4C .5D .6第Ⅱ卷本卷包括必考题和选考题两部分。

第(13)~(21)题为必考题,每个试题考生都必须作答。

第(22)~(23)题为选考题,考生根据要求作答。

二、填空题:本大题共4小题,每小题5分。

13.已知实数,y 满足约束条件01 0x y x y x ⎧⎪⎩-⎪+⎨≤≤≥,则2z x y =+的最大值_______.14.如果1P ,2P ,…,10P 是抛物线C :24y x =上的点,它们的横坐标依次为1x ,2x ,…,10x ,是抛物线C 的焦点,若121010x x x +++= ,则1210PF P F P F +++= _________.15.已知ABC △的内角A ,B ,C 的对边分别为,,,若1cos 4B =,4b =,sin 2sin AC =,则ABC △的面积为__________.16.已知四棱椎P ABCD -中,底面ABCD 是边长为2的菱形,且PA PD ⊥,则四棱锥P ABCD -体积的最大值为________.三、解答题:解答应写出文字说明、证明过程或演算步骤。

17.已知数列{}n a 是等差数列,21a t t =-,24a =,23a t t =+. (1)求数列{}n a 的通项公式;(2)若数列{}n a 为递增数列,数列{}n b 满足2log n n b a =,求数列(){}1n n a b -的前项和n S .18.“双十二”是继“双十一”之后的又一个网购狂欢节,为了刺激“双十二”的消费,某电子商务公司决定对“双十一”的网购者发放电子优惠券.为此,公司从“双十一”的网购消0.1,0.2,费者中用随机抽样的方法抽取了100人,将其购物金额(单位:万元)按照[) [)0.2,0.3,,[]0.9,1分组,得到如下频率分布直方图:根据调查,该电子商务公司制定了发放电子优惠券的办法如下:(1)求购物者获得电子优惠券金额的平均数;(2)从这100名购物金额不少于0.8万元的人中任取2人,求这两人的购物金额在0.8~0.9万元的概率.19.如图,已知直三棱柱111ABC A B C -的侧面是正方形11ACC A ,4AC =,3BC =,M 在棱1CC 上,且13C M MC =. (1)证明:平面1ABC ⊥平面1A BC ;(2)若平面1A BM 将该三棱柱分成上、下两部分的体积分别记为1V 和2V ,求12V V 的值.20.已知椭圆C ()0,1P ,离心率e =(1)求C 的方程;(2)设直线经过点()2,1Q -且与C 相交于A ,B 两点(异于点P ),记直线PA 的斜率为1k ,直线PB 的斜率为2k ,证明:12k k +为定值.21.已知函数()2ln f x x ax x =-+,a ∈R . (1)讨论函数()f x 的单调性;(2)已知0a >,若函数()0f x ≤恒成立,试确定的取值范围.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C :2cos sin x y θθ=⎧⎨=⎩(为参数),在以O 为极点,轴的非负半轴为极轴的极坐标系中,曲线2C :()cos sin 4p θθ-=. (1)写出曲线1C 和2C 的普通方程;(2)若曲线1C 上有一动点M ,曲线2C 上有一动点N ,求使MN 最小时M 点的坐标.23.已知是常数,对任意实数,不等式1212x x a x x +--≤≤++-恒成立. (1)求的取值集合;(2)设0m n >>绝密★启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(三)答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分1.D 2.A 3.D 4.C 5.B 6.B 7.C8.C9.A10.B11.D12.D第Ⅱ卷本卷包括必考题和选考题两部分。

第(13)~(21)题为必考题,每个试题考生都必须作答。

第(22)~(23)题为选考题,考生根据要求作答。

二、填空题:本大题共4小题,每小题5分。

13.2 14.20 1516.43三、解答题:解答应写出文字说明、证明过程或演算步骤。

17.【答案】(1)2n a n =;(2)()1654209n nn S +-+=. 【解析】(1)由题意得22228t t t t t -++==,所以2t =±,···········2分2t =时,12a =,公差2d =,所以2n a n =;···········4分 2t =-时,16a =,公差2d =-,所以82n a n =-.···········6分 (2)若数列{}n a 为递增数列,则2n a n =, 所以2log 2n b n =,4n n b =,()()1214n n n a b n -=-⋅,···········8分 所以()()231143454234214n n n S n n -=⋅+⋅+⋅++-⋅+-⋅ ,·········9分()()23414143454234214n n n S n n +=⋅+⋅+⋅++-⋅+-⋅ , 所以()23134242424214n n n S n +-=+⋅+⋅++⋅--⋅()()211414422143n n n -+-=+⨯---()1206543n n +---=,···········10分所以()1654209n nn S +-+=.···········12分 18.【答案】(1)64(元);(2)1021. 【解析】(1)购物者获得50元优惠券的概率为:()1.52 2.50.10.6++⨯=,····1分 购物者获得100元优惠券的概率为:()1.50.50.10.2+⨯=,···········2分 购物者获得200元优惠券的概率为:()0.50.20.10.07+⨯=,···········3分 ∴获得优惠券金额的平均数为:500.61000.22000.0764⨯+⨯+⨯=(元).····6分 (2)这100名购物者购物金额不少于0.8万元的共有7人,不妨记为A ,B ,C ,D ,E ,F ,G ,其中购物金额在0.8~0.9万元有5人(为A ,B ,C ,D ,E ),利用画树状图或列表的办法易知从购物金额不少于0.8万元7人中选2人,有21种可能;这两人来自于购物金额在0.8~0.9万元的5人,共有10种可能, 所以,相应的概率为1021.···········12分 19.【答案】(1)证明见解析;(2)75. 【解析】(1)证明:因为111ABC A B C -是直三棱柱,所以1CC ⊥底面ABC ,所以1CC BC ⊥,BC AC ⊥,且1CC AC C = ,所以11BC ACC A ⊥平面,···3分 ∴1BC AC ⊥,又11A C AC ⊥,且1AC BC C = ,所以1AC ⊥平面1A BC ,····6分 又1AC ⊂平面1ABC ,所以平面1ABC ⊥平面1A BC .···········7分(2)解:因为()1111343141432A BMC B V V -+⨯==⨯⨯=,···········9分 V 柱体1434242⎛⎫=⨯⨯⨯= ⎪⎝⎭,···········11分 所以1241410V =-=,12147105V V ==.···········12分 20.【答案】(1)2214x y +=;(2)见解析. 【解析】(1)因为椭圆()2222:10x y C a b a b+=>>经过点()0,1P , 所以1b =.···········1分又e =c a =2a =.···········3分 故而可得椭圆的标准方程为:2214x y +=.···········4分(2)若直线AB 的斜率不存在,则直线的方程为2x =,此时直线与椭圆相切,不符合题意.···········5分设直线AB 的方程为()12y k x +=-,即21y kx k =--,···········7分()()2221482116160k x k k x k k +-+++=.···········8分 设()11,A x y ,()22,B x y ,则12121211y y k k x x --+=+=()()2112122222x kx k x kx k x x --+-- ()()121212222kx x k x x x x -++==()()1212222k x x k x x ++- ()()()228212161k k k k k k +⋅+=-=+()2211k k -+=-, 所以12k k +为定值,且定值为1-.···········12分21.【答案】(1)答案见解析;(2)[)1,+∞.【解析】(1)由()2ln f x x ax x =-+,得:0x >,······1分 当0a ≤时,()0f x '>在()0,+∞上恒成立,函数()f x 在()0,+∞上单调递增;···········3分当0a >时,令()'0f x =,则2210ax x -++=,得1x =,2x = ∵12102x x a =-<,∴120x x <<, ∴令()0f x '>得()20,x x ∈,令()0f x '<得()2,x x ∈+∞,∴()f x在⎛ ⎝⎭上单调递增,在⎫+∞⎪⎪⎝⎭上单调递减.········6分(2)由(1)可知,当0a >时,函数()f x 在()20,x 上单调递增,在()2,x +∞上单调递减, ∴()()2max f x f x =,即需()20f x ≤,即2222ln 0x ax x -+≤,···········8分 又由()20f x '=得22212x ax +=,代入上面的不等式得222ln 1x x +≤,···········9分 由函数()2ln h x x x =+在()0,+∞上单调递增,()11h =,所以201x <≤,·······10分所以的取值范围是[)1,a ∈+∞.···········12分请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。

相关文档
最新文档