脱硫系统介绍
脱硫系统介绍
影响SO2排放指标的主要因素是原煤硫份的降低。燃 煤采购质量严格按照“硫分不高于0.8%,灰分不高于 25%”的标准进行控制,这个标准是“红线”不能逾 越。输煤专业按照这个标准应对来煤中超标矿点和煤 种进行统计整理、沟通,避免超标煤到厂,同时合理 进行来煤的配比工作,最大限度控制上煤不超标。
石灰石品质:脱硫值班员未到达料场前,不得进行卸车, 否则不予取样。车辆卸料后,脱硫值班员先对来料进行目 测验收,如发现来料潮湿、颗粒超标、杂质过多,脱硫值 班员有权对来料进行拒收,并电话通知运行部专业主管和 物资部。按规定进行取样后送交化验班进行检验,在化验 结果出具前来料不允许进行堆放及脱硫系统上料。化验班 接到石灰石样品并化验完成后,将化验结果通知值班员及 专业主管,合格来料值班员根据石灰石料仓料位情况通知 将合格的石料上至脱硫石灰石上料系统,不合格来料通知 专业主管、物资相关负责人。
石灰石-石膏化学反应原理
吸收塔中的SO2的脱除原理如下: 烟气中的SO2与浆液中碳酸钙发生反应,生成亚硫酸钙: CaCO3+SO2+H2O→CaSO3½ H2O↓+½ H2O+CO2 (1) 通过烟气中的氧和亚硫酸氢根的中间过渡反应,部分的亚硫酸钙转化 成石膏,化学上称作二水硫酸钙: CaSO3 ½ H2O + SO2 + H2O→ Ca(HSO3)2+½ H2O (2)
CaCO3 + 2HCl→CaCl2 + H2O + CO2 (6)
CaCO3 + 2HF→CaF2↓+H2O+CO2 (7)
第二章石灰石-石膏法湿式脱硫简介
石灰石-石膏法湿式烟气脱硫工艺,脱硫装置采用一炉一塔,每套脱硫装
脱硫系统的概念
脱硫系统的概念脱硫系统指的是一种用于去除燃煤和燃油中二氧化硫(SO2)的设备和处理工艺。
它是环保领域中常见的系统之一,用于减少工业和电力站的SO2排放量,从而降低大气污染和酸雨的发生。
脱硫系统的主要目标是将燃料中的SO2转化为无害的化合物或将其沉淀至废渣中。
这样可以达到减少SO2排放的效果,可以更好地保护环境和人类健康。
脱硫系统通常包括以下主要组成部分:1. 烟气净化塔:用于收集和处理燃料中的烟气。
烟气净化塔通常采用湿法脱硫技术,通过将烟气和吸收液接触反应,将其中的SO2捕获下来。
2. 吸收液储罐:用于存放和供应吸收液。
吸收液通常是一种含有氢氧化钙或氢氧化钠的碱性溶液,可以与SO2发生反应,形成硫酸钙或硫酸钠。
3. 喷淋层:位于烟气净化塔的顶部,用于将吸收液均匀地喷到烟气中。
喷淋层的设计和布置对脱硫效果有重要影响。
4. 反应塔或塔板:用于将烟气中的SO2与吸收液反应。
反应塔常常采用填料,并在填料上设置塔板,以增加接触面积和反应效果。
5. 脱湿系统:用于从脱硫后的烟气中除去水分。
脱硫后的烟气常常含有大量水分,需要通过脱湿系统进行处理,以满足烟气排放标准。
6. 废液处理系统:用于处理脱硫过程中产生的废液。
由于吸收液中含有浓度较高的硫酸钙或硫酸钠,需要将废液进行处理,以保证其环境安全。
此外,脱硫系统还可根据其工作原理和处理效果分为不同类型:1. 湿法脱硫系统:采用碱性吸收液进行处理,通过与SO2反应形成硫酸盐的形式将其去除。
2. 半干法脱硫系统:结合了湿法和干法脱硫技术,采用碱性溶液和干法吸附材料进行处理。
3. 干法脱硫系统:通过使用高温下的吸附剂将SO2吸附下来,达到脱硫效果。
总的来说,脱硫系统是一种用于去除燃煤和燃油中SO2的设备和处理工艺。
它在工业和电力站等领域起到重要的环保作用,可以减少大气污染和酸雨的发生。
脱硫系统的选择和设计需要考虑多个参数和工艺要求,以达到最佳的脱硫效果。
脱硫系统工作原理
脱硫系统工作原理
脱硫系统是燃煤电厂等工业设施中常用的空气污染治理设备,其工作原理主要包括湿法脱硫和干法脱硫两种方法。
湿法脱硫是指将烟气与碱性吸收剂(通常为石灰石浆或石灰浆)进行反应,将烟气中的二氧化硫(SO2)氧化生成硫酸,从而
达到脱硫的目的。
在湿法脱硫系统中,烟气首先经过除尘装置去除大部分的灰尘和颗粒物,然后进入脱硫塔。
脱硫塔一般由填料层、喷淋层和吸收液喷淋系统组成。
填料层用于增大烟气与吸收液的接触面积,促进气液反应;喷淋层通过将吸收液均匀喷淋到填料层上,使其与烟气充分接触。
在塔内,烟气与喷淋下来的吸收液接触反应,二氧化硫与吸收液中的氧气反应生成硫酸,并通过吸收液吸收和转化。
然后,脱硫后的烟气从脱硫塔顶部排出。
脱硫液在塔底收集后,经过泵送至脱硫液处理系统进行黏度控制、重金属去除等处理后,再循环使用。
脱硫液处理系统通常包括沉淀池、过滤器和浓缩装置。
干法脱硫是指利用吸附剂(如活性炭、硅酸盐等)直接与烟气中的二氧化硫发生反应,将其吸附或化学转化为相对稳定的产物,达到脱硫的目的。
在干法脱硫系统中,烟气经过除尘装置后进入脱硫塔。
脱硫塔内的吸附剂与烟气接触反应,吸附或化学吸收二氧化硫,生成稳定的化合物。
然后,经过特定的处理方法(如高温加热、
水洗等),去除并收集脱硫产物。
处理后的烟气从脱硫塔顶部排出。
脱硫系统不同的工作原理在脱硫效率、设备复杂度和操作条件等方面有所差异。
选择合适的脱硫方法需要考虑到烟气成分、处理效率要求、设备投资与运行成本等因素。
脱硫系统介绍PPT幻灯片
二、石灰石浆液制备系统
每台炉设二台100%容量石灰石浆液泵 (一运一备),每台出力30 m3/h,扬程 30m,本期共四台 (两台备用)。
由石灰石浆液泵供吸收塔补充与SO2反应 消耗了的吸收剂。
9
石 灰 石 制 备 系 统 流 程 图
10
三、烟气系统及设备
系统概述 主要设备
11
三、烟气系统及设备
3
湿 法 烟 气 脱 硫 系 统 流 程
4
二、石灰石贮存及石灰石浆液 制备系统
5
二、石灰石浆液制备系统
石灰石供应系统
石灰石块由卡车运到脱硫岛,直接倒入卸料斗,,上部设 钢格栅防止大块的石灰石进入设备。卸料斗的石灰石经振
动给料机稳流后送入斗式提升机垂直提升至石灰石筒仓的
仓顶,经斗式提升机出口的落料管,物料进入筒仓储存, 同时,仓顶装有一台袋式除尘器及真空压力释放阀、,设2 个出料口,筒仓储存可满足2×350MW机组燃用设计煤 种3天石灰石用量。石灰石筒仓底部成锥形。
三、烟气系统及设备
(一)脱硫风机(增压风机) 1.作用:用以克服FGD装置产生的流动阻力。 2.型式:动叶可调轴流式、静叶可调轴流式、离心
式。目前大多采用静叶可调式。 3.静叶可调轴流式脱硫风机的特点: 其气动性能介于离心式风机和动叶可调式轴流风
机之间。可输送含有灰分或腐蚀性的大流量气体, 具有优良的气动性能,高效节能,磨损小,寿命 长。其结构简单,运行可靠,安装维修方便,具 有良好的调节性能。
13
三、烟气系统及设备
(二)烟气挡板
FGD烟气挡板概况
14
三、烟气系统及设备
4.系统设计工作概况 当锅炉从35%MCR到BMCR工况条件下,
FGD装置的烟气系统都能正常运行,并且 在BMCR工况下进烟温度加10℃裕量条件 下仍能安全连续运行。当烟气温度超过限 定的温度时,烟气旁路系统启运。
脱硫系统介绍
精选ppt
7
二、石灰石浆液制备系统
我公司制浆系统设2台(套)湿式球磨机制 浆装置,系统包括:橡胶衬里、外壳、驱 动系统(包括电机联轴器、减速器和空气接 合器)、润滑系统(包括油冷却器和强制油润 滑系统)、冲洗装置和所有管道、阀门、斜 管、浆液分配槽。每台磨机出力12t/h,主 电机功率400KW,每套湿磨系统对应设1 套湿磨排浆罐及水力旋流分离器组,湿磨 排浆罐有效容积7m3,:设有搅拌器以防 止浆液沉积,
(二)烟气挡板
3.烟气挡板概况:
FGD入口原烟气挡板和出口净烟气挡板为带密封 气的单轴双挡板,具有100%的气密性。
每个挡板全套包括框架、挡板本体、电动执行器, 挡板密封系统及所有必需的密封件和控制件等。
挡板密封空气系统应包括密封风机及其密封空气 站。密封气压力至少维持比烟气最高压力高 500Pa,密封空气站配有电加热器。
精选ppt
15
三、烟气系统及设备
(一)脱硫风机(增压风机)
1.作用:用以克服FGD装置产生的流动阻力。
2.型式:动叶可调轴流式、静叶可调轴流式、离心 式。目前大多采用静叶可调式。
3.静叶可调轴流式脱硫风机的特点:
其气动性能介于离心式风机和动叶可调式轴流风 机之间。可输送含有灰分或腐蚀性的大流量气体, 具有优良的气动性能,高效节能,磨损小,寿命 长。其结构简单,运行可靠,安装维修方便,具 有良好的调节性能。
精选ppt
3
湿 法 烟 流气 程脱 硫 系 统
精选ppt
4
二、石灰石贮存及石灰石浆液 制备系统
精选ppt
5
二、石灰石浆液制备系统
石灰石供应系统
石灰石块由卡车运到脱硫岛,直接倒入卸料斗,,上部设 钢格栅防止大块的石灰石进入设备。卸料斗的石灰石经振 动给料机稳流后送入斗式提升机垂直提升至石灰石筒仓的 仓顶,经斗式提升机出口的落料管,物料进入筒仓储存, 同时,仓顶装有一台袋式除尘器及真空压力释放阀、,设2 个出料口,筒仓储存可满足2×350MW机组燃用设计煤 种3天石灰石用量。石灰石筒仓底部成锥形。
脱硫系统的工作原理
脱硫系统的工作原理
脱硫系统是一种用于降低烟气中二氧化硫(SO2)含量的设备,其工作原理可以分为湿法脱硫和干法脱硫两种。
湿法脱硫是利用水溶液与烟气中的二氧化硫进行反应,将其转化为硫酸盐等可溶于水的化合物,从而实现脱硫效果。
具体工作原理如下:
1. 烟气预处理:烟气从燃烧器流出后,经过除尘器去除其中的灰尘颗粒,以保证后续反应的顺利进行。
2. 吸收剂喷射:将脱硫剂溶液(如石灰石浆液)通过喷嘴雾化,使其与烟气充分接触混合。
3. 氧化反应:在吸收剂的作用下,二氧化硫与氧气发生氧化反应,生成二氧化硫酸气体(SO3)。
4. 过滤处理:通过过滤器,将烟气中的微小颗粒和尘埃去除,以保证后续处理的干净程度。
5. 反应床:二氧化硫酸与吸收剂中的石灰石反应,生成硫酸钙(CaSO4),即石膏,这一过程称为石膏化反应。
6. 脱水处理:通过机械手段将湿石膏除水,得到可用于其他用途的干燥石膏。
干法脱硫是利用吸附剂对烟气中的二氧化硫进行吸附,从而实现脱硫效果。
具体工作原理如下:
1. 烟气预处理:与湿法脱硫相同,需要通过除尘器去除烟气中的灰尘颗粒。
2. 干法吸附:烟气与吸附剂(如活性炭、酸性氧化剂等)接触,吸附剂将烟气中的二氧化硫捕捉在表面形成化合物。
3. 再生回收:吸附剂中的化合物被加热蒸发或洗涤反应回收,
在经过再生后可重复使用。
总的来说,脱硫系统通过湿法脱硫或干法脱硫的工艺,利用吸收剂或吸附剂与烟气中的二氧化硫发生化学反应,使其转化为其他形式的化合物,从而实现对烟气中SO2含量的降低。
脱硫系统简介
3、净烟气挡板3/4单轴双密封百叶窗式挡板 、净烟气挡板 单轴双密封百叶窗式挡板 5250mm(高)×6100mm(宽)×400(厚)工作温度 正 工作温度: 高× ( ( 关闭时,烟囱侧 设计压力- 常50°C,关闭时 烟囱侧 ° 关闭时 烟囱侧180°C设计压力-2000/+ ° 设计压力 + 5000Pa采用电动执行机构 启闭时间 正常 秒 采用电动执行机构, 正常:40秒 采用电动执行机构 启闭时间,正常 4、旁路烟气挡板3/4单轴双密封百叶窗式挡板 、旁路烟气挡板 单轴双密封百叶窗式挡板 8000mm(高)×5250mm(宽)×400(厚)工作温度: 工作温度: 高× ( ( 净烟气侧正常50° 原烟气侧 90-180°C, 正常 ° 正常135°C;净烟气侧正常 °C ° 净烟气侧正常 设计压力:- :-2000/+5000Pa;采用电动执行机构 启闭 设计压力:- + ;采用电动执行机构, 时间,正常 正常20秒 时间 正常 秒。
吸 收 塔 喷 淋 层
除 雾 器 及 冲 洗
浆 液 循 环 泵
石灰石浆液制备系统设备参数(续) 氧化风机
吸收塔系统设备参数
1. 浆液循环泵:离心式, 配机械密封;型号: 浆液循环泵:离心式 配机械密封;型号: LC550/750IIQ=6227m3/h,H=21.5/23.5/24.4m N=494/539/560KW • 配套电动机型号:YKK450-4。功率:560/630/630KW 配套电动机型号: 。功率: 2、吸收塔搅拌器型号:1VSF-18.5;侧进式 、吸收塔搅拌器型号: ;侧进式,N=15KW;密 ; 封型号: 封型号:单端面机械密封 • 配套电动机电机型号:功率:18.5KW, 380V 配套电动机电机型号:功率: 3、除雾器第一级:MEV40第一级:MEV25平板型; 第一级: 平板型; 、除雾器第一级: 第一级 平板型 Φ12.6m
脱硫工艺系统介绍
脱硫工艺系统介绍脱硫工艺系统主要包括湿法脱硫和干法脱硫两种方式。
湿法脱硫是通过将燃烧废气与碱性洗涤液接触,使二氧化硫气体与洗涤液中的碱性成分发生化学反应,生成硫酸盐或硫酸,然后将副产品分离并处理。
干法脱硫则是通过与洗涤剂触摸或反应,将SOx转变为其它化合物,如硫酸盐、硫酸酯或硫氧化物。
湿法脱硫工艺系统主要包括石灰石-石膏法、海水脱硫法、氨法等。
石灰石-石膏法是最常用的湿法脱硫工艺,它基于石灰石与硫酸钙(石膏)的化学反应,将二氧化硫转化成硫酸钙。
这种工艺具有成熟的技术和低成本的优点,但也存在对原料石灰石和产生的废水的处理问题。
海水脱硫法是利用海水作为洗涤剂,通过海水与新鲜空气中的二氧化硫反应,形成硫酸盐,从而达到脱硫目的。
然而,这种方法的脱硫效率较低且处理海水带来的问题较多,逐渐被其他方法取代。
氨法是通过将二氧化硫与氨气反应,生成硫酸铵或硫酸铵颗粒,实现脱硫。
这种方法具有高脱硫效率和较低的产生废物量,但也存在对氨气的需求和氨气泄漏的问题。
干法脱硫工艺系统主要包括活性炭吸附法、半干法法和电除尘法等。
活性炭吸附法是通过将煤烟气中的硫化物与活性炭颗粒物接触,利用活性炭大表面积和卓越的吸附性能将硫化物从烟气中吸附出来。
这种工艺具有简单的操作和较低的能耗,但活性炭的再生和废弃物的处理仍然是一个问题。
半干法法是将干法和湿法工艺相结合,通过在干燥的空气中使用洗涤液进行脱硫,然后在干燥的空气中蒸发和回收洗涤液。
电除尘法是利用静电力和电场力收集烟气中的固体浮尘,可以同时去除部分二氧化硫。
总的来说,脱硫工艺系统是一种广泛应用于燃煤发电厂和其他工业过程中的设备和系统,旨在减少硫化物的排放。
不同的工艺系统有各自的优缺点,具体选择应根据实际情况、法规要求和经济可行性进行综合考虑。
脱硫系统整体概况及运行方式
脱硫系统整体概况及运行方式一、工艺原理该工艺采用石灰石或石灰做脱硫吸收剂,石灰石破碎与水混合,磨细成粉状,制成吸收浆液(当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆)。
在吸收塔内,烟气中的SO2与浆液中的CaCO3以及鼓入的氧化空气进行化学反应生成二水石膏,SO2被脱除。
吸收塔排出的石膏浆液经脱水装置脱水后回收。
脱硫后的烟气经除雾器去水、换热器加热升温后进入烟囱排向大气。
烟气从吸收塔下侧进入,与吸收浆液逆流接触,在塔内CaCO3与SO2、H2O进行反应,生成CaSO3·1/2H2O和CO2;对落入吸收塔浆池的CaSO3·1/2H2O和O2、H2O再进行氧化反应,得到脱硫副产品二水石膏。
其化学反应方程式如下:CaCO3+H2O+2SO2=2CaSO3·1/2H2O+2CO2(1-1)2CaSO3·1/2H2O+O2+3H2O=2CaSO4·2H2O (1-2)图1-1所示为石灰石-石膏湿法烟气脱硫工艺示意图。
图1-1 石灰石-石膏湿法烟气脱硫工艺示意图二、原理分析该工艺是采用吸收法来净化烟气的,它包含着物理和化学两个过程。
烟气中的SO2在吸收塔内从气相进入液相循环浆液的过程为物理吸收过程,该过程可用薄膜理论解释,分为如下几个阶段:气态反应物从气相内部迁移到相界面——气态反应物在相界面上从气相进入液相——反应组分从相界面迁移到液相内部——进入液相的反应组分与液相组分发生反应——已溶解的反应物的迁移和由反应引起的浓度梯度产生的反应物的迁移。
整个反应过程主要由气态和液态的扩散及伴随的化学反应完成的,液态中发生的化学反应可加快物质交换速度。
1.第一阶段——二氧化硫的吸收二氧化硫的吸收过程包括物理吸收和化学反应两个过程。
二氧化硫被吸入水后发生如下反应:H2O+SO2=HSO3-+H+=SO32-+H+(1-3)该式表示溶液成分与pH值之间的关系。
脱硫系统流程
脱硫系统流程脱硫系统是指利用化学方法将燃煤、燃油等燃料中的二氧化硫去除的一种装置。
脱硫系统的工作原理主要是通过喷射碱性吸收剂与燃料中的二氧化硫进行化学反应,从而将二氧化硫转化为硫酸盐或硫酸,达到减少大气污染的目的。
下面将详细介绍脱硫系统的工作流程。
首先,燃料进入脱硫系统前需要进行预处理,包括除尘、除水等工序。
这是为了避免灰尘和水分对脱硫系统的影响,保证脱硫剂的正常使用。
接着,燃料进入脱硫系统后,首先要经过燃料喷射系统的喷射,将碱性吸收剂喷洒到燃料中。
喷射系统需要根据燃料的流量和硫含量进行调节,确保喷射的吸收剂能够充分与燃料中的二氧化硫接触。
随后,喷射后的燃料进入反应器,与喷射的碱性吸收剂进行充分混合和反应。
在反应器中,二氧化硫与碱性吸收剂发生化学反应,生成硫酸盐或硫酸。
这一步是脱硫系统中最关键的一步,需要确保反应器的温度、压力和混合程度等参数的稳定和合理。
随后,经过反应的燃料进入分离器,分离器的作用是将已经发生反应生成的硫酸盐或硫酸与燃料进行分离。
分离后的燃料继续向后送,而硫酸盐或硫酸则被收集起来,进行后续的处理和利用。
最后,经过分离的燃料进入燃烧炉或锅炉进行燃烧,生成热能。
而收集起来的硫酸盐或硫酸则可以作为化肥或其他化工原料进行利用,实现资源的再利用。
总的来说,脱硫系统的工作流程主要包括预处理、喷射、反应、分离和利用等几个步骤。
这些步骤需要严格控制各项参数,确保脱硫系统的正常运行和脱硫效果。
同时,脱硫系统的运行也需要定期的检修和维护,保证设备的正常运转和寿命。
在实际应用中,脱硫系统的工作流程可能会因为不同的燃料、工艺和设备而有所差异,但总体的工作原理和流程是相似的。
通过合理的设计和运行,脱硫系统可以有效减少二氧化硫的排放,保护环境,达到清洁生产的目的。
脱硫系统的工作原理
脱硫系统的工作原理
脱硫系统是用于减少燃煤电厂和工业锅炉中二氧化硫排放的关键设备之一。
其工作原理是通过化学反应将燃煤烟气中的二氧化硫转化为较为低毒且易于处理的物质,从而实现对烟气中二氧化硫的去除。
脱硫系统的工作流程主要分为吸收、氧化和再生三个过程。
首先是吸收过程。
燃煤烟气在进入脱硫系统后,会经过一个吸收塔或吸收剂喷淋区,进一步与吸收剂(通常是碱性溶液,如石灰浆或碱性溶液)接触。
在这个过程中,二氧化硫会被吸收剂吸收进去,并转化为硫酸或硫酸盐。
接下来是氧化过程。
吸收之后的溶液中的二氧化硫需要进一步氧化为二氧化硫酸。
这一步可以通过对氧气(空气)进行通气,也可以使用氧化剂来完成。
氧化增加了硫酸盐的产量,并提高了脱硫效率。
最后是再生过程。
吸收剂在吸收和氧化过程中所产生的硫酸或硫酸盐需要进一步进行处理,以恢复其吸收能力。
这一步通常是通过加热来实现,将硫酸盐溶液加热至高温再生,使其分解为二氧化硫和水,然后再将二氧化硫回收利用或进行进一步处理。
总之,脱硫系统通过吸收、氧化和再生等过程将燃煤烟气中的二氧化硫转化为易于处理的硫酸或硫酸盐,从而实现对二氧化硫的去除。
这些处理过程需要借助吸收剂、氧气和热能等条件
来完成。
脱硫系统的设计和运行可以根据具体情况进行调整,以达到高效、低成本、低排放的要求。
脱硫脱硝系统总结
脱硫脱硝系统总结引言脱硫脱硝系统是一种用于燃煤发电厂等工业过程中的尾气处理设备,其主要目的是减少或去除燃煤过程中产生的二氧化硫(SO2)和氮氧化物(NOx)等有害气体。
本文将对脱硫脱硝系统进行总结,包括其原理、设备结构、操作维护及前景展望等方面内容。
1. 脱硫脱硝系统原理脱硫脱硝系统基于化学原理,通过添加一定的清洁剂,使二氧化硫和氮氧化物发生化学反应,转化为无害的物质。
脱硫主要采用湿法脱硫和半干法脱硫两种方式,常用的脱硝方法包括选择性催化还原法、选择性非催化还原法和吸收剂脱硝法等。
2. 脱硫脱硝系统设备结构脱硫脱硝系统主要由吸收塔、循环泵、氧化风机、喷射器、吸收剂储存装置、催化剂储存装置等组成。
其中,吸收塔是脱硫脱硝的核心设备,其内部布置有填料以增大接触面积,有利于气体和吸收剂的充分接触。
3. 脱硫脱硝系统操作维护脱硫脱硝系统的操作维护对其正常运行和效果的保证非常重要。
以下是一些常见的操作维护措施: - 定期清洗吸收塔内部的填料,确保其清洁和通畅。
- 检查和更换循环泵、氧化风机等设备的密封件和轴承等易损件。
- 定期检查吸收剂和催化剂的浓度和活性,及时补充和更换。
- 监测系统的运行参数,如温度、压力、流量等,及时调整和修复异常。
- 将系统中产生的废液进行集中处理,避免对环境造成污染。
4. 脱硫脱硝系统的前景展望脱硫脱硝系统在工业尾气处理中起到了重要作用,随着环保意识的提升和法规标准的加强,其应用前景十分广阔。
未来,脱硫脱硝系统将更加智能化和高效化,通过采用先进的控制策略和材料技术,减少能耗和操作维护成本,提高脱硫脱硝效率。
结论脱硫脱硝系统是一种为工业过程中的尾气处理提供解决方案的设备,其通过化学反应将二氧化硫和氮氧化物等有害气体转化为无害物质,起到环境保护的作用。
通过对系统原理、设备结构、操作维护和前景展望的总结,可以看出脱硫脱硝系统在环境保护和可持续发展方面发挥着重要的作用,并有着广阔的应用前景。
常见的脱硫系统组成部分解析
常见的脱硫系统组成部分脱硫塔是湿法烟气脱硫系统中的核心设备,塔及塔内件的设计是否合理是脱硫系统能否长期高效运转的关键。
脱硫塔塔体为大型钢结构壳体,主要由主体结构、喷淋层、除雾器及冲洗水系统、浆池、管道系统组成。
塔壁上接管法兰,开孔、平台爬梯及人孔门较多,尤其是大开口的烟道进出口对塔体承力能力将产生较大影响,因此,脱硫塔系统喷淋层、除雾器及冲洗水系统、浆池等设计时应充分考虑烟气压力、浆液冲刷、塔体及其附件自身重量、风雪荷载、地震荷载等作用力影响。
1、主体结构本工程选用塔内件少、结垢机率小、系统阻力小、运行维修成本较低的喷淋空塔, 2台机组脱硫装置均设置在烟囱附近。
脱硫塔设 3层平台,通过旋转爬梯可以到达各层脱硫塔平台, 便于塔内件安装及后期维护检修。
脱硫塔规格为小 5.2mx21.2m 下部 6m 为浆池部分,直径与塔体相同。
塔中上部为 3层喷淋层,两用一备,其上方设置两级除雾器,配套三层冲洗水系统。
脱硫塔浆池部分用 12 mm 厚钢板制作,其余部分用 8 mm 厚钢板制作。
为防止过流烟气扰动引起结构震颤,塔体外部采用 12号槽钢卷弧进行结构补强,相邻槽钢间距为 3m ,进出口烟道与塔体壁板对接处亦做适当补强。
2、喷淋层脱硫塔喷淋层的设计主要是喷淋层布置符合喷淋浆液的覆盖率,使吸收浆液与烟气能充分接触进行中和反应,达到设计要求的脱硫效率。
为避免烟气量增大或煤种变化引起 SOZ 含量超过设计值而导致脱硫效率下降的现象,喷淋层设上、中、下三层,两用一备,相邻喷淋层在竖直方向分30“角错开布置,结构如图 3所示。
从图 3可知,喷淋层主要由主管、支管、喷嘴组成。
主管和支管在脱硫塔端面内对称布置,形成一个管网系统,该系统能使浆液在脱硫塔内均匀分布。
由于喷淋层管路的合理优化布置设计,保证了浆液能在整个脱硫塔断面上进行均匀喷淋,喷淋覆盖率可达170% ~250%。
综合考虑塔内防腐耐温耐压等苛刻工况条件,浆液喷淋管采用玻璃钢材料制作,整个管网分段加工,采用缠绕对接连接工艺。
脱硫系统工作原理
脱硫系统工作原理
脱硫系统是一种用于去除燃煤电厂等工业过程中产生的二氧化硫(SO2)的装置。
其工作原理主要基于化学反应,在喷射液
体吸收剂的作用下,将SO2转化为可溶于水的硫酸盐并进行
排放。
脱硫系统主要由含有喷射装置的吸收塔和排放气体预处理装置组成。
首先,排放气体从工业过程中通过排放管道进入脱硫系统,进入吸收塔。
在吸收塔中,喷射液体吸收剂从底部喷射进入,并与气体接触。
这种吸收剂通常是一种碱性溶液,如石灰石浆液(CaCO3)或氨水(NH3)。
喷射液体吸收剂中的主要成分与SO2发生化学反应,形成可溶于水的硫酸盐。
当排放气体通过吸收塔时,SO2和液体吸收剂发生反应。
SO2
与液体中的碱反应生成硫酸盐,同时液体吸收剂中的碱也被耗尽。
反应完成后,已转化的硫酸盐和剩余的排放气体通过系统底部的排放管道排出。
此时,脱硫系统中的吸收塔需补充新的液体吸收剂,以维持脱硫效率。
脱硫系统还包括对排放气体进行预处理的装置,用于降低气体中的颗粒物和其他有害物质的含量。
这些装置可以使用过滤器、除尘器及其他脱硫前处理设备,以提高脱硫系统的整体效率。
总结而言,脱硫系统的工作原理是通过喷射液体吸收剂与燃煤电厂等工业过程中产生的SO2发生化学反应,将其转化为可
溶于水的硫酸盐质形式,并通过底部排放管道排出。
同时,脱
硫系统还通过预处理装置对排放气体进行处理,提高系统的脱硫效果。
脱硫系统流程
脱硫系统流程脱硫系统是指用于去除燃煤电厂烟气中二氧化硫的设备和工艺流程。
脱硫系统的设计和运行对保护环境和人类健康至关重要。
下面将介绍脱硫系统的工作原理和流程。
首先,燃煤电厂烟气中的二氧化硫主要来自燃煤过程中硫化物的燃烧产生,因此需要通过脱硫系统进行去除。
脱硫系统的主要工作流程包括烟气处理、吸收液循环和脱硫副产物处理。
在烟气处理阶段,燃煤电厂烟气首先通过除尘器去除颗粒物,然后进入脱硫塔。
脱硫塔内部布置有填料,烟气在填料层中与喷淋的吸收液接触,二氧化硫被吸收到液体中,从而实现脱硫的目的。
吸收液循环是脱硫系统的关键环节。
吸收液主要由碱性溶液组成,如氢氧化钠溶液或石灰乳。
吸收液在脱硫塔中与烟气接触后,会吸收其中的二氧化硫,形成含有二氧化硫的溶液。
这部分溶液需要经过再生处理,将其中的二氧化硫重新提取出来,同时再生后的吸收液重新循环使用,从而实现脱硫系统的连续运行。
脱硫副产物处理是脱硫系统中的最后一个环节。
在脱硫过程中产生的副产物主要包括石膏和废水。
石膏是脱硫系统中的固体废物,需要进行干法脱水处理,以减少体积和提高固体含量,从而便于运输和处置。
废水则需要进行处理,以达到排放标准,避免对环境造成污染。
总的来说,脱硫系统的工作流程包括烟气处理、吸收液循环和脱硫副产物处理三个主要环节。
通过这些环节的协同作用,脱硫系统能够有效去除燃煤电厂烟气中的二氧化硫,保护环境和人类健康。
在实际运行中,需要根据燃料特性和烟气特点进行合理的设计和操作,以确保脱硫系统的稳定运行和高效工作。
脱硫系统的工作原理和流程对于燃煤电厂的环保工作至关重要,只有充分理解和掌握脱硫系统的工作原理和流程,才能更好地保护环境、减少污染物排放,实现绿色发展的目标。
希望本文对脱硫系统的工作流程有所帮助,也希望各位在实际工作中能够加强对脱硫系统的管理和运行,共同为环境保护贡献力量。
第三篇脱硫系统篇
第二篇脱硫系统篇第1题什么是吸收?答:吸收是一种分离气体混合物的方法,利用不同气体组分在溶剂中溶解度的不同,以溶剂与某种组分发生化学反应的特点,把气体分离。
第2题什么是脱吸?答:脱吸或称解吸,是吸收的逆过程,即传质方向与吸收相反:溶质由液相向气相传递。
其目的是为了分离吸收后的溶液,是溶剂再生,并得到回收后的溶质。
第3题什么叫化学平衡?答:在可逆反应中,存在着反应物向生成物转化的正反应,同时又存在着生成物重新变为反应物的逆反应,当正反应和逆反应的速度相等时,就达到动态平衡,此时的平衡称为化学平衡。
第4题工业上对吸收剂有什么要求?答:(1 )应具有较大的溶解度;(2 )应具有较高的选择性;(3)溶解度对温度十分敏感;(4)挥发性要小;(5)不易发泡,稳定性要好。
第5题本装置采用什么溶剂脱硫?它的主要理化性质如何?答:本装置选用甲基二乙醇胺溶液作脱硫溶剂。
它的主要理化性质如下:分子式(HOCH2CH2N (CH)分子量为1191.097 ,为无色的稠粘液体,有类似氨的气味,呈碱性,能溶于水,乙醇和丙酮,比重为熔点28C,沸点268.8 C,有吸湿作用,能吸收空气中的二氧化碳和H2S等。
第6题甲基二乙醇胺脱硫的原理是什么?答:H2S是弱酸,甲基二乙醇胺是弱碱,反应生成水溶性盐类,由于反应是可逆,使二乙醇胺得以再生,能循环使用。
甲基二乙醇胺的碱性随温度升高而降低,在低温时弱碱性的甲基二乙醇胺能与H2S结合生成胺盐,在高温下胺盐能分解成H2S和甲基二乙醇胺。
方程式:C5H3QN + H2S . C ■5H13QNH + HS -在较低温度(20 —40C )下,反应向右进行(吸收),在较高温度(>105 C )下,反应向左进行(解吸)。
第7 题为什么要在联合装置内设脱硫系统?答:脱硫系统由三部分组成,即循环氢脱硫、低分气脱硫、燃料气脱硫。
设置脱硫系统是十分必要的。
循环氢中如果有较多的H2S,就会腐蚀管道设备,造成铁锈积累在催化剂床层上引起压降增加,同时从化学平衡来看,循环氢中有H2S不利于脱硫反应。
脱硫及其控制系统介绍
脱硫系统流程
吸收剂制备与供应系统
制备吸收剂,并将其输送到吸收塔内。
副产物处理系统
对从吸收塔中排出的副产物进行处理,回收 其中的有价组分。
吸收塔系统
烟气经过吸收塔时,与吸收剂进行反应,去 除其中的硫化物。
控制系统
监测和控制脱硫系统的运行参数,确保脱硫 效果和系统稳定性。
脱硫系统的主要设备
吸收塔
是脱硫系统的核心设备,用于 进行脱硫反应。
该化工厂采用海水脱硫工艺,利 用海水中所含的盐类与烟气中的 SO2反应,去除SO2。
主要设备
02
03
运行效果
包括海水汲取和处理系统、反应 塔、排水处理系统等。
该化工厂脱硫系统运行稳定,脱 硫效率达到98%以上,且不会产 生二次污染。
THANKS FOR WATCHING
感谢您的观看
根据实际运行情况,对控 制系统的参数进行优化, 提高系统的稳定性和准确 性。
算法改进
针对实际运行中遇到的问 题,对控制算法进行改进, 提高系统的响应速度和调 节精度。
设备升级
根据技术的发展和实际需 求,对系统中的设备进行 升级换代,提高系统的性 能和可靠性。
04 脱硫技术发展现状与趋势
国内外脱硫技术发展现状
脱硫技术的分类
湿法脱硫技术
通过液体吸收剂吸收SOx,主要包括石灰石-石膏法、氨法等。
干法脱硫技术
利用固体吸收剂吸附SOx,如活性炭吸附法、分子筛法等。
半干法脱硫技术
结合了湿法和干法的特点,如循环流化床脱硫技术等。
脱硫技术的重要性
减少环境污染
SOx是大气污染物之一, 排放过量会导致酸雨、光 化学烟雾等问题,脱硫技 术能有效降低SOx排放, 减轻环境污染。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• (2)氧化反应 • HSO3-+1/2O2→HSO4-一部分HSO3-在吸收 塔喷淋区被烟气中的氧所氧化,其它的HSO3- 在反应池中被氧化空气完全氧化,反应如下: • HSO4- ⇋H++SO42- • 氧化反应的机理: 氧化反应的机理: • 氧化反应的机理基本同吸收反应,不同的 是氧化反应是液相连续,气相离散。水吸收O2 属于难溶解度的气体组份的吸收,根据双膜理 论,传质速率受液膜传质阻力的控制。 • 强化氧化反应的措施: 强化氧化反应的措施: • a)降低PH值,增加氧气的溶解度 • b)增加氧化空气的过量系数,增加氧浓度 • c)改善氧气的分布均匀性,减小气泡平均粒径, 增加气液接触面积。
• • • • • • • • • • • • • • • • • • •
(4)其他副反应 烟气中的其他污染物如SO3、Cl、F和尘都被循环浆液吸收和捕集。SO3、HCl和HF与悬浮液中的石灰石按以 下反应式发生反应: SO3+H2O→2H++SO42- CaCO3 +2 HCl<==>CaCl2 +CO2 ↑+H2O CaCO3 +2 HF <==>CaF2 +CO2 ↑+H2O 副反应对脱硫反应的影响及注意事项: 副反应对脱硫反应的影响及注意事项: 脱硫反应是一个比较复杂的反应过程,其中一些副反应,有些有利于反应的进程,有些会阻碍反应的发 生,下列反应应当在设计中予以重视: a)Mg的反应 的反应 浆池中的Mg元素,主要来自于石灰石中的杂质,当石灰石中可溶性Mg含量较高时(以MgCO3形式存 在),由于MgCO3活性高于CaCO3会优先参与反应,对反应的进行是有利的, 但过多时,会导致浆液中生成大量的可溶性的MgSO3,它过多的存在,使的溶液里SO32-浓度增加,导致SO2吸 收化学反应推动力的减小,而导致SO2吸收的恶化。 另一方面,吸收塔浆液中Mg+浓度增加,会导致浆液中的MgSO4(L)的含量增加,既浆液中的SO42-增加,会 对导致吸收塔中的悬浮液的氧化困难,从而需要大幅度增加氧化空气量,氧化反应原理如下: HSO3-+1/2O2→HSO4- (1) HSO4-⇋H++SO42 ⇋H SO 2- (2) 2 因为(2)式的反应为可逆反应,从化学反应动力学的角度来看,如果SO42-的浓度太高的话,不利于反应向 右进行。 因此喷淋塔一般会控制Mg+离子的浓度,当高于5000ppm时,需要通过排出更多的废水,此时控制准则不再 是CL-小于20000ppm b)AL的反应 的反应 AL主要来源于烟气中的飞灰,可溶解的AL在F离子浓度达到一定条件下,会形成氟化铝络合物(胶状絮 凝物),包裹在石灰石颗粒表面,形成石灰石溶解闭塞,严重时会导致反应严重恶化的重大事故。 c)Cl的反应 的反应 在一个封闭系统或接近封闭系统的状态下,FGD工艺的运行会把吸收液从烟气中吸收溶解的氯化物增加 到非常高的浓度。这些溶解的氯化物会产生高浓度的溶解钙,主要是氯化钙,如果高浓度的溶解的钙离子存在 FGD系统中,就会使溶解的石灰石减少,这是由于”共同离子作用”而造成的,在”共同离子作用”下,来自氯化 钙的溶解钙就会妨碍石灰石中碳酸钙的溶解。控制CL离子的浓度在12000-20000ppm是保证反应正常进行的 重要因素。
脱硫系统简介
一、石灰石-石膏湿法脱硫工艺的基本原理 石灰石 石膏湿法脱硫工艺的基本原理 石灰石——石膏湿法烟气脱硫工艺的原理是采用 石灰石粉制成浆液作为脱硫吸收剂,与经降温后进入 吸收塔的烟气接触混合,烟气中的二氧化硫与浆液中 的碳酸钙,以及加入的氧化空气进行化学反应,最后 生成二水石膏。脱硫后的净烟气依次经过除雾器除去 水滴、再经过烟气换热器加热升温后,经烟囱排入大 气。由于在吸收塔内吸收剂经浆液再循环泵反复循环 与烟气接触,吸收剂利用率很高,钙硫比较低(一般 不超过1.1),脱硫效率不低于95%,适用于任何煤 种的烟气脱硫。
• 2.2 化学过程
• • • • • • • • • • • • • • • 强制氧化系统的化学过程描述如下: (1)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反 应如下: SO2+H2O→H2SO3(溶解) H2SO3⇋ H++HSO3-(电离) 吸收反应的机理: 吸收反应的机理: 吸收反应是传质和吸收的的过程,水吸收SO2属于中等溶解度的气体组份的吸 收,根据双膜理论,传质速率受气相传质阻力和液相传质阻力的控制, 吸收速率=吸收推动力/吸收系数(传质阻力为吸收系数的倒数) 强化吸收反应的措施: 强化吸收反应的措施: a)提高SO2在气相中的分压力(浓度),提高气相传质动力。 b)采用逆流传质,增加吸收区平均传质动力。 c)增加气相与液相的流速,高的Re数改变了气膜和液膜的界面,从而引起强烈的 传质。 d)强化氧化,加快已溶解SO2的电离和氧化,当亚硫酸被氧化以后,它的浓度就会 降低,会促进了SO2的吸收。 e)提高PH值,减少电离的逆向过程,增加液相吸收推动力。 f)在总的吸收系数一定的情况下,增加气液接触面积,延长接触时间,如:增大 液气比,减小液滴粒径,调整喷淋层间距等。 g)保持均匀的流场分布和喷淋密度,提高气液接触的有效性。
二、反应原理
• 2.1 吸收原理
•
吸收液通过喷嘴雾化喷入吸收塔,分散成细小的 液滴并覆盖吸收塔的整个断面。这些液滴与塔内烟气 逆流接触,发生传质与吸收反应,烟气中的SO2、SO3 及HCl 、HF被吸收。SO2吸收产物的氧化和中和反应在 吸收塔底部的氧化区完成并最终形成石膏。 • 为了维持吸收液恒定的pH值并减少石灰石耗量, 石灰石被连续加入吸收塔,同时吸收塔内的吸收剂浆 液被搅拌机、氧化空气和吸收塔循环泵不停地搅动, 以加快石灰石在浆液中的均布和溶解。
• (3)中和反应 • 吸收剂浆液被引入吸收塔内中和氢离子,使吸收液保持一定的pH 值。中和后的浆液在吸收塔内再循环。中和反应如下: • Ca2++CO32-+2H++SO42-+H2O→CaSO4·2H2O+CO2↑ • 2H++CO32-→H2O+CO2↑ • 中和反应的机理: 中和反应的机理: • 中和反应伴随着石灰石的溶解和中和反应及结晶,由于石灰石较 为难溶,因此本环节的关键是,如何增加石灰石的溶解度,反应 生成的石膏如何尽快结晶,以降低石膏过饱和度。中和反应本身 并不困难。 • 强化中和反应的措施: 强化中和反应的措施: • a)提高石灰石的活性,选用纯度高的石灰石,减少杂质。 • b)细化石灰石粒径,提高溶解速率。 • c)降低PH值,增加石灰石溶解度,提高石灰石的利用率。 • d)增加石灰石在浆池中的停留时间。 • e)增加石膏浆液的固体浓度,增加结晶附着面,控制石膏的相对 饱和度。 • f)提高氧气在浆液中的溶解度,排挤溶解在液相中的CO2,强化中 和反应。
2、烟脱硫风机
烟气来
2、烟道系统
从锅炉来的热烟气进入吸收塔,向上流动穿过喷淋层, 从锅炉来的热烟气进入吸收塔,向上流动穿过喷淋层,在此 烟气被冷却到饱和温度,烟气中的S02被石灰石浆液吸收。除却SOX S02被石灰石浆液吸收 烟气被冷却到饱和温度,烟气中的S02被石灰石浆液吸收。除却SOX 及其他污染物的烟气通过烟囱排放至大气。 及其他污染物的烟气通过烟囱排放至大气。 FGD装置的挡板系统包括进口原烟气挡板 装置的挡板系统包括进口原烟气挡板﹑ FGD装置的挡板系统包括进口原烟气挡板﹑出口净烟气挡板和 旁路烟气挡板,挡板为双( 轴双百叶窗式。 旁路烟气挡板,挡板为双(单)轴双百叶窗式。 在正常运行时,FGD进口 出口挡板开启,旁路挡板关闭。 进口﹑ 在正常运行时,FGD进口﹑出口挡板开启,旁路挡板关闭。在 故障情况下,当原烟气温度达到180℃ 180℃时 开启烟气旁路挡板, 故障情况下,当原烟气温度达到180℃时,开启烟气旁路挡板,关闭 烟气进出口挡板,烟气通过旁路烟道绕过FGD系统直接排至烟囱。 FGD系统直接排至烟囱 烟气进出口挡板,烟气通过旁路烟道绕过FGD系统直接排至烟囱。所 有挡板均配有密封系统,以保证“ 泄露。 有挡板均配有密封系统,以保证“零”泄露。密封空气由密封空气 站提供。每炉设置一套挡板密封系统,每套系统各设置两台100% 100%容 站提供。每炉设置一套挡板密封系统,每套系统各设置两台100%容 量的密封风机(一运一备)和一台电加热器。 量的密封风机(一运一备)和一台电加热器。 烟道包括必要的烟气通道、冲洗和排放漏斗、膨胀节、 烟道包括必要的烟气通道、冲洗和排放漏斗、膨胀节、法兰 导流板、垫片/螺栓材料以及附件。 、导流板、垫片/螺栓材料以及附件。 BMCR工况下 烟道内任意位置的烟气流速不大于15m/s 工况下, 15m/s。 在BMCR工况下,烟道内任意位置的烟气流速不大于15m/s。烟 道留有适当的取样接口、试验接口和人孔。 道留有适当的取样接口、试验接口和人孔。
1、吸收塔系统
吸收塔采用川崎公司先进的逆流喷雾塔,烟气由侧面进气口进入吸收塔, 吸收塔采用川崎公司先进的逆流喷雾塔,烟气由侧面进气口进入吸收塔,并在上升区与雾状浆液 逆流接触,处理后的烟气在吸收塔顶部翻转向下, 逆流接触,处理后的烟气在吸收塔顶部翻转向下,从与吸收塔烟气入口同一水平位置的烟气出口排至 烟气再热系统。 烟气再热系统。 吸收塔塔体材料为内衬玻璃鳞片的碳钢板。吸收塔烟气入口为内衬耐热玻璃鳞片的碳钢板。 吸收塔塔体材料为内衬玻璃鳞片的碳钢板。吸收塔烟气入口为内衬耐热玻璃鳞片的碳钢板。 吸收塔内上流区烟气流速为4 m/s,下流区烟气流速为10m/s。在上流区配有4组喷淋层, 10m/s 吸收塔内上流区烟气流速为4.0m/s,下流区烟气流速为10m/s。在上流区配有4组喷淋层,每组喷 淋层由浆液分布管道和喷嘴组成,喷淋组件及喷嘴均匀布置在吸收塔上流区的横截面, 淋层由浆液分布管道和喷嘴组成,喷淋组件及喷嘴均匀布置在吸收塔上流区的横截面,喷淋系统采用 单元制设计,每个喷淋层配一台浆液循环泵。脱硫后的烟气流向装在吸收塔出口处的除雾器。 单元制设计,每个喷淋层配一台浆液循环泵。脱硫后的烟气流向装在吸收塔出口处的除雾器。在这个 过程中,烟气与吸收塔喷嘴喷出的再循环浆液进行有效的接触。 过程中,烟气与吸收塔喷嘴喷出的再循环浆液进行有效的接触。 吸收了SO2的再循环浆液落入吸收塔反应池。吸收塔反应池装有6台搅拌机。氧化风机用于将氧化 吸收了SO 的再循环浆液落入吸收塔反应池。 吸收塔反应池装有6台搅拌机。 空气鼓入反应池中与浆液反应。氧化系统采用喷管式系统,氧化空气被注入到搅拌机桨叶的压力侧。 空气鼓入反应池中与浆液反应。氧化系统采用喷管式系统,氧化空气被注入到搅拌机桨叶的压力侧。 一部分HSO 在吸收塔喷淋区被烟气中的氧气氧化,剩余部分的HSO 一部分HSO3-在吸收塔喷淋区被烟气中的氧气氧化,剩余部分的HSO3-在反应池中被氧化空气完全 氧化。 氧化。 吸收剂(石灰石)浆液被引入吸收塔内中和氢离子,使吸收液保持一定的pH pH值 吸收剂(石灰石)浆液被引入吸收塔内中和氢离子,使吸收液保持一定的pH值。中和后的浆液在 吸收塔内循环。 吸收塔内循环。 吸收塔排放泵(一台机配2 连续地把吸收剂浆液从吸收塔打到石膏脱水系统。 吸收塔排放泵(一台机配2台)连续地把吸收剂浆液从吸收塔打到石膏脱水系统。循环浆液浓度大 25wt wt% 排浆流速由控制阀控制。 约25wt%。排浆流速由控制阀控制。 脱硫后的烟气通过除雾器来减少携带的水滴,除雾器出口的水滴携带量不大于75 75mg/Nm 脱硫后的烟气通过除雾器来减少携带的水滴,除雾器出口的水滴携带量不大于75mg/Nm3。两级除 雾器安装在吸收塔的出口烟道上。除雾器由阻燃聚丙烯材料制作,型式为z 雾器安装在吸收塔的出口烟道上。除雾器由阻燃聚丙烯材料制作,型式为z型,两级除雾器均用工艺 水冲洗。 水冲洗。 吸收塔入口烟道侧板和底板处装有工艺水冲洗系统,冲洗自动定期进行。 吸收塔入口烟道侧板和底板处装有工艺水冲洗系统,冲洗自动定期进行。冲洗的目的是为了避免 喷嘴喷出的石膏浆液带入入口烟道后干燥粘结。 喷嘴喷出的石膏浆液带入入口烟道后干燥粘结。 在吸收塔入口烟道装有事故冷却系统,事故冷却水由工艺水泵提供。 在吸收塔入口烟道装有事故冷却系统,事故冷却水由工艺水泵提供。 当吸收塔入口烟道由于吸收塔上游设备意外事故而温升过高或所有的吸收塔循环泵切除时本系统 启动。 启动。