五年级奥数讲义-第3讲(盈亏问题与比较法一)
五年级奥数:盈亏问题
五年级奥数:盈亏问题(一)盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,又会不足(亏),求物品的数量和分配对象的数量。
例如:小朋友分苹果,如果每人分2个,就多余16个;如果每人分5个,就缺少14个。
小朋友有多少个?苹果有多少个?比较两次分的结果,第一次余16个,第二次少14个,两次相差16+14=30(个)。
这是因为第二次比第一次每人多分了5-2=3(个)苹果。
相差30个,就说明有30÷3=10(个)小朋友。
请小读者自己算出苹果的个数。
例题与方法例1、将一些糖果分给幼儿园小班的小朋友,如果每人分3 粒,就会余下糖果17粒;如果每人分5粒,就会缺少糖果13粒。
问:幼儿园下班有多少个小朋友|这些糖果共有多少粒?例 2、学生搬一批砖,每人搬4块,其中5人要搬两次;如果么人搬5块,就有两人没有砖可搬。
搬砖的学生有多少人?这批砖共有多少块?例3、某校在植树活动中,把一批树苗分给各班,如果每班分18棵,就会有余下24棵;如果每班分20棵,正好分完。
这个学校有多少个班?这批树苗共有多少棵?练习与思考(第1~4题13分,其余每题12分,共100分。
)1.小朋友分糖果若每人分4粒则多9粒;若每人呢分5粒则少6粒。
问:有多少小朋友?有多少粒糖果?2.小朋友分糖果,每人分10粒正好分完;若每人呢分16粒,则有3个小朋友分不到糖果。
问:有多少粒糖果?3.在桥上测量桥高。
把绳长对折后垂到水面,还余4米;把绳长3折后垂到水面,还余1米。
桥高多少米?绳长多少米?4.某校安排新生宿舍,如果每间住12人,就会有34人没有宿舍住;如果每间住14人就会有空出4间宿舍。
这个学校有多少间?要安排多少个新生?5.在依次大扫除中,有一些同学被分配擦玻璃,他们当中如果有2人擦4块,其余的人各擦5块,就会多下12块玻璃没有人擦;如果么人擦6块,刚好擦完。
擦玻璃的同学有多少人?玻璃共有多少块?6.有一个数,减去3所的差的4倍,等于它的2倍加上36。
【小学五年级奥数讲义】盈亏问题
【小学五年级奥数讲义】盈亏问题一、知识要点盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。
例如:把一代饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块。
小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。
盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。
一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。
解题时我们可以记住:1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。
二、精讲精练【例题1】某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。
乒乓球队共有多少名学生?练习1:1.学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍。
学校买来两种粉笔各多少盒?2.操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。
两堆货物一共有多少吨?3.五(1)班的优秀学生中,苦增加2名男生,减少1名女生,则男、女生人数同样多;苦减少1名男生,增加1名女生,则男生是女生的一半。
这些优秀学生中男、女生各多少人?【例题2】幼儿园老师拿出苹果发给小朋友。
五年级数学 奥数精品讲义1-34讲
五年级数学奥数精品讲义1-34讲第一讲消去问题(一)第二讲消去问题(二)第三讲一般应用题第四讲盈亏问题(一)第五讲盈亏问题(二)第六讲流水问题第七讲等差数列第八讲找规律能力测试(一)第九讲加法原理第十讲乘法法原理第十一讲周期问题(一)第十二讲周期问题(二)第十三讲巧算(一)第十四讲巧算(二)第十五讲数阵问题(一)第十六讲数阵问题(二)能力测试(二)第十七讲平面图形的计算(一)第十八讲平面图形的计算(二)第十九讲列方程解应用题(一)第二十讲列方程解应用题(二)第二十一讲行程问题(一)第二十二讲行程问题(二)第二十三讲行程问题(三)第二十四讲行程问题(四)能力测试(三)第二十五讲平均数问题(一)第二十六讲平均数问题(二)第二十七讲长方体和正方体(一)第二十八讲长方体和正方体(二)第二十九讲数的整除特征第三十讲奇偶性问题第三十一讲最大公约数和最小公倍数第三十二讲分解质因数(一)第三十三讲分解质因数(二)第三十四讲牛顿问题能力测试(四)第一讲消去问题(一)在有些应用题里;给出了两个或者两个以上的未知数量间的关系;要求出这些未知数的数量.我们在解题时;可以通过比较条件;分析对应的未知数量变化的情况;想办法消去其中的一个未知量;从而把一道数量关系较复杂的题目变成比较简单的题目解答出来.这样的解题方法;我们通常把它叫做“消去法”.例题与方法在学习例题前;我们先进行一些基本数量关系的练习;为用消去法解题作好准备.(1)买1个皮球和1个足球共用去40元;买同样的5个皮球和5个足球一共用去多少元?(2)3袋子、大米和3袋面粉共重225、千克;1袋大米和1袋面粉共重多少千克?(3)6行桃树和6行梨树一共120棵;照这样子计算8行桃树和8行梨树一共有多少棵?(4)学校买了4个水瓶和25个茶杯;一共用去172元;每个水瓶18元;每个茶杯多少元?例1 学校第一次买了3个水瓶和20个茶杯;共用去134元;第二次又买了同样的3个水瓶和16个差杯;共用去118元.水瓶和茶杯的单价各是多少元?例2 买3个篮球和5个足球共、用去480元;买同样的6个篮球和3个足球共用去519元.篮球和足球的单价各是多少元?练习与思考1、 1袋黄豆和1袋绿豆共重50千克;同样的7袋黄豆和7袋绿豆共重()千克.2、买5条毛巾和5条枕巾共用去90元;买1条毛巾和1条枕巾要()元.3、买4本字典和4本笔记本共、用去了68元;买同样的9本字典和9本笔记本一共要()元.4、9筐苹果和9筐梨共重495千克;找这样计算;2筐苹果和2筐梨共重()千克.5、妈妈买了5米画布和3米白布;一共用去102元.花布每米15元;白布每米多少元?6、果园里有14行桃树和20行梨树;桃树和梨树一共有440棵.每行梨树15棵;每行桃树多少棵?8、食堂第一次运来6袋大米和4袋面粉;一共重400千克;第二次又运来9袋大米和4袋面粉;一共重550千克.每袋大米和每袋面粉各重多少千克?9、3豹味精和7包糖共重3800克;同样的3包味精和14包糖共重7300克.每包味精和每包糖各重多少克?10、育新小学买了8个足球和12个篮球;一共用去了984元;青山小学买了同样的16个足球和10个篮球;一共用去1240元.每个足球和每个篮球各多少元?11、买15张桌子和25把椅子共用去3050元;买同样的 5张桌子和20张椅子;需要1600元.买一张桌子和一把椅子需要多少元?12、3头牛和6只羊一天共吃草93千克;6头牛和5只羊一天共吃草130千克.每头牛每天比每只羊多吃多少千克?第二讲消去问题(二)例1、7袋大米和3袋面粉共重425千克同样的3袋大米和7袋面粉共重325千克.求每袋大米和每袋面粉的重量.3..三头牛和8只羊每天共吃青草93千克;5头牛和15只羊每天吃青草165千克.一头牛和一只羊每天各吃青草多少千克?练习与思考1.3个皮球和5个足球共245元;同样的6个皮和10个足球共()元.2.5盒铅笔和9盒钢笔共190支;同样的2盒铅笔和6盒钢笔共100支.3盒铅笔和3盒钢笔共()支;1盒铅笔和1支钢笔共()支.3.育才小学体育组第一次买了4个篮球和3个排球;共用去了141元;第二次买了5个篮球和4个排球;共用去180元.每个篮球和每个排球各多少元?4.3筐苹果和5筐梨共重138千克;5筐同样的苹果和3筐同样的共重134千克.;每筐苹果和每筐梨各重多少千克?5.某食堂第一次运进大米5袋;面粉7袋;共重1350千克;第二次运进大米3袋;面粉5袋;共重850千克.一袋大米和一袋面粉各重多少千克?6.3件上衣和7条裤子共430元;同样的7件上衣和3条裤子共470元.每件上衣和每条棵子各多少元?7.2千克水果糖和5千克饼干共64元;同样的3千克水果糖和4千克饼干共68元.每千克水果糖和每千克饼干各多少元?8.5包科技书和7包故事书共620本;6包科技书和3包故事书共420本.每包科技书比每包故事书少多少本?9.3个水瓶和8个茶杯共92元;5个水瓶和6个茶杯共102元.每个水瓶和每个茶杯各多少元?10.甲有5盒糖;乙有4盒糕共值44元.如果甲、乙两人对换一盒;则每人所有物品的价值相等.一盒糖、一盒糕各值多少元?第三讲一般应用题在小学里;通常把应用题分为“一般应用题”和“典型应用题|”两大类.“典型应用题”有基本的数量关系、解题模式;较复杂的问题可以通过“转化”;向基本的问题靠拢.我们已经学过的“和差问题”、和“倍差问题”等等;都是“典型应用题”.“一般应用题|”没有各顶的数量关系;也没有可以以来的解题模式.解题时要具体问题具体分析;在认真审题;理解题意的基础上;理清一知条件与所求问题之间的数量关系;从而确定解题的方法.对于比较复杂的问题;可以借助线段图、示意图、直观演示等手段帮助分析.例题与方法例 1、把一条大鱼分成鱼头、鱼身、鱼尾三部分;鱼尾重4千克;鱼头的重量等于鱼尾的重量加身一般的重量;而鱼身体、的重量等于鱼头的重量加上鱼尾的重量.这条鱼重多少千克?例2、一所小学的五年级有四个班;其中五(1)班和五(2)班共有81人;五(2)班和五(3)班共有83人五(3)班和五(4)班共有86人;五(1)班比五(4)班多2人.这所学校五年级四个班各有多少人?例 3、甲、乙两位渔夫在和边掉鱼;甲钓了5条;乙钓了3条;吃鱼时;来了一位客人和甲、乙平均分吃这条鱼.吃完后来客付了8角钱作为餐费.问:甲、乙两为渔夫各应得这8角钱中的几角?例 4、一个工地用两台挖土机挖土;小挖土机工作6小时;大挖土机工作8小时;一共挖土312方.已知小挖土机5小时的挖土量等于大挖土机2小时的完土量;两种挖土机每小时各挖土多少方?例 5、甲、乙、丙三人用同样多的钱合买西瓜.分西瓜时;甲和丙都比乙多拿西瓜7.5千克.结果甲和丙各给乙1.5元钱.每千克西瓜多少元|?例 6、小红有一个储蓄筒;存放的都是硬币;其中2分币比5分币多22个.而按钱数算;5分币比2分币多4角.已知这些硬币中有36个1分币.问:小红的储蓄筒里共存了多少钱?练习与思考(第1~4题13分;其余每题12分;共100分.)1.有一段木头;不知它的长度.用一根绳子俩量它;绳子多15米;如果将绳子对折以后再来量;又不够04米.问:这段绳子长多少米?2.甲、乙两人拿出同样多的钱合买一段花布;原约定各拿花布同样多.结果甲拿了6米;乙拿了14米.这样;乙就要给甲12元钱.每米花布的单价是多少元?3.甲、乙丙合三人各出同样多的钱合买苹果若干千克.分苹果时;甲和丙都比乙多拿7.8千克苹果;这样甲和丙各应给乙6元钱.每千克苹果多少钱?4.学校买了2张桌子和5把椅子;共付了330元 .每张桌子的价钱是每把椅子的3倍.每张桌子多少元?5.某校六年级有甲、乙、丙丁四个班;不算甲班;期于三个班的总人数是131人;不算丁班;期于三个班的总人数是134人.已知乙、丙两个班的总人数比甲、丁两个班的总人数少1人;甲、乙丙、丁四个班共有多少人?6.李大伯买了15千克特制面粉和35千克大米;共用去31.2元.已知1千克特特制面粉的价格是1千克大米的 2倍.李大伯买特制面粉和大米各用去多少元?7.14千克大豆的价钱与8千克花生的价钱相等;已知1千克花生比1千克大豆贵12元;大豆和花生的单价各是多少元?8.某车间按计划每天应加工50个零件;实际每天加工56个零件.这样;不仅提前3天完成原计划加工凌驾的任务;而求多加工了120个零件.这个车间实际加工了多少个零件?9.用8千克丝可以织6分米宽的绸4米;现在有10千克的丝;要织75分米宽的绸;可以织几米?|第四讲盈亏问题(一)盈亏问题又叫盈不足问题;是指把一定数量的物品平均分给固定的对象;如果按某种标准分;则分配后会有剩余(盈);按另一种标准分;又会不足(亏);求物品的数量和分配对象的数量.例如:小朋友分苹果;如果每人分2个;就多余16个;如果每人分5个;就缺少14个.小朋友有多少个?苹果有多少个?比较两次分的结果;第一次余16个;第二次少14个;两次相差1+14=30(个).这是因为第二次比第一次每人多分了5-2=3(个)苹果.相差30个;就说明有30÷3=10(个)小朋友.请小读者自己算出苹果的个数.例题与方法例1、将一些糖果分给幼儿园小班的小朋友;如果每人分3 粒;就会余下糖果17粒;如果每人分5粒;就会缺少糖果13粒.问:幼儿园下班有多少个小朋友|这些糖果共有多少粒?例 2、学生搬一批砖;每人搬4块;其中5人要搬两次;如果么人搬5块;就有两人没有砖可搬.搬砖的学生有多少人?这批砖共有多少块?例3某校在植树活动中;把一批树苗分给各班;如果每班分18棵;就会有余下24棵;如果每班分20棵;正好分完.这个学校有多少个班?这批树苗共有多少棵?练习与思考1.小朋友分糖果若每人分4粒则多9粒;若每人呢分5粒则少6粒.问:有多少小朋友?有多少粒糖果?2.小朋友分糖果;每人分10粒正好分完;若每人呢分16粒;则有3个小朋友分不到糖果.问:有多少粒糖果?3.在桥上测量桥高.把绳长对折后垂到水面;还余4米;把绳长3折后垂到水面;还余1米.桥高多少米?绳长多少米?4.某校安排新生宿舍;如果每间住12人;就会有34人没有宿舍住;如果每间住14人就会有空出4间宿舍.这个学校有多少间?要安排多少个新生?5.在依次大扫除中;有一些同学被分配擦玻璃;他们当中如果有2人擦4块;其余的人各擦5块;就会多下12块玻璃没有人擦;如果么人擦6块;刚好擦完.擦玻璃的同学有多少人?玻璃共有多少块?6.有一个数;减去3所的差的4倍;等于它的2倍加上36.这个数是多少?7.体育老师和一个朋友一起上街买足球.他发现自己身边的钱;如果买10个“冠军”牌足球;还差42元;后来他向朋友借了1000元;买了31个“冠军”牌足球;结果多了13元.体育老师原来身边带了多少元?8.某小学生乘汽车去春游;如果每辆车坐65人;就会有15人不能乘车;如果每辆车多坐5人恰好多余了一辆车.一共有多少辆汽车?有多少个学生?第五讲盈亏问题(二)上一讲;我们讲了盈亏问题的一般情形;也就是在量词分配中恰好洋盈(多余);一次亏(不足).事实上;在许多问题里;也会出现两次都是盈(多余);或者两次都是亏(不足)的情况.例 1、学校将一批铅笔奖给三好学生;每人9支缺15支;每人7支就缺7支.问:三好学生有多少人;铅笔有多少支?例2、某小学的部分同学外出参观;如果每辆车坐55人就会余下30个座位;如果每辆车坐50人;就还可以坐10人.有多少辆车?去参观的学生多少人?例3、学校规定上午8时到校.王强上学去;如果每分钟走60米;可以提早10分钟到校;如果每分钟作呕50米可以提早8分钟到校.问:王强什么时候离开家?他家离学校多远?练习与思考(第1~4题13分;其余每题12分;共100分.)1.同学们打羽毛球;每两人一组.每组分6个羽毛球;少10个球;每组分4个羽毛球;少2个球.问:共、有多少个同学打球?有多少个羽毛球?2.学校将一批钢笔奖给三好学生;每人8支缺11支;每人7支缺7支.问:三好学生有多少人?钢笔有多少支?3.某小学的部分学生去春游;如果每辆车坐50人;就会余下30个座位;如果每辆车坐40个人;还可以坐10人.问有多少辆车?去春游的学生多少人?4.一筐苹果分给一个小组;每人5个剩16个;每人7个缺12个.这个小组有多少人?共有多少苹果?5.一些学生分练习本.其中两人每人分6本;其余每人分4本;就会多4本;如果有一人分10本;其余每人分6本;就会少18本.学生有多少人?练习本多少本?6.一个学生从家到学校;先用每分50米的速度走了2分;如果这样走下去;他会迟到8分;后来他改用每分60米的速度前进;结果早到学校5分.这个学生家到学校的路程是多少米?7.筑路对计划每天筑路720米;实际每天比原计划多筑802米;这样;在规定完成任务时间的前3天;就只剩下1160米未筑.这条路多长?8.老师给幼儿园小朋友分苹果.每2人3个苹果;多2个苹果;每3人5个苹果;少4个苹果.问:有多少小朋友?多少苹果?第六讲流水问题想一想:从南京长江逆流而上去长江三峡;与从长江三峡顺水而下回南京;哪个花的时间少?哪个花的时间多?为什么?原因很简单.在长江行船与在一个平静的湖这行船是不一样的;因为长江的水是一直从西向东(也就是从上游向下游)流着的;船的速度会受到江水的影响.而在平静的湖水中行船时;船的速度不会受到水流的影响.考虑船在水流速度的情况下行驶的问题;就是我们这一讲要讲的流水问题.船在顺水航行时(比方说;从长江三峡顺流而下到南京);船一方面按照自己本身的速度即船速(船在静水中行驶的速度)行驶;同时整个水面又按照水的流动速度在前进;水推动着船向前;所以;船顺水时的航行速度应该等于船本身的速度与水流速度的和.也就是顺水速度=船速+水速比方说;船在静水中行驶10千米;水流速度是每小时5千米;那么;船顺水航行的速度就是每小时10+5=15(千米).同学们可以想一想;上面的问题中;如果是问“船逆水航行的速度是多少?”答案又该怎么样呢?船逆水行驶;情况恰好相反.本来船每小时行驶10千米;但由于水每小时又把它往回推了5千米;结果船每小时只向上游行驶了10—5=5(千米).也就是船在逆水中的速度等于船速度与水速之差.即逆水速度=船速—水速例1、一艘每小时行驶30千米的客轮;在一河水中顺水航行165千米;水速每小时3千米.问:这艘客轮需要航行多少小时?例2、一艘船顺水行320千米需要8小时;水流速度是每小时15千米;这艘船逆水每小时行多少千米?这艘船逆水行这段路程;需要多少小时?例3、甲船逆水航行360千米需要18小时;返回原地需要10小时;乙船逆水航行同样的异端水路需要15小时;返回原地需要多少小时?练习与思考1.一只小船以每小时30千米的速度在176千米长的河中逆水而行;用了211小时.这只小船返回原处需要用多少小时?2.船在静水中的速度是每小时25千米;河水流速位每小时5千米;一只船往返甲、乙两港共花了9小时;两港相距多少千米?3.两地距280千米;一艘轮船在期间航行;顺流用去14小时;逆流用去20小时.求这艘轮船在静水中的速度和水流的速度.4.一架飞机所带的燃料;最多可以用6小时;飞机去是顺风;每小时可以飞1500千米;飞回时逆风;每小时可以飞1200千米.这架飞机最多飞出多少千米;就需要往回飞?5.乙船顺水航行2小时;行了120千米;返回原地用了4小时.甲船顺水航行同一段水路;用了3小时.甲船返回原地比去时多用多少小时?第七讲等差数列(1)1;2;3;4;5;6;7;8;…(2)2;4;6;8;10;12;14;16;…(3)1;4;9;16;25;36;49;…上面三组数都是数列.数列中称为项;第一个数叫第一项;又叫首项;第二个数叫第二项……以此类推;最后一个数叫做这个数列的末项.项的个数叫做项数.一个数列中;如果从第二项起;每一项与它前面一项的差都相等;这样的数列叫等差数列.后项与前项的差叫做这个等差数列的公差.如等差数列:4;7;10;13;16;19;22;25;28.首项是4;末项是28;共差是3.这一讲我们学习有关等差数列的知识.例题与方法例1、在等差数列1;5;9;13;17;…;401中401是第几项?例2、100个小朋友排成一排报数;每后一个同学报的数都比前一个同学报的数多3;小明站在第一个位置;小宏站在最后一个位置.已知小宏报的数是300;小明报的数是几?例3、有一堆粗细均匀的圆木;堆成梯形;最上面的一层有5根圆木;每向下一层增加一根;一共堆了28层.最下面一层有多少根?例4、1+2+3+4+5+6+…+97+98+99+100=?例5、求100以内所有被5除余10的自然数的和.例6、小王和小胡两个人赛跑;限定时间为10秒;谁跑的距离长谁就获胜.小王第一秒跑1米;以后每秒都比以前一秒多跑0.1米;小胡自始至终每秒跑1.5米;谁能取胜?练习与思考(每题10分;共100分.)1.数列4;7;10;……295;298中298是第几项?2.蜗牛每小时都比前一小时多爬0.1米;第10小时蜗牛爬了1.9米;第一小时蜗牛爬多少米?3.在树立俄;10;13;16;…中;907是第几个数?第907个数是多少?4.求自然数中所有三位数的和.5.求所有除以4余1的两位数的和.6.0.1+0.3+0.58.+0.7+0.9+0 11+0 13+0 15+…0 99的和是多少?7.梯子最高一级宽32厘米;最底一级宽110厘米;中间还有6级;各级的宽度成等差数列;中间一级宽多少厘米?8.有12个数组成等差数列;第六项与第七项的和是12;求这12个数的和.9.一个物体从高空落下;已知第一秒下落距离是4.9米;以后每秒落下的距离是都比前一秒多9.8米50秒后物体落地.求物体最初距地面的高度.10.求下面数字方阵中所有数的和.1;2;3;…;98;99;1002;3;4;…99;100;1013;4;5;…;100;101;102……100,101,102, …197,198,199第八讲找规律你能找出下面各数列暴烈的规律吗?请在括号内填上合适的数》(1)8;15;22;();36;…;(2)17;1;15;1;13;1;();();9;1;…;(3)45;1;43;3;41;5;();();37;9;…;(4)1;2;4;8;16;();64;…;(5)10;20;21;42;43;();();174;175;…;(6)1;2;3;5;8;13;21;();55.例1. 1;2;3;2;3;4;3;4;5;4;5;6;6;7;…从第一个数算起;前100个数的和是多少?.练习与思考(第1题30分;其余每题10分;共100分.)(1)找规律;在括号内填上合适的数.(1)1,3,9,27,( ),243;(2)2,7,12,17,22,( ),( ),37;(3)1,3,2,4,3,( ),4;(4)0,3,8,15,24,( ) ,.48;(5)6,3,8,5,10,7,12,9,( ),11;(6)2,3,5,( ),( ),17,23;(7)81,64,();36;();16;9;4;1;(8)21;26;19;24;();();15;20;(9)1;8;9;17;26;();69;(10)4;11;18;25;();39;46;2.一串数按下面规律排列:1;3;5;2;4;6;3;5;7;4;6;8;5;7;9;…从第一个数算起;前100个数的和是多少?3.有一串黑白相间的珠子(如下图);第100个黑珠前面一共有多少个白珠?4.在平面中任意作100条直线;这些直线最多能形成多少个交点?5.在平面中任意作20条直线;这些直线最多可把这个平面分成多少个部分?6.序号 1 2 3 4 5算式1+1 2+3 3+5 1+7 2+9序号 6 7 8 9 …算式3+11 1+13 2+15 3+17 …根据上面的规律;第40个序号的算式是什么?算式‘1+103“的序号上多少?7.小正方形的边长是1厘米;依次作出下面这些图形.已知第一幅图的周长是10厘米.(1)36个正方形组成的图形的周长是多少厘米?(2)周长是70厘米的图形;由多少个正方形组成?已知第一幅图的周长是10厘米.(1)36个正方形组成的图形的周厂是多少厘米?(2)周长是70厘米的图形;由多少个正方形组成?8在方格纸上画折线(如本讲例4图);小方格的边长是1;图中的1;2;3;4;…分别表示折线扩大第1;2;3;4;…段.求折线中第100段的长度.长度是30的是第几段?能力测试(一)一、填空题(每空3分;工39分).1.在下面的括号里按照规律填上适当的数字.(1)1;2;3;4;8;16;();64;128.(2)5;10;15;20;25;();35;40.(3)4;7;10;13;16;();22;25.(4)1;1;2;3;5;8;13;21;()(5)1024;512;256;();64;32;16;8;4.(6)2;5;11;20;32;();65;86.(7)1;3;2;4;3;5;();6;5.(8)1;4;9;16;25;();49;64.1.9个人9天共读书1620页;平均1个人1天共读书()页;照这样计算;5个同学5天读书()页.2.如果平均1个同学1天植树()棵;那么;3个同学4天共植树120棵.3.买3只足球和9只篮球共用了570元;买9只足球和27只篮球要用()元.二、计算题(每小题5分;共10分).1.2+4+6+8+10+ … +22+24+262.1+2+3+4+5+6+ … +1996+1997+1998三、应用题(第1~4题10其余每题10分;第5题11分;共51分).1.李老师将一叠练习本分给第一组的同学;如果每人分7本;还多7本.如果每人分9;那么有一个同学译本也分不到.第一组有多少同学?这叠练习本一共有多少本?2.一只小船在河中逆流航行176千米;用了11小时.一知水流速度是每小时4千米;这只小船返回原处要用多少小时?3.4只篮球和8只足球共买560元;6只篮球和3只足球共买390元.问:一只篮球和一只足球各买多少元?4.有10元钞票与5元钞票共128张;其中10元比5元多260元.两种面额的钞票各是多少张?5.下面是一种特殊数列的求和方法.要求数列2;4;8;16;32;64;…;1024;2048的和;方法如下:S= 2+4+8+16+32+64+ … +1024+204822S = 4+8+16+32+64+ … +1024+2048+4096用下面的式子减去上面的式子;就得到S =4096 – 2 = 4094即数列2;4;8;16;32;64;…;1024;2048的和是4094.仔细阅读上面的求和方法;然后利用这种方法求下面数列的和.1;3;9;27;81;243;…;177147;531441.第九讲加法原理在日常生活与实践中;我们经常会遇到分组、计数的问题.解答这一类问题;我们通常运用加法与那里与乘法原理这两个基本的计数原理.熟练掌握这两个原理;不仅可以顺利解答这类问题;而求可以为今后升入中学后学习排列组合等数学知识打下好的基础.什么叫做加法原理呢?我们先来看这样一个问题:从南京到上海;可以乘火车;也可以乘汽车、轮船或者飞机.假如一天中南京到上海有4班火车、6班汽车;3班轮船、2班飞机.那么一天中乘做这些交通工具从南京到上海共有多少种不同的走法?我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法;那么从南京到上海;乘火车有4种走法;乘汽车有6种走法;乘轮船有3种走法;乘坐飞机有2种走法.因为每一种走法都可以从南京到上海;因此;一天中从南京到上海共有4+6+3+2 = 15 (种)不同的走法.我们说;如果完成某一种工作可以有分类方法;一类方法中又有若干种不同的方法;那么完成这件任务工作的方法的总数就等于各类完成这件工作的总和.即N = m1 + m2 + … + m n (N代表完成一件工作的方法的总和;m1,m2, … m n 表示每一类完成工作的方法的种数).这个规律就乘做加法原理.例1 书架上有10本故事书;3本历史书;12本科普读物.志远任意从书架上取一本书;有多少种不同的取法?例2一列火车从上上海到南京;中途要经过6个站;这列火车要准备多少中不同的车票?例3在4 x 4的方格图中(如下图);共有多少个正方形?例4 妈妈;爸爸;和小明三人去公园照相:共有多少种不同的照法?练习与思考1.从甲城到乙城;可乘汽车;火车或飞机.已知一天中汽车有2班;火车有4班;甲城到乙城共有()种不同的走法.2.一列火车从上海开往杭州;中途要经过4个站;沿途应为这列火车准备____种不同的车票.3.下面图形中共有____个正方形.4.图中共有_____个角.5.书架上共有7种不同的的故事书;中层6本不同的科技书;下层有4钟不同的历史书.如果从书架上任取一本书;有____种不同的取法.6.平面上有8个点(其中没有任何三个点在一条直线上);经过每两个点画一条直线;共可以画_____条直线.7.图中共有_____个三角形.8.图中共有____个正方形.9.从2;3;5;7;11;13;这六个数中;每次取出两个数分别作为一个分数的分子和分母;一共可以组成_____个真分数.10.某铁路局从A站到F站共有6个火车站(包括A站和F站)铁路局要为在A站到F站之间运行的。
五年级奥数盈亏问题讲座及练习答案
五年级奥数盈亏问题讲座及练习答案The document was prepared on January 2, 2021五年级奥数盈亏问题讲座及练习答案盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余盈;按另一种标准分,分配后又会不足亏,求物品的数量和分配对象的数量.例如:把一袋饼干分给小班的小朋友,每人分3块,多12块,;如果每人分4块,少8块,小朋友有多少人饼干有多少块这种一盈一亏的情况,就是这们通常说的标准的盈亏问题.标准盈亏问题的基本数量关系式:盈+亏÷两次分配之差=参与分配对象总数;每次分得的数量×份数+盈=总数量;每次分得的数量×份数-亏=总数量还有一些非标准盈亏问题,如:1、两盈:两次分配都有余.数量关系式为:大盈-小盈÷两次分配差=参与分配对象总数2、两亏:两次分配都不够.数量关系式为:大亏-小亏÷两次分配差=参与分配对象总数例1:一盈一亏问题一个植树小组,如果每人植5棵,还剩14棵;如果每人植7棵,就缺4棵.这个植树小组有多少人一共有多少棵树分析:由题意可知,植树的人数和棵数是不会变化的,只是两次分配的方案不一样,结果就差了18棵,即第一种方案的结果比第二种多18棵,这是因为两种分配方案每人植树棵数相差7-5=2棵,所以根据一盈一亏解答此题就非常简单了.人数:14+4÷7-5=2人棵数:5×9+14=59棵答:这个植树小组一共有9人,一共有59棵树.巩固练习1:幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个.幼儿园有多少个小朋友一共有多少个积木解,小朋友分积木,每人2个则剩20个,每人3个则少40个,因此这是一亏一盈问题,两种分积木的方案最后相差20+40=60个,两种方案中每人分得的积木数相差3-2=1个,所以小朋友的个数为:60÷1=60人,积木数为:60×2+20=140个或60×3-40=140个综合算式为:幼儿园有多少个小朋友一共有多少个积木20+40÷3-2 60×2+20 或 60×3-40=60÷1 =120+20 =180-4060个 =140个 =140个答:幼儿园有60个小朋友,一共有140个积木.例2:两亏问题学校将一批铅笔奖给三好学生.如果每人奖9支,则缺45支;如果每人奖7支,则缺7支.三好学生有多少人铅笔有多少支分析:这是两亏问题,由题意可知,三好学生人数和铅笔支数是不变的.根据两亏关系可知,人数:45-7÷9-7=19人铅笔:9×19-45=126支答:三好学生有19人,铅笔有126支.巩固练习2:将月季花插入一些花瓶中.如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵,求花瓶的只数和月季花的朵数解:将月季花插入一些花瓶中,如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵,因此这是两亏问题,两次插花的方案中,一次少15朵,一次少1朵,则两次少的朵数相差15-1=14朵,一次每瓶插6朵,一次每瓶插8朵,两次每瓶相差2朵,因此花瓶数为14÷2=7个,花的朵数为7×8-15=41朵,或7×6-1=41朵综合算式为:花瓶的个数为:花的朵数为:15-1÷8-2 7×8-15 或 7×6-1=14÷2 =56-15 =42-1=7个=41朵 =41朵答:花瓶有7只,月季花有41朵例3:两盈问题有一些少先队员到山上种一批树.如果每人种16棵,还有24棵没种;如果每人种19棵,还有6棵没有种.问有多少名少先队员有多少棵树根据两盈问题请自己分析解答解:少先队员种树,如果每人种16棵,还有24棵没种;如果每人种19棵,还有6棵没有种,所以这是两盈问题.两个方案中所剩棵数相差24-6=18棵,每人所种棵数相差19-16=3棵,所以种树人数为18÷3=6人,树的总棵数为6×19+6=114+6=120棵,或6×16+24=96+24=120棵综合算式为:种树人数为:花的朵数为:24-6÷19-16 6×19+6 或 6×16+24=18÷3 =114+6 =96+24=6个=120棵 =120棵答:有6名少先队员,120棵树.例4:盈亏转化学校给一批新入学的学生分配宿舍.如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间.求学生宿舍有多少间住宿学生有多少人分析:“把每个房间住14人,则空出4个房间”转化为“每个房间住14人,则少14×4=56人后,就得到标准盈亏问题,这样就好解答了.房间数:34+14×4÷14-12=45间人数:12×45+34=574人答:学生宿舍有45间,学生有574人.我也能行1、某班安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位.问有宿舍多少间学生多少人解:如果每间6人,则16人没有床位;如果每间8人,则多出10个床位.此为一亏一盈问题:宿舍间数学生人数16+10÷8-613×6+16 或 13×8-10=26÷2 =78+16 =104-10=13间=94人 =94人答:有宿舍13间学生94人.2、王老师给美术兴趣小组的同学分发图画纸.如果每人发5张,则少32张;如果每人发3张,则少2张.美术兴趣小组有多少名同学王老师一共有多少张图画纸解:如果每人发5张,则少32张;如果每人发3张,则少2张,说明这是两亏问题:32-2÷5-315×5-32 或 15×3-2=30÷2 =75-32 =45-2=15人=43张 =43张答:美术兴趣小组有15名同学,王老师一共有43张图画纸.3、小虎在敌人窗外听里边在分子弹:一人说每人背45发还多260发;另一个说每人背50发还多200发.求有多少敌人有多少发子弹解:每人背45发还多260发;每人背50发还多200发,说明这是两盈问题,所以:敌人人数为子弹颗数为260-200÷50-4512×45+260 或 12×50+200=60÷5 =540+260 =600+200=12人=800颗 =800颗答:有12个敌人有800发子弹4、崔老师给美术兴趣小组的同学分若干支彩色笔.如果每人分5支则多12支;如果每个人分8支还多3支.请问每人分多少支刚好把彩色笔分完解:如果每人分5支则多12支;如果每个人分8支还多3支,说明这是两盈问题.所以:学生人数为:彩笔支数为:12-3÷8-53×5 + 12 或 3×8 + 3=9÷3 =15 + 12 =24 + 3=3人=27支 =27支每人分多少支刚好把彩笔分完:27÷3=9支答:每人分9支刚好把彩色笔分完.5、某校有若干个学生寄宿学校,若每一间宿舍住6人,则多出34人;若每间宿舍住7人,则多出4间宿舍.问宿舍有多少间住宿学生有多少人解:每一间宿舍住6人,则多出34人,每间宿舍住7人,则多出4间宿舍,多出4间宿舍,每间住7人,实际上是多出28人,则这是两盈问题, 所以宿舍间数为:学生人数为:34-28÷7-66×6 + 34 或 6×7 + 28=6÷1 =36 + 34 =42 + 28=6间=70人 =70人答:宿舍有6间,住宿学生有70人6、学校分配学生宿舍.如果每个房间住6人,则少2间宿舍;如果每个房间住9人,则空出2个房间.问学生宿舍有多少间住宿学生有多少人解:每个房间住6人,则少2间宿舍,也就是多6×2=12人;如果每个房间住9人,则空出2个房间,也就是少6×2=12人,所以这是一亏一盈问题,所以宿舍间数为:学生人数为:12+12÷9-68×6 + 12 或 8×9 – 12=24÷3=48 + 12 =72 + 12=8间=60人 =60人答:宿舍有8间,住宿学生有60人7、小强从家到学校,如果每分钟走50米,上课就要迟到3分钟,如果每分钟走60米,就可以比上课时间提前2分钟到校.小强从家到学校的路程是米选自北京市第四届“迎春杯”刊赛解:每分钟走50米,上课就要迟到3分钟,也就是说还要走50×3=150米才能走到学校每分钟走60米,就可以比上课时间提前2分钟到校.也就是说在提前的2分钟里可以多走60×2=120米,所以此题是一盈120米一亏150米,则:走到学校的时间为家到学校的路程为150+120÷60-5050×27 + 150或60×27–120=270÷10 =1350+ 150 =1620–120=27分 =1500米 =1500米答:小强从家到学校的路程是1500米.8、买来一批苹果,分给幼儿园大班的小朋友.如果每人分5个苹果,那么还剩余32个;如果每人分8个苹果,那么还有5个小朋友分不到苹果.这批苹果的个数是_____.选自小学数学奥林匹克预赛A卷解:如果每人分8个苹果,那么还有5个小朋友分不到苹果.也就是说少了8×5=40个苹果,则此题为一盈一亏问题,所以小朋友的人数为:苹果的个数为32+40÷8-524×5 + 32 或 24×8–40=72÷3 =120+ 32 =192 –40=24个 =152个 =152答:这批苹果的个数是152个。
2020~2021学年五年级上册课外奥数经典培训讲义——盈亏问题(一)
2020-2021学年五年级上册课外奥数经典培训讲义——盈亏问题(一)学校:___________姓名:___________班级:___________考号:___________一、解答题1.几个小朋友分梨子,如果每人分4个,则多9个,如果每人分5个,则少6个。
问有多少个小朋友?有多少个梨子?2.老师将一批练习本发给班上的学生。
如果每人发6本,则少94本;如果每人发4本,则少2本。
问有多少个学生?有多少练习本。
3.给参加美术活动小组的同学分若干支彩色笔。
如果每人分5支则多12支;如果每人分8支还多3支。
问有多少个同学?有多少支彩色笔?4.在桥上测量桥高,把绳子对折垂到水面,还余4米,把绳子3折垂到水面,还余1米,桥高多少米?绳长多少米?5.实验小学进行团体操表演。
如果每行排8人,则多出7人;如果每行排14人,则有一排少5人。
问排成多少排?有多少学生?6.有一堆螺丝和螺母。
如果一个螺丝配两个螺母,则多10个螺母;如果一个螺丝配三个螺母,则少6个螺母,螺丝、螺母各多少个?7.某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?8.学习里有铅笔若干支,奖给三好学生,若每人9支,缺15支;若每人7支缺7支。
三好学生有多少人?铅笔有多少支?9.同学们乘车去春游,若每车坐55人,则还可再坐30人;若每车坐50人,则还可再坐10人,问共有车几辆?共有学生多少人?10.某校学生参加劳动,分成若干组,每组8人,觉得每组人数太少,把每组改为12人,因此减少2组,参加劳动的学生共有多少人?11.学校给住宿的新生安排宿舍,如果按7人一间安排比按8人一间多用两间宿舍,有多少住宿的新生?12.某校有一些学生寄宿在校,若每间宿舍住6人,多出34人;若每间宿舍住7人,则多出4间宿舍。
问寄宿的学生和宿舍各有多少?13.同学们去划船,如果每只船坐4人,则少3只船;如果每只船坐6人,还有2人留在岸边。
(完整版)五年级奥数盈亏问题
盈亏问题一、方法讲解在日常生活中有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。
盈亏问题就是在盈亏的情况下确定物品总数和参加分配的人数。
解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。
盈亏问题的数量关系是:〔1〕〔盈+亏〕÷两次分配差=份数〔大盈-小盈〕÷两次分配差=份数〔大亏-小亏〕÷两次分配差=份数2〕每次分的数量×份数+盈=总数量每次分的数量×份数-亏=总数量二、例题讲解例1.学校将一批铅笔奖给三好学生。
如果每人奖9支,那么缺35支;如果每人奖7支,那么缺7支。
三好学生有多少人?铅笔有多少支?例2.学校给一批新入学的学生分配宿舍。
如果每个房间住12人,那么34人没有位置;如果每个房间住14人,那么空出4个房间。
求学生宿舍有多少间?住宿学生有多少人?例例3.三〔1〕班学生去公园划船,如果每条船坐4人,那么少1条船;如果每例条船坐6人,那么多出4条船。
公园里有多少条船?三〔1〕班有多少个学生?例例 4.在桥上用绳子测桥离水面的高度。
假设把绳子对折垂到水面,那么余8米;假设把绳例子三折垂到水面,那么余2米。
问:桥有多高?绳子有多长?例例 5.一个学生从家到学校,如以每分钟50米的速度行走,就要迟到8分钟;如果以每分钟60米的速度行走,就可以提前5分钟到校。
这个学生出发时离上学时间有多少分钟?1/36.少先队员植树,如果每人挖5个坑,那么还有3个坑无人挖;如果其2人各挖4个坑,其余每人挖6个坑,那么恰好将坑挖完。
问:一共要挖几个坑?例7.有假设干个苹果和假设干个梨。
如果按每1个苹果配2个梨分堆,那么梨分完时还剩2个苹果;如果按每3个苹果配5个梨分堆,那么苹果分完时还剩1个梨。
问:苹果和梨各有多少个?三.达标练习1.将月季花插入一些花瓶中。
如果每瓶插8朵,那么缺少15朵;如果每瓶改为插6朵,那么缺少1朵。
(小学奥数讲座)盈亏问题
盈亏问题盈亏问题就是把一定的总数,分配给一定的对象,由于每份数分法不同,导致分后结果有盈(多)有亏(少)的一种典型应用题。
解题关键:解决盈亏问题,往往先用结果的相差数除以每份的相差数,求出对象的数量,进一步求出分配的总数。
所以在讲解时,不要刻意区分这三类基本题型,而应引导学生牢牢抓住两种分法上总的相差数和每次相差数三年级要求:掌握三类基本题型及解题思路和方法四年级要求:掌握三类题型的变化题型的转化思路和转化方法(讲解时注意运用对比例子,对比引导学生进行条件转换)一、基本题型第一类:一盈一亏例1:阿姨给幼儿园小朋友分饼干.如果每人分3块,则多出16块饼干;如果每人分5块,那么就缺4块饼干.问有多少小朋友,有多少块饼干?分析:依题中条件,我们可知:第一种分法:每人3块,还剩16块第二种分法:每人5块,还少4块我们可以比较看出:由于第二种分法比第一种分法每人多分了2块,所以不仅把那剩下的16块分完,还少4块,总数上,第二次比第一次多16+4=20块,换句话说:每人多分2块,就得多分20块,我们就可以算出有多少人了,20÷2=10人,那总饼干数就是:10×3+16=46或10×5-4=46第二类:二次都是盈例:阿姨给幼儿园小朋友分饼干.如果每人分3块,则多出16块饼干;如果每人分5块,那么就多4块饼干.问有多少小朋友,有多少块饼干?分析:依题中条件,我们可知:第一种分法:每人3块,还剩16块第二种分法:每人5块,还多4块我们可以比较看出:由于第二种分法比第一种分法每人多分了2块,所以饼干由剩下16块变成只剩下4块,总数上,第二次比第一次多16-4=12块,换句话说:每人多分2块,就得多分12块,我们就可以算出有多少人了,12÷2=6人,那总饼干数就是:6×3+16=34或6×5+4=34第三类:二次都是亏例:阿姨给幼儿园小朋友分饼干.如果每人分3块,则少4块饼干;如果每人分5块,那么就少16块饼干.问有多少小朋友,有多少块饼干?分析:依题中条件,我们可知:第一种分法:每人3块,还少4块第二种分法:每人5块,还少16块我们可以比较看出:由于第二种分法比第一种分法每人多分了2块,所以饼干由少4块变成了少16块,总数上,第二次比第一次多16-4=12块,换句话说:每人多分2块,就得多分12块,我们就可以算出有多少人了,12÷2=6人,那总饼干数就是:6×3-4=14或6×5-16=14 题库:1.某校同学排队上操.如果每行站9人,则多37人;如果每行站12人,则少20人.一共有多少学生?2、老师卖来一些练习本奖给学生,如果每人分2本,则多18本;如果每人分4本,则少12本,学生几人?有多少本练习本?3、学生做一批纸花,如果每人做3朵,则多了15朵纸花;如果每人做4朵,则少了9朵纸花,学生有几人?共做多少纸花?4、老师给同学发图画纸,如果每人分3张,则少2张;如果每人分5张,则少32张,同学有几人?一共有多少张图画纸?5、小明计划用若干天读完一本书,如果每天读18页,还剩120页;如果每天读22页,还剩下100页;小明计划几天读完?这本书共多少页?6、二班学生去公园玩,收门票费。
五年级奥数盈亏问题
五年级奥数盈亏问题(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--盈亏问题【知识要点】“幼儿园老师给小朋友分糖果,每个小朋友分5个糖果,就多出22个糖果;每个小朋友分7个糖果,就少18个糖果,有多少个小朋友和多少个糖果”像这样以份数平均分一定数量的物品,每份少一些,则物品有余(盈);每份多一些,则物品不足(亏)。
凡是研究这一类算法的应用题叫做盈亏问题。
盈亏问题的基本解法是:份数=(盈+亏)÷两次分配数的差;物品总数=每份个数×份数﹢盈数,物品总数=每份个数×份数-亏数。
【例题放映】例1 小明的妈妈买回一篮梨,分给全家,如果每人分5个,就多出10个梨;如果每人分6个,就少2个梨,小明全家有多少人这篮梨有多少个例2 一组学生去搬书,如果每人搬2本,还剩下12本;如果每人搬3本,还剩下6本,这组学生有几人这批书有几本例3 学校派一些学生去搬一批树苗,如果每人搬6棵,则差4棵;如果每人搬8棵,则差18棵,学生有几人这批树苗有多少棵例4 三(1)班学生去公园划船,如果每条船坐4人,则少一条船,如果每条船坐6人,则多出4条船,公园里有多少条船?三(1)班有多少个学生?例5 三年级少年表演队要去表演,他们算了一下,如果增加一辆汽车,正好每辆汽车坐20人,如果减少一辆汽车,正好每辆车坐30人,问这个表演队有多少人?例6 小明从家到学校,如果每分钟走40米,则要迟到2分钟,如果每分钟走50米,则早到4分钟,小明家到学校有多远?【随堂大比拼】1.一些同学去划船,如果每条船坐5人,则多出3个位置,如果每条坐4人,则有3个人没有位置,一共有多少条船一共有多少个同学2.幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具,幼儿园有几个班这批玩具有多少个3.老师买来一些练习本分给优秀少先队员,如果每人分5本,则多了14本;如果每人分7本,则多了2本,优秀少先队员有几人买来多少本练习本4.把一袋糖分给小朋友们,如果每人分4粒,则多了12粒,如果每人分6粒,则多了2粒,有小朋友几人有多少粒糖5.自然课上,老师发给学生一些树叶,如果每人分5片叶子,则差3片叶子。
五年级奥数、盈亏问题
盈亏问题一、知识要点在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。
盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数。
解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。
盈亏问题的数量关系是:(盈+亏)÷两次分配差=份数二、精讲精练【例题1】用一根绳子绕树三圈,余3米;如果绕树五圈,则差5米,树周长有几米?绳子长多少米?【例题2】学校学生分配宿舍,每个房间住3人,则有23人没有床位;每个房间住5人,则空出3个房间。
问宿舍有多少间?学生有多少人?【例题3】小方从家到学校,如果每分钟走50米,上课就要迟到3分钟,如果每分钟走60米,就可以比上课时间提前2分钟到校,小方家到学校有多远?【例题4】某商店原来一批水果,运费花了1000元,水果报损了100千克,若按1千克2元卖出,则要亏损300元;若按1千克3元卖出,则可盈利500元,问:原来进货多少千克?水果进货成本是多少?【例题5】苹果是数量是梨子的2倍,梨子每人分3个,余2个;苹果每人分7个,少6个,那么这里共有多少人?苹果,梨子分别有多少个?【巩固练习】1、小朋友分糖果,若每人分5粒则多22粒;若每人分7粒则少18粒。
有多少个小朋友分多少粒糖?2、全班同学去划船,如果减少一条船,每船正好坐9人;如果增加一条船,每条船正好做6人,全班共有多少人?3、少先队员去植树,每人7棵,余11棵,后来安排2人每人植6棵,其余每人植8棵,正好植完,问:有多少少先队员?多少棵树?4、有若干件商品,每件卖12元,共盈利100元,每件卖9元,共盈利16元,那么有多少件商品?这些商品的成本是多少?5、同学们到阶梯教室听科技报告,如果每张长椅坐8人,则剩下50人没有座位;如果每张长椅上坐12人,则空出10个座位,如果每张长椅上坐7人,还剩下多少学生无座位?6、某班男、女生义务劳动搬砖,若男生每人搬10块砖,女生每人搬8块砖,则还余20块砖;若男生每人搬12块砖,女生每人搬9块,则有一个男生没事干。
盈亏问题讲义
第3讲盈亏问题所谓盈亏问题,就是把一定数量的东西分给一定数量的人,由两种分配方案产生不同的盈亏数,反过来求出分配的总人数与被分配东西的总数量。
解题的关键在于确定两次分配数之差与盈亏总额(盈数+亏数),需要注意的是,两种分配方案的结果不一定总是一“盈”一“亏”,也会出现两“盈”、两“亏”、一“不盈不亏”一“盈”或“亏”等情况。
由此得到求解盈亏问题的公式:1、(盈+亏)÷两次分配差=份数2、(大盈-小盈)÷两次分配差=份数3、(大亏-小亏)÷两次分配差=份数4、亏÷(两次每人分配数的差)=人数5、盈÷(两次每人分配数的差)=人数一、例题讲解1、幼儿园小朋友分苹果,如果每人分3个就多了11个,如果每人分5个还缺5个,问有多少个小朋友?苹果有多少个?“2、士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。
问:有士兵多少人?有子弹多少发?”3、将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。
有多少学生和多少本本子?”4、小华从家去学校,如果每分钟走80米,能在上课前6分钟到校;如果每分钟走50米,就要迟到3分钟,那么小华家到学校的路程有多远?5、某厂生产一批零件,如果每天生产1000个,将比原计划多用1天;如果每天多生产500个,将比原计划提前1天完成。
现在要求按计划生产完,那么每天应完成多少个?6、学校春游租了几条船让学生们划,如果每条船坐3人,则多出一条船;如果每条船坐5人,则空出19人的位置,有多少学生参加划船?7、用一根绳子测井台到水面的高度,把绳子对折后垂直到水面,绳子超过井台9米;把绳子三折后垂直到水面,绳子超过井台3米,那么绳子共多少米?井台到水面的距离是多少米?8、幼儿园将一筐苹果分给大班和小班的小朋友,如果大班每人分5个,就多10个;如果小班每人分8个,就少了2个。
已知大班比小班多3人,这筐苹果有多少个?练习题:1. 用一根绳子测量井的深度,如果线绳两折时,多5米,;如果绳子3折时,差4米,绳子长多少米?井深多少米?2. 工人铺一条路基,若每天铺260米,铺完全路长就得延长8天;若每天铺300米,铺完全路长仍要延长4天,这条路长多少米?3. 一堆桃子分给一群猴子,如果每只猴子分10个桃子,则有两只猴没有分到,如果每只猴子分8个,则刚好分完.有多少个桃子?4. 幼儿园有梨数是桃子数的2倍,分给幼儿园小朋友,每人分桃5个,最后余下15个;每人分梨14个,则梨数差30个.问幼儿园有桃、梨多少个?。
五年级奥数讲义盈亏问题
盈亏问题月日姓名【知识要点】把一定数量的物品,平均分配给一定数量的人,分完后,若物品有余叫盈,若物品不足为亏。
解答盈亏问题的关键是需求出总差额和两次分配的数量差。
同时注意差额及数量单位要统一。
①盈亏问题;题型一般为:“如果……就……如果……就……”②两种分配方案总的相差(3+4)个,是因为两种分配方案每人相差(13—12)个,故有多少人就有多少个(13一12)。
一看(单位是否统一);二比(总差额与每份量差额,三想(分析原因找出对应量)常用方法:总差额÷每人(或每件的差额)=人数(或件数)。
【典型例题】例1 阳光幼儿园几个小朋友分苹果,如果每人分4个,则多9个,如果每人分5个,则少6个,问有多少个小朋友?有多少个苹果?例2 陈老师将一批图书奖给三好学生。
若每人奖给4本还多10本;若每人奖给6本还多2本。
问三好学生有多少人?图书有多少本?例3 五年级的同学去栽树,如果每人栽8棵则少25棵;如果每人栽6棵则少3棵。
问五年级有多少个同学?他们要栽多少棵树?例4 某校五年级学生去人民公园划船。
如果每条船坐5人,有15人没有座位;如果每条船坐6人,则多2条船。
求公园里有多少条船?五年级有学生多少人?【趣 题】你能不能笔尖不离开纸面地画出四条直线,使得它们通过下图中的九个点?随堂小测姓 名 成 绩 1.小飞飞给同学发巧克力,每人3块多10块,每人5块少8块。
问小飞飞有多少块巧克力?2.周老师给学生们发彩笔,每人5支多20支,每人3支,则多30支。
求班里有多少个学生?一共有多少支彩笔?看来我得再多练练才行3.宝宝把自己的连环画借给她的同学。
若每人借5本,则差17本;若每人借3本,则差1本。
问向宝宝借连环画的同学有多少人?她一共有多少本连环画?4.五年级同学去公园划船。
如果每条船坐10人,则多出2个座位;如果每条船多坐2人,则可少租1条船。
问:现在需要租几条船?5.向南小学的部分学生外出参观。
如果每辆车坐53人,就会余下30个座位;如果每辆车少坐5人,仍余下了10个座位。
小学五年级奥数盈亏问题
2、6个;72块 3、16个;101棵
例二;24人;152册 1、10天;6道
2、7名;38棵 3、15分
1、老师给学生发奖品,如果每人7支铅笔少13支,每人6支铅笔少5支。问学生有几人,铅笔有多少支?
2、若干个小朋友分糖,如果每人分15块则少18块,如果每人分13块则少6块,有多少个小朋友?有多少块糖?
3、一组同学去栽树,如果每人栽8棵则少27颗树,如果每人栽6棵,则余5棵。问这组有多少个同学?他们要栽多少棵树?
例二:五年级给优秀学生发奖品书。如果每个学生发5册,还剩32册,如果其中10个学生每人发4册,其余每人发8册,就恰好发完。那么优秀学生有多少人?奖品书有多少册?
1、小国买了一本《趣味数学》,他计划:若每天做3道题,则剩16道题;若每天坐5道题,则最后一天只要做1道题。那么这本书有几道题?小国计划做几天?
思文教育小学五年级数学
第三课时:盈亏问题
一、知识点
1、盈亏问题的基本数量关系是:(盈+亏) 两次所分之差=人数
2、两盈:两次分配都有多余
3、两亏:两次分配都不够
例一:饲养员将一堆桃子分给一群猴子,如果每只猴子分10个桃子,则缺24个桃子,如果每只猴子分8个桃子,则缺2个桃子。求有多少只猴子Байду номын сангаас有多少个桃子?
2、五(3)班同学去植树,若每人植5颗树,还有3棵没人植;若其中2人每人植4棵,其余每人植6棵,就恰好植完所有的树。那么有几名同学?共要植几棵树?
3、小红从家到学校上学,出发时他看看表,发现如果每分钟步行80米,他将迟到5分钟;如果先步行10分钟以后,再改成骑车每分钟行200米,他可以提前1分钟到校。问小红从家出发时离按3时到校有几分钟?
盈亏问题 奥数
盈亏问题(一)专题简析:在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。
盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数。
解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。
盈亏问题的数量关系是:(1)(盈+亏)÷两次分配差=份数(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数(2)每次分得的数量×份数+盈=总数量每次分得的数量×份数-亏=总数量例1:一个植树小组植树。
如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。
这个植树小组有多少人?一共有多少棵树?解析:由题意可知,植树的人数和树的棵数是不变的。
比较两种分配方案,结果相差14+4=18棵,即第一种方案的结果比第二种多18棵。
这是因为两种分配方案每人植树的棵数相差7-5=2棵。
所以植树小组有18÷2=9人,一共有5×9+14=59棵树。
巩固练习1:幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。
幼儿园有多少个小朋友?一共有多少个积木?例2:学校将一批铅笔奖给三好学生。
如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。
三好学生有多少人?铅笔有多少支?解析:这是两亏的问题。
由题意可知:三好学生人数和铅笔支数是不变的。
比较两种分配方案,结果相差45-7=38支。
这是因为两种分配方案每人得到的铅笔相差9-7=2支。
所以,三好学生有38÷2=19人,铅笔有9×19-45=126支。
巩固练习2:将月季花插入一些花瓶中。
如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵。
求花瓶的只数和月季花的朵数。
例3:有一些少先队员到山上去种一批树。
如果每人种16棵,还有24棵没种;如果每人种19棵,还有6棵没有种。
问有多少名少先队员?有多少棵树?解析:这是两盈的问题。
小学五年级奥数盈亏问题
====Word行业资料分享--可编辑版本--双击可删====1、五年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?2、妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果.那么妈妈买回的苹果有多少个?计划吃多少天?3、学校规定上午8时到校,小明去上学,如果每分种走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小明几时几分离家刚好8时到校?由家到学校的路程是多少?4、学校为新生分配宿舍.每个房间住3人,则多出23人;每个房间住5人,则空出3个房间.问宿舍有多少间?新生有多少人?5、少先队员去植树.如果每人种5棵,还有3棵没人种;如果其中2人各种4棵,其余的人各种6棵,这些树苗正好种完.问有多少少先队员参加植树,一共种多少树苗?6、红山小学学生乘汽车到香山春游.如果每车坐65人,则有5人不能乘上车;如果每车多坐5人,恰多余了一辆车,问一共有几辆汽车,有多少学生?7.某商店进了定价分别为210元、90元、60元的羊毛衫共47件,卖完后共得6360元。
已知定价为90元的羊毛衫件数是定价为60元羊毛衫件数的2倍。
求,三种羊毛衫各进了多少件?8.从甲城往乙城运输78吨贷物,载重量为5吨的大卡车运一趟,运费为110元;载重量为2吨的小卡车运一趟,运费为50元。
要使运费最省,运送这批贷物需要大、小卡车各多少辆?运费为多少?9.有一个三位数,个位数字是十位数字与1。
5相乘积,十位数字是百位数字除以2的商,个位、十位、百位三个数字的和是18。
问,这个三位数是多少?10.学校举行田径运动会,小赵和小王参加100米赛跑。
已知小赵从开始到终点是以每秒2米的速度跑。
小王第一秒跑1米,以后每秒都比前一秒多跑0。
1米。
问,他们两人谁能获胜?为什么?请说明理由。
源-于-网-络-收-集。
小学五年级奥数盈亏问题
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是整理的《⼩学五年级奥数盈亏问题》相关资料,希望帮助到您。
【篇⼀】⼩学五年级奥数盈亏问题 1、筑路队计划每天筑路720⽶,实际每天⽐原计划多筑80⽶,这样在完成规定任务的前三天,就只剩下1160⽶未筑。
问:这条路共有多长? 2、⼩红家买来⼀篮桔⼦,分给全家⼈。
如果其中⼆⼈每⼈分4只,其余每⼈分2只,那么多出4只;如果⼀⼈分6只,其余每⼈分4只,那么缺12只。
问:⼩红家买来多少只桔⼦?⼩红家共有⼏⼈? 3、⾷堂采购员⼩李去买⾁,如果买⽜⾁18千克,那么差4元;如果买猪⾁20千克,那么多2元。
已知⽜⾁、猪⾁每千克差价8⾓,求⽜⾁、猪⾁每千克各多少钱。
4、李⽼师给⼩朋友分苹果和桔⼦,苹果数是桔⼦数的2倍。
桔⼦每⼈分3个,多4个;苹果每⼈分7个,少5个。
问:有多少个⼩朋友?多少个苹果和桔⼦? 5、⽤绳⼦测量井深。
如果把绳⼦三折垂到⽔⾯,余7⽶;如果把绳⼦5折垂到⽔⾯,余1⽶。
求绳长与井深。
6、⽼师给幼⼉园⼩朋友分苹果。
每两⼈三个苹果,多两个苹果;每三⼈五个苹果,少四个苹果。
问:有多少个⼩朋友?多少个苹果? 7、⼩明从家到学校去上学,如果每分钟⾛60⽶,那么将迟到5分钟;如果每分钟⾛80⽶,那么将提前3分钟。
⼩明家距学校多远? 8、有若⼲个苹果和若⼲个梨。
如果按每1个苹果配2个梨分堆,那么梨分完时还剩2个苹果;如果按每3个苹果配5个梨分堆,那么苹果分完时还剩1个梨。
问:苹果和梨各有多少个? 9、乐乐家去学校上学,每分钟⾛50⽶,⾛了2分钟后,发觉按这样的速度⾛下去,到学校就会迟到8分钟。
于是乐乐开始加快速度,每分钟⽐原来多⾛10⽶,结果到达学校时离上课还有5分钟。
问:乐乐家离学校有多远? 10、王师傅加⼯⼀批零件,每天加⼯20个,可以提前1天完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义:把若干物体平均分给一定数量的对象,并不是每次都能正好分完。
如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。
也就是说:已知两个分配方案,一次分配有余,一次分配不足,求参加分配的人数及被分配的总量。
这样的问题通常叫做盈亏问题。
典型的盈亏问题一般以下列的形式表述:把若干个苹果(未知数)分给若干个人(未知数),如果每人分2个还多20个,如果每人分3个则少5个。
问总共有多少人?有多少个苹果?题目中的不变量是人数和苹果数,比较两种不同的分配方法,可知苹果相差:20 + 5 = 25 (个);相差25个苹果,亳无疑问是由于每人相差苹果 3 - 2 = 1 (个)而做成的,事实上,只有唯一一种情况才会导至上述情形,那就是有25人分苹果!求得人数后,进而可以根据题意,用两种方法求得苹果的数目:2×25+20=70(个)或3×25-5=70(个)。
解盈亏问题的公式【一盈一亏的解法】(盈数+亏数)÷两次每人分配数的差=分配人数【双盈的解法】(大盈-小盈)÷两次每人分配数的差=分配人数【双亏的解法】(大亏-小亏)÷两次每人分配数的差=分配人数学法指导由解盈亏问题的公式可以看出,求解此类问题的关键是小心确定两次分配数量的差和盈亏的总额,如果两次分配是一次是有余,另一次是不足时,则依上面的公式先求得人数(不是物数),再求出物数;如果两次分配都是有余,则公式变成盈额差除以两次分配数之差;如果两次分配都是不足时,则公式变成亏额差除以两次分配数之差,如果……有时候,必须转化题目中条件,才能从复杂的数量关系中寻找解答;有时候,直接从“包含”入手比较困难,可以间接从其反面“不包含”去想就会比较容易。
例1 小朋友分糖果,若每人分4粒则多9粒;若每人分5粒则少6粒。
问:有多少个小朋友分多少粒糖?分析:由题目条件可以知道,小朋友的人数与糖的粒数是不变的。
比较两种分配方案,第一种方案每人分4粒就多9粒,第二种方案每人分5粒就少6粒,两种不同的方案一多一少相差9+6=15(粒)。
相差的原因在于两种方案的分配数不同,第一种方案每人分4粒,第二种方案每人分5粒,两次分配数之差为5-4=1(粒)。
每人相差1粒,多少人相差15粒呢?由此求出小朋友的人数为15÷1=15(人),糖果的粒数为4×15+9=69(粒)。
解:(9+6)÷(5-4)=15(人),4×15+9=69(粒)。
答:有15个小朋友,分69粒糖。
例2 小朋友分糖果,若每人分3粒则剩2粒;若每人分5粒则少6粒。
问:有多少个小朋友?多少粒糖果?分析:本题与例1基本相同,例1中两次分配数之差是5-4=1(粒),本题中两次分配数之差是5-3=2(粒)。
例1中,两种分配方案的盈数与亏数之和为9+6=15(粒),本题中,两种分配方案的盈数与亏数之和为2+6=8(粒)。
仿照例1的解法即可。
解:(6+2)÷(4——2)=4(人),3×4+2=14(粒)。
答:有4个小朋友,14粒糖果。
由例1、例2看出,所谓盈亏问题,就是把一定数量的东西分给一定数量的人,由两种分配方案产生不同的盈亏数,反过来求出分配的总人数与被分配东西的总数量。
解题的关键在于确定两次分配数之差与盈亏总额(盈数+亏数),由此得到求解盈亏问题的公式:分配总人数=盈亏总额÷两次分配数之差。
需要注意的是,两种分配方案的结果不一定总是一“盈”一“亏”,也会出现两“盈”、两“亏”、一“不盈不亏”一“盈”或“亏”等情况。
例3 小朋友分糖果,每人分10粒,正好分完;若每人分16粒,则有3个小朋友分不到糖果。
问:有多少粒糖果?分析与解:第一种方案是不盈不亏,第二种方案是亏16×3=48(粒),所以盈亏总额是0+48=48(粒),而两次分配数之差是16——10=6(粒)。
由盈亏问题的公式得有小朋友(0+16×3)÷(16——10)=8(人),有糖10×8=80(粒)。
下面的几道例题是购物中的盈亏问题。
例4 一批小朋友去买东西,若每人出10元则多8元;若每人出7元则少4元。
问:有多少个小朋友?东西的价格是多少?分析与解:两种购物方案的盈亏总额是8+4=12(元),两次分配数之差是10——7=3(元)。
由公式得到小朋友的人数(8+4)÷(10——7)=4(人),东西的价格是10×4——8=32(元)。
例5 顾老师到新华书店去买书,若买5本则多3元;若买7本则少1.8元。
这本书的单价是多少?顾老师共带了多少元钱?分析与解:买5本多3元,买7本少1.8元。
盈亏总额为3+1.8=4.8(元),这4.8元刚好可以买7-5=2(本)书,因此每本书4.8÷2=2.4(元),顾老师共带钱2.4×5+3=15(元)。
例6 王老师去买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还差30元。
问:儿童小提琴多少钱一把?王老师带了多少钱?分析:本题在购物的两个方案中,每一个方案都出现钱不足的情况,买7把小提琴差110元,买5把小提琴差30元。
从买7把变成买5把,少买了7——5=2(把)提琴,而钱的差额减少了110——30=80(元),即80元钱可以买2把小提琴,可见小提琴的单价为每把40元钱。
解:(110——30)÷(7——5)=40(元),40×7——110=170(元)。
答:小提琴40元一把,王老师带了170元钱。
练习131.小朋友分糖果,每人3粒,余30粒;每人5粒,少4粒。
问:有多少个小朋友?多少粒糖?2.一个汽车队运输一批货物,如果每辆汽车运3500千克,那么货物还剩下5000千克;如果每辆汽车运4000千克,那么货物还剩下500千克。
问:这个汽车队有多少辆汽车?要运的货物有多少千克?3.学校买来一批图书。
若每人发9本,则少25本;若每人发6本,则少7本。
问:有多少个学生?买了多少本图书?4.参加美术活动小组的同学,分配若干支彩色笔。
如果每人分4支,那么多12支;如果每人分8支,那么恰有1人没分到笔。
问:有多少同学?多少支彩色笔?5.红星小学去春游。
如果每辆车坐60人,那么有15人上不了车;如果每辆车多坐5人,那么恰好多出一辆车。
问:有多少辆车?多少个学生?6.某数的8倍减去153,比其5倍多66,求这个数。
7.某厂运来一批煤,如果每天烧1500千克,那么比原计划提前一天烧完;如果每天烧1000千克,那么将比原计划多用一天。
现在要求按原计划烧完,那么每天应烧煤多少千克?8.同学们为学校搬砖,每人搬18块,还余2块;每人搬20块,就有一位同学没砖可搬。
问:共有砖多少块?“陈氏框”解题法——盈亏问题A 李明(一)基本概念例1幼儿园老师给小朋友分糖果,每个小朋友分5个糖果,就多出22个;每个小朋友分7个糖果,就少18个糖果。
有几个小朋友和多少个糖果?像这样以份数平均分一定数量的物品,每份少一些,则物品有余(盈),每份多一些,则物品不够(亏),凡是研究这一类算法的应用题就叫着盈亏问题。
盈亏问题的基本解法是:(盈 + 亏)÷ 两次分配数的差,求出份数以后再求物品总数量。
若是这样给学生讲解,肯定会造成学生死记硬背,生搬硬套。
但是,我们若作出“陈氏框”,再给学生讲解,就非常容易理解并且很容易灵活运用了。
(一)作图:因为有两次分配,分配总量一样,而每份量不一样,我们可以画两行框。
(二)分析:看图可以明显看出单差是7-5 = 2,总差呢?第一次分多22个,而同样多的东西,在第二次分不仅这22个分掉了,还少18个,那么,我们知道第二次一共比第一次多分掉了“22 +18 ”个——这就是总差,即“总差 = 盈 + 亏”(三)根据“单差×份数 = 总差”可以得出“份数 = 总差÷单差”解:人数(即份数):(22 +18)÷(7-5)= 20(人)糖果总个数:5×20 + 22 = 122(个)…… 按照第一次分配情况计算7×20 -18 = 122(个)…… 按照第二次分配情况计算答:有20个小朋友,和122个糖果。
(四)小结:“盈亏问题”用“陈氏框” 解答,主要根据“份数 = 总差÷单差”先求出份数,再通过份数求出总量。
例2 老师给美术活动小组的同学分发图画纸,若每人分6张,则缺少48张,若每人分3张,则缺少3张。
美术活动小组有多少名同学?老师一共有多少张图画纸?(一)作图:(二)分析:同样多的主张分给同样多的人,第一次分发的结果是“缺少48张”(亏),第二次分发的结果是“缺少3张”(亏),两次都是“亏”,可以知道第二次比第一次少分发“48-3=45”张图画纸,这就是总差,即“总差 = 大亏–小亏”。
同样的道理,两次都是盈的话,“总差 = 大盈–小盈”(三)解:美术小组人数:(48-3)÷(6-3)= 15(人)图画纸总张数:6×15-48 = 42(张)…………按第一次分配情况算或3×15 -3 = 42(张)…………按第二次分配情况算答:美术活动小组一共有15人,老师一共有42张图画纸。
(四)小结:盈亏问题的单差很好找到,就是两次分配的每份数之差,总差则比较复杂,根据题目条件分配结果不同,有三种计算方式:①总差 = 盈 + 亏②总差 = 大亏–小亏③总差 = 大盈–小盈(二)比较到哪里较复杂的盈亏问题往往会出现两次分配的份数不同,因此,到底是求哪次的份数呢?这就在于我们自己的选择了,而选择的不同,题目的总差也就会有所不同。
例3 四(1)班中队的学生参加夏令营,如果5个人住一个帐篷,就有2个人没有住处;如果8个人住一个帐篷,就可以少搭2个帐篷。
四(1)班中队有多少学生参加夏令营?(1)摆条件,作图:我们把一个框代表一个帐篷,框里的数字表示帐篷内住的人数,因为两次安排的帐篷数量不同,所以在后面多画几个框,以便于比较。
(2)第一种比较:如上图,我们把第二次安排的帐篷数为份数,如果第一次也住同样多的帐篷,人数就会多出5×2+2=12(人),这就是总差。
第二次住的帐篷个数:(5×2+2)÷(8-5)= 4(个)学生人数:8×4 = 32(人)………… 按照第二次分配情况计算(3)第二种比较:如下图,我们把第一次安排的帐篷数为份数,如果第二次也住满这同样的帐篷,总人数就少了8×2 = 16(人),总差就是 2+16 = 18(人)[盈+亏]第一次住的帐篷个数:(8×2+2)÷(8-5)= 6(个)学生人数:5×6+2 = 32(人)………… 按照第一次分配情况计算答:略。