(浙江专版)高中物理6导体棒切割磁感线问题剖析讲义新人教版选修3-2
高中物理选修3-2讲义 详细
第四章电磁感应第一节感应电流产生的条件一、知识回顾:磁通量φ1、概念:穿过某一面积的磁感线条数叫做穿过这一面积的磁通量。
2、公式:φ=BS cosθ3、单位:韦伯,简称韦,符号Wb,1Wb=1T.㎡4、磁通量与匝数无关。
Φ≠nBS5、磁通量是标量,但是有正负6、磁通量是净磁通量7、磁通量的变化量是:Δφ=φ2-φ18、改变磁通量的办法:φ=BS cosθ练习1、关于磁通量的说法正确的是()A 磁通量是一个反映磁场强弱和方向的物理量B 某一面积上的磁通量可表示穿过此面积的磁感线条数C 在磁场中所取得面积越大,该面上磁通量一定越大D 穿过任何封闭曲面的磁通量一定为0练习2、条形磁铁竖直放置,闭合圆环水平放置,条形磁铁中心线穿过圆环中心,如图,若圆环为弹性环,其形状由a扩大为b,那么圆环内磁通量变化情况是()A 增大B 减小C 不变D 无法确定练习3、一磁感应强度为B的匀强磁场方形水平向右,一面积为S的矩形线圈abcd如图所示放置,平面abcd与竖直方向成α角,将abcd绕ad边为轴转过180度角,则穿过线圈平面的刺痛流量的变化量有()A 0B 2BSC 2BScosαD 2BSsinα练习4、如图,线框面积为S,水平放置,磁感应强度B竖直向上,若将线框沿图示方向以OO’为轴顺时针转动60°,则此时磁通量的大小为,若顺时针转动180°,则磁通量的改变量是。
练习5、矩形线框abcd的边长分别为L1、L2,可绕它的一条对称轴OO’转动,匀强磁场的磁感应强度为B,方向与OO’垂直,初位置时线圈平面与B平行,如图1)初位置时穿过线框的磁通量φ1为多少?2)当线框沿图甲所示方向绕过60°时,磁通量φ2为多少?这一过程中磁通量的变化为多少?3)当线框绕轴沿图示方向由图乙中的位置再转过60°位置时,磁通量φ3为多少?这一过程中Δφ=φ3-φ2为多少?练习6、如图,两直导线中通以相同的电流I ,矩形线圈位于导线之间,将线圈由实线位置移到虚线位置的过程中,穿过线圈的磁通量的变化情况是()A 向里,逐渐增大B 向外,逐渐减小C 先向里增大,再向外减小D 先向外减小,再向里增大二、探究感应电流的产生条件1、实验:结论:闭合回路的一部分切割磁感线,产生感应电流思考:感应电流产生的条件:1、闭合回路2、磁通量的改变练习7、如图,有一个电子沿一个圆环形导体的直径方向在圆环表面匀速掠过时,圆环中()A 感应电流时有时无 B 没有感应电流C 有持续的感应电流D 以上说法都不对练习8、在一个专门研究地磁场的实验室的水平桌面上,放置一个边长为L的正方形闭合线圈,线圈的ab边指向南北,如图,下列几种说法正确的是()A 线圈以速度V向东平东时,线圈中有感应电流B线圈以速度V向南平东时,线圈中有感应电流C 以ab边为轴,将cd边迅速翻转90°的过程中,线圈中有感应电流D以ab边为轴,将cd边迅速翻转180°的过程中,线圈中无感应电流第二节楞次定律一、定义:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
导体棒切割磁感线问题分类解析
导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。
解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。
导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。
一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。
例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。
导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s 向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。
解析:金属棒向左匀速运动时,等效电路如图2所示。
在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。
图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。
(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F安=BIh=0.02N 。
(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。
2019-2020学年物理人教版选修3-2(浙江新高考专用)讲义:第四章 电磁感应现象 微型专题2 Word版含答案
微型专题2 电磁感应中的电路、电荷量及图象问题[课时要求] 1.掌握电磁感应现象中电路问题的分析方法和解题基本思路.2.掌握电磁感应电路中感应电荷量求解的基本思路和方法.3.综合应用楞次定律和法拉第电磁感应定律解决电磁感应的图象问题.一、电磁感应中的电路问题1.明确哪部分电路或导体产生感应电动势,该部分电路或导体就相当于电源,其他部分是外电路.2.画等效电路图,分清内、外电路.3.用法拉第电磁感应定律E =n 或E =Bl v 确定感应电动势的大小,用楞次定律或右手定则ΔΦΔt确定感应电流的方向.注意在等效电源内部,电流方向从负极流向正极.4.运用闭合电路欧姆定律、串并联电路特点、电功率、电热等公式联立求解.例1 固定在匀强磁场中的正方形导线框abcd 边长为L ,其中ab 是一段电阻为R 的均匀电阻丝,其余三边均为电阻可以忽略的铜线.磁感应强度为B ,方向垂直纸面向里.现有一段与ab 段的材料、粗细、长度均相同的电阻丝PQ 架在导线框上(如图1所示).若PQ 以恒定的速度v从ad 滑向bc ,当其滑过的距离时,通过aP 段的电流是多大?方向如何?L 3图1答案 方向由 P 到a 6B v L 11R 解析 PQ 在磁场中做切割磁感线运动产生感应电动势,由于是闭合回路,故电路中有感应电流,可将电阻丝PQ 视为有内阻的电源,电阻丝aP 与bP 并联,且R aP =R 、R bP =R ,于1323是可画出如图所示的等效电路图.电源电动势为E =BL v ,外电阻为R 外==R .R aP R bP R aP +R bP 29总电阻为R 总=R 外+r =R .119电路中的电流为:I ==.E R 总9BL v 11R通过aP 段的电流为:I aP =I =,方向由P 到a .R bP R aP +R bP 6B v L 11R[学科素养] 本题考查了电磁感应中的电路问题.正确画出等效电路图是解题的关键,所以要熟记以下两点:(1)“切割”磁感线的导体(或磁通量发生变化的线圈)相当于“电源”.(2)在“电源”内部电流从负极流向正极.解决本题的思路是:先确定“电源”,画出等效电路图,再利用闭合电路欧姆定律计算总电流,然后根据电路的串、并联关系求出aP 段中的电流,通过这样的分析培养了学生的综合分析能力,很好地体现了“科学思维”的学科素养.针对训练 如图2所示,均匀的金属长方形线框从匀强磁场中以速度v 匀速向右拉出,它的两边固定有带金属滑轮的导电机构,金属框向右运动时总是与两边良好接触,一理想电压表跨接在PQ 两导电机构上,当金属框向右匀速拉出的过程中,已知金属框的长为a ,宽为b ,磁感应强度为B ,则电压表的读数( )图2A.恒定不变,为Bb vB.恒定不变,为Ba vC.变大D.变小答案 C解析 当金属框向右匀速拉出的过程中,线框左边切割磁感线产生感应电动势,相当于电源,其余部分是外电路.由公式E =Bl v 知,左边产生的感应电动势等于Bb v ,保持不变,线框中感应电流也不变,而PQ 右侧的电阻增大,由欧姆定律U =IR 知,PQ 间的电压增大,则电压表的读数变大.根据闭合电路欧姆定律知,PQ 间的电压必定小于Bb v ,C 项正确,A 、B 、D 错误.二、电磁感应中的电荷量问题闭合回路中磁通量发生变化时,电荷发生定向移动而形成感应电流,在Δt 内迁移的电荷量(感应电荷量)q =I ·Δt =·Δt =n ··Δt =.E R 总ΔΦΔt 1R 总n ΔΦR 总(1)从上式可知,线圈匝数一定时,感应电荷量仅由回路电阻和磁通量的变化量决定,与时间无关.(2)求解电路中通过的电荷量时,I 、E 均为平均值.例2 一个阻值为R 、匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1、电容为C 的电容器连接成如图3(a)所示回路.金属线圈的半径为r 1,在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图(b)所示.图线与横、纵轴的截距分别为t 0和B 0.导线的电阻不计.求:图3(1)通过电阻R 1的电流大小和方向;(2)0~t 1时间内通过电阻R 1的电荷量q ;(3)t 1时刻电容器所带电荷量Q .答案 (1) 方向从b 到a (2)n πB 0r 23Rt 0n πB 0r 2t 13Rt 0(3)2n πCB 0r 23t 0解析 (1)由B -t 图象可知,磁感应强度的变化率为:=,ΔB Δt B 0t 0根据法拉第电磁感应定律,感应电动势:E =n =n πr =ΔΦΔt 2ΔB Δt n πB 0r 2t 0根据闭合电路的欧姆定律,感应电流为:I =E 3R联立解得:I =n πB 0r 23Rt 0根据楞次定律可知通过R 1的电流方向为从b 到a .(2)通过R 1的电荷量q =It 1得:q =n πB 0r 2t 13Rt 0(3)电容器两板间电压为:U =IR 1=2n πB 0r 23t 0则电容器所带的电荷量为:Q =CU =.2n πCB 0r 23t 0例3 (2018·全国卷Ⅰ)如图4,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于( )图4A. B. C. D.2543274答案 B解析 在过程Ⅰ中,根据法拉第电磁感应定律,有E 1==ΔΦ1Δt 1B (12πr 2-14πr 2)Δt 1根据闭合电路欧姆定律,有I 1=,q 1=I 1Δt 1E 1R在过程Ⅱ中,有E 2==ΔΦ2Δt 2(B ′-B )12πr 2Δt 2I 2=,q 2=I 2Δt 2E 2R又q 1=q 2,即=B (12πr 2-14πr 2)R (B ′-B )12πr 2R所以=.B ′B 32三、电磁感应中的图象问题1.问题类型(1)由给定的电磁感应过程选出或画出正确的图象.(2)由给定的图象分析电磁感应过程,求解相应的物理量.2.图象类型(1)各物理量随时间t 变化的图象,即B -t 图象、Φ-t 图象、E -t 图象和I -t 图象.(2)导体切割磁感线运动时,还涉及感应电动势E 和感应电流I 随导体位移变化的图象,即E -x 图象和I -x 图象.3.解决此类问题需要熟练掌握的规律:安培定则、左手定则、楞次定律、右手定则、法拉第电磁感应定律、欧姆定律等.例4 在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图5甲所示,当磁场的磁感应强度B 随时间t 按图乙变化时,图中能正确表示线圈中感应电动势E 变化的是( )图5答案 A解析 由题图乙知,0~1 s 内磁通量向上均匀增加,根据楞次定律知,电流方向为正且保持不变;1~3 s 内磁通量不变,故感应电动势为0;3~5 s 内磁通量向上均匀减少,由楞次定律知,电流方向为负且保持不变.由法拉第电磁感应定律知,感应电动势的大小与磁通量的变化率成正比,所以3~5 s 内的感应电动势是0~1 s 内的感应电动势的,故选项A 正确.12本类题目线圈面积不变而磁场发生变化,可根据E =S 判断E 的大小及变化,其中n ΔB Δt ΔB Δt 为B -t 图象的斜率,且斜率正、负变化时对应电流的方向发生变化.例5 (2018·全国卷Ⅱ)如图6所示,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l ,磁感应强度大小相等、方向交替向上向下.一边长为l 的正方形金属线框在导轨上向左匀速运动.线框中感应电流i 随时间t 变化的正确图线可32能是( )图6答案 D解析 设线路中只有一边切割磁感线时产生的感应电流为I 0.线框位移等效电路的连接电流0~l2I =2I 0(顺时针)~l l 2I =0l ~3l 2I =2I 0(逆时针)~2l 3l 2I =0分析知,只有选项D 符合要求.1.(电磁感应中的电路问题)(多选)(2017·慈溪市高二上学期期中)如图7所示,虚线框内是磁感应强度为B 的匀强磁场,用同种导线制成的正方形线框abcd 的边长为L (L 小于磁场宽度d ),线框平面与磁场方向垂直,线框的ab 边与磁场左边界平行.导线框以恒定速度v 水平向右运动,当ab 边刚进入磁场时,ab 两端的电势差大小为U 1;当cd 边刚进入磁场时,ab 两端的电势差大小为U 2,则( )图7A.U 1=BL vB.U 1=BL v 34C.U 2=BL vD.U 2=BL v 34答案 BC解析 ab 边进入磁场切割磁感线,产生的感应电动势E =BL v ,ab 两端的电势差大小U 1=E =34BL v .当cd 边刚进入磁场时,回路中无感应电流,则ab 两端的电势差大小为U 2=BL v .342.(电磁感应中的电荷量问题)如图8所示,空间存在垂直于纸面的匀强磁场,在半径为a 的圆形区域内部及外部,磁场方向相反,磁感应强度的大小均为B .一半径为b (b >a )、电阻为R 的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合.当内、外磁场同时由B 均匀地减小到零的过程中,通过导线环横截面的电荷量为( )图8A. B.πB |b 2-2a 2|RπB (b 2+2a 2)R C. D.πB (b 2-a 2)RπB (b 2+a 2)R答案 A解析 开始时穿过导线环向里的磁通量设为正值,Φ1=B πa 2,则向外的磁通量为负值,Φ2=-B ·π(b 2-a 2),总的磁通量为它们的代数和(取绝对值)Φ=B ·π|b 2-2a 2|,末态总的磁通量为Φ′=0,由法拉第电磁感应定律得平均感应电动势为=,通过导线环横截面的电荷量为q =E ΔΦΔt E R·Δt =,A 项正确.πB |b 2-2a 2|R3.(电磁感应中的图象问题)如图9所示,两条平行虚线之间存在匀强磁场,虚线间的距离为l ,磁场方向垂直纸面向里,abcd 是位于纸面内的梯形线圈,ad 与bc 间的距离也为l ,t =0时刻bc 边与磁场区域边界重合.现令线圈以恒定的速度v 沿垂直于磁场区域边界的方向穿过磁场区域,取沿abcda 方向为感应电流正方向,则在线圈穿越磁场区域的过程中,感应电流I 随时间t 变化的图线可能是 ( )图9答案 B解析 bc 边进入磁场时,根据右手定则判断出其感应电流的方向是沿adcba 方向,其方向与电流的正方向相反,故是负的,所以A 、C 错误;当线圈逐渐向右移动时,切割磁感线的有效长度变大,故感应电流在增大;当bc 边穿出磁场区域时,线圈中的感应电流方向变为abcda ,是正方向,故其图象在时间轴的上方,所以B 正确,D 错误.4.(电磁感应中的图象问题)如图10甲所示,矩形线圈abcd 位于匀强磁场中,磁场方向垂直线圈所在平面,磁感应强度B 随时间t 变化的规律如图乙所示.以图中箭头所示方向为线圈中感应电流i 的正方向,以垂直于线圈所在平面向里为磁感应强度B 的正方向,则下列图中能正确表示线圈中感应电流i 随时间t 变化规律的是( )图10答案 C解析 由B -t 图象可知,0~1 s 时间内,B 增大,Φ增大,感应电流的磁场与原磁场方向相反(感应电流的磁场方向向外),由楞次定律知,感应电流是逆时针的,因而是负值;同理可知2~3 s 内感应电流是正值.再由法拉第电磁感应定律和欧姆定律得:I ===·,所E R ΔΦR Δt S R ΔB Δt以线圈中的感应电流决定于磁感应强度B 随t 的变化率,B -t 图象的斜率为,故在2~3 ΔB Δts 内感应电流的大小是0~1 s 内的2倍.C 正确.一、选择题考点一 电磁感应中的电路问题1.如图1所示,设磁感应强度为B ,ef 长为l ,ef 的电阻为r ,外电阻为R ,其余电阻不计.当ef 在外力作用下向右以速度v 匀速运动时,ef 两端的电压为( )图1A.Bl vB.Bl v R R +rC.D.Bl v r R +r Bl v r R答案 B2.如图2所示,由均匀导线制成的半径为R 的圆环,以速度v 匀速进入一磁感应强度大小为B 的有直线边界(图中竖直虚线)的匀强磁场.当圆环运动到图示位置(∠aOb =90°)时,a 、b 两点的电势差为( )图2A.BR vB.BR vC.BR v D.BR v 22224324答案 D解析 设整个圆环的电阻为r ,位于题图所示位置时,电路的外电阻是r .而在磁场内切割磁34感线的有效长度是R ,其相当于电源,E =B ·R ·v ,根据欧姆定律可得U =E =BR v ,2234r r324选项D 正确.3.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框的一边a 、b 两点间电势差的绝对值最大的是( )答案 B解析 磁场中切割磁感线的边相当于电源,外电路可看成由三个相同电阻串联形成,A 、C 、D 选项中a 、b 两点间电势差的绝对值为外电路中一个电阻两端的电压:U =E =,B 选项14Bl v4中a 、b 两点间电势差的绝对值为路端电压:U ′=E =,所以a 、b 两点间电势差的绝343Bl v4对值最大的是B 选项.4.如图3所示,竖直平面内有一金属圆环,半径为a ,总电阻为R (指剪开拉直时的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面.环的最高点A 用铰链连接长度为2a 、电阻为的导R2体棒AB ,AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两端的电压大小为( )图3A.B. C. D.Ba v Ba v 3Ba v 62Ba v3答案 A解析 导体棒AB 摆到竖直位置时,AB 切割磁感线的瞬时感应电动势E =B ·2a ·v =Ba v .外电12路电阻大小为=,由闭合电路欧姆定律有|U AB |=·=Ba v ,故选A.R 2·R 2R 2+R 2R 4E R 2+R 4R 413考点二 电磁感应中的电荷量问题5.如图4所示,将一个闭合金属圆环从有界磁场中匀速拉出,第一次速度为v ,通过金属圆环某一横截面的电荷量为q 1,第二次速度为2v ,通过金属圆环某一横截面的电荷量为q 2,则( )图4A.q 1∶q 2=1∶2B.q 1∶q 2=1∶4C.q 1∶q 2=1∶1D.q 1∶q 2=2∶1答案 C6.物理实验中,常用一种叫做“冲击电流计”的仪器测定通过电路的电荷量.如图5所示,探测线圈与冲击电流计串联后可用来测定磁场的磁感应强度.已知线圈的匝数为n ,面积为S ,线圈与冲击电流计组成的回路总电阻为R .若将线圈放在被测匀强磁场中,开始时线圈平面与磁场垂直,现把探测线圈翻转180°,冲击电流计测出通过线圈的电荷量为q ,由上述数据可测出被测磁场的磁感应强度为( )图5A.B. C. D.qR S qR nS qR 2nS qR 2S答案 C解析 由题意知q =·Δt =·Δt =Δt =n =n ,则B =,故C 正确.I E R n ΔΦΔt R ΔΦR 2BS R qR2nS7.(多选)如图6甲所示,静止在水平面上的等边三角形闭合金属线框,匝数n =20匝,总电阻R =2.5 Ω,边长L =0.3 m ,处在两个半径均为r =0.1 m 的圆形匀强磁场中,线框顶点与右侧圆心重合,线框底边与左侧圆直径重合.磁感应强度B 1垂直水平面向外,B 2垂直水平面向里,B 1、B 2随时间t 的变化如图乙所示,线框一直处于静止状态,计算过程中π取3,下列说法正确的是( )图6A.线框具有向左运动的趋势B.t =0时刻穿过线框的磁通量为0.5 WbC.t =0.4 s 时刻线框中感应电动势为1.5 VD.0~0.6 s 内通过线框横截面的电荷量为0.36 C 答案 CD解析 磁感应强度B 1增加,由楞次定律和右手定则可知,线框中的电流为顺时针方向,由左手定则可知,线框所受安培力方向向右,所以线框有向右运动的趋势,A 错误;由Φ=BS 可知,t =0时刻,由磁场B 1产生的磁通量Φ1=B 1·πr 2=0.03 Wb ,方向向外,由磁场B 2产生12的磁通量Φ2=B 2·πr 2=0.005 Wb ,方向向里,所以穿过整个线框的磁通量Φ=Φ1-Φ2=160.025 Wb ,B 错误;根据法拉第电磁感应定律,t =0.4 s 时刻线框中感应电动势E =n ·πr 2=ΔB 1Δt 121.5 V ,C 正确;0~0.6 s 内,通过线框横截面的电荷量q =n ·=0.36 C ,D 正确.ΔB 1·12πr 2R 考点三 电磁感应中的图象问题8.如图7甲所示,一根电阻R =4 Ω的导线绕成半径d =2 m 的圆,在圆内部分区域存在变化的匀强磁场,中间S 形虚线是两个直径均为d 的半圆,磁感应强度随时间变化如图乙所示(磁场垂直于纸面向外为正,电流逆时针方向为正),关于圆环中的感应电流—时间图象,下列选项中正确的是( )图7答案 C解析 0~1 s 内,感应电动势为:E 1=S =× V =4π V ,感应电流大小为:I 1==ΔB Δt πd 2221E 1R 4π4A =π A ,由楞次定律知,感应电流为顺时针方向,为负值,故C 正确,A 、B 、D 错误.9.(2017·慈溪市高二期中)如图8所示,有一等腰直角三角形形状的导线框abc ,在外力作用下匀速地经过一个宽为d (d 大于ac 边长)的有限范围的匀强磁场区域,导线框中产生的感应电流i 与沿运动方向的位移x 之间的函数图象是图中的(规定逆时针为电流正方向)( )图8答案 B解析 开始时导线框进入磁场切割磁感线,根据右手定则可知,电流方向为逆时针,当导线框开始出磁场时,回路中磁通量减小,产生的感应电流为顺时针;不论进入磁场还是出磁场时,由于切割的有效长度变小,导致产生的感应电流大小变小,故B 正确,A 、C 、D 错误.10.(2017·宁波诺丁汉大学附中高二第一学期期中)如图9甲所示,矩形导线框abcd 放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B 随时间t 变化的图象如图乙所示.设t =0时刻,磁感应强度的方向垂直纸面向里,则在0~4 s 时间内,选项图中能正确反映线框ab 边所受的安培力F 随时间t 变化的图象是(规定ab 边所受的安培力向左为正)( )图9答案 D 二、非选择题11.如图10所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线.线框以恒定的速度v 垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:图10(1)流过线框横截面的电荷量q ;(2)cd 两点间的电势差U cd .答案 (1) (2)2Bl 2R 4Bl v 3解析 (1)线框离开磁场过程中,cd 边切割磁感线E =B ·2l ·v ,回路电流I ==,流过线E R 2Bl vR框横截面的电荷量q =I Δt =·=;2Bl v R l v2Bl 2R (2)线框向左离开磁场,cd 边相当于电源,c 点为电源正极,外电阻R 外=R ,U cd =E =.23234Bl v312.如图11所示,导线全部为裸导线,半径为r 、两端开有小口的圆内有垂直纸面向里的匀强磁场,磁感应强度大小为B ,一根长度大于2r 的导线MN 以速度v 在圆环上无摩擦地自左端匀速滑到右端,电路中固定电阻阻值为R ,其余部分电阻均忽略不计,试求MN 从圆环左端滑到右端的过程中:图11(1)电阻R 上的最大感应电流;(2)电阻R 上的平均感应电流;(3)通过电阻R 的电荷量.答案 (1) (2) (3)2Br v R πBr v2RπBr 2R 解析 (1)MN 自左向右滑动时,切割磁感线的有效长度不断变化,当MN 经过圆心时,有效切割长度最长,此时感应电动势和感应电流达到最大值,所以I max ==.E max R 2Br vR(2)===,==.(由于MN 向右滑动中感应电动势和感应电流大小不断E ΔΦΔt B πr 22r vB πr v 2I E R πBr v2R 变化,且不是简单线性变化,故不能通过=BL 求解平均值.)E v (3)流过电阻R 的电荷量等于平均感应电流与时间的乘积,所以q =Δt ==.I ΔΦR πBr 2R13.(2018·温州十五校联合体第二学期期中)由粗细均匀金属丝制成的单匝线圈,其形状如图12所示,可视为由两个扇形拼接而成,每米金属丝的电阻为0.1 Ω,两个扇形所对应的圆心角都为θ=rad ,Oa =Of =7 cm ,Ob =Oc =5 cm ,Od =Oe =3 cm.线圈固定在一绝缘的水平转411盘上,扇形的圆心与转轴重合.转盘一半处在竖直向下的匀强磁场中,磁感应强度为1 T ,转轴刚好在磁场边界上,现让转盘以角速度ω=100 rad/s 顺时针匀速转动.求:图12(1)回路的总电阻;(2)ef 边刚进入磁场时线圈中的电流的大小和方向;(3)cd 边刚进入磁场时线圈中的电流大小以及此时ef 两点间的电压U ef .答案 (1)0.016 Ω (2)12.5 A 逆时针 (3)7.5 A 0.17 V解析 (1)由题意可知单匝线圈总长l =0.16 m ,回路总电阻R =0.016 Ω.(2)ef 边刚进入磁场时,由右手定则可知,电流为逆时针方向.E =Bl ef ,=ω,得E =0.2 V v v Oe +Of2I ==12.5 A ER(3)当cd 边刚进入磁场时,E ′=B (l ef -l cd )′,′=ω,得E ′=0.12 V v v Oa +Ob2I ′==7.5 A E ′RU ef =E -I ′r ef =0.17 V.。
导体棒切割磁感线安培力方向-概述说明以及解释
导体棒切割磁感线安培力方向-概述说明以及解释1.引言1.1 概述导体棒切割磁感线是电磁学中一个重要的现象,通过导体棒与磁场的相互作用,产生了一种称为安培力的力量。
这一现象在物理学的研究中被广泛探讨,并且在实际应用中也有着重要的意义。
在导体棒与磁场相互作用的过程中,磁感线被切割,导体内部的自由电子将会受到力的作用,从而产生了电流。
这个现象被称为磁感线切割引起的感应电流,其原理基于法拉第电磁感应定律。
磁感线是磁场的一种表示方式,它用来描述磁场的分布和强度。
而导体棒在磁场中运动时,会与磁感线交叉或相互接触,导致磁感线被切割。
安培力是导体棒切割磁感线所产生的一种力。
根据安培力的方向规则,当导体棒与磁感线垂直时,安培力的方向与磁感线和导体棒的相对运动方向垂直。
这个实验规律是由法国物理学家安培提出的,因此被命名为安培力。
导体棒切割磁感线引起的安培力大小与切割的磁感线数目成正比,与导体棒的速度成正比,与导体的长度成正比。
因此,在实际应用中,我们可以通过改变导体棒的速度或长度,来控制安培力的大小。
导体棒切割磁感线安培力的方向是一个重要的研究内容。
根据安培力的方向规则,当导体棒与磁感线垂直时,安培力的方向与磁感线和导体棒的相对运动方向垂直。
这一规律的理解对于研究导体棒在磁场中的行为和应用具有重要意义。
综上所述,导体棒切割磁感线是一个引人瞩目的现象,通过导体与磁场的相互作用,产生了一种重要的力——安培力。
了解安培力的方向和作用对于理解导体棒在磁场中的行为和实际应用具有重要意义。
接下来的文章将具体探讨导体棒切割磁感线的原理、安培力对其影响以及实际应用和意义。
1.2文章结构文章结构部分的内容可以包括以下几个方面:1.2 文章结构本文主要分为引言、正文和结论部分:- 引言部分将对导体棒切割磁感线安培力方向的研究背景和意义进行概述,介绍本文的主要内容和目的。
- 正文部分将详细阐述导体棒切割磁感线的原理和作用,其中包括介绍磁感线的概念和导体棒切割磁感线的过程,以及导体棒切割磁感线对安培力的影响等内容。
人教版高中物理选修3第二章《导体切割磁感线运动》讲义及练习
第2讲:导体切割磁感线运动(教师版)1.右手定则(1)内容:伸开右手,使拇指与其余四指垂直,并且都与手掌在同一平面内,让磁感线从手心垂直进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向。
(2)适用范围:适用于判断闭合电路中的部分导体切割磁感线产生感应电流的情况。
2.导体在匀强磁场中平动(1)一般情况:运动速度v 和磁感线方向夹角为θ,则E =Blv sin_θ。
(2)常用情况:运动速度v 和磁感线方向垂直,则E =Blv 。
3.导体棒在匀强磁场中转动导体棒以端点为轴,在垂直于磁感线的平面内以角速度ω匀速转动产生感应电动势 E =12Bωl 2(导体棒的长度为l )。
题目类型:导体平动切割磁感线例1.半径为a 的圆形区域内有匀强磁场,磁感应强度为B =0.2 T,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4 m,b =0.6 m,金属圆环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2 Ω,一金属棒MN 与金属圆环接触良好,棒与环的电阻均忽略不计。
(1)若棒以v 0=5 m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO '的瞬间(如图所示)MN 中的电动势和流过灯L 1的电流。
(2)撤去中间的金属棒MN ,将右面的半圆环O L 2O '以OO '为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为∆B ∆t =4πT s ⁄ ,求L 1的功率。
解析:(1)棒通过圆环直径时切割磁感线的有效长度l =2a ,棒中产生的感应电动势为 E =Blv =B ·2av 0=0.2×0.8×5 V=0.8 V 。
当不计棒和圆环的电阻时,直径OO '两端的电压U =E =0.8 V,通过灯L 1的电流为I 1=UR 0 =0.4 A 。
(2)右半圆环上翻90°后,穿过回路的磁场有效面积为原来的一半,S '=12πa 2,磁场变化时回路中产生的感应电动势为E ,=∆∅∆t =S ,∆B ∆t =12πa 2x 4π=0.32V由于L 1、L 2两灯相同,圆环电阻不计,所以每个灯的电压均为U '=12E ',L 1的功率为P 1 = U ,2R 0 = 1.28×10-2 W 。
人教版高中物理选修3-2电磁感应讲义.docx
高中物理学习材料(灿若寒星**整理制作)电磁感应讲义班级 学号 姓名 知识结构重点难点1.电磁感应现象:(1)产生感应电流的条件是:穿过闭合电路的磁通量发生变化.(2)起磁通量变化的类型:2.楞次定律:⑴适用范围:适用于由磁通量变化引起感应电流的各种情况.⑵内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化.⑶对“阻碍”的进一步理解:①阻碍原磁通量的变化或原磁场的变化.“增则反减则同”②阻碍导体的相对运动,可理解为“来则拒去则留”(由磁体相对运动而引起感应电流的情况).③使线圈面积有扩大或缩小的趋势.④阻碍原电流的变化(自感现象). 电磁感应产生 条件自感与 互 感 导体切割磁感线运动 穿过闭合电路所围面积中磁通量发生变化 法拉第电磁感应定律㈠ 法拉第电磁感应定律㈡ 大小:ε=BLV方向:右手定则 大小:ε=n t ∆∆φ 方向:楞次定律 自感现象 互感现象 变压器 21U U =21n n P 出=P 入(理想变压器) 交变电流 即时值 U=U m sin ωt I=I m sin ωt 有效值 U=2m U I= 2m I 周期、频率、角频率 T=ωπ21=f⑷楞次定律判断感应电流方向的一般步骤:①明确所研究的闭合回路中原磁场的方向;②明确穿过闭合回路的磁通量是增加还是减少;③楞次定律判定感应电流的磁场方向;④由安培定则根据感应电流的磁场方向判断出感应电流的方向.3.右手定则:4.法拉第电磁感应定律:(1)感应电动势:感生电动势:由感生电场产生的感应电动势.动生电动势:由于导体运动而产生的感应电动势.(2)公式:E n t ∆Φ=∆ 当△仅由B 引起时,则t B nS E ∆∆=;当△Φ仅由S 引起时,则t SnB E ∆∆=.(3)注意:区分磁通量Φ、磁通量的变化量△Φ和磁通量的变化率t ∆Φ∆磁通量Φ等于磁感应强度B 与垂直于磁场方向的面积S 的乘积,即Φ=BS ,它的意义可以形象地用穿过面的磁感线的条数表示.磁通量的变化量△Φ是指回路在初末两个状态磁通量的变化量,△Φ=Φ2-Φ1.△Φ与某一时刻回路的磁通量Φ无关,当△Φ≠0时,回路中要产生感应电动势,但是△Φ却不能决定感应电动势E 的大小. 磁通量的变化率t ∆Φ∆表示的是磁通量变化的快慢,它决定了回路中感应电动势的大小.t ∆Φ∆的大小与Φ、△Φ均无关.(4)部分导体切割磁感线产生的感应电动势的大小:E=BLVsin θ.①若切割磁感线的导体是弯曲的,L 应理解为有效切割长度,即导体在垂直于速度方向上的投影长度.②公式E=BLV 一般适用于在匀强磁场中导体各部分切割速度相同的情况,对一段导体的转动切割,导体上各点线速度不等,取其平均切割速度12L υω=,得212E BL BL υω==.5.互感两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势.变压器就是利用互感现象制成的.6.自感:对自感要搞清楚通电自感和断电自感两个基本问题,尤其是断电自感,特别模糊的是断电自感中“小灯泡在熄灭之前是否要闪亮一下”的问题,如图9-2-10所示,原来电路闭合处于稳图9-2-10B A I (a )(b)itt2t1定状态,L与A并联,其电流分别为IL和IA,都是从左向右.在断开K的瞬时,灯A中原来的从左向右的电流IA立即消失.但是灯A与线圈L组成一闭合回路,由于L的自感作用,其中的电流IL不会立即消失,而是在回路中逐渐减弱维持短暂的的时间,这个时间内灯A中有从右向左的电流通过.这时通过A的电流是从IL开始减弱,如果原来IL>IA,则在灯A熄灭之前要闪亮一下;如果原来IL≤IA,则灯A逐渐熄灭不再闪亮一下.原来的IL和IA哪一个大,要由L的直流电阻RL与A的电阻RA的大小来决定.如果RL≥RA,则IL≤IA;如果RL<RA,则IL>IA.7.感应电量.回路中发生磁通量变化时,由于感应电场的作用使电荷发生定向移动而形成感应电流,在△t内迁移的电量(感应电量)q:8.电磁感应现象中的综合问题⑴电磁感应中的力学问题:在电磁感应的力学问题中,由于感应电流与导体切割磁感线运动的加速度有着相互制约的关系,故导体一般不是做匀变速运动,而是经历一个动态变化过程再趋于一稳定状态.分析这一动态过程进而确定最终状态是解决这类问题的关键所在.分析顺序一般为:①首先分析导体最初在磁场中的运动状态和受力情况;②再分析由于运动状态变化,导体受到的磁场力、合外力的变化;③再分析由于合外力的变化,导体的加速度、速度又会怎样变,从而又引起感应电流、磁场力、合力怎么变;④最终明确导体所能达到的是何种稳定状态.⑵电磁感应中的电路问题:在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势而成为电源,将它们跟电阻、电容等构成回路即为电磁感应中的电路问题.解决这类问题时,找准电源、正确判断感应电动势的方向(即电源的正负极)是关键.分析求解的一般步骤为:①确定电源,求出电动势(或其表达式);②分析电路结构,明确内、外电路;③正确运用稳恒电流求解.⑶电磁感应中的能量转化问题:导体切割磁感线或磁通量发生变化在回路中产生感应电流,则有机械能或其他形式的能量转化为电能,通过安培力做功,电能最终又转化为内能或机械能.因此,电磁感应过程问题伴随着能量转化.功是能量转化的量度,做功与能量转化的形式相对应,所以从能量转化的观点出发,结合动能定理、能量守恒定律、功能关系来分析导体的动能、势能、电能的变化,就可以建立相应的能量方程.⑷电磁感应中的图像问题:电磁感应教学中涉及的图像一般有以下两种:①各物理量随时间t变化的图像,即B—t图线、Φ--t图线、E--t图线、I--t图线等.②各物理量随线圈或导体的位移x变化的图线.常有E--x图线、I--x图线等.图像问题大致可分为两类:由给定的电磁感应过程选出或画出正确的图像或由给定的图像分析电磁感应过程.电磁感应中的图像问题一般需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决.例题精选1.如图(a)所示,两个闭合圆形线圈A、B的圆心重合,放在同一水平面内,线圈A 中通以如图(b)所示的变化电流,t=0时电流方向为顺时针(箭头所示)。
选修3-2电磁感应导体棒绕固定点转动切割磁感线无答案
导体棒绕固定点转动切割磁感线问题研究一、基本知识。
导体棒在磁场中转动切割磁感线时,由于各点切割的线速度不同,不能直接用E=BLVsin θ来计算,然导体棒绕定轴转动时依V=rω可知各点的线速度随半径按线性规律变化,因此通常用中点的线速度来替代,即或二、例题讲解。
例1:一根导体棒oa 长度为L,电阻不计,绕o 点在垂直于匀强磁场B 的平面内以角速度ω做匀速圆周运动,求其产生的电动势。
拓展1:存在供电电路例2:金属棒长为l,电阻为r,绕o 点以角速度ω做匀速圆周运动,a 点与金属圆环光滑接触,如图5 所示,图中定值电阻的阻值为R,圆环电阻不计,求Uoa。
拓展2:磁场不是普通的匀强磁场例3:其他条件同例3,空间存在的匀强磁场随时间作周期性变化,B=B0sinAt,其中A 为正的常数,以垂直纸面向里为正方向,求Uoa。
拓展3:有机械能参与的能量转化问题例4:如图8 所示,一金属圆环和一根金属辐条构成的轮子,可绕垂直于圆环平面的水平轴自由转动,金属环与辐条的电阻不计,质量忽略,辐条长度为L0,轮子处在与之垂直的磁感应强度为B 匀强磁场中,磁场方向垂直纸面向里,一阻值为R 的定值电阻通过导线与轮子的中心和边缘相连,轮子外缘同时有绝缘绳绕着,细绳下端挂着质量为m 的重物,求重物下落的稳定速度。
变式(1):如果原题中的辐条有电阻,且电阻r,求最终系统平衡的速度。
变式(2):如果把原题中的辐条由一根变成四根,如图10所示,且相邻两根辐条的夹角是90°,辐条电阻不计,求重物最终下落的稳定速度。
变式(3):如果把变式(2)中的四根辐条变成一金属圆盘,且不计金属圆盘内阻,求重物最终下落的稳定速度,变式(4):如果变式(2)中的四根辐条的电阻都是r,则重物下落的最终稳定速度为多少?变式(5):在变式(4)的情况下,去掉定值电阻R,环的电阻不可忽略,大小为R,且改变圆环右半边所在区域磁场的方向,如图12 所示,磁感应强度的大小都是B,MN 左侧磁场垂直纸面向里,MN 右侧磁场垂直纸面向外,求重物最终下落的稳定速。
2019-2020学年物理人教版选修3-2(浙江新高考专用)讲义:第五章 交变电流 1
图 10 答案 BD
ΔΦ 解析 第 1 s 末,u 最大,e 最大,则 Δt 最大,线框平面平行于磁感线,A 错,B 对;第 2
ΔΦ s 末,e=0, Δt =0,Φ 最大,线框位于中性面上,C 错,D 对. [学科素养] 通过以上例题,使学生进一步熟悉:1.中性面是线圈平面与磁场垂直的位置;2.当 线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动,且从中性面位置开始计时时,线圈中产 生的感应电流是正弦交流电,满足表达式 e=Emsin ωt,i=Imsin ωt,u=Umsin ωt,也可用正 弦图象表示 e-t、i-t、u-t 的变化规律.通过这样的提炼和升华,较好地体现了“物理观念” 和“科学思维”的学科素养.
B、C、D 错误.
2.(交变电流的产生)(多选)(2017·杭州市高二检测)下列各图中,线圈中能产生交变电流的有( )
答案 BCD 3.(交变电流的图象)(2017·温州市高二检测)如图 12 所示是磁电式电流表的结构图和磁场分布 图,若磁极与圆柱间的磁场都是沿半径方向,且磁场有理想的边界,线圈经过有磁场的位置 处磁感应强度大小相等.某同学用此种电流表中的线圈和磁体做成发电机使用,让线圈匀速 转动,若从图中水平位置开始计时,取起始电流方向为正方向,表示产生的电流随时间变化 关系的下列图象中正确的是( )
一、交变电流的产生 两个特殊位置 (1)中性面(S⊥B 位置)
ΔΦ 线圈平面与磁场垂直的位置,此时通过线圈的磁通量 Φ 最大,磁通量变化率 Δt 为 0,电动 势 e 为 0,电流 i 为 0. 线圈经过中性面时,电流方向发生改变,线圈转一圈电流方向改变两次. (2)垂直中性面位置(S∥B 位置)
如图 5 所示的几种情况中,如果 N、B、ω、S 均相同,则感应电动势的峰值均为 Em=NBSω.
2018-2019学年物理浙江专版人教版选修3-2讲义:第四章 第3节 楞次定律 Word版含解析
第3节楞次定律楞次定律[探新知·基础练]1.探究感应电流的方向(1)实验器材:条形磁铁、电流表、线圈、导线、一节干电池(用来查明线圈中电流的流向与电流表中指针偏转方向的关系)。
(2)实验现象:如图所示,在四种情况下,将实验结果填入下表:①线圈内磁通量增加时的情况:图号磁场方向感应电流的方向感应电流的磁场方向甲向下逆时针(俯视)向上乙向上顺时针(俯视)向下②线圈内磁通量减少时的情况:图号磁场方向感应电流的方向感应电流的磁场方向丙向下顺时针(俯视)向下丁向上逆时针(俯视)向上(3)实验结论:表述一:当穿过线圈的磁通量增加时,感应电流的磁场与原磁场的方向相反;当穿过线圈的磁通量减少时,感应电流的磁场与原磁场的方向相同。
表述二:当磁铁靠近线圈时,两者相斥;当磁铁远离线圈时,两者相吸。
2.楞次定律感应电流具有这样的方向,感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
[辨是非](对的划“√”,错的划“×”)1.感应电流的磁场总与原磁场方向相反。
( )2.感应电流的磁场总是阻碍原磁场的磁通量。
( )3.感应电流的磁场有可能阻止原磁通量的变化。
( )答案:1.× 2.× 3.×[释疑难·对点练]1.对楞次定律的理解因果关系:闭合导体回路中原磁通量的变化是产生感应电流的原因,而感应电流的磁场的产生是感应电流存在的结果,即只有当闭合导体回路中的磁通量发生变化时,才会有感应电流的磁场出现。
2.楞次定律中“阻碍”的含义3.楞次定律的使用步骤[试身手]1.根据楞次定律可知感应电流的磁场一定是( )A.阻碍引起感应电流的磁通量B.与引起感应电流的磁场反向C.阻碍引起感应电流的磁通量的变化D.与引起感应电流的磁场同向解析:选C 根据楞次定律,感应电流的磁场阻碍的是引起它的磁通量的变化,而不是引起它的磁通量。
故A选项错误,C选项正确;感应电流的磁场方向与原磁通量的变化有关,可能与引起感应电流的磁场反向也可能同向,故B、D选项错误。
2018-2019学年物理浙江专版人教版选修3-2讲义:第四章 第1、2节 划时代的发现 探究感应电流的产生条件
第1、2节划时代的发现__探究感应电流的产生条件1.“电生磁”的发现1820年,丹麦物理学家奥斯特发现了电流的磁效应。
2.“磁生电”的发现1831年,英国物理学家法拉第发现了电磁感应现象。
3.法拉第的概括法拉第把引起感应电流的原因概括为五类:4.电磁感应法拉第把他发现的磁生电的现象叫做电磁感应,产生的电流叫感应电流。
5.发现电磁感应现象的意义(1)使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。
(2)使人们找到了磁生电的条件,开辟了人类的电气化时代。
[辨是非](对的划“√”,错的划“×”)1.有电流即生磁场。
()2.有磁场即生电流。
()3.静止的电荷周围也能产生磁场。
()答案:1.√ 2.× 3.×[释疑难·对点练]1.电流的磁效应与电磁感应现象的区别与联系(1)区别:“动电生磁”和“动磁生电”是两个不同的过程,要抓住过程的本质,动电生磁是指运动电荷周围产生磁场;动磁生电是指线圈内的磁通量发生变化而在闭合线圈内产生了感应电流。
动电生磁中的动是运动的意思,即电荷相对磁场运动,动磁生电中的动是变化的意思。
要从本质上来区分它们。
(2)联系:二者都反映了电流与磁场之间的关系。
2.发现电磁感应现象的意义(1)电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。
(2)电磁感应的发现使人们找到了“磁生电”的条件,开辟了人类的电气化时代。
(3)通过法拉第发现电磁感应的过程,我们应该清楚地看到:法拉第在作出伟大发现的过程中,也受着历史局限性的束缚。
思维定式的影响使他在很长一段时间内徘徊不前,但他没有放弃,他通过偶然发现的现象,经过深入探究,终于找到了将磁转化为电的途径。
[试身手]1.下列属于电磁感应现象的是()A.通电导体周围产生磁场B.磁场对感应电流发生作用,阻碍导体运动C.由于导体自身电流发生变化,在回路中产生感应电流D.电荷在磁场中定向移动形成电流解析:选C根据引起电流原因的五类情况可知,导体自身电流发生变化,回路中产生感应电流属于电磁感应现象。
2019-2020学年物理人教版选修3-2(浙江新高考专用)讲义:第四章 电磁感应现象 7 Word版含答案
7 涡流、电磁阻尼和电磁驱动知识内容选考要求课时要求涡流、电磁阻尼和电磁驱动b 1.了解涡流的产生原因,知道涡流的本质是感应电流.2.了解电磁阻尼和电磁驱动现象.3.了解涡流的应用和减小涡流危害的方法.一、涡流1.涡流:当线圈中的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体中组成闭合回路,很像水中的旋涡,所以把它叫做涡电流,简称涡流.2.涡流大小的决定因素:磁场变化越快(越大),导体的横截面积S越大,导体材料的电阻ΔB Δt率越小,形成的涡流就越大.二、电磁阻尼当导体在磁场中运动时,导体中产生的感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动,这种现象称为电磁阻尼.三、电磁驱动若磁场相对导体转动,在导体中会产生感应电流,感应电流使导体受到安培力的作用,安培力使导体运动起来,这种作用常常称为电磁驱动.判断下列说法的正误.(1)导体中有涡流时,导体没有和其他元件组成闭合回路,故导体不会发热.( × )(2)电磁阻尼和电磁驱动均遵循楞次定律.( √ )(3)电磁阻尼发生的过程,存在机械能向内能的转化.( √ )(4)电磁驱动中有感应电流产生,电磁阻尼中没有感应电流产生.( × )一、涡流如图所示,线圈中的电流随时间变化时,导体中有感应电流吗?如果有,它的形状像什么?答案 有.变化的电流产生变化的磁场,变化的磁场产生感生电场,使导体中的自由电子发生定向移动,产生感应电流,它的形状像水中的旋涡,所以把它叫做涡电流,简称涡流.1.产生涡流的两种情况(1)块状金属放在变化的磁场中.(2)块状金属进出磁场或在变化的磁场中运动.2.产生涡流时的能量转化(1)金属块在变化的磁场中,磁场能转化为电能,最终转化为内能.(2)金属块进出磁场或在非匀强磁场中运动,由于克服安培力做功,金属块的机械能转化为电能,最终转化为内能.3.涡流的应用与防止(1)应用:真空冶炼炉、探雷器、安检门等.(2)防止:为了减小电动机、变压器铁芯上的涡流,常用电阻率较大的硅钢做材料,而且用相互绝缘的硅钢片叠成铁芯来代替整块硅钢铁芯.例1 (多选)“电磁感应铝箔封口机”被广泛应用在医药、食品、化工等生产行业的产品封口环节中,如图1所示为一手持式封口机,它的工作原理是:当接通电源时,内置线圈产生磁场,当磁感线穿过封口铝箔材料时,瞬间产生大量小涡流,致使铝箔自行快速发热,熔化复合在铝箔上的溶胶,从而粘贴在待封容器的封口处,达到迅速封口的目的.下列有关说法正确的是( )图1A.封口材料可用普通塑料来代替铝箔B.该封口机可用干电池作为电源以方便携带C.封口过程中温度过高,可适当减小所通电流的频率来解决D.该封口机适用于玻璃、塑料等多种材质的容器封口,但不适用于金属容器答案 CD解析 由于封口机利用了电磁感应原理,故封口材料必须是金属类材料,而且电源必须是交流电源,A、B错误;减小内置线圈中所通电流的频率可降低封口过程中产生的热量,即控制温度,C正确;封口材料应是金属类材料,但对应被封口的容器不能是金属,否则同样会被熔化,只能是玻璃、塑料等材质,D正确.例2 (多选)下列哪些措施是为了防止涡流的危害( )A.电磁炉所用的锅要用平厚底金属锅B.机场、车站和重要活动场所的安检门可以探测人身携带的金属物品C.变压器的铁芯不做成整块,而是用许多电阻率很大的硅钢片叠合而成D.变压器的铁芯每片硅钢片表面有不导电的氧化层答案 CD解析 电磁炉是采用电磁感应原理,在金属锅上产生涡流,使锅体发热从而加热食物的,属于涡流的应用;安检门是利用涡流工作的;变压器的铁芯不做成整块,而是用许多电阻率很大的硅钢片叠合而成,是为了减小变压器铁芯内产生的涡流,属于涡流的防止;变压器的铁芯每片硅钢片表面有不导电的氧化层,是为了减小变压器铁芯内产生的涡流,属于涡流的防止.故C、D正确.二、电磁阻尼弹簧上端固定,下端悬挂一个磁铁.将磁铁托起到某一高度后放开,磁铁能上下振动较长时间才停下来.如果在磁铁下端放一个固定的闭合线圈,使磁铁上下振动时穿过它(如图所示),磁铁就会很快停下来,解释这个现象.答案 当磁铁穿过固定的闭合线圈时,在闭合线圈中会产生感应电流,感应电流的磁场会阻碍磁铁靠近或离开线圈,也就使磁铁振动时除了受空气阻力外,还要受到线圈的磁场阻力,克服阻力需要做的功较多,机械能损失较快,因而会很快停下来.1.闭合回路的部分导体在做切割磁感线运动产生感应电流时,导体在磁场中就要受到安培力的作用,根据楞次定律,安培力总是阻碍导体的运动,于是产生电磁阻尼现象.2.电磁阻尼是一种十分普遍的物理现象,任何在磁场中运动的导体,只要给感应电流提供回路,就会存在电磁阻尼作用.例3 (2018·嘉兴市高二第一学期期末)扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图2所示.无扰动时,按下列四种方案对紫铜薄板施加恒定磁场;出现扰动后,对于紫铜薄板上下及其左右振动的衰减最有效的方案是( )图2答案 A解析 感应电流产生的条件是闭合回路中的磁通量发生变化.在A图中,系统振动时,紫铜薄板随之上下及左右振动,都会使穿过紫铜薄板的磁通量发生变化,产生感应电流,受到安培力,阻碍系统的振动,故A正确;在B、D图中,只有紫铜薄板左右振动才产生感应电流,而上下振动无感应电流产生,故B、D错误;在C图中,无论紫铜薄板上下振动还是左右振动,都不会产生感应电流,故C错误.三、电磁驱动一个闭合线圈放在蹄形磁铁的两磁极之间,如图所示,蹄形磁铁和闭合线圈都可以绕轴转动.当蹄形磁铁顺时针转动时线圈也顺时针转动;蹄形磁铁逆时针转动时线圈也逆时针转动.(1)蹄形磁铁转动时,穿过线圈的磁通量是否变化?(2)线圈转动起来的动力是什么力?线圈的转动速度与磁铁的转动速度之间有什么关系?答案 (1)变化.(2)线圈内产生感应电流受到安培力的作用,安培力作为动力使线圈转动起来.线圈的转动速度小于磁铁的转动速度.电磁阻尼与电磁驱动的比较(1)电磁阻尼中安培力的方向与导体运动方向相反,阻碍导体运动;电磁驱动中导体所受安培力的方向与导体运动方向相同,推动导体运动.安培力的作用效果均是阻碍导体与磁场的相对运动.(2)电磁阻尼中克服安培力做功,其他形式的能转化为电能,最终转化为内能;电磁驱动中由于电磁感应,磁场能转化为电能,通过安培力做功,部分电能转化为导体的机械能而对外做功.例4 如图3所示,蹄形磁铁和矩形线圈均可绕竖直轴OO′转动.从上向下看,当磁铁逆时针转动时,则( )图3A.线圈将逆时针转动,转速与磁铁相同B.线圈将逆时针转动,转速比磁铁小C.线圈将逆时针转动,转速比磁铁大D.线圈静止不动答案 B解析 由楞次定律可知,线圈将与磁铁同向转动,但转速一定小于磁铁的转速.如两者的转速相同,磁感线与线圈处于相对静止状态,线圈不切割磁感线,无感应电流产生,B正确,A、C、D 项错误.[学科素养] 通过例3和例4,建立了电磁阻尼和电磁驱动的思维模型,加深了对电磁阻尼和电磁驱动的理解和区分,较好地体现了“科学思维”的学科素养.1.(对涡流的理解)(多选)对变压器和电动机中的涡流的认识,以下说法正确的是( )A.涡流会使铁芯温度升高,减少线圈绝缘材料的寿命B.涡流发热,要损耗额外的能量C.为了不产生涡流,变压器和电动机的铁芯用相互绝缘的硅钢片叠成的铁芯来代替整块硅钢铁芯D.涡流产生于线圈中,对原电流起阻碍作用答案 AB解析 变压器和电动机中产生的涡流会使铁芯温度升高消耗额外的能量,同时会减少线圈绝缘材料的寿命,选项A、B正确;变压器和电动机的铁芯用相互绝缘的硅钢片叠成的铁芯来代替整块硅钢铁芯是为了增加电阻,减小涡流,减少产生的热量,选项C错误;涡流产生于铁芯中,对原电流无阻碍作用,选项D错误.2.(涡流的应用)(2017·绍兴市高二检测)电磁炉热效率高达90%,炉面无明火,无烟,无废气,“火力”强劲,安全可靠.图4所示是描述电磁炉工作原理的示意图,下列说法正确的是( )图4A.当恒定电流通过线圈时,会产生恒定磁场,恒定磁场越强,电磁炉加热效果越好B.电磁炉通电线圈加交流电后,在锅底产生涡流,进而发热工作C.在锅和电磁炉中间放一纸板,则电磁炉不能起到加热作用D.电磁炉的锅不能用陶瓷锅或耐热玻璃锅,主要原因是这些材料的导热性能较差答案 B解析 锅体中的涡流是由变化的磁场产生的,所加的电流是交流,不是直流,故A错误;根据电磁炉的工作原理可知,电磁炉通电线圈加交流电后,在锅底产生涡流,进而发热工作,故B正确;在锅和电磁炉中间放一纸板,不会影响电磁炉的加热作用,故C错误;金属锅自身产生无数小涡流而直接加热于锅底,陶瓷锅或耐热玻璃锅属于绝缘材料,里面不会产生涡流,故D错误.3.(对电磁阻尼的理解)(多选)如图5所示是电表中的指针和电磁阻尼器,下列说法正确的是( )图5A.2是磁铁,在1中产生涡流B.1是磁铁,在2中产生涡流C.该装置的作用是使指针能够转动D.该装置的作用是使指针能很快地稳定答案 AD解析 当指针摆动时,1随之转动,2是磁铁,那么在1中产生涡流,2对1的安培力将阻碍1的转动;不管1向哪个方向转动,2对1的效果总起到阻尼作用,所以它能使指针很快地稳定下来,选项A、D正确.4.(对电磁驱动的理解)(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图6所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是( )图6A.圆盘上产生了感应电动势B.圆盘内的涡流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动答案 AB考点一 涡流的理解、利用和防止1.下列关于涡流的说法中正确的是( )A.涡流跟平时常见的感应电流一样,都是因为穿过导体的磁通量变化而产生的B.涡流不是感应电流,而是一种有别于感应电流的特殊电流C.涡流有热效应,但没有磁效应D.在硅钢中不能产生涡流答案 A解析 涡流的本质是电磁感应现象中产生的感应电流,只不过是由金属块自身构成回路,它既有热效应,也有磁效应,所以A正确,B、C错误;硅钢中产生的涡流较小,D错误.2.变压器的铁芯是利用薄硅钢片叠压而成,而不采用一整块硅钢,这是为了( )A.增大涡流,提高变压器的效率B.减小涡流,降低变压器的效率C.增大涡流,减小铁芯的发热量D.减小涡流,减小铁芯的发热量答案 D3.(2017·金华市期末)如图1所示,电磁炉是利用电流通过线圈产生磁场,该磁场使铁质锅底部产生无数小涡流,使锅体发热.则下列相关说法中正确的是( )图1A.锅体发热是由于电磁炉本身发热且传导给锅体B.锅体中的涡流是由恒定的磁场产生的C.恒定磁场的磁感应强度越大,电磁炉的热功率越大D.只提高磁场变化频率,可提高电磁炉的热功率答案 D解析 锅体发热是由于变化的磁场产生涡流,并不是电磁炉本身发热且传导给锅体,故A错误;锅体中的涡流是由变化的磁场产生的,故B、C错误;提高磁场变化的频率,即提高磁通量的变化率,从而增大涡流,可提高电磁炉的热功率,故D正确.4.高频感应炉是用来熔化金属对其进行冶炼的,如图2所示为冶炼金属的高频感应炉的示意图,炉内放入被冶炼的金属,线圈通入反复变化的电流,这时被冶炼的金属就能被熔化,这种冶炼方法速度快,温度易控制,并能避免有害杂质混入被冶炼金属中,因此适于冶炼特种金属.该炉的加热原理是( )图2A.利用反复变化的电流的交变磁场在炉内金属中产生的涡流B.利用线圈中电流产生的磁场C.利用线圈中电流产生的焦耳热D.给线圈通电的同时,给炉内金属也通了电答案 A解析 高频感应炉的原理是电磁感应现象.当线圈中的电流反复变化时,线圈中产生高频变化的磁场,磁场穿过金属,在金属内产生强涡流,从而在金属中产生大量的热,并不是单纯利用线圈中电流的磁场,也没有利用线圈中电流产生的焦耳热,更没有给炉内金属通电,故A 正确,B、C、D错误.5.(多选)涡流检测是工业上无损检测的方法之一,如图3所示,线圈中通以一定频率的周期性变化的电流,靠近待测工件时,工件内会产生涡流,同时线圈中的电流受涡流影响也会发生变化.下列说法中正确的是( )图3A.涡流的磁场总是要阻碍穿过工件的磁通量的变化B.涡流的频率等于通入线圈的周期性变化的电流频率C.通电线圈和待测工件间存在周期性变化的作用力D.待测工件可以是塑料或橡胶制品答案 ABC解析 根据楞次定律得知:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化,故涡流的磁场总是要阻碍穿过工件的磁通量的变化,故A正确;感应电流的频率与原电流的频率是相同的,涡流的频率等于通入线圈的周期性变化的电流频率,故B正确;因为线圈中的电流是周期性变化的,故在工件中引起的电流也是周期性变化的,可知通电线圈和待测工件间存在周期性变化的作用力,故C正确;电磁感应不能发生在塑料或橡胶制品中,故D错误.考点二 电磁阻尼的理解6.(2018·温州十五校联合体高二第一学期期末)如图4所示,弹簧上端固定,下端悬挂一个磁铁.将磁铁拉离平衡位置后,磁铁将上下振动,经较长时间才会停下来.若在磁铁下方放一个固定的金属环,则磁铁很快就会停下来.这是因为放上金属圆环后( )图4A.金属环被磁铁磁化产生磁性,从而阻碍磁铁振动B.金属环上产生感应电流,感应电流的磁场阻碍磁铁振动C.金属环上产生静电感应,感应电荷的电场阻碍磁铁振动D.金属环材料的电阻率越大,阻碍效果就越明显答案 B7.如图5所示,使一个铜盘绕其竖直的轴OO′转动,且假设摩擦等阻力不计,转动是匀速的.现把一个蹄形磁铁移近铜盘,则( )图5A.铜盘的转动将变慢B.铜盘的转动将变快C.铜盘仍以原来的转速转动D.铜盘的转动速度是否变化,要根据磁铁上下两端的极性来决定答案 A8.在水平放置的光滑绝缘导轨上,沿导轨固定一个条形磁铁,如图6所示.现有铜、铝和有机玻璃制成的滑块甲、乙、丙,使它们分别从导轨上的A点以某一初速度向磁铁滑去.各滑块在向磁铁运动的过程中( )图6A.都做匀速运动B.甲、乙做加速运动C.甲、乙做减速运动D.乙、丙做匀速运动答案 C解析 甲、乙向磁铁靠近时要产生涡流,受电磁阻尼作用,做减速运动,丙则不会产生涡流,只能匀速运动.9.(多选)如图7所示,磁电式仪表的线圈通常是用铝框做骨架,把线圈绕在铝框上,这样做的目的是( )图7A.防止涡流而设计的B.利用涡流而设计的C.起电磁阻尼的作用D.起电磁驱动的作用答案 BC解析 线圈通电后在安培力作用下转动,铝框随之转动,在铝框内产生涡流.涡流将阻碍线圈的转动,使线圈偏转后尽快停下来,这样做是利用涡流来起电磁阻尼的作用,故B、C正确.10.光滑曲面与竖直平面的交线是抛物线,如图8所示,抛物线的方程为y=x2,其下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(如图中的虚线所示).一个小金属块从抛物线上y=b(b>a)处以速度v沿抛物线下滑,假设曲面足够长,则金属块在曲面上滑动的过程中产生的总热量是( )图8A.mgbB.m v 212C.mg (b -a )D.mg (b -a )+m v 212答案 D解析 金属块在曲面上滑动的过程中,由初状态到末状态(金属块在磁场区域内往复运动)能量守恒.初状态机械能E 1=mgb +m v 212末状态机械能E 2=mga总热量Q =E 1-E 2=mg (b -a )+m v 2.1211.(多选)如图9所示,闭合金属环从光滑曲面上h 高处滚下,又沿曲面的另一侧上升,设环的初速度为零,摩擦不计,曲面处在图中磁场中,则( )图9A.若是匀强磁场,环上升的高度小于hB.若是匀强磁场,环上升的高度等于hC.若是非匀强磁场,环上升的高度等于hD.若是非匀强磁场,环上升的高度小于h答案 BD解析 若磁场为匀强磁场,穿过环的磁通量不变,不产生感应电流,即无机械能向电能转化,机械能守恒,故A错误,B正确;若磁场为非匀强磁场,环内要产生涡流,机械能减少,故C 错误,D正确.考点三 电磁驱动12.如图10所示,闭合导线圆环和条形磁铁都可以绕水平的中心轴OO′自由转动,开始时磁铁和圆环都静止在竖直平面内,若条形磁铁突然绕OO′轴,N极向纸里,S极向纸外转动,在此过程中,圆环将( )图10A.产生逆时针方向的感应电流,圆环上端向里、下端向外随磁铁转动B.产生顺时针方向的感应电流,圆环上端向外、下端向里转动C.产生逆时针方向的感应电流,圆环并不转动D.产生顺时针方向的感应电流,圆环并不转动答案 A解析 磁铁开始转动时,环中穿过环向里的磁通量增加,根据楞次定律,环中产生逆时针方向的感应电流.磁铁转动时,为阻碍磁通量的变化,圆环与磁铁同向转动,所以选项A正确.13.如图11所示,在一蹄形磁铁下面放一个铜盘,铜盘和磁铁均可以绕OO′轴自由转动,两磁极靠近铜盘,但不接触.当磁铁绕轴转动时,铜盘将( )图11A.以相同的转速与磁铁同向转动B.以较小的转速与磁铁同向转动C.以相同的转速与磁铁反向转动D.静止不动答案 B14.(多选)位于光滑水平面上的小车上放置一螺线管,一个比螺线管长的条形磁铁沿着螺线管的轴线以初速度v水平穿过,如图12所示,在此过程中( )图12A.磁铁做匀速直线运动B.磁铁做减速运动C.小车向右做加速运动D.小车先加速后减速答案 BC解析 磁铁水平穿入螺线管时,管中将产生感应电流,由楞次定律知该电流产生的磁场阻碍磁铁的运动.同理,磁铁穿出时该电流产生的磁场也阻碍磁铁的运动,故整个过程中,磁铁做减速运动,B项对.而对于小车上的螺线管来说,在此过程中,螺线管受到的安培力都是水平向右,这个安培力使小车向右一直做加速运动,C项对.。
2019-2020学年物理人教版选修3-2(浙江新高考专用)讲义:第四章 电磁感应现象 4 Wor
姓名,年级:时间:4 法拉第电磁感应定律知识内容选考要求课时要求法拉第电磁感应定律d1.理解磁通量的变化率是表示磁通量变化快慢的物理量,能区别磁通量、磁通量的变化量、磁通量的变化率.2.理解法拉第电磁感应定律,并能应用解决简单的实际问题。
3.能够应用E=Blv计算导体垂直切割磁感线时的感应电动势.4.了解反电动势的概念,知道电动机由于机械故障停转时烧毁的原因.一、电磁感应定律1.感应电动势电磁感应现象中产生的电动势叫做感应电动势,产生感应电动势的那部分导体相当于电源.2。
法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E=错误!。
若闭合电路是一个匝数为n的线圈,则E=n错误!.(3)在国际单位制中,磁通量的单位是韦伯(Wb),感应电动势的单位是伏特(V).二、导线切割磁感线时的感应电动势反电动势1.导线垂直于磁场运动,B、l、v两两垂直时,如图1所示,E=Blv。
2。
导线的运动方向与导线本身垂直,但与磁感线方向夹角为θ时,如图2所示,E=Blv sin θ.图1 图23。
反电动势(1)定义:电动机转动时,由于切割磁感线,线圈中产生的削弱电源电动势作用的感应电动势.(2)作用:反电动势的作用是阻碍线圈的转动.1.判断下列说法的正误.(1)在电磁感应现象中,有感应电流,就一定有感应电动势;反之,有感应电动势,就一定有感应电流.(×)(2)线圈中磁通量的变化量ΔΦ越大,线圈中产生的感应电动势一定越大。
( ×)(3)线圈放在磁场越强的位置,线圈中产生的感应电动势一定越大.(×)(4)线圈中磁通量变化越快,线圈中产生的感应电动势一定越大。
(√)2.图3甲、乙中,金属导体中产生的感应电动势分别为E甲=,E乙= .图3答案Blv Blv sin θ一、对电磁感应定律的理解如图所示,将条形磁铁从同一高度插入线圈的实验中.(1)快速插入和缓慢插入磁通量的变化量ΔΦ相同吗?指针偏转角度相同吗?(2)分别用一根磁铁和两根磁铁以同样速度快速插入,磁通量的变化量ΔΦ相同吗?指针偏转角度相同吗?(3)指针偏转角度取决于什么?答案(1)磁通量变化相同,但磁通量变化的快慢不同,快速插入比缓慢插入时指针偏转角度大。
浙江专版2024_2025学年高中物理第四章第5节电磁感应现象的两类情况讲义含解析新人教版选修3_2
电磁感应现象的两类状况感生电场与感生电动势[探新知·基础练]1.感生电场麦克斯韦认为,磁场改变时会在空间激发一种电场,它与静电场不同,不是由电荷产生的,我们叫它感生电场。
2.感生电动势由感生电场产生的感应电动势。
3.感生电动势中的非静电力感生电场对自由电荷的作用。
4.感生电场的方向推断由磁场的方向和强弱改变,依据楞次定律用安培定则推断。
[特殊提示] (1)感生电场是一种涡旋电场,电场线是闭合的。
(2)感生电场的方向可由楞次定律推断。
如图所示,当磁场增加时,产生的感生电场是与磁场方向垂直且阻碍磁场增加的电场。
(3)感生电场的存在与是否存在闭合电路无关。
[辨是非](对的划“√”,错的划“×”)1.感生电场线是闭合的。
( )2.磁场改变时,可以产生感生电场,并不须要电路闭合这一条件。
( )3.感生电场是产生感生电动势的缘由。
( )答案:1.√ 2.√ 3.√[释疑难·对点练]感生电动势磁场改变时会在空间激发感生电场,处在感生电场中的闭合导体,导体中的自由电荷在电场力的作用下做定向运动,产生感应电流,或者说,导体中产生了感应电动势。
由感生电场产生的电动势叫做感生电动势。
(1)电路中电源电动势是非静电力对自由电荷的作用。
在电池中,这种力表现为化学作用。
(2)感生电场对电荷产生的力,相当于电源内部的所谓的非静电力。
感生电动势在电路中的作用就是电源。
[试身手]1.在按如图所示的四种改变规律的磁场中能产生恒定的感生电场的是( )解析:选C 据麦克斯韦电磁理论,恒定的感生电场由匀称改变的磁场产生,C对。
电磁感应现象中的洛伦兹力[探新知·基础练]1.动生电动势由于导体切割磁感线运动而产生的感应电动势。
2.动生电动势中的“非静电力”自由电荷因随导体棒运动而受到洛伦兹力,非静电力与洛伦兹力有关。
3.动生电动势中的功能关系闭合回路中,导体棒做切割磁感线运动时,克服安培力做功,其他形式的能转化为电能。
2019-2020学年物理人教版选修3-2(浙江新高考专用)讲义:第四章 电磁感应现象 微型专题1
微型专题1 楞次定律的应用[课时要求] 1.应用楞次定律的推论判断感应电流的方向.2.理解安培定则、左手定则、右手定则和楞次定律的区别.一、楞次定律的重要结论1.“增反减同”法感应电流的磁场总要阻碍引起感应电流的磁通量(原磁场磁通量)的变化.(1)当原磁场磁通量增加时,感应电流的磁场方向与原磁场方向相反.(2)当原磁场磁通量减少时,感应电流的磁场方向与原磁场方向相同.口诀记为“增反减同”.例1 如图1所示,一水平放置的矩形闭合线圈abcd在细长磁铁的N极附近竖直下落(线圈始终水平),保持bc边在纸外,ad边在纸内,由图中位置Ⅰ经过位置Ⅱ到位置Ⅲ,位置Ⅰ和位置Ⅲ都很接近位置Ⅱ,这个过程中线圈的感应电流( )图1A.沿abcda流动B.沿dcbad流动C.先沿abcda流动,后沿dcbad流动D.先沿dcbad流动,后沿abcda流动答案 A解析 由条形磁铁的磁场分布可知,线圈在位置Ⅱ时穿过闭合线圈的磁通量最小,为零,线圈从位置Ⅰ到位置Ⅱ,从下向上穿过线圈的磁通量在减少,线圈从位置Ⅱ到位置Ⅲ,从上向下穿过线圈的磁通量在增加,根据楞次定律可知感应电流的方向是abcda.2.“来拒去留”法由于磁场与导体的相对运动产生电磁感应现象时,产生的感应电流与磁场间有力的作用,这种力的作用会“阻碍”相对运动.口诀记为“来拒去留”.例2 如图2所示,当磁铁突然向铜环运动时,铜环的运动情况是( )图2A.向右摆动B.向左摆动C.静止D.无法判定答案 A解析 当磁铁突然向铜环运动时,穿过铜环的磁通量增加,为阻碍磁通量的增加,铜环远离磁铁向右运动,故选A.3.“增缩减扩”法就闭合电路的面积而言,收缩或扩张是为了阻碍电路原磁通量的变化.若穿过闭合电路的磁通量增加,面积有收缩趋势;若穿过闭合电路的磁通量减少,面积有扩张趋势.口诀记为“增缩减扩”.说明:此法只适用于闭合回路中只有一个方向的磁感线的情况.例3 如图3所示,在载流直导线旁固定有两平行光滑导轨A、B,导轨与直导线平行且在同一水平面内,在导轨上有两个可自由滑动的导体ab和cd.当载流直导线中的电流逐渐增大时,导体ab和cd的运动情况是( )图3A.一起向左运动B.一起向右运动C.ab和cd相向运动,相互靠近D.ab和cd相背运动,相互远离答案 C解析 由于在闭合回路abdc中,ab和cd电流方向相反,所以两导体运动方向一定相反,排除A、B;当载流直导线中的电流逐渐增大时,穿过闭合回路的磁通量增大,根据楞次定律,感应电流总是阻碍穿过回路的磁通量的变化,所以两导体相互靠近,减小面积,达到阻碍磁通量增大的目的.故选C.4.“增离减靠”法当磁场变化且线圈回路可移动时,由于磁场增强使得穿过线圈回路的磁通量增加,线圈将通过远离磁体来阻碍磁通量增加;反之,由于磁场减弱使线圈中的磁通量减少时,线圈将靠近磁体来阻碍磁通量减少.口诀记为“增离减靠”.例4 如图4所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当开关S 接通瞬间,两铜环的运动情况是( )图4A.同时向两侧推开B.同时向螺线管靠拢C.一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D.同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断答案 A解析 开关S 接通瞬间,小铜环中磁通量从无到有增加,根据楞次定律,感应电流的磁场要阻碍磁通量的增加,则两环将同时向两侧推开.故A 正确.[学科素养] 以上四种情况“殊途同归”,实质上都是以不同的方式阻碍磁通量的变化,拨开现象看本质,体现了“科学思维”的学科素养.二、“三定则一定律”的综合应用安培定则、左手定则、右手定则、楞次定律的适用场合如下表.比较项目安培定则左手定则右手定则楞次定律适用场合判断电流周围的磁感线方向判断通电导线在磁场中所受的安培力方向判断导体切割磁感线时产生的感应电流方向判断回路中磁通量变化时产生的感应电流方向综合运用这几个规律的关键是分清各个规律的适用场合,不能混淆.例5 (多选)如图5所示装置中,cd 杆光滑且原来静止.当ab 杆做如下哪些运动时,cd 杆将向右移动(导体棒切割磁感线速度越大,感应电流越大)( )图5A.向右匀速运动B.向右加速运动C.向左加速运动D.向左减速运动答案 BD解析 ab杆向右匀速运动,在ab杆中产生恒定的电流,该电流在线圈L1中产生恒定的磁场,在L2中不产生感应电流,所以cd杆不动,故A错误;ab杆向右加速运动,根据右手定则知,在ab杆上产生增大的由a到b的电流,根据安培定则,在L1中产生方向向上且增强的磁场,该磁场向下通过L2,cd杆上产生c到d的电流,根据左手定则,cd杆受到向右的安培力,向右运动,故B正确;同理可得C错误,D正确.几个规律的使用中,要抓住各个对应的因果关系:(1)因电而生磁(I→B)―→安培定则(2)因动而生电(v、B→I)→右手定则(3)因电而受力(I、B→F安)→左手定则三、从能量的角度理解楞次定律感应电流的产生并不是创造了能量.导体做切割磁感线运动时,产生感应电流,感应电流受到安培力作用,导体克服安培力做功从而实现其他形式的能向电能的转化,所以楞次定律的“阻碍”是能量转化和守恒的体现.例6 (2018·牌头中学高二上学期期中)如图6所示,固定的水平长直导线中通有向右的电流I,矩形闭合导线框与导线在同一竖直平面内,且一边与导线平行.将线框由静止释放,不计空气阻力,则在线框下落过程中( )图6A.穿过线框的磁通量保持不变B.线框中感应电流的方向为逆时针C.线框所受安培力的合力竖直向上D.线框的机械能不断增大答案 C解析 线框在下落过程中,所在磁场减弱,穿过线框的磁感线的条数减小,磁通量减小,A 错误;根据安培定则,电流产生的磁场在导线的下方垂直于纸面向里,下落过程中,因为磁通量随线框下落而减小,根据楞次定律,感应电流的磁场与原磁场方向相同,所以感应电流的方向为顺时针方向,B错误;由于离导线越远的地方磁场越小,所以线框的上边受到的安培力大于下边受到的安培力,合力的方向向上,C正确;下落过程中,因为磁通量随线框下落而减小,线框中产生电能,机械能减小,D错误.1.(楞次定律的重要结论)如图7甲所示,有一闭合导线环,磁场方向垂直于环面向里,当磁感应强度随时间按如图乙所示规律变化时,顺着磁场方向看,导线环中感应电流的方向是( )图7A.一直顺时针B.一直逆时针C.先顺时针后逆时针D.先逆时针后顺时针答案 D解析 由题图乙可知,0~t0内,穿过导线环的磁通量增加,由楞次定律的结论——“增反减同”可知,感应电流产生的磁场方向垂直环面向外,所以感应电流方向为逆时针;同理可得t0~2t0内感应电流方向为顺时针,D正确.2.(楞次定律的重要结论)如图8所示,水平放置的光滑杆上套有A、B、C三个金属环,其中B接电源.在接通电源的瞬间,A、C两环( )图8A.都被B吸引B.都被B排斥C.A被吸引,C被排斥D.A被排斥,C被吸引答案 B解析 在接通电源的瞬间,通过B环的电流从无到有,电流产生的磁场从无到有,穿过A、C两环的磁通量从无到有,A、C两环产生感应电流,由楞次定律可知,感应电流的磁场阻碍原磁通量的增加,A、C两环都被B环排斥而远离B环,故A、C、D错误,B正确.3.(楞次定律的重要结论)(多选)如图9所示,光滑固定导轨m、n水平放置,两根导体棒p、q平行放于导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时(不计空气阻力)( )图9A.p、q将互相靠拢B.p、q将互相远离C.磁铁下落的加速度仍为gD.磁铁下落的加速度小于g答案 AD解析 在磁铁下落接近回路的过程中,穿过回路的磁通量增加,根据楞次定律的结论——“增缩减扩”,可知p、q将互相靠拢;利用“来拒去留”可知磁铁受到向上的阻力,磁铁下落的加速度小于g,A、D正确.4.(“三定则一定律”的综合应用)(多选)如图10所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,当PQ在外力的作用下运动时,MN在磁场力的作用下向右运动,则PQ所做的运动可能是(导体切割磁感线速度越大,感应电流越大)( )图10A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动答案 BC解析 当PQ向右运动时,用右手定则可判定PQ中感应电流的方向是由Q→P,由安培定则可知穿过L1的磁场方向是自下而上的;若PQ向右加速运动,则穿过L1的磁通量增加,用楞次定律可以判断流过MN的感应电流是从N→M的,用左手定则可判定MN受到向左的安培力,将向左运动,选项A错误;若PQ向右减速运动,流过MN的感应电流方向、MN 所受的安培力的方向均将反向,MN向右运动,所以选项C正确;同理可判断选项B正确,选项D错误.1.为了测量列车运行的速度和加速度大小,可采用如图1甲所示的装置,它由一块安装在列车车头底部的强磁体和埋设在轨道地面的一组线圈及电流测量记录仪组成(电流测量记录仪未画出).当列车经过线圈上方时,线圈中产生的电流被记录下来,P、Q为接测量仪器的端口.若俯视轨道平面磁场垂直地面向里(如图乙),则在列车经过测量线圈的过程中,流经线圈的电流方向为( )图1A.始终沿逆时针方向B.先沿顺时针方向,再沿逆时针方向C.先沿逆时针方向,再沿顺时针方向D.始终沿顺时针方向答案 C解析 在列车经过线圈上方时,由于列车上的强磁体在线圈处的磁场的方向向下,所以线圈内的磁通量方向向下,磁通量先增大后减小,根据楞次定律可知,线圈中的感应电流的方向先沿逆时针方向,再沿顺时针方向,故选C.2.(2017·慈溪市高二上学期期中)如图2所示,老师做了一个物理小实验让学生观察:一轻质横杆两侧各固定一金属环,横杆可绕中心点自由转动,老师拿一条形磁铁插向其中一个小环,后又取出插向另一个小环,同学们看到的现象是( )图2A.磁铁插向左环,横杆发生转动B.磁铁插向右环,横杆发生转动C.无论磁铁插向左环还是右环,横杆都不发生转动D.无论磁铁插向左环还是右环,横杆都发生转动答案 B解析 左环没有闭合,在磁铁插入过程中,不产生感应电流,故横杆不发生转动.右环闭合,在磁铁插入过程中,产生感应电流,在磁场力的作用下横杆将发生转动,故B正确.3.如图3所示,MN是一根固定在光滑水平面上的通电细长直导线,电流方向如图所示,今将一矩形金属线框abcd放在导线上,ab边平行于MN,让线框的位置偏向导线的左边,导线与金属线框两者彼此绝缘,当导线上的电流突然增大时,线框整体受力为( )图3A.受力向右B.受力向左C.受力向上D.受力为零答案 A解析 金属线框放在导线MN上,导线中电流产生磁场,根据安培定则判断可知,线框左右两侧磁场方向相反,且导线左侧线框内的磁通量大于导线右侧线框内的磁通量,当导线中电流增大时,穿过线框的磁通量增大,线框产生感应电流,根据楞次定律可知,感应电流的磁场要阻碍原磁通量的变化,则线框将向使磁通量减小的方向运动,即向右移动,线框整体受力向右,故A正确,B、C、D错误.4.(2018·温州新力量联盟高二第一学期期末)如图4所示,光滑绝缘固定水平面上有一个静止的小导体环,现在将一个条形磁铁从导体环的右上方较高处突然向下移动,则在此过程中,关于导体环的运动方向以及导体环中的电流方向,下列说法中正确的是( )图4A.导体环向左运动;从上向下看,电流方向是顺时针方向B.导体环向右运动;从上向下看,电流方向是顺时针方向C.导体环向右运动;从上向下看,电流方向是逆时针方向D.导体环向左运动;从上向下看,电流方向是逆时针方向答案 D5.如图5所示,一个有弹性的金属线圈被一根橡皮绳吊于通电直导线的正下方,直导线与线圈在同一竖直面内,当通电直导线中电流增大时,金属线圈的面积S和橡皮绳的长度l将( )图5A.S增大,l变长B.S减小,l变短C.S增大,l变短D.S减小,l变长答案 D解析 当通电直导线中电流增大时,穿过金属线圈的磁通量增大,金属线圈中产生感应电流,根据楞次定律,感应电流要阻碍原磁通量的增大:一是用缩小面积的方式进行阻碍,二是用远离直导线的方式进行阻碍,故D正确.6.(多选)绕有线圈的铁芯直立在水平桌面上,铁芯上套着一个铝环,线圈与电源、开关相连,如图6所示.线圈上端与电源正极相连,闭合开关的瞬间,铝环向上跳起.则下列说法中正确的是( )图6A.若保持开关闭合,则铝环不断升高B.若保持开关闭合,则铝环停留在跳起后的某一高度C.若保持开关闭合,则铝环跳起到某一高度后将回落D.如果电源的正、负极对调,观察到的现象不变答案 CD解析 铝环跳起是开关闭合时铝环上产生的感应电流与通电线圈中的电流相互作用而引起的,由楞次定律知,该现象与电流方向无关,故C、D正确.7.(多选)如图7所示,在水平面上有一固定的导轨,导轨为U形金属框架,框架上放置一金属杆ab,不计摩擦,在竖直方向上有匀强磁场(图中未画出),则( )图7A.若磁场方向竖直向上并增强时,杆ab将向右移动B.若磁场方向竖直向上并减弱时,杆ab将向右移动C.若磁场方向竖直向下并增强时,杆ab将向右移动D.若磁场方向竖直向下并减弱时,杆ab将向右移动答案 BD解析 不管磁场方向竖直向上还是竖直向下,当磁感应强度增大时,回路中磁通量增大,由楞次定律知杆ab将向左移动,反之,杆ab将向右移动,选项B、D正确.8.如图8所示,铜质金属环从条形磁铁的正上方由静止开始下落,在下落过程中金属环始终水平且未与磁铁接触,下列判断正确的是( )图8A.金属环在下落过程中的机械能守恒B.金属环在下落过程中动能的增加量小于其重力势能的减少量C.金属环的机械能先减小后增大D.磁铁对桌面的压力始终大于其自身的重力答案 B解析 金属环在下落过程中,磁通量发生变化产生感应电流,金属环受到安培力的作用,机械能不守恒,A错误.由能量守恒,金属环重力势能的减少量等于其动能的增加量和在金属环中产生的电能之和,B正确.金属环下落的过程中,机械能不停地转变为电能,机械能一直减少,C错误.当金属环下落到磁铁中央位置时,无感应电流,环和磁铁间无作用力,磁铁对桌面的压力大小等于磁铁的重力,D错误.9.如图9所示,A为水平放置的胶木圆盘,在其侧面均匀分布着负电荷,在A的正上方用绝缘丝线悬挂一个金属环B,使B的环面水平且与圆盘面平行,其轴线与胶木圆盘A的轴线OO′重合,现使胶木圆盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,则( )图9A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大答案 B解析 胶木圆盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,形成环形电流,环形电流的大小增大,根据安培定则知,通过B的磁通量向下且增大,根据楞次定律,感应电流引起的效果阻碍原磁通量的增大,知金属环的面积有缩小的趋势,且有向上的运动趋势,所以丝线的拉力减小,故B正确,A、C、D错误.10.(多选)(2018·东阳中学高二上学期期中)如图10所示,水平放置的条形磁铁中央,有一闭合金属弹性圆环,条形磁铁中心线与弹性圆环轴线重合,现将弹性圆环均匀向外扩大,下列说法中正确的是( )图10A.穿过弹性圆环的磁通量增大B.从左往右看,弹性圆环中有顺时针方向的感应电流C.弹性圆环中无感应电流D.弹性圆环受到的安培力方向沿半径向里答案 BD解析 磁感线是闭合曲线,条形磁铁内部的磁感线条数等于外部所有磁感线条数,题图中穿过圆环的内部磁感线比外部多,外部的磁感线与内部的磁感线方向相反,外部的磁感线被内部磁感线抵消.现将弹性圆环均匀向外扩大,则磁铁外部穿过弹性圆环的磁感线条数增多,内部磁感线抵消增多,导致穿过弹性圆环的磁通量变小,则由楞次定律得,产生顺时针方向的感应电流(从左向右看),在外部磁感线的作用下,根据左手定则可知,弹性圆环受到的安培力方向沿半径向里,B、D正确.11.如图11所示,两个相同的轻质铝环套在一根水平光滑绝缘杆上,当一条形磁铁向左运动靠近两环时,两环的运动情况是( )图11A.同时向左运动,间距变大B.同时向左运动,间距变小C.同时向右运动,间距变小D.同时向右运动,间距变大答案 B解析 磁铁向左运动,穿过两环的磁通量都增加,根据楞次定律,感应电流的磁场将阻碍原磁通量的增加,所以两环都向左运动.另外,两环产生的感应电流方向相同,依据安培定则和左手定则可以判断两个环之间是相互吸引的,所以选项A、C、D错误,B正确.12.(2017·全国卷Ⅲ)如图12所示,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直.金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面.现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是( )图12A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向答案 D解析 金属杆PQ突然向右运动,由右手定则可得,金属杆PQ中的感应电流方向由Q到P,则PQRS中感应电流方向为逆时针方向.PQRS中感应电流产生垂直纸面向外的磁场,故环形金属线框T中为阻碍此变化,会产生垂直纸面向里的磁场,则T中感应电流方向为顺时针方向,D正确.13.如图13所示,圆形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成闭合回路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是( )图13A.线圈a对水平桌面的压力F N将增大B.穿过线圈a的磁通量变小C.线圈a有扩张的趋势D.线圈a中将产生顺时针方向的感应电流(俯视)答案 A解析 滑动变阻器滑片向下移动,接入电路的电阻减小,电流增大,通过线圈a的磁通量增大,线圈a有收缩的趋势,B、C错误;根据楞次定律判断a中产生逆时针方向的感应电流(俯视),a有远离螺线管的趋势,a对桌面的压力增大,A正确,D错误.14.近来,无线充电成为应用于我们日常生活中的一项新科技,其中利用电磁感应原理来实现无线充电是比较成熟的一种方式,电动汽车无线充电方式的基本原理如图14所示:路面下依次铺设圆形线圈,相邻两个线圈由供电装置通以反向电流,车身底部固定感应线圈,通过充电装置与锂离子蓄电池相连,汽车在此路面上行驶时,就可以进行充电.汽车匀速行驶的过程中,下列说法正确的是( )图14A.感应线圈中电流的磁场方向一定与路面线圈中电流的磁场方向相反B.感应线圈中产生的是方向改变、大小不变的电流C.给路面下的线圈通以同向电流,不会影响充电效果D.感应线圈一定受到路面线圈磁场的安培力,会阻碍汽车运动答案 D解析 由于路面下铺设圆形线圈,相邻两个线圈的电流相反,所以感应线圈中电流的磁场方向不一定与路面线圈中电流的磁场方向相反,A错误;由于路面下的线圈中的电流不知如何变化,即产生的磁场无法确定变化情况,所以感应线圈中的电流大小不能确定,B错误;给路面下的线圈通以同向电流,则线圈产生的磁场方向相同,在汽车运动过程中产生的感应电流与原来不同,充电效果不同,C错误;感应线圈随汽车一起运动过程中会产生感应电流,在路面线圈的磁场中受到安培力,根据“来拒去留”可知,此安培力阻碍相对运动,即阻碍汽车运动,D正确.15.(多选)如图15所示,在匀强磁场中放有平行铜导轨,它与大导线圈M相连接,要使小导线圈N获得顺时针方向的感应电流,则放在导轨上的金属棒ab的运动情况可能是(两导线圈共面放置,且金属棒切割磁感线速度越大,感应电流越大)( )图15A.向右匀速运动B.向左加速运动C.向右减速运动D.向右加速运动答案 BC解析 欲使N产生顺时针方向的感应电流,即感应电流的磁场垂直于纸面向里,由楞次定律可知有两种情况:一是M中有顺时针方向逐渐减小的电流,使其在N中的磁场方向向里,且磁通量在减小,此时应使ab向右减速运动;二是M中有逆时针方向逐渐增大的电流,使其在N中的磁场方向向外,且磁通量在增大,此时应使ab向左加速运动.16.(多选)(2018·全国卷Ⅰ)如图16,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路.将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态.下列说法正确的是( )图16A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向D.开关闭合并保持一段时间再断开后的瞬间,小磁针的N极朝垂直纸面向外的方向转动答案 AD解析 根据安培定则,开关闭合时铁芯中产生水平向右的磁场,开关闭合后的瞬间,根据楞次定律,直导线上将产生由南向北的电流,直导线上方的磁场垂直纸面向里,故小磁针的N极朝垂直纸面向里的方向转动,A项正确;开关闭合并保持一段时间后,直导线上没有感应电流,故小磁针的N极指北,B、C项错误;开关闭合并保持一段时间再断开后的瞬间,根据楞次定律,直导线上将产生由北向南的电流,这时直导线上方的磁场垂直纸面向外,故小磁针的N极朝垂直纸面向外的方向转动,D项正确.。
2018-2019学年物理浙江专版人教版选修3-2讲义:第四章 第4节 法拉第电磁感应定律 Word版含解析
第4节法拉第电磁感应定律1.感应电动势(1)在电磁感应现象中产生的电动势叫做感应电动势,产生感应电动势的那部分导体相当于电源。
(2)在电磁感应现象中,若闭合导体回路中有感应电流,电路就一定有感应电动势;如果电路断开,这时虽然没有感应电流,但感应电动势依然存在。
2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
(2)公式:E =ΔΦΔt。
若闭合电路是一个匝数为n 的线圈,则E =n ΔΦΔt。
(3)在国际单位制中,磁通量的单位是韦伯,感应电动势的单位是伏特。
[辨是非](对的划“√”,错的划“×”)1.产生感应电动势,不一定产生感应电流。
( ) 2.感应电动势的大小与磁通量大小有关。
( ) 3.感应电动势E 和磁通量Φ均与线圈匝数有关。
( ) 答案:1.√ 2.× 3.×[释疑难·对点练]1.磁通量Φ、磁通量的变化量ΔΦ、磁通量的变化率ΔΦΔt的比较2.理解公式E =n ΔΦΔt(1)感应电动势E 的大小取决于穿过电路的磁通量的变化率ΔΦΔt,而与Φ的大小、ΔΦ的大小没有必然的关系,与电路的电阻R 无关;感应电流的大小与E 和回路总电阻R 有关。
(2)磁通量的变化率ΔΦΔt ,是Φ-t 图象上某点切线的斜率,可反映单匝线圈感应电动势的大小和方向。
(3)E =n ΔΦΔt 只表示感应电动势的大小,不涉及其正负,计算时ΔΦ应取绝对值,感应电流的方向,可以用楞次定律去判定。
(4)磁通量发生变化有三种方式:一是ΔΦ仅由B 的变化引起,ΔB =|B 2-B 1|,E =nS ΔBΔt ;二是ΔΦ仅由S 的变化引起,ΔS =|S 2-S 1|,E =nB ΔSΔt ;三是磁感应强度B 和线圈面积S 均不变,而线圈绕过线圈平面内的某一轴转动,此时E =n |Φ2-Φ1|Δt。
[特别提醒] 对于磁通量的变化量和磁通量的变化率来说,穿过一匝线圈和穿过n 匝线圈是一样的,而感应电动势则不同,感应电动势与匝数成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6点导体棒切割磁感线问题
剖析
导体切割磁感线是电磁感应中的一类重要问题,其感应电动势的计算公式E=Blv虽然可由
法拉第电磁感应定律E=n ΔΦ
Δt
推出,但其应用却更广泛.首先是因为,在实际的生产实践
中,电磁感应主要是由导体与磁体间的相对运动引起的;其次在实际应用中,我们关注感应电动势的瞬时值多于关注其平均值,而利用E=Blv可以更方便地求瞬时值.
公式E=Blv的适用条件是B、l、v两两垂直,在实际问题的处理中,要处理好以下几种情况:
1.导体是否做切割磁感线运动问题
(1)导体速度与导体共线,此时无论磁场方向怎么样都不切割.
(2)导体速度与导体不共线,它们决定的平面我们可称之为导体运动平面.
①当导体运动平面与磁感线不平行时,切割.如图1(a).
②当导体运动平面与磁感线平行时,不切割.如图(b).
图1
2.平动切割
如图2(a),在磁感应强度为B 的匀强磁场中,棒以速度v 垂直切割磁感线时,感应电动势E =Blv .
图2
3.转动切割
如图(b),在磁感应强度为B 的匀强磁场中,长为l 的导体棒绕其一端为轴以角速度ω匀速
转动,此时产生的感应电动势E =12
Bωl 2. 4.有效切割长度
即导体在与v 垂直的方向上的投影长度.
图3甲中的有效切割长度为:l =MN ;乙图中的有效切割长度为:沿v 1的方向运动时,l =2R ;沿v 2的方向运动时,l =R .
图3
对点例题 如图4所示,三角形金属框架MON 所在平面与磁感应强度为B 的匀强磁场垂直,金属棒ab 能紧贴金属框架运动,且始终与ON 垂直.当ab 从O 点开始匀速向右平动时,速度为v 0,∠bOc =30°,试求bOc 回路中感应电动势E 随时间t 变化的函数关系式.
图4
答案 E =33
Bv 20t 解题指导 设ab 从O 点出发时开始计时,经过时间t 后,ab 匀速运动的距离为s , 则有s =v 0t .在△bOc 中,
由tan 30°=bc s ,有bc =v 0t ·tan 30°.
则金属棒ab 接入回路的bc 部分切割磁感线产生的感应电动势为
E =Bv 0bc =Bv 20t ·tan 30°=33
Bv 20t .
如图5所示是法拉第做成的世界上第一台发电机模型的原理图.将铜盘放在磁场中,让磁感线垂直穿过铜盘,图中a 、b 导线与铜盘的中轴线处在同一平面内,转动铜盘,就可以使闭合电路获得电流.若图中铜盘半径为l ,匀强磁场的磁感应强度为B ,回路总电阻为R ,从上往下看沿逆时针方向匀速转动的铜盘的角速度为ω,则下列说法正确的是( )
图5
A .回路中有大小和方向做周期性变化的电流
B .回路中电流大小恒定,且等于Bl2ωR
C .回路中电流方向不变,且从b 导线流进灯泡,再从a 导线流向旋转的铜盘
D .回路中电流方向不变,且从a 导线流进灯泡,再从b 导线流向旋转的铜盘
答案 C
解析 把铜盘看成若干条由中心指向边缘的铜棒组合而成,当铜盘转动时,每根铜棒都在切割磁感线,相当于电源.由右手定则知,中心为电源正极,铜盘边缘为负极,若干个相同的电源并联对外供电,电流方向由b 经灯泡再从a 流向铜盘,方向不变,选项C 正确,选项
A 、D 错误.回路中感应电动势为E =Bl v =12Bωl 2,所以电流I =E R =Bωl22R
,选项B 错误.。