受弯构件的正截面承载力计算

合集下载

03受弯构件正截面承载力计算

03受弯构件正截面承载力计算
越显
0.4
著,受压区应力图形逐渐呈曲线分
Mcr
xn=xn/h0
布。
0 0.1 0.2 0.3 0.4 0.5
15
3.2 梁的受弯性能
第三章 钢筋混凝土受弯构件正截面承载力
带裂缝工作阶段(Ⅱ阶段) ◆ 荷载继续增加,钢筋拉应力、挠度 变形不断增大,裂缝宽度也不断开展, 但中和轴位置没有显著变化。
M/Mu
1.0 Mu 0.8 My
0.6
0.4
Mcr
0
fcr
fy
3.2 梁的受弯性能
fu f
18
第三章 钢筋混凝土受弯构件正截面承载力
屈服阶段(Ⅲ阶段)
◆ 由于混凝土受压具有很长的下
降段,因此梁的变形可持续较长,
但有一个最大弯矩Mu。
◆ 超过Mu后,承载力将有所降低,
直至压区混凝土压酥。Mu称为极
增大,混凝土受压的塑性特征表现的更为充分。
◆ 同时,受压区高度xn的减少使得钢筋拉力 T 与混凝土压力C
之间的力臂有所增大,截面弯矩也略有增加。
◆ 由于在该阶段钢筋的拉应变和 受压区混凝土的压应变都发展很
快,截面曲率f 和梁的挠度变形f 也迅速增大,曲率f 和梁的挠度变
形f的曲线斜率变得非常平缓,这 种现象可以称为“截面屈服”。
限弯矩,此时的受压边缘混凝土
的压应变称为极限压应变ecu,对
应截面受力状态为“Ⅲa状态”。
M/Mu
1.0
Mu
◆ ecu约在0.003 ~ 0.005范围,超过
0.8 My
0.6
该应变值,压区混凝土即开始压
0.4
第三章 钢筋混凝土受弯构件正截面承载力
h0
分布筋

受弯构件正截面承载力计算

受弯构件正截面承载力计算

受弯构件正截面承载力计算受弯构件的正截面承载力计算是工程设计中重要的一部分,它用于确定材料的弯曲承载力和设计中的极限状态。

在进行正截面承载力计算时,需要考虑材料的弯矩、截面形状、材料的强度和应力分布等因素。

下面将详细介绍受弯构件正截面承载力计算的过程。

在进行受弯构件正截面承载力计算时,首先需要确定该构件所受的弯矩大小。

弯矩是指作用于构件截面上的力矩,它产生了构件的弯曲变形。

弯矩的大小可以通过施加在构件上的外部荷载和构件的几何形状来计算。

有了弯矩的大小后,下一步就是确定截面形状。

截面形状是影响受弯构件强度的一个重要因素,常见的截面形状有矩形、圆形、T形等。

不同的截面形状对受弯构件的承载力有着不同的影响,因此需要根据实际情况选择合适的截面形状。

确定了弯矩和截面形状后,接下来就是计算材料的强度。

材料的强度是指材料在承受外部荷载作用下所能承受的最大应力。

常见的材料强度有抗拉强度、抗压强度和屈服强度等。

在进行正截面承载力计算时,需要根据材料的强度来确定构件的极限状态。

最后,根据弯矩、截面形状和材料的强度,可以计算出受弯构件的正截面承载力。

计算的过程包括确定应力分布、求解最大应力和计算承载力。

根据不同的截面形状和材料的特性,计算方法也有所不同。

总的来说,受弯构件正截面承载力计算是一项综合性的工作,需要考虑多个因素的综合作用。

在实际工程设计中,需要准确计算受弯构件的承载力,以确保结构的安全性和可靠性。

因此,在进行计算时,需要充分考虑强度设计的要求和计算方法,以保证计算结果的准确性。

受弯构件正截面承载力计算是工程设计中重要的一部分,它用于确定材料的弯曲承载力和设计中的极限状态。

在进行正截面承载力计算时,需要考虑材料的弯矩、截面形状、材料的强度和应力分布等因素。

下面将详细介绍受弯构件正截面承载力计算的过程。

在进行受弯构件正截面承载力计算时,首先需要确定该构件所受的弯矩大小。

弯矩是指作用于构件截面上的力矩,它产生了构件的弯曲变形。

混凝土受弯构件正截面承载力计算

混凝土受弯构件正截面承载力计算
h0—有效高度。 1.最大配筋率及界限相对受压区高度
r As f y As a1 fcbx x a1 fc
bh0 bh0 f y bh0 f y h0 f y

x
h0

r
a1 fc
fy
令b为 = r max时的相对受压区高度,即
rmax
b
a1
f
fc
y
= r max时的破坏形态为受压区边缘混凝土达到极限压
c fc e0 e ecu
n
2
1 60
(
fcu,k
50)
2.0
各系数查表4-3
e0 0.002 0.5( fcu,k 50)105 0.002
ecu 0.0033 0.5( fcu,k 50)105 0.0033
4.钢筋应力—应变关系的假定(本构关系)
Ese e e y fy e ey
4.3钢筋混凝土受弯构件正截面试验研究
一、受弯构件正截面破坏过程
受弯构件正截面破坏分为三个阶段 • 第一阶段:裂缝开裂前 • 第二阶段:从开裂到钢筋屈服 • 第三阶段:从钢筋屈服到梁破坏
(1)第I阶段
当荷载比较小时,混凝土基本处 于弹性阶段,截面上应力分布为三 角形,荷载-挠度曲线或弯矩-曲率 曲线基本接近直线。截面抗弯刚度 较大,挠度和截面曲率很小,钢筋 的应力也很小,且都于弯矩近似成 正比。
My
Mu
Failure”,破坏前
可吸收较大的应变
能。
0
f
2.超筋梁(Over reinforced)破坏
钢筋配置过多,将发生这种破坏。 破坏特征:破坏时钢筋没有达到屈服强度,破坏是由 于压区混凝土被压碎引起,没有明显预兆,为脆性破 坏。

第三讲受弯构件正截面承载力计算精选全文

第三讲受弯构件正截面承载力计算精选全文

Mu
1.0
砼退出工作,拉力主要由钢筋 承担,单钢筋未屈服;
b. 受压区砼已有塑性变形,但 不充分;
c. 弯距-曲率关系为曲线,曲
0.8 My
0.6
0.4
II
M cr
0
f cr
fy
fu f
加载过程中弯矩-曲率关系
率与挠度增长加快。
(三)屈服阶段(钢筋屈服至破坏): 纵向受力钢筋屈服后,截面曲率
和梁的挠度也突然增大,裂缝宽度随 My 之扩展并沿梁高向上延伸,中和轴继 续上移,受压区高度进一步减小。弯 矩再增大直至极限弯矩实验值Mu时, 称为第Ⅲ阶段(Ⅲa)。
截面每排受力钢筋最好相同,不同时,直径差≥2mm,但 不超过4~6mm。
钢筋根数至少≥2,一排钢筋宜用3~4根,两排5~8根。 钢筋间的距离: ≥d,且≥30mm、且≥1.25倍最大骨料粒径。 自下而上布置钢筋,且要求上下对齐。
五.板内钢筋的直径和间距
❖钢筋直径通常为6~12mm;
板厚度较大时,直径可用16~25mm,特殊的用32、36mm ; 同一板中钢筋直径宜相差2mm以上,以便识别。
第二节 试验研究与分析
一、适筋受弯构件正截面的受力过程
1.梁的布置及特点 通常采用两点对称集中加荷,加载点位于梁跨度的
1/3处,如下图所示。这样,在两个对称集中荷载间的区 段(称“纯弯段”)上,不仅可以基本上排除剪力的影响 (忽略自重),同时也有利于在这一较长的区段上(L/3)布 置仪表,以观察粱受荷后变形和裂缝出现与开展的情况。 在“纯弯段”内,沿梁高两侧布置多排测点,用仪表量 测梁的纵向变形。
前无明显预兆,属脆性破坏。
第3种破坏情况——少筋破坏
配筋量过少: 拉区砼一出现裂缝,钢筋很快达到屈服,可能经

受弯构件的正截面承载力计算资料

受弯构件的正截面承载力计算资料

槽形板
二、截面尺寸 高跨比h/l0=1/8~1/12
矩形截面梁高宽比h/b=2.0~3.5 T形截面梁高宽比h/b=2.5~4.0。(b为梁肋) b=120、150、180、200、220、250、300、…(mm),
250以上的级差为50mm。 h=250、300、350、……、750、800、900、
4.3.1 正截面承载力计算的基本假定
(1) 截面的应变沿截面高度保持线性分布-简称平截面假定
ec
f e ec es
y xc h0 xx
f xc
h0
(2) 不考虑混凝土的抗拉强度
y
es
M xc
C
Tc T
(3) 混凝土的压应力-压应变之间的关系为:
σ
fc
上升段
c

f
c
[1

(1

e e0
M0
C 超筋梁ρ>ρmax
My B
Mu
适筋梁 ρmin<ρ<ρmax
A少筋梁ρ>ρmax
0
f0
超筋破坏形态
> b
特点:受压区混凝土先压碎,纵向受拉钢筋 不屈服。
钢筋破坏之前仍处于弹性工作阶段,裂缝开 展不宽,延伸不高,梁的挠度不大。破坏带 有突然性,没有明显的破坏预兆,属于脆性 破坏类型。
M0
a
≥30
纵向受拉钢筋的配筋百分率
截面上所有纵向受拉钢筋的合力点到受拉边缘的竖向距离
为a,则到受压边缘的距离为h0=h-a,称为截面有效高度。
d=10~32mm(常用) 单排 a= c+d/2=25+20/2=35mm 双排 a= c+d+e/2=25+20+30/2=60mm

第4章-受弯构件正截面承载力计算精选全文

第4章-受弯构件正截面承载力计算精选全文

适筋梁的判别条件
max b
第4章 受弯构件正截面承载力计算
习题:矩形截面梁,b=250mm,h=500mm,承受 弯矩设计值M=160kN·m,采用C20级混凝土, HRB400级钢筋,截面配筋如图。复核该截面是否 安全。
第4章 受弯构件正截面承载力计算
超筋梁的极限承载力
关键在于求出钢筋的应力
m
应取:
in
m m
in in
0.002 0.45 ft
/
fy
第4章 受弯构件正截面承载力计算
回顾
的定义:
x
h0
x
M
C
h0
Ts
相对受压区高度
第4章 受弯构件正截面承载力计算
相对界限受压区高度b
xnb 根据右图三角形相似可得xnb
xnb
cu cu y
h0
回顾
cu
h0
y
根据的定义可得b(有屈服点的钢筋)
(1) 计算跨度l0
单跨板的l0可按有关规定等于板的净跨加板的厚度。有:
l0=l n+h=(2500-120×2)+80=2340mm
(P349)
(2)荷载设计值
恒载标准值g K:水磨石地面0.03×22×1=0.66KN/m 板的钢筋砼自重0.08×25×1=2.0KN/m
白灰砂浆粉刷0.012×17×1=0.204KN/m
任意位置处钢筋的 应变和应力
cu
xnb=x/b1
h0i h0
si s
si
h0i xnb xnb
cu
cu
(
h0i b1
x
1)
cu
(
h0i b1 h0

受弯构件正截面受弯承载力计算

受弯构件正截面受弯承载力计算

受弯构件正截面受弯承载力计算
在进行受弯构件正截面受弯承载力计算时,首先需要了解构件的几何尺寸和材料特性。

几何尺寸包括构件的宽度、高度和长度,材料特性包括材料的抗弯强度和弹性模量等。

在进行受弯构件正截面受弯承载力计算时,一般采用等效应力法。

根据等效应力法,构件的正截面受弯承载力可以通过以下公式计算:M=σ×S
其中,M是受弯构件所受弯矩,σ是构件截面上的应力,S是截面的抵抗矩。

在计算截面上的应力时,可以使用以下公式:
σ=M×y/I
其中,M是受弯构件所受弯矩,y是距离截面中性轴距离,I是截面的惯性矩。

在计算截面的抵抗矩时,可以使用以下公式:
S=y×A×f
其中,y是距离截面中性轴距离,A是截面的面积,f是材料的抗弯强度。

综合以上公式,可以得到受弯构件的正截面受弯承载力公式:
N=σ×S=(M×y/I)×(y×A×f)
根据构件的几何尺寸和材料特性,可以计算出受弯构件的正截面受弯
承载力。

需要注意的是,在实际工程中,受弯构件的应力和截面的抵抗矩常常
不是均匀分布的,需要进行更加详细的计算和分析。

此外,由于材料的塑
性变形和结构的不完美性等因素的存在,实际承载能力可能小于理论计算值。

综上所述,受弯构件正截面受弯承载力计算是结构工程中的重要任务,它通过等效应力法来确定构件在受弯状态下的承载能力。

在实际工程中,
应该考虑到材料和结构的各种因素,进行更加精细的分析和计算。

第4章受弯构件的正截面受弯承载力精选全文

第4章受弯构件的正截面受弯承载力精选全文
图形在第I阶段前期是直线,后期是曲线。 3)弯矩与截面曲率基本上是直线关系。 #Ia阶段可作为受弯构件抗裂度的计算依据。
*第II阶段:混凝土开裂后至钢筋屈服前的裂缝阶段
M0=Mcr0时,在纯弯段抗拉能力最薄弱的某一截面处, 当受拉区边缘纤维的拉应变值到达混凝土极限拉应变实验
值εtu0时,将首先出现第一条裂缝,一旦开裂,梁即由第
3
结构和构件要满足承载能力极限状态和正常使用极 限状态的要求。梁、板正截面受弯承载力计算就是从满 足承载能力极限状态出发的,即要求满足
M≤Mu
(4—1)
式中的M是受弯构件正截面的弯矩设计值,它是由结构 上的作用所产生的内力设计值;Mu是受弯构件正截面受
弯承载力的设计值,它是由正截面上材料所产生的抗力。
侧面构造钢筋—用以增强钢筋骨架的刚性,提高梁的抗 扭能力,并承受因温度变化和混凝土收缩所产生的拉应力 ,抑制梁侧裂缝开展。
2)梁纵向受力钢筋应采用HRB400、HRB500、HRBF400、
HRBF500钢筋 ,常用直径为12mm、14mm、16mm、18mm、
20mm、22mm和25mm。根数最好不少于3(或4)根。
4
因此,进行钢筋混凝土构件设计时,除了计算满足以外, 还必须满足有关构造要求。
4.1.1截面形状与尺寸
1.截面形状:梁、板常用矩形、T形、I字形、槽形、空心 板和倒L形梁等对称和不对称截面。
(a)
(b)
(c)
(d)
(e)
(f)
(g)
5
2.截面尺寸 确定原则:A.考虑模板模数;B.尽量统一、方便施工。
1000mm等尺寸。800mm以下的级差为50mm,以上的为l00mm。 (3)现浇板的宽度一般较大,设计时可取单位宽度

[精华]混凝土结构的受弯构件正截面承载力计算

[精华]混凝土结构的受弯构件正截面承载力计算

第四章 受弯构件正截面承载力
(1)材料选用
▲混凝土:现浇梁板:常用C20~C30级混凝土; 预制梁板:常用C20~C35级混凝土。
(这是由于适筋梁的Mu主要取决于fyAs,因此RC受弯构 件的 fc 不宜较高)
▲钢筋:梁常用Ⅱ~Ⅲ级钢筋,板常用Ⅰ~Ⅱ级钢筋。 (RC受弯构件是带裂缝工作的,由于裂缝宽度和挠度变形
d
a'
0.5(1 ) 0.55
故取 x = xb
h0 即取 M1 s,max 1 fcbh02
(注:为提高破坏时的延性也可取x = 0.8xb)
第四章 受弯构件正截面承载力 (2)情况二:已知:M,b、h、fy、 fy ’、 fc、As’
求:As 未知数:x、 As
M f y As (h0 a)

x) 2
第四章 受弯构件正截面承载力 ▲基本公式的另一表达形式
基本公式 1 fcbx f y As
M
Mu
1 fcbx(h0

x) 2
f y As (h0

x) 2
当令 =x/h0
s=1-0.5
s= (1-0.5 ) 此两式可知: 、 s 、 s三个系

数只要知道其中一个,其余两个即可
其中M1 s,max1 fcbh02
第四章 受弯构件正截面承载力 ▲补充条件x= bh0或 = b的依据
由基本公式求得:
As

As

1 fc
fy
b h0
2
M
1 fcbh02 (1 0.5 )
f y (h0 a)
为使As 、 As’的总量最小,必须 使
d ( As As ) 0

受弯构件正截面承载能力计算

受弯构件正截面承载能力计算

受弯构件正截面承载能力计算一、引言在工程设计中,对于承载力的计算是非常重要的。

对于受弯构件来说,正截面承载能力的计算是其中一项重要的计算内容。

正截面承载能力指的是构件在受到外部弯矩作用时,正截面的最大负荷能力。

二、正截面受弯构件的力学模型正截面受弯构件的力学模型可以简化为梁模型。

在梁模型中,假设构件在弯曲之前是直线,且构件的弯曲变形主要发生在弯矩作用点附近的区域。

在计算中,可以通过考虑构件的截面形状、弹性模量和截面惯性矩等参数,来计算正截面的承载能力。

三、正截面受弯构件的计算方法正截面受弯构件的承载能力可以通过弯矩与抵抗弯曲应力的关系来计算。

根据材料的应力-应变关系,在截面上可以得到弯矩与截面的弯曲曲率之间的关系,从而得到正截面的承载能力。

1.弯矩与弯曲曲率的关系根据工程力学的理论,弯矩与弯曲曲率之间的关系可以通过以下公式来表示:M=E·I·κ其中,M为弯矩,E为弹性模量,I为截面的惯性矩,κ为弯曲曲率。

根据该公式,可以得到弯曲曲率和弯矩的关系。

当弯矩达到一定值时,正截面将不再能够承受该弯矩。

2.截面受弯破坏正截面受弯构件在达到一定弯矩时,会出现截面的破坏。

截面破坏主要有以下几种形式:(1)截面的受压边发生局部压溃破坏;(2)截面的受拉边发生局部拉伸破坏;(3)截面发生局部剪切破坏;(4)截面整体翻转失稳。

根据截面破坏的形式,可以得到正截面的承载能力计算公式。

(1)当截面受压边发生局部压溃破坏时,可以将正截面的承载能力计算为截面受压边的抗弯能力。

根据材料的抗拉强度和截面形状,可以得到正截面的承载能力。

(2)当截面受拉边发生局部拉伸破坏时,可以将正截面的承载能力计算为截面受拉边的抗弯能力。

根据材料的抗压强度和截面形状,可以得到正截面的承载能力。

(3)当截面发生局部剪切破坏时,可以将正截面的承载能力计算为截面的抗剪能力。

根据材料的剪切强度和截面形状,可以得到正截面的承载能力。

(4)当截面整体翻转失稳时,可以通过截面的稳定性分析来计算正截面的承载能力。

混凝土结构设计原理-受弯构件正截面承载力精选全文

混凝土结构设计原理-受弯构件正截面承载力精选全文
求:截面配筋As
2.已知:矩形截面钢筋混凝土简支梁,计算跨度为6000mm, as=35mm, 作用均布荷载25 kN/m,混凝土强度等级C20,钢筋HRB335级。 ( fc =9.6 N/mm2 , ft =1.1 N/mm2 , fy =300 N/mm2 )
试设计此梁
3.已知:矩形截面梁尺寸b=200mm、h=450mm,as=35mm。混凝土 强度等级C70,钢筋HRB335级,实配4根20mm的钢筋。 ( fc =31.8 N/mm2 , ft =2.14 N/mm2 , fy =300 N/mm2 )
b
max
b
1 fc
fy
受弯构件正截面承载力计算
最小配筋率ρmin
最小配筋率规定了少筋和适筋的界限
m in
As bh
0.45
ft fy
且同时不应小于0.2%
受弯构件正截面承载力计算
造价
总造价
混凝土

经济配筋率
经济配筋率 板:0.4~0.8%
矩形梁:0.6~1.5% T形梁:0.9~1.8%
受弯构件正截面承载力计算
小相等; 2. 等效矩形应力图形与实际抛物线应力图形的形心位置相同,即合
力作用点不变。
受弯构件正截面承载力计算
表 5.1 混凝土受压区等效矩形应力图系数
≤C50 C55
C60
C65
C
0.8
0.99 0.98 0.97 0.96 0.95 0.94 0.79 0.78 0.77 0.76 0.73 0.74
钢筋与混凝土的材料强度比,是反映构件中两种材料配比的本质参数。
基本方程改为:
N 0, M 0,
1 fcb h0 s As M u 1 fcbh02 (1 0.5 )

受弯构件正截面承载力计算

受弯构件正截面承载力计算

受弯构件正截面承载力计算1. 受弯构件的基础知识你知道吗?在我们的日常生活中,受弯构件就像是建筑界的“大力士”,扛着一栋栋大楼、桥梁,甚至是我们的家。

所以,今天我们就来聊聊这些“大力士”的承载力,听起来很专业,但其实说起来也没那么复杂哦。

1.1 受弯构件是什么?首先,受弯构件就像是一根神奇的魔杖,虽然看起来平平无奇,但一旦上了力,就能发挥出惊人的力量。

就像你手里拿着一根塑料尺,试着弯一下,它很快就会屈服。

而如果是钢筋混凝土呢?嘿,那可是硬得很!这些构件在设计的时候,要考虑到它们能承受多大的力,这样才能确保安全,毕竟“安全第一”可不是随便说说的。

1.2 为什么要计算承载力?说到承载力,这可是个大问题。

想象一下,如果你在阳台上放了个游泳池,结果阳台承受不住,直接塌了,那可真是哭都没地方哭!所以啊,建筑设计师们得认真计算每个受弯构件的承载力,才能保证它们能稳稳当当地承受住各类荷载。

毕竟,谁都不想在家里遇上“天塌下来”的情形,对吧?2. 承载力计算的基本步骤2.1 荷载的计算那么,承载力到底怎么计算呢?首先,得搞清楚这个构件上面要承受多少荷载。

荷载分为静载和动载,静载就是固定的,比如墙壁、家具什么的;而动载则是像人、风、雪这些会变的。

我们要把所有的荷载加起来,就像做一道数学题,稍微一不小心,可就出错了。

2.2 截面特性分析接下来,就得看看受弯构件的截面特性。

简单来说,就是要了解这个“大力士”的构造和材料。

比如,钢筋混凝土的强度、宽度、厚度,甚至是它的配筋情况,这些都能影响它的承载能力。

这里有个专业名词叫“截面模数”,简单来说,就是这个构件在承受弯曲时的“抗压”能力。

听起来复杂,但实际上就是“越壮,越能顶得住”的道理。

3. 常见的计算方法3.1 弯矩法说到计算方法,咱们最常用的就是“弯矩法”了。

想象一下你在舞台上表演,突然要转身,身体的中心点就是你要计算的“弯矩”。

在实际操作中,我们得用公式算出弯矩,然后结合截面的特性,来得出承载力。

第三章-钢筋混凝土受弯构件正截面承载力计算

第三章-钢筋混凝土受弯构件正截面承载力计算
截面抗裂验算是建立在第Ⅰa阶段的基础之上,构 件使用阶段的变形和裂缝宽度的验算是建立在第 Ⅱ阶段的基础之上,而截面的承载力计算则是建 立在第Ⅲa阶段的基础之上的。
§3.3 建筑工程中受弯构件正截面承载力计算方法
3.3.1 基本假定 建筑工程中在进行受弯构件正截面承载力计 算时,引人了如下几个基本假定; 1.截面应变保持平面; 2.不考虑混凝土的抗拉强度; 3.混凝土受压的应力一应变关系曲线按下列 规定取用(图3-9)。
εcu——正截面处于非均匀受压时的混凝土极限压应变 ,当计算的εcu值大于0.0033时,应取为0.0033;
fcu,k——混凝土立方体抗压强度标准值;
n——系数,当计算的n大于2.0时,应取为2.0。
n,ε0,εcu的取值见表3—1。
由表3-1可见,当混凝土的强度等级小于和等于C50时,
n,ε0和εcu均为定值。当混凝土的强度等级大于C50时,随 着混凝土强度等级的提高,ε0的值不断增大,而εcu值却逐渐
M
f y As (h0
x) 2
(3-9b)
式中M——荷载在该截面上产生的弯矩设计值; h0——截面的有效高度,按下式计算
h0=h-as
h为截面高度,as为受拉区边缘到受拉钢筋合力作用点的距离。
对于处于室内正常使用环境(一类环境)的梁和板,
当混凝土强度等级> C20,保护层最小厚度(指从构件 边缘至钢筋边缘的距离)不得小于25mm,板内钢筋的混凝 士保护层厚度不得小于15mm
当εc≤ ε0时 σc=fc[1-(1- εc/ ε 0)n]
当ε0≤ εc ≤ εcu时 σc=fc
(3-2) (3-3)
(3-4)
(3-5)
(3-6)
式中 σc——对应于混凝土应变εc时的混凝土压应力;

受弯构件正截面承载力计算计算详解

受弯构件正截面承载力计算计算详解

侧向约束:侧向支撑对受弯构件正截面承载力的影响
支撑刚度:支撑刚度对受弯构件正截面承载力的影响
侧向刚度:侧向刚度对受弯构件正截面承载力的影响
受弯构件正截面承载力计算方法
PART 03
经验公式法
适用范围:适用于梁、板等受弯构件
公式形式:根据不同的受弯构件形式,采用不同的经验公式进行计算
计算步骤:根据经验公式,确定相关参数,代入公式进行计算
确定截面有效高度
计算截面承载力
确定材料强度
进行承载力计算
计算截面内力
进行承载力计算
确定计算简图和截面尺寸
确定材料强度
结果分析和评价
计算结果的准确性分析
计算结果的优化建议和改进措施
计算结果与实验数据的对比分析
计算结果的可靠性评估
受弯构件正截面承载力计算的实践应用
PART 05
工程实例介绍
在某高速公路工程中,通过受弯构件正截面承载力计算,合理地选择了桥梁的跨度和配筋,有效降低了工程成本。
确定弯矩大小:根据梁的承载能力、跨度和荷载等参数,计算出梁所承受的最大弯矩值。
考虑弯矩的偏心影响:根据梁的截面尺寸和弯矩分布情况,确定弯矩的偏心距,以考虑其对梁截面承载力的影响。
考虑梁的剪切和扭转变形:在计算弯矩分布和大小的同时,还需考虑梁的剪切和扭转变形对承载力的影响。
选择合适的计算方法
确定计算简图和截面尺寸
PART 01
受弯构件的定义
受弯构件是指主要承受弯矩或剪力和扭矩共同作用的构件
受弯构件在桥梁、屋盖、板、梁等建筑中广泛应用
受弯构件的正截面承载力是指构件在垂直于轴线的截面上所能承受的最大正压力
受弯构件正截面承载力计算是结构设计中的重要内容,直接关系到建筑物的安全性和经济性

受弯构件正截面承载能力计算

受弯构件正截面承载能力计算

其特点有: (1)只能沿 弯矩作用方 向,绕中和 轴单向转动 (2)只能在 从受拉钢筋 开始屈服到 受压区混凝 土压坏的有 限范围内转 动φy-φu。
(3)转动的同时,能传递一定的弯矩,即截面的极限弯矩 Mu 塑性铰出现后,简支梁即形成三铰在一直线上的破坏机构。
3.《规范》采用的正截面极限受弯承载力计算方法
2.适筋梁正截面的受力性能 (1)适筋梁的受力阶段
第Ⅰ阶段(弹性工作阶段) 加载→开裂 开裂弯矩Mcr
第Ⅱ阶段(带裂缝工作阶段) 开裂→屈服 屈服弯矩My
第Ⅲ阶段(破坏阶段) 屈服→压碎 极限弯矩Mu
不同阶段截面应力分布图的应用
Ⅰa阶段的应力状态是抗裂验算的依据。 Ⅱ 阶段的应力状态是裂缝宽度和变形验算的依据。 Ⅲa阶段的应力状态作为构件承载力计算的依据
有柱帽 无柱帽
1/32~1/40 1/30~1/35
注:表中l0为梁的计算跨度。当l0≥9m时,表中数值宜乘以1.2。
(2)板的最小厚度
按构造要求,现浇板的厚度不应小于下表的数值。现 浇板的厚度一般取为10mm的倍数。
(3)板的配筋
①受力钢筋 用来承受弯矩产生的拉力 ②分布钢筋
作用,一是固定受力钢筋的位置,形成钢筋网;二是 将板上荷载有效地传到受力钢筋上去;三是防止温度或混 凝土收缩等原因沿跨度方向的裂缝。
ecu
a’
A
’ s
e s
x
M
h0
Cs=ss’As’ Cc=fcbx
As
a
>ey
T=fyAs
双筋截面在满足构造要求的条件下,截面达到Mu 的标志仍然是受压边缘混凝土应变达到εcu。 受压区 混凝土的应力仍可按等效矩形应力考虑。当相对受压

[工学]钢筋混凝土受弯构件正截面承载力计算

[工学]钢筋混凝土受弯构件正截面承载力计算

发生条件: ρmin.h/h0≤ρ≤ρb
c
c
c
c
MI
Mcr
MII
My
(Mu) MIII
t<ft
sAs
sAs t=ft(t =tu)
s<y
sAs
s= fyAs
y
(c=cu) c
fyAs s>y
1.适筋梁特点:
min.h/h0 max
• 一开裂, 砼应力由裂缝截面处的钢筋承担, 荷 载继续增加, 裂缝不断加宽。受拉钢筋屈服, 压区砼压碎
主页 目录 上一章 下一章 帮助
ห้องสมุดไป่ตู้
混凝土结构设计原理
第4章
§4.1 概 述
4.1.1几个基本概念
1.受弯构件:主要指各种类型的梁和板。 内力特点:截面上通常有弯矩和剪力共同作用。
2. 正截面:与构件计算轴线相垂直的截面。
3. 承载力计算公式: M ≤Mu
M —— 受弯构件正截面弯矩设计值; Mu——受弯构件正截面受弯承载力设计值。
宽度 :b = 120、150、(180)、200、(220)、 250、300、350、…(mm)
高度:h=250、300、350、400、……、750、800、 900、…(mm)。
二、 截面尺寸和配筋构造
2. 板
c15mm d
分布钢筋
h0
h
d 6 ~ 12mm
h0 h 20
板厚的模数为10mm
主页 目录 上一章 下一章 帮助
混凝土结构设计原理
第4章
§4.3 正截面受弯承载力计算原则
4.3.1 基本假设
截面应变保持平面; 不考虑混凝土抗拉强度; 钢筋的应力-应变具有以下关系:

受弯构件正截面承载力计算

受弯构件正截面承载力计算

段两部分组成。
c
fc
1
1
c 0
n
c fc
0 0.002 0.5( fcu,k 50)105
sc fc sc
混凝土的应力-应变曲线
c fc
c
fc
1
1
c 0
n
ec
ec
e04
ecu
cu 0.0033 ( fcu,k 50)105
n
2
1 60
(
fcu,k
50)
普通混凝土
h<300mm 时 d≥8mm;h≥300mm 时 , d≥10mm
钢筋净距≥25mm,≥钢筋直径
混凝土保护层(到最外侧钢筋边 缘的距离)≥20mm
钢筋净距≥25mm,≥钢筋直径
5.2.1梁的构造要求
梁侧纵向构造钢筋(腰筋)
作用:承受梁侧面的温度变化及混凝土收缩引起的应力,并抑 制混凝土裂缝的开展。
y
dy
5.3.3 受压区等效矩形应力图形
n 等效原因:计算过复杂 n 等效原则
p 等效矩形应力图形的面积应等于抛物线加矩形应力图形的面积,即混 凝土压应力的合力的大小相等;
p 等效矩形应力图形的形心位置应与抛物线加矩形应力图形的总形心位 置相同,即压应力合力的作用点位置不变。
ecu
sc
a1fc
ec
p 结构计算和构造措施是相互配合的;
p 在进行受弯构件正截面承载力计算之前,还需要 了解其有关的构造要求。
5.2.1梁的构造要求
n 梁的构造要求(部分)
钢筋净距≥30mm,≥1.5钢筋直 径
梁常用的混凝土强度等级是C20、 C25、C30、C35、C40等
h 1 16 : 1 10l0 c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章受弯构件的正截面承载力计算1.具有正常配筋率的钢筋混凝土梁正截面受力过程可分为哪三个阶段,各有何特点?答:第Ⅰ阶段:混凝土开裂前的未裂阶段当荷载很小,梁内尚未出现裂缝时,正截面的受力过程处于第Ⅰ阶段。

由于截面上的拉、压应力较小,钢筋和混凝土都处于弹性工作阶段,截面曲率与弯矩成正比,应变沿截面高度呈直线分布(即符合平截面假定),相应的受压区和受拉区混凝土的应力图形均为三角形。

随着荷载的增加,截面上的应力和应变逐渐增大。

受拉区混凝土首先表现出塑性特征,因此应力分布由三角形逐渐变为曲线形。

当截面受拉边缘纤维的应变达到混凝土的极限拉应变时,相应的拉应力也达到其抗拉强度,受拉区混凝土即将开裂,截面的受力状态便达到第Ⅰ阶段末,或称为Ⅰa阶段。

此时,在截面的受压区,由于压应变还远远小于混凝土弯曲受压时的极限压应变,混凝土基本上仍处于弹性状态,故其压应力分布仍接近于三角形。

第Ⅱ阶段:混凝土开裂后至钢筋屈服前的裂缝阶段受拉区混凝土一旦开裂,正截面的受力过程便进入第Ⅱ阶段。

在裂缝截面中,已经开裂的受拉区混凝土退出工作,拉力转由钢筋承担,致使钢筋应力突然增大。

随着荷载继续增加,钢筋的应力和应变不断增长,裂缝逐渐开展,中和轴随之上升;同时受压区混凝土的应力和应变也不断加大,受压区混凝土的塑性性质越来越明显,应力图形由三角形逐渐变为较平缓的曲线形。

在这一阶段,截面曲率与弯矩不再成正比,而是截面曲率比弯矩增加得更快。

还应指出,当截面的受力过程进入第Ⅱ阶段后,受压区的应变仍保持直线分布。

但在受拉区由于已经出现裂缝,就裂缝所在的截面而言,原来的同一平面现已部分分裂成两个平面,钢筋与混凝土之间产生了相对滑移。

这与平截面假定发生了矛盾。

但是试验表明,当应变的量测标距较大,跨越几条裂缝时,就其所测得的平均应变来说,截面的应变分布大体上仍符合平截面假定,即变形规律符合“平均应变平截面假定”。

因此,各受力阶段的截面应变均假定呈三角形分布。

第Ⅲ阶段:钢筋开始屈服至截面破坏的破坏阶段随着荷载进一步增加,受拉区钢筋和受压区混凝土的应力、应变也不断增大。

当裂缝截面中的钢筋拉应力达到屈服强度时,正截面的受力过程就进入第Ⅲ阶段。

这时,裂缝截面处的钢筋在应力保持不变的情况下将产生明显的塑性伸长,从而使裂缝急剧开展,中和轴进一步上升,受压区高度迅速减小,压应力不断增大,直到受压区边缘纤维的压应变达到混凝土弯曲受压的极限压应变时,受压区出现纵向水平裂缝,混凝土在一个不太长的范围内被压碎,从而导致截面最终破坏。

我们把截面临破坏前(即第Ⅲ阶段末)的受力状态称为Ⅲa阶段。

在第Ⅲ阶段,受压区混凝土应力图形成更丰满的曲线形。

在截面临近破坏的Ⅲa阶段,受压区的最大压应力不在压应变最大的受压区边缘,而在离开受压区边缘一定距离的某一纤维层上。

这和混凝土轴心受压在临近破坏时应力应变曲线具有“下降段”的性质是类似的。

至于受拉钢筋,当采用具有明显流幅的普通热轧钢筋时,在整个第Ⅲ阶段,其应力均等于屈服强度。

2.钢筋混凝土梁正截面受力过程三个阶段的应力与设计有何关系?答:Ⅰa阶段的截面应力分布图形是计算开裂弯矩M cr的依据;第Ⅱ阶段的截面应力分布图形是受弯构件在使用阶段的情况,是受弯构件计算挠度和裂缝宽度的依据;Ⅲa阶段的截面应力分布图形则是受弯构件正截面受弯承载力计算的依据。

3.何谓配筋率?配筋率对梁破坏形态有什么的影响?答:配筋率ρ是指受拉钢筋截面面积A s与梁截面有效面积bh0之比(见图题3-1),即bh A s=ρ 式中A s —— 受拉钢筋截面面积; b —— 梁截面宽度;h 0 —— 梁截面有效高度,h 0=h-a ; h —— 梁截面高度;a —— 纵向受拉钢筋合力点至截面受拉边缘的距离。

随着配筋率不同,钢筋混凝土梁可能出现下面三种不同的破坏形态: 1) 适筋破坏形态适筋梁从开始加荷直至破坏,面所能承担的弯矩增加甚微,时裂缝开展较宽,挠度较大,题4-2a )都能得到充分利用,符合安全、经济的要求,故在实际工程中,受弯构件都应设计成适筋梁。

2) 超筋破坏形态配筋率过大的梁称为“超筋梁”。

试验表明,由于超筋梁内钢筋配置过多,抗拉能力过强,当荷载加到一定程度后,在钢筋的拉应力尚未达到屈服强度之前,受压区混凝土已先被压碎,致使构件破坏(图4-4b )。

由于超筋梁在破坏前钢筋尚未屈服而仍处于弹性工作阶段,裂缝开展不宽,延伸不高,梁的挠度较小,如图题3-2b 所示。

由于它在没有明显预兆的情况下突然破坏,故其破坏类型属脆性破坏。

超筋梁虽然配置有很多受拉钢筋,但其强度不能充分利用,这是不经济的,同时破坏前又无明显预兆,所以在实际工程中应避免设计成超筋梁。

3) 少筋破坏形态配筋率过低的梁称为“少筋梁”。

这种梁在开裂以前受拉区的拉力主要由混凝土承担,钢筋承担的拉力占很少一部分。

到了第Ⅰ阶段末,受拉区一旦开裂,拉力就几乎全部转由钢筋承担。

由于钢筋数量太少,使裂缝截面的钢筋拉应力突然剧增至超过屈服强度而进入强化阶段,此时钢筋塑性伸长已很大,裂缝开展过宽,梁将严重下垂,即使受压区混凝土暂未压碎,但过大的变形及裂缝已经不适于继续承载,从而标志着梁的破坏(图题3-2c ),在个别情况题-3-1配筋率题3-2 梁正截面的三种破坏形式 a )适筋梁b )超筋梁c )少筋梁下,钢筋甚至可能被拉断。

上述破坏过程一般是在梁出现第一条裂缝后突然发生,所以也属脆性破坏。

因此,少筋梁也是不安全的。

少筋梁虽然配了钢筋,但不能起到提高纯混凝土梁承载能力的作用,同时,混凝土的抗压强度也不能充分利用,因此在实际工程设计中也应避免。

不同配筋量梁的M 0—Ø0关系如图题3-3所示。

4.正截面承载力计算有哪些基本假定? 答:正截面承载力计算的基本假定有:1)平截面假定:在构件受荷以后,截面应变沿截面高度保持线性分布。

是指梁的变形规律符合“平均应变平截面假定”。

2)不考虑混凝土的抗拉强度。

对处于承载能力极限状态下的正截面,其受拉区混凝土的绝大部分因开裂已经退出工作,而中和轴以下可能残留很小的未开裂部分,其合力小且离中和轴较近,作用相对很小,为简化计算,完全可以忽略其抗拉强度的影响。

3)混凝土的压应力与压应变之间的关系曲线按抛物线上升段和水平段取用,对于正截面处于非均匀受压时的混凝土,极限压应变的取值最大不超过0.0033。

如图题4-1所示。

混凝土受压应力-应变关系曲线方程为: 当εc ≤ε0时(上升段)⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=ncc c f 011εεσ 当ε0<εc ≤εcu 时(水平段)c c f =σ4)钢筋应力取钢筋应变与其弹性模量的乘积,但不大于其强度设计值。

受拉钢筋的极限应变取0.01。

这一假定对钢筋的应力应变曲线采用了简化的理想化曲线,如图题4-2所示。

曲线亦分两段组成: 第一段,当0≤εs ≤εy 时σs =εs E s第二段,当εs >εy 时σs = f y5.适筋梁与超筋梁破坏的本质区别是什么?什么是“界限破坏”?单筋矩形截面梁防止超筋破坏的公式有哪些?答:适筋梁与超筋梁破坏的本质区别在于:前者受拉钢筋首先屈服,经过一段塑性变形后,受压区混凝土才被压碎;后者在钢筋屈服前,受压区混凝土首先达到弯曲受压极限压应变,导致构件破坏。

具有某个特定配筋率的梁,当其受拉钢筋开始屈服时,受压区边缘也刚好达到混凝土弯曲受压时的极限压应变。

也就是说,钢筋屈服与受压区混凝土被压碎同时发生。

我们把梁的这种破坏特征称为“界限破坏”。

不难看出,这个特定的配筋率就是适筋梁的界限。

设计时,为使所设计的梁保持在适筋范围内而不致成为超筋梁,单筋矩形截面梁基本公式的适用条题4-2 理想化的钢筋应力应变关系曲线件为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎭⎫ ⎝⎛-=≤=≤=≤≤2 01max 10b bc u yc b b b b bx h bx f M M f f h x x ααξρρξξξ或或或上式中的第四个表达式意味着超过最大配筋率的用钢量并不能提高梁的承载力,M umax 为单筋矩形截面受弯承载力的上限值,这表明超筋梁是不经济的。

6.确定适筋梁的最小配筋率的原则是什么?单筋矩形截面梁防止少筋破坏的公式有哪些? 答:原则上可以用M u =M cu 的条件来确定适筋梁的最小配筋率ρmin ,即按最小配筋率配筋的梁,用基本公式所算得的破坏弯矩不应小于同截面、同强度等级的素混凝土梁所能承担的弯矩。

设计时,为避免设计成少筋梁,单筋矩形截面梁基本公式的适用条件为:A s ≥A s,min =ρmin bh当A s <A s,min 时,应按A s =A s,min 配筋。

7.梁的截面尺寸与纵向受力钢筋有哪些构造要求? 答:(1)梁的截面尺寸的构造要求矩形截面梁的高宽比h/b 一般取2.0~3.5;T 形截面梁的h/b 一般取2.5~4.0(此处b 为梁肋宽)。

为了统一模板尺寸便于施工,建议梁的宽度采用b150、180、200、250、300、350mm 度采用h =250、300、350……750、800、900、等尺寸。

(2)梁的纵向受力钢筋的构造要求梁中常用的纵向受力钢筋直径为根数最好不少于3(或4)根。

同直径的钢筋,钢筋直径相差至少取2mm ,施工中能用肉眼识别。

密实性,纵筋的净间距应满足图题6(a )若钢筋必须排成两排时,上、下两排钢筋应当对齐。

为了保证钢筋不被锈蚀,同时保证钢筋与混凝土紧密粘结,梁内钢筋的两侧和近边都应设有保护层。

梁、板、柱的混凝土保护层厚度与环境类别和混凝土强度等级有关,见附表18。

由该表知,当环境类别为一类时,即在室内正常环境下,其最小厚度应不小于钢筋的公称直径和25mm 。

在梁截面选择配筋计算时,若环境类别为一类,一般可取h 0=h-35mm (一排钢筋时,图题6(b );或h 0=h-60mm (两排钢筋时,图题6(a ))。

此外,为了固定箍筋并与受力钢筋连成钢筋骨架,在梁内应设置架立钢筋,当跨度小于4m 时,其直径不宜小于8mm ;当跨度为4m~6m 时,不宜小于10mm ;当跨度大于6m 时,不宜小于12mm 。

题6 净距、保护层及有效高度8.板的截面尺寸、受力钢筋与分布钢筋有哪些构造要求?答: 1)板的截面尺寸构造要求现浇板的宽度一般较大,设计时可取单位宽度(b=1000mm)进行计算。

其最小厚度除应满足各项功能要求外,尚应满足下表的要求。

现浇板厚度以10mm为模数。

2)板的受力钢筋的构造要求题8 板的配筋为了便于浇注混凝土,保证钢筋周围混凝土的密实性,板内钢筋间距不宜太密;为了正常地分担内力,也不宜过稀。

钢筋的间距一般在70mm~200mm内;当h>150mm时,间距不应大于1.5h,在板的每米宽度内也不得少于3根。

相关文档
最新文档