伺服系统的执行元件

合集下载

《数控原理与数控机床》填空 多选

《数控原理与数控机床》填空 多选

1. 数字控制是用数字化的信息对机床的运动及加工过程进行控制的一种方法。

2. 数控机床按伺服系统的控制原理可分为开环控制、半闭环控制和闭环控制数控机床,其中,精度最高的是闭环控制数控机床。

3. 按机械加工的运动轨迹分类,数控机床可分为点位控制、直线控制和轮廓控制数控机床。

4. NC 机床的含义是数控机床,CNC 机床的含义是计算机数字控制机床。

5. 数控机床大体由输入输出设备、数控装置、测量反馈装置、伺服系统和机床本体组成,其中,数控机床的核心是数控装置。

6. 简单地说,是否采用数控机床进行加工,主要取决于零件的复杂程度;而是否采用专用机床进行加工,主要取决于零件的生产批量。

7. 数控机床按功能水平可分为高级型、普及型和经济型数控机床。

8. 对刀点就是在数控机床上加工零件时,刀具相对于工件运动的起点。

为了提高零件的加工精度,应尽量选在零件的设计基准或工艺基准上。

9. 数控机床坐标系三坐标轴X、Y、Z 及其正方向用右手定则判定,X、Y、Z 各轴的回转运动及其正方向+A、+B、+C 分别用右手螺旋法则判断。

10. 数控机床中的标准坐标系采用笛卡儿直角坐标系,并规定增大刀具与工件之间距离的方向为坐标正方向。

11. 机床的最小设定单位,即数控系统能实现的最小位移量称为脉冲当量,它是数控机床的一个重要技术指标,一般为0.001~0.01mm。

12. 与机床主轴重合或平行的刀具运动坐标轴为Z轴,并规定刀具远离工件的运动方向为正方向。

13. 对于机床X 坐标轴,规定其方向为水平方向,且垂直于Z 轴并平行于工件的装夹面。

14. 在轮廓控制中,为了保证一定的精度和编程方便,通常需要有刀具长度和半径补偿功能。

15. 在铣削平面轮廓零件时,为减少刀具切入切出的刀痕,应采用外延法,即刀具应沿着零件轮廓延长线的切向方向切入切出。

16. 机床接通电源后的回零操作是使刀具或工作台返回到机床参考点。

17. 数控编程时的数值计算,主要是计算零件的基点和节点的坐标。

伺服电机参数

伺服电机参数

伺服电机参数在现代工业控制系统中,伺服电机是一种常用且重要的执行元件。

伺服电机能够根据输入信号控制转速和位置,具有高精度、高响应速度和稳定性等优点,因此被广泛应用于机械自动化领域,如工业机器人、数控机床和自动化生产线等。

伺服电机的参数是评估其性能和特性的重要指标。

了解和掌握伺服电机的参数对于正确选型和系统设计具有重要意义。

下面将介绍一些常见的伺服电机参数。

1. 额定电压(Rated Voltage)额定电压是指伺服电机在正常工作条件下所需要的电压。

伺服电机通常使用直流电压供电,常见的额定电压为24V、48V等。

2. 额定电流(Rated Current)额定电流是指在额定负载下,伺服电机所需要的电流。

额定电流与伺服电机的功率和负载有关,通常以安培(A)为单位。

3. 额定功率(Rated Power)额定功率是指伺服电机在额定转速下所能提供的功率。

额定功率是伺服电机的一个重要参数,它与电机的转速、力矩和效率有关,通常以瓦特(W)为单位。

4. 额定转速(Rated Speed)额定转速是指伺服电机在额定电压和额定负载下所能达到的最大转速。

额定转速直接影响到伺服电机的性能,转速越高表示伺服电机响应速度越快。

5. 额定转矩(Rated Torque)额定转矩是指伺服电机在额定电压和额定负载下所能提供的最大输出转矩。

额定转矩是伺服电机的一个关键参数,它决定了电机在负载变化时的稳定性和控制精度。

6. 静态摩擦力(Static Friction)静态摩擦力是指伺服电机在无负载情况下需要克服的摩擦力。

静态摩擦力会影响到伺服电机的起动性能和控制精度。

7. 动态摩擦力(Dynamic Friction)动态摩擦力是指伺服电机在运行过程中需要克服的摩擦力。

动态摩擦力会对伺服电机的速度响应和控制精度产生影响。

8. 起始频率(Start-up Frequency)起始频率是指伺服电机能够启动并保持运行的最低频率。

起始频率与伺服电机的响应速度和控制精度有关。

伺服控制知识点总结

伺服控制知识点总结

伺服控制知识点总结一、基本概念1. 伺服系统伺服系统是由伺服执行元件、位置传感器、控制器和电源组成的控制系统。

其中,伺服执行元件一般为电机,位置传感器用于检测电机的位置,控制器用于根据传感器的反馈信号控制电机的运动,电源用于为电机提供动力。

2. 伺服电机伺服电机是一种能够根据外部控制信号精确控制位置、速度和力的电机。

常见的伺服电机有直流伺服电机、交流伺服电机和步进伺服电机等。

3. 位置传感器位置传感器用于检测伺服电机的位置,并将检测到的位置信息反馈给控制器。

常见的位置传感器有编码器、光栅尺、霍尔传感器等。

4. 控制器控制器是伺服系统中的核心部件,其主要功能是根据传感器的反馈信号计算出电机的控制指令,并将指令输出给电机驱动器。

5. 电机驱动器电机驱动器接收控制器输出的控制指令,通过控制电机的电源电压和频率来控制电机的转速和扭矩。

二、伺服控制原理1. 闭环控制伺服控制采用闭环控制的原理,即通过不断地检测输出和反馈,在控制过程中校正误差,从而实现精确的位置、速度和力控制。

在闭环控制系统中,控制器通过比较实际输出和期望输出之间的差距,不断调整控制指令,使输出逐渐趋近期望值。

2. PID控制PID控制是伺服控制中常用的一种控制算法,即比例、积分、微分控制算法的组合。

比例控制用于根据误差的大小调整控制输出;积分控制用于消除持续的误差;微分控制用于预测误差的变化趋势,并及时做出调整。

PID控制算法可以根据实际情况进行调整,适用于各种伺服控制场景。

3. 伺服控制系统的设计伺服控制系统的设计需要考虑多个因素,包括伺服系统的要求、控制器的选择、传感器的选择、电机的选择、控制算法的选择等。

在设计伺服控制系统时,需根据实际情况权衡各种因素,从而达到满足控制要求并尽可能减小成本的目标。

三、伺服控制应用领域1. 工业自动化在工业自动化领域,伺服控制被广泛应用于各种生产设备的位置和速度控制,如注塑机、包装机、数控机床等。

伺服控制可以实现快速、稳定、精确的运动控制,提高生产效率和产品质量。

伺服系统概述 PPT课件

伺服系统概述 PPT课件

12 伺服系统概述
伺服系统的特点和功用
• 伺服系统与一般机床的进给系统有本质上差别,它能根据 指令信号精确地控制执行部件的运动速度与位置 • 伺服系统是数控装置和机床的联系环节,是数控系统的重 要组成
12 伺服系统概述
二、伺服系统基本类型
按控制原理分 有开环、闭环和半闭环三种形式 按被控制量性质分 有位移、速度、力和力矩等伺 服系统形式 按驱动方式分 有电气、液压和气压等伺服驱动形式 按执行元件分 有步进电机伺服、直流电机伺服和交 流电机伺服形式
12 伺服系统概述
气压系统与液压系统的比较
1.
2.
3. 4.
5.
空气可以从大气中取之不竭且不易堵塞;将用过的气体排入大 气,无需回气管路处理方便;泄漏不会严重的影响工作,不污 染环境。 空气粘性很小,在管路中的沿程压力损失为液压系统的干分之 一,易于远距离控制。 工作压力低.可降低对气动元件的材料和制造精度要求。 对开环控制系统,它相对液压传动具有动作迅速、响应快的优 点。 维护简便,使用安全,没有防火、防爆问题;适用于石油、化 工、农药及矿山机械的特殊要求。对于无油的气动控制系统则 特别适用于无线电元器件生产过程,也适用于食品和医药的生 产过程。
优点
操作简便;编程容易; 能实现定位伺服控制; 响应快、易与计算机 (CPU)连接;体积小、 动力大、无污染。
缺点
瞬时输出功率大;过载 差;一旦卡死,会引起 烧毁事故;受外界噪音 影响大。 功率小、体积大、难于 小型化;动作不平稳、 远距离传输困难;噪音 大;难于伺服。 设备难于小型化;液压 源和液压油要求严格; 易产生泄露而污染环境。
12 伺服系统概述
三、伺服系统基本要求
精度高: 稳定性好:

伺服系统包含哪些(基本组成_工作原理_应用)

伺服系统包含哪些(基本组成_工作原理_应用)

伺服系统包含哪些(基本组成_工作原理_应用)
伺服系统的结构组成机电一体化的伺服控制系统的结构、类型繁多,但从自动控制理论的角度来分析,伺服控制系统一般包括控制器、被控对象、执行环节、检测环节、比较环节等五部分。

下图给出了伺服系统组成原理框图。

图伺服系统组成原理框图
1.比较环节
比较环节是将输入的指令信号与系统的反馈信号进行比较,以获得输出与输入间的偏差信
2.控制器
控制器通常是计算机或PID控制电路,其主要任务是对比较元件输出的偏差信号进行变换处理,以控制执行元件按要求动作。

3.执行环节
执行环节的作用是按控制信号的要求,将输入的各种形式的能量转化成机械能,驱动被控对象工作。

机电一体化系统中的执行元件一般指各种电机或液压、气动伺服机构等。

4.被控对象
5.检测环节
检测环节是指能够对输出进行测量并转换成比较环节所需要的量纲的装置,一般包括传感器和转换电路。

伺服系统工作原理伺服系统是使物体的位置、方位、状态等输出被控量能够跟随输入目标的任意变化而变化的自动控制系统,即伺服系统是具有反馈的闭环自动控制系统。

它由计算机数字控制系统、伺服驱动器、伺服电动机、速度和位置传感器等组成。

计算机数字控制系统用来存储零件加工程序,根据编码器反馈回来的信息进行各种插补运算和软件实时控制,向各坐标轴的伺服驱动系统发出各种控制命令。

伺服驱动器和伺服电动机接收到计算机数字控制系统的控制命令后,对功率进行放大、变换与调控等处理,能够快速平滑调。

伺服系统的分类和基本组成形式

伺服系统的分类和基本组成形式

伺服系统的分类和基本组成形式伺服系统是一种能够将电压信号转化为转矩和转速以驱动控制对象的电机系统。

它的主要特点是具有机电时间常数小、线性度高、始动电压等特性,可将所收到的电信号转换成电动机轴上的角位移或角速度输出。

伺服电机分为直流和交流伺服电动机两大类,其转速随着转矩的增加而匀速下降。

在自动控制系统中,伺服电机常用作执行元件。

数控机床伺服系统的作用在于接受来自数控装置的指令信号,驱动机床移动部件跟随指令脉冲运动,并保证动作的快速和准确。

其中,进给伺服控制对伺服系统的要求更高,而主运动的伺服控制要求相对较低。

因此,数控机床的精度和速度等技术指标往往主要取决于伺服系统的质量。

伺服系统按其驱动元件和控制方式划分,有步进式伺服系统、直流电动机伺服系统、交流电动机伺服系统、开环伺服系统、闭环伺服系统和半闭环伺服系统等。

其中,开环系统主要由驱动电路、执行元件和机床3大部分组成,常用的执行元件是步进电机;闭环系统主要由执行元件、检测单元、比较环节、驱动电路和机床5部分组成,常见的检测元件有旋转变压器、感应同步器、光栅、磁栅和编码盘等。

根据进入比较环节信号的形式以及反馈检测方式,闭环(半闭环)系统可分为脉冲比较伺服系统、相位比较伺服系统和幅值比较伺服系统3种。

在闭环系统中,检测元件将机床移动部件的实际位置检测出来并转换成电信号反馈给比较环节,比较环节的作用是将指令信号和反馈信号进行比较,两者的差值作为伺服系统的跟随误差,经驱动电路,控制执行元件带动工作台继续移动,直到跟随误差为零。

半闭环伺服系统的精度要比闭环伺服系统的精度低一些,这是由于丝杠和工作台之间传动误差的存在所导致的。

因此,伺服系统的分类和基本组成形式对于机床的性能和精度有着至关重要的影响,需要在实际应用中根据具体需求进行选择和配置。

执行元件在伺服系统中扮演着重要的角色,其作用是将电信号转化为机械位移,以实现控制信号的跟随。

直流宽调速电动机和交流电动机是常用的执行元件,不同的执行元件需要不同的驱动电路。

伺服驱动系统-常用伺服执行元件

伺服驱动系统-常用伺服执行元件

PC104
USB接口 CAN卡
104总线
CANopen
机械臂复位
绝对编码器 绝对编码器 绝对编码器
接近开关
接近开关
扭矩传感器
传感器信号 转接板
GPIO
8051单片机
CAN通信 USB接口 串口通信 以太网接口 LCD液晶显示
机械臂电机驱 动器1
机械臂+送管机构
肩关节电机
光电编码器
机械臂电机驱 动器5
第五章 伺服驱动系统
5.2 常用伺服执行元件
5.2.1 执行元件的种类及特点
执行元件的特点以及优缺点
种类
特点
可用商业电源;
电 信号与动力传送方 气 向相同;有交流直 式 流之分;注意使用
电压和功率。
优点
缺点
操作简便;编程容易; 瞬时输出功率大; 能实现定位伺服控制; 过载差;一旦卡死, 响应快、易与计算机 会引起烧毁事故; (CPU)连接;体积小、受外界噪音影响大。 动力大、无污染。
压 操作人员技术熟练。 位伺服控制;易与计 求严格;易产生泄

算机(CPU)连接。 露而污染环境。
5.2.2 对伺服执行元件的基本要求
(1) 体积小、重量轻、输出功率大
功率密度——执行装置单位重量所能达到的输出功率
PG P / G(W / N )
反映了电动机单位重量的输出功率,在电动机起停频率 低,但要求运行平稳和扭矩脉动小的场合可采用这一指标 。
步进电动机、直流伺服电动机和交流伺服电动机
5.2.3 电机概述
电动机是电能转换为机械能的基本装置,在各行各业广泛 应用。
• 直流电机 • 交流电机 步进电机
直流电动机
交流电动机

机电一体化技术基本试题及答案

机电一体化技术基本试题及答案

一、名词解释(每小题2分,共10分)1. 测量灵敏度压电效应动态误差 5. 传感器二、填空题(每小题2分,共20分)1. 滚珠丝杆中滚珠的循环方式:__________,________________。

2. 机电一体化系统,设计指标和评价标准应包括__________,__________,__________ ,__________。

3. 顺序控制系统是按照预先规定的次序完成一系列操作的系统,顺序控制器通常用___________________________________。

4. 某光栅的条纹密度是50条/mm,光栅条纹间的夹角θ=0.001孤度,则莫尔条纹的宽度是_______________________。

5. 连续路径控制类中为了控制工具沿任意直线或曲线运动,必须同时控制每一个轴的______________________,使它们同步协调到达目标点。

6. 某4极交流感应电机,电源频率为50Hz,转速为1470r/min,则转差率为_____________。

7. 齿轮传动的总等效惯量与传动级数__________________________________________。

8. 累计式定时器工作时有_____________________________________________________。

9. 复合控制器必定具有__________________________________。

10. 钻孔、点焊通常选用_______________________________________类型。

三、选择题(每小题2分,共10分)1. 一般说来,如果增大幅值穿越频率ωc的数值,则动态性能指标中的调整时间ts ( )A. 产大B. 减小C. 不变D. 不定2. 加速度传感器的基本力学模型是A. 阻尼—质量系统B. 弹簧—质量系统弹簧—阻尼系统 D. 弹簧系统3. 齿轮传动的总等效惯量与传动级数( )A. 有关B. 无关C. 在一定级数内有关D. 在一定级数内无关4. 顺序控制系统是按照预先规定的次序完成一系列操作的系统,顺序控制器通常用( )A. 单片机B. 2051C. PLC5、伺服控制系统一般包括控制器、被控对象、执行环节、比较环节和()等个五部分。

伺服系统的工作原理

伺服系统的工作原理

伺服系统的工作原理
伺服系统是一种能够实现精确位置控制的系统,其工作原理主要包括传感器、控制器和执行器三个部分。

首先,伺服系统通过传感器实时监测所控制对象的状态,例如位置、速度、加速度等。

常用的传感器有编码器、光电开关、位移传感器等。

传感器将所监测到的信息转化为电信号,并传送给控制器。

其次,控制器是伺服系统的核心部分,它接收传感器传来的电信号,在内部进行计算和处理,并根据控制算法生成相应的控制策略。

控制器通常由微处理器、运算芯片和存储器等组成,具有高速、高精度和高稳定性的特点。

最后,执行器是伺服系统中负责实际驱动对象运动的部分,常见的执行器有伺服电机、液压缸、气动马达等。

控制器通过输出电信号来控制执行器的工作状态,从而实现对所控制对象的精确运动控制。

整个伺服系统的工作流程如下:传感器检测所控制对象的状态并将信息传送给控制器;控制器根据传感器的信号计算得出控制策略,并输出相应的控制信号;执行器根据控制信号执行相应的动作,将所控制对象带到目标位置或实现目标速度。

总的来说,伺服系统通过传感器对所控制对象进行实时监测,控制器计算得出控制策略,通过控制信号驱动执行器实现对对
象的精确位置控制。

这种工作原理使得伺服系统在许多工业领域中得到广泛应用,例如机械加工、自动化生产线等。

《机电一体化系统》形成性作业及答案

《机电一体化系统》形成性作业及答案

一、填空题1.机电一体化包括六大共性关键技术:精密机械技术、 、 、信息处理技术、自动控制技术和 。

2.机电一体化的产生与迅速发展的根本原因在于社会的发展和科技的进步。

系统工程、控制论和信息论是机电一体化的 基础,也是机电一体化技术的 。

微电子技术的发展,半导体大规模集成电路制造技术的进步,则为机电一体化技术奠定了 基础。

机电一体化技术的发展有一个从 状况向 方向发展的过程。

3.一个较完善的机电一体化系统应包括以下几个基本要素:机械本体、 、 、执行部分、控制及信息处理部分和接口。

4.机电一体化系统对动力部分的要求是用尽可能 的动力输入获得尽可能 的功能输出。

5.根据机电一体化系统匹配性要求,要求执行部分的刚性 、重量 、实现组件化、标准化和系列化,提高系统整体 。

6.机电一体化系统一方面要求驱动的高 和快速 ,同时要求对水、油、温度、尘埃等外部环境的 和 。

7.自动控制技术的目的在于实现机电一体化系统的目标 。

8.伺服传动技术就是在 的指挥下,控制驱动元件,使机械的运动部件按照指令要求运动,并具有良好的 。

9.拟定机电一体化系统设计方案的方法可归结为 、 和 。

10.机电一体化系统对机械传动部件的摩擦特性的要求为:静摩擦力尽可能 ,动摩擦力应尽为可能小的 斜率,若为 斜率则易产生爬行,降低精度,减少寿命。

11.运动中的机械部件易产生振动,其振幅取决于系统的阻尼和固有频率,系统的阻尼越 ,最大振幅越 ,其衰减越快。

机电一体化系统作 业112.在系统设计时考虑阻尼对伺服系统的影响,一般取阻尼比ξ在到之间的欠阻尼系统,这样既能保证振荡在一定的范围内,过渡过程较平稳,过渡时间较短,又具有较高的灵敏度。

13.间隙将使机械传动系统产生,影响伺服系统中位置环的。

14.在伺服系统中,通常采用原则选择总传动比,以提高伺服系统的。

二、选择题1.机电一体化系统的基本功能要素之一:接口的基本功能是()A.交换B.放大C.传递D.以上三者2.机电一体化系统的核心是()A.动力部分B.执行机构C.控制器D.接口3.机电一体化系统中,根据控制信息和指令完成所要求的动作这一功能的是()。

数控技术答案

数控技术答案

数控机床:采用数字化信号对机床运动及加工过程进行控制的机床。

数控编程:从分析零件图纸到制成数控机床所需控制介质的过程。

滚珠丝杠副:在螺母和丝杠之间用滚珠作为滚动体的螺旋传动元件。

机床抗振性:机床在工作时抵抗由交变载荷及冲击载荷所引起的振动的能力。

填空题(每题2分)1、数控机床是由控制介质、数控装置、伺服驱动装置、辅助控制装置、反馈装置、适应控制装置和机床等部分组成。

2、数控机床加工过程的加工路线是指刀具中心的运动轨迹和方向。

3、三相步进电机的转子上有40个齿,若采用三相六拍通电方式,则步进电机的步距角为1.50。

4、数控机床的最小设定单位是数控机床能实现的最小位移量,标制着数控机床精度的分辨率,其值一般为0.0001~0.01mm,在编程时,所有的编程单位都应转换成与最小设定单位相应的数据。

5、通常把数控车床的床身导轨倾斜布置,可改善其排屑条件和受力状态。

提高机床的静刚度。

6、数控机床的工作台和刀架等部件的移动,是由交流或直流伺服电机驱动,经过滚珠丝杠传动,可减少进给系统所需要的驱动扭矩,提高定位精度、运动平稳性。

7、对步进电机施加一个电脉冲信号时,步进电机就回转一个固定的角度,叫做步距角,电机的总回转角和输入脉冲数成正比,而电机的转速则正比于输入脉冲的频率。

8、位置检测装置是数控机床的重要组成部分,在闭环系统中,它的主要作用是检测位移量,并发出反馈信号与数控装置发出的指令信号进行比较,如有偏差,经放大后控制执行部件,使其向着消除偏差方向运动,直至偏差等于零为止。

9.刀具半径补偿功能的作用就是要求数控系统根据工件轮廓程序和刀具中心偏移量,自动计算出刀具中心轨迹。

10.伺服系统的输入是插补器发出的指令脉冲,输出是直线或转角位移。

11.数控机床工作台和刀架等部件的移动,由交流或直流伺服电机驱动,经过滚珠丝杠传动,减少了进给系统所需要的驱动扭矩,提高了定位精度和运动平稳性。

12.光栅依不同制造方法有透射光栅和反射光栅两种。

伺服系统的组成和原理

伺服系统的组成和原理

伺服系统的组成和原理伺服系统是一种控制系统,用于控制机械系统或过程的运动和位置。

它通常由四个主要组成部分组成:传感器、执行器、控制器和电源。

1.传感器:传感器用于检测机械系统的位置和运动。

常见的传感器包括编码器、位置传感器和加速度传感器。

编码器用于测量转动运动的角度和速度,位置传感器用于测量直线运动的位置和速度,而加速度传感器则用于测量加速度。

2.执行器:执行器是伺服系统中的执行元件,用于实际控制机械系统的运动。

最常见的执行器是伺服电机,它由电动机和驱动器组成。

电动机将电能转化为机械能,而驱动器控制电动机的速度和位置。

3.控制器:控制器是伺服系统的“大脑”,用于处理传感器提供的反馈信号,并根据预设的控制算法生成相应的控制信号。

控制器通常使用微处理器或数字信号处理器来执行这些计算。

控制器还可以根据需要进行参数调整和系统校准。

4.电源:伺服系统需要稳定和可靠的电源来提供所需的电能。

电池、直流电源或交流电源都可以作为伺服系统的电源。

1.传感器通过测量机械系统的位置和运动并将其转换为电信号。

2.传感器的信号输入到控制器,在控制器中进行计算和处理。

控制器根据预设的控制算法,比较实际位置和期望位置之间的差异。

如果差异较大,控制器发出控制信号以调整机械系统的运动。

3.控制信号通过驱动器送至执行器。

驱动器根据控制信号控制伺服电机的速度和位置。

驱动器通常与电机直接连接,将电机转子的转动运动转换为线性或旋转的机械运动。

4.机械系统根据电机的控制运动。

反馈传感器不断监测机械系统的位置和运动,并将其反馈给控制器。

5.控制器使用反馈信号重新计算控制信号,并不断对机械系统进行调整,以使实际位置尽可能接近期望位置。

伺服电机结构和工作原理

伺服电机结构和工作原理
(1)幅值控制 保持控制电压与励磁电压间旳相位差不变,仅 变化控制电压旳幅值。
(2)相位控制 保持控制电压旳幅值不变,仅变化控制电压与 励磁电压间旳相位差。
(3)幅-相控制 同步变化控制电压旳幅值和相位。
二、直流伺服电动机
1.基本构造
老式旳直流伺服电动机动实质是容量较小旳 一般直流电动机,有他励式和永磁式两种,其构 造与一般直流电动机旳构造基本相同。
三、交直流伺服电动机旳区别
直流伺服电动机旳缺陷: ① 电刷和换向器易磨损,换向时产生火花,限制转速 ② 构造复杂,制造困难,成本高 交流伺服电动机旳优点: ① 构造简朴,成本低廉,转子惯量较直流电机小 ② 交流电动机旳容量不小于直流电动机
伺服系统旳性能要求
一、基本要求
1、位移精度高 位移精度:指指令脉冲要求机床工作台旳位移量和该指令脉
1、构造(永磁同步电机) 主要由:定子1、转子5和检测元件8等几部分构成。
1 2
3
4
1
56
7
8
9
2.工作原理
交流伺服电动机在没有控制电压时,气隙中 只有励磁绕组产生旳脉动磁场,转子上没有开启 转矩而静止不动。当有控制电压且控制绕组电流 和励磁绕组电流不同相时,则在气隙中产生一种 旋转磁场并产生电磁转矩,使转子沿旋转磁场旳 方向旋转。但是对伺服电动机要求不但是在控制 电压作用下就能开启,且电压消失后电动机应能 立即停转。假如伺服电动机控制电压消失后像一 般单相异步电动机那样继续转动,则出现失控现 象,我们把这种因失控而自行旋转旳现象称为自 转。
为消除交流伺服电动机旳自转
现象,必须加大转子电阻r2,这是 因为当控制电压消失后,伺服电动
机处于单相运营状态,若转子电阻
很大,使临界转差率sm>1,这时正 负序旋转磁场与转子作用所产生旳

伺服系统的工作原理

伺服系统的工作原理

伺服系统的工作原理伺服系统是一种能够精确控制运动位置、速度和加速度的系统,它在工业自动化、机器人、数控机床等领域得到了广泛的应用。

伺服系统的工作原理主要包括传感器、控制器和执行器三个部分。

首先,传感器是伺服系统的感知器官,它可以实时地感知运动位置、速度和加速度等参数,并将这些参数反馈给控制器。

常用的传感器包括编码器、光栅尺、霍尔传感器等,它们能够将机械运动转换成电信号,从而实现对运动状态的实时监测。

其次,控制器是伺服系统的大脑,它根据传感器反馈的信息,通过内部的控制算法计算出控制指令,并将指令发送给执行器。

控制器通常采用微处理器或者数字信号处理器,它能够实时地对传感器反馈的信息进行处理,从而保证系统对运动状态的精准控制。

最后,执行器是伺服系统的执行器官,它根据控制器发送的指令,驱动负载实现精确的运动控制。

常见的执行器包括伺服电机、液压缸、气动马达等,它们能够根据控制器发送的脉冲信号,精准地控制负载的位置和速度。

总的来说,伺服系统的工作原理可以简单概括为,传感器感知运动状态,控制器计算控制指令,执行器驱动负载实现精确的运动控制。

这种闭环控制系统能够实现对运动状态的高精度控制,从而满足工业自动化和机器人等领域对运动精度的要求。

在实际应用中,伺服系统的工作原理可以根据具体的控制要求进行调整和优化,例如采用不同的传感器、控制算法和执行器等,以适应不同的工程需求。

因此,了解伺服系统的工作原理对于工程师和技术人员来说至关重要,它能够帮助他们更好地设计和应用伺服系统,从而提高生产效率和产品质量。

综上所述,伺服系统的工作原理是一个涉及传感器、控制器和执行器的闭环控制系统,它能够实现对运动状态的高精度控制。

通过对伺服系统工作原理的深入了解,我们能够更好地应用和优化伺服系统,从而推动工业自动化和智能制造的发展。

第3章 执行元件

第3章 执行元件

机电一体化
8、步进电机的升降速控制
如要求步进电动机运行速度低,运行脉冲频率低于它本 身的起动频率时,步进电动机可以用运行频率直接起动,并 以该频率连续运行; 停止的时候,可以从运行频率直接降到零速,无需升降 频控制。 如要求运行速度较高,脉冲 频率选择不当,步进电机或者不 能正常启动,或者由于惯性不能 准确地移到新的位置,即发生失 步或过冲现象。 在步进电机开环控制系统中, 如何防止失步或过冲是步进电机 开环控制系统能否正常运行的关 键。
机电一体化
三、步进电动机及其驱动
将电脉冲信号转换成机械角位移的 执行元件。 每当电动机绕组接受一个电脉冲, 转子就转过一个相应的步距角。 转子角位移的大小及转速分别 与输入的电脉冲数及频率成正比, 并在时间上与输入脉冲同步。 只要控制输入电脉冲的数量、 频率以及电动机绕组的通电顺序, 电动机即可获得所需的转角、转速 及转向,很容易用微机实现数字控 制。
机电一体化
6、步进电机驱动电源
单电压驱动
回首页
机电一体化
单电压驱动(3相功放)
回首页
机电一体化
高、低压双电压驱动电路
回首页
机电一体化
高、低压双电压驱动电路
回首页
机电一体化
斩波恒流驱动电路
回首页
机电一体化
7、步进电机的细分驱动
基本步距角的大小只有两种,即整步或半步工作(如三相三 拍,三相六拍工作方式:1.5°/0.75°)。步距角已由步进电 动机结构所确定。 如果要求步进电动机有更小的转角(实际步距角)或者为减 小电动机振动、噪声等原因,可以在每次脉冲切换时,不将绕 组电流全部通入或切除,而是只改变相应绕组中额定电流的一 部分,电动机转过的每步运动也只是基本步距角的一部分。 绕组电流不再是一个方波,而是阶梯波,额定电流是台阶式 的投入或切除。电流分成多少个台阶,则转子就以同样的个数 转过一个步距角。这样将一个步距角细分成若干步的驱动方法 被称为细分驱动。 细分驱动的特点:在不改动电动 机结构参数的情况下,可使运行平稳, 提高匀速性,减弱或消除振荡。但细 分后的步距角精度并未提高,功率放 大驱动电路也相应复杂。 回首页

伺服控制系统原理

伺服控制系统原理

伺服控制系统原理
伺服控制系统原理是一种通过反馈控制的方式,对运动对象进行精确控制的方法。

该系统由三个主要组成部分构成:传感器、执行器和控制器。

传感器负责感知运动对象的位置、速度和加速度等相关参数。

常见的传感器包括光电传感器、编码器和加速度计等。

传感器将实时采集到的数据反馈给控制器。

执行器是伺服控制系统中的执行部件,它通过产生控制信号,将控制器计算出的运动指令转化为实际的运动,从而实现对运动对象位置、速度和加速度的控制。

执行器的种类多种多样,包括伺服电机、气动执行元件和液压缸等。

控制器是伺服控制系统中最为关键的部分,它负责根据传感器反馈的数据以及预设的控制算法,计算出适当的控制信号,并将其送往执行器。

控制器的设计通常基于PID(比例、积分、
微分)控制算法或者其他更高级的控制算法。

PID控制器根据
当前偏差(设定值与实际值之间的差异)、积分项(过去误差累积)和微分项(预测误差变化趋势)来生成输出信号。

伺服控制系统的原理是运用负反馈控制的思想,通过不断地对系统进行测量和调整,使得系统能够准确追踪预设的运动轨迹。

当实际运动与预设值产生偏差时,传感器会感知到这种差异,并将其传递给控制器。

控制器根据传感器反馈的数据计算出适当的控制信号,使执行器作出相应调整,进而对运动对象进行精确控制。

综上所述,伺服控制系统运用传感器、执行器和控制器三个组成部分,通过不断的测量、计算和调整,实现对运动对象的精确控制。

这种基于负反馈控制原理的方法广泛应用于机器人、自动化设备、航空航天等领域。

伺服系统的组成部分,各功能实现方法

伺服系统的组成部分,各功能实现方法

伺服系统的组成部分,各功能实现方法
伺服系统是一种复杂的控制系统,由多个部分组成,包括控制器、功率驱动装置、反馈装置和电动机。

以下是对这些组成部分的简要描述:
1. 控制器:这是伺服系统的核心部分,负责根据输入的指令和系统的反馈信息计算出控制量,以控制电动机的转动。

控制器的计算速度、精度和稳定性对整个伺服系统的性能有着决定性的影响。

2. 功率驱动装置:这部分负责将控制器的控制信号转换为能够驱动电动机的实际电流或电压。

功率驱动装置通常包括电力电子器件和驱动电路,用于实现电流的放大和转换。

3. 反馈装置:这部分负责实时监测电动机的转动状态,并将监测到的信息反馈给控制器。

常见的反馈装置包括编码器、光电码盘和霍尔元件等,用于检测电动机的转速、位置和方向等信息。

4. 电动机:这是伺服系统的执行部分,负责将控制器的控制信号转换为实际的机械运动。

伺服电动机通常采用直流或交流电源供电,具有较高的启动转矩和快速响应的特点。

在伺服系统中,控制器通过比较指令信号和反馈信号来调节电动机的转动,以达到对目标值的精确控制。

功率驱动装置则负责将控制器的控制信号转换为实际驱动电动机的电流或电压,而反馈装置则提供系统的实时信息,以便
控制器进行调节。

最终,伺服系统能够实现对目标值的精确跟踪,并保证系统的稳定性、快速性和精度。

伺服系统题库

伺服系统题库

伺服系统题库(最新版)目录1.伺服系统的定义与作用2.伺服系统的主要组成部分3.伺服系统的工作原理4.伺服系统的应用领域5.伺服系统的发展趋势正文1.伺服系统的定义与作用伺服系统,又称为随动系统,是一种以机械位置或角度作为控制对象的自动控制系统。

伺服系统主要由控制器、驱动器、伺服电机和反馈装置等组成,其作用是通过对控制对象的位置、速度、加速度等参数进行精确控制,实现对机械运动过程的自动调节。

2.伺服系统的主要组成部分(1)控制器:控制器是伺服系统的核心部分,主要负责接收指令和反馈信号,并对伺服电机进行控制。

常见的控制器有 PID 控制器、模糊控制器等。

(2)驱动器:驱动器是将控制器输出的控制信号转换为伺服电机能够接受的信号,并对电机进行驱动的装置。

(3)伺服电机:伺服电机是驱动器的负载,也是伺服系统的执行元件。

它具有较高的控制精度和响应速度,能够根据控制器发出的信号进行精确的运动。

(4)反馈装置:反馈装置主要用于检测伺服系统的实际输出和期望输出之间的误差,并将误差信号送回控制器,以便控制器对系统进行调整。

常见的反馈装置有光电传感器、霍尔传感器等。

3.伺服系统的工作原理伺服系统在工作过程中,控制器根据设定值和反馈信号计算出控制量,并将控制量作用于驱动器,驱动器再将控制量转换为电机的驱动信号,从而驱动伺服电机按照要求的速度和方向进行运动。

在运动过程中,反馈装置会实时检测伺服系统的输出,并将检测到的误差信号送回控制器。

控制器根据误差信号对系统进行调整,使伺服系统的输出与期望输出保持一致。

4.伺服系统的应用领域伺服系统广泛应用于各种自动化设备和生产线,如数控机床、机器人、自动化装配线等。

在这些设备中,伺服系统通过对机械运动过程的精确控制,能够提高设备的运动精度、运动速度和稳定性,从而提高生产效率和产品质量。

5.伺服系统的发展趋势随着科技的不断进步,伺服系统在以下几个方面呈现出发展趋势:(1)高性能:未来的伺服系统将具有更高的控制精度和响应速度,能够满足更高精度的加工和装配需求。

机电一体化填空题问答题

机电一体化填空题问答题

机电一体化填空题问答题1. 在计算机和外部交换信息中,按数据传输方式可分为:串行通信和并行通信。

2. 微机控制系统中的输入与输出通道一般包括模拟量输入通道模拟量输出通道、数字量输入通道数字量输出通道四种通道。

3. 在伺服系统中,在满足系统工作要求的情况下,首先应保证系统的稳定性和精度并尽量高伺服系统的响应速度。

4. 一般来说,伺服系统的执行元件主要分为电磁式液压式气压式和其它等四大类型。

5. 在SPWM变频调速系统中,通常载波是等腰三角波,而调制波是正弦波6.异步交流电动机变频调速:a)基频(额定频率)以下的恒磁通变频调速,属于恒转矩调速方式。

b)基频(额定频率)以上的弱磁通变频调速,属于恒功率调速方式。

7. 开环步进电动机控制系统,主要由. 环形分配器功率驱动器步进电机等组成。

8. 实现步进电动机通电环形分配的三种常用方法是:1)计算机软件2)硬件分配,3)专用环形分配器9. 根据计算机在控制中的应用方式,把计算机控制系统分为四类:1)操作指导控制系统2)直接控制系统3)监督计算机控制系统4)分级计算机控制系统10.应用于工业控制的计算机主要有:1)单片机 2)PLC,3)总线工控机等类型。

11.干扰传播途径有二种方式,其中传导耦合方式:干扰信号能量以电压或电流的形式,通过金属导体传递。

12. 抑制电磁干扰的常用方法有屏蔽、隔离滤波接地合理布局和软件抗干扰技术。

13. 电场屏蔽----通常用铜、铝等导电性能良好的金属材料作屏蔽体,并应保持良好接地。

14.根据频率特性解释下列滤波器的作用:1)低通滤波器:只让低频成分通过,而高于截止频率成分受到抑制、衰减,不让通过。

2)带通滤波器:只让某一频带内的成分通过,而低于上截止频率成分和高于_下截止频率成分的成分抑制,不让通过。

一、填空(每空2分,共20分)1.机电一体化产品按用途可以划分为和2.控制及信息处理单元一般由控制计算机、和组成。

3.在小功率传动链中,为使总的折算惯量最小,各级传动比分配应遵守原则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ra C eC m
2
Tm
24
(2)在静态特性方程中,如果把角速度ω看作是Ua的函数, 即ω =f/(Ua),则可得:

Ua Ce Ra C eC m
2
Tm

Ua Ce
kT m
25
(五)影响静态特性的因素 1.功放电路对机械特性的影响 由于采用功放电路供电(内阻Ri),因而加在电枢绕组两 端的电压Ua ,并不等于控制电压Uc。
13
(三)步进电动机的主要参数及特性 1.步距误差 是指空载时实测的步距角与理论的步距角之差。它反映了 步进电动机角位移的精度。 国产步进电动机的步距误差一般在±10′~±30′范围内 ,精度较高的步进电动机可达±2′~±5′。 2.最大静转矩 是指步进电动机在某相始终通电而处于静止不动状态时, 所能承受的最大外加转矩,即所能输出的最大电磁转矩。 反映了步进电动机的制动能力和低速步进运行时的负载能 力。 3.启动矩频特性 是指步进电动机在有外加负载转矩时,不失步地正常启动 所能接受的最大阶跃输入脉冲频率(又称启动频率)与负载 转矩的对应关系。
0
Ua C e
2)当ω=0,即启动或堵转时,
Tm Td
Cm Ra
Tm
Td称为启动转矩或堵转转矩,其值也与电枢电压成正比。
23
(1)在静态特性方程中,如果把角速度ω看作是电磁转矩Tm 的函数,即ω =f/(Tm),则可得:

Ua Ce Ra C eC m
2
Tm
0
7
3.气压式 主要有气缸、气马达等,其优点是气源方便、成本低、动 作快,但输出功率小,体积大、工作噪声大,且难于伺服 控制。 二、伺服系统对执行元件的要求 1.惯性小、动力大 2.体积小、质量轻 3.便于计算机控制 4.成本低、可靠性好、便于安装和维修。
8
三、步进电动机 步进电动机又称电脉冲马达,它实质上也是一种数模转换 装置,被广泛应用于开环控制的伺服系统中。 (一)步进电动机的工作原理
18
7.最大相电压和最大相电流 分别是指步进电动机每相绕组所允许施加的最大电源电 压和流过的最大电流。
19
四、直流伺服电动机 直流伺服电动机具有响应迅速、精度和效率高、调速范围 宽、负载能力大、控制特性优良等优点,被广泛应用在闭 环或半闭环控制的伺服系统中。 (一)直流伺服电动机的基 本结构及工作原理 直流伺服电动机 也主要由磁极、 电枢、电刷及换 向片等三部分组 成。
30
电枢回路中的动态电压平衡方程为:
La di a dt I a Ra ea u a
在过渡过程中,直流伺服电动机的动态转矩平衡方程为:
Tm T1 J d dt
31
Tm C m i a
Tm T1 J d dt
ia
T1 Cm
La di a dt

J
d
C m dt
9
转动方向: 如果按A—B—C—A—…连续向各相绕组供电,则步进电 动机将按逆时针方向连续旋转。反之如果按A—C—B— A—…供电,步进电动机将按顺时针方向旋转。如果改变 绕组的通断电频率,则可改变步进电动机的转速。 步距角:每通断电一次,步进电动机转过30°,称为一个 步距角。 (二)步进电动机的通电方式和步距角
j d s ( s ) j s ( s ) ( s ) K mU a ( s )
14
90BF002型步进电动机的启动矩频特性曲线
15
4.启动惯频特性 是指步进电动机带动纯惯性负载启动时,启动频率与转动 惯量之间的关系。
16
5.运行矩频特性 是指步进电动机运行时,输出转矩与输入脉冲频率的关系 。***选用步进电动机时,应使实际应用的运行频率与负 载转矩所对应的运行工作点位于运行矩频特性之下,才能 保证步进电动机不失步地正常运行。***
如果步进电动机绕组的每一次通断电操作称为一拍, 每拍中只有一相绕组通电,其余断电,这种通电方式称为 单相通电方式。三相步进电动机的A、B、C三相轮流通 电一次共需三拍,称为一个通电循环,相应的通电方式又 称为三相单三拍通电方式。
10
如果步进电动机通电循环的每拍中都有两相绕组通电 ,这种通电方式称为双相通电方式。三相步进电动机采用 双相通电方式时,每个通电循环也需三拍,因而又称为三 相双三拍通电方式,即AB—BC—CA—AB—…。 如果步进电动机通电循环的各拍中交替出现单、双相 通电状态,这种通电方式称为单双相轮流通电方式。三相 步进电动机采用单双相轮流通电方式时,每个通电循环中 共有六拍,因而又称为三相六拍通电方式,即A—AB— B—BC—C—CA—A—…。 一般情况下,m相步进电动机可采用单相通电、双相 通电或单双相轮流通电方式工作,对应的通电方式可分别 称为m相单m拍、m相双m拍或m相2m拍通电方式。
6
第二节 伺服系统中的执行元件
一、执行元件的特点及类型 执行元件是位于电气控制装置和机械执行装置接点部位的 种能量转换装置,它能在控制装置的控制下,将输入的各 种形式的能量转换成机械能。 伺服系统中所用到的执行元件主要有下述几类: 1.电气式 主要有步进电动机、直流伺服电动机、交流伺服电动机等 2.液压式 主要有液压缸、液压马达等,其优点是输出功率大、动作 平稳,但需要相应的液压源,占地面积大,容易漏油而污 染环境,控制性能不如伺服电动机。
j d
d
2
dt
2

d
j
dt
K mua
Ra C eC m
2
T1
(2)在空载条件下,即T1=0时,上式还可进一步简化成
j d
d
2
dt
2

d
j
dt
K mua
33
j d
d
2
Байду номын сангаас
dt
2

d
j
dt
K mua
对上式进行拉氏变换得:
I a Ra ea u a
JL a d
2
C m dt
j
2

JR a d C m dt
La Ra
Ce
1 Ce
La
dT 1
C m dt

Ra Cm
T1 u a
JR a C eC m
2
, d
,Km
j d
d
2
dt
2

d
j
21
(四)直流伺服电动机的静态特性 指电动机在稳态情况下工作时,其转子转速、电磁力矩和 电枢控制电压三者之间的关系。
E a U a I a Ra Ea Ce Tm C m I a

Ua Ce Ra C eC m
2
Tm
22
根据静态特性方程,可得出直流伺服电动机的两种特殊运 行状态: 1)当Tm=0,即空载时,
4
(二)精度 伺服系统的精度是指其输出量复现输入指令信号的精确程 度。 伺服系统工作过程中通常存在着三种误差,即动态误差、 稳态误差和静态误差。 稳定的伺服系统对变化的输入信号的动态响应过程往 往是一个振荡衰减的过程,在动态响应过程中输出量与输 入量之间的偏差称为系统的动态误差。 在动态响应过程结束后,即在振荡完全衰减掉之后, 输出量对输入量的偏差可能会继续存在,这个偏差称为系 统的稳态误差。 由系统组成元件本身的误差及干扰信号所引起的系统 输出量对输入量的偏差,这个偏差称为系统的静态误差。
20
(二)直流伺服电动机的类型及特点 1.直流伺服电动机按定子磁场产生方式可分为永磁式和他 励式两类,它们的性能相近。 2.直流伺服电动机按电枢的结构与形状可分成平滑电枢型 、空心电枢型和有槽电枢型等。 3.直流伺服电动机还可按转子转动惯量的大小而分成大惯 量、中惯量和小惯量直流伺服电动机。 (三)直流伺服电动机的控制方式 直流伺服电动机的控制方式主要有两种: 一种是电枢电压控制,即在定子磁场不变的情况下,通过 控制施加在电枢绕组两端的电压信号来控制电动机的转速 和输出转矩; 另一种是励磁磁场控制,即通过改变励磁电流的大小来改 变定子磁场强度,从而控制电动机的转速和输出转矩。
dt
K mua
Ra C eC m
2
T1
La C eC m
dT 1
2 32
dt
j d
d
2
dt
2

d
j
dt
K mua
Ra C eC m
2
T1
La C eC m
2
dT 1 dt
式中, j 和 d 分别称为直流伺服电动机的机电时间常 数和电磁时间常数,反映两种过渡过程时间长短的参数; Km称为直流伺服电动机的静态放大系数 (1)当直流伺服电动机带有恒定负载时,则dT1/dt=0,于 是上式可简化成:
2.伺服系统还可被 看作是由电气控制 装置和机械执行装 置两大部分组成.
2
三、伺服系统的基本类型 1.按被控量的不同可将伺服系统分成位置、速度、力等伺 服系统,其中最常见的是位置伺服系统,如数控机床的伺 服进给系统等。 2.按所采用的执行元件的不同可将伺服系统分成电气、液 压、气动等伺服系统。电气伺服系统采用伺服电动机作为 执行元件,在机电一体化产品中应用比较广泛。 3.按控制方式的不同可将伺服系统分成开环、闭环、半闭 环等伺服系统。
11
步进电动机的矩频特性:步进电动机输出转矩与输入脉冲 频率的关系。
12
所谓步距角,是指步进电动机每一拍转过的角度。一个m 相步进电动机,如其转子上有z个齿,则其步距角α可通过 下式计算: 0 360 kmz 式中,k是通电方式系数, (1)当采用单相或双相通电方式时,k=1, (2)当采用单双相轮流通电方式时,k=2。
相关文档
最新文档