2013年新版北师大七年级下册第二章平行线与相交线导学案

合集下载

北师大版数学七年级下册2.2《探索直线平行的条件》(第2课时)教案

北师大版数学七年级下册2.2《探索直线平行的条件》(第2课时)教案

第二章平行线与相交线2探索直线平行的条件(第2课时)山东省济南第二十七中学褚爱华课时安排说明:本节“探索直线平行的条件”共分两课时完成,第一课时探索得出判别直线平行的条件一,并初步认识“三线八角”中的同位角,第二课时在进一步认识“三线八角”中的内错角和同旁内角的同时,探索得出判别直线平行的条件二、三。

本单元教学设计时将遵循教科书编写思路,在探索直线平行条件的过程中自然引入“三线八角”,使该知识的学习成为解决问题的需要,而不是孤立地处理这些内容。

一、学生起点分析:学生的知识技能基础:在第一课时的学习中学生已经初步经历了探索直线平行条件的过程,并得到了“同位角相等,两直线平行”的结论,初步具有了利用角的大小关系来判断直线位置关系的意识,认识了三线八角的基本图形,为本节课的继续探究打下基础,因此本课的设计应充分利用学生已有的认知基础,使其成为上节课探究的延续,较好的完成本单元的学习。

学生的活动经验基础:在第一课时的学习中,为学生提供了大量生动有趣的现实情境,通过观察、画图、操作、折纸等活动,认识到了探索直线平行的必要性及基本方法,获得了初步的数学活动经验和体验。

同时在活动中也培养了学生良好的情感态度,具备了一定的主动参与、合作意识和初步的观察、分析、抽象概括的能力。

二、教学任务分析:在第一课时已经得到同位角相等,两直线平行的基础上,本课时主要教学任务是认识内错角、同旁内角,并探索出利用内错角和同旁内角的大小关系来判断两直线平行的有关结论。

由于学生对于三线八角的认识还不够深入,对内错角、同旁内角的识别比同位角要略为复杂一些,所以本节课的难点之一就是让学生认识两种角,并能在不同的图形中正确识别。

另外,在第一课时中,对于同位角相等,两直线平行的结论只要求学生能正确应用即可,对说理要求不高,但是在本节课中就要有目的的引导学生从直观和推理两方面来探索,既要结合实际图形发现规律,又要尽可能的引导学生采用推理的形式加以说明,把内错角相等、同旁内角互补转化为同位角相等来得出结论,因此本节课的教学目标是:1.会识别由“三线八角”构成的内错角合同旁内角。

北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(全章知识梳理与考点分类讲解)【知识点一】平行线的判定方法11.方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称为:同位角相等,两直线平行.2.表达方式:因为∠1=∠2,(已知)所以a//b(同位角相等,两直线平行)特别提醒:“同位角相等,两直线平行”是通过两个同位角的大小关系(相等)推导出两直线的位置关系(平行).它是构建起角的大小关系与直线的位置关系的桥梁.【知识点二】平行线的画法过直线外一点画已知的直线平行线的步骤一落:把三角尺的一边落在一直的直线上;二靠:紧靠三角尺的另一边放一直尺;三移:把三角尺沿着直尺移动使其经过已知点;四画:沿三角尺的一边画直线.此直线即为已知直线的平行线.特别提醒:1.经过直线上一点不可以作已知直线的平行线.2.画线段或射线的平行线是画它们所在直线的平行线.3.移动是要始终保持紧靠.【知识点三】平行线的性质及其推论1.平行线的性质:过直线外一点有且只有一条直线与这条直线平行.2.表达方式:如果a//b,b//c,那么a//b.特别提醒:平行线的性质的前提是“过直线外一点”,若点在直线上,则不可能有平行线.【考点目录】【平行线性质求角的等量关系】【考点1】同位角相等两直线平行;【考点2】内错角相等两直线平行;【考点3】同旁内角互补两直线平行;【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度;【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度;【考点6】平行线判定与性质证明;【平行线间的距离】【考点7】平行线间的距离(应用).【平行线性质求角的等量关系】【考点1】同位角相等两直线平行【答案】相等;理由见分析【分析】根据平行投影可得∠B=∠E,再根据垂直可得∠C=∠F=90°,然后利用“角边角”证明△ABC 和△DEF全等,根据全等三角形对应边相等即可得证.解:两根旗杆的高度相等.理由如下:∵太阳光线AB与DE是平行,∴∠B=∠E,∵两根旗杆都垂直于地面放置,∴∠C=∠F=90°,∵两根旗杆在太阳光下的影子一样长,∴BC =EF ,∵在△ABC 和△DEF 中B E BC EF C F ∠∠⎧⎪⎨⎪∠∠⎩===∴△ABC ≌△DEF (ASA ),∴AC =DF ,即两根旗杆的高度相等.【点拨】本题考查了全等三角形的应用,根据题意找出三角形全等的条件,然后证明两三角形全等是解题的关键.【变式1】(2023·黑龙江齐齐哈尔·统考中考真题)如图,把一块三角板的30︒角顶点A 放在直尺的一边BC 上,若1:23:7∠∠=,则2∠=()A .126︒B .118︒C .105︒D .94︒【答案】C 【分析】根据平行线的性质和平角的定义即可得到结论.解:如图,由题意知:DE BC ∥,∴31∠=∠,∵1:23:7∠∠=,∴3:23:7∠∠=,∴3327∠=∠,∵2330180∠+∠+︒=︒,∴322301807∠+∠+︒=︒,∴2105∠=︒.故选:C .【点拨】本题考查的是平行线的性质和平角的定义.熟练掌握两直线平行,同位角相等是解题的关键.【变式2】(2022·甘肃嘉峪关·校考一模)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为.【答案】60°/60度【分析】由a∥b,根据两直线平行,同位角相等,即可求得∠3=∠1=60°,又由对顶角相等,即可求得答案.解:∵a∥b,∴∠3=∠1=60°,∴∠2=∠3=60°.故答案为:60°.【点拨】此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.【考点2】内错角相等两直线平行【例2】(2014下·贵州铜仁·七年级统考期末)已知:如图,点D、E分别在AB、BC上,DE AC∥,165∠=︒,265∠=︒,请说明:F CBF ∠=∠.(不必注明依据)【答案】证明见分析【分析】根据平行线的性质得出165C ∠=∠=︒,得出2C ∠=∠,根据平行线的判定得出AF BC ∥,再根据平行线的性质即可得证.解:∵DE AC ∥,165∠=︒,265∠=︒,∴165C ∠=∠=︒,∴2C ∠=∠,∴AF BC ∥,∴F CBF ∠=∠.【点拨】本题考查平行线的判定和性质,能灵活运用平行线的性质和判定定理进行推理是解题的关键.【变式1】(2023·吉林白城·校联考三模)已知,如图,AB ∥CD ,∠A=70°,∠B=40°,则∠ACD=()A .55°B .70°C .40°D .110°【答案】B解:AB CD ∥.A ACD ∴∠=∠70.A ∠=︒ 70.ACD ∠=︒故选B.【点拨】两直线平行,内错角相等.【变式2】(2023·辽宁阜新·统考中考真题)如图,直线a b ,直线l 与直线a 相交于点P ,直线l 与直线b 相交于点Q ,PM l ⊥于点P ,若155∠=︒,则2∠=.︒【答案】35【分析】本题主要考查平行线性质以及垂线的性质.根据平行线性质得3155∠=∠=︒,利用垂线性质即可求得2∠.解:直线a b ,3155∴∠=∠=︒,又PM l ⊥ 于点P ,90MPQ ∴∠=︒,2903905535∴∠=︒-∠=︒-︒=︒.故答案为:35.【考点3】同旁内角互补两直线平行【例3】(2023下·山东烟台·六年级统考期末)如图,ABD ∠和BDC ∠的角平分线交于点E ,BE 交CD 于点F ,1290∠+∠=︒.(1)试说明://AB CD .(2)若228∠=︒,求3∠的度数.【答案】(1)见分析;(2)62︒【分析】(1)根据角平分线的定义,结合1290∠+∠=︒,可得180ABD BDC ∠+∠︒=,进而即可得到结论;(2)由228∠=︒,得162∠=︒,进而得62ABF ∠=︒,结合//AB CD ,即可得到答案.解:(1)∵ABD ∠和BDC ∠的角平分线交于点E ,∴21ABD ∠∠=,22BDC ∠∠=,又∵1290∠+∠=︒,∴2(12)180ABD BDC ∠+∠∠+∠=︒=,∴//AB CD ;(2)∵228∠=︒,1290∠+∠=︒,∴162∠=︒,又∵BF 平分ABD ∠,∴162ABF ∠=∠=︒,又∵//AB CD ,∴362ABF ∠=∠=︒.【点拨】本题主要考查角平分线的定义,平行线的判定和性质定理,掌握“同旁内角互补,两直线平行”,“两直线平行,内错角相等”,是解题的关键.【变式1】(2012下·广东茂名·七年级统考期中)两条平行线被第三条直线所截,一对同旁内角的比为4:5,则这两个角中较小的角的度数为()A .20︒B .80︒C .100︒D .120︒【答案】B【分析】根据比例设两个角为4x 、5x ,再根据两直线平行,同旁内角互补列式求解即可.解:设两个角分别为4x 、5x ,∵这两个角是两平行线被截所得到的同旁内角,∴45180x x +=︒,解得20x =︒,480x =︒,5100x =︒,所以较小的角的度数等于80︒.故选:B .【点拨】本题考查了平行线的性质,主要利用了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.【变式2】(2023下·辽宁大连·七年级统考期末)如图,AB ∥CD ,射线AE 交CD 于点F ,若∠1=116°,则∠2的度数等于.【答案】64°【分析】根据两直线平行,同旁内角互补可求出∠AFD 的度数,然后根据对顶角相等求出∠2的度数.解:∵AB ∥CD ,∴∠1+∠AFD =180°.∵∠1=116°,∴∠AFD =64°.∵∠2和∠AFD 是对顶角,∴∠2=∠AFD =64°.故答案为64°.【点拨】本题考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度【例4】(2017下·北京东城·七年级统考期中)已知:直线AB CD ,点M 、N 分别在直线AB 、直线CD 上,点E 为平面内一点,(1)如图1,请写出AME ∠,E ∠,ENC ∠之间的数量关系,并给出证明;(2)如图2,利用(1)的结论解决问题,若30AME ∠=︒,EF 平分MEN ∠,NP 平分ENC ∠,EQ NP ∥,求FEQ ∠的度数;(3)如图3,点G 为CD 上一点,AMN m EMN ∠=∠,GEK m GEM ∠=∠,EH MN 交AB 于点H ,GEK ∠,BMN ∠,GEH ∠之间的数量关系(用含m 的式子表示)是.【答案】(1)MEN AME ENC ∠=∠+∠,证明见分析;(2)15︒;(3)180GEK BMN m GEH ∠+∠-∠=︒.【分析】(1)过点E 作EE AB ' ,根据平行线的性质进行证明即可;(2)利用EF 平分MEN ∠,NP 平分ENC ∠,可得11,22NEF MEN ENP ENC ∠=∠∠=∠,再根据MEN AME ENC ∠=∠+∠,进行等量代换进行计算即可;(3)由已知条件可得11,22NEF MEN ENP ENC ∠=∠∠=∠,1EMN HEM AMN m∠=∠=∠,再根据平行线的性质进行各角的等量转换即可.解:(1)MEN AME ∠=∠+∠,证明如下:如图1所示,过点E 作EE AB ' ,∵AB CD ,∴AB CD EE 'P P ,∴1,2AME ENC ∠=∠∠=∠,∵12MEN ∠=∠+∠,∴MEN AME ENC ∠=∠+∠.(2)∵EF 平分MEN ∠,NP 平分ENC ∠,∴11,22NEF MEN ENP ENC ∠=∠∠=∠.∵EQ NP ∥,30AME ∠=︒,∴12QEN ENP ENC ∠=∠=∠.∵MEN AME ENC ∠=∠+∠,∴30MEN ENC AME ∠-∠=∠=︒,∴111130152222FEQ FEN QEN MEN ENC AME ∠=∠-∠=∠-∠=∠=⨯︒=︒.(3)180GEK BMN m GEH ∠+∠-∠=︒.证明如下:∵AMN m EMN ∠=∠,GEK m GEM ∠=∠,∴1EMN AMN m ∠=∠,1GEM GEK m∠=∠.∵EH MN ,∴1EMN HEM AMN m∠=∠=∠,∵11GEH GEM HEM GEK AMN m m ∠=∠-∠=∠-∠,∴m GEH GEK AMN ∠=∠-∠,∵180AMN BMN ∠=︒-∠,∴()180m GEH GEK BMN ∠=∠-︒-∠,180GEK BMN m GEH ∠+∠-∠=︒.故答案为:180GEK BMN m GEH ∠+∠-∠=︒.【点拨】本题考查了平行线的判定和性质,角的平分线,熟练掌握平行线的判定和性质是解题的关键.【变式1】(2022下·贵州黔南·七年级统考期中)如图,在五边形ABCDE 中,AE BC ∥,则C D E ∠+∠+∠=()A .540︒B .360︒C .270︒D .180︒【答案】B 【分析】首先过点D 作DF AE ∥,交AB 于点F ,由AE BC ∥,可证得AE DF BC ∥∥,然后由两直线平行,同旁内角互补可知180E EDF Ð+Ð=°,180CDF C Ð+Ð=°,继而证得结论.解:过点D 作DF AE ∥,交AB 于点F ,AE BC ∥,AE DF BC ∴∥∥,180E EDF ∴∠+∠=︒,180CDF C Ð+Ð=°,360C CDE E \Ð+Ð+Ð=°.故选:B .【点拨】此题考查了平行线的性质,注意掌握辅助线的作法,注意数形结合思想的应用.【变式2】(2023下·广东江门·七年级统考期末)如图,AB ∥CD ,∠ABF =23∠ABE ,∠CDF =23∠CDE ,则∠E :∠F 等于【答案】3:2解:如图,过点E、F分别作EG∥AB、FH∥AB,又因AB∥CD,根据平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;∵∠ABF=23∠ABE,∠CDF=23∠CDE,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=23(∠ABE+∠CDE)=23∠BED,∴∠BED:∠BFD=3:2.故答案为:3:2.【点拨】本题主要考查了平行线的性质,解决这类题目要常作的辅助线(平行线),充分运用平行线的性质探求角之间的关系是解题的关键.【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度【例5】(2023上·广东潮州·八年级校考阶段练习)如图,A B、两处是灯塔,船只在C处,B处在A 处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求船只与两灯塔的视角ACB的度数.【答案】85°【分析】根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°,然后根据平行线的性质与三角形内角和定理即可求解.解:如图,根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°.∵∠BAE=45°,∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°.∵AE ,DB 是正南正北方向,∴BD ∥AE ,∵∠DBA=∠BAE=45°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-60°-35°=85°.题的关键.【变式1】(2023下·甘肃白银·八年级统考期末)如图所示,已知AB EF ∥,那么BAC ACE CEF ∠+∠+∠=()A .180°B .270°C .360°D .540°【答案】C 【分析】先根据平行线的性质得出180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒,,进而可得出结论.解:过点C 作CD EF ∥,∥Q AB EF ,AB CD EF \∥∥,∴180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒①,②,由①②+得,360BAC ACD DCE CEF ∠+∠+∠+∠=︒,即360BAC ACE CEF Ð+Ð+Ð=°.故选:C .【点拨】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.【变式2】(四川省成都市金牛区2020-2021学年七年级下学期期末数学试题)一副直角三角板如图放在直线m 、n 之间,且//m n ,则图中1∠=度.【答案】15【分析】如图,过点A 作AC ∥m ,则有////AC m n ,然后可得,45BAC CAD CAD ADE ∠=∠∠=∠=︒,进而问题可求解.解:如图所示,过点A 作AC ∥m ,∵//m n ,∴////AC m n ,∴1,45BAC CAD ADE ∠=∠∠=∠=︒,∵60BAC CAD ∠+∠=︒,∴115BAD CAD ∠=∠-∠=︒;故答案为15.【点拨】本题主要考查平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.【考点6】平行线判定与性质证明【例6】(2023下·七年级课时练习)如图,BD 平分ABC ∠,ED BC ∥,130∠=︒,4120∠=︒.(1)求2∠,3∠的度数;(2)证明:DF AB .【答案】(1)230∠=︒,360∠=︒;(2)见详解【分析】(1)根据BD 平分ABC ∠,112ABD ABC ∠=∠=∠,即有130ABD ∠=∠=︒,60ABC ∠=︒,再结合ED BC ∥,即可求解;(2)由60ABC ∠=︒,4120∠=︒可得ABC ∠4=180+∠︒,则DF AB ,问题得解.解:(1)∵BD 平分ABC ∠,130∠=︒,∴112ABD ABC ∠=∠=∠,∴130ABD ∠=∠=︒,60ABC ∠=︒,∵ED BC ∥,∴2130∠=∠=︒,360ABC ∠=∠=︒,即:230∠=︒,360∠=︒;(2)∵60ABC ∠=︒,4120∠=︒,∴ABC ∠4=180+∠︒,∴DF AB .【点拨】本题主要考查了角平分线的定义,平行线的判定与性质等知识,掌握两直线平行同位角相等;两直线平行同位角相等;两直线平行,同旁内角互补是解答本题的关键.【变式1】(2020上·河南洛阳·七年级统考期末)如图,若12∠=∠,DE BC ∥,则下列结论:①FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠.其中,正确结论的个数为()A .2个B .3个C .4个D .5个【答案】B 【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出2DCB =∠∠,得出FG DC ,①正确;由平行线的性质得出⑤正确;即可得出结果.解:DE BC ∥,1DCB ∴∠=∠,AED ACB ∠=∠,故②正确;12∠=∠ ,2DCB ∴∠=∠,FG DC ∴∥,故①正确;BFG BDC ∴∠=∠,故⑤正确;而CD 不一定平分ACB ∠,1B ∠+∠不一定等于90︒,故③,④错误;故选:B .【点拨】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.【变式2】(2021下·江苏盐城·七年级统考期中)如图a b ,c 与a 相交,d 与b 相交,下列说法:①若12∠=∠,则3=4∠∠;②若14180∠+∠=︒,则c d ∥;③4231∠-∠=∠-∠;④1234360∠+∠+∠+∠=︒正确的有(填序号)【答案】①②③【分析】根据平行线的性质和判定逐一进行判断即可.解:如图,①若∠1=∠2,则b ∥e ,则∠3=∠4,故原说法正确;②若∠1+∠4=180°,则c ∥d ;故原说法正确;③由a ∥b 得到∠1=∠6,∠5+∠4=180°,由∠2+∠3+∠5+180°-∠6=360°得,∠2+∠3+180°-∠4+180°-∠1=360°,则∠4-∠2=∠3-∠1,故原说法正确;④由③得,只有∠1+∠4=∠2+∠3=180°时,∠1+∠2+∠3+∠4=360°.故原说法错误.正确的有①②③,故答案为:①②③.【点拨】本题考查了平行线的判定与性质,熟练掌握平行线的性质与判定是解题的关键.【平行线间的距离】【考点7】平行线间的距离(应用)【例7】(2022下·贵州遵义·七年级校考阶段练习)如图,直线a b ∥,AB 与a ,b 分别交于点A ,B ,且AC AB ⊥,AC 交直线b 于点C .(1)若160∠= ,求2∠的度数;(2)若6,8AC AB ==,10BC =,求直线a 与b 的距离.【答案】(1)30︒;(2)245【分析】(1)由直线a b ∥,根据平行线的性质得出3160∠=∠=︒,再由AC AB ⊥,根据垂直的定义即可得到结果;(2)过A 作AD BC ⊥于D ,根据1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ,即可求解.解:(1)∵a b∥∴3160∠=∠=︒又∵AC AB⊥∴290330∠=︒-∠=︒(2)如图,过A 作AD BC ⊥于D ,则AD 的长即为直线a 与b 的距离∵6,8AC AB ==,10BC =,ABC 是直角三角形∵1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ∴8624105AB AC AD BC ⨯⨯===∴直线a 与b 的距离245【点拨】本题考查了平行线的性质及三角形的面积,解题的关键是掌握:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.【变式1】(2021下·安徽合肥·八年级统考期末)如图,123////l l l ,且相邻两条直线间的距离都是2,A ,B ,C 分别为1l ,2l ,3l 上的动点,连接AB 、AC 、BC ,AC 与2l 交于点D ,90ABC ∠=︒,则BD 的最小值为()A.2B.3C.4D.5【答案】A【分析】求BD的最小值可以转化为求点B到直线AC的距离,当BD⊥AC时,BD有最小值,根据题意求解即可.解:由题意可知当BD⊥AC时,BD有最小值,此时,AD=CD,∠ABC=90°,∴BD=AD=BD=12AC=2,∴BD的最小值为2.故选:A.【点拨】本题考查平行线的性质,需结合图形,根据平行线的性质推出相关角的关系从而进行求解.【变式2】(2019下·上海金山·七年级统考期中)已知直线a∥b∥c,a与b的距离是5cm,b与c的距离是3cm,则a与c的距离是.【答案】8cm或2cm【分析】直线c的位置不确定,可分情况讨论.(1)直线c在直线b的上方,直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,直线a和直线c之间的距离为5cm-3cm=2cm.解:(1)直线c在直线b1:直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,如图2:直线a和直线c之间的距离为5cm-3cm=2cm;所以a与c的距离是8cm或2cm,故答案为8cm或2cm.【点拨】此题考查两线间的距离,本题需注意直线c的位置不确定,需分情况讨论.。

北师大版七年级数学下册第二章相交线与平行线暑假培训讲义集体备课教案:平行线、平行线的构造(含答案)

北师大版七年级数学下册第二章相交线与平行线暑假培训讲义集体备课教案:平行线、平行线的构造(含答案)

四川省渠县崇德实验学校北师大版七年级数学下册第二章相交线与平行线暑假培训讲义集体备课教案(授课内容:平行线、平行线的构造)知识梳理 一、平行线1.平行线:在同一平面内,永不相交的两条直线称为平行线.用“//”表示. 2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 【例】如图1,过直线a 外一点A 作b//a ,c//a ,则b 与c 重合.3.平行公理推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 简记为:平行于同一条直线的两条直线平行. 【例】如图2,若b//a ,c//a ,则b//c .图1 图2 图34.平行线的性质(1)两直线平行,同位角相等.如图3,若a//b ,则Ð1=Ð2. (2)两直线平行,内错角相等.如图3,若a//b ,则Ð2=Ð3. (3)两直线平行,同旁内角互补.如图3,若a//b ,则Ð3+Ð4=180°. 5.平行线的判定(1)同位角相等,两直线平行.如图3,若Ð1=Ð2,则a//b . (2)内错角相等,两直线平行.如图3,若Ð2=Ð3,则a//b . (3)同旁内角互补,两直线平行.如图3,若Ð3+Ð4=180°,则a//b . 二、平行的构造1.如图4,若a//b ,则Ð1=Ð2+Ð3 2.如图5,若a//b ,则Ð1+Ð2+Ð3=360°(c )b aAcba b a4321a b` 213`a b213图4 图5例题讲解 一、平行线下列说法中:下列说法中:①如果两条直线都和第三条直线平行,那么这两条直线也互相平行;①如果两条直线都和第三条直线平行,那么这两条直线也互相平行; ②过直线外一点,有且只有一条直线和这条直线相交;②过直线外一点,有且只有一条直线和这条直线相交; ③如果同一平面内的两条直线不相交,那么它们互相平行;③如果同一平面内的两条直线不相交,那么它们互相平行; ④过直线外一点,有且只有一条直线与已知直线平行.④过直线外一点,有且只有一条直线与已知直线平行. 正确的是__________.【解析】①③④.【提示】这道题主要考查平行线的概念和平行公理.(1)如图2-1,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若125Ð=°,则2Ð的度数是(的度数是( ) A .155° B .135° C .125° D .115°(2)如图2-2,已知AB//CD ,EF 分别交AB 、CD 于M 、N ,EMB Ð=50°,MG 平分BM BMF F Ð,交CD 于G ,MGN Ð的度数为__________.FE AMBC N G D12图2-1 图2-2(3)证明:三角形三个内角的和等于180°.【解析】(1)D ;(2)65°;(3)证法1:如右图,过△ABC 的顶点A 作直线l//BC . 则B Ð1=Ð,C Ð2=Ð(两直线平行,内错角相等). 又因为BAC Ð1+Ð+Ð2=180°.(平角的定义) 所以B BAC C Ð+Ð+Ð=180°(等量代换). 即三角形三个内角的和等于180°. 证法2:如右图,延长BC ,过C 作CE//AB , 则A Ð1=Ð(两直线平行,内错角相等),B Ð2=Ð(两直线平行,同位角相等).又∵BCA Ð+Ð1+Ð2=180°, ∴BCA A B Ð+Ð+Ð=180°, 即三角形三个内角的和等于180°.【提示】这道题主要考查平行线的性质,(3)题证明方法老师可以自行补充,这个结论和平行公理是等价的.平行公理是等价的.另外,另外,这种证明题需要学生先转化成常规的已知和求证,这种证明题需要学生先转化成常规的已知和求证,然后然后再证明,重点强调格式.(1)根据图在()根据图在( )内填注理由:)内填注理由: ①∵B CEF Ð=Ð(已知),(已知),∴AB//CD ( );); ②∵B BED Ð=Ð(已知),(已知),∴AB//CD ( );); ③∵B CEB Ð+Ð=180°(已知),(已知),l21CB A 21DCEBAA CDBFE∴AB//CD ( ).).(2)已知:如图所示,ABC ADC Ð=Ð,BF 和DE 分别平分ABC Ð和ADC Ð,AED EDC Ð=Ð.求证:ED//BF .证明:∵BF 和DE 分别平分ABC Ð和ADC Ð(已知)(已知)∴EDC Ð=__________ADC Ð,FBA Ð=__________ABC Ð( ), 又∵ADC ABC Ð=Ð(已知),(已知), ∴Ð__________FBA =Ð(等量代换).(等量代换). 又∵AED EDC Ð=Ð(已知),(已知),∴Ð__________=Ð__________(等量代换),(等量代换), ∴ED//BF ( ).).【解析】(1)①同位角相等,两直线平行;②内错角相等,两直线平行; ③同旁内角互补,两直线平行. (2)12;12;角平分线定义;EDC ;AED ;FBA ;同位角相等,两直线平行. 【提示】这道题主要考查平行的判定,这道题主要考查平行的判定,也通过这道题规范孩子们的书写过程,也通过这道题规范孩子们的书写过程,也通过这道题规范孩子们的书写过程,这种题型也是这种题型也是各学校的必考题型.如图,已知EF BC ^,C Ð1=Ð,Ð2+Ð3=180°.证明:AD BC ^.【解析】C Ð1=ÐQ ,(已知)\GD//AC ,(同位角相等,两直线平行) \CAD Ð=Ð2.(两直线平行,内错角相等)A CD BF EABCDEFG123又Ð2+Ð3=180°Q ,(已知)\CAD Ð3+=Ð180°.(等量代换)\AD//EF ,(同旁内角互补,两直线平行) \ADC EFC Ð=Ð.(两直线平行,同位角相等)EF BC ^Q ,(已知) ADC \Ð=90°,\AD BC ^.【提示】平行的性质和判定结合,时间可以留长点.请你分析下面的题目,从中总结规律,填写在空格上,并选择一道题目具体书写证明. (1)如图5-1,已知:AB//CD ,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AME Ð,CNE Ð.求证:MG//NH .从本题我能得到的结论是:_____________.(2)如图5-2,已知:AB//CD ,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分BMF Ð,CNE Ð.求证:MG//NH .从本题我能得到的结论是:_____________.(3)如图5-3,已知:AB//CD ,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AMF Ð,CNE Ð,相交于点O .求证:MG NH ^.从本题我能得到的结论是:_____________________.图5-1 图5-2 图5-3【解析】(1)两直线平行,同位角的角平分线平行.A CG EB M H NDFOACGEB MHNDF A CG EBMHNDF(2)证明:∵AB//CD ,∴BMF CNE Ð=Ð,又∵MG ,NH 分别平分BMF Ð,CNE Ð,∴GMF BMFCNE HNM 11Ð=Ð=Ð=Ð22,∴MG//NH , 从本题我能得到的结论是:两直线平行,内错角的角平分线平行. (3)证明:∵AB//CD ,∴AMF CNE Ð+Ð=180°,又∵MG ,NH 分别平分AMF Ð,CNE Ð, ∴GMF HNE AMF CNE 11Ð+Ð=Ð+Ð=90°22,∴MON GMF HNE Ð=180°-Ð-Ð=90°,∴MG NH ^.从本题我能得到的结论是:两直线平行,同旁内角的角平分线垂直.【提示】平行线的性质和判定相结合,练习平行线倒角.二、平行线的构造(1)如图6-1,已知直线a//b ,Ð1=40°,Ð2=60°,则Ð3等于_________.(2)如图6-2,l 1//l 2,Ð1=120°,=Ð2100°,则Ð3=_________.(3)如图6-3,AB//CD ,ABE Ð=120°,ECD Ð=25°,则E Ð=_________.图6-1 图6-2 图6-3【解析】(1)100°;(2)40°;(3)85°.321b aED CBAl 1l 2321【提示】练习基础的平行线倒角模型:铅笔模型和猪蹄模型.(1)如图7-1,AB//CD ,BAFEAF 1Ð=Ð3,FCD ECF 1Ð=Ð3,AEC Ð=128°,则AFC Ð的度数为________.(2)如图7-2,已知:AB//CD ,ABP Ð和CDP Ð的平分线相交于点E ,ABE Ð和CDE Ð的平分线相交于点F ,BFD Ð=54°,则BPD Ð=________,BED Ð=________.图7-1 图7-2【解析】(1)58°;(2)144°;108°. 【提示】铅笔模型和猪蹄模型综合.(1)如图8-1,AB//CD ,A Ð=32°,C Ð=70°,则F Ð=________.(2)如图8-2,AB//CD ,E Ð=37°,C Ð=20°,则EAB Ð的度数为________.图8-1 图8-2【解析】(1)38°;(2)57°. 【提示】铅笔模型和猪蹄模型的变形.EF A BPCDFD CBEAED CBA如图,直线AC//BD ,连结AB ,直线AC 、BD 及线段AB 把平面分成①、②、③、④四个部分,规定线上各点不属于任何部分,规定线上各点不属于任何部分,当动点当动点P 落在某个部分时,落在某个部分时,连结连结P A 、PB ,构成PAC Ð,APB Ð,PBD Ð三个角。

北师大版初一(下)数学第二章相交线与平行线教案:相交线与平行线讲义(含解析)

北师大版初一(下)数学第二章相交线与平行线教案:相交线与平行线讲义(含解析)

北师大版初一(下)数学第二章相交线与平行线教案:相交线与平行线讲义(含解析)把握对顶角和邻补角的概念;把握垂线段的定义及其画法;3.把握三线八角的定义和找法;4.把握平行线的性质与判定.相交线在同一平面内,两条直线的位置关系有_________和________。

(2)相交:在同一平面内,有__________的两条直线称为相交线。

(3)邻补角:①定义:有公共顶点,且有一条公共边,另一条边互为反向延长线,具有这种位置关系的两个角,互为邻补角。

②性质:位置——互为邻角数量——互为补角(两角之和为180°)(4)对顶角:①定义:有一个公共顶点,同时有一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角②性质:对顶角相等几何语言:∵∠1+∠2=180°∠2+∠3=180°∴∠1=∠3(同角的补角相等)两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角是成对显现的,对顶角是具有专门位置关系的两个角;⑵假如∠α与∠β是对顶角,那么一定有∠α=∠β;反之假如∠α=∠β,那么∠α与∠β不一定是对顶角⑶假如∠α与∠β互为邻补角,则一定有_____________;反之假如∠α+∠β=180°,则∠α与∠β不一定是邻补角。

(4)两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

2.垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做_______。

符号语言记作:如图所示:AB⊥CD,垂足为O垂线性质1:过一点_______________一条直线与已知直线垂直。

垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:_______________。

3.垂线的画法:(1)过直线上一点画已知直线的垂线;(2)过直线外一点画已知直线的垂线。

北师大版七年级数学下册《二章 相交线与平行线 1 两条直线的位置关系 对顶角、余角和补角》公开课教案_11

北师大版七年级数学下册《二章 相交线与平行线  1 两条直线的位置关系  对顶角、余角和补角》公开课教案_11

北师大版义务教育课程标准实验教科书七年级下册2.1.1两直线的位置关系第1课时教学设计一、教材分析1、地位作用:本节课研究的相交线是平面内两条直线的两种位置关系中的其中一种情形,学生已经学习了直线、射线、线段和角的有关知识,因此,本节课是在学生已有知识和经验的基础上,来进一步研究平面内两条直线相交的情形。

在本节课中首先探究了两直线相交所成的角的位置和大小关系,给出了邻补角和对顶角的概念,得出了“对顶角相等”的结论;为接下来研究两条直线被第三条直线所截的情形,即同位角、内错角、同旁内角等概念的学习作了最基本的准备。

同时是后续学习垂直的基础。

2、目标和目标解析:1.理解邻补角和对顶角的概念;2.掌握“对顶角相等”的性质;3.理解对顶角相等的说理过程;4.经历质疑,猜想,归纳等数学活动,培养学生的观察,转化,说理能力和数学语言规范表达能力;5.通过师友互助、小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣。

3、教学重、难点教学重点:邻补角、对顶角的概念,对顶角的性质与应用。

教学难点:对顶角相等的性质的探索。

突破难点的方法:通过相关旧知的复习,按照猜想、推理的思维过程进行突破。

二、教学准备:多媒体课件、导学案、剪刀,纸。

三、教学过程教学内容师生活动设计意图一、创设情景,引入新知问题:在我们的生活的世界中,蕴涵着大量的相交线和平行线,大家对它们也不陌生,(播放图片)请找出图片中的相交线、平行线。

由此引入本节的主要内容。

(板书)课题学生观察图片,获得感性认识.让学生知道,相交线、平行线的概念是从实物中抽象出来的,通过学生熟悉的事物,激发学生的学习兴趣。

二、小组合作,探究新知1. 观察剪刀剪布的过程,引入两条相交直线所成的角问题1:张开地剪刀给人以什么形象?(出示一把张开的剪刀),张开的剪刀可看作两条相交直线。

(教师可以同时在黑板上画出几何图形)在用剪刀剪布的过程中,用力握紧把手引发了剪刀张角的变化,表演剪布过程,让学生仔细观察,提出问题问题2:两个把手之间的的角发生了什么变化?剪刀刀刃张开的口又怎么变化?握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.教师:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.2.认识邻补角和对顶角,探索它们性质(1)角的位置关系探究画直线AB、CD相交于点O问题:1 、两条相交直线.形成的小于平角的角有几个?2、两两相配共组成几对角?3、各对角存在怎样的位置关系?按位置关系对他们怎样进行分类?4、各对角的度数有什么关系?学生观察、思考、回答问题学生观察、思考、回答,得出结论学生思考并在小组内交流,全班交流.由实际问题引导学生初步感知相交线形成的角及特点,同时明确本节课要学习的内容用现实生活中的例子引出两线相交所成角的问题,自然而贴切,同时在这个过程中,让学生对两线相交所成角的关系有了初步的认识,这就为研究对顶角相等作了铺垫三.细心观察,归纳定义1、探究邻补角的定义问题:(1)∠1与∠2有怎样的位置关系?(2)∠1与∠2的顶点有什么特点?(3)∠1与∠2的边所在的位置有什么特点?邻补角定义:∠1和∠2有一条公共边OA,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。

北师大版七年级下册数学《两条直线的位置关系》相交线与平行线研讨说课复习课件

北师大版七年级下册数学《两条直线的位置关系》相交线与平行线研讨说课复习课件
量一量:图中是对顶角量角器,你能说出用它测量 角的度数的原理吗?
对顶角相等
探究新知
素养考点 1利用对顶角的性质求角的度数
例 如图,直线a,b相交,∠1=40°,求 ∠2,∠3,∠4的度数.
解:由平角的定义可知, ∠2=180°-∠1
=180°-40°=140°;
b
1( 2
a
4 )3
由对顶角相等可得,
12 43
58 67
所以∠2的补角有∠1,∠3,∠6和∠8.
连接中考
1.(2020•金昌)若α=70°,则α的补角的度数是( B ) A.130° B.110° C.30° D.20° 2.(2020•陕西)若∠A=23°,则∠A余角的大小是( B ) A.57° B.67° C.77° D.157°
DO
C
12 34
AN B
图2
图3
探究新知
将图2简化为图3,ON 与 DC 相交所成的 ∠ DON和∠CON
都等于90° ,且∠1=∠2.在图 3 中: (1)有哪些角互为补角?有哪些角互为余角? 互补的角: ∠1与∠AOC, ∠1与∠BOD,
DO
C
12
34
∠互2余与的∠角B:OD∠,1与∠∠2与3,∠∠AO1C与,∠∠4,D∠ON2与与∠∠4N,O∠C.2与∠A3,N图3 B (2) ∠3与∠4有什么关系?为什么?
第一课时垂线的定义及性质 核心要点 1垂线的有关概念:两条直线相交成四个角,如果有一个角是 直角 ,那么称这两条直线互相垂直,其中的一条直线叫做另一条直线 的 垂线 ,它们的交点叫做 垂足 。 2.垂线的性质: (1)平面内,过一点有且 只有一条 直线与已知直线垂直。 (2)直线外一点与直线上各点连接的所有线段中,垂线段 最短。 3.点到直线的距离:过点A作直线L的垂线,垂足为B,线段 AB 的长度叫做点A到直线L的距离。

北师大版七年级下数学第二章《相交线与平行线》全套教案

北师大版七年级下数学第二章《相交线与平行线》全套教案

1北师大版七年级下数学第二章《相交线与平行线》教案 《2.1两条直线的位置关系》教案一:教学目标1、掌握两条直线平行与垂直的条件;2、会运用条件判断两直线是否平行或垂直;3、能运用条件确定两平行或垂直直线的方程系数.二:教学重点、难点两条直线平行与垂直的条件, 两条直线平行与垂直的条件的应用.三:教学设计(一)情景引入A :两条直线位置关系当中平行为简单;现在我们来研究平面内两条直线平行的关系. ①先入为主的思想;在研究直线问题时首先考虑特殊情况:α=90°时,画图.这个情况很简单:当α=90°时只要x 1≠x 2,则两条直线平行.②一般情况:α≠90°时,则k 存在,∴y 1=kx +b 1 y 2=kx +b 2已知直线l 1,l 2的斜截式方程为:l 1:y =k 1x +b 1 l 2:y =k 2x +b 2,若l 1//l 2,则有α1=α2且b 1≠b 2,∴tan α=tan α [α1∈[0,180°),α2∈[0,180°)]∴k 1=k 2反之,是否成立?若k 1=k 2且b 1≠b 2则有tan α=tan α,∵0≤α1,α2<π,∴α1=α2且b 1≠b 2,∴l 1//l 2结论一:①特殊情况:若两条直线l 1,l 2斜率都不存在也不重合,则两直线l 1,l 2平行; ②有斜率的两条直线l 1//l 2 <=> k 1=k 2且b 1≠b 2∴判断不重合的两条直线平行的程序:两条直线方程——两条直线斜率都不存在且不重合→平行.两条直线方程——化为斜截式方程→求两条直线斜率.若k 1=k 2且b 1≠b 2→平行若k 1≠k 2→相交或者若A 1B 2≠B 1A 2且B 1C 2≠B 2C 1或A 1B 2=A 2B 1且A 1C 2≠A 2C 1 则两条直线平行.例1:已知两条直线l 1:4x +2y -7=0,l 2:2x -y -5=0求证l 1∥l 212122∵l 1的斜率为,l 2的斜率为 ∴k 1=k 2∴l 1∥l 2 例2:求过点A (1,-4)且与直线2x +3y +5=0平行的直线的方程?解:已知直线的斜率为-,因为所求直线与已知直线平行,因此它的斜率也是-. 根据点斜式,得到所求直线的方程是:y +4=-(x -1)即2x +3y +10=0 例3:如果直线ax +2y +2=0与3x -y -2=0平行,那么系数a =()A .3B .-6C .-D . 例4:求与直线3x +4y +1=0平行,且在两坐标轴上截距之和为的直线l 的方程? 法一:设直线方程为3x +4y +m =0,交x 轴于点(-,0)交y 轴于点(0,-),由题意可得(-)+(-)=即m =-4, ∴所求直线l 的方程为3x +4y -4=0, 法二:设直线方程为+=1, ∴a +b =,-=-,可得a =,b =1, ∴所求直线l 的方程为3x +4y -4=0B :平时我们已经理解了;接下来我们来研究两直线相互垂直的关系.①同样的先考虑特殊情况:若已知一条直线的倾斜角为90°,x =x 1,则求其另一条与它垂直的直线方程.②一般情况:若已知两条直线l 1:y =k 1x +b 1,l 2:y =k 2 x +b 2,相互垂直则k 1与k 2有何关系? α+(π-β)= ∴α-β=- ∴β=α+ 21213232322332373m 4m 3m 4m 37a x b y 37a b 43342π2π2π3tan β=tan (α+)=-cot α ∴tan α·tan β=tan α·(-cot α)=-1∴最后我们得证:若两条直线垂直则k 1k 2=-1.③α=90°时=>β=0°(特殊情况)k 1=0,k 2不存在.或者k 1不存在,k 2=0.例4:已知直线l 1:ax -y +2a =0与l 2:(2a -1)x +ay +a =0互相垂直,求a 的值一、①当α=90°即a =0时,l 2:x =0 ∴l 1:y =0 ∴l 1⊥l 2②当α≠90°则k 1·k 2=a ·(-)=-1 ∴a =1 二、A 1A 2+B 1B 2=0 =>a (2a -1)-a =0 2a ²-2a =0 =>a =1或a =0例5:求与3x +4y +1=0平行,且在两坐标轴上截距之和为7/3的直线l 的方程.(一)设直线方程为3x +4y +m =0,交x 轴于点(-,0)交y 轴于点(0,-) ∴(-)+(-)= ∴m =-4∴所求直线l 的方程为3x +4y -4=0(二)设直线方程为+=1 =>a +b =;-=-=>a =,b =1 ∴l :3x +4y -4=0例6:已知三角形两条高线为x +y =0和2x -3y +1=0且一个顶点C (1,2),求三角形AC ,BC 边所在直线的方程.∵AC ,BC 与两条高线垂直∴AC ,BC 的斜率为1和- ∴边AC ,BC 所在直线的方程为y -2=1(x -1),y -2=-(x -1) 即x -y +1=0,3x +2y -7=0《2.2探索直线平行的条件》教案一、导学目标1.使学生能够熟练识别同位角;2πaa )12(-3m 4m 3m 4m 37a xb y 37a b 433423232.使学生会用同位角相等判定二条直线平行.二、重点难点1.重点(1)识别同位角.(2)用同位角相等判定二条直线平行.2.难点用同位角相等判定二条直线平行.三、导学过程一、自主学习:操作---观察---探索如图:3根木条(或硬纸条)相交成∠1、∠2,固定木条b、c,转动木条a.问:1.在木条a的转动过程中,木条a、b的位置关系发生了什么变化?∠2与∠1的大小关系发生了什么变化?2.改变图中∠1的大小,按照上面的方式再试一试,当∠2与∠1的大小满足什么关系时,木条a与木条b平行?二、合作探究:活动一:利用平移三角尺的方法画平行线,探索直线平行的条件.当∠1与∠2相等,直线a、b就;当∠1与∠2不相等时,直线a、b平行吗?活动二:通过观察、比较,认识“同位角”,探索直线平行的条件.直线a、b被第三条直线c所截而成的8个角中,像∠1与∠2这样的一对角称为.请问图中还有没有其他的同位角?4归纳:相等,两直线.活动三:例题讲解.例:如图,∠1=∠C,∠2=∠C,请找出图中互相平行的直线,并说明理由.三、拓展提高:1.∠1与∠C、∠2与∠B、∠ 3与∠ C分别是哪两条直线被哪一条直线截成的同位角?2.如图,直线a、b被直线c所截,∠1=35°,∠2=145°,问:直线a与b平行吗?四、达标检测:1.如图,∠1与∠B是直线和被直线所截构成的同位角;∠2与∠A直线和被直线所截构成的同位角.2.如图,∠1、∠2、∠3中,和是同位角.3.如图,如果∠B=∠1,根据,那么可得DE//BC;如果∠B=∠2,根据同位角相等,两直线平行,那么可得// .4.如图,已知直线AB、CD被直线EF所截,如果∠BMN=∠DNF,∠1=∠2,那么MQ∥NP,为什么?AB CD EF13256《2.3平行线的性质》教案教学目标:理解平行线的性质的推导,掌握平行线的性质.教学重点:平行线的性质以及应用.教学难点:平行线的性质公理与判定公理的区别.教学过程:一、梳理旧知,引出新课平行线的判定:判定方法1、同位角相等,两直线平行.判定方法2、内错角相等,两直线平行.判定方法3、同旁内角互补,两直线平行.问题:反过来也成立吗?过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.这两个句子都是正确的.现在换一个例子:如果两个角是对顶角,那么这两个角相等.它是对的.反过来,如果两个角相等,这两个角是对顶角.对吗?再看下面的例子:“如果一个整数个位上的数字是5,那么它一定能够被5整除.”对吗?这句话反过来怎么说?对不对?【结论】如果一个句子是正确的,反过来说(因果对调),就未必正确.二、动手操作,归纳性质上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?它还是对的吗?(板书)性质1、两直线平行,同位角相等.P Q M N21F ED C B A7如果把平行线性质1:“两直线平行,同位角相等”看作是基本事实(公理),我们可以利用这个公理证明平行线性质2:“两直线平行,内错角相等”.【例】如图,已知:直线a 、b 被直线c 所截,且a ∥b ,求证:∠1=∠2.证明:∵a ∥b ,∴∠1=∠3(__________________).∵∠3=∠2(对顶角相等),∴∠1=∠2(等量代换).(板书)性质2、两直线平行,内错角相等【变式】下面我们来证明平行线的性质3:两直线平行,同旁内角互补.请模仿范例写出证明.如图,已知:直线a 、b 被直线c 所截,且a ∥b ,求证:∠1+∠2=180º.证明:(略)(板书)性质:两直线平行,同旁内角互补三、巩固新知,深化理解例1、如图,平行线AB ,CD 被直线AE 所截.(1)从∠1=110º.可以知道∠2是多少度吗?为什么?(2)从∠1=110º可以知道∠3是多少度吗?为什么?(3)从∠1=110º可以知道∠4是多少度吗?为什么?例2、如图,已知AB ∥CD ,AE ∥CF ,∠A = 39°,∠C 是多少度?为什么?ab1 2 3 c ab 1 23c ED CB A12348方法一解:∵AB ∥CD , ∴ ∠C=∠1.∵ AE ∥CF ,∴ ∠A=∠1.∴ ∠C=∠A .∵∠A = 39º,∴∠C = 39º.方法二解:∵AB ∥CD ,∴ ∠C=∠2.∵ AE ∥CF ,∴ ∠A=∠2.∴ ∠C=∠A .∵∠A = 39º,∴∠C = 39º.练习1:如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据: (1)∵a ∥b ,∴∠1=∠3(___________________);(2)∵∠1=∠3,∴a ∥b (_________________).(3)∵a ∥b ,∴∠1=∠2(__________________);(4)∴a ∥b ,∴∠1+∠4=180º(_____________________________________)(5)∵∠1=∠2,∴a ∥b (___________________);(6)∵∠1+∠4=180º,∴a ∥b (_______________).练习2:教材第51页 随堂练习四、盘点收获,布置作业1、(1)平行线的性质是什么?(2)你能用自己的语言叙述研究平行线性质的过程吗?(3)性质2和性质3是通过简单推理得到的,在推理论证中需要注意哪些问题?2、作业G FED C B Aa b12 3 c 49《2.4用尺规作角》教案教学目的:1、经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识.2、能按作图语言来完成作图动作,能用尺规作一个角等于已知角.教学重点:能按作图语言来完成作图动作,能用尺规作一个角等于已知角.教学难点:作图步骤和作图语言的叙述,及作角的综合应用.教学过程:一、问题的提出如图,要在长方形木板上截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB .(1)请过点C 画出与AB 平行的另一条边.(2)如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?二 、新课内容一:(请按作图步骤和要求操作,别忘了留下作图痕迹)(一) 用尺规作一个角等于已知角.(1)已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB(2)已知:∠10求作:∠AOB ,使∠AOB=∠(二)用尺规作一个角等于已知角的倍数:(3)已知:∠1求作:∠MON ,使∠MON=2∠1∠COD ,使∠COD=3∠1(三)用尺规作一个角等于已知角的和:(4) 已知:∠1、∠2、∠3求作:①∠AOB ,使∠AOB=∠1+∠2②∠POQ ,使∠POQ=∠1+∠2+∠3③∠MON ,使∠MON=2∠1+∠2(四)用尺规作一个角等于已知角的差:已知:∠、∠、∠求作:①∠AOB ,使∠AOB=∠-∠②∠POQ ,使∠POQ=∠-∠-∠③求作一个角,使它等于2∠-∠(五) 综合练习:(通过以下练习,意味着你掌握了作角的真本领,多动一下脑筋,你一定会完成得很出色的)1、已知:线段AB 、 ∠、∠αα1αβγαβγαβαβγβγαβ13211求作:分别过点A 、点B 作∠CAB=∠、∠CBA=∠2、如图,点P 为∠ABC 的边AB 上的一点,过点P 作直线EF//BC .3、已知:直线L 和L 外一点P ,求作:一条直线,使它经过点P ,并与已知直线L 平行.4、已知:△ABC ,求作:直线MN ,使MN 经过点A ,且MN//BC .5、如图,以点B 为顶点,射线BA 为一边,在∠ABC 外再作一个角,使其等于∠ABC .(六)小结(七)作业αβLA αβ。

2013年新版北师大七年级下册第二章平行线与相交线导学案

2013年新版北师大七年级下册第二章平行线与相交线导学案

【课题】2.1两条直线的位置关系(1)【学习目标】在具体情景中了解对顶角、补角、余角,知道对顶角相等、等角的余角相等、等角的补角相等,并能解决一些实际问题。

【学习重点】补角、余角、对顶角,等角的余角相等、等角的补角相等、对顶角相等。

【学习过程】 一、知识预备预习书38-39页在同一平面内,两条直线的位置关系有 和 ,只有一个公共点的两条直线叫做 ,这个公共点叫做 , 在同一平面内, 叫做平行线。

二、知识研究 1、对顶角 (1)概念有公共 的两个角,如果它们的两边互为 , 这样的两个角就叫做对顶角。

(2)性质对顶角 2、余角与补角(1)概念如果两个角的和是 ,那么称这两个角互为余角; 如果两个角的和是 ,那么称这两个角互为补角。

符号语言:若∠1+∠2= 90o ,若∠3+∠4=180o , 那么∠3与∠4互补。

填表:(2)性质同角或等角的余角 ;同角或等角的补角如图,∠DON=∠CON=900,∠1=∠2 问题1:哪些角互为补角?哪些角互为余角?问题2:∠3与∠4有什么关系?为什么?∵∠1+∠3=90º,∠2+∠4=90º ∴∠3=90º-∠1,∠4=90º-∠2∵∠1=∠2 ∴∠3=∠4问题3:∠AOC 与∠BOD 有什么关系?为什么?你能仿照问题2写出理由吗?三、知识运用 (一)基础达标例1、(1)下列各图中,∠1和∠2是对顶角的是( )(2)如图,直线a ,b 相交,∠1=40O ,求∠2,∠3,∠4的度数(二)能力提升4321DC BA12121212ABCD2 DCO1 3 4A N B4321例2、如图:直线AB 与CD 交于点O, ∠EOD=900,回答下列问题: (1)∠AOE 的余角是 ∠AOC 的余角是 ;补角是对顶角是 。

(2)已知一个角的余角比这个角的补角的3,求这个角的余角度数。

(三)知识拓展例3、(1)如图2.1—12,点O 在直线AB 上, ∠DOC 和∠BOE 都等于900.请找出图中互余的角、互补的角、相等的角,并说明理由。

北师大版七年级数学下册-第二章相交线与平行线同步串讲

北师大版七年级数学下册-第二章相交线与平行线同步串讲

· M
A · N
B
八.点到直线的距离
1.
2. 3.
定义:从直线外一点到这条直线的垂线段的 长度叫做点到直线的距离。 距离是一个数量;垂线段是一个图形。二者 不能混为一谈。 常见错误:“作出点到直线的距离”就是错 误的表述。
【例8】∠ACB=∠BDC=90°则:
① ② ③ ④ ⑤ 点A到直线BC的距离是( 点A到直线CD的距离是( 点B到直线AC的距离是( 点B到直线CD的距离是( 点C到直线AB的距离是(
1. 2. 3. 余角的性质:同角或等角的余角相等。 补角的性质:同角或等角的补角相等。 每个性质包含了两个两个“不同的性质”。 同角和等角符号语言中的条件是不同的。 举例:符号语言叙述“四个”性质。
(同角) (等角)
4.
∵∠B是∠A的补角;∠C是∠A 的补角。∴∠B=∠C ∵∠A=∠B,∠C是∠A的补角,∠D是∠B的补角∴∠C=∠D
2. 3. 4.
【例7】在平面内,下列语句错误的是(

A. 过一点有且只有一条直线与已知直线垂直。 B. 垂直于已知线段,并且经过这条线段中点的 线段只有一条。 C. 垂直于已知直线的垂线只有一条。 D. 直线外一点与直线上各点连接的所有线段中, 垂线段最短。
【练习】一汽车在笔直的公路上由A向B行驶, M、N为位于公里两侧的两所学校,当汽车 行驶到何处时,对两所学校的影响最大, 在图点标出来。
内蒙古包头瑞星教育原创精品课件——版权所有
第二章 相交线与平行线
七年级(下册)
点→线(两点定线)→角(两线)→(面)图→体
学习几何 基本规律
一个图(三角形、四边形---)形的定义,性质,判定
两个图形之间的关系:全等、相似、对称、位似----

新北师大版七年级数学下册第二章相交线与平行线导学案

新北师大版七年级数学下册第二章相交线与平行线导学案

新北师大版七年级数学下册第二章相交线与平行线导学案第一节两条直线的位置关系(1)【学习目标】1、在具体情境中了解余角与补角,知道余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。

2、经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理地表达的能力;经历探索余角、补角、对顶角的性质的过程。

3、通过学生动手操作、观察、合作、交流,进一步感受学习数学的意义,培养其主动探索、合作以及解决问题的能力。

【学习方法】自主探究与合作交流相结合【学习重难点】掌握余角、补角和对顶角的概念,性质及应用。

【学习过程】模块一预习反馈一、学习准备观察下面几幅生活中的图片:1、在同一平面内,两条直线的位置关系有和两种2、在同一平面内,不相交的两条直线叫做__________、3、若两条直线只有一个公共点,我们称这两条直线为、二、教材精读(1)如果将剪刀的图简单的表示为图2-1,那么∠1与∠2的位置有什么关系?它们的大小有什么关系?能试着说明,你的理由吗?解: ,即,,等式两边同时都减去_____________, ,,得:。

归纳:在图2-1中,直线AB与CD相交于点O,的有一个公共点O,它们的两边互为反向延长线,具有这种位置关系的两个角叫。

新课标第一网对顶角有如下性质:对顶角(2)在图2-1中,有什么数量关系?解:由可知总结:如果两个角的和是,那么称这两个角互为补角、类似的,如果两个角的和是,那么称这两个角互为余角、注意:互余和互补是指两个角的数量关系,与它们的位置无关。

模块二合作探究2DC O134ANB图2-3 如图2-2,打台球时,选择适当的方向用白球击打红球,反弹的红球会直接入袋,此时图2-2将图2-2抽象成成图2-3,ON与DC交于点O,∠DON=∠CON=,∠1=∠2。

在图2-3中:(1):哪些角互为补角?哪些角互为余角?(2):∠3与∠4有什么关系?为什么?(3):∠AOC与∠BOD有什么关系?为什么?你还能得到哪些结论?解:(1)互为补角的如(2)相等,, (3), 且结论归纳:同角或等角的相等,同角或等角的相等。

北师大2013版第二章 相交线与平行线

北师大2013版第二章 相交线与平行线

第五环节
学有所思,反馈巩固
1.你学到了哪些知识? 2.你学会了哪些方法? 3.你认为应注意哪些问题? 4.你还有哪些困惑?
第五环节
学有所思,反馈巩固
线段与线段垂 1. 如图:∠BAC=90°,AD⊥BC于点D,则下 直是指他们所 面结论中正确的有( )个。 在的直线垂直。 ①点B到AC的垂线段是线段AB ;
第二环节
动手实践、探究新知
动手画一画2:
问题1:请画出直线m和点A,你有几种画法? 问题2:过点A画直线m的垂线。你能画出多少 条?请用你自己的语言概括你的发现。
点A和直线m的位置关系 有两种:点A可能在直线 m上,也可能在直线m外。
A
m
m
A
平面内,过一点有且只有 一条直线与已知直线垂直。
动手画一画三: 点P是直线m外一点,PO⊥m, O是垂足,A,B,C在直线上, 比较线段PO、PA、PB、PC的 长短,你发现了什么?
的问题更独特! 加油~
第四环节
拓展延伸,综合应用
巩固练习
问题1:如图2.1—11已知:直线AB与CD交于点 O, ∠EOD=900,回答下列问题: 1.∠AOE的余角是 ;补角是 。 2.∠AOC的余角是 ;补角是 ;对顶角是 。 E D A C O B
2.1─11
第四环节
拓展延伸,综合应用
巩固练习
学习目标
知识目标: 1、经历探索直线平行的条件的过程,掌握直线 平行的条件,并能解决一些简单的实际问题. 2、会用三角尺过已知直线外一点画这条直线的 平行线. 能力目标: 经历观察、操作、想象、推理、交流等活动,进 一步发展空间观念、推理能力和有条理的表达的能力. 情感目标: 经历观察、操作、想象、推理、交流等活动,并能 积极、主动地进行自主探索或与同伴交流.

七年级数学下册《相交线与平行线》导学案及课后练习

七年级数学下册《相交线与平行线》导学案及课后练习

七年级数学下册《相交线与平行线》导学案及课后练习《相交线与平行线》课后作业一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________;(2)与∠BOD 互余的角有________________________;(3)与∠EOA 互余的角有________________________;(4)若∠BOD =42°17′,则∠AOD =__________;∠EOD =______;∠AOE =______.二、选择题4.如图,直线AB 与CD 相交于点O ,若A O D A O C ∠=∠31,则∠BOD 的度数为( ).(A)30°(B)45°(C)60°(D)135°三、 解答题5.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB 的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?6.已知:如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COB ,∠AOD ∶∠DOE =4∶1.求∠AOF 的度数.《相交线与平行线》课后作业参考答案1.公共,反向延长线.2.一个公共,反向延长线.3..(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.4.B.5.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.6.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.。

新北师大版2013-2014七年级数学下册第二章相交线与平行线知识点总结

新北师大版2013-2014七年级数学下册第二章相交线与平行线知识点总结

87654321FED C B A图1F E DCBA4321图2cba 87654321图3ED CBA 第二章 相交线与平行线一、知识提要:1、两条直线的位置关系:平行、相交(垂直).2、两条直线相交:对顶角,余角和补角,三线八角,内错角,同位角,同旁内角. 和为度的两个角互为余角;和为度的两个角互为补角;余角和补角都是角.对顶角是 形成的角;同位角、内错角、同旁内角是 角. 定理:①对顶角 ;② 余角相等;③ 补角相等. 3、两直线垂直:同一平面内直线外一点有且只有一条直线与已知直线垂直;直线外一点与直线上各点的所有线段中,垂线段最短.4、平行线的判定:① ,两直线平行;② ,两直线平行;③ ,两直线平行.5、平行线的性质:①两直线平行, ;②两直线平行, ;③两直线平行, . 6、尺规作图:作一个角等于已知角,作两个角的和或者差,或者一个角的平分线.二、试题精讲:1. 下列说法正确的个数是( )①若∠1与∠2是对顶角,则∠1=∠2;②若∠1与∠2是邻补角,则∠1=∠2; ③若∠1与∠2不是对顶角,则∠1≠∠2;④若∠1与∠2不是邻补角,则∠1+∠2≠180°A .0 B .1 C .2 D .32. 如右图,直线AB 、CD 与直线EF 相交,∠5和 是同位角,和 是内错角,与 是同旁内角.( )A .∠1;∠4;∠2B .∠1;∠3;∠2C .∠2;∠4;∠1D .∠2;∠3;∠13. 如图1,∠1=∠A ,则下列结论一定成立的是( )A .AB ∥FD B .ED ∥ACC .∠B =∠1D .∠3=∠14. 如图2,直线a 、b 被c 所截,则下列式子:①∠1=∠2;②∠3=∠6;③∠1=∠8;④∠5+∠8=180°,能说明a ∥b 的条件是( ) A .①② B .①②③ C .②④ D .①②③④5. 如图3,AB ∥CD ,∠BAE =120°,∠DCE =30°,则∠AEC =( )A .90°B .150°C .75°D .60° 作业:FE DCBA 图4图1nm21GF E DC BA321图3图21FEDCB AFEDCBA21E D CBACB A1. 如图1,若m ∥n ,∠1=105°,则∠2 = .2. 如图2,若∠1= ,那么AB ∥EF ,若∠1= ,那么DF ∥AC ,若∠DEC + =180°,那么DE ∥BC .3. 如图3,EF ∥AD ,∠1=∠2,∠BAC =70°.将求∠AGD 的过程填写完整:因为EF ∥AD ,所以∠2= .又因为∠1=∠2,所以∠1=∠3.所以AB ∥ .所以∠BAC +___=180°.又因为∠BAC =70°,所以∠AGD = .4. 填空并在括号内加注理由. 如图4,已知DE ∥BC ,DF 、BE 分别平分∠ADE 和∠ABC求证:∠FDE =∠DEB . 证明:∵DE ∥BC∴∠ADE = ( ) ∵DF 、BE 分别平分∠ADE 、∠ABC∴∠ADF =12∴∠ABE =12( )∴∠ADF =∠ABE ( )∴ ∥ ( ) ∴∠FDE =∠ ( )5. 如图,AB ∥CD ,∠B =40°,∠E =30°,求∠D 的度数.6. 如图,已知DE ∥BC ,∠1=∠2,求证:∠B =∠C .7. 如图:已知∠B =25°,∠BCD =45°,∠CDE =30°,∠E =10°,求证:AB ∥EF .HG CB A FED 21FEDB C A 3A 12B C D E F G 8. 已知:如图∠1=∠2,∠C =∠D ,请问∠A 与∠F 相等吗?试说明理由.解题过程训练1. 已知如图,AB ∥CD ,∠AEB=∠B ,∠CED=∠D ,试说明BE ⊥DE . 解:作射线EF ,使∠AEB =∠BEF (作辅助线)∵∠AEB =∠B (已知)∴∠ =∠ ( ) ∴ ∥ ( ) ∵AB ∥CD (已知)∴ ∥ ( ) ∴∠DEF=∠D ( )∵∠CED=∠D ( ) ∴∠ =∠ ( )∴∠AEB+∠CED=∠BEF+∠DEF ( ) ∵∠AEC =180°( )∴∠BED=∠BEF+∠DEF =90°( )∴BE ⊥DE ( ).2. 如图,已知BD ⊥AC ,EF ⊥AC ,D 、F 为垂足,G 是AB 上一点,且∠l=∠2.判断∠AGD 和∠ABC 的数量关系?并说明你的理由.解:∠______ =∠______, 理由如下: ∵______⊥_______,______⊥_______,( )∴______//______( ) ∴∠_____=∠_____( ) 又 ∵∠_____=∠_____( ),∴∠_____=∠_____( ) ∴______//______(_______________________________)12A BCD E F 354∴∠_____=∠_____(______________________________).3. 如图,已知∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的关系.平行线常见模型4. 如图,a ∥b ,∠1=120°,∠2=100°,则∠3= .5. 如图,AB ∥CD ,∠BAC 的平分线和∠ACD 的平分线交于点E ,则∠AEC 的度数是 .6. 探究:(1)如图(1),AB ∥CD ,BO 与DO 相交于点O ,试探索下列各种情况下∠ABO 、∠CDO 、∠BOD 之间的关系,并说明理由.(2)如图(2),AB ∥CD ,BO 与DO 相交于点O ,试探索下列各种情况下∠ABO 、∠CDO 、∠BOD 之间的关系,并说明理由.(3)如图(3),AB ∥CD ,BO 与DO 相交于点O ,试探索下列各种情况下∠ABO 、∠CDO 、∠BOD 之间的关系,并说明理由.(3)(2)(1)OO OACDBACDBACD Bba 321EDCBA。

新版北师大版七年级数学下册第二章相交线与平行线导学案

新版北师大版七年级数学下册第二章相交线与平行线导学案

第二章 相交线与平行线第一节 两条直线的位置关系(1)【学习目标】1.在具体情境中了解余角与补角,知道余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。

2.经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理地表达的能力;经历探索余角、补角、对顶角的性质的过程。

3.通过学生动手操作、观察、合作、交流,进一步感受学习数学的意义,培养其主动探索、合作以及解决问题的能力。

【学习方法】自主探究与合作交流相结合【学习重难点】掌握余角、补角和对顶角的概念,性质及应用。

【学习过程】模块一 预习反馈 一.学习准备观察下面几幅生活中的图片:1.在同一平面内,两条直线的位置关系有 和 两种2.在同一平面内,不相交的两条直线叫做__________.3.若两条直线只有一个公共点,我们称这两条直线为 . 二、教材精读(1)如果将剪刀的图简单的表示为图2-1,那么∠1与∠2的位置有什么关系?它们的大小有什么关系?能试着说明,你的理由吗?解:都是和COD AOB ∠∠ ,即 ︒=∠+∠1801AOD ,︒=∠+∠1802AOD ,等式两边同时都减去_____________, AOD ∠-︒=∠1801,AOD ∠-︒=∠1802,得: 。

归纳:在图2-1中,直线AB 与CD 相交于点O ,21∠∠与的有一个公共点O ,它们的两边互为反向延长线,具有这种位置关系的两个角叫 。

(2)在图2-1中,AOD ∠∠和1有什么数量关系? 解:由是平角AOB ∠可知总结: 如果两个角的和是︒180,那么称这两个角互为补角. 类似的,如果两个角的和是︒90,那么称这两个角互为余角. 注意:互余和互补是指两个角的数量关系,与它们的位置无关。

模块二 合作探究 如图2-2,打台球时,选择适当的方向用白球击打红球,反弹的红球会直接入袋,此时21∠=∠将图2-2抽象成成图2-3,ON 与DC 交于点O ,∠DON=∠CON=︒90,∠1=∠2。

七年级数学下册第二章相交线与平行线导学案(新版北师大版)

七年级数学下册第二章相交线与平行线导学案(新版北师大版)

七年级数学下册第二章相交线与平行线导学案(新版北师大版)第三节平行线的性质(2)【学习目标】1会利用平行线的特征解决一些简单的问题;2学会几何简单推理过程的书写。

【学习方法】自主探究与合作交流相结合【学习重难点】平行线的性质,并能运用这些性质进行简单的推理或计算。

【学习过程】模块一预习反馈一、学习准备1平行线的性质有哪几条?2判别直线平行的条有哪几个?你现在一共有几个判定直线平行的方法?解:(1)平行线的性质1:两条平行直线被第三条直线所截, 相等。

性质2:两条平行直线被第三条直线所截,内错角相等。

性质3:两条平行直线被第三条直线所截, 互补。

判别直线平行的条有同位角相等内错角两直线平行同旁内角二、教材精读1 如图:(1)若∠1=∠2,可以判定哪两条直线平行?根据是什么?(2)若∠2=∠,可以判定哪两条直线平行?根据是什么?(3)若∠2 +∠3=180°,可以判定哪两条直线平行?根据是什么?解:(1)∵∠1=∠2()∴BF// ()(2)∵∠1=∠2()∴BF// ()(3)∵∠2=∠()∴BF// ()2如图所示:AB∥D,如果∠1=∠2,那么EF与AB平行吗?说说你的理由。

解:∵∠1 = ∠2 ()∴EF∥()又∵AB∥D()∴∥(__________ )3已知直线a∥b,直线∥d, ∠1=110°,求∠2,∠3的度数。

解:∵a∥b,且∠1=110°(已知)∴∠2 = ∠1 =∵∥d(__________ )∴∠1 +∠3 = ()∴∠3 = 180°- (等式的基本性质)= 180°-110°=实践练习:如图,选择合适的内容填空。

(1)∵AB//D∴=∠2()(2)∵∠3=∠1∴// (同位角相等,两直线平行)(3)∵∠1+=180&#61616;∴AB//D()模块二合作探究1如图,平行直线AB,D被直线EF所截,分别交直线AB,D于点G,。

北师大版七年级数学下册说课稿(含解析):第二章相交线与平行线1两条直线的位置关系

北师大版七年级数学下册说课稿(含解析):第二章相交线与平行线1两条直线的位置关系

北师大版七年级数学下册说课稿(含解析):第二章相交线与平行线1两条直线的位置关系一. 教材分析《北师大版七年级数学下册》第二章“相交线与平行线”主要介绍了两条直线的位置关系。

这一章节是学生继小学阶段对直线的基本认识之后,进一步深入研究直线性质的重要内容。

通过本章的学习,学生能够理解并掌握相交线与平行线的概念,以及它们之间的相互关系。

本章的内容主要包括以下几个方面:1.两条直线相交的概念及其性质2.两条直线平行的概念及其性质3.相交线与平行线的判定方法4.实际问题中的应用二. 学情分析学生在进入七年级之前,已经对直线、射线、线段等基本概念有了初步的认识。

但是,对于两条直线相交与平行的性质及其应用,还比较陌生。

因此,在教学过程中,需要引导学生从直观的角度去感受和理解这些概念,逐步建立起正确的数学思维。

三. 说教学目标1.知识与技能目标:使学生掌握两条直线相交与平行的概念,理解它们的性质,并能运用所学知识解决一些实际问题。

2.过程与方法目标:通过观察、操作、交流等活动,培养学生的空间想象能力、逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养他们勇于探究、合作交流的良好学习态度。

四. 说教学重难点1.教学重点:两条直线相交与平行的概念及其性质。

2.教学难点:相交线与平行线的判定方法,以及它们在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用启发式教学法、情境教学法、小组合作学习法等,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高教学效果。

六. 说教学过程1.导入新课:通过展示一些生活中的实例,引导学生观察和思考两条直线的位置关系,从而引出本节课的内容。

2.探究新知:(1)引导学生通过观察、操作,发现并描述两条直线相交的现象,总结相交线的性质。

(2)让学生通过画图、讨论,探索两条直线平行的条件,归纳平行线的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】2.1两条直线的位置关系(1)【学习目标】在具体情景中了解对顶角、补角、余角,知道对顶角相等、等角的余角相等、等角的补角相等,并能解决一些实际问题。

【学习重点】补角、余角、对顶角,等角的余角相等、等角的补角相等、对顶角相等。

【学习过程】 一、知识预备 预习书38-39页在同一平面内,两条直线的位置关系有 和 ,只有一个公共点的两条直线叫做 ,这个公共点叫做 , 在同一平面内, 叫做平行线。

二、知识研究 1、对顶角(1)概念 有公共 的两个角,如果它们的两边互为 ,这样的两个角就叫做对顶角。

(2)性质 对顶角 2、余角与补角 (1)概念如果两个角的和是 ,那么称这两个角互为余角; 如果两个角的和是 ,那么称这两个角互为补角。

符号语言:若∠1+∠2= 90o , 若∠3+∠4=180o , 那么∠3与∠4互补。

(2)性质同角或等角的余角 ;同角或等角的补角如图,∠DON=∠CON=900,∠1=∠2 问题1:哪些角互为补角?哪些角互为余角?问题2:∠3与∠4有什么关系?为什么?∵∠1+∠3=90º,∠2+∠4=90º ∴∠3=90º-∠1,∠4=90º-∠2∵∠1=∠2 ∴∠3=∠4问题3:∠AOC 与∠BOD 有什么关系?为什么?你能仿照问题2写出理由吗?三、知识运用 (一)基础达标 例1、(1)下列各图中,∠1和∠2是对顶角的是( )(2)如图,直线a ,b 相交,∠1=40O ,求∠2,∠3,∠4的度数(二)能力提升4321D C B A12121212ABCD2 DCO 1 3 4A N B4321例2、如图:直线AB 与CD 交于点O, ∠EOD=900,回答下列问题: (1)∠AOE 的余角是 ∠AOC 的余角是 ;补角是对顶角是 。

(2)已知一个角的余角比这个角的补角的3,求这个角的余角度数。

(三)知识拓展例3、(1)如图2.1—12,点O 在直线AB 上, ∠DOC 和∠BOE 都等于900.请找出图中互余的角、互补的角、相等的角,并说明理由。

四、巩固练习: A 组1、判断题:对的打“√”, 错的打“×”。

① 一个角的余角一定是锐角。

( ) ② 一个角的补角一定是钝角。

( )③ 若∠1+∠2+∠3=90°,那么∠1、∠2、∠3 互为余角。

( ) 2、下列说法正确的是( )A.相等的角是对顶角B.对顶角相等C.两条直线相交所成的角是对顶角D.有公共顶点且又相等的角是对顶角 3、已知∠A=400,则∠A 的余角是 ,补角是 B 组4、如图,直线AB 、CD 相交于点O ,∠AOE=900,则(1)∠1与∠2互为 角; (2)∠1与∠3互为 角; (3)∠3与∠4互为 角; (4)∠1与∠4互为 角;5、一个角的补角比这个角的余角的2倍多30°,求这个角的度数.C 组6、如图所示,直线AB ,CD 相交于点O ,∠BOE=90°,若∠COE=55°,•求∠BOD 的度数.五、课堂反思:1、今天,你学习了什么知识?2、对今天的课,你还有哪些困惑?【课后练习】 A 组1、已知∠A=40°,则∠A 的余角等于______.2、一个角与它的余角相等,则这个角为 度。

ODECBA4321O ED C BACOE D BA3、如图所示,AB ⊥CD ,垂足为点O ,EF 为过点O•的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角4、填空:∵∠A+∠B=90º,∠B+∠C=90º∴∠A ∠C( ) ∵∠1+∠3=90º,∠2+∠4=90º且∠1=∠2 ∴∠3 ∠4( ) B 组5、一个角的补角与这个角的余角的和比平角少10°,求这个角.6、已知两直线AB 与CD 相交于点O ,且∠AOD+∠BOC=70º,求∠AOC 的度数7、如图,直线AB 与CD 相交于点O ,OE 平分∠AOD ,∠AOC=•120°。

求∠BOD ,∠AOE 的度数. C 组8、如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,且∠AOC=∠AOD-80°,求∠AOE 的度数。

【课题】2.1两条直线的位置关系(2)【学习目标】1、了解垂直的概念,能说出垂线的性质;2、会用三角尺或量角器过一点画一条直线的垂线。

【学习重点】垂直的概念,垂线的性质 【学习过程】二、知识研究 预习书41-42页1、如图,已知∠1=60º,那么∠2= ,∠3= ,∠4= 改变图中∠1的大小,若∠1=90º,那么∠2= ,∠3= ,∠4=这时两条直线的关系是 ,这是两条直线相交的特殊情况。

2、垂直(1)定义及表示方法两条直线相交,所成的四个角中有一个角是 时,称这两条直线互相 , 其中一条直线叫做另一条直线的垂线,它们的交点叫做 。

ODC B Ab a4321(2)垂直的推理应用∵ ( )∴AB ⊥CD( )∵AB ⊥CD ( )∴∠A0D=90º ( ) (3)垂直的性质平面内,过一点 一条直线与已知直线垂直。

直线外一点与直线上各点连接的所有线段中, 最短。

三、知识运用(一)基础达标例1、如图,要把水渠中的水引到水池C 中,在渠岸的什么地方开沟,水沟的长度才能最短?请画出图来,并说明理由(二)能力提升例2、已知∠ACB =90°,即直线AC BC ;若BC =4cm ,AC =3cm ,AB =5cm ,那么点B 到直线AC 的距离等于 ,点A 到直线BC A 、B 两点间的距离等于 。

(三)知识拓展例3、点C 在直线 AB 上,过点C 引两条射线CE 、CD ,且∠ACE=32°,∠DCB=58°,则CE 、CD 有何位置关系关系?为什么?四、巩固练习: A 组1、∠BAC =90°,AD ⊥BC 于点D ,则下面结论中正确的有( )个。

①点B 到AC 的垂线段是线段AB ;②线段AC 是点C 到AB 的垂线段;③线段AD 是点A 到BC 的垂线段;④线段BD 是点B 到AD 的垂线段。

A 、1个;B 、2个;C 、3个;D 、4个。

B 组2. 如图2.1—8中, 点O 在直线AB 上,OE ⊥AB 于点O ,OC ⊥OD,若∠DOE=320,请你求出∠EOC 、∠BOD 的度数,并说明理由。

3. 如图2.1—9中,点O 在直线AB 上,OC 平分∠BOD ,OE 平分∠AOD ,则OE 和OC 有何位置关系?请简述你的理由。

五、课堂反思:1、今天,你学习了什么知识?2、对今天的课,你还有哪些困惑?各中.1DCBAABD CBAEOABC DE3题2题DE CB水渠【课后练习】 A 组1、已知钝角∠AOB ,点D 在射线OB 上(1)画直线DE ⊥OB (2) 画直线DF ⊥OA ,垂足为FB 组2、如图,OA ⊥OC ,OB ⊥OD ,∠BOC=30°,求∠AOB ,∠COD ,∠AODC 组3、如图,AO ⊥OB ,OD 平分∠AOC ,∠BOC=150°,求∠DOC 的度数【课题】2.2同位角、内错角、同旁内角(“三线八角”) 【学习目标】会找同位角(“F 型”)、内错角(“Z 型”)、同旁内角(“U 型”) 【学习重点】会认各种图形下的“三线八角” 【学习过程】 一、知识预备如图,①12∠∠与是由直线 和直线______被第三条直线_______所截而成的 角;②∠4与∠5是由直线 和直线______被第三条直线_______所截而成的 角; ③∠2与∠5是由直线 和直线______被第三条直线_______所截而成的 角; 你还能找到其它的同位角、内错角、同旁内角吗?它们都有怎样的特征? 二、知识研究(一)基础达标例1、如图,①12∠∠与是 角;它们是 由直线 和直线 ,被直线 所截得的;②14∠∠与是 角;它们是由直线 和直线 ,被直线 所截得的;③34∠∠与是 角;它们是由直线 和直线 ,被直线 所截得的。

ba n m 2 3 145O D CBAO DC BA3412CBDA (二)能力提升例2、(1)∠1 与 是同位角,∠5 与 是同旁内角;∠1 与 是内错角。

(1) (2) (2)∠1与________是同位角;∠C 的内错角是_______;∠B 的同旁内角有______________________________。

(三)知识拓展例3、已知AB ⊥BC 于点B ,BC ⊥CD 于点C ,(1)∠1与∠3、∠2与∠4关系是___________________;(2)∠3的内错角是____________; (3)∠ABC 的内错角是_________________; (4)∠1与∠2是内错角吗?为什么?四、巩固练习:A 组1、如图是同位角关系的两角是 ,是互补关系的两角是 ,是对顶角的是 。

2、两条直线被第三条直线所截,则( )A 、同位角相等B 、内错角的对顶角一定相等C 、同旁内角互补D 、内错角不一定相等3、如图(1)∠1与∠4可以看成是 和 被 所截而形成的 角。

∠2与∠3可以看作是 和 被 所截而形成的 。

(1) (2)B 组4、如图(2)已知四条直线AB ,BC ,CD ,DE ,回答以下问题:①∠1和∠2是直线______和直线_____被直线____所截而成的___ 角.②∠1和∠3是直线____和直线____被直线___所截而成的____ 角. ③∠4和∠5是直线_____和直线_____被直线____所截而成的____ 角. ④∠2和∠5是直线____和直线_____被直线____所截而成的__ 角.五、课堂反思:1、今天,你学习了什么知识?2、对今天的课,你还有哪些困惑?【课后练习】(第1题) (第2题) (第3题) A 组1.如图1所示,两条直线l 1、l 2被第三条直线L•所截,•所构成的同位角有______•与______,______与______,______与_____,______•与_______;•内错角有_______•与_______,______与______;同旁内角有______与______,_______与______. B 组2.如图2所示,∠与∠C 是两条直线______与_______被第三条直线______•所截构成的______角;∠2与∠B 是两条直线_______与________被第三条直线________所截构成的________角;∠B 与∠C 是两条直线_______与_______被第三条直线_______所截构成的________角. C 组 3.如图3所示,∠1、∠2、∠3、∠4、∠5、∠6中,是同位角的有_____对;是内错角的有______对;是同旁内角的有________对.HGFED CBA432121ED C A4321C A 21E D 3621543l 2876l 121543图612ba 【课题】2.2探索直线平行的条件一(同位角)【学习目标】1、掌握平行线公理(会用三角尺过已知直线外一点画这条直线的平行线。

相关文档
最新文档