八年级数学勾股定理与平方根单元测试

合集下载

八年级数学(上)第二章 勾股定理与平方根 单元测评卷(A)

八年级数学(上)第二章 勾股定理与平方根 单元测评卷(A)

第二章勾股定理与平方根单元测评卷(A)(附答案)(满分:100分时间:60分钟)一、选择题(每题4分,共28分)1.一个直角三角形的两边长分别为6 cm、8 cm,则这个三角形的斜边长为( )A.8 cm B.10 cm C.8 cm或10 cm D.10 cm或cm2.若等腰三角形中相等的两边长为10 cm,第三边长为16 cm,则第三边上的高为( ) A.6 cm B.8 cm C.10 cm D.12 cm3.若三角形的三边长分别为10、24、26,则它最长边上的中线长是( ) A.10 B.11 C.13 D.344.(2010.阜新)国家游泳中心——“水立方”是2008年北京奥运会标志性建筑物之一,其工程占地面积为62 828平方米,将62 828用科学记数法表示是(结果保留3个有效数字)( )A.6.28×103B.6.28×104C.6.282 8×l04D.0.628 28×1055( )A.5个B.4个C.3个D.2个6.如图,在四边形ABCD中,AB=3 cm,BC=4 cm,CD=12 cm,DA=13 cm,且∠ABC =90°,则四边形ABCD的面积是( )A.84 cm2B.36 cm2C.25.5 cm2D.无法确定7.如图,在由16个边长为1的小正方形拼成的图案中,有五条线段PA、PB、PC、PD、PE,其中长度是无理数的有( )A.1条B.2条C.3条D.4条二、填空题(每题4分,共28分)8.-4的绝对值是_______ .81的平方根是______.9.如图,在数轴上点A和点B之间表示整数的点有_______个.10.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm,则A、B.C、D四个正方形的面积之和是______cm2.11.上海世博会的中国建筑外观以“东方之冠,鼎盛中华,天下粮仓,富庶百姓”为构思主题,建筑面积为4. 645 7万平方米,4.645 7保留2个有效数字是______万平方米.12.已知实数a 、b 10b -=,则a 2012+b 2011=______.13.如图,A 村到公路l 的距离AB =2 km ,C 村到公路l 的距离CD =6 km ,且BD =6 km现要在公路l 上取一点P ,使AP +CP 的值最小,则这个最小值为______.14.如图,△ABC 是直角边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,……依此类推,第n 个等腰直角三角形的斜边长是______.三、解答题(共44分)15.(6分)把下列各数填入相应的集合内:-6,0.45,0,2273π- 有理数集合:{ …};无理数集合:{ …}.16.(6分)求下面各式中x 的值.(1)8-2(x -1)2=-10;30-.17.(7分)如图,正方形网格中每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下面的要求画三角形.(1)在图①中画一个三角形,使它的三边长都是有理数;(2)在图②、图③中分别画一个直角三角形,使它们的三边长都是无理数,且所画的两个三角形不全等.18.(7分)如图,为了求出湖两岸的A、B两点之间的距离,一个观测者在点C设桩,使△ABC恰好为直角三角形,且∠ABC=90°.通过测量,得到AC长为160米,BC长为128米.问从点A穿过湖到点B有多远?19.(9分)《中华人民共和国道路交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70 km/h.如图,一辆小汽车在一条城市街路上沿直道CB行驶,某一时刻刚好行驶到路对面车速检测仪A点正前方30 m的C点处,过了2s后,测得小汽车与车速检测仪之间的距离AB=50 m.这辆小汽车超速了吗?20.(9分)如图,折叠长方形的一边AD,使点D落在BC边上的点F处.如果AB=8 cm,BC=10 cm,求EC的长.参考答案一、1.C 2.A 3.C 4.B 5.A 6.B 7.C二、8.4 ±9 9.4 10. 49 11.4.6 12.2 13.10 km 14.n三、 15.-6,0.45, 0,227 3π-16.(1)x =4或x =-2 (2)x =5或x =117.答案不惟一,(1)如图①所示 (2)如图②、③所示18.从点A 穿过湖到点B 有96米 19.这辆小汽车超速了20.EC 的长为3。

(必考题)初中数学八年级数学上册第一单元《勾股定理》检测题(有答案解析)(4)

(必考题)初中数学八年级数学上册第一单元《勾股定理》检测题(有答案解析)(4)

一、选择题1.如图所示,数轴上的点A 所表示的数为a ,则a 的值是( )A .51+B .51-+C .51-D .52.如图,在Rt △ABC 中,∠BAC =90°,以Rt △ABC 各边为斜边分别向外作等腰Rt △ADB 、等腰Rt △AFC 、等腰Rt △BEC ,然后将等腰Rt △ADB 和等腰Rt △AFC 按如图方式叠放到等腰Rt △BEC 中,其中BH =BA ,CI =CA ,已知,S 四边形GKJE =1,S 四边形KHCJ =8,则AC 的长为( )A .2B .52C .4D .63.用梯子登上20m 高的建筑物,为了安全要使梯子的底面距离建筑物15m ,至少需要( )m 长的梯子.A .20B .25C .15D .54.毕达哥拉斯树,也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树形图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A ,B ,C ,D 的边长分别是2,3,1,2,则△正方形E 的边长是( )A .18B .8C .2D .2 5.如图,图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若6,5AC BC ==,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是( )A .24B .52C .61D .766.如图所示的图案是由两个直角三角形和三个正方形组成的图形,其中一直角三角形的斜边和一直角边长分别是13,12,则阴影部分的面积是( )A .25B .16C .50D .417.如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )A .103B .256C .203D .1548.已知Rt ABC 中,A ∠,B ,C ∠的对边分别为a 、b 、c ,若90B ∠=︒,则( ).A .222b a c =+B .222c a b =+C .222a b c =+D .a b c +=9.《九章算术》是我国古代最重要的数学著作之一,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》﹔“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长.则AC 的长为( )A .4.2尺B .4.3尺C .4.4尺D .4.5尺 10.如图,分别以直角三角形ABC 的三边为斜边向外作直角三角形,且AD CD =,CE BE =,AF BF =,这三个直角三角形的面积分别为1S ,2S ,3S ,且19S =,216S =,则S 3S =( )A .25B .32C .7D .1811.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地 送行二步与人齐,五尺人高曾记. 仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离AB 长度为1尺.将它往前水平推送10尺时,即A C '=10尺,则此时秋千的踏板离地距离A D '就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA 长为( )A .13.5尺B .14尺C .14.5尺D .15尺 12.若实数m 、n 满足340m n --=,且m 、n 恰好是Rt ABC △的两条边长,则第三条边长为( ).A .5B 7C .57D .以上都不对二、填空题13.将五个边长为2的正方形按如图所示放置,若A ,B ,C ,D 四点恰好在圆上,则这个圆的面积为________.(结果保留π)14.如图,一只蚂蚁从长、宽都是2,高是5的长方体纸盒的A 点沿纸盒面爬到B 点,那么它所行的最短路线的长是________.15.在△ABC 中,AB=10,AC=210,BC 边上的高AD=6,则另一边BC 等______. 16.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾6a =,弦10c =,则小正方形ABCD 的面积是____.17.在平面直角坐标系中,若点M (2,4)与点N (x ,4)之间的距离是3,则x 的值是_____.18.如图,两个正方形的面积分别是118S =,212S =,则第三个正方形的面积3S =_________.19.如图,一个蚂蚁要在一个长、宽、高分别为2、3、1分米的长方体的表面从A 点爬到B 点,那么最短的路径是_______________分米.(结果保留根号)20.如图,ABC 中,90C ∠=︒,D 是BC 边上一点,17AB cm =,10AD cm =,8AC cm =,则BD 的长为________.三、解答题21.如图,ABC 中,∠C=90°,BC=5厘米,AB=55厘米,点P 从点A 出发沿AC 边以2厘米/秒的速度向终点C 匀速移动,同时,点Q 从点C 出发沿CB 边以1厘米/秒的速度向终点B 匀速移动,P 、Q 两点运动几秒时,P 、Q 两点间的距离是210厘米?22.已知:如图,四边形ABCD 中,AB ⊥BC ,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.23.如图,一棵小树在大风中被吹歪,用一根棍子把小树扶直,已知支撑点到地面的距离10 5.5米,求棍子和地面接触点C 到小树底部B 的距离是多少?24.在如图所示的方格纸中,每个小正方形的边长为1个单位长度,我们称每个小正方形的顶点为“格点”.(1)若格点C 在线段AB 右侧,且满足AC BC =,则当ABC ∆的周长最小时,ABC ∆的面积等于 .(2)若格点D 在线段AB 左侧,且满足AD BD ⊥,则ABD ∆的面积等于 (以上两问均直接写出结果即可).25.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,求这个风车的外围周长.26.如图,在四边形ABCD 中, 45,ABC ADC ∠=∠=︒将BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △.(1)求证:AE BD ⊥;(2)若1,2AD CD ==,试求四边形ABCD 的对角线BD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据勾股定理求出直角三角形的斜边,即可得出选项.【详解】解:BC =BA =22125+=,∵数轴上点A 所表示的数为a ,∴a =51-故选:C .【点睛】本题考查了数轴和实数,勾股定理的应用,能读懂图象是解此题的关键.2.D解析:D【分析】设AD =DB =a ,AF =CF =b ,BE =CE =c ,由勾股定理可求a 2+b 2=c 2,由S 四边形GHCE =S 四边形GKJE +S 四边形KHCJ =9,可求b =2,即可求解.【详解】解:设AD =DB =a ,AF =CF =b ,BE =CE =c ,∴AB2=c,=a,AC2=b,BC2∵∠BAC=90°,∴AB2+AC2=BC2,∴2a2+2b2=2c2,∴a2+b2=c2,∵将等腰Rt△ADB和等腰Rt△AFC按如图方式叠放到等腰Rt△BEC,∴BG=GH=a,∵S四边形GHCE=S四边形GKJE+S四边形KHCJ=9,∴1(a+c)(c﹣a)=9,2∴c2﹣a2=18,∴b2=18,∴b=32,∴AC2=b=6,故选:D.【点睛】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键.3.B解析:B【分析】可依据题意作出简单的图形,结合图形利用勾股定理进行求解,即可.【详解】解:如图所示:∵AC=20m,BC=15m,∴在Rt△ABC中,22+m,152025故选:B.【点睛】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.4.D解析:D根据勾股定理分别求出正方形E 的面积,进而即可求解.【详解】解:由勾股定理得,正方形E 的面积=正方形A 的面积+正方形B 的面积+正方形C 的面积+正方形D 的面积=22+32+12+22=18,∴正方形E 的边长=32.故选:D .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.5.D解析:D【分析】由题意∠ACB 为直角,AD=6,利用勾股定理求得BD 的长,进一步求得风车的外围周长.【详解】解:依题意∠ACB 为直角,AD=6,∴CD=6+6=12,由勾股定理得,BD 2=BC 2+CD 2,∴BD 2=122+52=169,所以BD=13,所以“数学风车”的周长是:(13+6)×4=76.故选:D .【点睛】本题是勾股定理在实际情况中应用,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么a 2+b 2=c 2.6.C解析:C【分析】由勾股定理解得2AB 、22CD BD +,再根据正方形边长相等的性质得到222225CD BD BC AB +===,据此解题即可.解:由勾股定理得,222131225AB =-=222BC CD BD =+222225CD BD BC AB ∴+===∴阴影部分的面积是222252550CD BD BC ++=+=,故选:C .【点睛】本题考查勾股定理,是重要考点,难度较易,掌握相关知识是解题关键. 7.C解析:C【分析】利用勾股定理求BC 的长度,连接AE ,然后设BE=AE=x ,结合勾股定理列方程求解.【详解】解:如图,∵Rt △ABC 中,∠ACB=90°, ∴22221086BC AB AC =-=-=,∵DE 是AB 的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x =∴BE=AE=253 在Rt △BDE 中,22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键.8.A解析:A【分析】先根据题意画出图形,再根据勾股定理即可得.【详解】由题意,画出图形如下:由勾股定理得:222b a c =+,故选:A .【点睛】本题考查了勾股定理,依据题意,正确画出图形是解题关键.9.A解析:A【分析】设AC=x 尺,则AB=(10-x )尺,利用勾股定理解答.【详解】设AC=x 尺,则AB=(10-x )尺, ABC 中,90ACB ∠=︒,222AC BC AB +=,∴2224(10)x x +=-,解得:x=4.2,故选:A .【点睛】此题考查勾股定理,根据题意正确设未知数,利用勾股定理解答是解题的关键.10.A解析:A【分析】根据△ADC 为直角三角形且AD=CD ,可得到22211111=2224S AD AC AC =⨯=,同理可得到221=4S BC 及231=4S AB ,在△ACB 中,由勾股定理得出:222AB AC BC =+,继而可得312S S S =+,代入计算即可.【详解】解:∵△ADC 为直角三角形,且AD=CD ,∴在△ADC 中,有222AC AD CD =+,∴222AC AD =,即AC =, ∴22211111=2224S AD AC AC =⨯=, 同理可得:221=4S BC ,231=4S AB , ∵∠ACB=90︒,∴222AB AC BC =+,即312111444S S S =+, ∴312S S S =+,∵19S =,216S =,∴3129+16=25S S S =+=,故答案为:A .【点睛】本题考查勾股定理,由勾股定理得出三角形的面积关系是解题的关键.11.C解析:C【分析】设绳索有x 尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理可求解.【详解】解:设绳索有x 尺长,则102+(x+1-5)2=x 2,解得:x=14.5.故绳索长14.5尺.故选:C .【点睛】本题考查勾股定理的应用,理解题意能力,关键是能构造出直角三角形,用勾股定理来解.12.C解析:C【分析】根据绝对值的非负性及算术平方根的非负性求出m=3,n=4,再分两种情况利用勾股定理求出第三边.【详解】∵30m -=,30m -≥≥,∴m-3=0,n-4=0,解得m=3,n=4,当3、4都是直角三角形的直角边长时,第三边长;当3是直角边长,4是斜边长时,第三边长=故选:C .【点睛】此题考查绝对值的非负性及算术平方根的非负性,勾股定理,根据绝对值的非负性及算术平方根的非负性求出m=3,n=4是解题的关键.注意:没有明确给出的是直角三角形直角边长还是斜边长时,应分情况求解第三边长.二、填空题13.【分析】根据题意得到圆心O 的位置设MO=x 根据AO2=DO2得到方程求出x 得到圆O 的半径从而求出面积【详解】解:由题意可得:多个小正方形排成轴对称图形∴圆心O 落在对称轴MN 上设MO=x ∵AO=DO ∴ 解析:1309π 【分析】根据题意得到圆心O 的位置,设MO=x ,根据AO 2=DO 2,得到方程,求出x ,得到圆O 的半径,从而求出面积.【详解】解:由题意可得:多个小正方形排成轴对称图形,∴圆心O 落在对称轴MN 上,设MO=x ,∵AO=DO ,∴AO 2=DO 2,即()2222163x x +=-+,解得:x=113,∴圆O的半径为21x+=1303,∴圆O的面积为21303π⎛⎫⎪⎪⎝⎭=1309π,故答案为:1309π.【点睛】本题考查了勾股定理,轴对称的性质,圆的性质,解题的关键是根据半径相等得到方程.14.【解析】如图(1)所示:AB=;如图(2)所示:AB=∵>∴最短路径为答:它所行的最短路线的长是故答案为点睛:本题考查了平面展开---最短路径问题解题的关键是将长方体展开构造直角三角形然后利用勾股定解析:41【解析】如图(1)所示:222(25)=53++如图(2)所示:2245=41+,∵5341∴414141点睛:本题考查了平面展开---最短路径问题,解题的关键是将长方体展开,构造直角三角形,然后利用勾股定理解答.15.10或6【解析】试题解析:10或6【解析】试题根据题意画出图形,如图所示,如图1所示,AB =10,AC 10,AD =6,在Rt △ABD 和Rt △ACD 中,根据勾股定理得:BD 22AB AD -,22AC AD -=2,此时BC =BD +CD =8+2=10;如图2所示,AB =10,AC 10,AD =6,在Rt △ABD 和Rt △ACD 中,根据勾股定理得:BD 22AB AD -,CD 22AC AD -=2,此时BC =BD -CD =8-2=6,则BC 的长为6或10. 16.4【分析】应用勾股定理和正方形的面积公式可求解【详解】∵勾弦∴股b=∴小正方形的边长=∴小正方形的面积故答案为4【点睛】本题运用了勾股定理和正方形的面积公式关键是运用了数形结合的数学思想解析:4【分析】应用勾股定理和正方形的面积公式可求解.【详解】∵勾a 6=,弦c 10=,∴股221068-=,∴小正方形的边长=862-=,∴小正方形的面积224==故答案为4【点睛】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想. 17.﹣1或5【分析】根据点M (24)与点N (x4)之间的距离是3可以得到|2-x|=3从而可以求得x 的值【详解】解:∵点M (24)与点N (x4)之间的距离是3∴|2﹣x|=3解得x=﹣1或x=5故答案为解析:﹣1或5【分析】根据点M(2,4)与点N(x,4)之间的距离是3,可以得到|2-x|=3,从而可以求得x的值.【详解】解:∵点M(2,4)与点N(x,4)之间的距离是3,∴|2﹣x|=3,解得,x=﹣1或x=5,故答案为﹣1或5.【点睛】本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.18.6【分析】根据题意和图形可以得到AB2和AC2再根据△ABC是直角三角形和勾股定理可以得到BC2【详解】解:∵两个正方形的面积分别是S1=18S2=12∴AB2=18AC2=12∵△ABC是直角三角解析:6【分析】根据题意和图形,可以得到AB2和AC2,再根据△ABC是直角三角形和勾股定理,可以得到BC2.【详解】解:∵两个正方形的面积分别是S1=18,S2=12,∴AB2=18,AC2=12,∵△ABC是直角三角形,∴BC2=AB2-AC2=18-12=6,故答案为:6.【点睛】本题考查了正方形的性质,解题的关键是明确题意,利用数形结合的思想解答.19.【分析】有三种展开方式一种是正面和右侧面展开如图(1)一种是正面和上面展开如图(2)另外一种是底面和右侧面展开如图(3)分别根据勾股定理求AB的长度即可判断【详解】正面和右侧面展开如图(1)根据勾股解析:【分析】有三种展开方式,一种是正面和右侧面展开如图(1),一种是正面和上面展开如图(2),另外一种是底面和右侧面展开如图(3),分别根据勾股定理求AB的长度即可判断.【详解】正面和右侧面展开如图(1)根据勾股定理()2223126AB =++=;正面和上面展开如图(2)根据勾股定理()2213225AB =++=;底面和右侧面展开如图(3)根据勾股定理()2212332AB =++= ∵322526<<∴最短的路径是32故答案为32【点睛】本题考察了几何图形的展开图形,勾股定理的实际应用,容易漏掉正面和上面的展开图是本题的易错点,在做题的过程中要注意考虑全面.20.9cm 【分析】由可知为直角三角形利用勾股定理可分别计算求得BC 和CD 从而完成BD 求解【详解】∵∴同理∴故答案为:【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长 解析:9cm【分析】由90C ∠=︒可知ABC 为直角三角形,利用勾股定理,可分别计算求得BC 和CD ,从而完成BD 求解.∵90C ∠=︒∴15BC ==同理6CD ===∴1569BD BC CD =-=-=故答案为:9cm .【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长.三、解答题21.2秒【分析】设P 、Q 两点运动x 秒时,P 、Q 两点间的距离是厘米,先利用勾股定理求出AC 的长度,得到AP=2x 厘米,CQ=x 厘米,CP=(10﹣2x )厘米,再利用勾股定理得到(10﹣2x )2+x 2=()2求出x 的值.【详解】解:设P 、Q 两点运动x 秒时,P 、Q 两点间的距离是厘米.在△ABC 中,∠C=90°,BC=5厘米,∴=(厘米),∴AP=2x 厘米,CQ=x 厘米,CP=(10﹣2x )厘米,在Rt △CPQ 内有PC 2+CQ 2=PQ 2,∴(10﹣2x )2+x 2=()2,整理得:x 2﹣8x+12=0,解得:x=2或x=6,当x=6时,CP=10﹣2x=﹣2<0,∴x=6不合题意舍去.∴P 、Q 两点运动2秒时,P 、Q 两点间的距离是厘米.【点睛】此题考查勾股定理,动点问题与几何图形,熟练掌握勾股定理的计算公式并运用解决问题是关键.22.36【分析】连接AC ,在直角三角形ABC 中,根据勾股定理计算得到AC 的长度,继而由勾股定理的逆定理求出∠ACD 为90°,计算得到四边形的面积即可.【详解】在Rt△ABC中,有AC2=AB2+BC2=4²+3²=25,又AC>0,∴AC=5∵AC2+CD²=52+12²=169=13²=AD²∴∠ACD=90°,S四边形ABCD= 12AB×BC+12AC×CD=36.【点睛】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC和△CAD 的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.23.5米【分析】利用勾股定理计算即可.【详解】由题意知:10米,AC=5.5米,∵∠ABC=90°,∴2222(5.5)(10)BC AC AB=-=-米,答:棍子和地面接触点C到小树底部B的距离是4.5米.【点睛】此题考查勾股定理的实际应用,根据实际问题构建直角三角形利用勾股定理来解决问题是解题的关键.24.(1)2.5;(2)2或2.5或1.5【分析】(1)根据格点C在线段AB右侧,且满足AC=BC,画出周长最小的格点△ABC,即可求出△ABC的面积;(2)根据格点D在线段AB左侧,且满足AD⊥BD,分别画出格点△ABD,即可得三角形的面积.【详解】解:(1)如图,△ABC 即为所求;△ABC 的面积为:1552⨯⨯=2.5, 故答案为:2.5;(2)如图点D 1,D 2,D 3 即为所求;△ABD 的面积分别为:12222⨯⨯=2, 1552⨯⨯=2.5, 1132⨯⨯=1.5, 故答案为:2或2.5或1.5.【点睛】此题主要考查了格点图形的性质,把握格点图形的定义,正确画出格点三角形是解决问题的关键.25.76【分析】根据题意可知∠ACB 为直角,利用勾股定理求得外围中一条边,又由AC 延伸一倍,从而求得风车的一个轮子,进一步求得四个即风车的外围周长.【详解】解:解:依题意,设“数学风车”中的四个直角三角形的斜边长为x ,则222125169x =+=所以x=13所以“数学风车”的外围周长是:(13+6)×4=76.【点睛】本题考查勾股定理在实际情况中的应用,注意掌握运用隐含的已知条件来解答此类题. 26.(1)见解析;(2)3BD =.【分析】()1证明:由BCD 绕点C 顺时针旋转到ACE △,利用旋转性质得BC=AC ,12∠=∠,由∠ABC =45º,可知∠ACB=90º,由1390∠+∠=︒,可证2490∠+∠=︒ 即可,()2解:连DE ,由BCD ∆绕点C 顺时针旋转到ACE ∆,得BCD ACE ∠=∠,CD=CE=2,BD=AE ,利用等式性质得90DCE ACB ∠=∠=︒,∠CDE=45º,利用勾股定理DE=22,由∠ADC=45º可得∠ADE=90º,由勾股定理可求AE 即可.【详解】()1证明:BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △, ,12BC AC ∴=∠=∠,45,ABC BAC ∴∠=∠=︒18090,ACB ABC BAC ∴∠=︒∠∠=︒--1390,∴∠+∠=︒又34,∠=∠241390,∴∠+∠=∠+∠=︒1802490,ANM ∴∠=︒-∠-∠=︒即AE BD ⊥,()2解:连DE ,BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到,ACEBCD ACE ∴∠=∠,即,2,ACB ACD DCE ACD CD CE BD AE ∠+∠=∠+∠===,90,DCE ACB ∴∠=∠=︒2222228,DE CD CE ∴=+=+=又90,2,DCE CD CE ∠=︒==45,CDE ∴∠=︒90,ADE ADC CDE ∴∠=∠+∠=︒∴===,3AE∴=.BD3【点睛】本题考查旋转的性质和勾股定理问题,关键是掌握三角形旋转的性质与勾股定理知识,会利用三角形旋转性质结合∠ABC=45º证∠ACB=90º,利用余角证AE⊥BD,利用等式性质证∠DCE=90º,利用勾股定理求DE,结合∠ADC=45º证Rt△ADE,会用勾股定理求AE使问题得以解决.。

八年级上册数学单元测试题及答案

八年级上册数学单元测试题及答案

北师大版八年级上册数学检测试卷第一章勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是()(a)4cm,8cm,7cm (b) 2cm,2cm,2cm(c) 2cm,2cm,4cm (d)13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm,20cm,25cm,则这个三角形最长边上的高为()(a)12cm(b)10cm(c)12.5cm(d)10.5cm3.rt abc的两边长分别为3和4,若一个正方形的边长是 abc的第三边,则这个正方形的面积是()(a)25(b)7(c)12(d)25或74.有长度为9cm,12cm,15cm,36cm,39cm的五根木棒,可搭成(首尾连接)直角三角形的个数为()(a)1个(b)2个(c)3个(d)4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是()(a)直角三角形(b)锐角三角形(c)钝角三角形(d)以上结论都不对6.在△abc中,ab=12cm, ac=9cm,bc=15cm,下列关系成立的是()(a)(b)(c)(d)以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为()(a)2m (b)2.5cm (c)2.25m (d)3m8.若一个三角形三边满足,则这个三角形是()(a)直角三角形(b)等腰直角三角形(c)等腰三角形(d)以上结论都不对9.一架250cm的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm,如果梯子顶端沿墙下滑40cm,那么梯足将向外滑动()(a)150cm (b)90cm (c)80cm (d)40cm10.三角形三边长分别为、、(为自然数),则此三角形是()(a)直角三角形(b)等腰直角三角形(c)等腰三角形(d)以上结论都不对二、填空题11.写四组勾股数组______ ,______ ,______ ,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________.13.如图1,某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯,已知这种地毯每平方米售价20元,主楼梯宽2米.则购地毯至少需要______ 元.14.有一个长为l2cm,宽为4cm,高为3cm的长方形铁盒,在其内部要放一根笔直的铅笔,则铅笔最长是______cm.15.直角三角形有一条直角边为11,另外两条边长是自然数,则周长为________.三、解答题16.如图2,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断裂,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前有多高?(旗杆粗细、断裂磨损忽略不计)17.一个零件的形状如图3所示,工人师傅按规定做得ab=3,bc=4,ac=5,cd=12,ad=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?18.如图4是一块地,已知ad=8m,cd=6m,∠d= ,ab=26m,bc=24m,求这块地的面积.19.“中华人民共和国道路交通管理条例”规定:小汽车在城市街路上的行驶速度不得超过70千米/时,如图5,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪问的距离变为50米.这辆小汽车超速了吗?20.学校校内有一块如图6所示的三角形空地abc,计划将这块空地建成一个花园,以美化校园环境,预计花园每平方米造价为30元,学校修建这个花园需要投资多少元?北师大版八年级上册数学检测试卷第二章实数一、选择题1.在下列实数中,是无理数的为()(a) 0(b)-3.5(c)(d)2.a为数轴上表示-1的点,将点a沿数轴移动3个单位到点b,则点b所表示的实数为().(a)3(b)2(c)-4(d)2或-43.一个数的平方是4,这个数的立方是()(a)8(b)-8(c)8或-8(d)4或-44.实数m、n在数轴上的位置如图1所示,则下列不等关系正确的是()(a)n<m (b) n2<m2(c)n0<m0 (d)| n |<| m |5.下列各数中没有平方根的数是()(a)-(-2)(b)3 (c)(d)-( 2+1)6.下列语句错误的是()(a)的平方根是±(b)-的平方根是-(c)的算术平方根是(d)有两个平方根,它们互为相反数7.下列计算正确的是().(a)(b)(c)(d)—18.估计56 的大小应在().(a)5~6之间(b)6~7之间(c)8~9之间(d)7~8之间9.已知,那么()(a) 0 (b) 0或1 (c)0或-1 (d) 0,-1或110.已知为实数,且 ,则的值为()(a) 3 (b)(c) 1 (d)二、填空题11.的平方根是____________,()2的算术平方根是____________.12.下列实数:,,,︱-1︱,,,0.1010010001……中无理数的个数有______个.13.写出一个3到4之间的无理数______.14.计算:15.的相反数是_____,绝对值是____.三、解答题16.计算:17.某位同学的卧室有25 平方米,共用了64块正方形的地板砖,问每块砖的边长是多少?18.如图2,一只蚂蚁沿棱长为的正方体表面从顶点a爬到顶点b,则它走过的最短路程为多少?19.如图3,一架长2.5米的梯子,斜靠在一竖直的墙上,这时,梯底距离墙底端0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯子的底端将滑出多少米?20.学校要在一块长方形的土地上进行绿化,已知这块长方形土地的长 =5 , 宽 =4(1)求该长方形土地的面积.(精确到0.01)(2)若绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金为多少元?北师大版八年级上册数学检测试卷第三章位置与坐标一、选择题1.如图1,小手盖住的点的坐标可能是()(a)(5,2)(b)(-6,3)(c)(―4,―6)(d)(3,-4)2.在平面直角坐标系中,下列各点在第二象限的是()(a)(2,1)(b)(2,-1)(c)(-2,1)(d)(-2,-1)3.点p (—2 ,3) 关于 y 轴对称的点的坐标是()(a)(—2 ,—3) (b)(3 ,—2) (c)(2 ,3) (d)(2 ,—3)4.平面直角坐标系内,点a(,)一定不在()(a)第一象限(b)第二象限(c)第三象限(d)第四象限5.如果点p在轴上,则点p的坐标为()(a) (0,2) (b) (2,0) (c) (4,0) (d)6.已知点p的坐标为( ,且点p到两坐标轴的距离相等,则点p的坐标为()(a) (3,3) (b) (3, (c) (6, (d) (3,3)7.已知点a(2,0)、点b(-,0)、点c(0,1),以a、b、c三点为顶点画平行四边形,则第四个顶点不可能在()(a)第一象限(b)第二象限(c)第三象限(d)第四象限8.若p()在第二象限,则q( )在()(a)第一象限(b)第二象限(c)第三象限(d)第四象限9.如图2是某战役中缴获敌人防御工程的坐标地图碎片,依稀可见:一号暗堡的坐标为(1,2),四号暗堡的坐标为(-3,2).另有情报得知:指挥部坐标为(0,0),你认为敌军指挥部的位置大约是()(a)a处(b)b处(c)c处(d)d处10.以边长为4的正方形的对角线建立平面直角坐标系,其中一个顶点位于轴的负半轴上,则该点坐标为()(a)(2,0)(b)(0,-2)(c)(0,)(d)(0,)二、填空题11.点a在轴上,且与原点的距离为5,则点a的坐标是________.12.如图3,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示a点的位置,用(3,4)表示b点的位置,那么用______表示c点的位置.13.已知点m ,将点m向右平移个单位长度得到n点,则n点的坐标为________.14.第三象限内的点,满足,,则点的坐标是.15.如图4,将 aob绕点o逆时针旋转900,得到.若点a的坐标为(),则点的坐标为________.三、解答题16.△abc在直角坐标系内的位置如图5所示.(1)分别写出a、b、c的坐标(2)请在这个坐标系内画出△a1b1c1,使△a1b1c1与△abc关于轴对称,并写出b1的坐标;(3)请在这个坐标系内画出△a2b2c2,使△a2b2c2与△abc关于原点对称,并写出a2的坐标;17.小亮要从a地赶往c地去参加科技夏令营,他拿出一张地图如图6所示,图上有a、b、c三地,但地图被墨迹污染,c地具体位置看不清楚了,只知道c地在a地的南偏西55°,在b的北偏西70°.(1)请帮助小亮确定c地的位置;(2)若地图的比例尺是l:10000000,从a地到c地的实际距离约是多少千米?18.在平面直角坐标系中,将坐标为(0,0),(2,1),(2,4),(0,3)的点依次连结起来形成一个图案.(1) 这四个点的横坐标保持不变,纵坐标变成原来的,将所有的四个点用线段依次连结起来,所得的图案与原图案相比有什么变化?(2) 纵、横坐标分别变成原来的2倍呢?19.小明的生日快要到了,小军决定送给他一件小礼物,他告诉小明,他已将礼物藏在学校体育场内.具体地点忘了,只知道坐标是(6,6),还知道体育场内的两个标志点的坐标分别是a(一2,一3)和b(2,一3),小明怎样才能找到小军送他的礼物?20.如图7,某公路(可视为轴)的同一侧有a、b、c三个村庄,要在公路边建一货栈d,向a、b、c 三个村庄送农用物资,路线是d→a→b→c→d或d→c→b→a→d.试问在公路边是否存在一点d,使送货路线之和最短?若存在,请在图中画出点d所在的位置,简要说明作法;若不存在,请说明你的理由.北师大版八年级上册数学检测试卷第四章一次函数一、选择题1.父亲节,某学校“文苑”专栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,那么下面的图象与上述诗意大致相吻合的是()2.已知一次函数 ,若随着的增大而减小,则该函数图象经过()(a)第一、二、三象限(b)第一、二、四象限(c)第二、三、四象限(d)第一、三、四象限3.若函数y= 是正比例函数,则常数m的值是()(a)-7 (b)±7 (c)士3 (d)-34.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图1所示,由图中给出的信息可知,营销人员没有销售时的收入是()(a)310元(b)300元(c)290元(d)280元5.直线与两坐标轴围成的三角形面积是()(a) 3 (b) 4 (c) 12 (d) 66.下列图形中,表示一次函数 = + 与正比例函数y = 、为常数,且≠0的图象的是()7.如图2所示:边长分别为和的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为,大正方形内除去小正方形部分的面积为(阴影部分),那么与的大致图象应为()x -2 -1 0 1 2 3y 3 2 1 0 -1 -28.已知一次函数(、是常数,且≠0),与的部分对应值如下表所示,那么、的值分别是()(a)1,1 (b)1,-1(c)-1,1 (d)-1,-19.点p1( 1, 1),点p2( 2, 2)是一次函数=-4 + 3 图象上的两个点,且 1< 2,则 1与2的大小关系是().(a) 1> 2 (b) 1> 2 >0 (c) 1< 2 (d) 1= 210.在一定范围内,某种产品的购买量吨与单价元之间满足一次函数关系,若购买1000吨,每吨为800元;购买2000吨,每吨为700元,一客户购买400吨单价应该是()(a)820元(b)840元(c)860元(d)880元二、填空题11.函数 = 的图象经过点p(3,-1),则的值为______.12.写出一个图象不经过第一象限的一次函数:________________.13.如果直线不经过第二象限,那么实数的取值范围是_________.14.已知点p( ,一3)在一次函数 =2 +9的图象上,则 =______.15.饮料每箱24瓶,售价48元,买饮料的总价 (元)与所买瓶数之间的函数关系是______.三、解答题16.如图3,oa、ba分别表示甲乙两名学生运动的一次函数的图象,图中和分别表示运动的路程和时间,根据图象请你判断:(1)甲乙谁的速度比较快?为什么?答:___________________________________________.(2)快者的速度比慢者的速度每秒快多少米?答:____________________________________________.17.汽车油箱中的余油量q(升)是它行驶的时间 (小时)的一次函数.某天该汽车外出时,油箱中余油量与行驶时间的变化关系如图4:(1) 根据图象,求油箱中的余油q与行驶时间的函数关系.(2) 从开始算起,如果汽车每小时行驶40千米,当油箱中余油 20升时,该汽车行驶了多少千米?18.已知等腰三角形的周长是20 ,设底边长为,腰长为,求与的函数关系式,并求出自变量的取值范围.19.如图5,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度(cm)与饭碗数(个)之间的一次函数关系式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?20.我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水吨,应交水费元.(1)若0<≤6,请写出与的函数关系式.(2)若>6,请写出与的函数关系式.(3)在同一坐标系下,画出以上两个函数的图象.(4)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?北师大版八年级上册数学检测试卷第五章二元一次方程组一、选择题1.在下列方程中,不是二元一次方程的是()(a)x+y=3 (b)x=3 (c)x-y=3 (d)x=3-y2.已知二元一次方程组,则()(a)2 (b)3 (c)-1 (d)53.下列各组数,既是方程的解,又是方程的解是()(a)(b)(c)(d)4.如果单项式与是同类项,那么的值是()(a)- 3 (b)-1 (c)(d)35.方程组的解为,则被遮盖的两个数分别为()(a)1,2 (b)1,3 (c)1,4 (d)1,56.小刘同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元.设1元的贺卡为张,2元的贺卡为张,那么所适合的一个方程组是()(a)(b)(c)(d)7.如图1,直线 1、 2的交点坐标可以看作方程组()的解(a)(b)(c)(d)8.古代有这样一个寓言故事: 驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多.那么驴子原来所驮货物的袋数是()(a) 5 (b)6 (c)7 (d)89.如图2,射线oc的端点o在直线ab上,∠aoc的度数比∠boc的2倍多10°.设∠aoc和∠boc的度数分别为、,则下列方程组正确的为()(a)(b)(c)(d)10.一批房间,若每间住1人,有10人无处住;若每间住3人,则有10间无人住,则这批房间数为()(a)20 (b)12 (c)15 (d)10二、填空题11.解方程组时,比较适宜的消元法是______,解方程组时,比较适宜的消元法是________. 12.写出一个含的二元一次方程,使它有一个解是,这个方程是______.13.野鸡、兔子共36只,共有100只脚,设野鸡只,兔子只,则可列方程组______.14.写出满足方程 +2 =9的一组整数解是____.15.母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图3中信息可知一束鲜花的价格是____元.三、解答题16.解下列方程组17.用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图4所示,求每块地砖的长与宽.18.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?19.某水果商店从某地购进一种水果,根据市场调查这种水果在市场上的销售量(吨)与每吨的销售价(万元)之间的函数关系如图5所示,求出销售量与每吨销售价之间的函数关系式.20.一个由父亲、母亲、叔叔和个孩子组成的家庭去某地旅游.甲旅行社的收费标准是:如果买4张全票,则其余人按半价优惠;乙旅行社的收费标准是:家庭旅游算团体票,按原价的优惠.这两家旅行社的原价均为100元.试比较随着孩子人数的变化,哪家旅行社的收费额更优惠?北师大版八年级上册数学检测试卷第六章数据的分析一、选择题1.如果3,2,x,5的平均数是4,那么x等于()(a)2 (b)4 (c)6 (d)82.已知一组数据10,20,80,40,30,90,50,40,50,40,它的众数和中位数分别是()(a) 40,40 (b) 40,60 (c)50,45 (d)45,403.一个样本数据按从小到大的顺序的排顺列为13、14、19、、23、27、28、31,其中位数为22,则等于()(a)21 (b)22 (c)20 (d)234.某公司销售部有营销人员25人,销售部为了制定某种商品的销售定额,统计了25人某月的销售如下表:每人销售量(单位:件) 600 500 400 350 300 200人数(单位:人) 1 4 4 6 7 3公司营销人员该月销售的中位数是()(a)400件(b)350件(c)300件(d)360件5.某服装销售在进行市场占有率的调查时,他最应该关注的是()(a)服装型号的平均数(b)服装型号的众数(c)服装型号的在中位数(d)最小的服装型号6.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统计如下:命中环数(单位:环) 7 8 9 10甲命中相应环数的次数 2 2 0 1乙命中相应环数的次数 1 3 1 0从射击成绩的平均数评价甲、乙两人的射击水平,则()(a)甲比乙高(b)甲、乙一样(c)乙比甲高(d)不能确定7.5个整数从小到的排列,其中位数是4,如果这组数据的众数是6,则这5个整数的和可能是()(a)21 (b)22 (c)23 (d)248.为了让人们感受丢弃塑料袋对环境造成的影响程度,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31,如果该班有45名学生,那么根据上面提供的数据估计本周全班同学家中总共丢弃塑料袋的数量约为()(a)900个(b)1080个(c)1260个(d)1800个9.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为()(a)4 (b)8 (c)12 (d)2010.部队准备从新兵中组建一个升旗部队,抽查了一批新兵的身高,在这次实验中,部队最关心的是新兵身高数据的( )(a)平均数 (b)加权平均数 (c)中位数 (d)众数二、填空题11.一个小组共有6名学生,在一次“引体向上”的测试中,他们分别做了8,10,8,7,6,9个,这6个学生平均每人做了___个.12.一射击运动员在一次射击练习中打出的成绩是(单位:环):7,8,9,8,6,8,10,7,这组数据的众数是_________.13.在一节综合实践课上,六名同学做手工的数量(单位:件)分别为5,7,3,6,6,4,则这组数据的中位数为___件.14.下表是食品营养成分表的一部分(每100克食品可食部分营养成分的含量).蔬菜种类绿豆芽白菜油菜卷菜菠菜韭菜胡萝卜(红)碳水化合物(克)4344247在表中提供的碳水化合物的克数所组成的数据中,中位数是___,平均数是___.15.如图1描述了一家鞋店在一段时间里销售女鞋的情况:则这组数据的众数为___,中位数为___ .三、解答题16.已知四个数的和为33,其中一个数为12,那么其余三个数的平均数是多少?17.利用计算器计算下列数据的平均数:(1)9. 48,9. 46,9. 43,9. 49,9. 47,9. 45,9. 44,9. 42,9. 47,9. 46(2)某工人在30天中加工一种零件的日产量为2天51件,3天52件,6天53件,8天54件,7天55件,3天56件,1天59件,求这个工人平均每天加工零件多少件?18.某校八年级(1)班50名学生参加2018年贵阳市数学质量监控考试,全班学生的成绩统计如下表:成绩(分) 71 74 78 80 82 83 85 86 88 90 91 92 93人数 1 2 3 5 4 5 3 7 8 4 3 3 2请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是.(2)该班学生考试成绩的中位数是.(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.19.某班组织一次数学测试,全班学生成绩的分布情况如图2:(1)全班学生数学成绩的众数是______分,全班学生数学成绩为众数的有______人.(2)全班学生数学成绩的中位数是______分.(3)分别计算两个小组超过全班数学成绩中位数的人数占全班人数的百分比.20.甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下(单位:年):甲厂:4,5,5,5,5,7,9,12,13,15;乙厂:6,6,8,8,8,9,10,12,14,15;丙厂:4,4,4,6,7,9,13,15,16,16.请回答下列问题:(1)分别写出以上三组数据的平均数、众数、中位数;(2)这三个厂家的推销广告分别用了哪一种表示集中趋势的特征数?(3)如果你是顾客,宜选购哪家工厂的产品?为什么?参考答案第一章勾股定理一、选择题:1.d 2.a 3.d 4.b 5.a 6.b 7.a 8.a 9.c 10.a二、填空题:11.略 12.24 13.280 14.13 15.132三、16.12.8 17.42 18.连接ac,9619.汽车的速度为72 ,超速了. 20.2520(元)第二章实数一、选择题:1.c 2.d 3.c 4.a 5.d 6.b 7.d 8.d 9.b 10.d二、填空题:11., 12.3 13.略 14. 15.,三、16.(1)(2)(3)(4)17.每块砖的边长是 18.19. 20.(1)约244.95()(2)44091(元)第三章位置与坐标一、选择题:1.d 2.c 3.c 4.c 5.b 6.a 7.c 8.d 9.b 10.d二、填空题:11.(0,5)或(0,-5) 12.(6,1) 13.(,)14.(―5,―3) 15.(,)三、16.(1)a(0,3),b(-4,4),c(-2,1)(2)画图略,b (4,4)(3)画图略,a (0,-3) 17.(1)延长两线相交处就是c地的位置,略18.(1)变矮了(2)面积变成原来的4倍,变高了,变胖了 19.略20.存在,作a点关于轴的对称点a′,再连结a′c,则a′c与轴的交点即为点d. 第四章一次函数一、选择题:1.c 2.b 3.d 4.b 5.b 6.a 7.c 8.c 9.a 10.c二、填空题:11. 12.略 13.≤0 14. 15.三、16.(1)甲的速度比较快,略(2)每秒快1.5米17.(1)(2)320(千米)18.(5<<10) 19.(1)(2)2120.(1)(2)(3)略(4)11吨第五章二元一次方程组一、选择题:1.b 2.d 3.b 4.c 5.d 6.d 7.a 8.a 9.b 10.a二、填空题:11.代入,加减 12.略 13. 14.略 15.15三、16.(1)(2)(3)17.设地砖的长为,宽为,解得18.设钢笔每支为元,笔记本每本元,,解得19.20.甲旅行社的收费总额为:y1= 50x+350,乙旅行社的收费总额为:y2=75x+225.画出函数y1 、y2的图象,如图所示.由图象可以知道两直线的交点为(5,600),所以:(1) 当孩子数x<5时,乙旅行社的收费优惠;(2)当孩子数x=5时,两旅行社的收费相同;(3)当孩子数x>5时,甲旅行社的收费优惠.第六章数据的分析一、选择题:1.c 2.a 3.a 4.b 5.b 6.b 7.a 8.c 9.b 10.d二、填空题:11.8 12.8 13.5.5 4.4,4 15.21和30,24三、16.7 17.(1)9.457 (2)54 18.(1)88 (2)86 (3)不能19.(1)95,20 (2)92.5 (3)第一组:24%,第二组:26%20.(1)甲:平均数为7.9,众数为5,中位数为6.乙:平均数为9.6,众数为8,中位数为8.5.丙:平均数为9.4,众数为4,中位数为8.(2)甲厂用平均数、乙厂用众数、丙厂用中位数.(3)选购乙厂的,平均水平高.。

第二章《勾股定理与平方根》单元测试题(一)

第二章《勾股定理与平方根》单元测试题(一)

-343210-1-2DC B O A 八年级数学练习班级 姓名 得分一、选择题:(每题3分,共24分)1.16的平方根是A.4 B .±4 C.256 D .±256 2、下列说法正确的是( ).A 、81-的平方根是9±B 、任何数的平方是非负数,因而任何数的平方根也是非负C 、任何一个非负数的平方根都不大于这个数D 、2是4的平方根 3 .下列实数722,3,38,4,3π,0.1, 010010001.0-,其中无理数有 A.2个 B.3个 C.4个 D.5个4. 地球七大洲的总面积约是1494800002km ,如对这个数据保留3个有效数字可表示为 A .1492km B .1.5×1082km C .1.49×1082km D .1.50×1082km5. 如图,若数轴上的点A ,B ,C ,D 表示数-2,1,2,3,则表示74-的点P 应在线段 A .线段AB 上 B .线段BC 上 C .线段CD 上 D .线段OB 上6. 对于10.08与0.1008这两个近似数,它们的A .有效数字与精确位数都不相同B .有效数字与精确位数相同C .精确位数不同,有效数字相同D .有效数字不同,精确位数相同7.三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是 ( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形⒏ 一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达到该建筑物的最大高度是 A. 12米 B. 13米 C. 14米 D. 15米 二、填空题(每空2分,共40分)9、写出一个3到4之间的无理数 。

10、5的相反数是 ;=-|32|_______.-(比较大小) 11 若x 2=9,则x = ;若23-=y ,则y = .12. 算术平方根等于它本身的数是 ;立方根等于它本身的数是 . 13 数的平方根为3a+1,2a-6,则该数是 .14求图中直角三角形中未知的长度:b=__________,c=____________.。

八年级数学(上)第二章 勾股定理与平方根 课时练习:第4课时 平方根(1)

八年级数学(上)第二章 勾股定理与平方根 课时练习:第4课时 平方根(1)

八年级数学(上)第二章勾股定理与平方根第4课时平方根(一)(附答案)1.(1)因为32=9,(-3) 2=_________,所以3和-3都是_________的平方根;(2)2有_________个平方根,它们互为________数,记作________;(3)4的平方根是__________;(4)__________的平方根.2.若a、b分别是10的平方根,则a+b=________.3.(1)一个数的平方等于它本身,这个数是__________;(2)一个数的平方根等于它本身,这个数是_________.4.(1)16的平方根是________;0.25的平方根是________;1649的平方根是_________;(2)2.56的平方根是_________;(-2) 2的平方根是_________;10-2的平方根是_______.5.若4x+1的平方根是±5,则x=________.若x 2=16,则5-x的平方根是_________.6.一个正数n的两个平方根为m+1和m-3,则m=_________,n=__________.7.若式子13x-的平方根只有一个,则x的值是__________.8.下列说法正确的是( )A.116的平方根是14B.任何有理数都有平方根C.任何非负数都有两个平方根D.一个正数的两个平方根的和等于零9.下列各数中没有平方根的是( )A.216⎛⎫- ⎪⎝⎭B.216⎛⎫- ⎪⎝⎭C.216⎛⎫± ⎪⎝⎭D.1610.求下列各数的平方根:(1)144;(2)21;(3)116;(4)10-4;(5)(-3) 2.11.求下列各式中的x:(1)x2=36;(2)9-x2=0.12.下列各数有平方根吗?如果有,求出它的平方根;如果没有,说明理由.(1)-64;(2)0;(3)(-4) 2;(4)10-2.13.求下列方程中的x:(1)x 2+9 2=41 2;(2)x 2=(-4) 2;(3)(1-x) 2=9 2;(4)(2x-3) 2-9=16.14.(1)一个正数的平方等于361,求这个正数.(2)一个负数的平方等于169,求这个负数.(3)一个数的平方等于121,求这个数.参考答案1.(1)9 9 (2)2 相反(3)±2 (4)5 2.0 3.(1)1,0 (2)04.(1)±4 ±0.547±(2)±1.6 ±2110±5.6 ±3或±1 6.1 4 7.1 38.D 9.B10.(1)±12 (2)(3)14±(4)±10-2(5)±311.(1)x=±6 (2)x=±312.(1)没有理由略(2)0 (3)±4 (4)±10-113.(1)x=±40 (2)x=±4 (3)x=-8或x =10 (4)x=4或x=-1 14.(1)19 (2)-13 (3)±11。

八年级数学(上)第二章 勾股定理与平方根 检测卷(含答案)

八年级数学(上)第二章 勾股定理与平方根 检测卷(含答案)

第二章勾股定理与平方根检测卷(附答案)(总分100分时间90分钟)一、选择题(每小题3分,共30分)1.下列各组数中,不能作为直角三角形三边长的是( )A.9,12,15 B.7,24,25 C.6,8,10 D.3,5,7 2.(-6)2的平方根是( )A.-6 B.36 C.±6 D3.下列说法中不正确的是( )A.-2是4的一个平方根B8的立方根C.立方根等于它本身的数只有1和0 D.平方根等于它本身的数只有0 4.下列说法正确的是( )A.无限小数是无理数B.带根号的数都是无理数C.无理数是无限小数D.无理数是开方开不尽的数5.下列说法中正确的有( )①0的平方根是0;②1的平方根是1;③-1是1的平方根;④-1是-1的平方根;⑤8A.1个B.2个C.3个D.4个6.如图一直角三角形纸片,两直角边AC=6 cm,BC=8 cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于( )A.2 cm B.3 cmC.4 cm D.5 cm7.把32. 982保留三个有效数字,并用科学记数法表示为( )A.3.92×10 B.3.2982×10 C.33.0 D.3.30×108.数轴上的任何一点表示( )A.有理数B.无理数C.实数D.正数和负数9.如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是( ) A.12米B.13米C.14米D.15米10.要从电杆离地面4m处向地面拉—条长为5m的电缆,则地面电缆固定点与电线杆底部的距离应为( )A.5 m B.4 m C.3 m D.2 m二、填空题(每小题2分,共16分)11.直角三角形两条直角边的长分别为5、12,则斜边上的高为______.y+=,12_______()260则x+y=______.13.如图,在锐角三角形ABC中,AD⊥BC,AD=12,AC=13,BC=14.则AB=______.14.如图是一个育苗棚,棚宽a=6 m,棚高b=2.5 m,棚长d=10 m,则覆盖在棚斜面上的塑料薄膜的面积为______m2.15.如图所示,15只空油桶(每只油桶底面直径均为60 cm)堆在一起,要给它盖一个遮雨棚,遮雨棚起码要_______cm 高.16.若一正数的两个平方根是2a -l 与-a +2,则a =______.17.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是______.18.如图,已知Rt △ABC 是直角边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是______. 三、解答题(19题8分,20题6分,其余每题各10分,共54分) 19.求下列各式中x 的值(1)5x 2-10=0; (2)25(m +2)2-49=0;20.把下列实数填在相应的集合中2273,0.1,-0.010010001…,-5. 正整数集合{ }. 正有理数集合{ }. 无理数集合{ }.21.《中华人民共和国道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街道上直道行驶,如图某一时刻刚好行驶到路对面“车速检测仪A ”正前方50米C 处,过了6秒后,测得“小汽车”位置B 与“车速检测仪A ”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.22.如图,一张长方形纸片宽AB =8 cm ,长BC =10 cm .现将纸片折叠,使顶点D 落在BC 边上的点F 处(折痕为AE),求EC 的长.23.先观察下列等式,再回答问题:111111112=+-=+111112216=+-=+1111133112=+-=+…(1) (2)请按照上面各等式反映的规律,试写出用n(n 为正整数)表示的等式.24.在图中.正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.操作示例当2b<a时,如图①,在BA上选取点G,使BG=b,连接FG和CG,裁掉△FAG 和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.思考发现小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH 的位置,易知EH与AD在同一直线上,连接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图①),过点F作FM⊥AE于点M(图略),利用“SAS”可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.实践探究(1)正方形FGCH的面积是______ ;(用含a,b的式子表示)(2)类比①的剪拼方法,请你就②~④的三种情形分别画出剪拼成一个新正方形的示意图.联想拓展小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G 的位置在BA方向上随着b的增大不断上移.当b>a时,如⑤的图形能否剪拼成一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由.参考答案1.D 2.C 3.C 4.C 5.B 6.B 7.D 8.C 9.A 10.C 11.601312.±2,±1,0 -213.15 14.65 15.60) 16.-1 17.47 1819.(1)x (2)m =-35或-17520.正整数集合{.正有理数集合{227,0.1}.无理数集合3π,-0.010010001…}. 21.小汽车超速了. 22.EC 长3cm23.(1)1111144120+-=- (2) 11(1)n n =++ 24.(1)22a b +(2)剪拼方法如图联想拓展 能; 剪拼方法如图④。

第二章 勾股定理与平方根测试

第二章 勾股定理与平方根测试

《勾股定理和平方根》单元测试9.22命题:徐红石 审核:席美丽 时间:45分钟班级 姓名____ ___学号一、选择题(本题共5题,每题3分,共15分)1.下列几组数中不能作为直角三角形三边的是 ( )A a 7,b 24,c 25===B 1.5,2, 2.5a b c ===C 25,2,34a b c ===D 15,8,17a b c === 2.小强量得家里彩电屏幕长为cm 58,宽为cm 46,则这台彩电尺寸(即为对角线)是( )A 9英寸(23cm )B 21英寸(54cm )C 29英寸(74cm )D 34英寸(87cm )3.等腰三角形腰长5cm ,底边6cm ,其面积是 ( )A 248cmB 224cmC 212cmD 216cm4.直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A 2ab h =B 2222a b h +=C 111a b h+= D 222111a b h += 5.如图一直角三角形纸片,两直角边6,8AC cm BC cm ==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A cm 2B cm 3C cm 4D cm 5 二、填空题(本题共15空,每空3分,共45分)6.下列实数(1)3.1415926 .(2)0.3 22(3)7(5)- (6)2(7)0.3030030003... 其中无理数有 ,有理数有 .(填序号)7.49的平方根________,0.216的立方根________.________, 8.算术平方根等于它本身的数有 ,立方根等于本身的数有________.9.若2256x =,则x =______ __,若3216x =-,则x =________.10.已知甲往东走了4km ,乙从同处出发往南走了3km ,这时甲、乙俩人相距 .A EB DC 第5题图11,则它的算术平方根是 .12.x是2(-的平方根,y 是64的立方根,则x y += .13.如果2(6)0y +=,则x y += .14.如果21a -和5a -是一个数m 的平方根,则.a =15.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为 .三、计算题(本题共2题,每题4分,共8分)16.求下列各式中x 的值2(1)(1)25x -=;; 3(2)(3)27x --=.四、作图题(本题共2题,每题4分,共8分)17.在数轴上画出-18.下图的正方形网格,每个正方形顶点叫格点,请在图中画一个面积为10的正方形.第17题图第18题图— 3 —五、解答题(本题共4题,每题6分,共24分)19.如图,一根电线杆因超过使用寿命被大风刮倒,折断处离地面9m ,电线杆顶部在离电线杆底部12m ,处,这根电线杆在折断前有多少米?20.已知如图所示,四边形ABCD 中,3,4,13,12AB cm AD cm BC cm CD cm==== 090A ?求四边形ABCD 的面积.21.如图,有一只小鸟上从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解).A 第19题图22拼图填空:材料:硬纸板、剪刀、三角板,方法:剪裁、拼图、探索,操作:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,如图①。

2022年沪科版八年级数学下册第18章 勾股定理章节测评试题(含解析)

2022年沪科版八年级数学下册第18章 勾股定理章节测评试题(含解析)

八年级数学下册第18章勾股定理章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1C.6,8,13 D.5,12,152、如图,数轴上点A所表示的数是()A B C D 13、小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m,当他把绳子的下端拉开8m 后,下端刚好接触到地面,则学校旗杆的高度为()A.10m B.12m C.15m D.18m4、如图,在Rt△ABC中,∠C=90°,AC=12,AB=13,AB边的垂直平分线分别交AB、AC于N、M两点,则△BCM的周长为()A.18 B.16 C.17 D.无法确定5、如图,在△ABC中,∠A=90°,AB=6,BC=10,EF是BC的垂直平分线,P是直线EF上的任意一点,则PA+PB的最小值是()A.6 B.8 C.10 D.126、下列条件中,能判断△ABC是直角三角形的是()A.a:b:c=3:4:4 B.a=1,b,cC.∠A:∠B:∠C=3:4:5 D.a2:b2:c2=3:4:57、下列命题中,逆命题不正确的是()A.如果关于x的一元二次方程ax2+bx+c=0(a≠0)没有实数根,那么b2﹣4ac<0B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.全等三角形对应角相等D.直角三角形的两条直角边的平方和等于斜边的平方8、下列命题属于假命题的是()A.3,4,5是一组勾股数B.内错角相等,两直线平行C.三角形的内角和为180°D.9的平方根是39、下列各组数中,能作为直角三角形三边长的是()A.1,2B.8,9,10 C D10、如图所示,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD,则BC的长为()A B C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、圆锥体的高为4cm,圆锥的底面半径为3cm,则该圆锥的表面积为___________.2、如图,△ABC中,∠ACB=90°,AC=4,BC=3,射线CD与边AB交于点D,点E、F分别为AD、BD中点,设点E、F到射线CD的距离分别为m、n,则m+n的最大值为________.3、禅城区某一中学现有一块空地ABCD如图所示,现计划在空地上种草皮,经测量90∠,B= ====,若每种植1平方米草皮需要300元,总共需投入______元AB BC m CD AD3m,4,13m,12m4、如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”:当AC=6,BC=8时,则阴影部分的面积为_____.5、如图,点A为等边三角形BCD外一点,连接AB、AD且AB=AD,过点A作AE∥CD分别交BC、BD 于点E、F,若3BD=5AE,EF=6,则线段AE的长 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,∠C 90°.(1)用尺规作图,保留作图痕迹,不写作法:在边BC 上求作一点D ,使得点D 到AB 的距离等于DC 的长;(2)在(1)的条件下,若AC =6,AB =10,求CD 的长.2、已知一次函数26y x =--.(1)画出函数图象.(2)不等式26x -->0的解集是_______;不等式26x --<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.3、在Rt ACB ∆中,90ACB ∠=︒,6CA CB ==,点P 是线段CB 上的一个动点(不与点B ,C 重合),过点P 作直线l CB ⊥交AB 于点Q .给出如下定义:若在AC 边上存在一点M ,使得点M 关于直线l 的对称点N 恰好在.ACB △的边上...,则称点M 是ACB △的关于直线l 的“反称点”.例如,图1中的点M 是ACB △的关于直线l 的“反称点”.(1)如图2,若1CP =,点1M ,2M ,3M ,4M 在AC 边上且11AM =,22AM =,34AM =,46AM =.在点1M ,2M ,3M ,4M 中,是ACB △的关于直线l 的“反称点”为______;(2)若点M 是ACB △的关于直线l 的“反称点”,恰好使得ACN △是等腰三角形,求AM 的长;(3)存在直线l 及点M ,使得点M 是ACB △的关于直线l 的“反称点”,直接写出线段CP 的取值范围.4、如图,在△ABC 和△DEB 中,AC ∥BE ,∠C =90°,AB =DE ,点D 为BC 的中点,12AC BC =. (1)求证:△ABC ≌△DEB .(2)连结AE ,若BC =4,直接写出AE 的长.5、如图,ABC 是边长为6cm 的等边三角形,点P ,Q 分别从顶点A ,B 同时出发,点P 沿射线AB 运动,点Q 沿折线BC CA -运动,且它们的速度都为1cm/s .当点Q 到达点A 时,点P 随之停止运动连接PQ ,PC ,设点P 的运动时间为(s)t .(1)当点Q在线段BC上运动时,BQ的长为_______(cm),BP的长为_______(cm)(用含t的式子表示);(2)当PQ与ABC的一条边垂直时,求t的值;(3)在运动过程中,当CPQ是等腰三角形时,直接写出t的值.-参考答案-一、单选题1、B【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、52+42≠62,不能构成直角三角形,故不符合题意;B、12+122,能构成直角三角形,故符合题意;C、62+82≠132,不能构成直角三角形,故不符合题意;D、122+52≠152,不能构成直角三角形,故不符合题意.故选:B.【点睛】本题考查勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键.2、D【分析】先根据勾股定理计算出BC BA=BC AD的长,接着计算出OA的长,即可得到点A所表示的数.【详解】解:如图,BD=1﹣(﹣1)=2,CD=1,∴BC∴BA=BC∴AD2,∴OA=21,∴点A1.故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键.3、C【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+2)m,再利用勾股定理即可求得AB的长,即旗【详解】解:根据题意画出图形如下所示:则BC=8m,设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+2)2,解得x=15,故AB=15m,即旗杆的高为15m.故选:C.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.4、C【分析】根据勾股定理求出BC的长,根据线段垂直平分线的性质得到MB=MA,根据三角形的周长的计算方法代入计算即可.解:在Rt△ABC中,∠C=90°,AC=12,AB=13,∴由勾股定理得,5BC=,∵MN是AB的垂直平分线,∴MB=MA,∴△BCM的周长=BC+CM+MB=BC+CM+MA=BC+CA=17,故选C.【点睛】本题主要考查了线段垂直平分线的性质,勾股定理,熟知线段垂直平分线的性质是解题的关键.5、B【分析】如图,由线段垂直平分线的性质可知PB=PC,则有PA+PB=PA+PC,然后可知当点A、P、C三点共线时,PA+PB取得最小值,即为AC的长.【详解】解:如图,连接PC,∵EF是BC的垂直平分线,∴PB=PC,∴PA +PB =PA +PC ,∴PA +PB 的最小值即为PA +PC 的最小值,当点A 、P 、C 三点共线时,PA +PB 取得最小值,即为AC 的长,∴在Rt △ABC 中,∠A =90°,AB =6,BC =10,由勾股定理可得:8AC ,∴PA +PB 的最小值为8;故选B .【点睛】本题主要考查垂直平分线的性质及勾股定理,熟练掌握垂直平分线的性质及勾股定理是解题的关键.6、B【分析】根据勾股定理的逆定理,以及三角形的内角等于180︒逐项判断即可.【详解】A ,设3a x =,4b x ,4=c x ,此时()()()222344x x x +≠,故ABC 不能构成直角三角形,故不符合题意;B ,2221+=,故ABC 能构成直角三角形,故符合题意 C ,::3:4:5A B C ∠∠∠=且180A B C ∠+∠+∠=︒,设3A x ∠=,4B x ∠=,5C x ∠=,则有12180x =︒,所以15x =︒,则75C ∠=︒,故ABC 不能构成直角三角形,故不符合题意;D ,设23a x =,24b x =,25c x =,则345x x x +≠,即222a b c +≠,故ABC 不能构成直角三角形,故不符合题意;故选:B【点睛】本题考查了勾股定理的逆定理,和三角形的内角和等知识,能熟记勾股定理的逆定理内容和三角形内角和等于180 是解题关键.7、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】解:A.逆命题为:如果一元二次方程ax2+bx+c=0(a≠0)中b2﹣4ac<0,那么它没有实数根,正确,不符合题意;B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;C.逆命题为:对应角相等的两三角形全等,错误,符合题意;D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意.故选:C【点睛】本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键.8、D【分析】利用勾股数的定义、平行线的判定、三角形的内角和及平方根的定义分别判断后即可确定正确的选项.【详解】解:A、3,4,5是一组勾股数,正确,是真命题,不符合题意;B、内错角相等,两直线平行,正确,是真命题,不符合题意;C、三角形的内角和为180°,正确,是真命题,不符合题意;D、9的平方根是±3,故原命题是假命题,符合题意.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解勾股数的定义、平行线的判定、三角形的内角和及平方根的定义,难度不大.9、A【分析】比较较小的两边的平方和是否等于较长边的平方来判定即可.【详解】解:A、222+=,能构造直角三角形,故符合题意;12B、222081,不能构造直角三角形,故不符合题意;9C、222+≠,不能构造直角三角形,故不符合题意;D、222+≠,不能构造直角三角形,故不符合题意;故选:A.【点睛】此题考查勾股定理的逆定理,三角形的两边的平方和等于第三边的平方,则此三角形为直角三角形,熟练运用这个定理是解题关键.10、B【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【详解】解:∵∠ADC =2∠B ,∠ADC =∠B +∠BAD ,∴∠B =∠DAB ,∴BD =AD ,在Rt△ADC 中,∠C =90°,∴DC,∴BC =BD +DC 故选:B .【点睛】本题考查了等角对等边,勾股定理,求得BD AD =是解题的关键.二、填空题1、224cm π【分析】先利用勾股定理求出SA 的长,再根据表面积公式进行求解即可.【详解】解:∵圆锥体的高为4cm ,圆锥的底面半径为3cm ,∴5cm SA =,∴该圆锥的表面积22=15924cm rl r πππππ+=+=,故答案为:224cm π.【点睛】本题主要考查了圆锥的表面积,勾股定理,求出母线长是解题的关键.2、2.5【分析】连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,首先根据中线的性质和三角形面积公式得出132FCE ABC S S ∆∆==,然后证明出当CD 的长度最小时,m +n 的值最大,然后根据垂线段最短和等面积法求出CD 的最小值,即可求出m +n 的最大值.【详解】解:连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,∵点E 是AD 的中点,点F 是BD 的中点,∴CE 是ACD ∆中AD 边上的中线,CF 是BCD ∆中BD 边上的中线, ∴12ACE DCE ACD S S S ∆∆∆==,12BCF DCF BCD S S S ∆∆∆==, ∴11111322222FCE DCE DCF ACD BCD ABC S S S S S S AC BC ∆∆∆∆∆∆=+=+==⨯⨯⨯=, ∴11322CD EM CD FN ++=,∴()132CD EM FN +=,即()132CD m n +=, ∴()6CD m n +=,∴当CD 的长度最小时,m +n 的值最大,∴当CD AB ⊥时,CD 的长度最小,此时m +n 的值最大,∵△ABC 中,∠ACB =90°,AC =4,BC =3,∴AB 5, ∴162CD AB ⨯⨯=,解得:125CD =, ∴将125CD =代入()6CD m n +=得: 2.5m n +=. 故答案为:2.5.【点睛】此题考查了勾股定理,中线的性质,三角形面积的应用,垂线段最短等知识,解题的关键是根据题意作出辅助线,正确分析出当CD AB ⊥时m +n 的值最大.3、10800【分析】仔细分析题目,需要求得四边形的面积才能求得结果,在直角三角形ABC 中可求得AC 的长,由AC 、AD 、DC 的长度关系可得ACD △为直角三角形,CD 为斜边;由此可知,四边形ABCD 由t R ABC 和Rt ACD △构成,即可求解.【详解】解:在t R ABC 中,∵222222=345AC AB BC +=+=,∴AC =5.在ACD △中,2213CD =,2212AD =,而22212513+=,即222AC AD CD +=,∴90DAC ∠=︒, 即:11=22BAC DAC ABCD S SS BC AB CD AC +=+四边形 =11431253622⨯⨯+⨯⨯=.所以需费用:3630010800⨯=(元).故答案为10800.【点睛】本题考查了勾股定理,逆定理的相关知识,以及割补法求图形的面积,熟练掌握勾股定理及其逆定理是解答本题的关键.4、24【分析】根据勾股定理求出AB ,分别求出三个半圆的面积和△ABC 的面积,两小半圆与直角三角形的和减去大半圆即可得出答案.【详解】解:在Rt △ACB 中∠ACB =90°,AC =6,BC =8,由勾股定理得:AB =10,阴影部分的面积2221618111068242222222S πππ⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯+⨯⨯-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故答案为:24.【点睛】本题主要考查勾股定理和圆有关的不规则图形的阴影面积.利用规则图形面积的和差关系求阴影面积是这类题型的关键.勾股定理是解决三角形中线段问题最有效的方法之一.5、9【分析】连接AC交BD于点O,可得AC是BD的垂直平分线,设BD=5x,则AE=3x,求出OF=OB-BF=52x-6,AF=AE-EF=3x-6,证明△BOE是等边三角形,得30AFE∠=︒,利用AF=2OF列出方程求出x的值,进而可得AE的长.【详解】解:如图,连接AC交BD于点O,∵3BD=5AE,∴53 BDAE=,设BD=5x,则AE=3x,∵△BCD是等边三角形,∴BC=CD=BD=5x,∠DCB=∠DBC=60°,∵AB=AD,BC=CD,∴AC是BD的垂直平分线,∴OB=OD=52x,OC平分∠BCD,∴∠DCO=12∠DCB=30°,∵AE ∥CD ,∴∠DCO =30°,∴OC ==, ∵AE ∥CD ,∴∠AEB =∠BCD =60°,∴∠AEB =∠FBE =∠BFE =60°,∴△BEF 是等边三角形,∴BE =BF =EF =6,∴OF =OB -BF =52x -6,AF =AE -EF =3x -6,∵60BFE ∠=︒∴30AFE ∠=︒∴2AF OF = ∴5362(6)2x x -=-解得x =3,∴AE =AF +EF =3x -6+6=3x =9.故答案为:9.【点睛】本题考查了垂直平分线的判定与性质,勾股定理,等边三角形的判定与性质,直角三角形的性质,解决本题的关键是得到AF =2OF 列出方程求解.三、解答题1、(1)图见详解;(2)3.【分析】(1)根据题意作∠BAC 的平分线交BC 于D ,根据角平分线的性质得到点D 满足条件;(2)根据题意作DE ⊥AB 于E ,先根据勾股定理计算出BC =8,再根据角平分线性质得到DC =DE ,通过证明Rt △ACD ≌Rt △AED 得到AE =AC =6,则EB =4,设CD =x ,则BD =8-x ,在Rt △BED 中,利用勾股定理得到x 2+42=(8-x )2,解方程求出即可.【详解】解:(1)如图,点D 即为所作;(2)作DE ⊥AB 于E ,如上图,在Rt △ABC 中,BC ,∵AD 为角平分线,∴DC =DE ,在Rt △ACD 和Rt △AED 中AD AD DC DE =⎧⎨=⎩, ∴Rt △ACD ≌Rt △AED (HL ),∴AE =AC =6,∴EB =AB -AE =10-6=4设CD =x ,则DE =x ,则BD =8-x ,在Rt△BED中,x2+42=(8-x)2,解得x=3,∴CD=3.【点睛】本题考查作图-复杂作图以及全等三角形判定和角平分线定理、勾股定理,注意掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.2、(1)见解析;(2)x<-3;x>-3;(3)BC=【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x <-3时,一次函数y =-2x -6的图象在x 轴上方;当x >-3时,一次函数y =-2x -6的图象在x 轴下方.∴不等式-2x -6>0的解集是x <-3;不等式-2x -6<0的解集是x >-3.故答案是:x <-3,x >-3;(3)∵B (-3,0),C (0,-6),∴OB =3,OC =6,∴BC =【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x 轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.3、(1)2M 和4M ;(2)3或6;(3)03CP <≤【分析】(1)根据反称点的定义进行判断即可;(2)ACN △是等腰三角形分三种情况讨论求解即可;(3)根据“反称点的定义”判断出CP 的取值范围即可.【详解】解:(1)∵CP =1∴M 点到PQ 的距离为1∵M 、N 关于PQ 对称,∴N 点到PQ 的距离为1∴MN =2如图,1N 在ABC ∆外部,3N 在ABC ∆内部,均不符合题意,∵90ACB ∠=︒,6CA CB ==,∴ABC ∆是等腰直角三角形,∴45A B ∠=∠=︒∵222222,2,AM M N M N AC ==⊥∴2N 在AB 边上,∵46AM =,∴4M 与点C 重合,4M 与4N 关于PQ 对称,4N 在BC 上,∴点1M ,2M ,3M ,4M 中,是ACB △的关于直线l 的“反称点”为2M 和4M故答案为:2M 和4M(2)ACN △是等腰三角形分三种情况:如图,①当11AN CN =时,∵ABC ∆是等腰直角三角形∴1N 是AB 边的中点,1116322AM AC ==⨯= ②当2AC AN =时,此时2=6AN∵22M N //BC∴2290AM N ∠=︒∵45A ∠=︒∴22AM N ∆是等腰直角三角形,且222AM M N =∴2222222AM M N AN +=∴22226AM =∴2AM =③当3AC CN =时,此时,3N 与点B 重合,3M 与点C 重合,∴3AM =AC =6综上,AM 的长为3或6;(3)如图,∵M 是AC 边上的点,CB =6∴当03CP <≤时,在AC 边上至少有一个点M 关于PQ 的对称点在AB 边上,当3CP '>时,如图所示,此时AC 上的所有点到P Q ''的距离都大于3,即6MN >,M 关于P Q ''的对称点都在ABC ∆的外部,∴03CP <≤【点睛】本题主要考查了等腰直角三角形的性质,勾股定理,对称的性质等知识,正确理解反对称点的定义是解答本题的关键4、(1)见解析;(2)【分析】(1)根据平行可得∠DBE =90°,再由HL 定理证明直角三角形全等即可;(2)构造Rt AHE ,利用矩形性质和勾股定理即可求出AE 长.【详解】(1)∵AC ∥BE ,∴∠C +∠DBE =180°.∴∠DBE =180°-∠C =180°-90°=90°.∴△ABC 和△DEB 都是直角三角形.∵点D 为BC 的中点,12AC BC =,∴AC =DB . ∵AB =DE ,∴Rt △ABC ≌Rt △DEB (HL ).(2)AE =过程如下:连接AE 、过A 点作AH ⊥BE ,∵∠C =90°,∠DBE =90°.∴AC BH ∥,AH BC ∥,∴AH =BC =4, 122BH AC BC ===,∴2EH EB EH =-=,在Rt AHE 中,AE =【点睛】本题主要考查了直角三角形全等的判定和勾股定理解三角形,解题关键是构造直角三角形,利用用平行线间的距离处处相等得线段AH =BC ,从而利用勾股定理求AE .5、(1)t ;()6t -;(2)当2t =或4t =或8t =时,PQ 与ABC 的一条边垂直;(3)当3t =或9t =时,ΔΔΔΔ为等腰三角形.【分析】(1)根据点的位置及运动速度可直接得出;(2)根据题意分三种情况讨论:①当PQ CB ⊥时,90PQB ∠=︒;②当PQ AB ⊥时,90QPB ∠=︒;③当PQ AC ⊥时,90AQP ∠=︒;作出图形,分别应用直角三角形中30︒角的特殊性质求解即可得;(3)根据题意,分四种情况进行讨论:①当点Q 在BC 边上时,CQ PQ =时;②当点Q 在BC 边上时,CP CQ =时;③当点Q 在BC 边上时,CP PQ =时;④当点Q 在AC 边上时,只讨论CP PQ =情况;分别作出四种情况的图形,然后综合运用勾股定理及解一元二次方程求解即可.【详解】解:(1)点Q 从点B 出发,速度为1/cm s ,点P 从点A 出发,速度为1/cm s ,∴BQ tcm =,AP tcm =,∴()6BP t cm =-,故答案为:t ;()6t -;(2)根据题意分三种情况讨论:①如图所示:当PQ CB ⊥时,90PQB ∠=︒,∵三角形ABC 为等边三角形,∴60A ACB ABC ∠=∠=∠=︒,∴30QPB ∠=︒, ∴12QB PB =,由(1)可得:()162t t =-, 解得:2t =;②如图所示:当PQ AB ⊥时,90QPB ∠=︒,∵60ABC ∠=︒,∴30BQP ∠=︒,∴2QB PB =,由(1)可得:()26t t =-,解得:4t =;③如图所示:当PQ AC ⊥时,90AQP ∠=︒,∵60A ∠=︒,∴30APQ ∠=︒,∴2AP QA =,由(1)可得:()212t t =-,解得:8t =;综上可得:当2t =或4t =或8t =时,PQ 与ABC 的一条边垂直;(3)根据题意,分情况讨论:①当点Q 在BC 边上时,CQ PQ =时,如图所示:过点Q 作QE AB ⊥,∵60ABC ∠=︒,∴30BQE ∠=︒, ∴1122BE BQ t ==,∴QE =, 6CQ t =-,136622PE t t t =--=-,∴PQ ==∵CQ PQ =,∴()2223662t t ⎫⎛⎫-=-+⎪ ⎪⎪⎝⎭⎝⎭,解得:3t =或0t =(舍去);②当点Q 在BC 边上时,CP CQ =时,如图所示:过点P 作PF AC ⊥,∵60CAB ∠=︒,∴30APF ∠=︒, ∴1122AF AP t ==,∴PF =, 6CQ t =-,162CF t =-,∴CP ==∵CP CQ =,∴()2221662t t ⎫⎛⎫-=-+⎪ ⎪⎪⎝⎭⎝⎭, 解得: 0t =(舍去);③当点Q 在BC 边上时,CP PQ =时,如图所示:由图可得:60CQP ∠>︒,60QCP ∠<︒,CQP QCP ∠≠∠,∴这种情况不成立;④当点Q 在AC 边上时,只讨论CP PQ =情况,如图所示:过点Q 作QE AB ⊥,过点C 作CF AB ⊥,∵60CAB ∠=︒,ABC ∆为等边三角形,∴30AQE ∠=︒,3AF BF ==,∴CF =12AQ t =-, ∴162AE t =-,∴)12QE t =-, ∴136622EP t t t ⎛⎫=--=- ⎪⎝⎭,∴PQ ==∵CF =3PF t =-,∴PC =∵PC PQ =,∴()(()222233126342t t t ⎛⎫-+-=+- ⎪⎝⎭, 解得:19t =或26t =(舍去),综上可得:当3t =或9t =时,ΔΔΔΔ为等腰三角形.【点睛】题目主要考查三角形与动点问题,包括勾股定理的应用,含30︒角的直角三角形的特殊性质,等腰三角形的判定和性质,求解一元二次方程等,根据题意,作出相应图形,然后利用勾股定理求解是解题关键.。

第二章_勾股定理与平方根测试

第二章_勾股定理与平方根测试

第二章 勾股定理与平方根 单元测试一、填空题1、下列和数1415926.3)1( .3.0)2( 722)3( 2)4( 38)5(-2)6(π (3030030003).0)7( 其中无理数有________,有理数有________(填序号) 2、94的平方根________,216.0的立方根________。

3、16的平方根________,64的立方根________。

4、算术平方根等于它本身的数有________,立方根等于本身的数有________。

5、若2562=x ,则=x ________,若2163-=x ,则=x ________。

6、已知ABC Rt ∆两边为3,4,则第三边长________。

7、若三角形三边之比为3:4:5,周长为24,则三角形面积________。

8、已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形。

9、如果0)6(42=++-y x ,则=+y x ________。

10、如果12-a 和-5是一个数m 的平方根,则.__________,==m a11、三角形三边分别为8,15,17,那么最长边上的高为________。

12、直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________。

二、选择题13、下列几组数中不能作为直角三角形三边长度的是( ) A 25,24,6===c b a B 5.2,2,5.1===c b a C 45,2,32===c b aD 17,8,15===c b a14、小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( ) A 9英寸(cm 23) B 21英寸(cm 54) C 29英寸(cm 74) D 34英寸(cm 87) 15、等腰三角形腰长cm 10,底边cm 16,则面积( ) A 296cmB 248cmC 224cmD 232cm16、三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是( ) A 锐角三角形B 钝角三角形C 直角三角形D 等腰三角形17、2)6(-的平方根是( ) A 6-B 36C ±6D 6±18、下列命题正确的个数有:a a a a==233)2(,)1((3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( ) A 1个 B 2个 C 3个D 4个19、x 是2)9(-的平方根,y 是64的立方根,则=+y x ( ) A 3 B 7 C 3,7 D 1,7 20、直角三角形边长度为5,12,则斜边上的高( ) A 6B 8C1318 D136021、直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( ) A 2h ab =B 2222h b a =+ Chb a 111=+ D222111hba=+22、如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A cm 2 B cm 3 C cm 4 D cm 5 三、计算题23、求下列各式中x 的值04916)1(2=-x 25)1)(2(2=-x8)2)(3(3-=x27)3()4(3=--x四、作图题 25、在数轴上画出8-的点。

八年级数学下册第十七章勾股定理单元检测习题一(含答案) (24)

八年级数学下册第十七章勾股定理单元检测习题一(含答案) (24)

八年级数学下册第十七章勾股定理单元检测习题一(含答案)如图,每个小正方形的边长为1,剪一剪,并拼成一个大正方形,()1画出拼成的正方形图形;()2请求这个拼成的正方形的周长.【答案】(1)见解析;【解析】【分析】()1根据正方形的判定作图可得.()2由图可知每个小正方形的边长为1,面积为1,得出拼成的小正方形的面积为5【详解】解:()1分割图形如下:()2=【点睛】本题主要考查作图-应用与设计作图,解题的关键是掌握正方形的判定与勾股定理.102.如图,在△ABC中,∠ACB=90°,CD⊥AB于D.把三角形沿AE 对折使点C落在AB边上的点F上,CD与折痕AE相交于G,连结FG并延长交AC于H.(1)判断FH与BC的位置关系,并说明理由;(2)判断HG与DG的数量关系,并说明理由.【答案】(1)FH∥BC;理由见解析;(2)HG=DG;理由见解析.【解析】试题分析:(1)连接EF,根据翻折变换的性质可得∠CAE=∠EAF,∠AFE=90°,CE=EF,根据垂直的定义可得∠ADC=90°,然后根据同位角相等,两直线平行判断出EF∥CD,然后根据等角的余角相等求出∠AGD=∠AEC,再求出∠CGE=∠AEC,根据等角对等边可得CG=CE,然后求出CG=EF,再根据一组对边平行且相等的四边形是平行四边形判断出四边形CEFG是平行四边形,根据平行四边形对边平行可得GF∥CE,即FH∥BC;(2)根据两直线平行,同位角相等可得∠AHG=∠ACB=90°,再根据角平分线上的点到角的两边距离相等可得HG=DG.试题解析:(1)解:如图,连接EF,由翻折的性质得,∠CAE=∠EAF,∠AFE=∠ACB=90°,CE=EF,∵CD⊥AB,∴∠ADC=90°,∴∠ADC=∠AFE,∴EF∥CD,∵∠CAE=∠EAF,∠CAE+∠AEC=∠EAF+∠AGD=90°,∴∠AGD=∠AEC,又∵∠AGD=∠CGE(对顶角相等),∴∠CGE=∠AEC,∴CE=CG,∴CG=EF,∴四边形CEFG是平行四边形,∴GF∥CE,即FH∥BC;(2)解:∵FH∥BC,∴∠AHG=∠ACB=90°,又∵∠CAE=∠EAF,∴HG=DG.考点:翻折变换(折叠问题).103.如图,矩形ABCD中,AB=6cm,BC=8cm,E、F是对角线AC 上的两个动点,分别从A、C同时出发,相向而行,速度均为2cm/s,运动时间为t(0≤t≤5)秒.(1)若G、H分别是AB、DC的中点,且t≠2.5s,求证:以E、G、F、H为顶点的四边形始终是平行四边形;(2)在(1)的条件下,当t为何值时?以E、G、F、H为顶点的四边形是矩形;(3)若G、H分别是折线A-B-C,C-D-A上的动点,分别从A、C开始,与E.F相同的速度同时出发,当t为何值时,以E、G、F、H为顶点的四边形是菱形,请直接写出t的值.【答案】(1)证明见解析;(2)当t为4.5秒或0.5秒时,四边形EGFH是秒时,四边形EGFH是菱形.矩形;(3)t为318【解析】【分析】(1)根据勾股定理求出AC,证明△AFG≌△CEH,根据全等三角形的性质得到GF=HE,利用内错角相等得GF∥HE,根据平行四边形的判定可得结论;(2)如图1,连接GH,分AC-AE-CF=8.AE+CF-AC=8两种情况,列方程计算即可;(3)连接AG.CH,判定四边形AGCH是菱形,得到AG=CG,根据勾股定理求出BG,得到AB+BG的长,根据题意解答.【详解】解:(1)∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∠B=90°,∴∠BAC=∠DCA,∵AB=6cm,BC=8cm,∴AC=10cm,∵G、H分别是AB、DC的中点,∴AG=12AB,CH=12CD,∴AG=CH,∵E、F是对角线AC上的两个动点,分别从A、C同时出发,相向而行,速度均为2cm/s,∴AE=CF,∴AF=CE,∴△AGF≌△CHE(SAS),∴GF=HE,∠AFG=∠CEH,∴GF∥HE,∴以E、G、F、H为顶点的四边形始终是平行四边形;(2)如图1,连接GH,由(1)可知四边形EGFH是平行四边形,∵G、H分别是AB.DC的中点,∴GH=BC=8cm,∴当EF=GH=8cm时,四边形EGFH是矩形,分两种情况:①若AE=CF=2t,则EF=10-4t=8,解得:t=0.5,②若AE=CF=2t,则EF=2t+2t-10=8,解得:t=4.5,即当t为4.5秒或0.5秒时,四边形EGFH是矩形;(3)如图2,连接AG、CH,∵四边形GEHF是菱形,∴GH⊥EF,OG=OH,OE=OF,∵AF=CE∴OA=OC,∴四边形AGCH是菱形,∴AG=CG,设AG=CG=x,则BG=8-x,由勾股定理得:AB2+BG2=AG2,即62+(8-x)2=x2,解得:x=254,∴BG=8-254=74,∴AB+BG=6+74=314,t=314÷2=318,即t为318秒时,四边形EGFH是菱形.本题是四边形的综合题,考查了矩形的性质.平行四边形的判定和菱形的判定,掌握矩形的性质定理.菱形的判定定理,灵活运用分情况讨论思想是解题的关键.104.阅读材料:分析探索题:细心观察如图⑴,认真分析各式,然后解答问题.222(2)48OA =+= 12S =;223412OA =+= 2S ===224416OA =+= 3S ===……⑴请用含有n (n 为正整数)的等式n S = ;⑵推算出10OA = .求出222123S S S +++……210S +的值.【答案】(1);(2) ;222123S S S +++……210S +的值:220【解析】【分析】(1)此题要利用直角三角形的面积公式,观察上述结论,会发现,第n 个图形的一直角边OAn 就是,然后利用面积公式可得.(2)由(1)所得规律可求出OA 10的值;根据(1)得出的规律直接代入数据,然后利用求和公式计算即可得解.(1)结合已知数据,可得: OA n=1S 22n =⨯=; (2)OA10;(((()2222123102222S +S +S +......2......4812 (40)4123 (10455)220S +=++++=++++=⨯++++=⨯= .故答案为:(1);(2) ;222123S S S +++……210S +的值:220.【点睛】本题考查勾股定理、算术平方根.解题的关键是观察,观察题中给出的结论,由此结论找出规律进行计算.105.如图,点E 在正方形ABCD 内,AE=6,BE=8,AB=10.试求出阴影部分的面积S .【答案】76【解析】试题分析:先判断△ABE 是直角三角形,再用正方形的面积-直角△ABE 的面积即可求解.在△ABE 中,∵AE=6,BE=8,AB=10,62+82=102,∴△ABE 是直角三角形,∴S 阴影部分=S 正方形ABCD ﹣S △ABE=AB 2﹣×AE ×BE=100﹣×6×8=76.106.已知面积为30的菱形ABCD 的顶点坐标分别为A(1,﹣2),B(a ,b),C(1,4),D(c ,d),求a ,b ,c ,d 的值及菱形的周长.【答案】a =6,b =1,c =﹣4,d =1或a =﹣4,b =1,c =6,d =1;菱形的周长=.【解析】【分析】先根据菱形的面积公式求出对角线BD 的长,再在坐标系中画出符合题意的菱形即可求出B 、D 的坐标,然后根据勾股定理即可求出菱形的边长,进一步可得周长.【详解】解:∵菱形的面积为30,AC =6,∴16302BD ⨯=,解得BD =10. 则菱形ABCD 在平面直角坐标系如图所示,由图象可知:a =6,b =1,c =﹣4,d =1;当B 、D 互换位置时,c =6,d =1,a =﹣4,b =1.菱形的周长=4.本题以平面直角坐标系为载体,考查了菱形的判定与性质以及勾股定理,根据题意准确的画出符合题意的图形是解题的关键.107.如图,梯子长25米,斜靠在一面墙上,梯子底端离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?【答案】(1)24米;(2)8米.【解析】【分析】(1)根据勾股定理计算即可;(2)计算出A B'长度,根据勾股定理求出BC',问题得解.【详解】(1)根据题意得=90ABC ∠︒,∴梯子顶端距地面的高度24=米;(2)A B '=24420-=米,∵=90ABC ∠︒∴根据勾股定理得,15BC '==米,∴1578CC BC BC '='-=-=米,答:梯子下端滑行了8米.【点睛】本题考查勾股定理的应用,难度不大,解题的关键在于根据题意得到=90ABC ∠︒,根据勾股定理解决问题.108.台风是一种自然灾害,它在以台风中心为圆心,一定长度为半径的圆形区域内形成极端气候,有极强的破坏力.如图,监测中心监测到一台风中心沿监测点B 与监测点A 所在的直线由东向西移动,已知点C 为一海港,且点C 与A , B 两点的距离分别为300km 、 400km ,且∠ACB=90°,过点C 作CE ⊥AB 于点E ,以台风中心为圆心,半径为260km 的圆形区域内为受影响区域.(1)求监测点A 与监测点B 之间的距离;(2)请判断海港C 是否会受此次台风的影响,并说明理由;(3)若台风的速度为25km/h ,则台风影响该海港多长时间?【答案】(1)监测点A 与监测点B 之间的距离是500 km ;(2)海港C 会受到此次台风的影响,见解析;(3)台风影响该海港8小时【解析】【分析】(1)利用勾股定理直接求解;(2)利用等面积法得出CE 的长,进而得出海港C 是否受台风影响;(3)利用勾股定理得出受影响的界点P 与Q 离点E 的距离,进而得出台风影响该海港持续的时间.【详解】解:在Rt ABC ∆中,90ACB ∠=︒, 由勾股定理得500AB ==()km答:监测点A 与监测点B 之间的距离是500 km .(2)海港C 会受到此次台风的影响,理由如下: ∵1122ABC S AB CE AC BC ∆==, ∴1150030040022CE ⨯⨯=⨯⨯ 解得:240CE =.∵240260<∴海港C 会受到此次台风的影响.(3)如图,海港C 在台风中心从Q 点移动到P 点这段时间内受影响.∵260CP CQ km ==∴在Rt CEP ∆中,222CE PE CP +=,即222240260PE +=解得:PE=100同理得:100QE km =∵台风的速度为25km/h∴台风影响该海港的时长为:()()100100258h +÷=答:台风影响该海港8小时.【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是将实际问题中的各个条件转化为几何语言.109.如图,已知A 、B 两点的坐标分别为(0,A ,(4,0)B -,直线AB 与反比例函数m y x=的图象相交于点C 和点()2,D n .(1)求直线AB 与反比例函数的解析式;(2)求ACO ∠的度数;(3)将OBC ∆绕点O 顺时针方向旋转α角(α为锐角),得到OB C ''∆,当α为多少度时OC AB '⊥,并求此时线段AB '的长度.【答案】(1)直线AB 的解析式为y =,反比例函数的解析式为y =;(2)∠ACO =30°;(3)当α为60°时,OC '⊥AB ,AB '=4. 【解析】【分析】(1)设直线AB 的解析式为y=kx+b (k ≠0),将A 与B 坐标代入求出k 与b 的值,确定出直线AB 的解析式,将D 坐标代入直线AB 解析式中求出n 的值,确定出D 的坐标,将D 坐标代入反比例解析式中求出m 的值,即可确定出反比例解析式;(2)联立两函数解析式求出C 坐标,过C 作CH 垂直于x 轴,在直角三角形OCH 中,由OH 与HC 的长求出tan ∠COH 的值,利用特殊角的三角函数值求出∠COH 的度数,在三角形AOB 中,由OA 与OB 的长求出tan ∠ABO 的值,进而求出∠ABO 的度数,由∠ABO-∠COH 即可求出∠ACO 的度数;(3)过点B 1作B ′G ⊥x 轴于点G ,先求得∠OCB=30°,进而求得α=∠COC ′=60°,根据旋转的性质,得出∠BOB ′=α=60°,解直角三角形求得B ′的坐标,然后根据勾股定理即可求得AB ′的长.【详解】解:(1)设直线AB 的解析式为y=kx+b (k ≠0),将A(0,,B(-4,0)代入得:40b k b ⎧=⎪⎨-+=⎪⎩解得b k ⎧=⎪⎨=⎪⎩ 故直线AB 解析式为将D(2,n)代入直线AB 解析式得:则D(2,,将D 坐标代入中,得:,则反比例解析式为y x=; (2)联立两函数解析式得:y y ⎧=+⎪⎨=⎪⎩解得解得:2x y =⎧⎪⎨=⎪⎩6x y =-⎧⎪⎨=-⎪⎩, 则C 坐标为(-6,,过点C 作CH ⊥x 轴于点H ,在Rt △OHC 中,CH=,OH=3,∵tan ∠COH=3CH OH =, ∴∠COH=30°,∵tan ∠ABO=2AO OB == ∴∠ABO=60°,∴∠ACO=∠ABO-∠COH=30°;(3)过点B′作B′G⊥x轴于点G,∵OC′⊥AB,∠ACO=30°,∴∠COC′=60°,∴α=60°.∴∠BOB′=60°,∴∠OB′G=30°,∵OB′=OB=4,∴OG=OB′=2,B′G=2,∴B′(-2,2),∴AB′.【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定函数解析式,一次函数与x轴的交点,坐标与图形性质,勾股定理,以及锐角三角函数定义,熟练掌握待定系数法是解本题的关键.110.一架梯子AB长25米,如图所示,斜靠在一面上,此时梯子底端B离墙7米;如果梯子的顶端A下滑了4米至点A',那么梯子的底端水平滑动的距离BB'是多少米?【答案】8【解析】【分析】根据勾股定理求出OA 的长度,再通过勾股定理求出OB '的长度,即可求出梯子的底端水平滑动的距离BB '.【详解】在Rt △AOB 中24OA ===(米)∴24420OA OA AA ''=-=-=(米)在Rt A OB ''△中15OB '===(米) ∴1578BB OB OB ''=-=-=(米).【点睛】本题考查了勾股定理的实际应用,掌握勾股定理是解题的关键.。

八年级数学(上)第二章 勾股定理与平方根 单元测试卷

八年级数学(上)第二章 勾股定理与平方根 单元测试卷

第2章 勾股定理与平方根 单元测试卷(附答案)满分:100分 时间:60分钟一、选择题(每小题3分,共30分) 1.下列说法中,正确的是 ( )A .B .-a 2一定没有平方根C .0.9的平方根是±0.3D .a 2-1一定有平方根 2.下列各组数中,互为相反数的是 ( ) A .2和12 B .-2和-12C .-2和|-2 | D3.下列数据:①王雨考试得了96分;②全班学生数学测试的平均分约为88.2分;③小红今天做了5道作业题;④珠穆朗玛峰高8 844米.其中,属于精确数据的有 ( ) A .1个 B .2个 C .3个 D .4个4.如图,火柴盒的一个侧面ABCD 倒下到.AB ’C ’D ’的位置,连接CC ’.设.AB=a ,BC=b ,AC=c ,这样可以用来说明我们学习过的定理或者公式是 ( ) A .勾股定理 B .平方差公式C .完全平方公式D .以上3个答案都可以5.如图,等边△ABC 的高AH 等于 ( )A .B .2C .D .46.已知等腰三角形的底边长为10,腰长为13,则一腰上的高为 ( ) A. 12 B .6013C .12013D .13572=;②数轴上的点与实数一一对应;③-2根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数.其中,正确的有 ( )A .2个B .3个C .4个D .5个8.三角形的三边长分别为22a b +,2ab ,22a b -(a 、b 都是正整数,且a>b),则这个三角形是 ( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定 9.用四舍五入法按要求对846.31取近似值,下列四个结果中,错误的是 ( ) A .846.3(保留4个有效数字) B .846(精确到个位)C .800(保留1个有效数字)D .8.5×102(保留2个有效数字)10- 2的值 ( )A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间 二、填空题(每小题3分,共24分)11.平方根等于它本身的数是__________,算术平方根等于它本身的数是__________;12.__________开立方得__________.13.数学家发明了一个魔术盒,当任意实数对(a ,b)进入其中时,会得到一个新的实数:a 2+b+1.例如把(3,-2)放入其中,就会得到32+(-2)+l=8.现将实数对(-3)放入其中,得到实数m ,再将实数对(m ,1)放入其中后,得到的实数是__________.14 3.14,2,0.202 002 000 2…,227,1.56,π--中,正无理数是__________.15.如果直角三角形的两条边长分别是3和5,那么第三边长为__________.16.如图,在Rt △ABC 中,∠ABC=90°,BD ⊥AC 于D ,点E 为AC 的中点,若BC=7,AB=24,则BE= __________,BD=__________.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则图中所有正方形的面积之和为__________cm 2.18.如图,把长方形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上的点P 处.已知∠MPN=90°,且PM=3,PN=4,那么长方形纸片ABCD 的面积为__________.三、解答题(共46分)19.(6分)求下列各式中x 的值:(1) ()213430x --=; (2)25(x+2)2-36=0;(3)(2x+1)220.(10分)如图,在△ABC中,AC=8,BC=6,在△ABE中,DE为AB边上的高,DE=12,S△ABE=60;求△ABC的面积.21.(10分)如图①是单位长度均为1的方格图.(1)请把方格图中带阴影的图形适当剪开,重新拼成正方形(画出分割线与拼成正方形的草图);(2)所拼成正方形的边长为多少?周长为多少?(3)利用这个例子,在图②的数轴上画出(2)中正方形边长表示的点(保留画图痕迹).22.(10分)如图,点P是等边△ABC内的一点,分别连接PA、PB、PC,以BP为边作∠PBQ=60°,且BQ=BP,连接OQ.(1)观察并猜想AP与CQ之间的大小关系,并说明你的结论;(2)已知PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,请说明理由.23.(10分)如图,长方体的长为2,宽为1,高为4.(1)求该长方体中能放入木棒的最大长度;(2)现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.参考答案一、1.A 2.C 3.B 4.A 5.A 6.C 7.C 8.A 9.C 10.C 二、11.0 0、1 1213.2714.0.202 002 000 2… 15.416.25216825 17.147 18.1445三、19.(1)x=-6 (2)x=45-或165- (3)x=12或32-20.由于S △ABC =12×AB ×DE=60,所以12×AB ×12=60,解得AB=10.又因为AC 2+BC 2=82+62=100=AB 2,所以∠C=90°.从而S △ABC =12×AB ×DE=12×6×8=2421.(1)分割线如图①,拼成正方形如图②(2)设所拼成正方形的边长为x ,则x 2=5,所以(舍去负值).所以拼成正方形的边长为(3)如图③22.(1)AP=CQ 理由:因为△ABC 为等边三角形,所以AB=BC ,∠ABC=60°.因为∠PBQ=60°,所以∠ABC=∠PBQ ,所以∠ABP=∠CBQ .在△ABP 与△CBQ 中,,,,AB CB ABP CBQ BP BQ =⎧⎪∠=∠⎨⎪=⎩所以△ABP ≌△CBQ(SAS).所以AP=CQ 。

【单元测验】第2章 勾股定理与平方根

【单元测验】第2章 勾股定理与平方根

A.4 B.5 C.6 D.72A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形A.1+B.-1+C.1-D.-1-A.-6 B.-2 C.2 D.65A.B.(1+D.C.3aA.0.34×103亿元B.3.4×104亿元C.0.34×103亿元D.3.4×102亿元A.0个B.1个C.2个D.3个)A.B.C.D.A.B.C.D.1-A.(1,B.(C.(3,4,5)D.(32,42,52)A.55<B.65<C.75<D.85<A.在9.1~9.2之间B.在9.2~9.3之间C.在9.3~9.4之间D.在9.4~9.5之间13A.10个B.12个C.14个D.16个A.1到2之间B.2到3之间C.3到4之间D.4到5之间A.1个B.3个C.4个D.5个A.a>b>c B.a>c>b C.c>b>a D.b>c>aA.1个B.2个C.3个D.4个18A.2个B.4个C.6个D.8个19A.6cm B.12cm C.13cm D.16cm20A.4B.3C.2D.A.1 B.2 C.3 D.4A.B.C.(D.23A.-a<b<a<-b B.a<b<-a<-b C.-b<a<-a<b D.b<-a<a<-bA.a+2 B.C.D.a2+2A.P<Q B.P=QC.P>Q D.与n的取值有关A.3.67×1010元B.3.673×1010元C.3.67×1011元D.3.67×108元27A.B.4cm C.D.3cmA.B.2+ C.D.29A.S1=S2B.S1<S2C.S1>S2D.无法确定A.B.-C.D.-31A.B.2C.3D.3A.1与2 B.2与3 C.3与4 D.4与5A.B.2-3=-6 C.x2•x3=x6D.(-2x)4=16x4 A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间A.B.C.D.(-37A.3m B.5m C.7m D.9m38A.2 B.2 C.4D.739A.2cm B.4cm C.6cm D.8cmA.在4和5之间B.在5和6之间C.在6和7之间D.在7和8之间A.平行四边形B.矩形C.等腰三角形D.梯形A.2与3之间B.3与4之间C.4与5之间D.5与6之间A.3+B.C.D.A.3 B.7 C.-3 D.-7 45A.B.C.D.A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<5 A.(-2)0=0 B.3-2=-9C.D.A.2B.C.D.A.4cm~5cm之间B.5cm~6cm之间C.6cm~7cm之间D.7cm~8cm之间50A.1B.C.D.2 52.5559606266 677072,则两条桌腿的张角∠74808182.8487 8889919293 949598 100。

人教版数学八年级下册 第十七章 勾股定理 单元测试卷(含答案解析)

人教版数学八年级下册 第十七章 勾股定理 单元测试卷(含答案解析)

人教版数学八年级下册第十七章勾股定理单元测试卷一、单选题(共10题;共20分)1.下列说法:①无理数分为正无理数,零,负无理数;②-4是16的平方根;③如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;④任何实数都有立方根,其中正确的有()A. 4B. 3C. 2D. 12.若一个直角三角形的三边分别为a、b、c,a2=144,b2=25,则c2=()A. 169B. 119C. 169或119D. 13或253.如图,∠B=∠ACD=90°;AD=13;CD=12;BC=3,则AB的长为()A. 4B. 5C. 8D. 104.下列各组数是勾股数的是()A. 12、15、18B. 6、8、12C. 4、5、6D. 7、24、255.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处.若M,N两点相距100海里,则∠NOF的度数为()A. 50°B. 60°C. 70°D. 90°6.如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点处,则点表示的数是()A. B. C. D.7.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂0A=OB=10分米,晾衣臂支架HG=FE=5分米,HO=FO=4分米。

当∠AOC=90°,且OB∥CD时,线段OG与OE的长分别为( )A. 3和7B. 3和C. 3和2+D. 和2+8.如图,圆柱形容器高为18cm,底面周长为32cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好也在杯内壁,离杯上沿2cm与蜂蜜正相对的点A处,则蚂蚁从内壁A处到达内壁B处的最短距离为()A. 13cmB. cmC. 2 cmD. 20cm9.如图,在△ABC中,AB=AC,∠BAC=60°,BC=2,AD⊥BC于D,点F是AB的中点,点E在AD边上,则BE+EF的最小值是( )A. 1B.C. 2D.10.如图,小江同学把三角尺含有60°角的一端以不同的方向穿入进另一把三角尺(含有45°角)的孔洞中。

八年级数学下册《勾股定理》单元测试卷(附答案)

八年级数学下册《勾股定理》单元测试卷(附答案)

八年级数学下册《勾股定理》单元测试卷(附答案)一、单选题1.如图,等边ABC的边长为4,点D是边AC上的一动点,连接BD,以BD为斜边向上作等腰Rt BDE△,连接AE,则AE的最小值为()A.1 B2C.2 D.2212.如图,有一个圆柱,它的高等于9cm,底面上圆的周长等于24cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,则蚂蚁沿圆柱侧面爬行的最短路程是()A.15cm B.17cm C.18cm D.20cm3.下列各组数中,不能构成直角三角形的是( )A.a=1,b=43,c=53B.a=5,b=12,c=13 C.a=1,b=3,10D.a=1,b=1,c=24.如图,x轴、y轴上分别有两点A(3,0)、B(0,2),以点A为圆心,AB为半径的弧交x轴负半轴于点C,则点C的坐标为()A.(﹣1,0) B.(250) C.133,0) D.(313-0)5.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为m和n.若mn=32,大正方形的边长为10,则小正方形的边长为()A .2B .4C .6D .86.如图,已知ABC 中,45ABC ∠=,F 是高AD 和BE 的交点,5AC =2BD =,则线段DF 的长度为( )A .22B .2C 3D .17.如图,在△ABC 中,∠BAC =90°,BC =5,以AB ,AC 为边作正方形,这两个正方形的面积和为( )A .5B .9C .16D .258.如图所示,ABCD 是长方形地面,长20AB =,宽10AD =,中间整有一堵砖墙高2MN =,一只蚂蚁从A 点爬到C 点,它必须翻过中间那堵墙,则它至少要走( )A .20B .24C .25D .269.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7m ,梯子顶端到地面的距离AC 为2.4m .如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A D '为1.5m ,则小巷的宽为( ).A .2.4mB .2.5mC .2.6mD .2.7m10.下列四个命题中,正确的个数有( ) 33 4 和 5 之间;③Rt △ABC 中,已知两边长分别是 3 和 4,则第三条边长为 5;④在平面直角坐标系中点(2,-3)关于x 轴对称的点的坐标是(2,3);⑤16 的平方根是±4 16±4 ;⑥立方根等于它本身的数有 2 个.A .1 个B .2 个C .3 个D .4 个二、填空题11.风景秀丽的永嘉境内分布着许多国家级旅游景点,北斗卫星拍摄到永嘉小若岩风景区与埭头古村以及两条相互垂直的乡间公路的位置如图所示,A 点的坐标为()2,4,B 点的坐标为()6,1.现要在两条乡间公路上各建一个便民服务点C ,D ,形成一条便民服务通道.试求四边形ABCD 的最小周长______.12.如图,分别以等腰Rt △ACD 的边AD ,AC ,CD 为直径画半圆,AD =2,则阴影部分的面积是__________13.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,几分钟后船到达点D 的位置,此时绳子CD 的长为10米,问船向岸边移动了__米.14.如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交边AB 于点E .若5AC =,4BE =,45B ∠=︒,则AB 的长为_________.15.已知长方形ABCD 的长为5,宽为4,点E ,F 分别位于AB ,AD 上,且3AE AF ,点G 是长方形ABCD上一点,EFG 是直角三角形,则Rt EFG 的斜边长为______.三、解答题16.课间,小明拿着王老师的等腰直角三角板玩,三角板不小心掉到墙缝中.我们知道两堵墙都是与地面垂直的,如图.王老师没有批评他,但要求他完成如下两个问题:△≌△;(1)试说明ADC CEB(2)从三角板的刻度知AC=25cm,算算一块砖的厚度.(每块砖的厚度均相等)小明先将问题所给条件做了如下整理:如图,ABC中,CA=CB,∠ACB=90°,AD⊥DE于D,BE⊥DE于E.请你帮他完成上述问题.17.如图所示,长方形纸片ABCD的长AD=8cm,宽AB=4cm,将其沿着折痕EF折叠,使点D与点B重合.(1)求证:BE=BF;(2)求折叠后△BEF的面积.18.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.19.小明将一副三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长.若已知3AB的长.20.我们知道,到线段两端距离相等的点在线段的垂直平分线上.由此,我们可以引入如下新定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.(1)如图1,点P 在线段BC 上,∠ABP =∠APD =∠PCD =90°,BP =CD .求证:点P 是△APD 的准外心;(2)如图2,在Rt △ABC 中,∠BAC =90°,BC =5,AB =3,△ABC 的准外心P 在△ABC 的直角边上,试求AP 的长.21.如图,在ABC 中,AD BC ⊥,垂足为D ,BD CD =,延长BC 至E ,使得CE CA =,连接AE .(1)求证:B ACB ∠=∠;(2)若5AB =,4=AD ,求ABE 的周长和面积.参考答案:1.B2.A3.D4.D5.C6.D7.D8.D9.D10.A11.8912.113.9.14.715.32252616.(1)如图:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∴∠1+∠2=90°,∵∠ACB=90°,∴∠2+∠3=180°﹣90°=90°,∵∠ADC=∠BEC=90°,∴∠1=∠3,由∠ADC=∠BEC=90°,∠1=∠3,CA=CB,∴△ADC≌△CEB;(2)设每块砖厚度为xcm,由①得,DC=BE=3xcm,AD=4xcm,∵∠ADC=90°,∴AD2+CD2=AC2,即(4x)2+(3x)2=252,解得x=5,(x=﹣5舍去),∴每块砖厚度为5cm.17.(1)由折叠的性质得:∠BEF=∠DEF,∵AD//BC,∴∠BFE=∠DEF,∴∠BFE=∠BEF,∴BE=BF;(2)设AE=x,则BE=DE=8﹣x,在Rt△ABE中,由勾股定理得:x2+42=(8﹣x)2解得,x=3,∴BE=BF=5,∴△BEF的面积=12×BF×AB=12×5×4=10.18.(1)∠BAC=75°;(2)AD219220.(1)证明:∵∠ABP=∠APD=∠PCD=90°,∴∠APB+∠PAB=90°,∠APB+∠DPC=90°,∴∠PAB =∠DPC ,在△ABP 和△PCD 中,PAB DPC ABP PCD BP CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△PCD (AAS ),∴AP =PD ,∴点P 是△APD 的准外心;(2)解:∵∠BAC =90°,BC =5,AB =3, ∴AC 2253-=4,当P 点在AB 上,PA =PB ,则AP 12=AB 32=; 当P 点在AC 上,PA =PC ,则AP 12=AC =2, 当P 点在AC 上,PB =PC ,如图2, 设AP =t ,则PC =PB =4﹣x ,在Rt △ABP 中,32+t 2=(4﹣t )2,解得t 78=, 即此时AP 78=, 综上所述,AP 的长为32或2或78.21.(1)证明:AD BC ⊥,90ADB ADC ∴∠=∠=︒,在ABD △和ACD 中,AD AD ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩,()ABD ACD SAS ∴≅,B ACB ∴∠=∠;(2)ABD ACD ≅,5AB =, 5AB AC ∴==,CE CA =,5CE∴=,5,4,AB AD AD BC==⊥,223BD AB AD∴=-,BD CD=,3CD∴=,11,8BE BD CD CE DE CD CE∴=++==+=,2245AE AD DE∴+则ABE的周长为511451645AB BE AE++=++=+ABE的面积为1111422 22BE AD⋅=⨯⨯=.。

人教版八年级数学下册第17章 勾股定理 单元检测试题及答案三

人教版八年级数学下册第17章 勾股定理 单元检测试题及答案三

人教版八年级数学下册第17章 勾股定理 单元检测试题及答案一、选择题(本大题共10道小题) 1. 下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c +=B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=2. 如图,在△ABC 中,AB =AC =5,BC =8,D 是线段BC 上的动点(不含端点B ,C),若线段AD 长为正整数...,则点D 的个数共有( )A. 5个B. 4个C. 3个D. 2个3. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)A B C D 4. 三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A. 等边三角形 B. 钝角三角形 C. 直角三角形 D. 锐角三角形.5. 如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( ) A. 1倍 B. 2倍 C. 3倍 D. 4倍6. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121 B .120 C .90 D .不能确定7. 如图所示,在ABC ∆中,三边a b c ,,的大小关系是( )A. a b c <<B. c a b <<C. c b a <<D. b a c <<8. 已知ABC ∆的三边为a 、b 、c ,且4a b +=,1ab =,c =ABC ∆是( ). A .等腰三角形 B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形9. 如图,在Rt △ABC 中,AB =10,AC =8,BC =6,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则CD =( )A. 3B. 4C. 4.8D. 510. 已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( ) A. 32 B. 332 C. 32D. 不能确定二、填空题(本大题共7道小题) 11. 在Rt ABC ∆中, 90C ∠=︒, (1)如果34a b ==,,则c = ; (2)如果68a b ==,,则c = ; (3)如果512a b ==,,则c = ; (4)如果1520a b ==,,则c = .12. 如图,在Rt △ABC 中,E 是斜边AB 的中点,若∠A =40°,则∠BCE =________.13. 已知直角三角形两边x ,y 的长满足240x -=,则第三边长为______________.14. 将一根长为24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外边的长度为cm h ,则h 的取值范围为15. 如图,点P 是AOB ∠的角平分线上一点,过点P 作//PC OA 交OB 于点C .若60,4AOBOC∠==,则点P 到OA 的距离PD 等于__________.PODC BA16. 如图,一根高8米的旗杆被风吹断倒地,旗杆顶端A 触地处到旗杆底部B 的距离为6米,则折断点C 到旗杆底部B 的距离为17. 如图,是一块直角三角形的土地,现在要在这块地上挖一个正方形蓄水池AEDF ,已知剩余的两直角三角形(阴影部分)的斜边长分别为20cm 和30cm ,则剩余的两个直角三角形(阴影部分)的面积和...为 2cm .三、解答题(本大题共4道小题)18. 已知直角三角形的两边长分别为3、4,求第三边长.19. 张大爷家承包了一个长方形鱼池,已知其面积为248m ,其对角线长为10m ,为建立栅栏,要计算这个长方形鱼池的周长,你能帮张大爷计算吗?20. 如图1,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用1S 、2S 、3S 表示,则不难证明123S S S =+.⑴ 如图2,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用1S 、2S 、3S 表示,那么1S 、2S 、3S 之间有什么关系?(不必证明)⑵ 如图3,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用1S 、2S 、3S表示,请你确定1S 、2S 、3S 之间的关系并加以证明.CBA21. ABC ∆中,BC a =,AC b =,AB c =.若90C ∠=︒,如图1,根据勾股定理,则222a b c +=.若ABC ∆不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论.ABC S 1S 3S 2图3ABC S 1S 3S 2图2图1S 2S 3S 1CBA 图3图2图1a bca bccb a AB CABCCBADabc ACBDa bcABC-答案一、选择题(本大题共10道小题) 1. 【答案】D【解析】在直角三角形中,才可应用勾股定理.其次,要注意边和角的对应.选D.2. 【答案】C 【解析】如解图,当AD ⊥BC 时,∵AB =AC ,∴D 为BC 的中点,BD =CD =12BC =4,∴AD =AB 2-BD 2=3;又∵AB =AC =5,∴在BD 和CD 之间一定存在AD =4的两种情况,∴点D 的个数共有3个.3. 【答案】C【解析】注意实际长度.应用勾股定理逆定理.选C.4. 【答案】C【解析】化简得222a b c +=.选C.5. 【答案】B6. 【答案】C【解析】整体代入法.应用平方差公式.选C.7. 【答案】C【解析】a= ,c= . 选D.8. 【答案】B【解析】∵4a b +=,1ab =,∴()22222216214a b a b ab c +=+-=-===,故ABC ∆是直角三角形.9. 【答案】D 【解析】∵DE 垂直平分AC ,∴∠AED =90°,AE =CE =4,在Rt △ABC 中,∠ACB =90°,∴DE ∥BC ,∴DE 是△ABC 的中位线,∴DE =12BC =3.在Rt △CED 中,CD =CE 2+DE 2=5.10. 【答案】B 【解析】如解图,△ABC 是等边三角形,AB =3,点P 是三角形内任意一点,过点P 分别向三边AB ,BC ,CA 作垂线,垂足依次为D ,E ,F ,过点A 作AH ⊥BC 于点H ,则BH =32,AH =AB 2-BH 2=332.连接P A ,PB ,PC ,则S △P AB +S △PBC +S △PCA =S △ABC ,∴12AB ·PD +12BC ·PE +12CA ·PF =12BC ·AH ,∴PD +PE +PF =AH =332.二、填空题(本大题共7道小题) 11. 【答案】(1)5;(2)10;(3)13;(4)25【解析】直接应用勾股定理,且c 为斜边. (1)5;(2)10;(3)13;(4)25.12. 【答案】50° 【解析】∵E 是Rt △ABC 斜边AB 的中点,∴EC =AB2=AE ,∴∠ECA =∠A =40°,∴∠BCE=90°-40°=50°.13. 【答案】【解析】根据绝对值和平方根的非负性可知:14. 【答案】2.3cm15. 【答案】【解析】过P 点作PE OB ⊥,并交OB 于点E .∵60,AOB OP ∠=是AOB ∠的角平分线, ∴630BOP ∠==. 又∵//PC OA , ∴60PCB AOB ∠=∠=.∴30OPC BOP BPC ∠==∠=∠. ∴14,22PC OC EC PC ====.∴PB16. 【答案】74EP ODC BA【解析】设BC x =米,则()8AC x =-米,因为6AB =米,根据勾股定理可得:()22268x x +=-,解答74x =,故折断点C 到旗杆底部的距离为74米17. 【答案】300【解析】cm AE x =,cm BE a =,cm CF b =,在Rt BDE ∆中,22230900a x +== ① 在Rt CDF ∆中,22220400b x +== ② 在Rt ABC ∆中,()()222502500a x b x +++==, 即2222222500a ax x b bx x +++++= ③ ③-①-②得,221200ax bx +=,3002ax bx+= 最简单的方法为两个小的直角三角形旋转合并成一个大的直角三角形(正方形的边重合)故130203002⨯⨯=.三、解答题(本大题共4道小题) 18. 【答案】5【解析】①当两直角边为3和45=;②当斜边为4,一直角边为319. 【答案】14m【解析】设长方形的长和宽分别为am bm ,,有2210048a b ab +==,,代入()2222a b a b ab +=++,可得 14a b m +=20. 【答案】设Rt ABC ∆的三边BC 、CA 、AB 的长分别为a 、b 、c ,则222c a b =+ .⑴ 123S S S =+ .⑵ 123S S S =+.证明如下:显然,21S ,22S =,23S =,∴222231)S S a b S +=+==. 点评:分别以直角三角形ABC 三边为一边向外作“相似形”,其面积对应用1S 、2S 、3S 表示,则123S S S =+.21. 【答案】图2猜想:222a b c +>.证明:过点A 作AD BC ⊥于D设CD x =,222AD b x =-,()()222222222c a x b x a ax x b x =-+-=-++-,即22220a b c ax +-=>,故222a b c +>. 图3猜想:222a b c +<.证明:过B 作BD AC ⊥,交AC 的延长线于D . 设CD 为x ,则有222BD a x =-根据勾股定理,得()2222b x a x c ++-=. 即2222a b bx c ++=,∵0b >,0x >,∴20bx >,∴222a b c +<.。

第二章 勾股定理与平方根单元复习试卷

第二章 勾股定理与平方根单元复习试卷

第二章 勾股定理与平方根复习卷班级: 姓名: 学号:一、选择题:1.下列实数中,是无理数的为( )A . 3.14B . 13 C . 3 D . 92.下列各数:2π,0·,227,0.30003… )A .2 个B .3 个C .4 个D .5 个3.下面说法中,正确的是( )A .任何数的平方根有两个B .一个正数的平方根的平方是它本身C .只有正数才有平方根D .正数的平方根是正数 4.4的平方根是( )A .2B .2±C .4D .4± 5.2的算术平方根是( )A .4B .4±C .2D .2±6.-8的立方根是 ( )A .2B . -2C .12D .12-7.64的立方根是( )A .4B .4±C .8D .8±8等于( )A .3B .3-C .9D .9- 9.下列计算正确的是( )A.020=B.331-=- 3= +=10.下列式子中正确的是( )A .525±= B .332±= C .525= D .332-=11.下列式子中,正确的是( )A .2=-B .2(9=C 3=±D 3=12.-2是2的( ).A .相反数B .倒数C .绝对值D .算术平方根 13.比较2,)A.2<<B.2<C2<< D2<14.如图,数轴上点P 表示的数可能是( ).A.B. C . 3.5- D .15.下列各数中,在1与2之间的数是( )A .1-BC .12D .316.估计 )A .在3与4之间B .在4与5之间C .在5与6之间D .在6与7之间 17.估算2的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 18.实数2-,3-的大小关系是( )A .3-<2-B .3-<2-C .2-<<3-D .3-<2-< 19.给出四个数0,2,-12,0.3,其中最小的是( )A .0B . 2C .-12D .0.320. 在 -3 -1, 0 这四个实数中,最大的是( )A . -3B .-C . -1D . 0 21.下列说法中,正确的是( )A .近似数1.70和1.7是一样的B .近似数六百和近似数600的精确度是相同的C .近似数35.0是精确到个位的数,它的有效数字是3和5两个数D .近似数35.0是精确到十分位的数,它的有效数字是3,5,0三个数22.湖州市第11届房交会总成交金额约2.781亿元.近似数2.781亿元的有效数字的个数是 ( )A .1B .2C .3D .4 23.德州市2009年实现生产总值(GDP )1545.35亿元,用科学记数法表示应是 (结果保留3个有效数字) ( )A.81054.1⨯ 元 B.1110545.1⨯元 C.101055.1⨯元 D.111055.1⨯元24.2010年4月20日晚,“支援青海玉树抗震救灾义演晚会”,热心企业和现场观众踊跃捐款31083.58元.将31083.58元保留两位有效数字可记为 ( )第7题图A.3.1×106元B.3.11×104元C.3.1×104元D.3.10×105元25.据统计,截止到5月31日上海世博会累计入园人数803.27万人.803.27万这个数字(保留两位有效数字)用科学记数法表示为()A.8.0×102 B. 8.03×102 C. 8.0×106 D. 8.03×10626.由四舍五入法得到的近似数8.8×103,下列说法中正确的是().A.精确到十分位,有2个有效数字 B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字 D.精确到千位,有4个有效数字27.图①是一个边长为()m n+的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()A.22()()4m n m n mn+--=B.222()()2m n m n mn+-+=C.222()2m n m n m n-+=+D.22()()m n m n m n+-=-28.把长为8cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是()A.(cm B.()cm C.20cm D.18cm29.如图①,矩形ABCD,AB=12cm,AD=16cm,现将其按下列步骤折叠:(1)将边AB向AD折去,使AB落在AD上,得到折痕AF,如图②(2)将△AFB沿BF折叠,AF与DC交点G,如图③则所得梯形BDGF的周长等于()A.12+22B.24+22C.24+42D.12+42C F CD ”①②③第28题图图①第27题图图②1.勾股定理:直角三角形两直角边的 等于 的平方.2.对一个近似数,从 起,到 止,所有的数字都称为这个近似数的有效数字. 3.下列各数:12,227,0.2020020002 (每两个2之间0的个数逐次加1),,3π,0.89- 无理数有 .4.(1)无限不循环小数称为 ;(2) 和 统称为实数; (3) 与数轴上的点一一对应 .5.1-的相反数是 ,的绝对值是 .6的倒数是 ,2-的绝对值是 .7.正数的平方根有 个,它们互为 ,零的平方根为 ,负数 .8.因为42= ,(—4)2= ,所以4和—4都是 的平方根. 9.如果62=x ,那么x 叫做6的 ,记作 . 10. 的平方根是0, 的平方根是8±. 11.(1)8149的平方根为 ; (2)1.44的平方根为 ;(3)(—2)2的平方根为 ; (4)0.1-2的平方根为 . 12.5的平方根是 ,算术平方根是 .13.若24x =,则3x -的算术平方根是 .14.(1)0.16的算术平方根为 ; (2)49的算术平方根为 ;(3)10-6的算术平方根为 ; (4)216()81-的算术平方根为 .15.(1= ; (2)= ; (3)= ;(42= . 16.求下列各数的平方根:81: ;289: ;0: ;124: ;2.56: ;210-: .17.写出下列各数的算术平方根:0.01: ;2516: ;0: ;10: ;21()3-: .18.(1)100的平方根为 ,算术平方根为 ;(2)169的平方根为 ,算术平方根为 ;(3)0.25的平方根为 ,算术平方根为 ;(4)10-6的平方根为 ,算术平方根为 .19.(1)= ;(2)= ;(3)= ;(4= .20.求下列各数的平方根: (1)425: ; (2)62-: ; (3)4910⨯: .21.求下列各数的立方根: (1)8125: ; (2)0.064-: ; (3)0: ; (4)17427: .22.0.001的立方根是 ,18-的立方根是 .23= ,= ,= .24.如果33(3)a =-,那么a = ,如果8=-,那么x = .25.(1)= ; (2= ;(3)3= ; (4= .26.写出下列各数的立方根: —27: ;0.008: ;1125: ;—1: ;0.064: ;4: .27.求下列各数的立方根: (1)338-: ; (2)62-: ; (3)56.410-⨯: .28.求下列各式的值:3= ;= ;3= ;= .29.比较下列数的大小:(1); (2)2; (320.5.30.比较下列各组数的大小:(1) (2)π 3.142; (3)1.5.31.比较下列各组数的大小:(1); (2 (3)3-; (4)1434.32.比较大小:(1)1; (2)1218+; (3.(1)精确到10kg : ; (2)精确到1kg : ; (3)精确到0.1kg : .34.按要求用科学记数法表示下列各近似数: (1)33 400 000 000 000(保留2个有效数字): ; (2)361 000 000(精确到10 000 000): .35.由四舍五入法得到的下列近似数,分别精确到哪一位?各有几个有效数字? (1)小明身高1.59m ;精确到 位,有 个有效数字,分别为 ; (2)地球的半径约为36.410km ⨯;精确到 位,有 个有效数字,分别为 ; (3)组成云的小水滴很小,最大的直径约为0.2mm ;精确到 位,有 个有效数字,分别为 ;36.3.45精确到 位,有 个有效数字,它们是 ;37.52.6710⨯精确到 位,有 个有效数字,它们是 ; 38.2.5万精确到 位,有 个有效数字,它们是 . 39.按括号内的要求,用四舍五入法对下列各数取近似数: (1)2.0368(精确到0.001)≈ ;(2)3.987(保留2个有效数字)≈ ; (3)0.0155(保留2个有效数字)≈ ; (4)20549(保留3个有效数字)≈ .40.已知直角三角形的两边长分别为3和5,则第三边的长为 .41.直角三角形两直角边长分别是6和8,则斜边为 ,斜边上的高为 . 42.在Rt △ABC 中,∠C =90°,AB =25,AC =7,则三角形面积为 .43.已知:如图,在△ABC 中,AD ⊥BC ,AB =AC =5cm ,BC =6cm .则AD = cm ,△ABC 的面积等于 cm 2.44.如图,等腰△ABC 的周长32cm ,底边长12cm .则高AD = cm ;S △ABC = cm 2. 45.在等腰三角形ABC 中,AB=AC=17cm ,BC=30cm ,△ABC 的面积= cm 2. 46.如图,图中字母代表正方形的面积,那么A = ,B = . 47.在Rt △ABC 中,∠C =90°.(1)如果BC =9,AC =12,那么AB = ; (2)如果BC =8,AB =10,那么AC = ; (3)如果AC =20,BC =15,那么AB = ;(4)如果AB =13,AC =12,那么BC = ; (5)如果AB =61,BC =11,那么AC = . 48.在△ABC 中,∠C =90°.(1)若a=3,b=4,则c= ; (2)若c=13,b=5,则a= ;(3)若c=17,a=15,则b= ; (2)若a :c =3:5,且b=16,则a= . 49.如图,一旗杆离地面6m 处折断,旗杆顶部落在离旗杆底部8m 处,144AB 1002536 第48题图ABCD第46题图50.如图,要建一个育苗棚,棚宽a 为2m ,高b 为1.5m ,长d 为10m .则覆盖在顶上的塑料薄膜需 m 2.51.如图,要为一段高5m 、长13m 的楼梯铺上红地毯,红地毯至少需要 m .52.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm , 现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为 cm .53.如图,三个直角三角形(Ⅰ,Ⅱ,Ⅲ)拼成一个直角梯形(两底分别为a 、b ,高为a +b ),利用这个图形,小明验证了勾股定理.请你填写计算过程中留下的空格:①,即(高下底)(上底梯形梯形).(21)()2121=+⋅+=⋅+=S b a b a SS 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) = + + ,即②梯形).(21=S由①、②,得222c b a =+.54.如图,等边三角形ABC 的边长为2,则它的高为 .55.如图,四边形ABCD 的面积等于56.如图,两个阴影部分都是正方形,两个正方形的面积之比为1:2,这两个正方形的面积分别为 .57.如图,BC 长为3cm ,AB 长为4cm ,AF 长为12cm .正方形CDEF 的面积为 cm . 58.有一张圆形铁片,面积为94πm 2,则半径为 m .a bb cc ⅠⅡⅢa第53题图ABCD第54题图BCDEF第49题图13m5mABCDE第51题图 第52题图ADB 4 12 3第55题图 第57题图AB CD E FG59.把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3 cm ,BC = 5 cm ,则重叠部分△DEF 的面积是 cm 2.60.如图,在梯形ABCD 中,AB ∥CD ,AD =BC ,对角线AC ⊥BD ,垂足为O .若CD =3,AB =5,则AC 的长为 .61.如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 于点O ,AE ⊥BC ,DF ⊥BC ,垂足分别为E 、F ,AD =4,BC =8,则AE +EF 等于62.如图,以第①个等腰直角三角形的斜边长作为第②个等腰直角三角形的腰,以第②个等腰直角三角形的斜边长做为第③个等腰直角三角形的腰,依次类推,若第⑨个等腰直角三角形的斜边长为厘米,则第①个等腰直角三角形的斜边长为 _________厘米.63.已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 . 三、解答题:1.求下列各式中的x :(1)216x =; (2)22549x =; (3)215x =;(4)2418x =; (5)1022=x ; (6)07532=-x .ABCFE'A 第59题图('B )D 第64题图ABCDO第60题图第61题图第63题图2.求下列各式中的x :(1)30.125x =-; (2)3827x =; (3)321x +=;(4)3(1)8x -=; (5)327343x =; (6)330.6480x +=.3.计算:(-1)2010-| -7 |+ 9 ×( 5 -π)0+( 15)-14.计算:(1)92|21|)3(12-+----; (2))1()2010(40---+.5.在数轴上描出表示6.a -是否有平方根?为什么?7.若一个正数的平方根是12+x 和7-x ,则322+-x x 的平方根是什么?8.一个三角形三边长的比为3:4:5,它的周长是60cm .求这个三角形的面积.9.如图,在△ABC 中,AB=26,BC=20, 边BC 上的中线AD=24.求AC .10.如图,在△ABC 中,AD 为边BC 上的高,AB=13,AD=12,AC=15.求BC 的长.ABCDA11.计算四边形ABCD 的面积.12.已知:如图,AD=4,CD=3,∠ADC=90°, AB=13,BC=12.求该图形的面积.13.如图,把火柴盒放倒,这个过程中也能验证勾股定理. 你能利用下图验证勾股定理吗?14.做8个全等的直角三角形(两条直角边长分别为a 、b ,斜边长c ),再做3个边长分别为a 、b 、c 的正方形,把它们拼成两个正方形(如图).你能利用这两个图形验证勾股定理吗?写出你的验证过程.15.如图,你能用它验证勾股定理吗?(提示:以斜边为边长的正方形的面积+四个三角形的面积=外正方形的面积)16.如图,以Rt △ABC 的三边为直径的3个半圆的面积之间有什么关系?请说明理由.17.如图,AD ⊥BC ,垂足为D .如果CD =1,AD =3, BD =9,那么△ABC 是直角三角形吗?请说明理由.BC D Ea baabABCA BCDABCD- 11 -18.如图,在正方形ABCD 中,E 是边AD 的中点,点F 在边DC 上,且14D F D C .试判断△BEF 的形状,并说明理由.19.如图,在四边形ABCD 中,∠B=90°,AB=BC=4,CD=6,DA=2.求∠DAB 的度数.20.如图,长为10m 的梯子AB 斜靠在墙上,梯子的顶端距地面的垂直距离为8m .如果梯子的顶端下滑1m ,那么它的底端是否也滑动1m ?21.飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000米处,过了20秒,飞机距离这个男孩5000米,飞机每小时飞行多少千米?22.某港口位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口1.5小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?23.古希腊的哲学家柏拉图曾指出,如果m 表示大于1的整数,a =2m ,b =m 2-1,c = m 2+1,那么a 、b 、c 为勾股数.你认为正确吗?如果正确,请说明理由,并利用这个结论得出一些勾股数.BCB ACD EFABC D- 12 -24.学校计划用1000块统一规格的正方形地板砖铺设面积为250m 2的学生食堂地面.购买的地板砖的边长为多少时,才正好合适(即不浪费)?25.有两棵树,一棵高8m ,另一棵高2m ,它们相距8m ,一只小鸟从一棵树梢飞到另一棵树梢,要飞多少米?26.甲、乙两位探险者到沙漠进行探险.某日早晨8:00甲先出发,他以6km/h 的速度向东行走.1h 后乙出发,他以5km/h 的速度向北行进.上午10:00时,甲、乙两人相距有多远?27.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?28.如图,马路边一根电线杆高为5.4m ,被一辆卡车从离地面 1.5m 处撞断.倒下的电线杆顶部是否会落在离它的底部4m29.如图,有两只猴子在一棵树CD 高5m 的点B 处,它们都要到A 处的池塘去喝水,其中一只猴子沿树爬下走到离树10m 处的池塘A 处,另一只猴子爬到树顶D 后直线越向池塘的A 处.如果两只猴子所经过的路程相等,这棵树高有多少米?ABCD。

八年级上册第二章:勾股定理与平方根期末复习试卷苏科版

八年级上册第二章:勾股定理与平方根期末复习试卷苏科版

第二章期末复习作业纸A 组1.下列说法正确的是【 】A 一个数的平方等于1,那么这个数就是1。

B ±6是36的算术平方根。

C 6是(-6)2的算术平方根。

D 4是8的算术平方根。

2.若032=-++y x ,则xy 的值为__________。

3.已知a ,b 为两个连续整数,且b a <<7,则a+b=__________。

4.实数a ,b 在数轴上的位置如图所示,则化简代数式a b a -+的结果是_______。

5.计算()32843+--=_______________。

6.若a 和b 互为相反数,c 和d 互为倒数,m 的倒数等于它本身。

求()m m b a mcd-++2的立方根的值。

7.已知实数a ,b ,c 在数轴上对应点如图所示,化简:c b a c b a a -+-+--。

8.直角三角形中,两直角边长度之和为8,斜边的长为34,则此三角形的面积是_________。

9.一个有盖的长方体形状的文具盒的长、宽、高分别是12cm ,4cm ,3cm ,那么它最多能放________cm 长的铅笔。

10.如图,把长方形纸条ABCD 沿EF 、GH 同时折叠,B ,C 两点恰好落在AD 边的P 点处,若∠FPH=90°,PF=8,PH=6,则长方形ABCD 的边BC 长为___________。

11.如图,在长方形一边CD 上取一点E ,沿AE 把△ADE 折叠,使点D 落在BC 边的点F 处,已知AB=8cm ,BC=10cm ,求EC 的长。

EC12.如图所示,AC ⊥BD ,O 为垂足,设22CD AB m +=,22BC AD n +=,请比较m 和n 的大小。

D13.如图所示,CE 、CF 分别是△ABC 的内角∠ACB ,外角∠ACD 的平分线,若EF=10,则22CF CE +=____________。

14.如图所示,已知在△ABC 中,∠B=90°,点D 、点E 分别在BC 和AB 上,求证:2222DE AC CE AD +=+。

人教版 八年级数学下册二次根式、勾股定理 综合测试卷 (含答案解析)

 人教版 八年级数学下册二次根式、勾股定理 综合测试卷 (含答案解析)
20.(1)已知y= ﹣ +8x,求 的平方根.
(2)当﹣4<x<1时,化简 ﹣2 .
21.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?
22.综合题
(1)试比较 与 的大小;
(2)你能比较 与 的大小吗?其中k为正整数.
A. B. C. D.
2.若式子 在实数范围内有意义,则x的取值范围是( )
A. x>1 B. x<1 C. x≥1 D. x≤1
3.下列变形中,正确的是( )
A.(2 )2=2×3=6 B.
C. D.
4.下列组合哪个不是勾股数()
A.30,40,50 B.7,24,25 C.5,12,13 D.1,2,3
【解析】【分析】(1)先根据二次根式有意义的条件可得x的值,进一步得到y的值,代入 得到它的平方根;
(2)由于﹣4<x<1,根据完全平方公式和二次根式的性质得到 ﹣2 =|x+4|﹣2|x﹣1|,再去绝对值化简即可.
21.【答案】解:不对.
理由:如图,依题意可知
AB=25(米),AO=24(米),∠O=90°,
22.【答案】(1)解: ,

故 <
(2)解: ,

故 <
【考点】二次根式的性质与化简,二次根式的乘除法
【解析】【分析】(1)比较两个二次根式的大小,用分母有理化的法则先将其化为最简二次根式,再比较大小即可;(2)方法同(1).
23.【答案】解:如图,AB=28 ,∠P=45°,∠PAC=90°,∠ABQ=45°,∴∠ACP=45°,
5.下列二次根式中,与 是同类二次根式的是()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-3432
1 0-1 -2D
C B O
A
(第10题)
第二章《勾股定理与平方根》单元测试题 (考试时间100分钟,总分120分)
班级 姓名 得分 一、精心选一选(每题2分,共20分) 1.16的平方根是( )
A.4 B .±4 C.256 D .±256 2.64的立方根是( )
A.4 B .±4 C.2 D .±2 3.下列实数
722,3,38,4,3
π
,0.1, 010010001.0-,其中无理数有( )
A.2个
B.3个
C.4个
D.5个 ⒋ 对0.000009进行开平方运算,对所得结果的绝对值再进行开平方运算……随着开方次数的增加,其运算结果( )
A.越来越接近1
B.越来越接近0
C.越来越接近0.1
D.越来越接近0.3 ⒌地球七大洲的总面积约是1494800002
km ,如对这个数据保留3个有效数字可表示为( )
A .1492
km B .1.5×108
2
km C .1.49×108
2
km D .1.50×108
2
km
⒍如图,若数轴上的点A ,B ,C ,D 表示数-2,1,2,3,则表示74-的点P 应在线段( )
A .线段A
B 上 B .线段B
C 上 C .线段C
D 上 D .线段OB 上
⒎对于10.08与0.1008这两个近似数,它们的( )
A .有效数字与精确位数都不相同
B .有效数字与精确位数相同
C .精确位数不同,有效数字相同
D .有效数字不同,精确位数相同
⒏ 一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达到该建筑物的最大高
度是( )
A. 12米
B. 13米
C. 14米
D. 15米 ⒐ 三角形三边长分别为a 2
+b 2
,a 2
-b 2
,2ab (a>b ,a 、b 都为整数),则这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形
D .不确定
⒑ 右图是2002年8月在北京召开的国际数学家大会的会标,它取材于我国古代数学家赵爽的《勾股圆方图》,由四个全
等的直角三角形和一个小正方形的拼成的大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短边为a ,较长边为b ,那么(a +b )
2
的值是( )
A .13
B .19
C .25
D .169
二、细心填一填(第11—14每题4分,第15—18每题3分,共28分)
⒒ 若x 2
=9,则x = ;若23-=y ,则y = . ⒓ 算术平方根等于它本身的数是 ;立方根等于它本身的数是 .
13.求图中直角三角形中未知的长度:b=__________,c=____________.。

14.近似数1.8×105
精确到 位,有 个有效数字. 15.如图,从电线杆离地面6 m 处向地面拉一条长10 m 的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有 m .
16.在长、宽都是3,高是8的长方体纸箱的外部, 一只蚂蚁从顶点A 沿纸箱表面爬到顶点B 点,那么它所行的最短路线的长是 .
17.如图,阴影部分是以直角三角形的三边为直径的半圆,两个小半圆的直径之比是3∶4,面积和为100,则大的半圆面积是___________.
18.在长方形纸片ABCD 中,AD =4cm ,AB =10cm ,按如图方式折叠,使点B
与点D 重合,折痕为EF ,则DE = cm. 三、解答下列各题(共52分)
19.求下列各式中的实数x.(每题3分,共9分)
(1)|x -5|=10; (2)8142=x ; (3) (x +10)3
=-27.
20.用计算器完成下列各题:(每题3分,共12分) (1)求值(精确到 0.01):018.1±;
(2)比较大小:33-与2-;
(3)计算(结果保留3个有效数字):7
22
32-+π.
(4)要使“神六”能绕地球运转,必须使它的速度大于第一宇宙速度而小于
A
E
B C
D
F
C ′
(第17题)
(第18题)
10
(第13题)
(第16题)
(第15题)
图2
图3
图1
第二宇宙速度.第一宇宙速度的计算公式是gR v =
1(m/s )
,第二宇宙速度的计算公式是gR v 22=(m/s ),其中8.9=g (m/s 2
),6
104.6⨯=R (m ),求 “神六”绕地球运转时的速度范围.(结果保留2个有效数字)
21.(本题满分6分)在学习“神秘的数组”的课堂上,老师请同学们判断以3、4、5为边长的三角形是否为直角三角形时,小明是这样回答的:因为42
+52
=41,32
=9,42
+5
2
≠32
,所以以3、4、5为边长的三角形不是直角三角形。

如果当时你也在课堂上,你的意见是什么?并说出你这样回答的理由.
22. (本题满分6分)如图Rt △ABC ,∠ACB =90°,CD 是AB 边上高,AC =16,BC =12,求CD 、AD 的长.
23.(本题满分9分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影). ⑴在图1中,画一个三角形,使它的三边长都是有理数;
⑵在图2、图3中,分别画两个不全等的直角三角形,使它的三边长都是无理数.
24.(本题满分10分)今年9月11日,第十五号台风“卡努”登陆
浙江,A 市接到台风警报时,台风中心位于A 市正南方向125km 的B 处,正以15km/h 的速度沿BC 方向移动.
(1)已知A 市到BC 的距离AD=35km ,那么台风中心从B 点移到D 点经过多长时间?
(2)如果在距台风中心40km 的圆形区域内都将受到台风影响,那么A 市受到台风影响的时间是多长?(结算结果精确到1分钟)
A
B
C
D
(第24题)
C
B
D
A
B。

相关文档
最新文档