1.5.2科学计数法.5.2 科学记数法课件 (新版)新人教版
人教版七年级数学上课件课件:1.5.2.科学计数法
![人教版七年级数学上课件课件:1.5.2.科学计数法](https://img.taocdn.com/s3/m/f147b244bed5b9f3f90f1ca4.png)
科学记数法表示 5.3×107 元。 3.用科学计数法表示:70000= 7×104 ;
-3280.5= -3.2805×;103 19.9×105= 1.99×10。6
左边的数缩小10倍,右边的指数就多1,
326.9×106= 3.269×108
。
当堂检测 • 小练习P33
一组数据: 102=_1_0_0_, 103=_1_0_00_,
那么100 也可以表示成__1_0_2_______, 1 000也可以表示成___1_0_3______,
思考:
200 000
=2×100 000 2 105
2 600 000 =2.6× 1 000 000 2.6 106
9 35 3
(3) 1 ( 3 5 7 ) 1
4 9 12 36
(4)
3
(5
|
4
|)
3 2
2 3
(
81) 8
二、计算
(1) 7 (7) 2 (11)
4
3
8
(2) 12 7 ( 2 1 ) 1 (4)2
C.1.62×108 D.0.162×109
3.(2015•山东潍坊)2015年5月17日是第25个全国助残 日,今年全国助残日的主题是“关注孤独症儿童,走向 美好未来”.第二次全国残疾人抽样调查结果显示,我 国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记 数法表示为( )
A. 1.11×104 B. 11.1×104 C. 1.11×105 D. 1.11×106 4.(2015•南宁)南宁快速公交(简称:BRT)将在今年底 开始动工,预计2016年下半年建成并投入试运营,首条 BRT西起南宁火车站,东至南宁东站,全长约为11300 米,其中数据11300用科学记数法表示为( ).
人教版初一上册数学1.5.2科学计数法.课件
![人教版初一上册数学1.5.2科学计数法.课件](https://img.taocdn.com/s3/m/89cbe9860722192e4436f67b.png)
答:水龙头滴了1.44×103毫升水。
比 较 大 小
在以下的各数中,最大的数为( D) (A)7.2 ×105 (B)2.5×106
(C)9.9 ×105
(D)1× 107
在下列各数中最小的为(B)
(A)3.14 ×1010 (B)3.1×1010 (C)3.2×1010 (D)3.142×1010
观察探究 10的乘方有如下的特点:
102… 100 103 1000 104 10000
一般地,10的n次幂等于10…0(在1的后面 有n个0),所以就可以用10的乘方表示一些 大数。 例如:721000 = 7.21×100000 = 7.21× 105
读作:7.21乘以10的5次方(幂) 567000 000 = 5.67×100000000 = 5.76× 108
2、第五次人口普查知云南省人口总数约为 4596万人,用科学记数法表示是多少人?
解:4596万人=4.596×107人
学以致用
1、用科学记数法表示下列各数 10 000; 800 000; 5600 000;-7400 000;
2、下列用科学记数法写出的数,原数分别是什么 数?
110 7 ;4 10 3; 8.5 10 6 ;7.04105
1.23109 1230000000
合作探究
1、用科学记数法表示下列各数: 1000 000;57 000 000;-123 000 000 000
30900000
解:1000 000=107 57 000 000=5.7 107 -123 000 000 000= 1.231011 -30900 000= 3.09107
1.5.2_科学记数法课件_新课标_人教版
![1.5.2_科学记数法课件_新课标_人教版](https://img.taocdn.com/s3/m/9c5dd80c59eef8c75fbfb34a.png)
科学记数法
100=
10
2 3
1000 =
10 000=
10
10
4 12
1000 000 000 000= 10
思考:如果在1的后边有n个0,这样的数可以简 n
记作什么?
记作:10
归纳
一般地,10的n次幂等于10……0(在1的 后面有n个0)。
记作:10n 所以我们可以利用10的乘方来表示一些大 数。
4、在下列各数中最小的为( )
(A)3.14 × 10
(C)3.2× 10
10
10
(B)3.1× 10
10 10
(D)3.14识?科学记数法的一般形式 是什么?如何用科学记数法表示大数?
像上面这样,把一个大于10的数表示成 aX10n的形式(其中a是整数数位只有一位的 数,n是正整数)使用的是科学记数法。 用科学记数法表示一个n位整数,其中10 的指数是 n-1
例如
太阳半径约696 000千米
300 000 000= 3X100 000 000 = 3X108 696 000= 696X1 000= 6.96X100 000 = 6.96X105
把这个大数简 单记下来
世界人口7 000 000 000
7 000 000 000 = 70X100 000 000 = 7X1 000 000 000 = 7X109
567 000 000=5.67X10 读作:“5.67乘10的8次方 (幂) 像上面这样,把一个大于10的数表示 成aX10n的形式(其中a是整数数位只有 一位的数,n是正整数)使用的是科学记 数法。 对于小于-10的数也可以类似。例如: -567 000 000=-5.67X10
科学计数法课件(人教版)
![科学计数法课件(人教版)](https://img.taocdn.com/s3/m/794d46bf900ef12d2af90242a8956bec0875a540.png)
科学计数法课件(人教版)简介,介绍了科学计数法的概述、表示方法、四 则运算以及应用领域。本课件将帮助您深入了解科学计数法的作用和优点。
科学计数法概述
什么是科学计数法?
科学计数法是一种表示极大数值或极小数值的简便方法。
作用和优点
科学计数法使得处理大量数据更加方便,并且减少了数字过长造成的误读。
基本原则
科学计数法的基本原则是将数字表示为一个定点数(1至10之间)与10的幂的乘积。
科学计数法的表示方法
科学记数法表示法
使用标准形式表示科学计数 法的数字,如1.23 x 10^4。
底数为10的科学计 数法
底数为10的科学计数法使用 10作为定点数,如1.23e+4。
底数不为10的科学 计数法
底数不为10的科学计数法将 定点数设为1至10之间的数, 如2.34 x 10^6。
科学计数法的四则运算
1
加减法
进行科学计数法的加减法时,对准点后的数字相加或相减,指数不变。
2
乘法
进行科学计数法的乘法时,将定点数相乘,指数相加。
3
除法
进行科学计数法的除法时,将定点数相除,指数相减。
科学计数法的应用
在工程实践中的应用
科学计数法在工程实践中帮助 准确表示物理量,如长度、重 量和电流。
在科学研究中的应用
科学计数法在科学研究领域中 使用广泛,方便表示极大和极 小的测量值。
在经济金融领域的应用
科学计数法帮助表示和计算巨 额的金融数据,如国民经济总 量和公司市值。
结语
本课件的总结和回 顾
科学计数法是处理大量数据 时非常有用的工具,它意义 和价值
科学计数法提供了一种精确 表示极大和极小数值的方式, 使得科学与工程领域的计算 更加便捷。
1.5.2科学计数法课件
![1.5.2科学计数法课件](https://img.taocdn.com/s3/m/045a555a302b3169a45177232f60ddccda38e6c3.png)
(1)1×106 (2)4.007×105
(3) -6×104 (4) -5.5×106
解: (1) 1×106 =1000000 (2)4.007×105 =400700 (3) -6×104 = -60000 (4) -5.5×106= -5500000
第12页,共16页。
天计算,一年有多少秒?(用科学记数
法表示)
第15页,共16页。
若一年为365天,光的速度为每秒300000千米
365×24 ×3600 ×300000×16 =151372800000000
151372800000000=1.513728 X1014
第16页,共16页。
自学检测三(小组讨论)
若92300000=9.23×10n, 789.08=7.8908×10m;
求m+n=
第13页,共16页。
小结: 说说,这节课你有什么收获.
(1)10的几次方就等于1后面有几个0.
(2) 运算结果的注整意数位a的数范比围指数哟大! 1.
(3)一个大于10的数可以表示成aX10n 的形式, 其中1≤a<10, n为正整数,这种方法是科学记 数法.
1≤a<10
n是正整数
567000000=5.67 X 100000000 = 5.6a7 X 108n
将一个大读作于:10”的5.数67可乘以以表10示的成8次aX方1”0 n 的形式, 其中1≤a<10, n为正整数,像这样的记数法是科 学记数法.
第8页,共16页。
例: 用科学记数法表示下列各数
(1) 1000000 (2)57000000 (3) 123000000000
解: 1000000 =106 57000000= 5.7 ×107 123000000000= 1.23 × 1011 _15000000 = _1.5 ×107
1.5.2 科学计数法.ppt
![1.5.2 科学计数法.ppt](https://img.taocdn.com/s3/m/7886fdc0b0717fd5360cdcdf.png)
1.54×107
用科学计数法表示一个数的整数
部分有n位数时,10的指数是___
__ n_-.1
用科学计数法可以直观地表示
2020-一11-18个数的整数谢部谢观分赏 的位数.
20
例3. 用科学记数法表示下列各数
• 21300000 ; -212000 ; -234.1 • 提示:用科学记数法表示一个数时,
2020-11-18
请
写
出
这
个
数
谢谢观赏
据3
11 0000 0000
青藏铁路建设用于环保的投资大约 11亿元。
这 个
数
据
是
多
少
?
2020-11-18
谢谢观赏
4
• 1 300 000 000 人 696 000 米 • 300 000 000 米/秒
2020-11-18
谢谢观赏
5
世界人口约 6100000000人
567 000 000 =5·67 × ( ) =5·67×108
2020-11-18
谢谢观赏
8
探究问题2 什么是科学计数法?其中的a和n是怎
样规定的。
把一个数写成a×10n(其中1≤︱a︱<10, n为正整数),这种形式的记数方法叫做 科学计数法。
567 000 000=5.67×108 , 读作“5.67乘10的8次方或8次幂”.
指数2、3、6与什么有关?
指数与原数0的个数有关 696000=6·96×105 6100000000 =6·1×109
指数 = 原数的整数位数-1
课本P45页,思考
2020-11-18
谢谢观赏
14
指数与原数0的个数有关
1.5.2科学计数法ppt课件
![1.5.2科学计数法ppt课件](https://img.taocdn.com/s3/m/09b40bc2360cba1aa811dad8.png)
此数不能小于1
此数也不能大于或 等于10
D、10000000=10×106
E、17070000=1.707×107
用科学记数法表示下列各数:
1 000 000,57 000 000,123 000 000 000 解:1 000 000=106 57 000 000=5.7X107 123 000 000 000=1.23X1011 观察:等号左边的位数与右边10的指数有什么关系? 右边10的指数等于左边整数位数减1
我国古代数字的写法:
在敦煌石窟所刻的算经中发现以下文字 “一、十、百、千、万、十万、百万、千万 、万万、一亿、十亿、百亿、千亿、万亿、 百万亿……” 这段文字说明我国在古代表示大数的一 种方法。但比这更大的数字怎么表示呢?
月球的质量约为73400000000亿吨 。
2008年5月12日, 在我国四川省汶川县 发生里氏8.0级强烈 地震,各级政府共投 入抗震救灾资金
100
……
n个0
00 =10n
利用10的乘方表示材料中的数
光速300 000 000米/秒 300 000 000 = 3X108 中国人口1 300 000 000
1 300 000 000= 1.3×10 9
太阳半径696 000 000米
696 000 000 = 6.96X108
1 300 000 000= 1.3×10 9
22600000000元
对这些大数进行读写确实比较 麻烦和困难,容易搞错
有关10的乘方
10 10 ห้องสมุดไป่ตู้0
2 3 4
100 1000 10000
1.5.2_科学计数法_课件
![1.5.2_科学计数法_课件](https://img.taocdn.com/s3/m/bb8f825a2e3f5727a5e962ca.png)
你知道吗?
第五次人口普查时,中国人口约为1300 000 000人。
你知道吗?
太阳的半径约为: 696 000 000米
你知道吗?
光的传播速度大约是300,000,000米/秒.
你知道吗?
世界总人口数约为6,100,000,000人.
整个可见宇宙空间恒星大约有 70000000000000000000000颗
太阳的半径约为696000千米, 光的速度约为300000000米/秒, 目前世界人口约为6100000000人。
这些大数的读、写都有一定困难。那么可 以用怎样的方法来表示这些大数,使它易读、 易记、易判断大小还便于计算呢?
102 =
100 ; 103= 1 000 ;
10 000 ; 105= 100 000 ;…; 104=_________ 1010= 10 000 000 000 ; · · 0(n个0) 10n= 1000 · ; 以10为底的幂的指数与写成数后0的个数有 何关系? 相等
解:60 × 10 000 000 = 600 000 000(升) = 6 ×108(升)
答:一年报废的电池所污染的水约6 ×108升.
(8)我国是一个严重缺水国家,大家应珍惜水 资源,节约用水。据测试,拧不紧的水龙 头 每秒钟会滴下2滴水,每滴水约0.05 毫升.小明在洗手后,没有把水龙头拧 紧,当他离开5小时后才被人发现并把水龙 头拧紧,你能算出这期间浪费了多少毫升 水吗?(结果用科学记数法表示)
你知道吗?
天上的星星知多少?
在悉尼举行的国际天文学联合会大会上, 天文学家指出整个可见宇宙空间大约有700 万亿亿颗恒星,这个数字比地球上所有沙漠和 海滩上的沙砾总和数量还要多。 如果想在字面上表示出这一数字,需要在 “7”后面加上22个“0”。 即约为“70000000000000000000000”颗。
13新人教版1.5.2 科学计数法
![13新人教版1.5.2 科学计数法](https://img.taocdn.com/s3/m/53cdf9c0d15abe23482f4d60.png)
18
2.下列用科学计数法记出的数,原来 分别是什么数。
(1) (2) (3) (4) (5) 1×107= 10000000 4000 4×103= 8.5×106= 8500000 7.04×105= 704000 -3.96×104= -39600
§1.5.2 科学计数法
数学+
数学+
1
1、计算:
102 103 104 105 106 107 108
观察上述计算,你发现了什么规律:
一般地,10的n次幂,是在1的 后面写 n 个 0。
2
月球的质量约为734万万亿吨。
734 0000 0000 0000 0000
请 写 出 这 个 数 据
3
11 0000 0000
19
1×106
5.7×107
⑴1 000 000=____. ⑵ 57 000 000=___
⑶ 12 300 000=____. ⑹ 200.001=___ 7
1.23×10 2.00001×102
⑷ -30 060=___.
-3.006×104
⑸ 15 400 000=
1.54×107
.
用科学计数法表示一个数的整数 部分有n位数时,10的指数是___ __ n _- .1 用科学计数法可以直观地表示 一个数的整数部分的位数.
21
一个人每天呼入和呼出大约 20000升空气,那么一年共呼入和 呼出的空气大约有多少升? 20000×365=7 300 000= 7.3×106
P45
22
归纳总结: 让学生说出这一节课学 习的主要内容和注意点。
2023-2024学年人教版七年级数学第一章1.5.2科学计数法
![2023-2024学年人教版七年级数学第一章1.5.2科学计数法](https://img.taocdn.com/s3/m/b807645efe00bed5b9f3f90f76c66137ef064f71.png)
1.5.2科学记数法1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数.2.会解决与科学记数法有关的实际问题.1.通过用科学记数法表示较大数的学习,让学生从多种角度感受大数,促使学生重视大数的现实意义,以培养学生的数感.2.体会科学记数法的好处和化繁为简的方法.1.用科学记数法的形式渗透数学的简洁之美,培养学生对数学完美形式的追求.2.通过对科学记数法的意义及必要性的了解,感知数学来源于生活,并为生活服务.【重点】正确使用科学记数法表示大于10的数.【难点】探究用科学记数法表示大于10的数的方法.【教师准备】多媒体课件.【学生准备】复习乘方的意义及其运算方法.导入一:2014年2月25日,十二届全国人大常委会第七次会议决议,拟将9月3日确定为中国人民抗日战争胜利纪念日,拟将12月13日设立为南京大屠杀死难者国家公祭日.【问题】你能用简便的方法记录下遇难同胞的人数吗?导入二:第六次全国人口普查时,我国全国总人口约为1370000000人地球半径约为6400000 m光的速度约为300000000 m/s【问题】有简单的方法表示上面的这些数吗?[设计意图]让学生通过身边熟悉的实例,感受大数,感受到记录大数据很不方便,为学生创设问题,探讨科学记数法做必要的铺垫.导入三:问题1【课件1】(1)310的底数是,指数是;103的底数是,指数是.(2)102=;103=;104=;105=.(3)100=10×10=(写成幂的形式,下同);1000=;10000=.学生先独立完成,然后合作小组内交流.问题2【课件2】上面(3)题右边用10的n次幂表示简洁明了,且不易出错,左边有许多零,很容易发生写错的情况,读的时候也是左难右易,这就使我们想到用10的n次幂表示较大的数,比如一亿,一百亿等,但是像太阳的半径大约是696000千米,光速大约是300000000米/秒,中国人口大约是13亿等,我们如何能简单明了地表示它们呢?[设计意图]通过创设情境,引起学生的探究欲望,激发学生的学习兴趣.让学生在观察中了解用幂表示数的方便,为科学记数法的学习做了铺垫.活动1:尝试探究1.问题【课件】算一算,填一填.填表:指数运算结果中0的个运算结果的位数数1011210222310555610101010111022222223提问:10n中的n表示有几个10相乘,它与运算结果中0的个数有什么关系?与运算结果的位数有什么关系?⏟,n恰巧是1后面0的个数.[方法归纳](1)10n=100 0n个10(2)10n中的n,比运算结果的位数少1;反之,1后面有多少个0,10的幂指数就是多少,如⏟=107.100000007个02.随堂练习问题【课件】(1)把下面各数改写成10的幂的形式.100000,10000000,100000000.(2)指出下面各数是几位数.108,1011,1021,1030.(学生先独立完成,后小组内交流.)3.试试看,你能把一个比10大的数表示成整数是一位数的数乘10的幂的形式吗?100=1×,3000=3×,25000=2.5×,5670000=5.67×.说明:这样不仅可以使书写简短,同时还便于读数.[方法归纳]根据上面的例子,我们把一个大于10的数记成a×10n的形式,(其中a大于或等于1,且小于10,n是正整数),这种记数方法叫做科学记数法.[知识拓展](1)a的取值范围是1≤a<10,不能等于10,当a=1时,1可以省略.(2)科学记数法的步骤:第一步确定a,例如7238001,首先在这个数的第一位后面标上小数点,7.238001就是a.第二步确定n,10的指数比原数的整数位数少1.注意不是比原数少1,如386.95中10的指数n=3 - 1=2而不是4.(3)当用科学记数法表示一个绝对值较大的负数时,注意原数不要丢掉性质符号,而a和n的确定与前面一致.如- 3678000可用科学记数法表示为- 3.678×106.[设计意图]通过学生的观察、比较、讨论、归纳得出科学记数法的概念和方法,使学生参与到教学过程中,感受数学的乐趣.活动2:例题讲解思路一1.问题【课件】(教材例5)用科学记数法表示下列各数:1000000,57000000, - 123000000000.(学生独立完成,然后指名完成,说明道理.)〔解析〕先确定a的值,然后观察原数的整数位数,再根据10的指数比原数整数位数少1确定n的值.解:1000000=106,(因为整数位数是7位,所以10的指数是6,这里的1可以省略.)57000000=5.7×107,(因为整数位数是8位,所以10的指数是7.)- 123000000000= - 1.23×1011.(因为整数位数是12位,所以10的指数是11,这里的负号不能去掉.)2.通过刚才的练习和例题,我们已经能用科学记数法表示一些较大的数,下面我们来看一下我们开始时遇到的一些数.出示:“导入一”中出现的较大数,让学生表示,然后小组交流,教师讲评.思路二1.说明:在生活中较大的数无处不在,有些时候我们需要把用科学记数法表示的数恢复为原数.问题【课件】下面用科学记数法表示的数,原来各是什么数?(1)北京故宫的占地面积约为7.2×105平方米.(2)人体中约有2.5×1013个红细胞.(3)水星和太阳的平均距离约为5.79×107千米.(4)地球上的海平面面积约为3.61×108平方千米.注意:让学生独立完成,完成后分组交流,再自主纠错.通过刚才的计算,想一想怎样把一个用科学记数法表示的数还原.[方法归纳]将a×10n表示的数还原可运用以下方法:(1)根据10的指数n来确定,n是几,就把小数点向右移动几位;(2)a×10n中,给n加上1即为原数的整数位数,其余不变,不够的数位用零补充.2.有些问题的计算中也涉及科学记数法.问题【课件】在一次水灾中,大约有2.5×107人无家可归,假如一顶帐篷占地100平方米,可以放置40张床位(一人一床位),为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?若某广场面积为5000平方米.要安置这些人,大约需要多少个这样的广场?(所有结果用科学记数法表示)〔解析〕用人数除以每一顶帐篷可以放置的床位数,计算即可求出帐篷数;用帐篷数乘每一顶帐篷所占的面积计算即可求出占地面积,用所有帐篷的占地面积除以广场的面积计算即可求出广场的个数.解:帐篷的顶数:2.5×107÷40=6.25×105;这些帐篷的占地面积:6.25×105×100=6.25×107(平方米);需要广场的个数:6.25×107÷5000=1.25×104.[设计意图]通过对例题的讲解与练习,让学生对科学记数法有一个更深的认识,强化了学生的解题能力,进一步感受到数学学习的作用.注意事项(1)注意确定底数10的指数n[知识拓展]当所记的数大于10时,底数10的指数n是正整数且等于所记数的整数位数减去1;当所记的数小于1时,底数10的指数n是负整数且它的绝对值等于所记数按自左到右第一个不是零的数字前所有零的个数.为了充分利用我国丰富的水力资源,国家计划在四川省境内长江上游修建一系列大型水力发电站,预计这些水力发电站的总发电量相当于10个三峡电站的发电量.已知三峡电站的年发电量将达84700000000千瓦时,那么四川省境内的这些大型水力发电站的年发电总量用科学记数法表示为()A.8.47×109千瓦时B.8.47×1011千瓦时C.8.47×1010千瓦时D.8.47×1012千瓦时〔解析〕科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的数后面加上小数点,再乘10的n 次幂.此题n>0,n=11.故选B.(2)注意a×10n中a的取值范围[知识拓展]a×10n中a的绝对值的取值范围必须是大于或等于1且小于10的数:即当所记的数大于10时,将原数的小数点向左移动所记数的整数位数减去1;当所记的数小于1时,将原数的小数点向右移动所记数按自左到右第一个不是零的数字前所有零的个数.光年是天文学中的距离单位,1光年大约是9500000000000 km,用科学记数法可表示为()A.950×1010 kmB.95×1011 kmC.9.5×1012 kmD.0.95×1013 km〔解析〕根据a×10n中a的取值范围必须是大于或等于1且小于10的数的要求,采用排除法可得出答案.因为950>10,95>10,0.95<1,所以A,B,D都不正确.故选C.本节学习的是科学记数法,科学记数法就是把一个大于10的数写成a×10n的形式(其中a 大于或等于1且小于10,n是正整数).在a×10n中,不仅要求1≤a<10,而且n是一个比原数的整数位数少1的数.把一个数写成科学记数法的形式,一般分两步:(1)确定a,a大于或等于1且小于10,它是原数的小数点向左移动后的结果;(2)确定n,n是正整数,它应该等于原数化为a时小数点移动的位数.1.在我国南海某海域探明可燃冰储量约有194亿立方米,数字19400000000用科学记数法表示正确的是()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109解析:科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.10的指数为原数的整数位数减1.故选A.2.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×1010千克B.50×109千克C.5×109千克D.0.5×1011千克解析:由于500亿有11位,因此可以确定10的指数n=11 - 1=10.故选A.3.用科学记数法表示的数1.001×1025的整数位数有()A.23位B.24位C.25位D.26位解析:科学记数法表示的数的整数位数是(n+1)位.把1.001的小数点向右移25位就是原数,所以整数位数有26位.故选D.4.用科学记数法表示下列各数.(1)地球的体积约是1080000000000立方千米;(2)银河系中的恒星约有一千六百亿个;(3)国家统计局、国务院第五次人口普查办公室公布我国人口达12.9533亿.解析:用科学记数法表示数的关键是确定a与10的指数n,确定a时,要注意范围,n等于原数的整数位数减1.解:(1)1080000000000=1.08×1012.(2)一千六百亿=160000000000=1.6×1011.(3)12.9533亿=1295330000=1.29533×109.1.5.2科学记数法1.定义把一个大于10的数记成a×10n的形式(其中a大于或等于1且小于10,n是正整数),这种记数方法叫做科学记数法.2.表示方法(1)确定a和n.(2)10的指数比原数的整数位数少1.一、教材作业【必做题】教材第45页第1,2,3题.【选做题】教材第47页习题1.5第4,5题.二、课后作业1.地球的表面积约为511000000 km2,用科学记数法表示正确的是()A.5.11×1010 km2B.5.11×108 km2C.51.1×107 km2D.0.511×109 km22.用科学记数法表示的数3.61×108,它的原数是()A.36100000000B.3610000000C.361000000D.361000003.5.17×10n+1是用科学记数法表示的,它的整数位数有()A.(n- 1)位B.n位C.(n+1)位D.(n+2)位4.下列用科学记数法写出的数,原数分别是什么数?1×107,4.5×106,7.04×105,3.96×104, - 7.4×105.5.请用简单方法表示下列各数.(1)科学家说,美丽的火星的地质情况与地球最相近.它距太阳约一亿四千九百五十九万八千千米;(2)地球离太阳约有一亿五千万千米.【能力提升】6.有一个到火星旅行的计划,来回的行程大约需要3个地球年(其中已知在火星上停留451个地球天),已知这个旅行的平均速度是4400千米/时,那么火星和地球之间的距离用科学记数法表示出来是多少千米?(注:地球年(或地球天)是指在地球上的一年(或一天),即1年=365天,1天=24小时)7.我国有960万km2的陆地国土面积,平均每年从太阳得到的能量相当于燃烧1.248×1021kg 煤.某农户的500 m2的一块菜地一年从太阳得到的能量相当于燃烧多少千克煤所产生的热量?(用科学记数法表示)【拓展探究】8.先计算,然后根据计算结果回答问题:(1)计算:①(1×102)×(2×104)=;①(2×104)×(3×107)=;①(3×107)×(4×104)=;①(4×105)×(5×1010)=.(2)已知式子(a×10n)×(b×10m)=c×10p成立,其中a,b,c均为大于或等于1而小于10的数,m,n,p 均为正整数,你能说出m,n,p之间存在的等量关系吗?【答案与解析】1.B(解析:根据科学记数法的定义,由于511000000有9位,所以可以确定n=9 - 1=8.故选B.)2.C(解析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据3.61×108中3.61的小数点向右移动8位就可以得到.)3.D(解析:根据用科学记数法表示的数,原数的整数位数比10的指数多1可知5.17×10n+1表示的数的整数位数是n+1+1=(n+2)位).4.解析:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n 位所得到的数.解:1×107=10000000,4.5×106=4500000,7.04×105=704000,3.96×104=39600, -7.4×105= - 740000.5.解析:先将各数写出来,再根据科学记数法的定义,写成a×10n的形式.在a×10n中,a的整数部分只能取一位整数,1≤|a|<10,且n的数值比原数的整数位数少1.(1)149598000的数位是9,则n 的值为8;(2)150000000的数位是9,则n的值为8.解:(1)一亿四千九百五十九万八千千米=149598000千米=1.49598×108千米.故一亿四千九百五十九万八千千米表示为1.49598×108千米.(2)一亿五千万千米=150000000千米=1.5×108千米.故一亿五千万千米表示为1.5×108千米.6.解析:用行程的时间的一半的小时数乘速度,再根据科学记数法的表示形式为a×10n,其中×4400=34003200=3.40032×107(千米).答:火星和1≤|a|<10,n为整数解答.解:24×(365×3 -451)×12地球之间的距离是3.40032×107千米.7.解析:根据题意,先求出每平方米从太阳得到的能量相当于燃烧多少千克煤产生的热量,再乘500即可.解:960万km2=9.6×1012 m2,1.248×1021÷(9.6×1012)×500=6.5×1010 (kg).答:某农户的500 m2的一块菜地一年从太阳得到的能量相当于燃烧6.5×1010 kg煤所产生的热量.8.解:(1)①2×106①6×1011①1.2×1012①2×1016(2)(a×10n)×(b×10m)=ab×10m+n=c×10p,因为a,b,c均为大于或等于1而小于10的数,m,n,p均为正整数,所以当ab<10时,m+n=p;当ab≥10时,m+n+1=p.教学过程中从学生身边的数学实例出发,让学生亲自感受到科学记数法表示大数带来的方便.在学习过程中,引导学生动手计算,探寻规律,最终探索出一种记数规律,进一步发展了学生的数感,培养了学生的团队合作、一丝不苟的精神.教学时能注意整合教材,重视建构完整的知识结构,根据学生实际,为更好地达到本节课的教学目的,在学生最近发展区,针对教材内容进行补充和调整,扩展了学生的知识结构.用科学记数法表示较大的数时,教师虽然加强了练习,采用逐层的方法,但在习题的拓展性上还需要加强,不能局限于书本当中与例题相对应的习题,应有一定的宽度和深度,以提高学生的能力.可以设计一些实际生活中的有单位的数据让学生表示,如180万,900亿等,加强变式的训练,不能固化学生的思维方式.也可以让学生在计算器上做两个大数的乘法,观察计算器显示的结果,交流一下各自的体会.另外要加强将计算结果用科学记数法表示的题的练习,教给学生计算的方法,如有些题中本身带科学记数法表示的数的计算.像教案中体现的最后一个问题,教师要详细指导.练习(教材第45页)1.解:10000=104,800000=8×105,56000000=5.6×107, - 7400000= - 7.4×106.2.解:1×107=10000000,4×103=4000,8.5×106=8500000,7.04×105=704000, -3.96×104= - 39600.3.解:9600000=9.6×106,370000=3.7×105.关于淡水量的计算与思考据科学家估计,地球储水总量为1.42×1018m3,而淡水总量却只占其中的2.53%.这些淡水的68.7%又封存于两极冰川和高山永久性积雪之中,这么一来,地球上可利用淡水不到地球储水总量的1%,它们存在于地下蓄水层、河流、湖泊、土壤、沼泽、植物和大气中,这当中又有很大一部分不易取得.21世纪初,世界人口约61亿,请同学们根据以上的资料,计算一下世界人均可利用淡水量大约是多少立方米(用科学记数法表示)?中国人口约13.4亿,估计中国的可利用淡水量仅占世界的8%,中国人均可利用淡水量大约是世界人均值的多少?根据联合国公布的标准,每人每年供水不足1000 m3的国家,即为缺水国家,中国是不是缺水国家?我们应该怎样对待淡水资源?。
七年级数学上册1.5.2科学计数法课件新版新人教版精品精品
![七年级数学上册1.5.2科学计数法课件新版新人教版精品精品](https://img.taocdn.com/s3/m/cc4441ff26fff705cc170a91.png)
仅供学习交流!!!
最新中小学课件
18
最新中小学课件
19
最新中小学课件
20
谢谢!
墨子,(约前468~前376)名翟,鲁人 ,一说 宋人, 战国初 期思想 家,政 治家, 教育家 ,先秦 堵子散 文代表 作家。 曾为宋 国大夫 。早年 接受儒 家教育 ,后聚 徒讲学 ,创立 与儒家 相对立 的墨家 学派。 主张•兼 爱”“ 非攻“ 尚贤” “节用 ”,反 映了小 生产者 反对兼 并战争 ,要求 改善经 济地位 和社会 地位的 愿望, 他的认 识观点 是唯物 的。但 他一方 面批判 唯心的 宿命论 ,一方 面又提 出同样 是唯心 的“天 志”说 ,认为 天有意 志,并 且相信 鬼神。 墨于的 学说在 当时影 响很大 ,与儒 家并称 为•显 学”。 《墨子》是先秦墨家著作,现存五 十三篇 ,其中 有墨子 自作的 ,有弟 子所记 的墨子 讲学辞 和语录 ,其中 也有后 期墨家 的作品 。《墨 子》是 我国论 辩性散 文的源 头,运 用譬喻 ,类比 、举例 ,推论 的论辩 方法进 行论政 ,逻辑 严密, 说理清 楚。语 言质朴 无华, 多用口 语,在 先秦堵 子散文 中占有 重要的 地位。 公输,名盘,也作•“般”或•“班 ”又称 鲁班, 山东人 ,是我 国古代 传说中 的能工 巧匠。 现在, 鲁班被 人们尊 称为建 筑业的 鼻祖, 其实这 远远不 够.鲁 班不光 在建筑 业,而 且在其 他领域 也颇有 建树。 他发明 了飞鸢 ,是人 类征服 太空的 第一人 ,他发 明了云 梯(重武 器),钩 钜(现 在还用) 以及其 他攻城 武器, 是一位 伟大的 军事科 学家, 在机械 方面, 很早被 人称为 “机械 圣人” ,此外 还有许 多民用 、工艺 等方面 的成就 。鲁班 对人类 的贡献 可以说 是前无 古人, 后无来 者,是 我国当 之无愧 的科技 发明之 父。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你知道吗?
月球离地球的距离约为380000000米
整个可见宇宙空间恒星大约有 70000000000000000000000颗
太阳的半径约为696000千米, 光的速度约为300000000米/秒, 目前世界人口约为6100000000人。
这些大数的读、写都有一定困难。那么可 以用怎样的方法来表示这些大数,使它易读、 易记、易判断大小还便于计算呢?
科学记数法的形式为a×10n ,其中 n 为正整数。
例题讲解
例:用科学记数法表示下列各数: 1000 000, 57 000 000, 123 000 000 000。 解: 1 000 000=106, 57 000 000= 5.7 ×10 000 000 =5.7×107, 123 000 000 000= 1.23 ×100 000 000 000 =1.23×1011.
探究:考虑到10的乘方有如下特点:
102=100, 103=1000, 104=10000,· · ·
一般地,10的n次幂,在1的后面有 n个0 ,这样就可以用10的幂来表示一 些大的数。
总结归纳
像上面那样,把一个数表示成a×10n的形 式(其中1≤a<10,n是整数),既简单明了, 又便于比较大小和进行计算,这种记数法,习 惯上叫科学记数法。
课堂小结
1.学了这节课你有哪些收获?
2.今后我们还会知道,用科学记数法还 可以表示绝对值较小的数,并且易读、 易写、易算。
作 业
这节课就到这里,下课!
你知道吗?
第五次人口普查时,中国人口约为1300 000 000人。
你知道吗? 太阳的半径约为: 696 000 000米
你知道吗?
光的传播速度大约是300,000,000米/秒 .
你知道吗?
世界总人口数约为6,100,000,000人.
你知道吗?
人类观测的宇宙深度大约是:15,000,000, 000光年.
下面的式子中,等号左边整数的位数与右边10 的指数有什么关系? 1 000 000=106, 57 000 000=5.7×107, 123 000 000 000=1.23×1011. 用科学记数法表示一个数时, 10的指数 比原数的整数位数少1。
如果一个数是6位整数,用科学记数法表示它 时,10的指数是多少?如果一个数有9位整数呢?
你知道吗?
天上的星星知多少?
在悉尼举行的国际天文学联合会大会上, 天文学家指出整个可见宇宙空间大约有700 万亿亿颗恒星,这个数字比地球上所有沙漠和 海滩上的沙砾总和数量还要多。 如果想在字面上表示出这一数字,需要在 “7”后面加上22个“0”。 即约为“70000000000000000000000”颗。
自我测评
自我测评
三、下列用科学记数法记出的数,原来各是什么数? (1) 3.0×104 ; 4.2×105; 1×103;6.003×107; (2)找出用科学记数法表示的数,并把其它的数用科学记 数法表示出来 ①水星的半径为2.44 ×106米,木星的赤道半径约为 71 400 000米. ②我国的陆地面积约为9 597 000平方千米,俄罗斯的陆 地面积约为9.976 ×106平方千米.
7.04×105, 3.96×104。
同步练习2
下列用科学记数法写出的数,原来 分别是什么数?
1×107 ; 4×103 ; 8.5×106 ;
一、单选题 1、2500用科学记数法表示为( ) A、0.25×104 B、2.5×103 C、2.5×102 D、25×102 2、用科学记数法记出的数5.64×106的原数是( ) A、564000 B、560000 C、5640000 D、5600000 二、科学记数法记出下列各数 1、27000; 2、42300000; 3、102000000; 4、50066000
观察与思考
用科学记数法表示一个n位整数,其中10的 n-1 指数是
同步练习1
用科学记数法写出下列各数:
10 000, 800 000, 56 000 000, 7 400 000. =7.4×106 =104 =8×105 =5.6×107
例题讲解
下列用科学记数法写出的数, 原来分别是什么数?
7 1×10 , 3 4×10 , 6 8.5×10 ,