线性回归模型在SAS_EM中的应用实例
线性回归模型在SAS_EM中的应用实例

Chapter 3Predictive Modeling Using Regression3.1Introduction to Regression ....................................................................... 3-3 3.2Regression in Enterprise Miner ............................................................... 3-103-2 错误!使用“开始”选项卡将 Heading 1 应用于要在此处显示的文字。
错误!使用“开始”选项卡将 Heading 1 应用于要在此处显示的文字。
.. .. ..3.1Introduction to RegressionObjectives .专业资料.3-4 错误!使用“开始”选项卡将 Heading 1 应用于要在此处显示的文字。
错误!使用“开始”选项卡将 Heading 1 应用于要在此处显示的文字。
Linear versus Logistic RegressionLinear RegressionLogistic RegressionThe Regression node in Enterprise Miner does either linear or logisticregression depending upon the measurement level of the target variable.Linear regression is done if the target variable is an interval variable. In linearregression the model predicts the mean of the target variable at the givenvalues of the input variables.Logistic regression is done if the target variable is a discrete variable. Inlogistic regression the model predicts the probability of a particular level(s) ofthe target variable at the given values of the input variables. Because thepredictions are probabilities, which are bounded by 0 and 1 and are not linearin this space, the probabilities must be transformed in order to be adequatelymodeled. The most common transformation for a binary target is the logittransformation. Probit and complementary log-log transformations are alsoavailable in the regression node... .. ..Logistic Regression AssumptiontransformationRecall that one assumption of logistic regression is that the logit transformation of the probabilities of the target variable results in a linear relationship with the input variables..专业资料.3-6 错误!使用“开始”选项卡将 Heading 1 应用于要在此处显示的文字。
sas多元线性回归

数据清洗
去除异常值、缺失值和重复 值。
数据转换
将分类变量(如商品ID)转 换为虚拟变量(dummy variables),以便在回归中 使用。
数据标准化
将连续变量(如购买数量、 商品价格)进行标准化处理, 使其具有均值为0,标准差 为1。
模型建立与评估
残差分析
检查残差的正态性、异方差性和自相关性。
sas多元线性回归
目录 CONTENT
• 多元线性回归概述 • SAS多元线性回归的步骤 • 多元线性回归的变量选择 • 多元线性回归的进阶应用 • 多元线性回归的注意事项 • SAS多元线性回归实例分析
01
多元线性回归概述
定义与特点
定义
多元线性回归是一种统计学方法,用于研究多个自变量与因 变量之间的线性关系。通过多元线性回归,我们可以预测因 变量的值,并了解自变量对因变量的影响程度。
多元线性回归的基本假设
线性关系
自变量与因变量之间存在线性关系, 即随着自变量的增加或减少,因变量 也按一定比例增加或减少。
无多重共线性
自变量之间不存在多重共线性,即自 变量之间没有高度相关或因果关系。
无异方差性
误差项的方差恒定,即误差项的大小 不随自变量或因变量的变化而变化。
无自相关
误差项之间不存在自相关,即误差项 之间没有相关性。
03
多元线性回归的变量选择
全模型选择法
全模型选择法也称为强制纳入法,是 指将所有可能的自变量都纳入回归模 型中,然后通过逐步回归或其他方法 进行筛选。这种方法简单易行,但可 能会受到多重共线性的影响,导致模 型不稳定。
VS
在SAS中,可以使用`PROC REG`的 `MODEL`语句来实现全模型选择法, 例如
SAS中多元线性回归

• 多元线性回归概述 • SAS中多元线性回归的实现 • 多元线性回归的假设检验 • 多元线性回归的进阶应用 • 多元线性回归的案例分析
01
多元线性回归概述
定义与特点
定义
多元线性回归是一种统计学方法,用 于研究多个自变量与因变量之间的线 性关系。通过多元线性回归,可以估 计自变量对因变量的影响程度和方向, 并预测因变量的取值。
无异常值
数据集中没有异常值,即数据点符合 正态分布。
05
04
无多重共线性
自变量之间不存在多重共线性关系, 即自变量之间没有高度的相关性。
02
SAS中多元线性回归的实现
PROC REG的语法与使用
1 2 3
语法格式
PROC REG DATA=数据集; MODEL 因变量 = 自变量1 自变量2 ... / VIF;
多重共线性的处理
处理多重共线性的方法包括剔除冗余变量、合并相关变量、使用指示变量等。此外,岭回归和主成分 回归等方法也可以在一定程度上缓解多重共线性问题。
模型诊断与优化
残差分析
通过观察残差的正态性、异方差性和自 相关性等特征,可以诊断模型是否满足 多元线性回归的前提假设。
VS
模型优化
根据诊断结果,可以对模型进行优化,如 变换自变量、引入交互项和交互项等,以 提高模型的拟合效果和预测能力。
05
多元线性回归的案例分析
案例一
总结词
通过多元线性回归分析,探讨工资与工作经 验、教育程度之间的关系,为提高工资水平 提供参考。
详细描述
首先,收集相关数据,包括员工的工资、工 作经验、教育程度等;然后,使用SAS软件 进行多元线性回归分析,建立工资与工作经 验、教育程度的数学模型;最后,根据回归 结果,分析各因素对工资的影响程度,为企 业制定合理的薪酬制度提供依据。
使用sas进行变量筛选模型诊断多元线性回归分析

使用SAS进行变量筛选、模型诊断、多元线性回归分析在其他地方看到的帖子,自己动手做了实验并结合自己的理解做了修订第一节多元线性回归分析的概述回归分析中所涉及的变量常分为自变量与因变量。
当因变量是非时间的连续性变量(自变量可包括连续性的和离散性的)时,欲研究变量之间的依存关系,多元线性回归分析是一个有力的研究工具。
多元回归分析的任务就是用数理统计方法估计出各回归参数的值及其标准误差;对各回归参数和整个回归方程作假设检验;对各回归变量(即自变量)的作用大小作出评价;并利用已求得的回归方程对因变量进行预测、对自变量进行控制等等。
值得注意的是∶一般认为标准化回归系数的绝对值越大,所对应的自变量对因变量的影响也就越大。
但是,当自变量彼此相关时,回归系数受模型中其他自变量的影响,若遇到这种情况,解释标准化回归系数时必须采取谨慎的态度。
当然,更为妥善的办法是通过回归诊断(TheDiagnosis ofRegression),了解哪些自变量之间有严重的多重共线性(Multicoll-inearity),从而,舍去其中作用较小的变量,使保留下来的所有自变量之间尽可能互相独立。
此时,利用标准化回归系数作出解释,就更为合适了。
关于自变量为定性变量的数量化方法设某定性变量有k个水平(如ABO血型系统有4个水平),若分别用1、2、…、k代表k个水平的取值,是不够合理的。
因为这隐含着承认各等级之间的间隔是相等的,其实质是假定该因素的各水平对因变量的影响作用几乎是相同的。
比较妥当的做法是引入k-1个哑变量(Dummy Variables),每个哑变量取值为0或1。
现以ABO血型系统为例,说明产生哑变量的具体方法。
当某人为A型血时,令X1=1、X2=X3=0;当某人为B 型血时,令X2=1、X1=X3=0;当某人为AB型血时,令X3=1、X1=X2=0;当某人为O型血时,令X1=X2=X3=0。
这样,当其他自变量取特定值时,X1的回归系数b1度量了E(Y/A型血)-E(Y/O型血)的效应;X2的回归系数b2度量了E(Y/B型血)-E(Y/O型血)的效应;X3的回归系数b3度量了E(Y/AB型血)-E(Y/O型血)的效应。
回归分析与SAS过程及案例分析

回归分析与REG 过程前面我们介绍了相关分析,并且知道变量之间线性相关的程度可以通过相关系数来衡量。
但在实际工作中,仅仅知道变量之间存在相关关系往往是不够的,还需要进一步明确它们之间有怎样的关系。
换句话说,实际工作者常常想知道某些变量发生变化后,另一个相关变量的变化程度。
例如,第六章中已经证明消费和收入之间有很强的相关关系,而且也知道,消费随着收入的变化而变化,问题是当收入变化某一幅度后,消费会有多大的变化?再比如,在股票市场上,股票收益会随着股票风险的变化而变化。
一般来说,收益和风险是正相关的,也就是说,风险越大收益就越高,风险越小收益也越小,著名的资本资产定价模型(CAPM)正说明了这种关系。
现在的问题是当某个投资者知道了某只股票的风险后,他能够预测出这只股票的平均收益吗?类似这类通过某些变量的已知值来预测另一个变量的平均值的问题正是回归分析所要解决的。
第一节 线性回归分析方法简介一、回归分析的含义及其所要解决的问题“回归”(Regression)这一名词最初是由19世纪英国生物学家兼统计学家F.Galton(F.高尔顿)在一篇著名的遗传学论文中引入的。
高尔顿发现,虽然有一个趋势:父母高,儿女也高;父母矮,儿女也矮,但给定父母的身高,儿女辈的平均身高却趋向于或者“回归”到全体人口的平均身高的趋势。
这一回归定律后来被统计学家K.Pearson 通过上千个家庭成员身高的实际调查数据进一步得到证实,从而产生了“回归”这一名称。
当然,现代意义上的“回归”比其原始含义要广得多。
一般来说,现代意义上的回归分析是研究一个变量(也称为因变量Dependent Variable 或被解释变量Explained Variable )对另一个或多个变量(也称为自变量Independent Variable 或Explanatory Variable )的依赖关系,其目的在于通过自变量的给定值来预测因变量的平均值或某个特定值。
SAS在回归模型中的应用

i 1
i 1
从而得到回归方程 yˆ aˆ bˆx
按照上述准则,我们可求出前面例子中灌溉 面积y对最大积雪深度x的回归方程是:
yˆ 142 364x
可以看出, 最大积雪深度每增加一个单位, 灌溉面积平均增加364个单位.
可以证明,我们用最小二乘法求出的估计
分别aˆ是, bˆ a, b 的无偏估计, 它们都是 y1,y2, …,yn
yi yˆi
aˆ
表明x的作用是显
yˆ
y
著地比随机因素
大, 这样, 方程
o
xi
x 就有意义.
通常我们可假设y和x没有线性相关关系, 对回归方程是否有意义进行显著性检验.
可以证明: 当 y a bx 的关系式中b=0时, 有
E(S回2 ) 2 , E(S残2 ) n 2 2 (11)
对任意两个变量的一组观察 (xi, yi), i=1, 2, …, n
都可以用最小二乘法形式上求得 y 对 x的回归方程, 如果y 与x 没有 线性相关关系, 这种形式的回归方程就没有意义 .
因此需要考察 y 与 x 间是否确有线性相关关系, 这就是回归效果的 检验问题.
我们注意到 yˆ aˆ bˆx 只反映了x对y的
的线性函数,而且在所有y1, y2 , …,yn的线性函数中, 最小二乘估计的方差最小.
求出回归方程,问题尚未结束,
由于 yˆ aˆ bˆx 是从观察得到的回归方程,
它会随观察结果的不同改变,并且它只反 映了由x的变化引起的y的变化,而没有包 含误差项 .
因此在获得这样的回归方程后,通常要 问这样的问题:
为一元线性回归模型.
由(1)式, 我们不难算得y的数学期望:
SAS-EM决策树案例

SAS-EM决策树案例决策树主要用来描述将数据划分为不同组的规则。
第一条规则首先将整个数据集划分为不同大小的子集,然后将另外的规则应用在子数据集中,数据集不同相应的规则也不同,这样就形成第二层数据集的划分。
一般来说,一个子数据集或者被继续划分或者单独形成一个分组。
1 预测模型案例概述一家金融服务公司为客户提供房屋净值贷款。
该公司在过去已经拓展了数千净值贷款服务。
但是,在这些申请贷款的客户中,大约有20%的人拖欠贷款。
通过使用地理、人口和金融变量,该公司希望为该项目建立预测模型判断客户是否拖欠贷款。
2 输入数据源分析数据之后,该公司选择了12个预测变量来建立模型判断贷款申请人是否拖欠。
回应变量(目标变量)标识房屋净值贷款申请人是否会拖欠贷款。
变量,以及它们的模型角色、度量水平、描述,在下表中已经显示。
SAMPSIO.HMEQ数据集中的变量,SAMPSIO库中的数据集HMEQ包括5960个观测值,用来建立和比较模型。
该数据集被划分为训练集、验证集和测试集,从而对数据进行分析。
3 创建处理流程图添加结点连接结点定义输入数据为了定义输入数据,右键输入数据源结点,选择打开菜单,弹出输入数据对话框。
默认情况下,数据选项卡是激活的。
点击select按钮选择数据集,4 理解原数据样本所有分析包在分析过程中必须定义如何使用这些变量。
为了先对这些变量进行评估,EM采用元数据方式处理。
默认方式下,它从原始数据集中随即抽取2000个观测样本,用这些信息给每个变量设置模型角色和度量水平。
它也计算一些简单统计信息显示在附加选项卡中。
如果需要更多的样本量,点击右下角的Change按钮,设置样本量。
评估这些元数据创建的赋值信息,可以选择变量选项卡查看相关信息。
从图中可以发现,Name列和Type列不可用。
这些列表示来自SAS数据集的信息在这个结点中不能修改。
名称必须遵循命名规范。
类型分为字符型和数值型,它将影响该变量如何使用。
SAS线性回归分析案例

线性回归20094788 陈磊 计算2SouthWest JiaoT ong U niversity-------------------------------------------------------------------线性回归分为一元线性回归和多元线性回归。
一元线性回归的模型为Y=β0+β1X+ε,这里X是自变量,Y是因变量,ε是随机误差项。
通常假设随机误差的均值为0,方差为σ2(σ2>0),σ2与X的值无关。
若进一步假设随机误差服从正态分布,就叫做正态线性模型。
一般情况,设有k个自变量和一个因变量,因变量的值可以分解为两部分:一部分是由于自变量的影响,即表示为自变量的函数,其中函数形式已知,但含有一些未知参数;另一部分是由于其他未被考虑的因素和随机性的影响,即随机误差。
当函数形式为未知参数的线性函数时,称为线性回归分析模型。
如果存在多个因变量,则回归模型为:Y=β0+β1X1+β2X2+⋯+βi X i+ε。
由于直线模型中含有随机误差项,所以回归模型反映的直线是不确定的。
回归分析的主要目的是要从这些不确定的直线中找出一条最能拟合原始数据信息的直线,并将其作为回归模型来描述因变量和自变量之间的关系,这条直线被称为回归方程。
通常在回归分析中,对ε有以下最为常用的经典假设。
1、ε的期望值为0.2、ε对于所有的X而言具有同方差性。
3、ε是服从正态分布且相互独立的随机变量。
对线性回归的讲解,本文以例题为依托展开。
在下面的例题中既有一元回归分析,又有二元回归分析。
例题(《数据据分析方法》_习题2.4_page79)某公司管理人员为了解某化妆品在一个城市的月销量Y(单位:箱)与该城市中适合使用该化妆品的人数X1(单位:千人)以及他们人均月收入X2(单位:元)之间的关系,在某个月中对15个城市作了调查,得到上述各量的观测值如表2.12所示。
假设Y与X1,X2之间满足线性回归关系y i=β0+β1x i1+β2x i2+εi,i=1,2,…,15其中εi独立同分布于N(0,σ2).(1)求线性回归系数β0,β1,β2的最小二乘估计和误差方差σ2的估计,写出回归方程并对回归系数作解释;(2)求出方差分析表,解释对线性回归关系显著性检验结果。
SAS线性回归分析案例

1■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ «»■■■■■■■.■■■■■■■■■■■■■■■■■■■Z 貫44 豎呦88£1?600Z线性回归分为一元线性回归和多元线性回归。
一元线性回归的模型为Y=/?O+0】X+£,这里X是自变量,Y是因变量,£是随机误差项。
通常假设随机谋差的均值为0,方差为(,>0),,与X的值无关。
若进一步假设随机谋差服从正态分布,就叫做正态线性模型。
一般情况,设有k个自变量和一个因变量,因变量的值可以分解为两部分:一部分是山于自变量的影响,即表示为自变量的函数,其中函数形式已知,但含有一些未知参数:另一部分是由于其他未被考虑的因素和随机性的影响,即随机误差。
当函数形式为未知参数的线性函数时,称为线性回归分析模型。
如果存在多个因变量,则回归模型为:Y = 00+ 81X1 +02X2 +…+ "iXi + £。
「h于直线模型中含有随机课差项,所以回归模型反映的-直线是不确立的。
回归分析的主要冃的是要从这些不确定的克线中找出一条最能拟合原始数据信息的直线,并将其作为回归模型來描述因变量和自变量之间的关系,这条直线被称为回归方程。
通常在曰归分析中,刘£有以下最为常用的经典假设。
1、£的期望值为0.2、£对于所有的X而言具有同方差性。
3、£是服从正态分布且相互独立的随机变量。
对线性回归的讲解,本文以例题为依托展开。
在下面的例题中既有一元回归分析,乂有二元回归分析。
例题(《数据据分析方法》习题2. 4_page79)某公司管理人员为了解某化妆品在一个城市的月销量Y (单位:箱)与该城市中适合使用该化妆品的人数& (单位:千人)以及他们人均月收入屁(单位:元)之间的关系,在某个月中对15个城市作了调査,得到上述乞量的观测值如表2. 12所示。
用SAS来实现回归

SAS学习实习报告题目:Project-2姓名: 许小平学号:20100084180指导老师:龚进容2011年 01月引言:某种疾病爆发,其患者总是或多或少都具有一些共同的特征,例如他们生活的自然环境,偏好的饮食习惯,所处的地理位置,社会环境,等等。
研究这些特征,找出爆发这种疾病的影响因素,便于采取有效的措施预防和控制这种疾病的蔓延。
这种研究无论是在医学上还是在人类发展史上都具有十分重要的意义。
一、数据的描述本案例是对同一个城市的两个地区的可能爆发某种疾病的调查,它有196个样本观测值,每个观测值包括以下5个变量:被调查者的年龄(Age )、被调查者的社会地位(Soc-s )(其中1表示处于上流社会,2表示中产阶级,3表示下层社会)、被调查者所在的地区(Sector )(其中1表示地区1,2表示地区2)、被调查者是否患有该种疾病(Disease )(其中0表示没有患这种疾病,1表示患有这种疾病)以及被调查者是否有储蓄存款(Save )(其中,0表示没有储蓄存款,1表示有储蓄存款)。
对此数据的描述性统计结果如下表所示:表1 “疾病爆发”数据的描述性统计分析根据此数据建立适当的模型,看这些变量对疾病的爆发是否有显著影响,影响程度如何。
二、目的1.建立一个合适Logistic 模型,看这些变量中哪些变量对疾病的爆发有显著影响,影响程度如何,从而可以对疾病的预防与控制提出适当的建议,以便采取有效措施。
2.在建模的过程中帮助我们复习Logistic 回归分析,加深对的理论知识的学习。
同时也熟悉对SAS 统计软件的操作能力。
3.加强我们的动手能力与实践能力,对应用统计有更深的认识。
三、建立模型的基本理论对于被解释变量是定性数据的情况,通常是建立Logistic 模型。
以二分变量为例: Y iProb(Y i ) 1P(Y i =1)= πi P(Y i =0)= 1-πi P(Y i =k)= k 1i k i )1(-π-π, k=0,1对于只有一个解释变量的情况,在X i 水平下得到的Y i =1的概率为:ii X X i e e 10101}E{Y 1) P(Y i i ββββπ+++====由此,得到的Logistic 函数为:i i i X 101ln ββππ+=⎪⎪⎭⎫ ⎝⎛-其中,1β表示X i 每增加一个单位,对数机会比率(ln-odds )就会相应增加1β个单位。
用SAS作回归分析RegressionAnalysis

交互项的检验
使用交互项的系数检验,判断交 互项是否显著,从而决定是否保 留交互项。
交互项模型的应用
场景
适用于研究多个因素之间相互作 用对因变量的影响,以及解释复 杂现象时使用。
06
案例分享与实战演练
案例一:使用SAS进行线性回归分析
总结词
线性回归分析是一种常用的回归分析方法,用于探索自变量和因变量之间的线 性关系。
表示为 y = f(x),其中 f 是一个非线性函数。
03
多重回归
当一个因变量受到多个自变量的影响时,可以使用多重回归分析。多重
回归模型可以表示为 y = b0 + b1x1 + b2x2 + ... + bnxn,其中 b0
是截距,b1, b2, ..., bn 是自变量的系数。
回归分析在统计学中的重要性
线性关系检验
通过散点图、残差图和正态性检验等手段,检验因变 量与自变量之间是否存在线性关系。
独立性检验
检查自变量之间是否存在多重共线性,确保自变量之 间相互独立。
误差项的独立性检验
检验误差项是否独立,即误差项与自变量和因变量是 否独立。
模型的评估与优化
模型评估
01
通过R方、调整R方、AIC等指标评估模型的拟合优度。
使用SAS进行线性回归分析
线性回归模型的建立
确定自变量和因变量
首先需要明确回归分析的目的,并确定影响因变量的自变量。
数据准备
确保数据清洗无误,处理缺失值、异常值和离群点。
模型建立
使用SAS的PROC REG或PROC GLMSELECT过程,输入自变量和 因变量,选择线性回归模型。
模型的假设检验
02
用SAS作回归分析

变量选择准则
(逐步回归)
逐步回归方式挑选有关的选项: NONE:全部进入,不加选择 FORWARD: 逐个加入 BACKWARD: 全部加入后逐个剔除 STEPWISE: 边进边出 MAXR:逐个加入和对换,使R2增加最大 MINR: 逐个加入和对换,使R2增加最小
24
回归的假设检验
原假设:简单线性模型拟合数据不比基线 模型好 b1 = 0, r = 0, |b1| 小,SS(Model) 小
备选假设:简单线性模型拟合数据比基线 模型好 b1 ^= 0, r ^= 0, |b1| 不为零,SS(Model) 大
25
R2
R 2S S(M o d el) b 1 2 S S(C -T o tal)
P R E S S (Y i Y (i))2
42
多变量线性模型的检验
在多变量回归分析输出的回归参数的t -检 验里,都是假定其它相依变量进入回 归的前提下检验该变量进入的显著性。
若模型中有两个变量有相关,在这一检验 中两者的显著性都可被隐蔽起来。所以, 这一检验结果必须小心分析。
删除变量时,必须逐个删除。并在删除每 个变量后,注意观测其它变量的p-值的 变化。
(Yi b0 b1 X i ) 2
+ (b1 b1 ) 2 ( X i X ) 2
+ n (Y b0 b1 X ) 2
= SS(error) + SS(Ind.-var) + SS(Const.)
27
预测值与置信限
预 测 值 : Yx0 b0 + b1x0 均值置信限(CLM):
相关系数是描述两个变量间线性联系程度 的统计指标
(整理)回归分析与SAS过程

回归分析与REG 过程前面我们介绍了相关分析,并且知道变量之间线性相关的程度可以通过相关系数来衡量。
但在实际工作中,仅仅知道变量之间存在相关关系往往是不够的,还需要进一步明确它们之间有怎样的关系。
换句话说,实际工作者常常想知道某些变量发生变化后,另一个相关变量的变化程度。
例如,第六章中已经证明消费和收入之间有很强的相关关系,而且也知道,消费随着收入的变化而变化,问题是当收入变化某一幅度后,消费会有多大的变化?再比如,在股票市场上,股票收益会随着股票风险的变化而变化。
一般来说,收益和风险是正相关的,也就是说,风险越大收益就越高,风险越小收益也越小,著名的资本资产定价模型(CAPM )正说明了这种关系。
现在的问题是当某个投资者知道了某只股票的风险后,他能够预测出这只股票的平均收益吗?类似这类通过某些变量的已知值来预测另一个变量的平均值的问题正是回归分析所要解决的。
第一节 线性回归分析方法简介一、回归分析的含义及其所要解决的问题“回归”(Regression)这一名词最初是由19世纪英国生物学家兼统计学家F.Galton(F.高尔顿)在一篇著名的遗传学论文中引入的。
高尔顿发现,虽然有一个趋势:父母高,儿女也高;父母矮,儿女也矮,但给定父母的身高,儿女辈的平均身高却趋向于或者“回归”到全体人口的平均身高的趋势。
这一回归定律后来被统计学家K.Pearson 通过上千个家庭成员身高的实际调查数据进一步得到证实,从而产生了“回归”这一名称。
当然,现代意义上的“回归”比其原始含义要广得多。
一般来说,现代意义上的回归分析是研究一个变量(也称为因变量Dependent Variable 或被解释变量Explained Variable )对另一个或多个变量(也称为自变量Independent Variable 或Explanatory Variable )的依赖关系,其目的在于通过自变量的给定值来预测因变量的平均值或某个特定值。
三、用SAS做回归分析

数学建模培训 徐雅静 08年7月
Ⅲ 用SAS做回归分析
在分析结果的Test for Distribution(分布检验)表中看到, p值大于0.05,不能拒绝原假设,表明可以接受误差正态 性的假定。
所以,模型
是合适的,用其对不良贷款进行预
测会更符合Y实ˆ 际0。.0331 x1
数学建模培训 徐雅静 08年7月
Ⅲ 用SAS做回归分析
2. 多元线性回归
引入数据集Mylib.BLDK中的所有4个自变量对不良贷款 建立多元线性回归。
(1) 分析步骤 在INSIGHT模块中打开数据集Mylib.BLDK。 1) 选择菜单“Analyze”→“Fit(Y X)(拟合)”,打开 “Fit(Y X)”对话框; 2) 在“Fit(Y X)”对话框中,选择变量Y,单击“Y”按钮, 将Y设为响应变量;选择变量x1、x2、x3、x4,单击“X”按钮, 将x1、x2、x3、x4设为自变量; 3) 单击“OK”按钮,得到分析结果。
数学建模培训 徐雅静 08年7月
Ⅲ 用SAS做回归分析
(3) 利用回归方程进行估计和预测 例如,要估计贷款余额为100亿元时,所有分行不良贷 款的平均值。 1) 回到数据窗口,点击数据表的底部,增加一个新行; 在第一个空行中,在x1列填入100,并按Enter键;
2) 自动计算出Y的预测值并将结果显示在P_Y列之中, 这样可以得到任意多个预测值。上图表明,贷款余额为 100亿元时,所有分行不良贷款的平均值约为2.96亿元。
线性回归模型在SAS_EM中的应用实例

Chapter 3 Predictive Modeling Using Regression3.1Introduction to Regression ............................................................................... 3-3 3.2Regression in Enterprise Miner ........................................................................ 3-91 应用于要在此处显示的文字。
要在此处显示的文字。
3-3 3.1 Introduction to RegressionObjectives1 应用于要在此处显示的文字。
Linear versus Logistic RegressionLinear RegressionLogistic RegressionThe Regression node in Enterprise Miner does either linear or logisticregression depending upon the measurement level of the target variable.Linear regression is done if the target variable is an interval variable. In linearregression the model predicts the mean of the target variable at the givenvalues of the input variables.Logistic regression is done if the target variable is a discrete variable. Inlogistic regression the model predicts the probability of a particular level(s) ofthe target variable at the given values of the input variables. Because thepredictions are probabilities, which are bounded by 0 and 1 and are not linearin this space, the probabilities must be transformed in order to be adequatelymodeled. The most common transformation for a binary target is the logittransformation. Probit and complementary log-log transformations are alsoavailable in the regression node.要在此处显示的文字。
sas线性回归分析案例(Case...

sas线性回归分析案例(Case study of SAS linear regressionanalysis)linear regression20094788 Chen Lei calculates 2Southwest Jiao Tong UniversitySouthWest JiaoTong University-------------------------------------------------------------------Linear regression is divided into single linear regression and multiple linear regression.The model of unary linear regression isY=..0+..1X+ epsilon,HereXIndependent variable,YDependent variable,Epsilon is a random error term.It is usually assumed that the mean of the random error isZeroThe variance is(..2..2>0),..2 andXValue independent. If further assumptionsRandom errorThe difference follows a normal distribution, which is called a normal linear model. In general, withKAn independent variable and a dependent variable, dependent variableThe value can be broken down into two parts: part is due to theinfluence of the independent variable, that is to sayFunction as an argumentAmong them, the function form is alreadyKnow, but contain some unknown parameters; another part is due to other UN considered factors and random effects, that is, random errors.When a function is a linear function of unknown parameters, it is called a linear regression analysis model.If there are multiple dependent variables, the regression model is:Y=..0+..1X1+..2X2+.+..IXi+..Due to the linear dieThe model contains random errors, so the regressionThe straight line reflected by the model is uncertain. The main purpose of regression analysis is to derive from theseIn the uncertain straight line, find a line which can best fit the original data information and describe it as a regression modelRelationship between independent variables,The straight line is called the regression equation.throughOften in regression analysis, yesEpsilon has the most commonly used classical assumptions.1. The expected value of epsilon isZero2, epsilon for allXFor example, it has the same variance.3, epsilon obeys normal distribution and is independent of each otherVariable.Explanation of linear regression,This paperBased on examples.In the following example, there is a one element regression analysis, and another twoMeta regression analysis.Examples(Data analysis method_exercises2.4_page79)A company manager who knows about the monthly sales of a cosmetics in a cityY(unit: box) with the middle of the cityThe number of people who use the cosmetics..1 (unit: thousand persons) and their per capita monthly income..2 (unit: yuan) betweenIn a certain monthFifteenThree cities were surveyed to obtain the above views Measured values, such as tableTwo point one twoAs shown.surfaceTwo point one twoCosmetics sales dataCitySales volume (y)Number of people (x1)Income (x2)CitySales volume (y)Number of people (x1)Income (x2)OneOne hundred and sixty-twoTwo hundred and seventy-fourTwo thousand four hundred and fiftyNineOne hundred and sixteenOne hundred and ninety-fiveTwo thousand one hundred and thirty-seven TwoOne hundred and twentyOne hundred and eightyThree thousand two hundred and fifty-four TenFifty-fiveFifty-threeTwo thousand five hundred and sixtyThreeTwo hundred and twenty-threeThree hundred and seventy-fiveThree thousand eight hundred and two ElevenTwo hundred and fifty-twoFour hundred and thirtyFour thousand and twentyFourOne hundred and thirty-oneTwo hundred and fiveTwo thousand eight hundred and thirty-eight TwelveTwo hundred and thirty-twoThree hundred and seventy-twoFour thousand four hundred and twenty-seven FiveSixty-sevenEighty-sixTwo thousand three hundred and forty-seven ThirteenOne hundred and forty-fourTwo hundred and thirty-sixTwo thousand six hundred and sixtySixOne hundred and sixty-nineTwo hundred and sixty-fiveThree thousand seven hundred and eighty-twoFourteenOne hundred and threeOne hundred and fifty-sevenTwo thousand and eighty-eight SevenEighty-oneNinety-eightThree thousand and eightFifteenTwo hundred and twelveThree hundred and seventyTwo thousand six hundred and five EightOne hundred and ninety-twoThree hundred and thirtyTwo thousand four hundred and fiftyhypothesisYand..1,Linear regression relation is found between..2 ....=..0+..1....1+..2....2+..,..=1,2,... 15.amongIndependent and identically distributed... (0,..2)(One)Coefficient of linear regression..0,..1,Least squares estimation and error variance of..2..2 estimates, writes regression equations, and...Regression coefficientInterpret;(Two)The ANOVA table was used to explain the significance of linear regression test. Square of the coefficient of the complex correlation..2valueAnd explain its meaning;(ThreeSeparately seek..1 andThe confidence of..2 is95%Confidence interval;(Four)YesThe number of people tested by alpha =0.05 ..1 and income..2Sales volumeYIs the effect significant?Regression coefficientTest of general hypothesis test method ..1 andThe interaction of..2 (i.e...1..2) yesYIs the effect significant?;Data importEdit window inputThis questionTheData import code:TitleData analysis method_exercises2.4_page79"; / *Title, omission does not affect analysis results * /DataMylib.ch2_2_4;*First, a new logical library,Logical LibrariesMylibCreate data setCh2_2_4*/Input y X1 x2 @ @ /*@@; Represents a continuous input,YDependent variable,X1,X2Independent variable* /Cards; / *Start input data* /1622742450120180, 32542233753802131205283867862347, 1692653782819830081923302450, 1161952137Fifty-five532560252430402023, 37244271442362660103157, 20882123702605;*Missing data"."Otherwise, the corresponding set of data will be automatically deleted* /Run/*runStatement is used to illustrate all rows before the statement in the current procedure step* /PressF8After run,Open logical libraryMylibYou can see the new data setCh2_2_4.SASA variety of imports are provided According to the manner, for example: One,Read data from file,INFILEF:\Mylib\CH2_2_4.txt";TwoAnd the use of established data sets,Proc reg data=mylib.ch2_2_4;You can also import directly from outsideExcelOther ways. The program above is entered directly in the editbox.procedure callThe procedure to call in this questionyesProc regProcess.Proc regProcess isSASsystemMany regression analysis process of the system in the Except that it can fit the general linear regression model,A variety of optimal model selection methods and model checking methods are also provided.Among themOneTwo)ThreeThe results of multivariate linear regression analysis are mainly used. (Four) will use a linear regression analysisResults.(I)Yand..,Linear regression analysisProcReg*transferRegProcess use* /MOdel y=x1 x2;*Dependent variableYThe independent variable is X1,X2*/Run;ModelStatement: used to define the model's dependent variables, arguments, model options, and output options.Common options areSelection=,Specifies the variable selection method:FORWARD(forward input method),BACKWARDXiang HoushanDivision),STEPWISE(stepwise regression),ADJRSQ(modified multiple correlation coefficient criterion),CP(Cp criterionEtc..NOINTSaid, is often included in the modelNumber item;STBThe regression coefficient, output standard;CLIThe output of single predictive value, confidence interval; RResidual scores are performedAnalysis of results of the analysis and output; IOutput(XTX).1matrix.Format:MODELDependent variable name=Argument rankingTheseoption]Cases:Model y=x1 / x2 selection=stepwise / *; stepwise regression* /After running the program, get the results Parameter estimation table(One)Least squares estimation:= = (0,... 1,... 2) = (3.45261,0.49600,0.00920) Regression equation:Y=3.45261+0.49600..1+0.00920..2ANOVA table(TwoError variance estimate:... 2=MSE=4.74040Multiple correlation coefficientSquares:..2=0.9989(R-Square)Significance: from the value of the complex correlation coefficient, it can be seen that it is highly significantand..1,..2)Multiple correlation coefficient SquaresCan also passBy calculation:..2=SSR/SST=53845/53902=0.9989 (Three)Confidence interval:K+....t1..2 (N.P) s...)...0.975 (12) =2.17881 (via check) T distribution table obtained) You can also pass the functionY=TINV(P,DFObtain...1=0.496+/-2.179*0.00605Draw (Zero point four eight two eight ,Zero point five zero nine two )..2=0.0092+/-2.179*0.00096811,DrawZero point zero zero seven one ,Zero point zero one one three )(Two)YandLinear regression analysisProcRegData=mylib.ch2_2_4; / *Direct reference data set* /Model y=x1;Run;(FourThe coefficient of multiple correlation is: Zero point nine nine one zeroX1YesYSignificant influence(Three)YandLinear regression analysis ProcRegData=mylib.ch2_2_4; / * Direct reference data set * /Model y=x2;Run;(Four)The coefficient of quadratic correlation is square: Zero point four zero eight seven,X2YesYThe effect is not significant(Four)YandLinear regression analysis of... Data mylib.ch2_2_4;Set mylib.ch2_2_4;*Read data set* /Z=x1*x2;*New argumentZ*/Run;Proc reg;Model y=z;*Argument isZ*/Run;(Four)The square of the complex correlation coefficient is: Zero point nine zero three zero,X1X2YesYSignificant impactLinear regression analysis using modules (I)Linear regression analysisstart-upSASSystem, and click "solution" in turn"->"Analysis"->"Analysts"And then click "file""->Open, open the data set"Ch2_2_4.sas7bdat",FigureVariable listindependent variable dependent variableThe value of confidence a Click "Statistics" in turn" ->"Regression"->"Simple" pop-up dialog boxOne)Variable settingsOn the left hand side of the variables listCentral ElectionYClick"DependentThe button is set as dependent variable ;SelectedX2Click"Explanatory"Button, set it as an argument."ModelIn the settings bar, select by default" Linear"" means linear regression.(Two)TestsSet upClick"TestsButton to eject the dialog boxConfidence defaults toZero Point Zero FiveMay change.Click"OK".(Three)PlotsSet upClick"Plots"Button" pops up the plotting Options dialog boxChoice"ResidulTab."Studentized"Represents a student residual," Normal quantile-Quantile plot"Stands for normality."QQGraph check.Settings as shownResidual columnNormal inspectionTest barVariable columnvariance analysisparameter estimationClick"OK"And click on the main settings dialog box "OK",ThereforeAnd get resultsregression equationClick"Analysis (new, project) "Dialog box""Plot of RSTUDENTVsX2"" pops up the residual graph Dialog boxClick again"Plot of RSTUDENTVsNQQ"Pop upQQchartThe normal state of the residual by the studentQQIt can be seen that the model error term is approximately normal distribution.Independent variable selection(two) manyLinear regression analysisstart-upSASSystem, click "solution" in turnResolution"->"Analysis">"Analyst", and then click "file"" ->Open, open the data set"Ch2_2_4.sas7bdat".Click "Statistics" in turn"->"Regression"->"Linear" pop-up dialog boxSelect argumentX1,X2Dependent variableY. Click"ModelButton to eject the dialog boxIn"Selection method"Column" provides independent variable selection, such as: Stepwise selectionExpressStep regression method;Adjusted R-SquareIndicates the modified multiple correlation coefficient criterion. This example selectsStepwise regression method. Click"OK".PlotsThe setting is similar to the one element regression analysis. Last click"OK".Multivariate linear analysis:Residual plotQQIn addition, click"Analysis (New project)"Dialog box"Code"Pop-up program dialog box.The above process is mainly explained by linear regressionSASThe use of the system, and therefore less analysis of the results. For example: byQQAs can be seen from the graphspotApproach a straight line, IndicateError termApproximatejuststateDistribution.。
SAS数据分析应用实例及相关程序DOC

SAS数据分析应用实例及相关程序正态性检验及T检验【例1】已知玉米单交种群105的平均穗重为300g。
喷药后,随机抽取9个果穗,其穗重分别为:308,305,311,298,315,300,321,294,320g。
问喷药后与喷药前的果穗平均重量之间的差别是否具有统计学意义?2.配对T检验【例2】对血小板活化模型大鼠以ASA进行实验性治疗,以血浆TXB2(ng/L)为指标,其结果如表2-1,试进行统计分析。
表2-1 2的变化(ng/L)3. 秩和检验【例3】探讨正己烷职业接触人群生化指标特征,用气相色谱法检测受检者尿液2,5-己二酮浓度(mg/L),为该人群的健康监护寻找动态观察依据。
正己烷职业接触组(A组)为广州市印刷行业彩印操作位作业人员64 人,其均在同一个大的车间轮班工作,工作强度相当;对照组(B组)选同厂其他车间工人53 人。
两组人员除接触正己烷因素不同外,生活水平、生活习惯、劳动强度、吸烟、饮酒情况基本相同。
问两组间尿液中2,5-己二酮浓度(mg/L)平均含量之间的差别是否有统计学意义?数据如下所示。
正己烷职业接触组:2.89、1.85、2.27、2.07、1.62、1.77、2.53、2.02、2.07、2.07、1.93、3.01、1.93、1.88、1.55、1.36、2.23、2.55、1.73、2.65、1.95、2.45、1.41、2.46、2.38、1.55、2.16、2.01、1.37、2.16、2.00、2.07、2.57、2.11、2.37、1.39、2.18、2.33、1.46、2.16、2.03、2.96、2.21、2.00、2.58、2.19、2.41、1.68、1.93、1.93、1.93、1.87、1.74、2.70、1.83、2.17、2.52、2.09、2.28、1.65、1.19、1.58、0.89、1.65对照组:0.27、0.36、0.26、0.16、0.49、0.58、0.16、0.45、0.22、0.25、0.66、0.05、0.31、0.12、0.51、0.30、0.37、0.14、0.28、0.33、0.36、0.51、0.37、0.36、0.47、0.34、0.72、0.39、0.55、0.17、0.27、0.33、0.30、0.26、0.50、0.17、0.22、0.18、0.17、0.62、0.27、0.26、0.34、0.17、0.61、0.42、0.39、0.28、0.36、0.43、0.24、0.15、0.194.两独立正态总体的检验【例4】一个小麦新品种经过6代选育,从第5代(A组)中抽出10株,株高为:66、65、66、68、62、65、63、66、68、62(cm),又从第6代(B组)中抽出10株,株高为:64、61、57、65、65、63、62、63、64、60(cm),问株高性状是否已经达到稳定?5.单因素K(K≥3)水平方差分析【例5】从津丰小麦4个品系中分别随机抽取10株,测量其株高(cm),数据如下所示,问不同品系津丰小麦的平均株高之间的差别是否具有统计学意义?品系0-3-1:63、65、64、65、61、68、65、65、63、64品系0-3-2:56、54、58、57、57、57、60、59、63、62品系0-3-3:61、61、67、62、62、60、67、66、63、65品系0-3-4:53、58、60、56、55、60、59、61、60、596. 双因素无重复试验的方差分析【例6】某医生欲研究回心草各单体成分对试验性心肌缺血血流动力学的影响,选取健康新西兰家兔若干只,体重(2.0±0.3)kg,雌雄不计,将其随机分成9组:胡椒碱高剂量组(100nmol/L)、胡椒碱中剂量组(10nmol/L)、胡椒碱低剂量组(1nmol/L)、胡椒酸甲酯高剂量组(100nmol/L)、胡椒酸甲酯中剂量组(10nmol/L)、胡椒酸甲酯低剂量组(1nmol/L)、咖啡酸甲酯高剂量组(100nmol/L)、咖啡酸甲酯中剂量组(10nmol/L)、咖啡酸甲酯低剂量组(1nmol/L)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter 3 Predictive Modeling Using Regression3.1Introduction to Regression ............................................................................... 3-3 3.2Regression in Enterprise Miner ........................................................................ 3-91 应用于要在此处显示的文字。
要在此处显示的文字。
3-3 3.1 Introduction to RegressionObjectives1 应用于要在此处显示的文字。
Linear versus Logistic RegressionLinear RegressionLogistic RegressionThe Regression node in Enterprise Miner does either linear or logisticregression depending upon the measurement level of the target variable.Linear regression is done if the target variable is an interval variable. In linearregression the model predicts the mean of the target variable at the givenvalues of the input variables.Logistic regression is done if the target variable is a discrete variable. Inlogistic regression the model predicts the probability of a particular level(s) ofthe target variable at the given values of the input variables. Because thepredictions are probabilities, which are bounded by 0 and 1 and are not linearin this space, the probabilities must be transformed in order to be adequatelymodeled. The most common transformation for a binary target is the logittransformation. Probit and complementary log-log transformations are alsoavailable in the regression node.要在此处显示的文字。
3-5 Logistic Regression AssumptiontransformationRecall that one assumption of logistic regression is that the logittransformation of the probabilities of the target variable results in a linearrelationship with the input variables.1 应用于要在此处显示的文字。
5Missing ValuesCasesInputs?????????Regression uses only full cases in the model. This means that any case, or observation, that has a missing value will be excluded from consideration when building the model. As discussed earlier, when there are many potential input variables to be considered, this could result in an unacceptably high loss of data. Therefore, when possible, missing values should be imputed prior to running a regression model.Other reasons for imputing missing values include the following: •Decision trees handle missing values directly, whereas regression and neural network models ignore all observations with missing values on any of the input variables. It is more appropriate to compare models built on the same set of observations. Therefore, before doing a regression orbuilding a neural network model, you should perform data replacement, particularly if you plan to compare the results to results obtained from a decision tree model.•If the missing values are in some way related to each other or to the target variable, the models created without those observations may be biased. •If missing values are not imputed during the modeling process, observations with missing values cannot be scored with the score code built from the models.要在此处显示的文字。
3-7 Stepwise Selection MethodsThere are three variable selection methods available in the Regression node of Enterprise Miner.Forward first selects the best one-variable model. Then it selects thebest two variables among those that contain the firstselected variable. This process continues until it reachesthe point where no additional variables have a p-value lessthan the specified entry p-value.Backward starts with the full model. Next, the variable that is leastsignificant, given the other variables, is removed from themodel. This process continues until all of the remainingvariables have a p-value less than the specified stayp-value.Stepwise is a modification of the forward selection method. Thedifference is that variables already in the model do notnecessarily stay there. After each variable is entered intothe model, this method looks at all the variables alreadyincluded in the model and deletes any variable that is notsignificant at the specified level. The process ends whennone of the variables outside the model has a p-value lessthan the specified entry value and every variable in themodel is significant at the specified stay value.1 应用于要在此处显示的文字。
The specified p-values are also known as significance levels.要在此处显示的文字。
3-9 3.2 Regression in Enterprise MinerObjectivesF IN〉F OUT1 应用于要在此处显示的文字。
Imputation, Transformation, and RegressionThe data for this example is from a nonprofit organization that relies onfundraising campaigns to support their efforts. After analyzing the data, asubset of 19 predictor variables was selected to model the response to amailing. Two response variables were stored in the data set. One responsevariable related to whether or not someone responded to the mailing(TARGET_B), and the other response variable measured how much theperson actually donated in U.S. dollars (TARGET_D).Name ModelRole MeasurementLevelDescriptionAGE Input Interval Donor's ageA VGGIFT Input Interval Donor's average giftCARDGIFT Input Interval Donor's gifts to card promotions CARDPROM Input Interval Number of card promotionsFEDGOV Input Interval % of household in federal government FIRSTT Input Interval Elapsed time since first donation GENDER Input Binary F=female, M=MaleHOMEOWNR Input Binary H=homeowner, U=unknownIDCODE ID Nominal ID code, unique for each donorINCOME Input Ordinal Income level (integer values 0-9)LASTT Input Interval Elapsed time since last donation LOCALGOV Input Interval % of household in local government MALEMILI Input Interval % of household males active in the military MALEVET Input Interval % of household male veterans NUMPROM Input Interval Total number of promotions PCOWNERS Input Binary Y=donor owns computer (missingotherwise)PETS Input Binary Y=donor owns pets (missing otherwise) STATEGOV Input Interval % of household in state government TARGET_B Target Binary 1=donor to campaign, 0=did not contribute TARGET_D Target Interval Dollar amount of contribution to campaign TIMELAG Input Interval Time between first and second donation✐The variable TARGET_D is not considered in this chapter, so itsmodel role will be set to Rejected.✐ A card promotion is one where the charitable organization sendspotential donors an assortment of greeting cards and requests adonation for them.The MYRAW data set in the CRSSAMP library contains 6,974 observationsfor building and comparing competing models. This data set will be splitequally into training and validation data sets for analysis.Building the Initial Flow and Identifying the Input Data1.Open a new diagram by selecting File⇨New⇨Diagram.2.On the Diagrams subtab, name the new diagram by right-clicking onUntitled and selecting Rename. the new diagram Non-Profit.4.Add an Input Data Source node to the diagram workspace by draggingthe node from the toolbar or from the Tools tab.5.Add a Data Partition node to the diagram and connect it to the Input DataSource node.6.To specify the input data, double-click on the Input Data Source node.7.Click on Select… in order to choose the data set.8.Click on the and select CRSSAMP from the list of defined libraries.9.Select the MYRAW data set from the list of data sets in the CRSSAMPlibrary and then select OK.Observe that this data set has 6,974 observations (rows) and 21 variables (columns). Evaluate (and update, if necessary) the assignments that were made using the metadata sample.1.Click on the Variables tab to see all of the variables and their respectiveassignments.2.Click on the Name column heading to sort the variables by their name. Aportion of the table showing the first 10 variables is shown below.The first several variables (AGE through FIRSTT) have the measurement level interval because they are numeric in the data set and have more than 10 distinct levels in the metadata sample. The model role for all interval variables is set to input by default. The variables GENDER and HOMEOWNR have the measurement level binary because they have only twodifferent nonmissing levels in the metadata sample. The model role for all binary variables is set to input by default.The variable IDCODE is listed as a nominal variable because it is a character variable with more than two nonmissing levels in the metadata sample. Furthermore, because it is nominal and the number of distinct values is at least 2000 or greater than 90% of the sample size, the IDCODE variable has the model role id. If the ID value had been stored as a number, it would have been assigned an interval measurement level and an input model role.The variable INCOME is listed as an ordinal variable because it is a numeric variable with more than two but no more than ten distinct levels in the metadata sample. All ordinal variables are set to have the input model role.Scroll down to see the rest of the variables.The variables PCOWNERS and PETS both are identified as unary for their measurement level. This is because there is only one nonmissing level in the metadata sample. It does not matter in this case whether the variable was character or numeric, the measurement level is set to unary and the model role is set to rejected.These variables do have useful information, however, and it is the way in which they are coded that makes them seem useless. Both variables contain the value Y for a person if the person has that condition (pet owner for PETS, computer owner for PCOWNERS) and a missing value otherwise. Decision trees handle missing values directly, so no data modification needs to be done for fitting a decision tree; however, neural networks and regression models ignore any observation with a missing value, so you will need to recode these variables to get at the desired information. For example, you can recode the missing values as a U, for unknown. You do this later using the Replacement node.Identifying Target VariablesNote that the variables TARGET_B and TARGET_D are the response variables for this analysis. TARGET_B is binary even though it is a numeric variable since there are only two non-missing levels in the metadata sample. TARGET_D has the interval measurement level. Both variables are set to have the input model role (just like any other binary or interval variable). This analysis will focus on TARGET_B, so you need to change the model role for TARGET_B to target and the model role TARGET_D to rejected because you should not use a response variable as a predictor.1.Right-click in the Model Role column of the row for TARGET_B.2.Select Set Model Role⇨target from the pop-up menu.3.Right-click in the Model Role column of the row for TARGET_D.4.Select Set Model Role⇨rejected from the pop-up menu.Inspecting DistributionsYou can inspect the distribution of values in the metadata sample for each of the variables. To view the distribution of TARGET_B:1.Right-click in the name column of the row for TARGET_B.2.Select View distribution of TARGET_B.Investigate the distribution of the unary variables, PETS and PCOWNERS. What percentage of the observations have pets? What percentage of the observations own personal computers? Recall that these distributions depend on the metadata sample. The numbers may be slightly different if you refresh your metadata sample; however, these distributions are only being used for a quick overview of the data.Evaluate the distribution of other variables as desired. For example, consider the distribution of INCOME. Some analysts would assign the interval measurement level to this variable. If this were done and the distribution was highly skewed, a transformation of this variable may lead to better results. Modifying Variable InformationEarlier you changed the model role for TARGET_B to target. Now modify the model role and measurement level for PCOWNERS and PETS.1.Click and drag to select the rows for PCOWNERS and PETS.2.Right-click in the Model Role column for one of these variables and selectSet Model Role⇨input from the pop-up menu.3.Right-click in the measurement column for one of these variables andselect Set Measurement ⇨binary from the pop-up menu. Understanding the Target Profiler for a Binary TargetWhen building predictive models, the "best" model often varies according to the criteria used for evaluation. One criterion might suggest that the best model is the one that most accurately predicts the response. Another criterion might suggest that the best model is the one that generates the highest expected profit. These criteria can lead to quite different results.In this analysis, you are analyzing a binary variable. The accuracy criteria would choose the model that best predicts whether someone actually responded; however, there are different profits and losses associated with different types of errors. Specifically, it costs less than a dollar to send someone a mailing, but you receive a median of $13.00 from those that respond. Therefore, to send a mailing to someone that would not respond costs less than a dollar, but failing to mail to someone that would have responded costs over $12.00 in lost revenue.✐In the example shown here, the median is used as the measure of central tendency. In computing expected profit, it is theoretically moreappropriate to use the mean.In addition to considering the ramifications of different types of errors, it is important to consider whether or not the sample is representative of the population. In your sample, almost 50% of the observations represent responders. In the population, however, the response rate was much closer to5% than 50%. In order to obtain appropriate predicted values, you must adjust these predicted probabilities based on the prior probabilities. In this situation, accuracy would yield a very poor model because you would be correct approximately 95% of the time in concluding that nobody will respond. Unfortunately, this does not satisfactorily solve your problem of trying to identify the "best" subset of a population for your mailing.✐In the case of rare target events, it is not uncommon to oversample.This is because you tend to get better models when they are built on adata set that is more balanced with respect to the levels of the targetvariable.Using the Target ProfilerWhen building predictive models, the choice of the "best" model depends on the criteria you use to compare competing models. Enterprise Miner allows you to specify information about the target that can be used to compare competing models. To generate a target profile for a variable, you must have already set the model role for the variable to target. This analysis focuses on the variable TARGET_B. To set up the target profile for this TARGET_B, proceed as follows:1.Right-click over the row for TARGET_B and select Edit target profile….2.When the message stating that no target profile was found appears, selectYes to create the profile.The target profiler opens with the Profiles tab active. You can use the default profile or you can create your own.3.Select Edit⇨Create New Profile to create a new profile.4.Type My Profile as the description for this new profile (currentlynamed Profile1).5.To set the newly created profile for use, position your cursor in the rowcorresponding to your new profile in the Use column and right-click.6.Select Set to use.The values stored in the remaining tabs of the target profiler may vary according to which profile is selected. Make sure that your new profile is selected before examining the remainder of the tabs.7.Select the Target tab.This tab shows that TARGET_B is a binary target variable that uses the BEST12 format. It also shows that the two levels are sorted in descendingorder, and that the first listed level and modeled event is level 1 (the value next to Event).8.To see the levels and associated frequencies for the target, select Levels….Close the Levels window when you are done.9.To incorporate profit and cost information into this profile, select theAssessment Information tab.By default, the target profiler assumes you are trying to maximize profit using the default profit vector. This profit vector assigns a profit of 1 for each responder you correctly identify and a profit of 0 for every nonresponder you predict to respond. In other words, the best model maximizes accuracy. You can also build your model based on loss, or you can build it to minimize misclassification.10.For this problem, create a new profit matrix by right-clicking in the openarea where the vectors and matrices are listed and selecting Add.A new matrix is formed. The new matrix is the same as the default profit matrix, but you can edit the fields and change the values, if desired. You can also change the name of the matrix.11.Type My Matrix in the name field and press the Enter key.For this problem, responders gave a median of $13.00, and it costs approximately 68 cents to mail to each person; therefore, the net profit for •mailing to a responder is 13.00 - 0.68 = 12.32•mailing to a nonresponder is 0.00 - 0.68= -0.6812.Enter the profits associated with the vector for action (LEVEL=1). Yourmatrix should appear as shown below. You may need to maximize your window to see all of the cells simultaneously. Do not forget to change the bottom right cell of the matrix to 0.13.To make the newly created matrix active, click on My Matrix to highlightit.14.Right-click on My Matrix and select Set to use.15.To examine the decision criteria, select Edit Decisions….By default, you attempt to maximize profit. Because your costs have already been built into your matrix, do not specify them here. Optionally, you could specify profits of 13 and 0 (rather than 12.32 and -0.68) and then use a fixed cost of 0.68 for Decision=1 and 0 for Decision=0, but that is not done in this example. If the cost is not constant for each person, Enterprise Miner allows you to specify a cost variable. The radio buttons enable you to choose one of three ways to use the matrix or vector that is activated. You can choose to •maximize profit (default) - use the active matrix on the previous page as a profit matrix, but do not use any information regarding a fixedcost or cost variable.•maximize profit with costs - use the active matrix on the previous page as a profit matrix in conjunction with the cost information.•minimize loss - consider the matrix or vector on the previous page as a loss matrix.16.Close the Editing Decisions and Utilities window without modifying thetable.17.As discussed earlier, the proportions in the population are not representedin the sample. To adjust for this, select the Prior tab.By default, there are three predefined prior vectors in the Prior tab: •Equal Probability - contains equal probability prior values for each level of the target.•Proportional to data - contains prior probabilities that are proportional to the probabilities in the data.•None - (default) does not apply prior class probabilities.18.To add a new prior vector, right-click in the open area where the priorprofiles are activated and select Add. A new prior profile is added to the list, named Prior vector.19.To highlight the new prior profile, select Prior vector.20.Modify the prior vector to represent the true proportions in the population.21.To make the prior vector the active vector, select Prior vector in the priorprofiles list to highlight it.22.Right-click on Prior vector and select Set to use.23.Close the target profiler. Select Yes to save changes when prompted. Investigating Descriptive StatisticsThe metadata is used to compute descriptive statistics for every variable.1.Select the Interval Variables tab.Investigate the descriptive statistics provided for the interval variables. Inspecting the minimum and maximum values indicates no unusual values (such as AGE=0 or TARGET_D<0). AGE has a high percentage of missing values (26%). TIMELAG has a somewhat smaller percentage (9%).2.Select the Class Variables tab.Investigate the number of levels, percentage of missing values, and the sort order of each variable. Observe that the sort order for TARGET_B is descending whereas the sort order for all the others is ascending. This occurs because you have a binary target event. It is common to code a binary target with a 1 when the event occurs and a 0 otherwise. Sorting in descending order makes the 1 the first level, and this identifies the target event for a binary variable. It is useful to sort other similarly coded binary variables in descending order as well for interpretating results of a regression model.✐If the maximum number of distinct values is greater than or equal to 128, the Class Variables tab will indicate 128 values.(在这里idcode多于2000个不同的值,因而将他设置为ID)Close the Input Data Source node and save the changes when prompted.The Data Partition Node1.Open the Data Partition node.2.The right side enables you to specify the percentage of the data to allocateto training, validation, and testing data. Enter 50 for the values of training and validation.✐Observe that when you enter the 50 for training, the total percentage (110) turns red, indicating an inconsistency in the values. The numberchanges color again when the total percentage is 100. If the total is not 100%, the data partition node will not close.3.Close the Data Partition node. Select Yes to save changes when prompted. Preliminary Investigation1.Add an Insight node to the workspace and connect it to the Data Partitionnode as illustrated below.2.To run the flow from the Insight node, right-click on the node and selectRun.3.Select Yes when prompted to see the results. A portion of the output isshown below.Observe that the upper-left corner has the numbers 2000 and 21, which indicate there are 2000 rows (observations) and 21 columns (variables). This represents a sample from either the training data set or the validation data set, but how would you know which one?1.Close the Insight data set to return to the workspace.2.To open the Insight node, right-click on the node in the workspace andselect Open…. The Data tab is initially active and is displayed below.Observe that the selected data set is the training data set. The name of the data set is composed of key letters (in this case, TRN) and some random alphanumeric characters (in this case, 00DG0). The TRN00DG0 data set is stored in the EMDATA library. The bottom of the tab indicates that Insight, by default, is generating a random sample of 2000 observations from the training data based on the random seed 12345.3.To change which data set Insight is using, choose Select….You can see the predecessor nodes listed in a table. The Data Partition node is the only predecessor.4.Click on the next to Data Partition and then click on the next toSAS_DATA_SETS. Two data sets are shown that represent the training and validation data sets.5.Leave the training data set as the selected data and select OK to return tothe Data tab.6.Select Properties…. The Information tab is active. This tab providesinformation about when the data set was constructed as well as the number of rows and columns.7.Select the Table View tab.This tab enables you to view the data for the currently selected data set in tabular form. The check box enables you to see the column headings using the variable labels. Unchecking the box would cause the table to use the SAS variable names for column headings. If no label is associated with the variable, the column heading cell displays the SAS variable name.8.Close the Data set details window when you are finished to return to themain Insight dialog.9.Select the radio button next to Entire data set to run Insight using theentire data set.You can run Insight with the new settings by proceeding as follows:1.Close the Insight Settings window and select Yes when prompted to savechanges.2.Run the diagram from the Insight node.3.Select Yes when prompted to see the results.✐the run icon ( ) from the toolbar and selecting Yes when prompted to see the results.Use Insight to look at the distribution of each of the variables:1.Select Analyze⇨Distribution (Y).2.Highlight all of the variables except IDCODE in the variable list(IDCODE is the last variable in the list).3.Select Y.4.Select IDCODE⇨ Label.5.Select OK.Charts for numeric variables include histograms, box and whisker plots, and assorted descriptive statistics.The distribution of AGE is not overly skewed, so no transformation seems necessary.Charts for character variables include mosaic plots and histograms.The variable HOMEOWNR has the value H when the person is a homeowner and a value of U when the ownership status is unknown. The bar at the far left represents a missing value for HOMEOWNR. These missing values indicate that the value for HOMEOWNR is unknown, so recoding these missing values into the level U would remove the redundancy in this set of categories. You do this later in the Replacement node.Some general comments about other distributions appear below. •INCOME is treated like a continuous variable because it is a numeric variable.•There are more females than males in the training data set, and the observations with missing values for GENDER should be recoded to M or F for regression and neural network models. Alternatively, the missing values could be recoded to U for unknown.•The variable MALEMILI is a numeric variable, but the information may be better represented if the values are binned into a new variable.•The variable MALEVET does not seem to need a transformation, but there is a spike in the graph near MALEVET=0.•The variables LOCALGOV, STATEGOV, and FEDGOV are skewed to the right, so they may benefit from a log transformation.•The variables PETS and PCOWNERS only contain the values Y and missing. Recoding the missing values to U for unknown would make these variable more useful for regression and neural network models.•The distributions of CARDPROM and NUMPROM do not need any transformation.•The variables CARDGIFT and TIMELAG may benefit from a log transformation.•The variable A VGGIFT may yield better results if its values are binned. You can use Insight to see how responders are distributed.1.Scroll to the distribution of TARGET_B.2.Select the bar corresponding to TARGET_B=13.Scroll to the other distributions and inspect the highlighting pattern. Examples of the highlighting pattern for TIMELAG and PCOWNERS are shown. These graphs do not show any clear relationships.When you are finished, return to the main process flow diagram by closing the Insight windows.Understanding Data Replacement1.Add a Replacement node to the diagram. Your new diagram should appearas follows:2.Open the Replacement node.3.The Defaults tab is displayed first. Check the box for Create imputedindicator variables and use the arrow to change the Role field to input.This requests the creation of new variables, each having a prefix M_ followed by the original variable name. These new variables have a value of 1 when an observation has a missing value for the associated variable and 0 otherwise. If the “missingness” of a variable is related to the response variable, the regression and the neural network model can use these newly created indicator variables to identify observations that had missing values originally.✐The Replacement node allows you to replace certain values before imputing. Perhaps a data set has coded all missing values as 999. Inthis situation, select the Replace before imputation check box and thenhave the value replaced before imputing.✐When the class variables in the score data set contain values that are not in the training data set, these unknown values can be imputed bythe most frequent values or missing values. To do this, select theReplace unknown level with check box and then use the drop-downlist to choose either most frequent value (count) or missing value. Using Data Replacement1.Select the Data tab. Most nodes have a Data tab that enables you to seethe names of the data sets being processed as well as a view of the data in each one. The radio button next to Training is selected.。