2013年全国高校自主招生数学模拟试卷十七

合集下载

2013年全国高校自主招生数学模拟试卷三

2013年全国高校自主招生数学模拟试卷三

2013年全国高校自主招生数学模拟试卷三一、选择题(36分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( )A .0B .1C .2D .32.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( ) A .[1,2)- B .[1,2]- C .[0,3] D .[0,3)3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 () A.24181 B. 26681 C. 27481D. 670243 4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( ) A. 764 cm 3或586 cm 3B. 764 cm 3C. 586 cm 3或564 cm 3D. 586 cm 35.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( ) A. 1 B. 2 C. 3 D. 4 6.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是( )A. (0,)+∞B.C.D. )+∞二、填空题(54分,每小题9分)7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n = ,若7()128381f x x =+,则a b += .8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a =.题15图9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 种.10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n = ,则通项n a =.11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =.12.一个半径为1的小球在一个内壁棱长为则该小球永远不可能接触到的容器内壁的面积是. 12.一个半径为1的小球在一个内壁棱长为则该小球永远不可能接触到的容器内壁的面积是. 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.2013年全国高校自主招生数学模拟试卷三参考答案1[解]当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x +-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.[解法一] 因240x ax --=有两个实根12a x =22a x =故B A ⊆等价于12x ≥-且24x <,即22a -且42a , 解之得03a ≤<.[解法二](特殊值验证法)令3,[1,4],a B B A ==-⊄,排除C ,令171,]a B =-=,B A ⊄排除A 、B ,故选D 。

2013年全国高校自主招生数学模拟试卷及答案

2013年全国高校自主招生数学模拟试卷及答案

2013年全国高校自主招生数学模拟试卷一 参考答案一、选择题(本题满分36分,每小题6分)1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( B ) A.71 B. 71-C.21 D. 21-解:如图,在侧面PAB 内,作AM ⊥PB ,垂足为M 。

连结CM 、AC ,则∠AMC 为二面角A −PB −C 的平面角。

不妨设AB =2,则22==AC PA ,斜高为7,故2272⋅=⨯AM ,由此得27==AM CM 。

在△AMC 中,由余弦定理得712cos 222-=⋅⋅-+=∠CM AM AC CM AM AMC 。

2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( A)A. ]31,31[-B. ]21,21[-C. ]31,41[- D. [−3,3] 解:令a x 32=,则有31||≤a ,排除B 、D 。

由对称性排除C ,从而只有A 正确。

一般地,对k ∈R ,令ka x 21=,则原不等式为2|||34|||23|1|||a k a k a ≥-⋅+-⋅,由此易知原不等式等价于|34|23|1|||-+-≤k k a ,对任意的k ∈R 成立。

由于⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<≤-≥-=-+-125334121134325|34|23|1|k k k k k k k k ,所以31|}34|23|1{|min R =-+-∈k k k ,从而上述不等式等价于31||≤a 。

3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。

甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。

则使不等式a −2b +10>0成立的事件发生的概率等于( D ) A.8152 B.8159 C.8160 D.8161 解:甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为92=81个。

2013年全国高校自主招生数学模拟试卷13 (3)

2013年全国高校自主招生数学模拟试卷13 (3)

2013年全国高校自主招生数学模拟试卷十三一、选择题(本题满分36分,每题6分)1. 把圆x 2+(y -1)2=1与椭圆9x 2+(y +1)2=9的公共点,用线段连接起来所得到的图形为( )(A )线段 (B )不等边三角形 (C )等边三角形 (D )四边形2. 等比数列{a n }的首项a 1=1536,公比q=-12,用πn 表示它的前n 项之积。

则πn (n ∈N *)最大的是( )(A )π9 (B )π11 (C )π12 (D )π133. 存在整数n,使p +n +n 是整数的质数p ( ) (A )不存在 (B )只有一个 (C )多于一个,但为有限个 (D )有无穷多个4. 设x ∈(-12,0),以下三个数α1=cos(sin xπ),α2=sin(cos xπ),α3=cos(x +1)π的大小关系是( )(A )α3<α2<α1 (B )α1<α3<α2 (C )α3<α1<α2 (D )α2<α3<α15. 如果在区间[1,2]上函数f (x )=x 2+px +q 与g (x )=x +1x 2在同一点取相同的最小值,那么f (x )在该区间上的最大值是( )(A ) 4+11232+34 (B ) 4-5232+34 (C ) 1-1232+34 (D )以上答案都不对6. 高为8的圆台内有一个半径为2 的球O 1,球心O 1在圆台的轴上,球O 1与圆台的上底面、侧面都相切,圆台内可再放入一个半径为3的球O 2,使得球O 2与球O 1、圆台的下底面及侧面都只有一个公共点,除球O 2,圆台内最多还能放入半径为3的球的个数是( ) (A ) 1 (B ) 2 (C ) 3 (D ) 4 二、填空题(本题满分54分,每小题9分)1. 集合{x |-1≤log 1x10<-12,x ∈N *}的真子集的个数是 .2. 复平面上,非零复数z 1,z 2在以i 为圆心,1为半径的圆上,_z 1·z 2的实部为零,z 1的辐角主值为π6,则z 2=_______.3. 曲线C 的极坐标方程是ρ=1+cos θ,点A 的极坐标是(2,0),曲线C 在它所在的平面内绕A 旋转一周,则它扫过的图形的面积是_______.4. 已知将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱的长为2,则最远的两顶点间的距离是________.5. 从给定的六种不同颜色中选用若干种颜色,将一个正方体的六个面染色,每 面恰染一种颜色,每两个具有公共棱的面染成不同的颜色。

2013年全国高校自主招生数学模拟试卷12

2013年全国高校自主招生数学模拟试卷12

2013年全国高校自主招生数学模拟试卷十二一、选择题(36分)1.已知数列{x n }满足x n +1=x n -x n -1(n ≥2),x 1=a , x 2=b , 记S n =x 1+x 2+ +x n ,则下列结论正确的是(A )x 100=-a ,S 100=2b -a (B )x 100=-b ,S 100=2b -a (C )x 100=-b ,S 100=b -a (D )x 100=-a ,S 100=b -a2.如图,正四面体ABCD 中,E 在棱AB 上,F 在棱CD 上,使得AE EB =CFFD =λ (0<λ<+∞),记f (λ)=αλ+βλ其中αλ表示EF 与AC 所成的角,βλ表示EF 与BD 所成的角,则(A ) f (λ)在(0,+∞)单调增加(B ) f (λ)在(0,+∞)单调减少(C ) f (λ) 在(0,1)单调增加,而在(1,+∞单调减少 (D ) f (λ)在(0,+∞)为常数3.设等差数列的首项及公差均为非负整数,项数不少于3,且各项的和为972,则这样的数列共有(A )2个 (B )3个 (C )4个 (D )5个4.在平面直角坐标系中,若方程m (x 2+y 2+2y +1)=(x -2y +3)2表示的曲线为椭圆,则m 的取值范围为(A )(0,1) (B )(1,+∞) (C )(0,5) (D )(5,+∞)5.设f (x )=x 2-πx ,α = arcsin 13,β=arctan 54,γ=arcos(-13),δ=arccot(-54),则 (A )f (α)>f (β)>f (δ)>f (γ) (B ) f (α)> f (δ)>f (β)>f (γ) (C ) f (δ)>f (α)>f (β)>f (γ) (D ) f (δ)>f (α)>f (γ)>f (β)6.如果空间三条直线a ,b ,c 两两成异面直线,那么与a ,b ,c 都相交的直线有 (A ) 0条 (B ) 1条 (C )多于1 的有限条 (D ) 无穷多条二.填空题(每小题9分,共54分)1.设x ,y 为实数,且满足⎩⎨⎧(x -1)3+1997(x -1)=-1,(y -1)3+1997(y -1)=1.则x +y = . 2.过双曲线x 2-y 22=1的右焦点作直线l 交双曲线于A 、B 两点,若实数λ使得|AB | =λ的直线l 恰有3条,则λ= .3.已知复数z 满足⎪⎪⎪⎪2z +1z =1,则z 的幅角主值范围是 .4.已知三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,SA=SB=SC=2,AB=2,设S 、A 、B 、C 四点均在以O 为球心的某个球面上,则点O 到平面ABC 的距离为 .5.设ABCDEF 为正六边形,一只青蛙开始在顶点A 处,它每次可随意地跳到相邻两顶EFB CD A点之一.若在5次之内跳到D 点,则停止跳动;若5次之内不能到达D 点,则跳完5次也停止跳动,那么这只青蛙从开始到停止,可能出现的不同跳法共 种.6.设a =log z +log[x (yz )-1+1],b =log x -1+log(xyz +1),c =log y +log[(xyz )-1+1],记a ,b ,c 中最大数为M ,则M 的最小值为 . 三、(20分)设x ≥y ≥z ≥π12,且x +y +z =π2,求乘积cos x sin y cos z 的最大值和最小值.四、(20分)设双曲线xy =1的两支为C 1,C 2(如图),正三角形PQR 的三顶点位于此双曲线上. (1)求证:P 、Q 、R 不能都在双曲线的同一支上;(2)设P (-1,-1)在C 2上, Q 、R 在C 1上,求顶点Q 、R 的坐标.五、(20分)设非零复数a 1,a 2,a 3,a 4,a 5满足⎩⎨⎧a 2a 1=a 3a 2=a 4a 3=a 5a 4,a 1+a 2+a 3+a 4+a 5=4(1a 1+1a 2+1a 3+1a 4+1a 5)=S .其中S 为实数且|S |≤2.求证:复数a 1,a 2,a 3,a 4,a 5在复平面上所对应的点位于同一圆周上.2013年全国高校自主招生数学模拟试卷十二参考答案一、选择题(每小题6分,共36分)1.已知数列{x n }满足x n +1=x n -x n -1(n ≥2),x 1=a , x 2=b , 记S n =x 1+x 2+ +x n ,则下列结论正确的是(A )x 100=-a ,S 100=2b -a (B )x 100=-b ,S 100=2b -a (C )x 100=-b ,S 100=b -a (D )x 100=-a ,S 100=b -a解:x 1=a ,x 2=b ,x 3=b -a ,x 4=-a ,x 5=-b ,x 6=a -b ,x 7=a ,x 8=b ,….易知此数列循环,x n +6=x n ,于是x 100=x 4=-a ,又x 1+x 2+x 3+x 4+x 5+x 6=0,故S 100=2b -a .选A .2.如图,正四面体ABCD 中,E 在棱AB 上,F 在棱CD 上,使得AE EB =CFFD =λ (0<λ<+∞),记f (λ)=αλ+βλ其中αλ表示EF 与AC 所成的角,βλ表示EF 与BD 所成的角,则(A ) f (λ)在(0,+∞)单调增加 (B ) f (λ)在(0,+∞)单调减少(C ) f (λ) 在(0,1)单调增加,而在(1,+∞单调减少 (D ) f (λ)在(0,+∞)为常数解:作EG ∥AC 交BC 于G ,连GF ,则AE EB =CG GB =CFFD ,故GF ∥BD .故∠GEF=αλ,∠GFE=βλ,但AC ⊥BD ,故∠EGF=90°.故f (λ)为常数.选D .3.设等差数列的首项及公差均为非负整数,项数不少于3,且各项的和为972,则这样的数列共有(A )2个 (B )3个 (C )4个 (D )5个解:设首项为a ,公差为d ,项数为n ,则na +12n (n -1)d=972,n [2a +(n -1)d ]=2×972,即n 为2×972的大于3的约数.∴ ⑴ n=972,2a +(972-1)d=2,d=0,a=1;d ≥1时a <0.有一解;⑵n=97,2a +96d=194,d=0,a=97;d=1,a=a=49;d=2,a=1.有三解; ⑶n=2×97,n=2×972,无解.n=1,2时n <3..选C4.在平面直角坐标系中,若方程m (x 2+y 2+2y +1)=(x -2y +3)2表示的曲线为椭圆,则m 的取值范围为(A )(0,1) (B )(1,+∞) (C )(0,5) (D )(5,+∞)解:看成是轨迹上点到(0,-1)的距离与到直线x -2y +3=0的距离的比:x 2+(y +1)2|x -2y +3|12+(-2)2=5m <1⇒m >5,选D .5.设f (x )=x 2-πx ,α = arcsin 13,β=arctan 54,γ=arcos(-13),δ=arccot(-54),则 (A )f (α)>f (β)>f (δ)>f (γ) (B ) f (α)> f (δ)>f (β)>f (γ)E FBCDA(C ) f (i )>f (α)>f (β)>f (γ) (D ) f (δ)>f (α)>f (γ)>f (β) 解:f (x )的对称轴为x=π2,易得, 0<α<π6<π4<β<π3<π2<γ<2π3<3π4<δ<5π6.选B .6.如果空间三条直线a ,b ,c 两两成异面直线,那么与a ,b ,c 都相交的直线有(A ) 0条 (B ) 1条 (C )多于1 的有限条 (D ) 无穷多条解:在a 、b 、c 上取三条线段AB 、CC '、A 'D ',作一个平行六面体ABCD —A 'B 'C 'D ',在c 上取线段A 'D '上一点P ,过a 、P 作 一个平面,与DD '交于Q 、与CC '交于R ,则QR ∥a ,于是PR 不与a 平行,但PR 与a 共面.故PR 与a 相交.由于可以取无穷多个点P .故选D .二.填空题(每小题9分,共54分)1.设x ,y 为实数,且满足⎩⎨⎧(x -1)3+1997(x -1)=-1,(y -1)3+1997(y -1)=1. 则x +y = . 解:原方程组即⎩⎨⎧(x -1)3+1997(x -1)+1=0,(1-y )3+1997(1-y )+1=0.取 f (t )=t 3+1997t +1,f '(t )=3t 2+1987>0.故f (t )单调增,现x -1=1-y ,x +y=2.2.过双曲线x 2-y 22=1的右焦点作直线l 交双曲线于A 、B 两点,若实数λ使得|AB | =λ的直线l 恰有3条,则λ= .解:右支内最短的焦点弦=2b 2a =4.又2a=2,故与左、右两支相交的焦点弦长≥2a=2,这样的弦由对称性有两条.故λ=4时设AB 的倾斜角为θ,则右支内的焦点弦λ=2ab 2a 2-c 2cos 2θ=41-3cos 2θ≥4,当θ=90°时,λ=4.与左支相交时,θ=±arccos23时,λ=⎪⎪⎪⎪2ab 2a 2-c 2cos 2θ=⎪⎪⎪⎪41-3cos 2θ=4.故λ=4. 3.已知复数z 满足⎪⎪⎪⎪2z +1z =1,则z 的幅角主值范围是 .解:⎪⎪⎪⎪2z +1z =1⇔4r 4+(4cos2θ-1)r 2+1=0,这个等式成立等价于关于x 的二次方程4x 2+(4cos2θ-1)x +1=0有正根.△=(4cos2θ-1)2-16≥0,由x 1x 2=14>0,故必须x 1+x 2=-4cos2θ-14>0. ∴cos2θ≤-34.∴ (2k +1)π-arccos 34≤2θ≤(2k +1)π+arccos 34. ∴ kπ+π2-12arccos 34≤θ≤kπ+π2+12arccos 34,(k=0,1)B‘C’D’A‘CDASQ PR acb4.已知三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,SA=SB=SC=2,AB=2,设S 、A 、B 、C 四点均在以O 为球心的某个球面上,则点O 到平面ABC 的距离为 .解:SA=SB=SC=2,⇒S 在面ABC 上的射影为AB 中点H ,∴ SH ⊥平面ABC .∴ SH 上任意一点到A 、B 、C 的距离相等. ∵ SH=3,CH=1,在面SHC 内作SC 的垂直平分线MO 与SH 交于O ,则O 为SABC 的外接球球心.SM=1,∴SO=233,∴ OH=33,即为O 与平面ABC 的距离.5.设ABCDEF 为正六边形,一只青蛙开始在顶点A 处,它每次可随意地跳到相邻两顶点之一.若在5次之内跳到D 点,则停止跳动;若5次之内不能到达D 点,则跳完5次也停止跳动,那么这只青蛙从开始到停止,可能出现的不同跳法共 种.解:青蛙跳5次,只可能跳到B 、D 、F 三点(染色可证). 青蛙顺时针跳1次算+1,逆时针跳1次算-1,写5个“□1”,在□中填“+”号或“-”号:□1□1□1□1□1规则可解释为:前三个□中如果同号,则停止填写;若不同号,则后2个□中继续填写符号.前三□同号的方法有2种;前三个□不同号的方法有23-2=6种,后两个□中填号的方法有22种.∴ 共有2+6×4=26种方法.6.设a =log z +log[x (yz )-1+1],b =log x -1+log(xyz +1),c =log y +log[(xyz )-1+1],记a ,b ,c 中最大数为M ,则M 的最小值为 .解:a=log(x y +z ),b=log(yz +1x ),c=log(1yz +y ).∴ a +c=log(1yz +1x +yz +x )≥2log2.于是a 、c 中必有一个≥log2.即M ≥log2,于是M 的最小值≥log2.但取x=y=z=1,得a=b=c=log2.即此时M=log2.于是M 的最小值≤log2. ∴ 所求值=log2. 三、(本题满分20分)设x ≥y ≥z ≥π12,且x +y +z=π2,求乘积cos x sin y cos z 的最大值和最小值. 解:由于x ≥y ≥z ≥π12,故π6≤x ≤π2 -π12×2=π3.∴ cos x sin y cos z=cos x ×12[sin(y +z )+sin(y -z )]=12cos 2x +12cos x sin(y -z )≥12cos 2π3 =18 .即最小值.(由于π6 ≤x ≤π3 ,y ≥z ,故cos x sin(y -z )≥0),当y=z=π12 ,x=π3 时,cos x sin y cos z=18 . ∵ cos x sin y cos z=cos z ×12[sin(x +y )-sin(x -y )]=12cos 2z -12cos z sin(x -y ).O M2HSA B C 212由于sin(x -y )≥0,cos z >0,故cos x sin y cos z ≤12cos 2z=12cos 2π12 =12(1+cos π6)=2+ 38 . 当x= y=5π12 ,z=π12 时取得最大值. ∴ 最大值2+38,最小值18.四、(本题满分20分)设双曲线xy =1的两支为C 1,C 2(如图),正三角形PQR 的三顶点位于此双曲线上. (1)求证:P 、Q 、R 不能都在双曲线的同一支上;(2)设P (-1,-1)在C 2上, Q 、R 在C 1上,求顶点Q 、R 的坐标.解:设某个正三角形的三个顶点都在同一支上.此三点的坐标为P (x 1,1x 1),Q (x 2,1x 2),R (x 3,1x 3).不妨设0<x 1<x 2<x 3,则1x 1>1x 2>1x 3>0.k PQ =y 2-y 1x 2-x 1=-1x 1x 2;k QR =-1x 2x 3;tan ∠PQR=-1x 1x 2 +1x 2x 31+1x 1x 3x 22<0,从而∠PQR 为钝角.即△PQR 不可能是正三角形.⑵ P (-1,-1),设Q (x 2,1x 2),点P 在直线y=x 上.以P 为圆心,|PQ |为半径作圆,此圆与双曲线第一象限内的另一交点R 满足|PQ |=|PR |,由圆与双曲线都是y=x 对称,知Q 与R 关于y=x 对称.且在第一象限内此二曲线没有其他交点(二次曲线的交点个数).于是R (1x 2,x 2).∴ PQ 与y=x 的夹角=30°,PQ 所在直线的倾斜角=75°.tan75°=1+331-33=2+3.PQ 所在直线方程为y +1=(2+3)(x +1),代入xy=1,解得Q (2-3,2+3),于是R (2+3,2-3).五、(本题满分20分)设非零复数a 1,a 2,a 3,a 4,a 5满足⎩⎨⎧a 2a 1=a 3a 2=a 4a 3=a 5a 4,a 1+a 2+a 3+a 4+a 5=4(1a 1+1a 2+1a 3+1a 4+1a 5)=S .其中S 为实数且|S |≤2.求证:复数a 1,a 2,a 3,a 4,a 5在复平面上所对应的点位于同一圆周上.证明:设a 2a 1=a 3a 2=a 4a 3=a 5a 4=q ,则由下式得a 1(1+q +q 2+q 3+q 4)=4a 1q 4(1+q +q 2+q 3+q 4).∴ (a 12q 4-4) (1+q +q 2+q 3+q 4)=0,故a 1q 2=±2,或1+q +q 2+q 3+q 4=0.⑴ 若a 1q 2=±2,则得±2(1q 2+1q +1+q +q 2)=S .⇒S=±2[(q +1q )2+(q +1q )-1]=±2[(q +1q +12)2-54]. ∴ 由已知,有(q +1q +12)2-54∈R ,且|(q +1q +12)2-54|≤1.令q +1q +12=h (cos θ+i sin θ),(h >0).则h 2(cos2θ+i sin2θ)-54∈R .⇒sin2θ=0. -1≤h 2(cos2θ+i sin2θ)-54≤1.⇒14≤h 2(cos2θ+i sin2θ)≤94,⇒cos2θ>0.⇒θ=kπ(k ∈Z ) ∴ q +1q ∈R .再令q=r (cos α+i sin α),(r >0).则q +1q =(r +1r )cos α+i (r -1r )sin α∈R .⇒sin α=0或r=1.若sin α=0,则q=±r 为实数.此时q +1q ≥2或q +1q ≤-2.此时q +1q +12≥52,或q +1q +12≤-32.此时,由|(q +1q +12)2-54|≤1,知q=-1.此时,|a i |=2.若r=1,仍有|a i |=2,故此五点在同一圆周上.⑵ 若1+q +q 2+q 3+q 4=0.则q 5-1=0,∴ |q |=1.此时|a 1|=|a 2|=|a 3|=|a 4|=|a 5|,即此五点在同一圆上.综上可知,表示复数a 1,a 2,a 3,a 4,a 5在复平面上所对应的点位于同一圆周上.。

2013届高三数学全国高校自主招生模拟试卷(带答案)

2013届高三数学全国高校自主招生模拟试卷(带答案)

2013届高三数学全国高校自主招生模拟试卷(带答案)2013年全国高校自主招生数学模拟试卷四一、选择题(本题满分36分,每小题6分)1.已知△ABC,若对任意t∈R,→BA-t→BC≥→AC,则△ABC一定为A.锐角三角形B.钝角三角形C.直角三角形D.答案不确定2.设logx(2x2+x-1)>logx2-1,则x的取值范围为A.12<x<1B.x>12且x≠1C.x>1D.0<x<13.已知集合A={x|5x-a≤0},B={x|6x-b>0},a,b∈N,且A∩B∩N ={2,3,4},则整数对(a,b)的个数为A.20B.25C.30D.424.在直三棱柱A1B1C1-ABC中,∠BAC=π2,AB=AC=AA1=1.已知G与E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围为A.15,1)B.15,2)C.1,2)D.15,2)5.设f(x)=x3+log2(x+x2+1),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件6.数码a1,a2,a3,…,a2006中有奇数个9的2007位十进制数-2a1a2…a2006的个数为A.12(102006+82006)B.12(102006-82006)C.102006+82006D.102006-82006二、填空题(本题满分54分,每小题9分)7.设f(x)=sin4x-sinxcosx+cos4x,则f(x)的值域是.8.若对一切θ∈R,复数z=(a+cosθ)+(2a-sinθ)i的模不超过2,则实数a的取值范围为.9.已知椭圆x216+y24=1的左右焦点分别为F1与F2,点P在直线l:x-3y+8+23=0上.当∠F1PF2取最大值时,比|PF1||PF2|的值为.10.底面半径为1cm的圆柱形容器里放有四个半径为12cm的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水,使水面恰好浸没所有铁球,则需要注水cm3.11.方程(x2006+1)(1+x2+x4+…+x2004)=2006x2005的实数解的个数为.12.袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为.三、解答题(本题满分60分,每小题20分)13.给定整数n≥2,设M0(x0,y0)是抛物线y2=nx-1与直线y=x的一个交点.试证明对任意正整数m,必存在整数k≥2,使(x0m,y0m)为抛物线y2=kx-1与直线y=x的一个交点.14.将2006表示成5个正整数x1,x2,x3,x4,x5之和.记S=1≤i <j≤5Σxixj.问:⑴当x1,x2,x3,x4,x5取何值时,S取到最大值;⑵进一步地,对任意1≤i,j≤5有xi-xj≤2,当x1,x2,x3,x4,x5取何值时,S取到最小值.说明理由.15.设f(x)=x2+a.记f1(x)=f(x),fn(x)=f(fn-1(x)),n=1,2,3,…,M={a∈R|对所有正整数n,fn(0)≤2}.证明,M=-2,14].2013年全国高校自主招生数学模拟试卷四参考答案一、选择题(本题满分36分,每小题6分)答C.解:令∠ABC=α,过A作AD⊥BC于D,由→BA-t→BC≥→AC,推出→BA2-2t→BA•→BC+t2→BC2≥→AC2,令t=→BA•→BC→BC2,代入上式,得→BA2-2→BA2cos2α+→BA2cos2α≥→AC2,即→BA2sin2α≥→AC2,也即→BAsinα≥→AC.从而有→AD≥→AC.由此可得∠ACB=π2.答B.解:因为x>0,x≠12x2+x-1>0,解得x>12且x≠1.由logx(2x2+x -1)>logx2-1,+x2-x)><x<1,2x3+x2-x<2或x>1,2x3+x2-x>2.解得0<x<1或x>1.所以x的取值范围为x>12且x≠1.答C.解:5x-;6x-b>>b6.要使A∩B∩N={2,3,4},则1≤b6<2,4≤a5<5,即6≤b<12,20≤a<25.所以数对(a,b)共有C61C51=30个.答A.解:建立直角坐标系,以A为坐标原点,AB为x轴,AC为y轴,AA1为z轴,则F(t1,0,0)(0<t1<1),E(0,1,12),G(12,0,1),D(0,t2,0)(0<t2<1).所以→EF=(t1,-1,-12),→GD=(-12,t2,-1).因为GD⊥EF,所以t1+2t2=1,由此推出0<t2<12.又→DF=(t1,-t2,0),→DF=t12+t22=5t22-4t2+1=5(t2-25)2+15,从而有15≤→DF<1.答A.解:显然f(x)=x3+log2(x+x2+1)为奇函数,且单调递增.于是若a+b≥0,则a≥-b,有f(a)≥f(-b),即f(a)≥-f(b),从而有f(a)+f(b)≥0.反之,若f(a)+f(b)≥0,则f(a)≥-f(b)=f(-b),推出a≥-b,即a+b≥0.答B.解:出现奇数个9的十进制数个数有A=C2006192005+C2006392003+…+C200620059.又由于(9+1)2006=k=0Σ2006C2006k92006-k以及(9-1)2006=k=0Σ2006C2006k(-1)k92006-k从而得A=C2006192005+C2006392003+…+C200620059=12(102006-82006).填0,98].解:f(x)=sin4x-sinxcosx+cos4x=1-12sin2x-12sin22x.令t=sin2x,则f(x)=g(t)=1-12t-12t2=98-12(t+12)2.因此-1≤t≤1ming(t)=g(1)=0,-1≤t≤1maxg(t)=g(-12)=98.故,f(x)∈0,98].填-55,55].解:依题意,得+cosθ)2+(2a--2sinθ)≤3-5a2.-25asin(θ-φ)≤3-5a2(φ=arcsin55)对任意实数θ成立.-,故a的取值范围为-55,55].填3-1..解:由平面几何知,要使∠F1PF2最大,则过F1,F2,P三点的圆必定和直线l相切于点P.直线l交x轴于A(-8-23,0),则∠APF1=∠AF2P,即∆APF1∽∆AF2P,即|PF1||PF2|=|AP||AF2|⑴又由圆幂定理,|AP|2=|AF1|•|AF2|⑵而F1(-23,0),F2(23,0),A(-8-23,0),从而有|AF1|=8,|AF2|=8+43.代入⑴,⑵得,|PF1||PF2|=|AF1||AF2|=88+43=4-23=3-1.填(13+22)π.解:设四个实心铁球的球心为O1,O2,O3,O4,其中O1,O2为下层两球的球心,A,B,C,D分别为四个球心在底面的射影.则ABCD是一个边长为22的正方形。

中学自主招生模拟试卷含答案及答题卡

中学自主招生模拟试卷含答案及答题卡

自主招生模拟试卷(数学卷)题号 一二三总分得分一、选择题(共7题,每题5分,共35分)1.二次函数2y ax bx c =++的图像如右图所示,则化简二次根式22()()a c b c ++-的结果是( )A .a+bB .-a-bC .a-b+2cD .-a+b-2c2.有4支队伍进行4项比赛,每项比赛的第一、第二、第三、第四名分别得到5、3、2、1分。

每队的4项比赛得分之和算作总分,如果已知各队的总分不相同,并且其中一队获得了三项比赛的第一名,问总分最少的队伍最多得多少分?( )A .7B .8C .9D .103.已知a 是方程3310x x +-=的一个实数根,则直线1y ax a =+-不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.有一种长方体集装箱,其内空长为5米,高4.5米,宽3.4米,用这样的集装箱运长为 5米,横截面的外圆直径为0.8米的圆柱形钢管,最多能运( )根。

A .20根B .21根C .24根D .25根5.将5个相同的球放入位于一排的8个格子中,每格至多放一个球,则3个空格相连的概 率是( ) A .328 B . 528 C . 356 D . 5566.用[x]表示不大于x 的最大整数,则方程[]2230x x --=的解的个数是( ) A .1 B .2 C .3 D .4 7.对每个x ,y 是x y 21=,1223,232+-=+=x y x y 三个值中的最小值,则当x 变化时,函数y 的最大值是( )A . 4B . 6C . 8D . 487二、填空题(共7题,每题5分,共35分) 8. 已知()21()()4b c a b c a -=--,且a ≠0,则b c a += 。

9.G 是△ABC 的重心,过G 的直线交AB 于M ,交AC 于N , 则BM CNAM AN+= 。

10. 已知a 、b 、c 都是实数,且满足a>b>c,a+b+c=0.那么,ca的取值范围是 。

重点高中自主招生考试数学试卷精选全文

重点高中自主招生考试数学试卷精选全文

可编辑修改精选全文完整版重点高中自主招生考试数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3解答:解:由x+7<4x﹣2移项整理得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组的解集是x>3,∴m≤3.故选C.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.分析:本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.D.随C点移动而移动等分分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点.故选B.4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2分析:首先把y=+两边平方,求出定义域,然后利用函数的单调性求出函数的最大值和最小值,最后求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y的最大值为2,当x=1或5时,y的最小值为2,故当x=1或5时,y 取得最小值2,当x取1与5中间值3时,y取得最大值,故y的最大值与最小值的差为2﹣2,故选D.5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.6.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈分析:根据直线与圆相切的性质得到圆从一边转到另一边时,圆心要绕其三角形的顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解解:圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,∵等边三角形的边长是和它相切的圆的周长的两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形的一个顶点旋转了三角形的一个外角的度数,圆心要绕其三角形的顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考查了直线与圆的位置关系,弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.7.(3分)二次函数y=ax2+bx+c的图象如下图,则以下结论正确的有:①abc>0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c <0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m 时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b >am 2+bm ,即a+b >m (am+b ),正确.③④⑤正确.故选B . 8.(3分)如图,正△ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC ,PE ⊥AB ,PF ⊥AC 连结AP 、BP 、CP ,如果,那么△ABC 的内切圆半径为( )A . 1B .C . 2D .解答: 解:如图,过P 点作正△ABC 的三边的平行线,则△MPN ,△OPQ ,△RSP 都是正三角形,四边形ASPM ,四边形NCOP ,四边形PQBR 是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S △AFP +S △PCD +S △BPE =,故知S △ABC =3,S △ABC =AB 2sin60°=3,故AB=2,三角形ABC 的高h=3,△ABC 的内切圆半径r=h=1.故选A .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)与是相反数,计算=.解答:解:∵与|3﹣a ﹣|互为相反数,∴+|3﹣a ﹣|=0,∴3﹣a ﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a >0,∴(+)2=5,∴+=.答案为:.10.(3分)若[x ]表示不超过x 的最大整数,,则[A ]=﹣2 .分析: 先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x ]表示不超过x的最大整数得到,[A ]=﹣2. 解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A ]=[﹣]=﹣2.故答案为﹣2.点本题考查了取整计算:[x ]表示不超过x 的最大整数.也考查了分母有理化和零指数幂.评:11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=.分析:连接MN,设△MON的面积是s,由于M、N分别为△ABC两边AC、BC的中点,易知MN是△ABC的中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON的面积是2s,进而可知△BMN的面积是3s,再根据中点性质,可求△BCM的面积等于6s,同理可求△ABC的面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON的面积是s,∵M、N分别为△ABC两边AC、BC的中点,∴MN是△ABC的中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON的面积=2s,∴△BMN的面积=3s,∵N是BC的中点,∴△BCM的面积=6s,同理可知△ABC的面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考查了相似三角形的判定和性质、三角形中位线定理,解题的关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:探究型.分析:先设圆O的半径为r,由圆O的面积为3π求出R的值,再作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,由圆心角、弧、弦的关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′的度数,进而可得出结论.解答:解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是 5.5.分析:首先列举出所有数据的和,进而利用已知求出a,b的值,再利用中位数是一组数据重新排序后之间的一个数或之间两个数的平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有可能:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不同数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2的倍数的个数为a=5,是3的倍数的个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据的中位数是:=5.5,故答案为:5.5.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是.分析:首先用k表示出两条直线与坐标轴的交点坐标,然后表示出围成的面积S,根据得到的函数的取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴的交点是A(,0),与y轴的交点是B (0,2k﹣1)直线y=(k+1)x+2k+1与X轴的交点是C(,0),与y轴的交点是D (0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC的面积最小,最小值S=2﹣=.点评:本题考查了两条指向相交或平行问题,解题的关键是用k表示出直线与坐标轴的交点坐标并用k表示出围成的三角形的面积,从而得到函数关系式,利用函数的知识其最值问题.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形的性质,用含x的式子表示Rt△EGQ的三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形的性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.分析:易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.解答:解:扇形的弧长=4πcm,∴圆锥的底面半径=4π÷2π=2cm,∴圆锥的高为=2cm,设圆柱的底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱的侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱的侧面积有最大值.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,说明理由.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为关于x的二元一次方程,令△=0求b的值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形的腰或底,分别求Q点的坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一个交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意的点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意的Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.分析:作出圆与BA,BC相切时圆心的位置G,与CD相切时圆心的位置P,与CD相切时圆心的位置I,分别求得各段的路径的长,然后求和即可.解答:解:当圆心移动到G的位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G的路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P的位置(P是圆心在C,且与BC相切时圆心的位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心的位置),移动的路径是弧,弧长是:=m;圆心从I到N移动的距离是:6﹣1=5m,则圆心移动的距离是:(47+)+(8+)+5+=60+2+(m).19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.分析:(1)利用正方形的性质得到AD∥BC,DC∥AB,利用平行线分线段成比例定理得到,,从而得到,然后再利用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF的垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF的垂心.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形的面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2的切线,∴PM=PE,又∵PN与PF都是⊙O1的切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2的切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.21.(15分)(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x 轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x ﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整理得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2.。

2013年全国高校自主招生数学模拟试卷五

2013年全国高校自主招生数学模拟试卷五

5.设三位数 n=¯¯¯ abc,若以 a,b,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三 位数 n 有( ) A.45 个 B.81 个 C.165 个 D.216 个 6.顶点为 P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面 圆内的点,O 为底面圆圆心,AB⊥OB,垂足为 B,OH⊥PB,垂足为 H,且 PA=4,C 为 PA 的 中 点 , 则 当 三 棱 锥 O - HPC 的 体 积 最 大 时 , OB 的 长 为 ( ) 5 A. 3 2 5 B. 3 6 C. 3 2 6 D. 3
4 14.在平面直角坐标系 xOy 中,给定三点 A(0, ),B(-1,0),C(1,0),点 P 到直线 BC 的距 3 离是该点到直线 AB、AC 距离的等比中项. ⑴ 求点 P 的轨迹方程; ⑵ 若直线 L 经过ABC 的内心(设为 D),且与 P 点轨迹恰好有 3 个公共点,求 L 的斜率 k 的取 值范围.

6
B.

12
5 或 12
5 C. 或 6 12

的 (
2.已知 M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对于所有的 m∈R,均有 M∩N,则 b 取 值 范 围 是 ) A.[- 6 6 , ] 2 2 B.(- 6 6 , ) 2 2 2 3 2 3 C.(- , ] 3 3 2 3 2 3 D.[- , ] 3.不 3 3
; 3 . 3
2 2 1 2 1 ∴ AA12=A1M2+MN2+NA2-2A1M·NAcos,12= + + -2 cos,cos= . 3 3 3 3 2 =60. 10.设 p 是给定的奇质数,正整数 k 使得 k2-pk也是一个正整数,则 k= 2 p2 1 2 2 p 解:设 k -pk=n,则(k- ) -n = ,(2k-p+2n)(2k-p-2n)=p2,k= (p+1)2. 2 4 4 1 11. 已知数列 a0, a1, a2, „, an, „满足关系式(3-an+1)(6+an)=18, 且 a0=3, 则∑ 的值是 a i=0 i 1

2013年全国高校自主招生数学模拟试卷二

2013年全国高校自主招生数学模拟试卷二

2013年全国高校自主招生数学模拟试卷二一、填空题(64分)1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .2.函数11)(2-+=x x x f 的值域为 .3.设b a ,为正实数,2211≤+b a ,32)(4)(ab b a =-,则=b a log . 4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 .5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答) 6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD,则四面体ABCD 的外接球的半径为 .7.直线012=--y x 与抛物线x y42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB,则点C 的坐标为 .8.已知=n a C())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为 .二、解答题(56分)9.(16分)设函数|)1l g (|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求ba ,的值.10.(20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn nn n n t a t t a ta ∈n (N )*.(1)求数列}{n a 的通项公式; (2)若0>t ,试比较1+n a 与n a 的大小.11.(20分)作斜率为31的直线l 与椭圆C :143622=+yx交于B A ,两点(如图所示),且)2,23(P 在直线l的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上; (2)若︒=∠60APB,求△PAB的面积.2013年全国高校自主招生数学模拟试卷二参考答案1.{3,0,2,6}-. 提示:显然,在A 的所有三元子集中,每个元素均出现了3次,所以15853)1()(34321=+++-=+++a a a a ,故54321=+++a a a a ,于是集合A 的四个元素分别为5-(-1)=6,5-3=2,5-5=0,5-8=-3,因此,集合}6,2,0,3{-=A .2.(,(1,)2-∞-+∞ . 提示:设22,tan πθπθ<<-=x ,且4πθ≠,则)4sin(21cos sin 11tan cos 1)(πθθθθθ-=-=-=x f .设)4sin(2πθ-=u,则12<≤-u ,且0≠u ,所以 ),1(]22,(1)(+∞--∞∈=ux f .3.-1. 提示:由2211≤+b a ,得abb a 22≤+.又23322)(8)(24)(44)(4)(ab ab ab ab ab b a ab b a =⋅⋅≥+=-+=+,即abb a 22≥+. ①于是abb a 22=+. ②再由不等式①中等号成立的条件,得1=ab .与②联立解得⎪⎩⎪⎨⎧+=-=,12,12b a 或⎪⎩⎪⎨⎧-=+=,12,12b a故1log -=b a .4.⎪⎭⎫⎝⎛45,4ππ. 提示:不等式)cos (sin 7sin cos 3355θθθθ-<-等价于θθθθ5353cos 71cos sin 71sin +>+. 又5371)(xx x f +=是),(+∞-∞上的增函数,所以θθcos sin >,故∈+<<+k k k (45242ππθππZ ).因为)2,0[πθ∈,所以θ的取值范围是⎪⎭⎫⎝⎛45,4ππ.5.15000. 提示:由题设条件可知,满足条件的方案有两种情形: (1)有一个项目有3人参加,共有3600!5!51537=⋅-⋅C C种方案;(2)有两个项目各有2人参加,共有11400!5!5)(21252527=⋅-⋅⋅C C C 种方案;所以满足题设要求的方案数为15000114003600=+.6提示:设四面体ABCD 的外接球球心为O ,则O 在过△ABD 的外心N 且垂直于平面ABD 的垂线上.由题设知,△ABD 是正三角形,则点N 为△ABD 的中心.设M P ,分别为CD AB ,的中点,则N 在DP 上,且DP ON ⊥,CD OM ⊥.因为︒=∠=∠=∠60ADB CDB CDA ,设CD 与平面ABD 所成角为θ,可求得32s i n ,31c o s ==θθ.在△DMN 中,33233232,121=⋅⋅=⋅===DP DN CD DM .由余弦定理得231312)3(1222=⋅⋅⋅-+=MN,故2=MN.四边形DMON 的外接圆的直径3322sin ===θMN OD .故球O 的半径3=R . 7.)2,1(-或)6,9(-.提示: 设)2,(),,(),,(22211t t C y x B y x A ,由⎩⎨⎧==--,4,0122x y y x 得0482=--y y ,则821=+y y ,421-=⋅y y .又12,122211+=+=y x y x ,所以182)(22121=++=+y y x x ,11)(24212121=+++⋅=⋅y y y y x x .因为︒=∠90ACB ,所以0=⋅CB CA ,即有)2)(2())((212212=--+--y t y t x t x t ,即0)(24)(21212212214=⋅++-+⋅++-y y t y y t x x t x x t ,AB CDO PMN即3161424=---t t t ,即0)14)(34(22=--++t t t t .显然0142≠--t t,否则01222=-⋅-t t,则点C 在直线012=--y x 上,从而点C 与点A或点B 重合.所以0342=++t t,解得3,121-=-=t t .故所求点C 的坐标为)2,1(-或)6,9(-.8.15. 提示:=n a C65400320020023nnn --⋅⋅.要使)951(≤≤n a n 为整数,必有65400,3200nn --均为整数,从而4|6+n .当=n 2,8,14,20,26,32,38,44,50,56,62,68,74,80时,3200n -和65400n-均为非负整数,所以n a 为整数,共有14个.当86=n时,=86a C5388620023-⋅⋅,在C!114!86!20086200⋅=中,!200中因数2的个数为1972200220022002200220022002200765432=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡,同理可计算得!86中因数2的个数为82,!114中因数2的个数为110,所以C 86200中因数2的个数为511082197=--,故86a 是整数.当92=n时,=92a C10369220023-⋅⋅,在C!108!92!20092200⋅=中,同样可求得!92中因数2的个数为88,!108中因数2的个数为105,故C 86200中因数2的个数为410588197=--,故92a 不是整数.因此,整数项的个数为15114=+. 9.因为)21()(++-=b b f a f ,所以|)2lg(||)21lg(||)121lg(||)1lg(|+=+=+++-=+b b b b a ,所以21+=+b a 或1)2)(1(=++b a ,又因为ba<,所以21+≠+b a ,所以1)2)(1(=++b a .又由|)1lg(|)(+=a a f 有意义知10+<a ,从而 2110+<+<+<b b a ,于是2110+<<+<b a .所以1210)2(6)2(6)1(101)21610(>+++=+++=+++b b b a b a .从而]210)2(6lg[|]210)2(6lg[|)21610(+++=+++=++b b b b b a f .又2lg 4)21610(=++b a f ,所以2lg 4]210)2(6lg[=+++b b ,故16210)2(6=+++b b .解得31-=b或1-=b (舍去). 把31-=b代入1)2)(1(=++b a 解得52-=a.所以 52-=a ,31-=b.10.(1)由原式变形得112)1)(1(211--++-=++nn n n n t a a ta ,则2111)1(212)1(21111+-+-+=-++=-+++nn nn nn n n n t a t a t a a ta .记n nn b t a =-+11,则221+=+n n n b b b ,21221111=--=-+=t t t a b.又211,211111=+=+b b b nn ,从而有221)1(111n n b b n=⋅-+=,故nt a nn 211=-+,于是有1)1(2--=nt a nn .(2)nt n ta ann n n )1(21)1(211--+-=-++[])1)(1()1()1()1(211--++++-+++++-=n nn tt n t t t n n n t[][])()()1()1()1(2)1()1()1(211---++-+-+-=+++-+-=n nnnn ntt t t tn n t tt nt n n t[]132212)1()1()1()1(2-----++++++++++-=n n n n n ttt t ttn n t ,显然在)1(0≠>t t 时恒有01>-+n n a a ,故n n a a >+1.11.(1)设直线l :mx y +=31,),(),,(2211y x B y x A .将mx y+=31代入143622=+yx中,化简整理得03696222=-++m mx x .于是有2369,322121-=-=+m x x m x x ,232,2322211--=--=x y k x y kPB PA. 则PA PB k k +=+=,上式中,分子)23)(231()23)(231(1221--++--+=x m x x m x)2(26))(22(322121--+-+=m x x m x x)2(26)3)(22(2369322----+-⋅=m m m m122626312322=+-+--=m m m m ,从而,0=+PB PA k k .又P 在直线l 的左上方,因此,APB ∠的角平分线是平行于y 轴的直线,所以△PAB 的内切圆的圆心在直线23=x 上.(2)若︒=∠60APB时,结合(1)的结论可知3,3-==PB PA k k .直线PA 的方程为:)23(32-=-x y ,代入143622=+yx中,消去y得)3313(18)331(69142=-+-+x x .它的两根分别是1x 和23,所以14)3313(18231-=⋅x,即14)3313(231-=x.所以7)133(23|23|)3(1||12+=-⋅+=x PA .同理可求得7)133(23||-=PB .所以1||||sin 60211)1)277249PAB S PA PB ∆=⋅⋅⋅︒=⋅⋅⋅=.。

2013年全国高校自主招生数学模拟试卷五

2013年全国高校自主招生数学模拟试卷五
n
-n-3). 12.在平面直角坐标系 xOy 中,给定两点 M(-1,2)和 N(1,4),点 P 在 x 轴上移动, 当∠MPN 取最大值时,点 P 的横坐标为 ; y 解: 当∠MPN 最大时, ⊙MNP 与 x 轴相切于点 P(否则⊙MNP 与 x N 轴交于 PQ,则线段 PQ 上的点 P使∠MPN 更大).于是,延长 NM 交 M x 轴于 K(-3,0),有 KM·KN=KP2,KP=4.P(1,0),(-7,0),但(1, 0)处⊙MNP 的半径小,从而点 P 的横坐标=1. O P K 三.解答题(本题满分 60 分,每小题 20 分) 13.一项“过关游戏”规则规定:在第 n 关要抛掷一颗骰子 n 次, 如果这 n 次抛掷所出现的点数的和大于 2n,则算过关.问: ⑴ 某人在这项游戏中最多能过几关? ⑵ 他连过前三关的概率是多少? 解:⑴ 设他能过 n 关,则第 n 关掷 n 次,至多得 6n 点, 由 6n>2n,知,n≤4.即最多能过 4 关. ⑵ 要求他第一关时掷 1 次的点数>2,第二关时掷 2 次的点数和>4,第三关时掷 3 次的 点数和>8. 4 2 第一关过关的概率=6=3;
5.设三位数 n=¯¯¯ abc ,若以 a,b,c 为三条边长可以构成一个等腰(含等边)三角形,则这 样的三位数 n 有( ) A.45 个 B.81 个 C.165 个 D.216 个 6.顶点为 P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面 圆内的点,O 为底面圆圆心,AB⊥OB,垂足为 B,OH⊥PB,垂足为 H,且 PA=4,C 为 PA 的 中 点 , 则 当 三 棱 锥 O - HPC 的 体 积 最 大 时 , OB 的 长 为 ( ) 5 A. 3 2 5 B. 3 6 C. 3 2 6 D. 3

2013年全国高校自主招生数学模拟试卷7 (3)

2013年全国高校自主招生数学模拟试卷7 (3)

2013年全国高校自主招生数学模拟试卷七一.选择题(36分,每小题6分)1、 函数f(x)=)32(log 221--x x 的单调递增区间是(A) (-∞,-1) (B) (-∞,1) (C) (1,+∞) (D) (3,+∞) 解:由x 2-2x-3>0⇒x<-1或x>3,令f(x)=u 21log , u= x 2-2x-3,故选A2、 若实数x, y 满足(x+5)2+(y -12)2=142,则x 2+y 2的最小值为 (A) 2 (B) 1 (C) 3 (D) 2解:B 3、 函数f(x)=221xx x-- (A) 是偶函数但不是奇函数 (B) 是奇函数但不是偶函数(C) 既是奇函数又是偶函数 (D) 既不是奇函数又不是偶函数 解:A4、 直线134=+y x 椭圆191622=+y x 相交于A ,B 两点,该圆上点P ,使得⊿PAB 面积等于3,这样的点P 共有(A) 1个 (B) 2个 (C) 3个 (D) 4个 解:设P 1(4cos α,3sin α) (0<α<2π),即点P 1在第一象限的椭圆上,如图,考虑四边形P 1AOB 的面积S 。

S=11O BP O AP S S ∆∆+=ααcos 4321sin 3421⨯⨯+⨯⨯=6(sin α+cos α)=)4sin(26πα+∴S max =62 ∵S ⊿OAB =6∴626)(max 1-=∆AB P S ∵626-<3∴点P 不可能在直线AB 的上方,显然在直线AB 的下方有两个点P ,故选B 5、 已知两个实数集合A={a 1, a 2, … , a 100}与B={b 1, b 2, … , b 50},若从A 到B 的映射f 使得B中的每一个元素都有原象,且f(a 1)≤f(a 2)≤…≤f(a 100),则这样的映射共有(A) 50100C (B) 5090C (C) 49100C (D) 4999C解:不妨设b 1<b 2<…<b 50,将A 中元素a 1, a 2, … , a 100按顺序分为非空的50组,定义映射f :A →B ,使得第i 组的元素在f 之下的象都是b i (i=1,2,…,50),易知这样的f 满足题设要求,每个这样的分组都一一对应满足条件的映射,于是满足题设要求的映射f 的个数与A 按足码顺序分为50组的分法数相等,而A 的分法数为4999C ,则这样的映射共有4999C ,故选D 。

2013年全国高校自主招生数学模拟试卷6

2013年全国高校自主招生数学模拟试卷6

2013年全国高校自主招生数学模拟试卷六一、选择题(36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2003项是(A) 2046 (B) 2047 (C) 2048 (D) 20492.设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab的图形是A. B. C. D.3.过抛物线y2=8(x+2)的焦点F作倾斜角为60°的直线,若此直线与抛物线交于A、B 两点,弦AB的中垂线与x轴交于点P,则线段PF的长等于(A)163(B)83(C)163 3 (D) 8 34.若x∈[-5π12,-π3],则y=tan(x+2π3)-tan(x+π6)+cos(x+π6)的最大值是(A)125 2 (B)116 2 (C)116 3 (D)125 35.已知x,y都在区间(-2,2)内,且xy=-1,则函数u=44-x2+99-y2的最小值是(A)85(B)2411(C)127(D)1256.在四面体ABCD中,设AB=1,CD=3,直线AB与CD的距离为2,夹角为π3,则四面体ABCD的体积等于(A)32(B)12(C)13(D)33二.填空题(每小题9分,共54分)7.不等式|x|3-2x2-4|x|+3<0的解集是.8.设F1、F2是椭圆x29+y24=1的两个焦点,P是椭圆上一点,且|PF1|∶|PF2|=2∶1,则△PF1F2的面积等于.9.已知A={x|x2-4x+3<0,x∈R},B={x|21-x+a≤0,x2-2(a+7)x+5≤0,x∈R}若A⊆B,则实数a的取值范围是.10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= . 11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .三、(20分)13.设32≤x ≤5,证明不等式2x +1+2x -3+15-3x <219.四、(20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R )与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A '刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A '取遍圆周上所有点时,求所有折痕所在直线上点的集合.2013年全国高校自主招生数学模拟试卷六参考答案一、选择题(每小题6分,共36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2003项是(A) 2046 (B) 2047 (C) 2048 (D) 2049解:452=2025,462=2116.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的2025-45=1980项.还缺2003-1980=23项.由2025+23=2048.知选C.2.设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab的图形是A. B. C. D.解:曲线方程为x2a+y2b=1,直线方程为y=ax+b.由直线图形,可知A、C中的a<0,A图的b>0,C图的b<0,与A、C中曲线为椭圆矛盾.由直线图形,可知B、D中的a>0,b<0,则曲线为焦点在x轴上的双曲线,故选B.3.过抛物线y2=8(x+2)的焦点F作倾斜角为60°的直线,若此直线与抛物线交于A、B 两点,弦AB的中垂线与x轴交于点P,则线段PF的长等于(A)163(B)83(C)163 3 (D) 8 3解:抛物线的焦点为原点(0,0),弦AB所在直线方程为y=3x,弦的中点在y=pk=43上,即AB中点为(43,43),中垂线方程为y=-33(x-43)+43,令y=0,得点P的坐标为163.∴PF=163.选A.4.若x∈[-5π12,-π3],则y=tan(x+2π3)-tan(x+π6)+cos(x+π6)的最大值是(A)125 2 (B)116 2 (C)116 3 (D)125 3解:令x +π6=u ,则x +2π3=u +π2,当x ∈[-5π12,-π3]时,u ∈[-π4,-π6],y=-(cot u +tan u )+cos u=-2sin2u +cos u .在u ∈[-π4,-π6]时,sin2u 与cos u 都单调递增,从而y 单调递增.于是u=-π6时,y 取得最大值1163,故选C .5.已知x ,y 都在区间(-2,2)内,且xy=-1,则函数u=44-x 2+99-y 2的最小值是 (A) 85 (B) 2411 (C) 127 (D) 125 解:由x ,y ∈(-2,2),xy=-1知,x ∈(-2,-12)∪(12,2), u=44-x 2+9x 29x 2-1=-9x 4+72x 2-4-9x 4+37x 2-4=1+3537-(9x 2+4x 2).当x ∈(-2,-12)∪(12,2)时,x 2∈(14,4),此时,9x 2+4x 2≥12.(当且仅当x 2=23时等号成立).此时函数的最小值为125,故选D .6.在四面体ABCD 中, 设AB=1,CD=3,直线AB 与CD 的距离为2,夹角为π3,则四面体ABCD 的体积等于(A) 32 (B) 12 (C) 13 (D) 33解:如图,把四面体补成平行六面体,则此平行六面体的体积=1×3×sin π3×2=3. 而四面体ABCD 的体积=16×平行六面体体积=12.故选B .二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .解:即|x |3-2|x |2-4|x |+3<0,⇒(|x |-3)(|x |-5-12)(|x |+5+12)<0.⇒|x |<-5+12,或5-12<|x |<3. ∴ 解为(-3,-5-12)∪(5-12,3).8.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .解:F 1(-5,0),F 2(5,0);|F 1F 2|=25.NMDCBA|PF 1|+|PF 2|=6,⇒|PF 1|=4,|PF 2|=2.由于42+22=(25)2.故∆PF 1F 2是直角三角形55.∴ S=4.9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R }若A ⊆B ,则实数a 的取值范围是 .解:A=(1,3);又,a ≤-21-x∈(-1,-14),当x ∈(1,3)时,a ≥x 2+52x -7∈(5-7,-4).∴ -4≤a ≤-1.10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= 解:a 3=b 2,c 5=d 4,设a=x 2,b=x 3;c=y 4,d=y 5,x 2-y 4=9.(x +y 2)(x -y 2)=9. ∴ x +y 2=9,x -y 2=1,x=5,y 2=4.b -d=53-25=125-32=93.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .解:如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45︒而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .解:由于a 1,a 2,…,a n -1中的每一个都可以取0与1两个数,T n =2n -1.在每一位(从第一位到第n -1位)小数上,数字0与1各出现2n -2次.第n 位则1出现2n -1次.∴ S n =2n -2⨯0.11…1+2n -2⨯10-n .∴ lim n →∞S n T n=12⨯19=118. 三、(本题满分20分)13.设32≤x ≤5,证明不等式2x +1+2x -3+15-3x <219.解:x +1≥0,2x -3≥0,15-3x ≥0.⇒32≤x ≤5.由平均不等式x +1+x +1+2x -3+15-3x4≤x +1+x +1+2x -3+15-3x4≤14+x4.∴ 2x +1+2x -3+15-3x=x +1+x +1+2x -3+15-3x ≤214+x .但214+x 在32≤x ≤5时单调增.即214+x ≤214+5=219. 故证.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R )与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.解:曲线方程为:Z=a icos 4t +(1+2b i)cos 2t sin 2t +(1+c i)sin 4t=(cos 2t sin 2t +sin 4t )+i(a cos 4t +2b cos 2t sin 2t +c sin 4t )∴ x=cos 2t sin 2t +sin 4t=sin 2t (cos 2t +sin 2t )=sin 2t .(0≤x ≤1) y=a cos 4t +2b cos 2t sin 2t +c sin 4t=a (1-x )2+2b (1-x )x +cx 2即 y=(a -2b +c )x 2+2(b -a )x +a (0≤x ≤1). ①若a -2b +c=0,则Z 0、Z 1、Z 2三点共线,与已知矛盾,故a -2b +c ≠0.于是此曲线为轴与x 轴垂直的抛物线.AB 中点M :14+12(a +b )i ,BC 中点N :34+12(b +c )i .与AC 平行的中位线经过M (14,12(a +b ))及N (34,12(b +c ))两点,其方程为4(a -c )x +4y -3a -2b +c=0.(14≤x ≤34). ②令 4(a -2b +c )x 2+8(b -a )x +4a=4(c -a )x +3a +2b -c .即4(a -2b +c )x 2+4(2b -a -c )x +a -2b +c=0.由a -2b +c ≠0,得4x 2+4x +1=0,此方程在[14,34]内有惟一解: x=12. 以x=12代入②得, y=14(a +2b +c ). ∴ 所求公共点坐标为(12,14(a +2b +c)).五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A '刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A '取遍圆周上所有点时,求所有折痕所在直线上点的集合.解:对于⊙O 上任意一点A ',连AA ',作AA '的垂直平分线MN ,连OA '.交MN 于点P .显然OP +PA=OA '=R .由于点A 在⊙O 内,故OA=a<R.从而当点A'取遍圆周上所有点时,点P的轨迹是以O、A为焦点,OA=a为焦距,R(R>a)为长轴的椭圆C.而MN上任一异于P的点Q,都有OQ+QA=OQ+QA'>OA'.故点Q在椭圆C外.即折痕上所有的点都在椭圆C上及C外.反之,对于椭圆C上或外的一点S,以S为圆心,SA为半径作圆,交⊙O于A',则S 在AA'的垂直平分线上,从而S在某条折痕上.最后证明所作⊙S与⊙O必相交.1︒当S在⊙O外时,由于A在⊙O内,故⊙S与⊙O必相交;2︒当S在⊙O内时(例如在⊙O内,但在椭圆C外或其上的点S'),取过S'的半径OD,则由点S'在椭圆C外,故OS'+S'A≥R(椭圆的长轴).即S'A≥S'D.于是D在⊙S'内或上,即⊙S'与⊙O必有交点.于是上述证明成立.综上可知,折痕上的点的集合为椭圆C上及C外的所有点的集合.。

2013年全国高校自主招生数学模拟试卷9

2013年全国高校自主招生数学模拟试卷9

2013年全国高校自主招生数学模拟试卷九一、选择题(36分,每小题6分)1.设全集是实数,若A={x |x -2≤0},B={x |10x 2-2=10x },则A ∩∁R B 是( )(A ){2} (B ){1} (C ){x |x ≤2} (D )2.设sin >0,cos <0,且sin α3>cos α3,则α3的取值范围是( )(A )(2k +π6,2k +π3), k Z (B )( 2k π3+ π6,2k π3+π3),k Z(C )(2k +5π6,2k +),k Z (D )(2k +π4,2k +π3)∪(2k +5π6,2k +),kZ3.已知点A 为双曲线x 2y 2=1的左顶点,点B 和点C 在双曲线的右分支上,△ABC 是等边三角形,则△ABC 的面积是( )(A ) 33(B )332 (C )33(D )634.给定正数p ,q ,a ,b ,c ,其中p q ,若p ,a ,q 是等比数列,p ,b ,c ,q 是等差数列,则一元二次方程bx 22ax +c=0( )(A )无实根 (B )有两个相等实根 (C )有两个同号相异实根 (D )有两个异号实根5.平面上整点(纵、横坐标都是整数的点)到直线y=53x +45的距离中的最小值是( ) (A ) 34170(B ) 3485(C ) 120(D )1306.设ω=cos π5+i sin π5,则以,3,7,9为根的方程是( )(A )x 4+x 3+x 2+x +1=0 (B ) x 4x 3+x 2x +1=0 (C ) x 4x 3x 2+x +1=0 (D ) x 4+x 3+x 2x 1=0二.填空题(本题满分54分,每小题9分)1.arcsin(sin2000)=__________. 2.设a n 是(3x )n 的展开式中x 项的系数(n=2,3,4,…),则lim n →∞(32a 2+33a 3+…+3na n))=________.3.等比数列a +log 23,a +log 43,a +log 83的公比是____________.4.在椭圆x 2a2+y 2b 2=1 (a >b >0)中,记左焦点为F ,右顶点为A ,短轴上方的端点为B .若该椭圆的离心率是5-12,则∠ABF=_________. 5.一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积是________.6.如果:(1)a ,b ,c ,d 都属于{1,2,3,4}; (2)a b ,bc ,cd ,d a ;(3)a 是a ,b ,c ,d 中的最小值,那么,可以组成的不同的四位数____abcd 的个数是_________ 三、解答题(60分,每小题20分)1.设S n =1+2+3+…+n ,nN *,求f (n )=S n(n +32)S n +1的最大值.2.若函数f (x )=-12x 2+132在区间[a ,b ]上的最小值为2a ,最大值为2b ,求[a ,b ].3.已知C 0:x 2+y 2=1和C 1:x 2a2+y 2a2=1 (a >b >0).试问:当且仅当a ,b 满足什么条件时,对C1上任意一点P,均存在以P为顶点,与C0外切,与C1内接的平行四边形?并证明你的结论.2013年全国高校自主招生数学模拟试卷九参考答案一.选择题(本题满分36分,每小题6分)1.设全集是实数,若A={x |x -2≤0},B={x |10x 2-2=10x },则A ∩∁R B 是( )(A ){2} (B ){1} (C ){x |x ≤2} (D )解:A={2},B={2,-1},故选D .2.设sin >0,cos <0,且sin α3>cos α3,则α3的取值范围是( )(A )(2k +π6,2k +π3), k Z (B )( 2k π3+ π6,2k π3+π3),k Z(C )(2k +5π6,2k +),k Z (D )(2k +π4,2k +π3)∪(2k +5π6,2k +),kZ解:满足sin >0,cos <0的α的范围是(2k +π2,2k +π),于是α3的取值范围是(2k π3+π6,2k π3+π3),满足sin α3>cos α3的α3的取值范围为(2k +π4,2k +5π4).故所求范围是(2k +π4,2k +π3)∪(2k +5π6,2k +),k Z .选D .3.已知点A 为双曲线x 2y 2=1的左顶点,点B 和点C 在双曲线的右分支By上,△ABC 是等边三角形,则△ABC 的面积是( )(A ) 33(B ) 332 (C )3 3(D )63解:A (-1,0),AB 方程:y=33(x +1),代入双曲线方程,解得B (2,3),∴ S=33.选C .4.给定正数p ,q ,a ,b ,c ,其中p q ,若p ,a ,q 是等比数列,p ,b ,c ,q 是等差数列,则一元二次方程bx 22ax +c=0( )(A )无实根 (B )有两个相等实根 (C )有两个同号相异实根 (D )有两个异号实根解:a 2=pq ,b +c=p +q .b=2p +q 3,c=p +2q3;14△=a 2-bc=pq -19(2p +q )(p +2q )=-29(p -q )2<0.选A .5.平面上整点(纵、横坐标都是整数的点)到直线y=53x +45的距离中的最小值是( ) (A ) 34170(B ) 3485(C ) 120(D )130解:直线即25x -15y +12=0.平面上点(x ,y )到直线的距离=|25x -15y +12|534=|5(5x -3y +2)+2|534.∵5x -3y +2为整数,故|5(5x -3y +2)+2|≥2.且当x=y=-1时即可取到2.选B . 6.设ω=cos π5+i sin π5,则以,3,7,9为根的方程是( )(A )x 4+x 3+x 2+x +1=0 (B ) x 4x 3+x 2x +1=0 (C ) x 4x 3x 2+x +1=0 (D ) x 4+x 3+x 2x 1=0解:ω5+1=0,故,3,7,9都是方程x 5+1=0的根.x 5+1=(x +1)(x 4-x 3+x 2-x +1)=0.选B .二.填空题(本题满分54分,每小题9分)1.arcsin(sin2000)=__________.解:2000°=180°×12-160°.故填-20°或-π9.2.设a n 是(3x )n 的展开式中x 项的系数(n=2,3,4,…),则lim n →∞(32a 2+33a 3+…+3na n))=________.解:a n =3n -2C 2n .∴3ka k =2·323k -2n (n -1)=18n (n -1),故填18. 3.等比数列a +log 23,a +log 43,a +log 83的公比是____________.解:q=a +log 43a +log 23=a +log 83a +log 43=(a +log 43)-(a +log 83)(a +log 23)-(a +log 43)=log 43-log 83log 23-log 43=13.填13.4.在椭圆x 2a2+y 2b 2=1 (a >b >0)中,记左焦点为F ,右顶点为A ,短轴上方的端点为B .若该椭圆的离心率是5-12,则∠ABF=_________.解:c=5-12a ,∴|AF |=5+12a .|BF |=a ,|AB |2=|AO|2+|OB |2=5+32a 2.故有|AF |2=|AB |2+|BF |2.即∠ABF=90°.填90°.或由b 2=a2-c 2=5-12a 2=ac ,得解.5.一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积是________.解:取球心O 与任一棱的距离即为所求.如图,AE=BE=32a ,AG=63a ,AO=64a ,BG=33a ,AB ∶AO=BG ∶OH .OH=AO ·BG AB =24a .V=43πr 3=224πa 3.填224πa 3..6.如果:(1)a ,b ,c ,d 都属于{1,2,3,4}; (2)a b ,bc ,cd ,d a ;(3)a 是a ,b ,c ,d 中的最小值,那么,可以组成的不同的四位数____abcd 的个数是_________解:a 、c 可以相等,b 、d 也可以相等.FA BO xyG ADBEOH⑴ 当a 、c 相等,b 、d 也相等时,有C 24=6种;⑵ 当a 、c 相等,b 、d 不相等时,有A 23+A 22=8种;⑶ 当a 、c 不相等,b 、d 相等时,有C 13C 12+C 12=8种;⑷ 当a 、c 不相等,b 、d 也不相等时,有A 33=6种;共28种.填28.三、解答题(本题满分60分,每小题20分)1.设S n =1+2+3+…+n ,nN *,求f (n )=S n(n +32)S n +1的最大值.解:S n =12n (n +1),f (n )= n (n +1)(n +32)(n +1)(n +2)=1n +64n+34≤150.(n=8时取得最大值).2.若函数f (x )=-12x 2+132在区间[a ,b ]上的最小值为2a ,最大值为2b ,求[a ,b ]. 解:⑴ 若a ≤b <0,则最大值为f (b )=-12b 2+132=2b .最小值为f (a )=-12a 2+132=2a .即a ,b 是方程x 2+4x -13=0的两个根,而此方程两根异号.故不可能.⑵ 若a <0<b ,当x=0时,f (x )取最大值,故2b=132,得b=134.当x=a 或x=b 时f (x )取最小值,①f (a )=-12a 2+132=2a 时.a=-2±17,但a <0,故取a=-2-17.由于|a |>|b |,从而f (a )是最小值.②f (b )=-12b 2+132=3932=2a >0.与a <0矛盾.故舍.⑶ 0≤a <b .此时,最大值为f (a )=2b ,最小值为f (b )=2a .∴ -12b 2+132=2a .-12a 2+132=2b .相减得a +b=4.解得a=1,b=3. ∴ [a ,b ]=[1,3]或[-2-17,134].3.已知C 0:x 2+y 2=1和C 1:x 2a2+y 2a2=1 (a >b >0).试问:当且仅当a ,b 满足什么条件时,对C 1上任意一点P ,均存在以P 为顶点,与C 0外切,与C 1内接的平行四边形?并证明你的结论.解:设PQRS 是与C 0外切且与C 1内接的平行四边形.易知圆的外切平行四边形是菱形.即PQRS 是菱形.于是OP ⊥OQ .设P (r 1cos θ,r 1sin θ),Q (r 2cos(θ+90°),r 2sin(θ+90°),则在直角三角形POQ 中有r 12+r 22=r 12r 22(利用△POQ 的面积).即1r21+1r22=1.实用文档 但r21cos 2θa 2+r 22sin 2θb 2=1,即1r 21=cos 2θa 2+sin 2θb 2, 同理,1r 22=sin 2θa 2+cos 2θb 2,相加得1a 2+1b 2=1. 反之,若1a 2+1b 2=1成立,则对于椭圆上任一点P (r 1cos θ,r 1sin θ),取椭圆上点Q (r 2cos(θ+90°),r 2sin(θ+90°),则1r 21=cos 2θa 2+sin 2θb 2,,1r 22=sin 2θa 2+cos 2θb 2,,于是1r 21+1r 22=1a 2+1b 2=1,此时PQ 与C 0相切.即存在满足条件的平行四边形. 故证.。

2013年全国高校自主招生数学模拟试卷十三

2013年全国高校自主招生数学模拟试卷十三
解:该六面体的棱只有两种,设原正三棱锥的底面边长为2a,侧棱为b.
取CD中点G,则AG⊥CD,EG⊥CD,故∠AGE是二面角A—CD—E的平面角.由BD⊥AC,作平面BDF⊥棱AC交AC于F,则∠BFD为二面角B—AC—D的平面角.
AG=EG=,BF=DF=,AE=2=2.
由cos∠AGE=cos∠BFD,得=.
解:只要考虑|AP|最长与最短时所在线段扫过的面积即可.
设P(1+cosθ,θ),
则|AP|2=22+(1+cosθ)2-2·2(1+cosθ)cosθ=-3cos2θ-2cosθ+5
=-3(cosθ+)2+≤.且显然|AP|2能取遍[0,]内的一切值,故所求面积=π.
4.已知将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱的长为2,则最远的两顶点间的距离是________。
(A) 1 (B) 2 (C) 3 (D) 4
二、填空题(本题满分54分,每小题9分)
1.集合{x|-1≤log10<-,x∈N*}的真子集的个数是.
2.复平面上,非零复数z1,z2在以i为圆心,1为半径的圆上,·z2的实部为零,z1的辐角主值为,则z2=_______.
3.曲线C的极坐标方程是ρ=1+cosθ,点A的极坐标是(2,0),曲线C在它所在的平面内绕A旋转一周,则它扫过的图形的面积是_______.
2013年全国高校自主招生数学模拟试卷十三
命题人:南昌二中高三(01)班张阳阳
一、选择题(本题满分36分,每题6分)
1.把圆x2+(y-1)2=1与椭圆9x2+(y+1)2=9的公共点,用线段连接起来所得到的图形为( )

2013年全国高校自主招生数学模拟试卷8 (3)

2013年全国高校自主招生数学模拟试卷8 (3)

2013年全国高校自主招生数学模拟试卷八一、选择题(36分,每小题6分)本题共有6小题,每题均给出(A )、(B )、(C )、(D )四个结论,其中有且仅有一个是正确的.请将正确答案的代表字母填在题后的括号内.每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分.1.已知a 为给定的实数,那么集合M ={x | x 2-3x -a 2+2=0,x ∈R}的子集的个数为(A ) 1 (B ) 2 (C ) 4 (D ) 不确定【答】( C )【解】 方程x 2-3x -a 2+2=0的根的判别式Δ=1+4a 2>0,方程有两个不相等的实数根.由M 有2个元素,得集合M 有22=4个子集.2. 命题1 长方体中,必存在到各顶点距离相等的点;命题2 长方体中,必存在到各棱距离相等的点; 命题3 长方体中,必存在到各面距离相等的点. 以上三个命题中正确的有(A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个【答】( B )【解】 只有命题1对. 3.在四个函数y =sin|x |,y =cos|x |,y =|ctg x |,y =lg|sin x |中以π为周期、在(0,2π)上单调递增的偶函数是 (A )y =sin|x |(B )y =cos|x | (C )y =|ctg x |(D )y =lg|sin x |【答】( D)【解】 y =sin|x |不是周期函数.y =cos|x |=cos x 以2π为周期.y =|ctg x |在(0,2π)上单调递减.只有y =lg|sin x |满足全部条件.4.如果满足∠ABC =60°,AC =12, BC =k 的△ABC 恰有一个,那么k 的取值范围是(A ) k =38 (B )0<k ≤12 (C ) k ≥12 (D ) 0<k ≤12或k =38【答】( D)【解】 根据题设,△ABC共有两类如图.易得k =38或0<k ≤12.本题也可用特殊值法,排除(A )、(B )、(C ). 5.若10002)1(x x ++的展开式为200020002210xa x a x a a ++++ ,12kCB A60°12kABC60°则19989630a a a a a +++++ 的值为(A )3333(B ) 6663(C ) 9993(D ) 20013【答】( C)【解】 令x =1可得10003=20003210a a a a a +++++ ; 令x =ω可得0=20002000332210ωωωωa a a a a +++++ ;(其中i 2321+-=ω,则3ω=1且2ω+ω+1=0)令x =2ω可得0=400020006342210ωωωωa a a a a +++++ . 以上三式相加可得10003=3(19989630a a a a a +++++ ).所以19989630a a a a a +++++ =9993.6.已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与5枝康乃馨的价格之和小于22元,则2枝玫瑰的价格和3枝康乃馨的价格比较结果是().(A )2枝玫瑰价格高 (B )3枝康乃馨价格高 (C )价格相同 (D )不确定【答】( A )【解】 设玫瑰与康乃馨的单价分别为x 、y 元/枝.则6x +3y >24,4x +5y <22.令6x +3y =a >24,4x +5y =b <22,解出x =)35(181b a -,y =)23(91a b -.所以2x -3y =)22122411(91)1211(91⨯-⨯>-b a =0,即2x >3y .也可以根据二元一次不等式所表示的区域来研究.二、填空题(54分,每小题9分) 7.椭圆θρcos 21-=的短轴长等于332.【解】 .31)(,1)0(=-==+=c a c a πρρ故3331,32=⇒==b c a .从而3322=b .8.若复数z 1,z 2满足| z 1|=2,| z 2|=3,3z 1-2z 2=i -23,则z 1·z 2=i 13721330+-. 【解】由3z 1-2z 2=2111222131z z z z z z ⋅⋅-⋅⋅=)32(611221z z z z -可得=+-⨯-=--=--=i iz z z z z z z z z z 2323632)23(632)23(61221122121i 13721330+-.本题也可设三角形式进行运算.9.正方体ABCD —A 1B 1C 1D 1的棱长为1,则直线A 1C 1与BD 1的距离是66. 【解】 作正方体的截面BB 1D 1D ,则A 1C 1⊥面BB 1D 1D .设A 1C 1与B 1D 1交于点O ,在面BB 1D 1D 内作OH ⊥BD 1,H 为垂足,则OH 为A 1C 1与BD 1的公垂线.显然OH 等于直角三角形BB 1D 1斜边上高的一半,即OH =66. 10. 不等式232log 121>+x 的解集为),4()2,1()1,0(72+∞ .【解】232l o g 121>+x等价于232log 11>+x 或232log 121-<+x . 即21log 121->x 或27log 11-<x. 此时2log 1-<x 或0log 1>x 或0log 721<<-x .∴解为x >4或0<x <1 或 1<x <22. 即解集为),4()2,1()1,0(2+∞ .11.函数232+-+=x x x y 的值域为),2[)23,1[+∞ .【解】232+-+=x x x y ⇒0232≥-=+-x y x x .两边平方得2)32(2-=-y x y ,从而23≠y 且3222--=y y x .由03222≥---=-y y y x y ⇒231032232<≤⇒≥-+-y y y y 或2≥y .1111 HODC B AD CBA任取2≥y ,令3222--=y y x ,易知2≥x ,于是0232≥+-x x 且232+-+=x x x y .任取231<≤y ,同样令3222--=y y x ,易知1≤x ,于是0232≥+-x x 且232+-+=x x x y .因此,所求函数的值域为),2[)23,1[+∞ .12. 在一个正六边形的六个区域栽种观赏植物(如图),要求同一块中种同一种植物,相邻的两块种不同的植物.现有4种不同的植物可供选择,则有 732 种栽种方案. 【解】考虑A 、C 、E 种同一种植物,此时共有4×3×3×3=108种方法.考虑A 、C 、E 种二种植物,此时共有3×4×3×3×2×2=432种方法. 考虑A 、C 、E 种三种植物,此时共有P 43×2×2×2=192种方法. 故总计有108+432+192=732种方法.三、解答题(本题满分60分,每小题20分)13.设{a n }为等差数列,{b n }为等比数列,且b 1=a 12,b 2=a 22,b 3=a 32(a 1<a 2) ,又12)(lim 21+=++++∞→n n b b b .试求{a n }的首项与公差.【解】 设所求公差为d ,∵a 1<a 2,∴d >0.由此得 a 12(a 1+2d )2=(a 1+d )4 化简得2a 12+4a 1d +d 2=0解得d =(22±-) a 1.………………………………………………………………5分 而22±-<0,故a 1<0.若d =(22--) a 1,则22122)12(+==a a q ;若d =(22+-)a 1,则22122)12(-==a a q ;…………………………………………10分但12)(lim 21+=++++∞→n n b b b 存在,故|q |<1.于是2)12(+=q 不可能.AB C DEF从而2)12)(222(12)12(121221=+-=⇒+=--a a .所以a 1=2-,d =(22+-) a 1=(22+-)(2-)=222-.……………………20分14.设曲线C 1:1222=+y ax (a 为正常数)与C 2:y 2=2(x +m ) 在x 轴上方仅有一个公共点P .⑴ 求实数m 的取值范围(用a 表示);⑵ O 为原点,若C 1与x 轴的负半轴交于点A ,当0<a <21时,试求ΔOAP 的面积的最大值(用a 表示).⑴ 【解】 由⎪⎩⎪⎨⎧+==+)(2,12222m x y y a x 消去y 得,x 2+2a 2x +2a 2m -a 2=0. ①设f (x )= x 2+2a 2x +2a 2m -a 2,问题⑴转化为方程①在x ∈(-a ,a )上有唯一解或等根.只须讨论以下三种情况:1︒ Δ=0得 m =212+a .此时 x p = -a 2,当且仅当-a <-a 2<a ,即0<a <1时适合; 2︒ f (a )·f (-a )<0当且仅当–a <m <a ;3︒ f (-a )=0得m =a .此时 x p =a -2a 2,当且仅当-a < a -2a 2<a ,即0<a <1时适合.f (a )=0得m =-a ,此时 x p =-a -2a 2,由于-a -2a 2<-a ,从而m ≠-a .综上可知,当0<a <1时,m =212+a 或-a <m ≤a ;当a ≥1时,-a <m <a .……………………………………………………10分 ⑵ 【解】 ΔOAP 的面积S =21ay p . ∵0<a <21,故-a <m ≤a 时,a m a a a <-++-<21022,由唯一性得x p =m a a a 2122-++-.显然当m =a 时,x p 取值最小.由于x p >0,从而221ax y p p -=取值最大,此时y p =22a a -,∴S =a 2a a -.当m =212+a 时,x p =-a 2,y p =21a -,此时S =21a 21a -.下面比较a 2a a -与21a 21a -的大小: 令a 2a a -=21a 21a -,得a =31.故当0<a ≤31时 , 2121)1(a a a a a -≤-.此时S max =2121a a -.当31<a <21时,2121)1(a a a a a ->-.此时S max = a 2a a -.……………20分15.用电阻值分别为a 1、a 2、a 3、a 4、a 5 、a 6 (a 1>a 2>a 3>a 4>a 5>a 6) 的电阻组装成一个如图的组件,在组装中应如何选取电阻,才能使该组件总电阻值最小?证明你的结论.【解】 设6个电阻的组件(如图3)的总电阻为R FG .当R i =a i ,i =3,4,5,6,R 1,R 2是a 1,a 2的任意排列时,R FG 最小.…………………………………………5分证明如下1°设当两个电阻R 1,R 2并联时,所得组件阻值为R :则21111R R R +=.故交换二电阻的位置,不改变R 值,且当R 1或R 2变小时,R 也减小,因此不妨取R 1>R 2.2°设3个电阻的组件(如图1)的总电阻为R AB :2132312132121R R R R R R R R R R R RR R AB+++=++=. 显然R 1+R 2越大,R AB 越小,所以为使R AB 最小必须取R 3为所取三个电阻中阻值最小的一个.3°设4个电阻的组件(如图2)的总电阻为R CD :43243142142324131214111R R R R R R R R R R R R R R R R R R R R R R AB CD ++++++=+=.图1图2若记∑≤<≤=411j i jiRR S ,∑≤<<≤=412k j i kjiRR R S .则S 1、S 2为定值.于是4313212R R S R R R S R CD --=.只有当R 3R 4最小,R 1R 2R 3最大时,R CD 最小,故应取R 4<R 3,R 3<R 2,R 3<R 1,即得总电阻的阻值最小.……………………………………………………………………15分4°对于图3,把由R 1、R 2、R 3组成的组件用等效电阻R AB 代替.要使R FG 最小,由3°必需使R 6<R 5;且由1°,应使R CE 最小.由2°知要使R CE 最小,必需使R 5< R 4,且应使R CD 最小.而由3°,要使R CD 最小,应使R 4< R 3 < R 2且R 4< R 3 < R 1.这就说明,要证结论成立………………………………………………………20分E G图3。

2013年全国高校自主招生数学模拟试卷11

2013年全国高校自主招生数学模拟试卷11

2013年全国高校自主招生数学模拟试卷十一一、选择题(本题满分36分,每小题6分)1. 若a > 1, b > 1, 且lg(a + b )=lg a +lg b , 则lg(a –1)+lg(b –1) 的值( )(A )等于lg2 (B )等于1(C ) 等于0 (D ) 不是与a , b 无关的常数2.若非空集合A={x |2a +1≤x ≤3a – 5},B={x |3≤x ≤22},则能使A A ∩B 成立的所有a 的集合是( )(A ){a | 1≤a ≤9} (B ) {a | 6≤a ≤9} (C ) {a | a ≤9}(D ) Ø3.各项均为实数的等比数列{a n }前n 项之和记为S n ,若S 10 = 10, S 30 = 70, 则S 40等于( )(A ) 150(B )200(C ) 150或 200 (D ) 50或4004.设命题P :关于x 的不等式a 1x 2 + b 1x 2 + c 1 > 0与a 2x 2 + b 2x + c 2 > 0的解集相同;命题Q :a 1a 2=b 1b 2=c 1c 2. 则命题Q ( )(A ) 是命题P 的充分必要条件(B ) 是命题P 的充分条件但不是必要条件(C ) 是命题P 的必要条件但不是充分条件(D ) 既不是是命题P 的充分条件也不是命题P 的必要条件5.设E , F , G 分别是正四面体ABCD 的棱AB ,BC ,CD 的中点,则二面角C —FG —E 的大小是( )(A ) arcsin63(B )π2+arccos33(C )π2-arctan 2 (D ) π-arccot 226.在正方体的8个顶点, 12条棱的中点, 6个面的中心及正方体的中心共27个点中,共线的三点组的个数是( )(A ) 57 (B ) 49 (C ) 43 (D )37二、填空题( 本题满分54分,每小题9分) 各小题只要求直接填写结果.1.若f (x ) (x R )是以2为周期的偶函数, 当x [ 0, 1 ]时,f (x )=x 11000,则f (9819),f (10117),f (10415)由小到大排列是 . 2.设复数z=cos θ+i sin θ(0≤θ≤180°),复数z ,(1+i )z ,2-z 在复平面上对应的三个点分别是P , Q , R .当P , Q , R 不共线时,以线段PQ , PR 为两边的平行四边形的第四个顶点为S , 点S 到原点距离的最大值是___________.3.从0, 1, 2, 3, 4, 5, 6, 7, 8, 9这10个数中取出3个数, 使其和为不小于10的偶数, 不同的取法有________种.4.各项为实数的等差数列的公差为4, 其首项的平方与其余各项之和不超过100,这样的数列至多有_______项.5.若椭圆x 2+4(y -a )2=4与抛物线x 2=2y 有公共点,则实数a 的取值范围是 .6.ABC 中, C = 90o , B = 30o , AC = 2, M 是AB 的中点. 将ACM 沿CM折起,使A ,B 两点间的距离为 2 2 ,此时三棱锥A -BCM 的体积等于__________.三、(本题满分20分)已知复数z=1-sin θ+i cos θ(π2<θ<π),求z 的共轭复数-z 的辐角主值.四、(本题满分20分)设函数f (x ) = ax 2 +8x +3 (a <0).对于给定的负数a , 有一个最大的正数l (a ) ,使得在整个 区间 [0, l (a )]上, 不等式| f (x )|5都成立.问:a 为何值时l (a )最大? 求出这个最大的l (a ).证明你的结论.五、(本题满分20分)已知抛物线y 2 = 2px 及定点A (a , b ), B ( – a , 0) ,(ab 0, b 2 2pa ).M 是抛物线上的点, 设直线AM , BM 与抛物线的另一交点分别为M 1, M 2.求证:当M 点在抛物线上变动时(只要M 1, M 2存在且M 1 M 2),直线M 1M 2恒过一个定点.并求出这个定点的坐标.2013年全国高校自主招生数学模拟试卷十一参考答案一.选择题(本题满分36分,每小题6分)1.若a > 1, b > 1, 且lg (a + b) = lg a + lg b, 则lg (a–1) + lg (b–1) 的值( )(A)等于lg2 (B)等于1(C ) 等于0 (D) 不是与a, b无关的常数解:a+b=ab,(a-1)(b-1)=1,由a-1>0,b-1>0,故lg(a-1)(b-1)=0,选C.2.若非空集合A={x|2a+1≤x≤3a–5},B={x|3≤x≤22},则能使A A∩B成立的所有a的集合是( )(A){a | 1≤a≤9} (B) {a | 6≤a≤9}(C) {a | a≤9} (D) Ø解:A B,A≠Ø. 3≤2a+1≤3a-5≤22,6≤a≤9.故选B.3.各项均为实数的等比数列{a n }前n项之和记为S n,若S10 = 10, S30 = 70, 则S40等于( )(A) 150 (B) 200(C) 150或200 (D) 50或400解:首先q ≠1,于是,a 1q -1(q10-1)=10,a 1q -1(q 30-1)=70,∴q 20+q 10+1=7.q 10=2.(-3舍)∴ S 40=10(q 40-1)=150.选A .4.设命题P :关于x 的不等式a 1x 2 + b 1x 2 + c 1 > 0与a 2x 2 + b 2x + c 2 > 0的解集相同;命题Q :a 1a 2=b 1b 2=c 1c 2. 则命题Q ( )(A ) 是命题P 的充分必要条件(B ) 是命题P 的充分条件但不是必要条件(C ) 是命题P 的必要条件但不是充分条件(D ) 既不是是命题P 的充分条件也不是命题P 的必要条件解:若两个不等式的解集都是R ,否定A 、C ,若比值为-1,否定A 、B ,选D .5.设E , F , G 分别是正四面体ABCD 的棱AB ,BC ,CD 的中点,则二面角C —FG —E 的大小是( )(A ) arcsin63(B )π2+arccos33(C )π2-arctan 2 (D ) π-arccot 22解:取AD 、BD 中点H 、M ,则EH ∥FG ∥BD ,于是EH 在平面EFG 上.设CM ∩FG=P ,AM ∩EH=Q ,则P 、Q 分别为CM 、AM 中点,PQ ∥AC .∵ AC ⊥BD ,PQ ⊥FG ,CP ⊥FG ,∠CPQ 是二面角C —FG —E 的平面角.设AC=2,则MC=MA=3,cos ∠ACM=22+(3)2-(3)22·2·3=33.∴ 选D .6.在正方体的8个顶点, 12条棱的中点, 6个面的中心及正方体的中心共27个点中,共线的三点组的个数是( )(A ) 57 (B ) 49 (C ) 43 (D )37解:8个顶点中无3点共线,故共线的三点组中至少有一个是棱中点或面中心或体中心.⑴ 体中心为中点:4对顶点,6对棱中点,3对面中心;共13组; ⑵ 面中心为中点:4×6=24组;⑶ 棱中点为中点:12个.共49个,选B .二、填空题( 本题满分54分,每小题9分) 各小题只要求直接填写结果.PQ MHA DCB GF E1.若f (x ) (x R )是以2为周期的偶函数, 当x [ 0, 1 ]时,f (x )=x 11000,则f (9819),f (10117),f (10415)由小到大排列是 . 解:f (9819)=f (6-1619)=f (1619).f (10117)=f (6-117)=f (117),f (10415)=f (6+1415)=f (1415).现f (x )是[0,1]上的增函数.而117<1619<1415.故f (10117)<f (9819)<f (10415).2.设复数z=cos θ+i sin θ(0≤θ≤180°),复数z ,(1+i )z ,2-z 在复平面上对应的三个点分别是P , Q , R .当P , Q , R 不共线时,以线段PQ , PR为两边的平行四边形的第四个顶点为S , 点S 到原点距离的最大值是___________.解: →OS=→OP +→PQ +→PR=→OP +→OQ -→OP +→OR -→OP =→OQ +→OR -→OP=(1+i )z +2-z -z=iz +2-z=(2cos θ-sin θ)+i (cos θ-2sin θ).∴ |OS |2=5-4sin2θ≤9.即|OS |≤3,当sin2θ=1,即θ=π4时,|OS |=3.3.从0, 1, 2, 3, 4, 5, 6, 7, 8, 9这10个数中取出3个数, 使其和为不小于10的偶SQPRxOy数, 不同的取法有________种.解:从这10个数中取出3个偶数的方法有C35种,取出1个偶数,2个奇数的方法有C15C25种,而取出3个数的和为小于10的偶数的方法有(0,2,4),(0,2,6),(0,1,3),(0,1,5),(0,1,7),(0,3,5),(2,1,3),(2,1,5),(4,1,3),共有9种,故应答10+50-9=51种.4.各项为实数的等差数列的公差为4, 其首项的平方与其余各项之和不超过100, 这样的数列至多有_______项.解:设其首项为a,项数为n.则得a2+(n-1)a+2n2-2n-100≤0.△=(n-1)2-4(2n2-2n-100)=-7n2+6n+401≥0.∴n≤8.取n=8,则-4≤a≤-3.即至多8项.(也可直接配方:(a+n-12)2+2n2-2n-100-(n-12)2≤0.解2n2-2n-100-(n-12)2≤0仍得n≤8.)5.若椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,则实数a的取值范围是.解:2y=4-4(y -a )2,2y 2-(4a -1)y +2a 2-2=0.此方程至少有一个非负根. ∴ △=(4a-1)2-16(a2-1)=-8a +17≥0.a ≤178.两根皆负时2a 2>2,4a -1<0.-1<a <1且a <14.即a <-1.∴-1≤a ≤178.6.ABC 中, C = 90o , B = 30o , AC = 2, M 是AB 的中点. 将ACM沿CM 折起,使A ,B 两点间的距离为 2 2 ,此时三棱锥A -BCM 的体积等于 .解:由已知,得AB=4,AM=MB=MC=2,BC=23,由△AMC 为等边三角形,取CM 中点,则AD ⊥CM ,AD 交BC 于E ,则AD=3,DE=33,CE=233.折起后,由BC 2=AC2+AB 2,知∠BAC=90°,cos ∠ECA=33.∴ AE 2=CA 2+CE 2-2CA ·CE cos ∠ECA=83,于是AC 2=AE 2+CE 2.∠AEC=90°.∵ AD 2=AE2+ED 2,AE ⊥平面BCM ,即AE 是三棱锥A -BCM 的高,AE=263.S △BCM =3,V A —BCM =223.三、(本题满分20分)2223222EBCAMD23222AEM DCB已知复数z=1-sin θ+i cos θ(π2<θ<π),求z 的共轭复数-z 的辐角主值.解:z=1+cos(π2+θ)+i sin(π2+θ)=2cos 2π2+θ2+2i sin π2+θ2cos π2+θ2=2cosπ2+θ2 (cosπ2+θ2+i sinπ2+θ2).当π2<θ<π时,-z =-2cos π2+θ2 (-cos π2+θ2+i sin π2+θ2)=-2cos(π4+θ2)(cos(3π4-θ2)+i sin(3π4-θ2)).∴ 辐角主值为3π4-θ2.四、(本题满分20分)设函数f (x ) = ax 2 +8x +3 (a <0).对于给定的负数a , 有一个最大的正数l (a ) ,使得在整个 区间 [0, l (a )]上, 不等式| f (x )| 5都成立.问:a 为何值时l (a )最大? 求出这个最大的l (a ).证明你的结论.解: f (x )=a (x +4a )2+3-16a.(1)当3-16a>5,即-8<a <0时,l (a )是方程ax 2+8x +3=5的较小根,故l (a )=-8+64+8a 2a.(2)当3-16a≤5,即a ≤-8时,l (a )是方程ax 2+8x +3=-5的较大根,故l (a )=-8-64-32a 2a.综合以上,l (a )= ⎩⎪⎨⎪⎧-8-64-32a 2a ,(a ≤-8)-8+64+8a 2a (-8<a <0)当a ≤-8时,l (a )=-8+64-32a 2a=44-2a -2≤420-2=1+52;当-8<a <0时,l (a )=-8+64+8a 2a=216+2a +4<24<1+52. 所以a =-8时,l (a )取得最大值1+52.五、(本题满分20分)已知抛物线y 2 = 2px 及定点A (a , b ), B ( – a , 0) ,(ab0, b 22pa ).M 是抛物线上的点, 设直线AM , BM 与抛物线的另一交点分别为M 1, M 2.求证:当M 点在抛物线上变动时(只要M 1, M 2存在且M 1 M 2.)直线M 1M 2恒过一个定点.并求出这个定点的坐标.解:设M (m 22p,m ).M 1(m 212p,m 1),M 2(m 222p,m 2),则A 、M 、M 1共线,得b -mm 1-m=a -m 22pm 212p-m 22p,即b -m=2pa -m 2m 1+m.∴ m 1=2pa -bm b -m ,同法得m 2=2pam ;∴ M 1M 2所在直线方程为y -m 2m 1-m 2=2pa -m 22m 21-m 22,即(m 1+m 2)y=2px +m 1m 2.消去m 1,m 2,得2paby -bm 2y=2pbmx -2pm 2x +4p 2a 2-2pabm .⑴分别令m=0,1代入,得x=a ,y=2pa b ,以x=a ,y=2pab代入方程⑴知此式恒成立.即M 1M 2过定点(a ,2pa b)。

2013年全国高校自主招生数学模拟试卷16

2013年全国高校自主招生数学模拟试卷16

2013年全国高校自主招生数学模拟试卷十六一选择题(共30分)1.对于每个自然数n ,抛物线y=(n 2+n )x 2(2n +1)x +1与x 轴交于A n ,B n 两点,以|A n B n |表示该两点的距离,则|A 1B 1|+|A 2B 2|++|A 1992B 1992|的值是( )(A )19911992 (B ) 19921993 (C ) 19911993 (D ) 199319922.已知如图的曲线是以原点为圆心,1为半径的圆的一部分,则这一曲线的方程是( )(A )(x +1-y 2)(y +1-x 2)=0(B )(x1-y 2)(y1-x 2)=0 (C )(x +1-y 2)(y1-x 2)=0 (D )(x 1-y 2)(y +1-x 2)=03.设四面体四个面的面积分别为S 1,S 2,S 3,S 4,它们的最大值为S ,记λ=(4Σi=1S i )/S ,则λ一定满足( )(A )2<λ≤4 (B )3<λ<4 (C )2.5<λ≤4.5 (D )3.5<λ<5.5 4.在△ABC 中,角A ,B ,C 的对边分别记为a ,b ,c (b 1),且C A ,sin Bsin A都是方程logbx=log b (4x -4)的根,则△ABC ( )(A )是等腰三角形,但不是直角三角形 (B )是直角三角形,但不是等腰三角11O -1-1xy形(C )是等腰直角三角形 (D )不是等腰三角形,也不是直角三角形5.设复数z 1,z 2在复平面上对应的点分别为A ,B ,且|z 1|=4,4z 122z 1z 2+z 22=0,O 为坐标原点,则△OAB 的面积为( )(A )83 (B )43 (C )63 (D )1236.设f (x )是定义在实数集R 上的函数,且满足下列关系f (10+x )=f (10x ),f (20x )=f (20+x ),则f (x )是(A )偶函数,又是周期函数 (B )偶函数,但不是周期函数 (C )奇函数,又是周期函数 (D )奇函数,但不是周期函数 二、填空题(每小题5分共30分)1.设x ,y ,z 是实数,3x ,4y ,5z 成等比数列,且1x ,1y ,1z 成等差数列,则x z +z x的值是______.2.在区间[0,]中,三角方程cos7x=cos5x 的解的个数是______.3.从正方体的棱和各个面上的对角线中选出k 条,使得其中任意两条线段所在的直线都是异面直线,则k 的最大值是_____.4.设z 1,z 2都是复数,且|z 1|=3,|z 2|=5|z 1+z 2|=7,则arg(z 2z 1)3的值是______.5.设数列a 1,a 2,,a n ,满足a 1=a 2=1,a 3=2,且对任何自然数n , 都有a n a n +1a n +21,又a n a n +1a n +2a n +3=a n +a n +1+a n +2+a n +3,则a 1+a 2++a 100的值是____.6.函数f (x )=x 4-3x 2-6x +13-x 4-x 2+1的最大值是_____.三、(20分)求证:16<4Σi=11k<17.四、(20分)设l ,m 是两条异面直线,在l 上有A ,B ,C 三点,且AB=BC ,过A ,B ,C 分别作m 的垂线AD ,BE ,CF ,垂足依次是D ,E ,F ,已知AD=15,BE=72CF=10,求l 与m 的距离.五、(20分)设n 是自然数,f n (x )=x n +1-x -n -1x -x -1(x 0,±1),令y=x +1x.1.求证:f n+1(x )=yf n (x )f n-1(x ),(n>1)2.用数学归纳法证明:f n (x )=⎩⎪⎨⎪⎧y n -C 1n -1y n -2+…+(-1)i C in -i y n -2i +…+(-1)n2,(i=1,2,…, n2,n 为偶数) y n-C 1n -1y n -2+…+(-1)i C in -i+…+(-1)n -12C n -12n +12y ,(i=1,2,…,n -12,n 为奇数)2013年全国高校自主招生数学模拟试卷十六参考答案一、选择题(每小题5分,共30分)1.对于每个自然数n ,抛物线y=(n 2+n )x 2(2n +1)x +1与x 轴交于A n ,B n 两点,以|A n B n |表示该两点的距离,则|A 1B 1|+|A 2B 2|++|A 1992B 1992|的值是( )(A )19911992 (B ) 19921993 (C ) 19911993 (D ) 19931992解:y=((n +1)x -1)(nx -1),∴ |A n B n |=1n-1n +1,于是|A 1B 1|+|A 2B 2|++|A 1992B 1992|=19921993,选B .2.已知如图的曲线是以原点为圆心,1为半径的圆的一部分,则这一曲线的方程是( )(A )(x +1-y 2)(y +1-x 2)=0 (B )(x 1-y 2)(y 1-x 2)=0 (C )(x +1-y 2)(y1-x 2)=0 (D )(x1-y 2)(y +1-x 2)=0解:(x 1-y 2)=0表示y 轴右边的半圆,(y +1-x 2)=0表示x 轴下方的半圆,故选D .3.设四面体四个面的面积分别为S 1,S 2,S 3,S 4,它们的最大值为S ,记λ=(4Σi=1S i )/S ,则λ一定满足( )(A )2<λ≤4 (B )3<λ<4 (C )2.5<λ≤4.5 (D )3.5<λ<5.511O -1-1xy解: 4Σi=1S i ≤4S ,故4Σi=1S i ≤4,又当与最大面相对的顶点向此面无限接近时,4Σi=1S i接近2S ,故选A .4.在△ABC 中,角A ,B ,C 的对边分别记为a ,b ,c (b 1),且C A ,sin Bsin A都是方程logbx=log b (4x -4)的根,则△ABC ( )(A )是等腰三角形,但不是直角三角形 (B )是直角三角形,但不是等腰三角形(C )是等腰直角三角形 (D )不是等腰三角形,也不是直角三角形解:x 2=4x -4.根为x=2.∴ C=2A ,B=180°-3A ,sin B=2sin A .sin3A=2sin A ,3-4sin 2A=2.A=30°,C=60°,B=90°.选B .5.设复数z 1,z 2在复平面上对应的点分别为A ,B ,且|z 1|=4,4z 122z 1z 2+z 22=0,O 为坐标原点,则△OAB 的面积为( )(A )83 (B )43 (C )63 (D )123解:2z 1z 2=cos π3±i sin π3.∴ |z 2|=8,z 1、z 2的夹角=60°.S=12·4·8·32=83.选A .6.设f (x )是定义在实数集R 上的函数,且满足下列关系f (10+x )=f (10x ),f (20x )=f (20+x ),则f (x )是(A )偶函数,又是周期函数 (B )偶函数,但不是周期函数 (C )奇函数,又是周期函数 (D )奇函数,但不是周期函数 解:f (20-x )=f [10+(10-x )]=f [10-(10-x )]=f (x )=-f (20+x ). ∴ f (40+x )=f [20+(20+x )]=-f (20+x )=f (x ).∴ 是周期函数;∴ f (-x )=f (40-x )=f (20+(20-x )=-f (20-(20-x ))=-f (x ).∴ 是奇函数.选C . 二、填空题(每小题5分共30分)1.设x ,y ,z 是实数,3x ,4y ,5z 成等比数列,且1x ,1y ,1z 成等差数列,则x z +z x的值是______.解:16y 2=15xz ,y=2xzx +z ,16·4x 2z 2=15xz (x +z )2.由xz ≠0,得(x +z )2xz =6415,xz+z x =3415. 2.在区间[0,]中,三角方程cos7x=cos5x 的解的个数是 . 解:7x=5x +2k π,或7x=-5x +2k π,(k ∈Z )x=k π,x=16k π (k ∈Z ),共有7解.3.从正方体的棱和各个面上的对角线中选出k 条,使得其中任意两条线段所在的直线都是异面直线,则k 的最大值是 .解:正方体共有8个顶点,若选出的k 条线两两异面,则不能共顶点,即至多可选ABCDD'C'B'A'出4条,又可以选出4条两两异面的线(如图),故所求k 的最大值=4.4.设z 1,z 2都是复数,且|z 1|=3,|z 2|=5|z 1+z 2|=7,则arg(z 2z 1)3的值是______.解:cos ∠OZ 1Z 3=32+52-72235=-12.即∠OZ 1Z 3==120°, ∴ arg(z 2z 1)=π3或5π3.∴ arg(z 2z 1)3=π.5.设数列a 1,a 2,,a n ,满足a 1=a 2=1,a 3=2,且对任何自然数n , 都有a n a n +1a n +21,又a n a n +1a n +2a n +3=a n +a n +1+a n +2+a n +3,则a 1+a 2++a 100的值是____.解:a n a n +1a n +2a n +3=a n +a n +1+a n +2+a n +3,a n +1a n +2a n +3a n +4=a n +1+a n +2+a n +3+a n +4, 相减,得a n a n +1a n +2(a 4-a n )=a n +4-a n ,由a n a n +1a n +21,得a n +4=a n .又,a n a n +1a n +2a n +3=a n +a n +1+a n +2+a n +3,a 1=a 2=1,a 3=2,得a 4=4. ∴ a 1+a 2++a 100=25(1+1+2+4)=200. 6.函数f (x )= x 4-3x 2-6x +13-x 4-x2+1的最大值是_____. 解:f (x )=(x 2-2)2+(x -3)2-(x 2-1)2+x 2,表示点(x ,x 2)与点A (3,2)的距离及B (0,1)距离差的最大值.由于此二点在抛物线两侧,故过此二点的直线必与抛物线交于两点.对于抛物线上任意一点,到此二点距离之差大于|AB |=10.即所求最小值为10.A B (0,1)(3,2)OxyZ 2Z 3Z 1xOy三、(20分)求证:16<4Σi=11k<17.证明:1k =2k +k <2k -1+k =2(k -k -1), 同时1k>2k +1+k =2(k +1-k ). 于是得280Σk=1(k +1-k )<80Σk=11k <1+280Σk=1(k -k -1)即 16<80Σk=11k<1+2(80-1)<1+2(9-1)=17.四、(20分)设l ,m 是两条异面直线,在l 上有A ,B ,C 三点,且AB=BC ,过A ,B ,C 分别作m 的垂线AD ,BE ,CF ,垂足依次是D ,E ,F ,已知AD=15,BE=72CF=10,求l 与m 的距离.解:过m 作平面α∥l ,作AP ⊥α于P ,AP 与l 确定平面β,β∩α=l ,l ∩m=K . 作BQ ⊥α,CR ⊥α,垂足为Q 、R ,则Q 、R ∈l ,且AP=BQ=CR=l与m 的距离d .连PD 、QE 、RF ,则由三垂线定理之逆,知PD 、QE 、RF 都⊥m .PD=15-d 2,QE=494-d 2,RF=10-d 2.当D 、E 、F 在K 同侧时2QE=PD +RF ,49-4d 2=15-d 2+10-d 2.解之得d=6K βPQR αl'mlDE FABC当D 、E 、F 不全在K 同侧时2QE=PD -RF ,49-4d 2=15-d 2-10-d 2.无实解.∴ l 与m 距离为6.五、(20分)设n 是自然数,f n (x )=x n +1-x -n -1x -x -1(x 0,±1),令y=x +1x.1.求证:f n+1(x )=yf n (x )f n -1(x ),(n>1)2.用数学归纳法证明:f n (x )=⎩⎪⎨⎪⎧y n -C 1n -1y n -2+…+(-1)i C in -i y n -2i +…+(-1)n2,(i=1,2,…, n2,n 为偶数) y n-C 1n -1y n -2+…+(-1)i C in -i+…+(-1)n -12C n -12n +12y ,(i=1,2,…,n -12,n 为奇数) 证明: ⑴ 由yf n (x )f n -1(x )=(x + 1x)(x n +1-x -n -1)-x n +x -nx -x -1=x n +2-x -n -2x -x -1=f n +1(x ).故证.⑵ f 1(x )= x +1x ,f 2(x )=x 2+1+x -2=(x +1x)2-1=y 2-1.故命题对n=1,2 成立.设对于n ≤m (m ≥2,m 为正整数),命题成立,现证命题对于n=m +1成立. 1. 若m 为偶数,则m +1为奇数.由归纳假设知,对于n=m 及n=m -1,有f m (x )= y m -C 1m -1y m -2+C 2m -2y m -4+…+(-1)i C im -i y m -2i +…+(-1)m 2Cm2m -m 2ym -2m2 ①f m -1(x )= y m -1-C 1m -1y m -3+…+(-1)i -1C i -1m -iy m +1-2i +…+(-1)m -22·C m -22m 2y②∴ yf m (x )-f m -1(x )=y m +1-…+(-1)i (C i m -i +C i -1m -i )y m +1-2i +…+(-1)m 2(Cm2m -m2+C m2-1m -m 2)y =y m +1-C1m +1-1y m -1+…+(-1)i Ci m -i +1y m +1-2i +…+(-1)m2·C m2m 2+1y即命题对n=m +1成立.2.若m 为奇数,则m +1为偶数,由归纳假设知,对于n=m 及n=m -1,有f m (x )= y m -1-C 1m -2y m -2+…+(-1)i ·C im -i y m -2i +…+(-1)m -12·C m -12m -12y③f m -1(x )= y m -1-C 1m -2y m -3+…+(-1)i -1C i -1m -iy m +1-2i +…+(-1)m -12C m -12m -12④用y 乘③减去④,同上合并,并注意最后一项常数项为-(-1)m -12C m -12m -12=-(-1)m -12C m +12m +12=(-1)m +12. 于是得到yf m (x )-f m -1(x )=y m +1-C m 1y m -1+…+(-1)m +12,即仍有对于n=m +1,命题成立综上所述,知对于一切正整数n ,命题成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013 年全国高校自主招生数学模拟试卷十七
一、选择题(每小题 6 分,共 36 分) 1、设 a,b,c 是实数,那么对任何实数 x, 不等式 asinx+bcosx+c>0 都成立的充要条件 是 (A) a,b 同时为 0,且 c>0 (B) a2+b2=c (C) a2+b2<c (D) a2+b2>c 2、给出下列两个命题:⑴ 设 a,b,c 都是复数,如果 a2+b2>c2,则 a2+b2-c2>0;⑵设 a,b,c 都是复数,如果 a2+b2-c2>0,则 a2+b2>c2.那么下述说法正确的是 (A)命题⑴正确,命题⑵也正确 (B)命题⑴正确,命题⑵错误 (C)命题⑴错误,命题⑵也错误 (D)命题⑴错误,命题⑵正确 3、已知数列{an}满足 3an+1+an=4(n≥1),且 a1=9,其前 n 项之和为 Sn,则满足不等式|Sn 1 -n-6|<125的最小整数 n 是 (A)5 (B)6 (C)7 (D)8 π log sina log cosa log cosa 4、已知 0<b<1,0<a<4,则下列三数:x=(sina) b ,y=(cosa) b ,z=(sina) b (A)x<z<y (B)y<z<x (C)z<x<y (D)x<y<z 5、在正 n 棱锥中,相邻两侧面所成的二面角的取值范围是 n-2 n-1 n-2 n-1 π (A)( n π,π) (B)( n π,π) (C)(0,2) (D)( n π, n π) |x+y| |x-y| 6、在平面直角坐标系中,方程 2a + 2b =1 (a,b 是不相等的两个正数)所代表的曲 线是 (A)三角形 (C)非正方形的长方形 (B)正方形 (D)非正方形的菱形
x3+sinx-2a=0, π π 2.已知 x,y∈[-4,4],a∈R 且 3 则 cos(x+2y) = 4y +sinycosy+a=0

解:2a=x3+sinx=(-2y)3-sin(-2y), π π π π 令 f(t)=t3+sint,t∈[-2,2],f (t)=3t2+cost>0,即 f(t)在[-2,2]上单调增.∴ x=-2y. ∴ cos(x+2y)=1. 5 5 3.已知点集 A={(x,y)|(x-3)2+(y-4)2≤(2)2},B={(x,y)|(x-4)2+(y-5)2>(2)2},则点集 A ∩B 中的整点(即横、纵坐标均为整数的点)的个数为 . 解:如图可知,共有 7 个点,即(1,3),(1,4),(1,5),(2,2),(2,3),(3,2),(4, 2)共 7 点. y θ 4.设 0<θ<π, ,则 sin2(1+cosθ)的最大值是 . 解:令 y= sin2 (1+cosθ) >0, 2 则 y2=4 sin22 cos42 =2²2sin22 cos22 cos22 ≤2(3 )3. 4 3 ∴ y≤ 9 2 .当 tan2 = 2 时等号成立.
5.已知一平面与一正方体的 12 条棱的夹角都等于 α,则 sinα= . 6.已知 95 个数 a1,a2,a3,…,a95, 每个都只能取+1 或-1 两个值之一,那么它们 的两两之积的和 a1a2+a1a3+…+a94a95 的最小正值是 .
第1页
三、解答题 一、 (本题满分 25 分) x 的二次方程 x2+z1x+z2+m=0 中,z1, z2, m 均是复数, 且 z1-4z2=16+20i,
1

(4,5) (3,4)
3 2

O
1
23Biblioteka x5.已知一平面与一正方体的 12 条棱的夹角都等于 α,则 sinα= . 解: 12 条棱只有三个方向, 故只要取如图中 AA与平面 ABD所成角即可. 设
A'
D' B' D
C'
C B
A
第4页
3 AA=1,则 AC= 3,AC⊥平面 ABD,AC 被平面 ABD、BDC三等分.于是 sinα= 3 . 6.已知 95 个数 a1,a2,a3,…,a95, 每个都只能取+1 或-1 两个值之一,那么它们 的两两之积的和 a1a2+a1a3+…+a94a95 的最小正值是 . 解:设有 m 个+1,(95-m)个-1.则 a1+a2+…+a95=m-(95-m)=2m-95 ∴ 2(a1a2+a1a3+…+a94a95)=(a1+a2+…+a95)2-(a12+a22+…+a952)=(2m-95)2-95>0. 取 2m-95=±11.得 a1a2+a1a3+…+a94a95=13.为所求最小正值. . 三解答题 一、 (本题满分 25 分) x 的二次方程 x2+z1x+z2+m=0 中,z1, z2, m 均是复数, 且 z1-4z2=16+20i,
2
设这个方程的两个根 α、β,满足|α-β|=2 7,求|m|的最大值和最小值. 解:设 m=a+bi(a,b∈R).则△=z12-4z2-4m=16+20i-4a-4bi=4[(4-a)+(5-b)i].设△ 的平方根为 u+vi.(u,v∈R) 即(u+vi)2=4[(4-a)+(5-b)i]. |α-β|=2 7,|α-β|2=28,|(4-a)+(5-b)i|=7,(a-4)2+(b-5)2=72, 即表示复数 m 的点在圆(a-4)2+(b-5)2=72 上,该点与原点距离的最大值为 7+ 41,最 小值为 7- 41. 二、 (本题满分 25 分) 将与 105 互素的所有正整数从小到大排成数列, 试求出这个数列 的第 1000 项。 1 1 1 解:由 105=3×5×7;故不超过 105 而与 105 互质的正整数有 105×(1-3)(1-5)(1-7)=48 个。1000=48×20+48-8, 105×20=2100.而在不超过 105 的与 105 互质的数中第 40 个数是 86. ∴ 所求数为 2186。
第2页
2013 年全国高校自主招生数学模拟试卷十七
参考答案
一.选择题(每小题 6 分,共 36 分) 1、设 a,b,c 是实数,那么对任何实数 x, 不等式 asinx+bcosx+c>0 都成立的充要条件 是 (A) a,b 同时为 0,且 c>0 (B) a2+b2=c (C) a2+b2<c (D) a2+b2>c 2 2 解:asinx+bcosx+c= a +b sin(x+φ)+c∈[- a2+b2+c, a2+b2+c].故选 C. 2、给出下列两个命题:(1)设 a,b,c 都是复数,如果 a2+b2>c2,则 a2+b2-c2>0.(2)设 a,b,c 都是复数,如果 a2+b2-c2>0,则 a2+b2>c2.那么下述说法正确的是 (A)命题(1)正确,命题(2)也正确 (B)命题(1)正确,命题(2)错误 (C)命题(1)错误,命题(2)也错误 (D)命题(1)错误,命题(2)正确 2 2 2 解:⑴正确,⑵错误;理由:⑴a +b >c ,成立时,a2+b2 与 c2 都是实数,故此时 a2+b2 -c2>0 成立; ⑵ 当 a2+b2-c2>0 成立时 a2+b2-c2 是实数, 但不能保证 a2+b2 与 c2 都是实数, 故 a2+b2>c2 不一定成立.故选 B. 3、已知数列{an}满足 3an+1+an=4(n≥1),且 a1=9,其前 n 项之和为 Sn,则满足不等式|Sn 1 -n-6|<125的最小整数 n 是 (C)7 (D)8 1 1 解:(an+1-1)=-3(an-1),即{ an-1}是以-3为公比的等比数列, 1 1-(-3)n 1 n-1 1n 1 1 ∴ an=8(-3) +1.∴ Sn=8² 1 +n=6+n-6(-3) ,6· 3n<125,n≥7.选 C. 1+3 π log sina log cosa log cosa 4、已知 0<b<1,0<a<4,则下列三数:x=(sina) b ,y=(cosa) b ,z=(sina) b 的大小关系是 (A)x<z<y (B)y<z<x (C)z<x<y 解:0<sina<cosa<1.logbsina>logbcosa>0. (D)x<y<z (A)5 (B)6
二、填空题(每小题 9 分,共 54 分) 1.已知有向线段 PQ 的起点 P 和终点 Q 的坐标分别为(-1,1)和(2,2),若直线 l: x+my+m=0 与 PQ 的延长线相交,则 m 的取值范围是 . x3+sinx-2a=0, π π 2.已知 x,y∈[-4,4],a∈R 且 3 则 cos(x+2y) = . 4y +sinycosy+a=0 5 5 3.已知点集 A={(x,y)|(x-3)2+(y-4)2≤(2)2},B={(x,y)|(x-4)2+(y-5)2>(2)2},则点集 A ∩B 中的整点(即横、纵坐标均为整数的点)的个数为 θ 4.设 0<θ<π, ,则 sin2(1+cosθ)的最大值是 . .
相关文档
最新文档