车辆制动装置课件
合集下载
盘式制动器PPT课件
为了强化发动机缓速作用,可以采取阻塞进气或排气通道, 或改变进、排气门启闭时刻等措施,以增加发动机内的进 气、排气、压缩等方面的功率损失。其中应用最广的措施 是在发动机排气管中设置可以阻塞排气通道的排气节流阀。 这种发动机缓速法可称为排气缓速。
(2)牵引电动机缓速 对于采用电传动系的汽车,可以对电 动驱动轮中的牵引电动机停止供电,使之受驱动轮驱动而 成为发电机,将汽车的部分动能转变成电能,再使之通过 电阻转变为热能而耗散。这时电动机对驱动轮的阻力矩即 是制动力矩。
1.制动盘;2.活塞; 3.摩擦块; 4.进油口;5.制动钳 体; 6.车桥部;
定钳盘式制动器的应用
定钳盘式制动பைடு நூலகம்的缺点
液压缸较多,使制动钳结构复杂; 液压缸分置于制动器的两侧,必须用跨越
制动盘的钳内油道或外部油管来连接; 热负荷大时,液压缸内的油管的制动液容
易汽化; 若要兼用驻车制动时,必须加装一个机械
二、液力缓速式辅助制动系
原上海SH380型汽车采用液力缓速式辅助制动系。 其中的液力缓速器(图23—94)安装在液力机械变 速器的后端。其结构类似于两个并联的液力耦合 器,不过其每一对叶轮中只有一个能转动(即转子 10),而另一个是固定不动的(即带叶片的壳体l和 盖9)。
缓速器壳体用螺钉固定在机械变速器壳体8的后壁 上。转子与其轴6借花键连接,而轴6又用花键套 5与变速器第一轴(输入轴)4相连。
(5) 空气动力缓速 空气动力缓速是采用使车身的 某些活动表面板件伸展,以加大作用于汽车的空 气阻力的办法来起缓速作用。这种方法目前只用 于竞赛汽车。
一、排气缓速式辅助制动系
排气缓速主要用于柴油车,原因是柴油机压缩比较 汽油机压缩比大,作为空压机,其缓速效果优于 汽油机,而且,很容易做到在施行排气缓速时先 切断燃油供给。对汽油机,则需要通过较复杂的 装置方能做到这一点。
(2)牵引电动机缓速 对于采用电传动系的汽车,可以对电 动驱动轮中的牵引电动机停止供电,使之受驱动轮驱动而 成为发电机,将汽车的部分动能转变成电能,再使之通过 电阻转变为热能而耗散。这时电动机对驱动轮的阻力矩即 是制动力矩。
1.制动盘;2.活塞; 3.摩擦块; 4.进油口;5.制动钳 体; 6.车桥部;
定钳盘式制动器的应用
定钳盘式制动பைடு நூலகம்的缺点
液压缸较多,使制动钳结构复杂; 液压缸分置于制动器的两侧,必须用跨越
制动盘的钳内油道或外部油管来连接; 热负荷大时,液压缸内的油管的制动液容
易汽化; 若要兼用驻车制动时,必须加装一个机械
二、液力缓速式辅助制动系
原上海SH380型汽车采用液力缓速式辅助制动系。 其中的液力缓速器(图23—94)安装在液力机械变 速器的后端。其结构类似于两个并联的液力耦合 器,不过其每一对叶轮中只有一个能转动(即转子 10),而另一个是固定不动的(即带叶片的壳体l和 盖9)。
缓速器壳体用螺钉固定在机械变速器壳体8的后壁 上。转子与其轴6借花键连接,而轴6又用花键套 5与变速器第一轴(输入轴)4相连。
(5) 空气动力缓速 空气动力缓速是采用使车身的 某些活动表面板件伸展,以加大作用于汽车的空 气阻力的办法来起缓速作用。这种方法目前只用 于竞赛汽车。
一、排气缓速式辅助制动系
排气缓速主要用于柴油车,原因是柴油机压缩比较 汽油机压缩比大,作为空压机,其缓速效果优于 汽油机,而且,很容易做到在施行排气缓速时先 切断燃油供给。对汽油机,则需要通过较复杂的 装置方能做到这一点。
汽车制动系统ppt课件完整版
数。
制动距离
指从驾驶员开始制动到车辆完全停 止所行驶的距离。它是评价汽车制
动性能的重要指标之一。
A
B
C
D
制动时方向稳定性
指车辆在制动过程中保持直线行驶或按预 定轨迹行驶的能力。它是评价汽车制动安 全性的重要指标之一。
制动力分配
指前后轴制动力分配的比例。合理的制动 力分配可以提高制动稳定性和制动效率。
产生压缩空气。
制动阀
控制压缩空气进入 制动气室的开关。
制动管路
连接各部件,传递 压缩空气。
气压制动系统优缺点分析
01
优点
02
结构简单,维护方便。
制动效能稳定,受环境影响小。
03
气压制动系统优缺点分析
• 适用于大型车辆和重载车辆。
气压制动系统优要空气压缩机和储气罐,占用空间较大 。
拆卸检查
对疑似故障部件进行拆卸检查 ,观察其磨损、变形等情况。
路试检测
在安全条件下进行路试,检测 制动系统的实际表现,进一步
确认故障。
故障排除措施和维修建议
制动失效排除
制动跑偏排除
制动拖滞排除
驻车制动失效排除
检查制动液泄漏情况并修复, 清洗或更换堵塞的管路,更换 磨损严重的制动蹄片等。
调整两侧车轮制动力至均衡, 调整轮胎气压至一致,检查并 修复悬挂系统故障等。
03
制动响应速度相对较慢。
04
在严寒地区,压缩空气可能结冰,影响制 动效果。
04
伺服制动系统与电子控制制动系 统
伺服制动系统组成及工作原理
组成
伺服制动系统主要由制动踏板、真空助力器、制动主缸、制动轮缸、制动器等组成。
工作原理
当驾驶员踩下制动踏板时,真空助力器提供助力,推动制动主缸内的活塞移动,使制动液压力升高。制动液通过 制动管路传递到各个制动轮缸,推动轮缸内的活塞移动,使制动器产生制动力矩,从而实现车辆减速停车。
制动距离
指从驾驶员开始制动到车辆完全停 止所行驶的距离。它是评价汽车制
动性能的重要指标之一。
A
B
C
D
制动时方向稳定性
指车辆在制动过程中保持直线行驶或按预 定轨迹行驶的能力。它是评价汽车制动安 全性的重要指标之一。
制动力分配
指前后轴制动力分配的比例。合理的制动 力分配可以提高制动稳定性和制动效率。
产生压缩空气。
制动阀
控制压缩空气进入 制动气室的开关。
制动管路
连接各部件,传递 压缩空气。
气压制动系统优缺点分析
01
优点
02
结构简单,维护方便。
制动效能稳定,受环境影响小。
03
气压制动系统优缺点分析
• 适用于大型车辆和重载车辆。
气压制动系统优要空气压缩机和储气罐,占用空间较大 。
拆卸检查
对疑似故障部件进行拆卸检查 ,观察其磨损、变形等情况。
路试检测
在安全条件下进行路试,检测 制动系统的实际表现,进一步
确认故障。
故障排除措施和维修建议
制动失效排除
制动跑偏排除
制动拖滞排除
驻车制动失效排除
检查制动液泄漏情况并修复, 清洗或更换堵塞的管路,更换 磨损严重的制动蹄片等。
调整两侧车轮制动力至均衡, 调整轮胎气压至一致,检查并 修复悬挂系统故障等。
03
制动响应速度相对较慢。
04
在严寒地区,压缩空气可能结冰,影响制 动效果。
04
伺服制动系统与电子控制制动系 统
伺服制动系统组成及工作原理
组成
伺服制动系统主要由制动踏板、真空助力器、制动主缸、制动轮缸、制动器等组成。
工作原理
当驾驶员踩下制动踏板时,真空助力器提供助力,推动制动主缸内的活塞移动,使制动液压力升高。制动液通过 制动管路传递到各个制动轮缸,推动轮缸内的活塞移动,使制动器产生制动力矩,从而实现车辆减速停车。
《盘式制动器》课件
商用车
随着物流运输业的快速发展,盘式制动器在 商用车领域的应用也逐渐增多,提高了车辆 的制动安全性和稳定性。
环境友好性
总结词
随着环保意识的提高,盘式制动 器在环保方面也表现出良好的性
能,成为绿色出行的选择。
低噪音
盘式制动器在制动过程中产生的噪 音较低,对周围环境的影响较小。
节能减排
采用新型高强度材料和结构设计, 提高了制动器的能效和可靠性,有 助于减少能源消耗和排放污染物。
盘式制动器的优点
相比鼓式制动器,盘式制动器具有更好的散热性 能和更快的响应速度,更适合于高速行驶和高负 荷制动。
盘式制动器的结构与工作原理
详细介绍了盘式制动器的组成部件,如制动盘、 制动钳、摩擦片和液压系统等,以及其工作原理 。
摩托车制动系统
摩托车盘式制动器概述
01
摩托车盘式制动器是现代摩托车的重要安全装置,具有轻量化
刹车盘状况
检查刹车盘表面是否光滑 ,有无裂纹或损伤,如有 需要应及时修复或更换。
制动液水平
检查制动液液面高度,确 保制动液充足,无泄漏现 象。
更换摩擦片
摩擦片磨损
摩擦片是制动器中的易损件,随着使用次数 的增加,摩擦片会逐渐磨损,当磨损到一定 程度时,制动力会下降,影响制动效果。
更换时机
当摩擦片磨损到一定程度时,应及时更换。 一般来说,当摩擦片厚度小于原厚度的1/3时 ,应考虑更换。
、高响应和良好的抗热衰退性能。
摩托车盘式制动器的特点
02
相比传统的鼓式制动器,摩托车盘式制动器具有更好的制动力
分配和更短的制动距离,提高了驾驶安全性。
摩托车盘式制动器的安装与调整
03
提供了关于如何正确安装和调整摩托车盘式制动器的详细指南
随着物流运输业的快速发展,盘式制动器在 商用车领域的应用也逐渐增多,提高了车辆 的制动安全性和稳定性。
环境友好性
总结词
随着环保意识的提高,盘式制动 器在环保方面也表现出良好的性
能,成为绿色出行的选择。
低噪音
盘式制动器在制动过程中产生的噪 音较低,对周围环境的影响较小。
节能减排
采用新型高强度材料和结构设计, 提高了制动器的能效和可靠性,有 助于减少能源消耗和排放污染物。
盘式制动器的优点
相比鼓式制动器,盘式制动器具有更好的散热性 能和更快的响应速度,更适合于高速行驶和高负 荷制动。
盘式制动器的结构与工作原理
详细介绍了盘式制动器的组成部件,如制动盘、 制动钳、摩擦片和液压系统等,以及其工作原理 。
摩托车制动系统
摩托车盘式制动器概述
01
摩托车盘式制动器是现代摩托车的重要安全装置,具有轻量化
刹车盘状况
检查刹车盘表面是否光滑 ,有无裂纹或损伤,如有 需要应及时修复或更换。
制动液水平
检查制动液液面高度,确 保制动液充足,无泄漏现 象。
更换摩擦片
摩擦片磨损
摩擦片是制动器中的易损件,随着使用次数 的增加,摩擦片会逐渐磨损,当磨损到一定 程度时,制动力会下降,影响制动效果。
更换时机
当摩擦片磨损到一定程度时,应及时更换。 一般来说,当摩擦片厚度小于原厚度的1/3时 ,应考虑更换。
、高响应和良好的抗热衰退性能。
摩托车盘式制动器的特点
02
相比传统的鼓式制动器,摩托车盘式制动器具有更好的制动力
分配和更短的制动距离,提高了驾驶安全性。
摩托车盘式制动器的安装与调整
03
提供了关于如何正确安装和调整摩托车盘式制动器的详细指南
地铁车辆制动系统概述ppt课件
盘形制动
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
盘形制动
非动力转向架一般选用轴盘式 动力转向架优先选用轴盘式 可获得比闸瓦制动大得多的制动功率
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
四、制动模式
(3)保持制动 第一阶段:当列车制动到速度8Km/h,
DCU触发保持制动信号,同时输出给ECU,这 时,由DCU控制的电制动逐步退出,而由ECU 控制的气制动来替代。
(2)空气制动系统 由供气部分、控制部分和执行部分(基础制动装置 )等组成。供气部分有空气压缩机组、空气干燥机 和风缸等;控制部分有电-空(EP)转换阀、紧急 阀、称重阀和中继阀等;执行部分就是闸瓦制动装 置和盘形制动装置等。
(3)指令和通信网络系统 既是传送司机指令的通道,同时也是制动系统内部 数据交换及制动系统与列车控制系统进行数据通信 的总线。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
列车制动过程
电气制动
再生制动 电阻制动
空气制动
常用制动过程中,由于电气制动对设备没有磨 损并且节能,所以在电气制动有效的情况下列 车优先使用电气制动,在电气制动不能为满足 制动需求时,电气制动与空气制动进行复合制 动。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
盘形制动
非动力转向架一般选用轴盘式 动力转向架优先选用轴盘式 可获得比闸瓦制动大得多的制动功率
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
四、制动模式
(3)保持制动 第一阶段:当列车制动到速度8Km/h,
DCU触发保持制动信号,同时输出给ECU,这 时,由DCU控制的电制动逐步退出,而由ECU 控制的气制动来替代。
(2)空气制动系统 由供气部分、控制部分和执行部分(基础制动装置 )等组成。供气部分有空气压缩机组、空气干燥机 和风缸等;控制部分有电-空(EP)转换阀、紧急 阀、称重阀和中继阀等;执行部分就是闸瓦制动装 置和盘形制动装置等。
(3)指令和通信网络系统 既是传送司机指令的通道,同时也是制动系统内部 数据交换及制动系统与列车控制系统进行数据通信 的总线。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
列车制动过程
电气制动
再生制动 电阻制动
空气制动
常用制动过程中,由于电气制动对设备没有磨 损并且节能,所以在电气制动有效的情况下列 车优先使用电气制动,在电气制动不能为满足 制动需求时,电气制动与空气制动进行复合制 动。
制动系统-PPT课件
领从蹄式制动器
(2)受力分析
在图式的结构实例中,轮缸中的两个活塞都可 在缸内轴向浮动,且两者直径相同。因此,制动时 两个活塞对两个制动蹄所加的促动力永远是相等的。 凡两蹄所受促动力相等的领从蹄式制动器,都可称 为等促动力制动器。
简 单 非 平 衡 式 制 动 器
由图可见,领蹄上的切向合力所造成的绕支点3的力矩与促动 力所造成的绕同一支点的力矩是同向的。所以力的作用结果 是使领蹄1在制动鼓上压得更紧,即力变得更大,从而力也 更大。这表明领蹄具有“增势”的作用。与此相反,切向合 力则使从蹄2有放松制动鼓,即有使本身减小的趋势,从动 蹄具有“减势”作用。 由于领蹄和从所受法向反力不等,在两蹄摩擦片工作面积相等 的情况下,领蹄摩擦片上的单位压力较大,因而磨损较严重。 为了使领蹄和从蹄的摩擦片寿命接近,有些领从蹄式制动器的 领蹄摩擦片的周向尺寸设计的较大。但是这样将使得两蹄摩擦 片不能互换,从而增加了零件种数和制造成本。 领从蹄式制动器的制动所受到的来自两蹄的法向力(数值 上分别等于力)不相平衡,则此二法向力之和只能由车轮的轮 毂轴承的反力来平衡。这就对轮毂轴承造成了附加径向载荷, 使其寿命缩短。凡制动鼓所受来自两蹄的法向力不能相互平衡 的制动器,均属非平衡式制动器。
第一制动蹄和第二制动蹄的下端分别浮支在浮动的顶杆的两端。
单向自增力式制动器
2)双向自增力式制动器
制动鼓正向和反向旋转时均能借蹄鼓间的摩擦起自增力作 用。它的结构不同于单向自增力式之处主要是采用双活塞 式制动轮缸4,可向两蹄同时施加相等的促动力FS。 制动鼓正向旋转时,前制动蹄1为第一蹄,后制动蹄3为第 二蹄;制动鼓反向旋转时则情况相反。由图可见,在制动 时,第一蹄只受一个促动力FS而第二蹄则有两个促动力FS 和Fs’,且Fs’>FS。考虑到汽车前进制动的机会远多于 倒车制动,且前进制动时制动器工作负荷也远大于倒车制 动,故后蹄3的摩擦片面积做得较大。
汽车制动系统ppt课件
保持制动系统清洁,防止杂质进入影响制动性能。
定期更换制动蹄片,保证制动性能。 定期检查制动系统气密性,确保无漏气现象。
04
辅助制动装置
驻车制动器结构与工作原理
驻车制动器类型
分为中央制动器和车轮制动器两种类 型,中央制动器作用于传动轴或后桥 ,车轮制动器直接作用于车轮。
驻车制动器结构
由操纵机构、传动装置和制动器组成 。操纵机构包括手柄、拉杆等,传动 装置将操纵力传递到制动器,制动器 则产生制动力矩。
摩擦片后故障排除。
06
汽车制动系统新技术展望
线控制动技术介绍及优势分析
01
线控制动技术概述
通过电子信号传递制动指令,取代 传统机械或液压连接方式。
制动效果更稳定
电子控制系统可精确控制制动力分 配,提高制动稳定性。
03
02
响应速度更快
减少机械传动环节,提高制动响应 速度。
易于实现智能化
可与车辆其他系统实现联动,为智 能驾驶提供基础。
故障排除实例分享
实例二
某车型制动跑偏故障排除
故障现象
制动时车辆明显向左侧偏斜。
故障诊断
经检查发现左前轮制动力明显弱 于右前轮,调整两侧制动力分配 后故障排除。
故障排除实例分享
实例三
01
某车型制动噪音故障排除
故障现象
02
制动时伴随尖锐的噪音,且随着车速提高噪音增大。
故障诊断
03
经检查发现制动摩擦片磨损严重且表面不平整,更换新的制动
液压制动系统优缺点分析
优点 制动平稳,冲击小。
结构简单,维修方便。
液压制动系统优缺点分析
• 制动力矩大,制动效果好。
液压制动系统优缺点分析
定期更换制动蹄片,保证制动性能。 定期检查制动系统气密性,确保无漏气现象。
04
辅助制动装置
驻车制动器结构与工作原理
驻车制动器类型
分为中央制动器和车轮制动器两种类 型,中央制动器作用于传动轴或后桥 ,车轮制动器直接作用于车轮。
驻车制动器结构
由操纵机构、传动装置和制动器组成 。操纵机构包括手柄、拉杆等,传动 装置将操纵力传递到制动器,制动器 则产生制动力矩。
摩擦片后故障排除。
06
汽车制动系统新技术展望
线控制动技术介绍及优势分析
01
线控制动技术概述
通过电子信号传递制动指令,取代 传统机械或液压连接方式。
制动效果更稳定
电子控制系统可精确控制制动力分 配,提高制动稳定性。
03
02
响应速度更快
减少机械传动环节,提高制动响应 速度。
易于实现智能化
可与车辆其他系统实现联动,为智 能驾驶提供基础。
故障排除实例分享
实例二
某车型制动跑偏故障排除
故障现象
制动时车辆明显向左侧偏斜。
故障诊断
经检查发现左前轮制动力明显弱 于右前轮,调整两侧制动力分配 后故障排除。
故障排除实例分享
实例三
01
某车型制动噪音故障排除
故障现象
02
制动时伴随尖锐的噪音,且随着车速提高噪音增大。
故障诊断
03
经检查发现制动摩擦片磨损严重且表面不平整,更换新的制动
液压制动系统优缺点分析
优点 制动平稳,冲击小。
结构简单,维修方便。
液压制动系统优缺点分析
• 制动力矩大,制动效果好。
液压制动系统优缺点分析
动车组制动系统PPT课件
• 紧急制动可通过以下装置进行控制:•制源自手柄处于紧急制动位置。 在该位置下,
安全环线断开,所有车辆均实施最大的空气制动
力;
•
司机室的按钮;
•
安全装置(信号系统);
•
异常情况下安全环线断开;
•
旅客报警(当切除旅客报警隔离状态情况
下)。
• 旅客报警系统:动车组均配备有一个旅客报警系 统(每个旅客车厢均应配备有两个报警手柄), 该指令可以被司机撤消。
编辑版pppt
11
• (三)备用制动
• 如果电控装置发生故障或处于救援模式, 动车组可启动备用制动继续运行。之后, 制动将通过制动管(600kPa)中的压力进 行控制,该压力将通过安装在驾驶室中由 时间控制的制动控制器进行调节,这一控 制器由手动开关激活。备用制动系统可由 操纵司机控制器或紧急按钮进行紧急制动。
编辑版pppt
4
• 空气制动系统
• CRH5的空气制动系统可分为压力空气供给系统、 辅助气源、直通式空气制动系统、自动空气制动 系统和基础制动装置五大部分。
• 一、压力空气供给系统
• CRH5配备2套压力空气供给系统,每个系统主要 包括以下组件:电动压缩机组、空气干燥机装置 以及微孔滤油器。
• 有两根风管连通全车:一根是制动风管,便于空
• (一)空气制动控制装置
• (二)电空转换阀(EP阀)
• (三)电磁阀
• (四)截断塞门
• 四、自动式空气制动系统
• 组成
• 自动空气制动系统中的许多部件与直通空
气制动系统共用,分配阀为自动空气制动
系统的核心部件,CRH5使用的分配阀为三
压力阀 。
编辑版pppt
8
• 二、制动作用的种类
车辆制动装置ppt课件
▪ 所谓“三通”是指:一通列车管,二通副风缸, 三通制动缸。
34
基本工作原理: 1)充气缓解位 其空气通路为:列车管→副
风缸;制动缸→大气。 2)排气制动位 其空气通路为:副风缸→制
动缸。 3)制动中立位(保压位)
35
1)增压缓解
是指制动缸通大气; 充气是指副风缸压 力低于列车管时, 由总风缸经列车管 使它补足压力空气 至定压。充气缓解 位其空气通路为: 列车管→副风缸; 制动缸→大气。
40
▪ 软性阀的特征
1)缓慢减压不制动。即阀具有一定的稳定性。
所谓稳定性即列车管的减压速度极为缓慢时,三 通阀不发生制动动作的性能。例如,列车管的减 压速度为0.5~1.0kPa/s之内,三通阀不应该发 生动作。对阀提出稳 定性要求,是运用实际的 需要。因为列车管不可能 达到绝对严密而没有任何 的泄漏。
各制动缸中的压力空气经各自的三通阀排出。不需要像直
通式的那样,统一归到制动阀的排气口排出。所以,缓 解的一致性亦好些。
39
▪ 三通阀的“软性”
▪ 自动制动机所用的三通阀或分配阀,它的主要部
分是一个依靠两种压力的差别或平衡而发生动
作的机构,这个机构被命名为“二压力机构”。 例如,上述三通阀靠一个活塞(鞲鞴)的左右两 侧――列车管侧和副风缸侧的压力差或压力平衡 而发生动作。 ▪ 采用二压力机构的三通阀或分配阀叫“软性阀”, 用它组成的制动机叫“软性制动机”。如GK、 120型等制动机就属于这一类。
25
▪ 2)双闸瓦式: ▪ 在车轮两侧各设一块闸瓦的制动方式。目前一般客车和
特种货车大多采用这种类型。
26
▪ 3)盘形制动 ▪ 盘形制动装置是指制动时用闸片压紧制动盘而产生的制动
作用的制动方式。目前我国快速客车(在120km/h以上)大 都采用这种制动方式。
34
基本工作原理: 1)充气缓解位 其空气通路为:列车管→副
风缸;制动缸→大气。 2)排气制动位 其空气通路为:副风缸→制
动缸。 3)制动中立位(保压位)
35
1)增压缓解
是指制动缸通大气; 充气是指副风缸压 力低于列车管时, 由总风缸经列车管 使它补足压力空气 至定压。充气缓解 位其空气通路为: 列车管→副风缸; 制动缸→大气。
40
▪ 软性阀的特征
1)缓慢减压不制动。即阀具有一定的稳定性。
所谓稳定性即列车管的减压速度极为缓慢时,三 通阀不发生制动动作的性能。例如,列车管的减 压速度为0.5~1.0kPa/s之内,三通阀不应该发 生动作。对阀提出稳 定性要求,是运用实际的 需要。因为列车管不可能 达到绝对严密而没有任何 的泄漏。
各制动缸中的压力空气经各自的三通阀排出。不需要像直
通式的那样,统一归到制动阀的排气口排出。所以,缓 解的一致性亦好些。
39
▪ 三通阀的“软性”
▪ 自动制动机所用的三通阀或分配阀,它的主要部
分是一个依靠两种压力的差别或平衡而发生动
作的机构,这个机构被命名为“二压力机构”。 例如,上述三通阀靠一个活塞(鞲鞴)的左右两 侧――列车管侧和副风缸侧的压力差或压力平衡 而发生动作。 ▪ 采用二压力机构的三通阀或分配阀叫“软性阀”, 用它组成的制动机叫“软性制动机”。如GK、 120型等制动机就属于这一类。
25
▪ 2)双闸瓦式: ▪ 在车轮两侧各设一块闸瓦的制动方式。目前一般客车和
特种货车大多采用这种类型。
26
▪ 3)盘形制动 ▪ 盘形制动装置是指制动时用闸片压紧制动盘而产生的制动
作用的制动方式。目前我国快速客车(在120km/h以上)大 都采用这种制动方式。
《汽车构造》课件——14.制动原理
辽 制动系统原理(鼓式制动器)
15.1 制动原理
宁
机
3.车轮制动器
电
职
主要由旋转部分、固定部分和张开机构组成。
业 技
旋转部分是制动鼓,它固定在车轮上,随车轮旋转。
术 学
固定部分包括制动蹄和制动底板等。在固定不
院
动的制动底板上,有两个支承销,支承着两个弧形
制动蹄的下端。
制动蹄的外圆面上装有摩擦片,上端用制动蹄
院 动机动作,并带动制动卡钳活塞移动产生机械夹紧力从而完成驻车。可以看到,EPB
电子手刹和手动拉线式手刹都是对后轮进行制动。
辽 电子手刹
15.1 制动原理
宁
机
只要启用AUTO HOLD功能,便会启动相应的自动驻车功能。AUTO HOLD自动驻车
电
职 功能可使车辆在等红灯或者上下坡停车时自动启动四轮制动。即使是在D档或者N档,
业
目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%
技
术 的传递动力,基本原理是驾驶员踩下刹车踏板,向刹车总泵中的刹车油施加压力,
学
院 液体将压力通过管路传递到每个车轮刹车卡钳的活塞上,卡钳夹紧刹车盘从而产生
巨大摩擦力令车辆减速。
一般制动系的基本结构与工作原理, 可用一种简单的液压行车制动系的结构 和工作原理示意图来说明。
电
职 1.机械式手刹
业
技 我们在驾校时,教练几乎都会重复“停车拉手刹”的教导,作为最常见的一种
术 学
驻车制动类型,你几乎可以在绝大多数车上见到。
院
传统手刹由制动杆、拉索、制动机构和回
位弹簧组成,作用于传动轴或者后轮制动,达
到稳定车辆的目的。
《城市轨道交通车辆》课件——盘型制动原理
动相比,盘形制动有下列主要优点:
1. 可以大大减轻车轮踏面的热负荷和对车轮的机械磨耗。 2. 可按制动要求选择最佳“摩擦副”(采用闸瓦制动时,作为“摩擦副”一方
的车轮的构造和材质不能根据制动的要求来选择),盘形制动的制动盘可以 设计成带散热筋的,旋转时它具有半强迫通风的作用,以改善散热性能,为 采用摩擦性能较好的合成材料闸片创造了有利的条件,适宜于高速列车。 3. 制动平稳,制动作用力大,几乎没有噪声。
盘型制动的优缺点
但是,盘形制动也有它不足之处
1. 车轮踏面没有闸瓦的磨刮,轮轨粘着将恶化,所以,还要考虑加装踏面清扫 器(或称清扫闸瓦),或采用以盘形为主、盘形加闸瓦的混合制动方式,否 则,即使有防滑器,制动距离也比闸瓦制动要长。
2. 制动盘使簧下重量及其引起的冲击振动增大,运行中还要消耗牵引功率。
盘型制动原理
目录
01 什么是盘型制动 02 盘型制动分类 03 盘型制动工作原理 04 盘型制动的优缺点
什么是盘型制动
盘型制动属于一种摩擦制动方式。制动时,制动缸通过制动夹钳使闸片夹紧 制动盘,使闸片与制动盘产生摩擦,把列车的动能转变为热能,热能通过制 动盘与闸片逸散于大气。
什么是盘型制动
盘型制动方式可以选择高性能的摩擦副材料和良好的散热结构,可以获得比 闸瓦制动大得多的制动功率。
盘型制动工作原理
盘形制动装置的构造由单元制动缸、 夹钳装置,闸片和制动盘组成。
制动时,制动缸活塞杆推出,制动 缸缸体和活塞杆带动两根杠杆,通 过杠杆和支点拉板组成的夹钳,使 装在闸片托上的闸片同时夹紧制动 盘的两个摩擦面,产生制动作用。
缓解时,制动缸排气,活塞杆回缩, 使闸片释放制动盘,形成缓解作用。
盘型制动工作原理
盘形制动是随着高速列车而产生并 发展起来的。要想列车从很高的速 度下降到低速或停止,必然要求有 一个高效的基础制动装置,而盘形 制动采用制动盘和制动闸片相互摩 擦作用,将动能转化成热能消耗掉, 制动高效,而且不会损伤轮对的踏 面。这种制动方式在高速列车和动 车组中得到广泛的应用。
1. 可以大大减轻车轮踏面的热负荷和对车轮的机械磨耗。 2. 可按制动要求选择最佳“摩擦副”(采用闸瓦制动时,作为“摩擦副”一方
的车轮的构造和材质不能根据制动的要求来选择),盘形制动的制动盘可以 设计成带散热筋的,旋转时它具有半强迫通风的作用,以改善散热性能,为 采用摩擦性能较好的合成材料闸片创造了有利的条件,适宜于高速列车。 3. 制动平稳,制动作用力大,几乎没有噪声。
盘型制动的优缺点
但是,盘形制动也有它不足之处
1. 车轮踏面没有闸瓦的磨刮,轮轨粘着将恶化,所以,还要考虑加装踏面清扫 器(或称清扫闸瓦),或采用以盘形为主、盘形加闸瓦的混合制动方式,否 则,即使有防滑器,制动距离也比闸瓦制动要长。
2. 制动盘使簧下重量及其引起的冲击振动增大,运行中还要消耗牵引功率。
盘型制动原理
目录
01 什么是盘型制动 02 盘型制动分类 03 盘型制动工作原理 04 盘型制动的优缺点
什么是盘型制动
盘型制动属于一种摩擦制动方式。制动时,制动缸通过制动夹钳使闸片夹紧 制动盘,使闸片与制动盘产生摩擦,把列车的动能转变为热能,热能通过制 动盘与闸片逸散于大气。
什么是盘型制动
盘型制动方式可以选择高性能的摩擦副材料和良好的散热结构,可以获得比 闸瓦制动大得多的制动功率。
盘型制动工作原理
盘形制动装置的构造由单元制动缸、 夹钳装置,闸片和制动盘组成。
制动时,制动缸活塞杆推出,制动 缸缸体和活塞杆带动两根杠杆,通 过杠杆和支点拉板组成的夹钳,使 装在闸片托上的闸片同时夹紧制动 盘的两个摩擦面,产生制动作用。
缓解时,制动缸排气,活塞杆回缩, 使闸片释放制动盘,形成缓解作用。
盘型制动工作原理
盘形制动是随着高速列车而产生并 发展起来的。要想列车从很高的速 度下降到低速或停止,必然要求有 一个高效的基础制动装置,而盘形 制动采用制动盘和制动闸片相互摩 擦作用,将动能转化成热能消耗掉, 制动高效,而且不会损伤轮对的踏 面。这种制动方式在高速列车和动 车组中得到广泛的应用。
制动系统基础知识ppt课件
1.前轮盘式制动器 2.制动总泵 3.真空 助力器 4.制动踏板机构 5.后轮鼓式制 动器 6.制动组合阀 7.制动警示灯
XX制动系统的结构简图
1 7
2
3 4 5 6
1. 带制动主缸的真空助力器总成2.制动踏板 3.车轮
4.轮速传感器 5. 制动管路 6. 制动轮缸 7.ABS控制器
XX制动系统原理图
1、制动器效能因数低,需大大增加控制力;
2、摩擦块使用寿命短; 3、密封性差,易受尘粒磨蚀和水分锈蚀; 4、用于后轮时较难解决驻车制动问题; 5、精密件多,价格昂贵。
目录
¶ 概述 ¶ 制动系统的原理、功用
¶ 制动系统的分类及组成
¶ ¶
¶ ¶ ¶
制动系统的设计要求 制动系统的设计计算及评价
制动力调节装置 应急制动与剩余制动 制动系统设计流程
¶
实例匹配
制动系统的设计要求
1.1 标准和法规方面; 1.2 制动效能方面; 1.3 工作可靠; 1.4 制动效能的热稳定性好; 1.5 制动效能的水稳定性好; 1.6 制动时的操纵稳定性好; 1.7 制动踏板和手柄的位置应符合人机工程学的要求; 1.8 作用滞后的时间要尽可能地短; 1.9 制动时不应产生振动和噪声; 1.10 与悬架、转向装置不产生运动干涉,在车轮跳动或汽车转向时不会引起自 行制动; 1.11 制动系中应有报警装置以便能及时发现制动驱动机件的故障和功能失效; 1.12 能全天候使用; 1.13 制动系统的构件应使用寿命长,制造成本低,对摩擦材料的选择应考虑到 环保要求。
制动器
一般制动器都是通过其中的固定元件对旋转元件施加 制动力矩,使后者的旋转角速度降低,同时依靠车 轮与地面的附着作用,产生路面对车轮的制动力以 使汽车减速。凡利用固定元件与旋转元件工作表面 的摩擦而产生制动力矩的制动器都成为摩擦制动器 。目前汽车所用的摩擦制动器可分为鼓式和盘式两 大类。
汽车制动系统课件
制动液储液 罐
蓄压器
车身电气
电磁阀
安全阀
蓄压器压力传感器
制动控制ECU
马达继电器1 马达继电器2
助力泵及其 马达
车型概况
发动机
底盘
制动控制系统
制动踏板行程传感器 – 确认制动踏板行程
车身
车身电气
制动灯开关
定位杆
制动踏板行程传感器
制动踏板
车型概况
发动机
底盘
制动控制系统
制动踏板行程传感器 – 两路电路(主电路,辅电路)
液压管路 – 前制动失效
OFF (关闭)
制动执行器
左前
右后
右前
左后
车身电气
OFF (打开)
前制动 主缸压力 后制动 常规控制
车型概况
发动机
底盘
制动控制系统
制动执行器 – 柱塞式助力泵 – 波纹软管式蓄压器
助力泵马达
氮气
波纹软管 制动液
车身
车身电气
蓄压器
车型概况
发动机
底盘
车身
制动控制系统
制动执行器 – 蓄压器压力调节由蓄压器压力传感器信号决定
EPS ECU
转向助力
VGRS ECU
转向角及转 向减速比控
制
VGRS 执行器
EPS马达
车型概况
发动机
底盘
车身
制动控制系统
转向协同控制功能 – 在VSC作用同时提供高性能的转向控制
车身电气
当后轮失去抓地力
当前轮开始出现打滑
调整轮胎方向抵消转 向不足或过度
VGRS
稳定车辆
摇摆 反向转向助力 提高转向减速比
车身
车身电气
制动系详解(有图)ppt课件
制动管路的维护与保养
检查制动管路连接处是否松动或泄漏,及时紧固或更换 密封件。
检查制动管路是否有老化、裂纹等现象,及时更换受损 管路。
定期清洗制动管路,去除管路内的杂质和油污,确保制 动液流通顺畅。
保持制动管路固定牢靠,避免管路在车辆行驶过程中产 生振动和噪音。
制动液的维护与保养
定期更换制动液,避免制动液 过期或污染导致制动性能下降
04
制动系统的故障诊断与排除
制动失灵的诊断与排除
制动踏板行程过大,制动作用迟缓,制 动效能很低甚至丧失,制动距离增长。
制动主缸、轮缸活塞和缸管磨损或拉伤 ,皮碗老化损坏。
制动踏板自由行程或制动器间隙过大, 制动蹄摩擦片接触不良,磨损严重或有 油污。
制动油压力不足。主要原因是制动主缸 缺油、制动管路破裂、油管接头渗漏、 油路堵塞。
制动系统内有空气。
制动跑偏的诊断与排除
制动时,左右车轮制动效果不一 样,使车轮向一边偏斜,原因如
下
两侧制动器摩擦片摩擦系数不同 ,如一侧摩擦片上有油污等。
两侧制动器摩擦片与鼓(盘)接 触面积差异太大,或一侧摩擦片
损坏严重。
制动跑偏的诊断与排除
01
02
03
04
两侧制动器间隙或摩擦 片磨损程度不一致。
程。同时,也可用于传统汽车的节能改造,降低油耗和排放。
THANKS。
制动器的维护与保养
定期检查
更换磨损件
定期检查制动器的磨损情况,包括摩擦片 厚度、制动盘磨损程度等,确保制动性能 良好。
根据检查结果,及时更换磨损严重的摩擦 片、制动盘等部件,保证制动安全。
清洁与润滑
调整与校准
定期清洁制动器表面的灰尘和油污,保持 其良好的散热性能;同时对制动器的活动 部位进行润滑,确保制动器工作顺畅。
铁路货车基础制动装置技术结构ppt课件
.
2.制动抱闸故障表象及判断方法 2.1车辆制动机处于缓解位时,制动缸活塞杆仍处于 伸出状态,即制动缸未缓解,导致车辆所有闸瓦均紧 贴车轮踏面,造成车轮踏面擦伤产生熔渣、辗堆,并 伴有高温。 2.2 车辆制动机处于缓解位时,制动缸活塞杆缩回, 但手制动装置仍处于制动位,即手制动机闸链未松开, 仍然拉紧前制动杠杆,致使基础制动装置仍处于制动 状态,导致车辆所有闸瓦均紧贴车轮踏面,造成车轮 踏面擦伤产生熔渣、辗堆,并伴有高温。
铁路货车制动系统技术结构 及常见故障判别方法
.
一、铁路货车基础制动装置技术结构 铁路货车基础制动装置主要包括制动缸前、后制动杠杆、 拉杆、闸调器、转向架固定杠杆、移动杠杆、制动梁及推 杆等。具体结构见下图:
图1 车体安装基础制动装置部分 1 拉杆;2 控制杠杆;3 前制动杠杆;4 推杆;
5 闸调器;6 后制动杠杆。
.
2.3铁路货车在运行过程中,特别是通过车站时, 经常会发生制动调速现象,小减压量的空气制动会 导致闸瓦瞬间贴靠车轮踏面即离开,但由于各车辆 的制动机灵敏度、闸调器灵活性以及闸瓦厚度存在 差异,可能会造成某些车辆的某些闸瓦离开车轮踏 面时相对迟缓而产生火星,对上述现象不能简单认 定为制动抱闸,可通知前方车站重点观察再进行判 断。
.
列车运行途中如果出现冒火花的现象,应注意观
察冒火花的部位,如果车辆的4个车轮同时出现冒火花
现象,则可能为抱闸,如果只有个别车轮出现冒火花
现象,是闸瓦在缓解后未离开踏面,在运行途中随着
振动会逐渐离开踏面,不是车辆抱闸造成的。
.
ቤተ መጻሕፍቲ ባይዱ
.
2.手制动机输出力传递过程 如图4所示,手制动机输出力通过手制动装置拉杆、拉 链等零件传递到前制动杠杆3上,作用点是前制动杠杆 上推杆外侧的手制动孔,然后再按制动缸输出力传递 过程进行传递。
2.制动抱闸故障表象及判断方法 2.1车辆制动机处于缓解位时,制动缸活塞杆仍处于 伸出状态,即制动缸未缓解,导致车辆所有闸瓦均紧 贴车轮踏面,造成车轮踏面擦伤产生熔渣、辗堆,并 伴有高温。 2.2 车辆制动机处于缓解位时,制动缸活塞杆缩回, 但手制动装置仍处于制动位,即手制动机闸链未松开, 仍然拉紧前制动杠杆,致使基础制动装置仍处于制动 状态,导致车辆所有闸瓦均紧贴车轮踏面,造成车轮 踏面擦伤产生熔渣、辗堆,并伴有高温。
铁路货车制动系统技术结构 及常见故障判别方法
.
一、铁路货车基础制动装置技术结构 铁路货车基础制动装置主要包括制动缸前、后制动杠杆、 拉杆、闸调器、转向架固定杠杆、移动杠杆、制动梁及推 杆等。具体结构见下图:
图1 车体安装基础制动装置部分 1 拉杆;2 控制杠杆;3 前制动杠杆;4 推杆;
5 闸调器;6 后制动杠杆。
.
2.3铁路货车在运行过程中,特别是通过车站时, 经常会发生制动调速现象,小减压量的空气制动会 导致闸瓦瞬间贴靠车轮踏面即离开,但由于各车辆 的制动机灵敏度、闸调器灵活性以及闸瓦厚度存在 差异,可能会造成某些车辆的某些闸瓦离开车轮踏 面时相对迟缓而产生火星,对上述现象不能简单认 定为制动抱闸,可通知前方车站重点观察再进行判 断。
.
列车运行途中如果出现冒火花的现象,应注意观
察冒火花的部位,如果车辆的4个车轮同时出现冒火花
现象,则可能为抱闸,如果只有个别车轮出现冒火花
现象,是闸瓦在缓解后未离开踏面,在运行途中随着
振动会逐渐离开踏面,不是车辆抱闸造成的。
.
ቤተ መጻሕፍቲ ባይዱ
.
2.手制动机输出力传递过程 如图4所示,手制动机输出力通过手制动装置拉杆、拉 链等零件传递到前制动杠杆3上,作用点是前制动杠杆 上推杆外侧的手制动孔,然后再按制动缸输出力传递 过程进行传递。
城市轨道交通概论PPT课件06连接装置与制动装置
组成:车钩缓冲装置主要由密接式车钩、缓冲器、风管连接器等部分组成。
任务三 熟悉车辆的连接装置与制动装置
(1)密接式车钩 密接式车钩由钩头(钩体)、钩舌、解钩杆、解钩风缸、弹簧(顶杆弹簧)等组成, 如图2.20所示。
国产密接式车钩
沙库车钩
任务三 熟悉车辆的连接装置与制动装置
密接式车钩的基本结构及工作原理(以国产车钩为例) 见动画
项目二 城市轨道交通车辆与车辆基地
任务三 熟悉车辆的连接装置与制动装置
【任务目标】 1. 知识目标 (1)了解密接式车钩的工作原理 (2)熟悉车辆的连接装置的组成及各组成部分的作用 (3)熟悉制动装置的作用、制动的类型与操作模式 (4)掌握车辆车钩的常见类型 2. 能力目标 (1)会用专业知识,通过专业书籍,多媒体课件和图片资料获得帮助信息 (2)会口头表达出本次任务的知识要点及学习成果 3. 素质目标 (1)具有良好的职业意识 (2)能自主学习新知识、新技能 (3)具有高度的职业责任心和正确的学习态度 (4)具有较强信息搜集能力,会查找车辆的连接装置与制动装置的新知识和新的发 展动向
快速制动的制动力与紧急制动的制动力一样,但与紧急制动不同的是:快速制动时 电制动和气制动配合施加;在制动过程中,驾驶员可以在任何时候撤销快速制动指令 ,恢复列车的运行。 4、停放制动
列车静止停放时,为防止停放列车溜车所施加的制动称为停放制动。
任务三 熟悉车辆的连接装置与制动装置
【任务小结】 本任务讲述了城市轨道交通车辆的连接装置的组成及各组成部分的作用、车辆车
3.风管连接器 风管连接器由总风管、制动风管、解钩风管连接器组成,装设于钩头锥体的上、下 侧,如图2.21所示。
1—钩舌;2—解钩风管连接器;3—总风管连接器;4—截断塞 门;5—钩身; 6—缓冲器;7—制动风管连接器;8—电气连接器
任务三 熟悉车辆的连接装置与制动装置
(1)密接式车钩 密接式车钩由钩头(钩体)、钩舌、解钩杆、解钩风缸、弹簧(顶杆弹簧)等组成, 如图2.20所示。
国产密接式车钩
沙库车钩
任务三 熟悉车辆的连接装置与制动装置
密接式车钩的基本结构及工作原理(以国产车钩为例) 见动画
项目二 城市轨道交通车辆与车辆基地
任务三 熟悉车辆的连接装置与制动装置
【任务目标】 1. 知识目标 (1)了解密接式车钩的工作原理 (2)熟悉车辆的连接装置的组成及各组成部分的作用 (3)熟悉制动装置的作用、制动的类型与操作模式 (4)掌握车辆车钩的常见类型 2. 能力目标 (1)会用专业知识,通过专业书籍,多媒体课件和图片资料获得帮助信息 (2)会口头表达出本次任务的知识要点及学习成果 3. 素质目标 (1)具有良好的职业意识 (2)能自主学习新知识、新技能 (3)具有高度的职业责任心和正确的学习态度 (4)具有较强信息搜集能力,会查找车辆的连接装置与制动装置的新知识和新的发 展动向
快速制动的制动力与紧急制动的制动力一样,但与紧急制动不同的是:快速制动时 电制动和气制动配合施加;在制动过程中,驾驶员可以在任何时候撤销快速制动指令 ,恢复列车的运行。 4、停放制动
列车静止停放时,为防止停放列车溜车所施加的制动称为停放制动。
任务三 熟悉车辆的连接装置与制动装置
【任务小结】 本任务讲述了城市轨道交通车辆的连接装置的组成及各组成部分的作用、车辆车
3.风管连接器 风管连接器由总风管、制动风管、解钩风管连接器组成,装设于钩头锥体的上、下 侧,如图2.21所示。
1—钩舌;2—解钩风管连接器;3—总风管连接器;4—截断塞 门;5—钩身; 6—缓冲器;7—制动风管连接器;8—电气连接器
6制动系统PPT课件
29
2、快速制动
• 当主控制器手柄移到“快速制动”位时,列车 将实施减速度与紧急制动相同的快速制动 。快速制动具有如下特点:
– 电制动不起作用,仅空气制动; – 受冲击率极限的限制; – 主控制器手柄回“0”位,可缓解; – 具有防滑保护和载荷修正功能。
2021/3/9
30
紧急制动
• 列车装备一个“失电制动,得电缓解”紧急空气制 动系统,贯穿整个列车的DC110V连续电源线控制 紧急制动的缓解。线路一旦断开,所有车立即实施 紧急制动。
2021/3/9
23
2021/3/9
再生制动原理图 24
电阻制动 • 如果制动列车所在的接触网供电区段内无其它列
车吸收该制动能量,网压迅速上升,当网压达到 最大设定值1800V时,DCU/M打开制动电阻,将 电机上的制动能量转变成电阻的热能消耗掉,此 即电阻制动(亦称能耗制动),电阻制动能单独 满足常用制动的要求。 • 再生制动与电阻制动之间的转换由DCU/M控制, 能保证它们连续交替使用,转换平滑,变化率不 能为人所感受到。当列车高速运行时时,动车采 用再生制动,将列车动能转换成电能;当再生的 电能无法再回收时,再生制动能够平滑地过渡到 电阻制动。
82:02通1/3往/9 空气弹簧
36
一、供气部分
• 一个三节单元车有一套供气系统,并装于A车上, 由空气压缩机A01、空气干燥器A07和风缸组成。 其中空气压缩机A01为往复式、双级、三缸、直 接驱动,由380V、3相、50HZ交流鼠笼式异步电 动机驱动;空气干燥器A07采用双筒式无热再生 的干燥装置;每辆车上设有四个风缸,其中一个 100L 的 主 风 缸 A09 , 一 个 100L 的 空 气 弹 簧 风 缸 L04,一个100L的制动贮风缸B04和一个60L的客 室风动门的风缸T04。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 列车管增压:列车管 ———— 副风缸 制动缸 ————大气
列车管减压: 副风缸 ————制动缸
• 特点:
• 制动主管排气减压时制动缸增压,发生制动,制动主管充气增 压时制动缸减压,发生缓解。
• 列车发生分离事故,列车能够迅速制动停车。
车辆制动装置
• 2,自动空气制动机
车辆制动装置
四、电控制动机
• 缓解时各车的缓解电磁阀的通路也同时打开,使各车的加速 缓解风缸同时向列车管充风 。
• 列车施行阶段缓解、缓解电磁阀的通路被关闭、列车管空气 压强保持不变时,保压电磁阀将三通阀的排气通路切断,可 以实现阶段缓解。
•
• 在列车速度很高或列车编组很长、空气制动机难以满 足要求时,采用电空制动机可以大大改善列车前后部 制动和缓解作用的—致性。我国广深线准高速(160 km/h)旅客列车部采用了电空制动机。
车辆制动装置
2、自动空气制动机
✓结构:
▪ 每辆车多了一个三通阀、一个副风缸和一个控制阀。 ▪ 三通”指的是:一通列车管,二通副风缸,三通制动缸
▪ 工作原理:
• 列车管的空气压力发生变化引起制动控制阀(三通阀或分配 阀)动作,实现车辆的制动或缓解作用。
• 三通阀主活塞的位置由列车管和副风缸左右两个空气压力决 定。
车辆制动装置
• 第一节 制动基本概念及其在铁路运输中的作用 • 第二节 车辆制动机的种类 • 第三节 自动式车辆空气制动装置作用原理 • 第四节 其他种类制动机基本原理
车辆制动装置
第一节 制动基本概念及其在铁路运输中的作用
• 一、 制动基本概念 • 1制动作用 人为地施加于物体外力,使其减速、停止或
• 4.1 电空制动机
• 是在空气制动机的基础上加装电磁阀等电气 压力空气(它与大气的压差)。
• 在制动机的电控因故失灵时,它仍可以实行空气压强 控制(气控),临时变成空气制动机。
车辆制动装置
制动特点:
• 制动时各车的制动电磁阀的排气口同时打开,将列车管的压 力空气排往大气,产生制动作用。
1、空气制动装置一般可分三大组成部分: 1)空气制动机:产生制动原动力并进行操纵和控制的
者防止加速。 • 2缓解作用 解除制动作用的过程。 • 3车辆制动装置 制动各种部件组成的装置。 • 4列车制动装置 • 5列车自动制动机 • 6制动距离 从列车制动阀置于制动位起,到列车停车,
列车所走过的距离。
车辆制动装置
列车紧急制动距离分别不得超过: 旅客列车: 120km/h——800m; 140km/h——1100m; 160km/h——1400m; 200km/h——2000m; 250km/h——2700m; 300km/h——3700m;
车辆制动装置
车辆制动装置
二、真空制动机
车辆制动装置
• 二、真空制动机
• 基本原理:
• 以大气(与真空的压差)为原动力,以改变真空度来操纵控制。 • 机车上设有真空泵、制动阀、真空制动缸,车辆上仅设有真
空制动缸,列车管贯通全列车。 • 缓解:真空泵将列车管和制动缸内的空气抽走 。 制动:列车管与大气相通。
轨道涡流制动的工作原理与圆盘涡流制动相同,但结构形式 类似轨道电磁制动。在制动时,将安装在转向架构架侧梁下 的电磁铁放到离轨道表面上方几毫米的位置,并通电励磁, 利用它和轨道的 相对运动,在钢 轨内部感应出涡 流,使钢轨发热, 列车动能转化为 热能,最终消散
于大气。
车辆制动装置
第三节 自动式车辆空气制动装置作 用原理
• 特点:
• 构造简单、维修方便,既能够阶段制动,也能够阶段缓解。 • 制动力不大,而且海拔越高,制动力越小,要提高制动力则
需要较大的制动缸和较粗的列车管。 • 列车前后冲动较大。 • 这种制动机是英国铁路在1844年首先应用的,现在,真空制
动机主要在一些发展中国家应用。
车辆制动装置
• 三 空气制动机 是以压力空气与大气的压差原动力,通过改变空
车辆制动装置
第二节 车辆制动机的种类
• 车辆制动机的种类: • 1、手制动机 • 2、真空制动机 • 3、空气制动机 • (直通空气制动机、自动空气制动机) • 4、电空制动机 • 5、轨道电磁制动机 • 6、电磁涡流轨道制动机
车辆制动装置
一:手制动机
• 一、手(人)制动机
• 用人力来操纵实现制动和 缓解的制动机。结构简单, 不受动力限制,任何时候 都可以使用,制动力小, 只作为辅助制动装置。只 在原地制动或调车作用中 使用。
车辆制动装置
• 四、电空制动机
车辆制动装置
五、轨道电磁制动
轨道电磁制动也叫磁轨制动。制动时,安装在转向架 构架侧梁下的电磁铁下放,电磁铁励磁,与钢轨产生吸力。 列车的动能通过电磁铁下的磨耗板与钢轨的摩擦转化为热 能,经钢轨和磨耗板,最终散于大气,其原理如下图所示。
车辆制动装置
•六、线性涡流制动
普通货物列车:90km/h——800m; 快运货物列车:120km/h——1100m。
车辆制动装置
7.制动波和制动波速 制动作用沿车辆长度方向传播的现象为
制动波。制动波传递的速度为制动波速。 二、制动在铁路运输中的作用
1.在任何情况下,减速、停车或防止加速,确保行车 安全; 2.提高列车运行速度、牵引重量的先决条件及性能先 进的制动装置是提高铁路运输能力的前提条件。
气压强来操纵控制。
• 1、直通式空气制动机
• 列车管直通向制动管,制动管充气增压,发 生制动;制动管排气时减压。
• 优点是构造简单,并且既有阶段制动,又有 阶段缓解,操作非常灵活方便。
车辆制动装置
• 1,直通式空气制动机
车辆制动装置
其特点是:1)列车管增压制动,减压缓解。列车 分离时不能制动; 2)构造简单,有阶段制动和阶段缓 解。对于很短的列车,操纵灵活,但不适用较长的列车。 若列车较长,则制动或缓解时列车冲动很大。因为制动 各车辆制动缸内的压力空气都由机车上的空气压缩机和 总风缸供给。所以,离机车越远的制动缸充气越晚,充 气的速度亦越慢。造成前后车辆制动的不一致性。同样, 缓解时,所有车辆制动缸中的风均需经机车上的制动阀 排气口排入大气。所以,各制动缸的开始排气时间与排 气速度亦极不一致,即缓解的一致性很差。
列车管减压: 副风缸 ————制动缸
• 特点:
• 制动主管排气减压时制动缸增压,发生制动,制动主管充气增 压时制动缸减压,发生缓解。
• 列车发生分离事故,列车能够迅速制动停车。
车辆制动装置
• 2,自动空气制动机
车辆制动装置
四、电控制动机
• 缓解时各车的缓解电磁阀的通路也同时打开,使各车的加速 缓解风缸同时向列车管充风 。
• 列车施行阶段缓解、缓解电磁阀的通路被关闭、列车管空气 压强保持不变时,保压电磁阀将三通阀的排气通路切断,可 以实现阶段缓解。
•
• 在列车速度很高或列车编组很长、空气制动机难以满 足要求时,采用电空制动机可以大大改善列车前后部 制动和缓解作用的—致性。我国广深线准高速(160 km/h)旅客列车部采用了电空制动机。
车辆制动装置
2、自动空气制动机
✓结构:
▪ 每辆车多了一个三通阀、一个副风缸和一个控制阀。 ▪ 三通”指的是:一通列车管,二通副风缸,三通制动缸
▪ 工作原理:
• 列车管的空气压力发生变化引起制动控制阀(三通阀或分配 阀)动作,实现车辆的制动或缓解作用。
• 三通阀主活塞的位置由列车管和副风缸左右两个空气压力决 定。
车辆制动装置
• 第一节 制动基本概念及其在铁路运输中的作用 • 第二节 车辆制动机的种类 • 第三节 自动式车辆空气制动装置作用原理 • 第四节 其他种类制动机基本原理
车辆制动装置
第一节 制动基本概念及其在铁路运输中的作用
• 一、 制动基本概念 • 1制动作用 人为地施加于物体外力,使其减速、停止或
• 4.1 电空制动机
• 是在空气制动机的基础上加装电磁阀等电气 压力空气(它与大气的压差)。
• 在制动机的电控因故失灵时,它仍可以实行空气压强 控制(气控),临时变成空气制动机。
车辆制动装置
制动特点:
• 制动时各车的制动电磁阀的排气口同时打开,将列车管的压 力空气排往大气,产生制动作用。
1、空气制动装置一般可分三大组成部分: 1)空气制动机:产生制动原动力并进行操纵和控制的
者防止加速。 • 2缓解作用 解除制动作用的过程。 • 3车辆制动装置 制动各种部件组成的装置。 • 4列车制动装置 • 5列车自动制动机 • 6制动距离 从列车制动阀置于制动位起,到列车停车,
列车所走过的距离。
车辆制动装置
列车紧急制动距离分别不得超过: 旅客列车: 120km/h——800m; 140km/h——1100m; 160km/h——1400m; 200km/h——2000m; 250km/h——2700m; 300km/h——3700m;
车辆制动装置
车辆制动装置
二、真空制动机
车辆制动装置
• 二、真空制动机
• 基本原理:
• 以大气(与真空的压差)为原动力,以改变真空度来操纵控制。 • 机车上设有真空泵、制动阀、真空制动缸,车辆上仅设有真
空制动缸,列车管贯通全列车。 • 缓解:真空泵将列车管和制动缸内的空气抽走 。 制动:列车管与大气相通。
轨道涡流制动的工作原理与圆盘涡流制动相同,但结构形式 类似轨道电磁制动。在制动时,将安装在转向架构架侧梁下 的电磁铁放到离轨道表面上方几毫米的位置,并通电励磁, 利用它和轨道的 相对运动,在钢 轨内部感应出涡 流,使钢轨发热, 列车动能转化为 热能,最终消散
于大气。
车辆制动装置
第三节 自动式车辆空气制动装置作 用原理
• 特点:
• 构造简单、维修方便,既能够阶段制动,也能够阶段缓解。 • 制动力不大,而且海拔越高,制动力越小,要提高制动力则
需要较大的制动缸和较粗的列车管。 • 列车前后冲动较大。 • 这种制动机是英国铁路在1844年首先应用的,现在,真空制
动机主要在一些发展中国家应用。
车辆制动装置
• 三 空气制动机 是以压力空气与大气的压差原动力,通过改变空
车辆制动装置
第二节 车辆制动机的种类
• 车辆制动机的种类: • 1、手制动机 • 2、真空制动机 • 3、空气制动机 • (直通空气制动机、自动空气制动机) • 4、电空制动机 • 5、轨道电磁制动机 • 6、电磁涡流轨道制动机
车辆制动装置
一:手制动机
• 一、手(人)制动机
• 用人力来操纵实现制动和 缓解的制动机。结构简单, 不受动力限制,任何时候 都可以使用,制动力小, 只作为辅助制动装置。只 在原地制动或调车作用中 使用。
车辆制动装置
• 四、电空制动机
车辆制动装置
五、轨道电磁制动
轨道电磁制动也叫磁轨制动。制动时,安装在转向架 构架侧梁下的电磁铁下放,电磁铁励磁,与钢轨产生吸力。 列车的动能通过电磁铁下的磨耗板与钢轨的摩擦转化为热 能,经钢轨和磨耗板,最终散于大气,其原理如下图所示。
车辆制动装置
•六、线性涡流制动
普通货物列车:90km/h——800m; 快运货物列车:120km/h——1100m。
车辆制动装置
7.制动波和制动波速 制动作用沿车辆长度方向传播的现象为
制动波。制动波传递的速度为制动波速。 二、制动在铁路运输中的作用
1.在任何情况下,减速、停车或防止加速,确保行车 安全; 2.提高列车运行速度、牵引重量的先决条件及性能先 进的制动装置是提高铁路运输能力的前提条件。
气压强来操纵控制。
• 1、直通式空气制动机
• 列车管直通向制动管,制动管充气增压,发 生制动;制动管排气时减压。
• 优点是构造简单,并且既有阶段制动,又有 阶段缓解,操作非常灵活方便。
车辆制动装置
• 1,直通式空气制动机
车辆制动装置
其特点是:1)列车管增压制动,减压缓解。列车 分离时不能制动; 2)构造简单,有阶段制动和阶段缓 解。对于很短的列车,操纵灵活,但不适用较长的列车。 若列车较长,则制动或缓解时列车冲动很大。因为制动 各车辆制动缸内的压力空气都由机车上的空气压缩机和 总风缸供给。所以,离机车越远的制动缸充气越晚,充 气的速度亦越慢。造成前后车辆制动的不一致性。同样, 缓解时,所有车辆制动缸中的风均需经机车上的制动阀 排气口排入大气。所以,各制动缸的开始排气时间与排 气速度亦极不一致,即缓解的一致性很差。