第三章-4-状态方程的解
热工基础课后答案第三章
第三章 习 题3-1 解:设定熵压缩过程的终态参数为222S T p 和、,而定温压缩过程的终态参数为222S T p '''和、,根据给定的条件可知: 1222T T p p ='='; 又因为两个终态的熵差为S ∆,固有:21222222lnlnlnT T Mcp p mRT T mc S S S pgp='-'=-'=∆所以有:)exp(12pmCS T T ∆-=对于定熵压缩过程有:kkkkT p T p 212111--=所以:)exp()exp(])1(exp[()(11112112gpk kmR S p mRS M p mck S k p T T p p ∆-=∆-=-∆==-3-2解:设气体的初态参数为1111m T V p 和、、,阀门开启时气体的参数为2222m T V p 和、、,阀门重新关闭时气体的参数为3333m T V p 和、、,考虑到刚性容器有:321V V V ==,且21m m =。
⑴当阀门开启时,贮气筒内压力达到51075.8⨯Pa ,所以此时筒内温度和气体质量分别为:K 25366.78.752931212=⨯==p p T Tkg T R V p m m 0.2252932870.02710751g 1121=⨯⨯⨯===⑵阀门重新关闭时,筒内气体压力降为 5104.8⨯Pa ,且筒内空气温度在排气过程中保持不变,所以此时筒内气体质量为: kg T R V p T R V p m g g 216.025.366287027.0104.852333333=⨯⨯⨯==所以,因加热失掉的空气质量为:kg m 0.0090.2160.225m m Δ32=-=-=3-3 解:⑴气体可以看作是理想气体,理想气体的内能是温度的单值函数,选取绝热气缸内的两部分气体共同作为热力学系统,在过程中,由于气缸绝热,系统和外界没有热量交换,同时气缸是刚性的,系统对外作功为零,故过程中系统的内能不变,而系统的初温为30℃,所以平衡时系统的温度仍为30℃。
现代控制理论-状态方程的解
3、复频域上
非齐次状态方程的解
2、说明
e At 状态转移矩阵
一般用 t 表示,即 t e At
考虑初始条件拉氏变换
sX ( s ) X (0 ) AX ( s ) BU ( s ) 有 ( sI A) 1 X ( s ) X ( 0 ) BU ( s ) 即 1 X ( s ) ( sI A) X (0) ( sI A) 1 BU ( s ) 则
e
d At e Ae At e At A dt
At 1
e At
[5]、对于 n n的方阵 A、 B 当且仅当 AB BA时 有 e At e Bt e( A B)t , 而当AB BA, e At e Bt e( A B)t。
电气工程学院
几个特殊的矩阵指数eAt
设单变量系统的差分方程为:
y(k n) an1 y(k n 1) a0 y(k ) bnu(k n) bn1u(k n 1) b0u(k )
相应的系统脉冲传递函数为
bn z n bn 1 z n 1 b1 z b0 G( z ) n z an 1 z n 1 a1 z a0
有
d At At AX ] e X e [X dt e At Bu(t )
考虑初始条件 拉氏变换得 sX ( s ) X ( 0 ) AX ( s )
将上式积分有 t t X (t ) 1 ( sI A) 1 X (0) A d A e Bu( ) d d e X ( ) 0 0 d 1 显然 e At 1 t ( sI A) At A X ( 0 ) e X ( t ) e 可得 At Bu( )d
状态空间表达式的解
2020/6/4
***状态转移矩阵的基本性质**** 性质1:组合性质
e A e A t e A ( t ) ( t) () ( t )
性质2: e A ( t t) e 0 I ( t t ) ( t ) ( t ) I
性质3: 转移矩阵的逆意味着时间的逆转
e A 1 t e A t ( t) 1 ( t)
【例2-8】求下列状态方程在单位阶跃函数作用下的输出:
解:根据上面的式子
其中
, K=1
2020/6/4
在例2-6中已求的:
2020/6/4
其状态轨迹图可以MABLAB方便地绘出,如图所示: %Example Example 2-8 grid; xlabel('时间轴'); ylabel('x代表x1,----*代表x2'); t=0:0.1:10; x1=0.5-exp(-t)+0.5*exp(-2*t); x2=exp(-t)-exp(-2*t); plot(t,x1,'x',t,x2,'*') end
两边同时在
区间积分,得:
两边同时左乘 即:
并整理得:
2020/6/4
当初始时刻为t0=0时,初始状态x(t0)=x(0)时,其解为:
x (t) (t)x (0 ) 0 t (t )B() u d ,
当初始时刻为t0时,初始状态x(t0)时,其解为:
t
x (t) (t t0)x (t0 )t0 (t)B ()u d
1 t
1 t 2 ... 2!
(n
1 - 1)!
t
n1
0
1
t
...
(n
1 - 2)!
现代控制理论习题解答(第三章)
第三章 线性控制系统的能控性和能观性3-3-1 判断下列系统的状态能控性。
(1)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=01,0101B A (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=111001,342100010B A (3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=020011,100030013B A (4)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1110,0000000011111B A λλλλ 【解】:(1)[]2,1011==⎥⎦⎤⎢⎣⎡-==n rankU AB BU c c ,所以系统完全能控。
(2)[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==7111111010012B A ABBU c 前三列已经可使3==n rankU c ,所以系统完全能控(后续列元素不必计算)。
(3)A 为约旦标准型,且第一个约旦块对应的B 阵最后一行元素全为零,所以系统不完全能控。
(4)A 阵为约旦标准型的特殊结构特征,所以不能用常规标准型的判别方法判系统的能控性。
同一特征值对应着多个约旦块,只要是单输入系统,一定是不完全能控的。
可以求一下能控判别阵。
[]2,111321031211312113121121132=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==c c rankU B A BA AB BU λλλλλλλλλλλ,所以系统不完全能控。
3-3-2 判断下列系统的输出能控性。
(1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=xy u x x 011101020011100030013 (2) []⎪⎪⎩⎪⎪⎨⎧=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=x y u x x 0011006116100010【解】: (1)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=020011,100030013B A ,⎥⎦⎤⎢⎣⎡-=011101C ,⎥⎦⎤⎢⎣⎡=0000D []⎥⎦⎤⎢⎣⎡--=111300002B CA CAB CB D前两列已经使[]22==m B CA CAB CB D rank ,所以系统输出能控。
线性系统理论-郑大钟(3-4章)
1
2 n
n 1 n
t e n
1
0 1
21
n 1 2
(n 1)1 (n 1)(n 2) n 3 1 2! n2 (n 1)1 n 1 1 1
矩阵指数函数的算法 1:定义法
e At I At
1 2 2 A t 2!
只能得到eAt的数值结果,难以获得eAt解析表达式,但用计算机计算,具 有编程简单和算法迭代的优点。 2:特征值法
A P 1 AP
A PA P 1
e At Pe A t P 1
P为变换A为约当规范型的变换矩阵 1)若A的特征值为两两互异
如果系统矩阵A(t),B(t)的所有元在时间定义区间[t0,tα]上为时间t的连续实函数,输 入u(t)的所有元为时间t的连续实函数,那么状态方程的解x(t)存在且唯一。 从数学观点,上述条件可减弱为: ①系统矩阵A(t)的各个元aij(t)在时间区间[t0,tα]上为绝对可积,即:
t
t0
| aij (t ) | dt ,
-1
te1t 1t e e3t
0 2tet e 2t 1 3tet 2et 2e 2t 2 tet et e 2t
e At 0 I 1 A 2 A2 (2tet e 2t ) I (3tet 2et 2e 2t ) A (tet et e 2t ) A2 2et e 2t 0 e t e 2t 0 et 0 2et 2e 2t 0 et 2e 2t
s3 ( s 1)( s 2) 2 ( s 1)( s 2)
第三章系统分析-状态方程的解
1.非齐次方程解的通式
已知系统状态空间表达式为: • 直接法积分求解
Ax Bu x y Cx Du
x(t ) (t t 0 ) x(t 0 ) (t )Bu( )d
t0
t
t0 0
x(t ) (t ) x(0) (t )Bu( )d
k j 0 k 1
得系统状态的迭代计算式为:
x(k ) G x(0) G k j 1Hu( j )
k j 0
k 1
注:计算结果为逐点形式,便于计算机运算,但有累积误差。
与连续状态方程的求解公式在形式上类似
(2) z 变换法
x(k 1) Gx(k ) Hu(k ) zx( z ) zx(0) Gx( z ) Hu( z ) ( zI G) x( z ) zx(0) Hu( z ) x( z ) [( zI G) z ]x(0) ( zI G) Hu( z ) x(k ) Z 1[( zI G) 1 z ]x(0) Z 1[( zI G) 1 Hu( z )]
书上p58~60页
0 (4)T-1AT= 0 0
1
0 0
0 1
0
0 1 t t 0 At 为约旦阵,则 (t ) e e T 0 1 1 0 0 0 0
At
1 2 t 2! t 1 0
1 3 t 3! 1 2 1 t T 2! t 1
返回
(8) 若 Ann Bnn Bnn Ann ,则有
注:上述性质由定义导出。
1 2 2 1 i i x(t ) ( I At A t A t ) x(0) e At x(0) 2! i!
线性系统理论第三章
为约旦标准型
J1 0
A
P 1AP
0
J2
0 A PAP 1
0
0
0
J
n
i 1
Ji
0
i
0
0
0
1
i nini
, eJit
如何计算矩阵指数函数 eAt ?
§3.2 矩阵指数函数的计算
Linear system theory
1. 拉普拉斯变换方法:
eAt I
At
1
A2t 2
2!
两边取拉普拉斯变换,有
1 Ak t k
k0 k !
L
e At
L
I
At
1 2!
A2t
2
1 s
I
1 s2
A
1 s3
A2
另外一方面,有
exp[(M 1AM )t] M 1eAt M = exp[(M 1AM )t]
(M 1AM )k t k
M 1 Ak M t k
M 1(
Ak t k )M = M 1eAt M
k 0
k ! k0
k!
k0 k !
§3.1 状态方程的解
Linear system theory
3. 强迫运动: 当 u(t) 0,给定
t2 )
A2
(
t12 2!
t1t2
t22 ) 2!
A3 (t13 3!
t12t2 2!
t1t22 2!
t23 ) 3!
Ak ( t1k
t1k 1t2
t1k
t2 2 2
k ! (k 1)! (k 2)!
t12t2k2 t1t2k2 t2k ) = e A(t1t2 ) 2!(k 2)! (k 1)! k !
数字逻辑课后答案 第三章
第三章 时序逻辑1.写出触发器的次态方程,并根据已给波形画出输出 Q 的波形。
解:2. 说明由RS 触发器组成的防抖动电路的工作原理,画出对应输入输出波形解:3. 已知JK 信号如图,请画出负边沿JK 触发器的输出波形(设触发器的初态为0)1)(1=+++=+c b a Qa cb Q nn4. 写出下图所示个触发器次态方程,指出CP 脉冲到来时,触发器置“1”的条件。
解:(1),若使触发器置“1”,则A 、B 取值相异。
(2),若使触发器置“1”,则A 、B 、C 、D 取值为奇数个1。
5.写出各触发器的次态方程,并按所给的CP 信号,画出各触发器的输出波形(设初态为0)解:6. 设计实现8位数据的串行→并行转换器。
B A B A D +=DC B A K J ⊕⊕⊕==Q AQ B Q D Q C Q E Q F Q7. 分析下图所示同步计数电路解:先写出激励方程,然后求得状态方程状态图如下:该计数器是五进制计数器,可以自启动。
8. 作出状态转移表和状态图,确定其输出序列。
解:求得状态方程如下故输出序列为:000119. 用D 触发器构成按循环码(000→001→011→111→101→100→000)规律工作的六进制同步计数器解:先列出真值表,然后求得激励方程PS NS 输出N0 0 0 0 0 1 00 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1化简得:逻辑电路图如下:n Q 2n Q 1n Q 012+n Q 11+n Q 10+n Q n n n nn n n n n n nnQ Q Q Q Q Q Q Q Q Q Q Q Z 121002*********+==+==+++nnn nnn nnnn QQ Q D QQ Q D QQ Q Q D 121211121122+====+==+++10. 用D 触发器设计3位二进制加法计数器,并画出波形图。
现代控制理论基础_周军_第三章能控性和能观测性
3.1 线性定常系统的能控性线性系统的能控性和能观测性概念是卡尔曼在1960年首先提出来的。
当系统用状态空间描述以后,能控性、能观测性成为线性系统的一个重要结构特性。
这是由于系统需用状态方程和输出方程两个方程来描述输入-输出关系,状态作为被控量,输出量仅是状态的线性组合,于是有“能否找到使任意初态转移到任意终态的控制量”的问题,即能控性问题。
并非所有状态都受输入量的控制,有时只存在使任意初态转移到确定终态而不是任意终态的控制。
还有“能否由测量到的由状态分量线性组合起来的输出量来确定出各状态分量”的问题,即能观测性问题。
并非所有状态分量都可由其线性组合起来的输出测量值来确定。
能控性、能观测性在现代控制系统的分析综合中占有很重要的地位,也是许多最优控制、最优估计问题的解的存在条件,本章主要介绍能控性、能观测性与状态空间结构的关系。
第一节线性定常系统的能控性能控性分为状态能控性、输出能控性(如不特别指明便泛指状态能控性)。
状态能控性问题只与状态方程有关,下面对定常离散系统、定常连续系统分别进行研究(各自又包含单输入与多输入两种情况):一、离散系统的状态可控性引例设单输入离散状态方程为:初始状态为:用递推法可解得状态序列:可看出状态变量只能在+1或-1之间周期变化,不受的控制,不能从初态转移到任意给定的状态,以致影响状态向量也不能在作用下转移成任意给定的状态向量。
系统中只要有一个状态变量不受控制,便称作状态不完全可控,简称不可控。
可控性与系统矩阵及输入矩阵密切相关,是系统的一种固有特性。
下面来进行一般分析。
设单输入离散系统状态方程为:(3-1)式中,为维状态向量;为纯量,且在区间是常数,其幅值不受约束;为维非奇异矩阵,为系统矩阵;为维输入矩阵:表示离散瞬时,为采样周期。
初始状态任意给定,设为;终端状态任意给定,设为,为研究方便,且不失一般性地假定。
单输入离散系统状态可控性定义如下:在有限时间间隔内,存在无约束的阶梯控制信号,,,能使系统从任意初态转移到任意终态,则称系统是状态完全可控的,简称是可控的。
第三章状态方程的解课堂课资
e2t 1 3t et
2e2t
2
3t
et
4e2t 5 3t et
0 1 0
A
0
0
1
6 11 6
1 1 1 P 1 2 3
1 4 9
6 5 1
P 1
1 2
6
8
2
2 3 1
1 0 0
A
P1 AP
0
2
0
0 0 3
et 0 0
e At PeAt P1 P 0 e2t
0
e
nt
eT 1ATt I T 1 ATt 1 T 1 A2Tt 2 1 T 1 A3Tt 3
2!
3!
T 1 I At 1 A2t 2 1 A3t 3 T
2!
3!
T 1e AtT et
e At TetT 1
12
例 已知矩阵
0 1 1
A 6
-11
6
试计算矩阵指数 eAt .
a n1 n1 1
e1t
a n1 n1 2
e2t
a0 a1n
a0
1
an1 1
a n1 n1 n
ent
n1 1
1
e1t
.
n1 n
ent
17
2)有 n个重特征值 1 n
et a0 t a1 t an1 t n1
两端对求1至n 阶1 导数得:
t 是满足 t At,0 I 的 n n 的矩阵。 t 定义为转移矩阵。
对于线性定常方程 t e At 。
t e At 表示 x(0) 到 x(t) 的转移矩阵。 t t0 e A(tt0 ) 表示 x(t0 ) 到 x(t) 的转移矩阵。
第3章-状态方程的求解
2.2 非齐次状态方程的解
例题:
即
X (t) e At X 0
t e A(t ) B u( )d
0
中第一项已求得。
第二项根据公式计算得:
t e A(t ) B u( )d
0
t 2e(t ) e2(t )
0
2e (t
)
2e 2(t
)
e(t ) e(t )
e2(t ) 2e2(t
s s
1 2
2 2
2et 2et
e2t 2e2t
et e2t
et
2e2t
2.2 非齐次状态方程的解
1.非齐次状态方程的概念
或写成:
X AX Bu
X AX Bu
(1)u为时间t的函数, 假设为已知的; (2)X(t0)=X0为系统的初始条件。
2.2 非齐次状态方程的解
u~ u~1(t) u~2 (t) T
x1
x1(t1)
2.3 几点说明
6.现代控制理论的一个核心思想
经典控制理论是保持u不变,通过调节参数来使得输出y满足要求。 现代控制理论是保持参数不变,通过调节u来使得输出y满足要求。
具体实现方法是:
对y的要求
对X的要求
对u的要求
对于状态方程而言,其齐次方程的形式为:
X AX 初始条件为: X (t0 ) X0
2.1 齐次状态方程的解
2.齐次状态方程解的形式
已知: X AX
初始条件为: X (t0 ) X0
解方程可得:
X (t) e A(tt0 ) X 0
矩阵指数
说明: (1)求出矩阵指数即可求出方程的解。 (2)矩阵指数计算出来是一个和A同型的矩阵,矩阵的
3.4 线性定常离散系统状态方程的解
因此, 离散系统的状态方程的解为:
x(k ) G x(0) G
k j 0 k 1 k j 1
Hu( j )
该表达式与前面递推法求解结果一致 例3-9 已知某系统的状态方程和初始状态分别为
0 x(k 1) 0.16 1 1 x( k ) u ( k ) 1 1 1 x(0) 1
(k mi )
1 ik C k ik 1 1 1 k Gi , 1 k 1 C k i k i
其中 : Ck
m
k! m!(k m)!
(k mi )
递推法(10/10)
(4) 对系统矩阵G, 当存在线性变换矩阵P, 使得
试求系统状态在输入u(k) 1时的响应
Z变换法(4/7)
解 1. 用递推法求解 分别令k 1, 2, 3, …, 则由状态方程有
1 1 1 0 0 x(1) 1 1 1.84 0.16 1 1 0 1 2.84 0 x(2) 1.84 1 0.84 0.16 1 1 2.84 1 0.16 0 x(3) 0.84 1 1.386 0.16 1
j 0
k 1
递推法(3/10)
若初始时刻k0不为0, 则上述状态方程的解可表达为:
x( k ) G
k k0
x( k 0 )
G
j k0
k 1
k j 1
Hu( j )
或
x( k ) G
k k0 k k 0 1
x( k 0 )
G Hu(k j 1)
工程热力学第三章习题参考答案
第三章 热力学第一定律 习题参考答案思考题3-1门窗紧闭的房间……答:按题意,以房间(空气+冰箱)为对象,可看成绝热闭口系统,与外界无热量交换,Q=0电冰箱运转时,有电功输入,即W 为负值,按闭口系统能量方程:WU +Δ=0 或即热力学能增加,温度上升。
0>−=ΔW U 3-6 下列各式,适用于何种条件? 答:答案列于下表公式适用条件w du q δδ+= 闭口系统,任何工质,任何过程,不论可逆与不可逆 pdv du q +=δ 闭口系统,任何工质,可逆过程 pdv dT c q v +=δ闭口系统,理想气体,可逆过程dh q =δ 闭口系统,定压过程; 或开口系统与环境无技术功交换。
vdp dT c q v −=δ开口系统,理想气体,稳态稳流,可逆过程3-10 说明以下结论是否正确: (提示:采用推理原则,否定原则) ⑴ 气体吸热后一定膨胀,热力学能一定增加。
答:错误,如等容过程吸热后不膨胀;如不是等容过程吸热后热力学能也不一定增加,当对外净输出功量大于吸热量时,则热力学能不增加。
⑵ 气体膨胀一定对外作功。
答:错误,如气体向真空膨胀则不作功,另外气体膨胀对外作膨胀功的充要条件是:气体膨胀和要有功的传递和接受机构。
⑶ 气体压缩时,一定消耗外功。
答:错误,如处于冷却过程的简单可压缩系统,则会自发收缩(相当于被压缩),并不消耗外功。
⑷ 应设法利用烟气离开锅炉时带走的热量。
答:错误不应说设法利用烟气离开锅炉时带走的热量。
因为热量是过程量,不发生则不存在。
应该说设法利用烟气离开锅炉时带走的热能(或热焓)。
习 题3-1 已知:min 202000/400===time N hkJ q 人人求:?=ΔU 解:依题意可将礼堂看作绝热系统,思路:1、如何选取系统?2、如何建立能量方程? ⑴ 依题意,选取礼堂空气为系统,人看作环境,依热力学第一定律,建立能量方程:kJ time N q Q U W W Q U 51067.2602020004000×=××=⋅⋅==Δ∴=−=Δ人Q⑵ 如选“人+空气”作系统, 依据热力学第一定律:W Q U −=Δ0,0,0=Δ∴==U Q W Q如何解释空气温度升高:该系统包括“人+空气”两个子系统 ,人散热给空气,热力学能降低,空气吸热,能内升高,二者热力学能代数和为零。
自动控制理论各章复习
第一章 自动控制概论
基本概念。(自动控制、自动控制系统、被控 对象、被控量、给定量、扰动量、开环控制、 闭环控制、复合控制)
由物理结构图或工作原理示意图绘出元件框图。 由系统的微分方程判断出线性定常系统、线性
时变系统和非线性系统。 自动控制系统的要求:稳、快、准。
第五章 频域相应分析法
频率特性的基本概念 典型环节的频率特性 开环频率特性的绘制 - 幅相曲线的绘制、对数
频率特性曲线(幅频,相频) 稳定判据 - 奈奎斯特稳定判据、对数频率稳定
判据 稳定裕度 频域指标和时域指标的关系
第六章 线性系统的校正方法
校正的基本概念 串联超前校正 串联滞后校正
第二章 控制系统的数学模型
建立微分方程的方法 传递函数的概念和性质 传递函数和微分方程之间的关系 结构图的绘制和等效变换 结构图和信号流图的关系 梅逊公式
第三章 线性系统的时域分析
一阶系统的时域分析 二阶系统的时域分析 欠阻尼、临界阻尼和过阻尼 时域指标及其基本公式 稳定性分析(劳斯判据、稳态误差)
超前校正:K ' m m (c'' ) T
滞后校正:K
'
''
'Байду номын сангаас c
b
T
第七章 线性离散系统
线性离散系统的基本概念 Z变换及Z的反变换 采样系统的数学模型及其推导 W变换以及离散系统的稳定性判据 离散系统的稳态误差
第九章 线性系统的状态空间
线性系统的状态空间表达式 - 状态方程 状态方程的解 - 状态转移矩阵及其性质 控制系统能控性及其判断依据 控制系统能观性及其判断依据
《数字电子技术基础》课后习题答案
《数字电路与逻辑设计》作业教材:《数字电子技术基础》(高等教育出版社,第2版,2012年第7次印刷)第一章:自测题:一、1、小规模集成电路,中规模集成电路,大规模集成电路,超大规模集成电路5、各位权系数之和,1799、01100101,01100101,01100110;11100101,10011010,10011011二、1、×8、√10、×三、1、A4、B练习题:1.3、解:(1)十六进制转二进制:45 C010*********二进制转八进制:010*********2134十六进制转十进制:(45C)16=4*162+5*161+12*160=(1116)10所以:(45C)16=(10001011100)2=(2134)8=(1116)10(2)十六进制转二进制:6D E.C8011011011110.11001000二进制转八进制:011011011110.1100100003336.62十六进制转十进制:(6DE.C8)16=6*162+13*161+14*160+13*16-1+8*16-2=(1758.78125)10所以:(6DE.C8)16=(011011011110. 11001000)2=(3336.62)8=(1758.78125)10(3)十六进制转二进制:8F E.F D100011111110.11111101二进制转八进制:100011111110.1111110104376.772十六进制转十进制:(8FE.FD)16=8*162+15*161+14*160+15*16-1+13*16-2=(2302.98828125)10所以:(8FE.FD)16=(100011111110.11111101)2=(437 6.772)8=(2302.98828125)10 (4)十六进制转二进制:79E.F D011110011110.11111101二进制转八进制:011110011110.1111110103636.772十六进制转十进制:(79E.FD)16=7*162+9*161+14*160+15*16-1+13*16-2=(1950. 98828125)10所以:(8FE.FD)16=(011110011110.11111101)2=(3636.772)8=(1950.98828125)101.5、解:(74)10 =(0111 0100)8421BCD=(1010 0111)余3BCD(45.36)10 =(0100 0101.0011 0110)8421BCD=(0111 1000.0110 1001 )余3BCD(136.45)10 =(0001 0011 0110.0100 0101)8421BCD=(0100 0110 1001.0111 1000 )余3BCD (374.51)10 =(0011 0111 0100.0101 0001)8421BCD=(0110 1010 0111.1000 0100)余3BCD1.8、解(1)(+35)=(0 100011)原= (0 100011)补(2)(+56 )=(0 111000)原= (0 111000)补(3)(-26)=(1 11010)原= (1 11101)补(4)(-67)=(1 1000011)原= (1 1000110)补第二章:自测题:一、1、与运算、或运算、非运算3、代入规则、反演规则、对偶规则 二、 2、×4、× 三、 1、B 3、D5、C练习题:2.2:(4)解:Y =AB̅+BD +DCE +A D =AB̅+BD +AD +A D +DCE =AB̅+BD +D +DCE =AB̅+D (B +1+CE ) =AB̅+D (8)解:Y =(A +B ̅+C )(D ̅+E ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(A +B ̅+C +DE ) =[(A +B ̅+C )̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅+(D ̅+E ̅)̅̅̅̅̅̅̅̅̅̅](A +B ̅+C +DE ) =(ABC +DE )(ABC ̅̅̅̅̅̅+DE ) =DE2.3:(2)证明:左边=A +A (B +C)̅̅̅̅̅̅̅̅̅̅̅̅ =A +A +(B +C)̅̅̅̅̅̅̅̅̅̅ =A +B̅C ̅ =右式所以等式成立(4)证明:左边= (A B +AB̅)⨁C = (A B +AB ̅)C + (A B +AB̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅C = (A BC +AB ̅C )+A B ̅̅̅̅⋅AB̅̅̅̅⋅C =A BC +AB̅C +(A +B ̅)(A +B )C =A BC +AB̅C +(AB +A B ̅)C =A BC +AB̅C +ABC +A B ̅C 右边= ABC +(A +B +C )AB̅̅̅̅⋅BC ̅̅̅̅⋅CA ̅̅̅̅ =ABC +(A +B +C )[(A +B̅)(B ̅+C )(C +A )]=ABC +(A +B +C )(A B̅+A C +B ̅+B ̅C )(C +A ) =ABC +(A +B +C )(A B̅C +A C +B ̅C +A B ̅) =ABC +AB̅C +A BC +A B ̅C 左边=右边,所以等式成立 2.4(1)Y ′=(A +B̅C )(A +BC) 2.5(3)Y ̅=A B ̅̅̅̅(C +D ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅ C D ̅̅̅̅̅(A +B ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 2.6:(1)Y =AB +AC +BC=AB (C +C̅)+AC (B +B ̅)+BC (A +A ̅) =ABC +ABC̅+AB ̅C +A ̅BC 2.7:(1)Y =A B̅+B ̅C +AC +B ̅C 卡诺图如下:所以,Y =B2.8:(2)画卡诺图如下:Y(A,B,C)=A +B̅+C2.9:(1)画Y (A,B,C,D )=∑m (0,1,2,3,4,6,8)+∑d(10,11,12,13,14)如下:Y (A,B,C,D )=A B̅+D ̅2.10:(3)解:化简最小项式:Y =AB +(A B +C )(A B̅+C ) =AB +(A B A B̅+A BC +A B ̅C +C C ) =AB (C +C )+A BC +A B̅C =ABC +ABC ̅+A BC +A B ̅C =∑m (0,3,6,7)最大项式:Y =∏M(1,2,4,5)2.13:(3)Y =AB̅+BC +AB ̅C +ABC D ̅ =AB̅(1+C )+BC (1+AD ̅) =AB ̅+BC =AB ̅+BC ̿̿̿̿̿̿̿̿̿̿̿̿ = AB ̅̅̅∙BC ̅̅̅̅̅̅̅̅̅̅̅技能题:2.16 解:设三种不同火灾探测器分别为A 、B 、C ,有信号时值为1,无信号时为0,根据题意,画卡诺图如下:Y =AB +AC +BC =AB +AC +BC ̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿ =AB ̅̅̅̅⋅AC̅̅̅̅⋅BC ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ =(A +B ̅)(A +C )(B ̅+C )̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ =A +B ̅̅̅̅̅̅̅̅+A +C ̅̅̅̅̅̅̅̅+B ̅+C̅̅̅̅̅̅̅̅第三章:自测题:一、1、饱和,截止7、接高电平,和有用输入端并接,悬空; 二、 1、√ 8、√; 三、 1、A 4、D练习题:3.2、解:(a)因为接地电阻4.7k Ω,开门电阻3k Ω,R>R on ,相当于接入高电平1,所以Y =A B 1̅̅̅̅̅̅=A +B +0=A +B (e) 因为接地电阻510Ω,关门电0.8k Ω,R<R off ,相当于接入高电平0,所以、 Y =A +B +0̅̅̅̅̅̅̅̅̅̅̅̅̅=A ̅⋅B ̅∙1̅̅̅̅̅̅̅̅̅̅=A +B +0=A +B3.4、解:(a) Y 1=A +B +0̅̅̅̅̅̅̅̅̅̅̅̅̅=A +B ̅̅̅̅̅̅̅(c) Y 3=A +B +1̅̅̅̅̅̅̅̅̅̅̅̅̅=1̅=0(f) Y 6=A ⋅0+B ⋅1̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅=B̅3.7、解:(a) Y 1=A⨁B ⋅C =(A B +AB̅)C =A B C +AB ̅C3.8、解:输出高电平时,带负载的个数2020400===IH OH OH I I N G 可带20个同类反相器输出低电平时,带负载的个数78.1745.08===IL OL OL I I N G 反相器可带17个同类反相器3.12EN=1时,Y 1=A , Y 2=B̅ EN=0时,Y 1=A̅, Y 2=B3.17根据题意,设A 为具有否决权的股东,其余两位股东为B 、C ,画卡诺图如下,则表达结果Y 的表达式为:Y =AB +AC =AB +AC ̿̿̿̿̿̿̿̿̿̿̿=AB ̅̅̅̅⋅AC̅̅̅̅̅̅̅̅̅逻辑电路如下:技能题:3.20:解:根据题意,A 、B 、C 、D 变量的卡诺图如下:Y =ABC +ABD =ABC +ABD ̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿=ABC̅̅̅̅̅̅⋅ABD ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅电路图如下:第四章:自测题:一、2、输入信号,优先级别最高的输入信号7、用以比较两组二进制数的大小或相等的电路,A>B 二、 3、√ 4、√ 三、 5、A 7、C练习题:4.1;解:(a) Y =A⨁B +B ̅̅̅̅̅̅̅̅̅̅̅̅̅=A B +AB ̅+B ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅=A B +B ̅̅̅̅̅̅̅̅̅̅̅=A +B ̅̅̅̅̅̅̅̅=AB ,所以电路为与门。
最优控制第三章课后习题答案
1. 2**'2**'*'*01min ()2y J y y y y y y dx ⎡⎤=+++⎢⎥⎣⎦⎰,若(0)y 与(2)y 任意,求*y 及(*)J y 。
解:这是端点自由问题,相应的欧拉—拉格朗日方程为:()0f d f y dt y∂∂-=∂∂即''1(1)0d y y y dt +-++=得''1y =则'1y x c =+,21212y x c x c =++由横截条件:0f y∂=∂得'1y y ++=0即21121(1)102x c x c c +++++=0x =,1210c c ++=;2x =,12350c c ++=。
联立得122,1c c =-=所以*21212y x x =-+,*'2y x =-代入得2**'2**'*'*02321()21(221)243J y y y y y y dxx x x dx⎡⎤=+++⎢⎥⎣⎦=-+-=-⎰⎰2.电枢控制的直流电动机忽略阻尼时的运动方程:()u t θ=式中,θ为转轴的角位移,()u t 为输入。
目标函数为221min ()2u J dt θ=⎰,使初态(0)1θ=及(0)1θ=转移到终态(2)0θ=及(2)0θ=,求最优控制*()u t 及最优角位移*()t θ,最优角速度*()t θ。
解: 设12,x x θθ==则122,x x x u ==。
哈密顿函数:212212H u x u λλ=++ 协态方程: 121120,0H Hx x λλλ∂∂=-==-=-=∂∂ 控制方程:20Hu uλ∂=+=∂即*2()()u t t λ=-将*()u t 代入状态方程,可得 1222121(),(),0,()x x t x t t λλλλ==-==-边界条件为1212(0)1,(0)1,(2)0,(2)0x x x x ==== 可见这是两点边值问题,对正则方程进行拉氏变换,可得11222211221()(0)()()(0)()()(0)0()(0)()sX s x X s sX s x s s s s s s λλλλλλ-=-=--=-=-联立以上四式,可解出43211221()(0)(0)(0)(0)s X s s x s x s λλ=+-+代入初始条件12(0)1,(0)1x x ==,可得1212341111()(0)(0)X s s s s sλλ=+-+ 故 2312111()1(0)(0)26x t t t t λλ=+-+同样可解得 22212322221111()(0)(0)(0)1()(0)(0)(0)2X s x s s sx t x t t λλλλ=-+=-+利用终端条件12(2)0,(2)0x x ==可得2121432(0)(0)0312(0)2(0)0λλλλ-+=-+=解得127(0)3,(0)2λλ== 1111(0)(),()(0)s t s λλλλ==;221221211()(0)(0),()(0)(0)s t t s sλλλλλλ=-=-即 127()3,()32t t t λλ==-所以:最优控制*27()()32u t t t λ=-=-+最优角位移*23171()142x t t t t θ==+-+最优角速度*2273()122x t t t θ==-+3. 222201min (2)()22.,(),(0) 1.()u s J x u t dt s t x u t x s =+==⎰为常量试求出最优控制*u ()t 及相应的轨线*()x t 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 1 0
,利用方法1求解 exp(At)
0 A3 0 0 1 0 1 0 1 A 0
A
2
0 0 0
1 0 1
及 及
A A3 A5
e
At
( t ) ax ( t ) x
x ( t ) e at x ( 0 )
x (t ) e At x (0 )
n=n
于是
e
At
At (A t)2 (A t)3 (A t)k I 1! 2! 3! k!
其中,A 是方阵,exp[At] 是与 A 具有相同阶数的方阵。实际上,
exp(At ) exp(TT1t ) T exp(t )T1
4) 方法 4-----Cayley-Hamilton 4 Cayley Hamilton 定理
e
A t
exp[
At ]
n 1
k 0
k
(t ) A
k
13
状态方程的解
状态转移矩阵的计算:1) 直接计算
例 1. 假定 A 矩阵为 解:
6) 对于 nn 方阵 A 和 B,如果有 AB=BA,则
exp( A t ) exp( B t ) exp[( A B ) t ]
7) ) 对于任意非奇异矩阵 T,有
(T 1ATt ) 2 (T 1AT ) 2 t 2 (T 1 AT )(T 1 AT )t 2 2! 2! 2!
状态方程的解
状态转移矩阵的计算
对于给定的矩阵 A,计算 STM 闭合形式的方法包括:
1) 方法 1----1 直接计算
e
At
( A t)2 ( A t)3 ( A t)k At I 1! 2! 3! k!
2) 方法 2----- 利用拉普拉斯变换
( t ) e A t L 1 [( sI A ) 1 ]
e
at t
x ( t ) e at x ( 0 )
at ( at ) 2 ( at ) 3 ( at ) k 1 1! 2! 3! k!
[请复习幂级数ex的展开(- <x<)]
求解 S 域内的解,有
( t ) ax ( t ) x
LT
sX ( s ) x ( 0 ) aX ( s )
( t ) ax ( t ) x
x ( t ) e at x ( 0 )
假定初始时刻为 t0,对于任意初始条件 x(t ( 0),如果 x(t ( 0) 已知,则有
x ( t ) e a (t t0 ) x ( t 0 )
6
状态方程的解
状态转移矩阵
• 考察标量方程的解 其中 其中,
4
u1 u2 um
S
x1, x2, …, xn
y1 y2 yl
图 3.11 系统的一般表示
状态方程的解
状 方程 状态方程
微分方程是输入输出模型,它仅仅表示了输入变量与输出变量之间的 关系。 -----经典控制理论模型 状态空间模型可以描述系统的内部变量,能够描述多变量系统和非线 性系统,并易于计算机实现。 -----现代控制理论模型 状态变量分析方法的特点是将一个复杂系统分解为一组更小的系统, 通过标准化处理使这些小系统之间的相互影响最小,从而可以进行分 别求解 别求解。
exp( T
1
AT t ) T
1
exp( A t )T
性质 1)、2)、4)、6)、7) 可以由 e At 的定义直接证明。
10
e
At
At ( At ) 2状态方程的解 ( At ) 3 ( At ) k ( At ) k I 1! 2! 3! k! k! k 0
x ( t ) L 1 [( s a ) 1 ] x ( 0 )
比较通过不同方式求得的解,它们应该相等。于是有,
e at L 1 [( s a ) 1 ]
7
状态方程的解
状态转移矩阵
对比标量方程和状态方程,状态方程的解类似于标量方程的解;或
利用拉普拉斯变换求解状态方程 n=1
控制科学与工程学系
状态方程的解
状态方程 状 方程 状态空间模型
(t ) Ax (t ) Bu(t ) 状态方程 x y(t ) Cx (t ) Du
输出方程 状态变量 x(t), u(t), 和 y(t) 是 列向量,A, B, C 和 D 是矩阵, 对于线性时不变系统而言 这 对于线性时不变系统而言,这 些矩阵的元素都是常数。 系统具有 m 个输入,l 个输 出和 n 个状态变量。 为了得到系统输出 y(t),我们首先要 求解状态方程。 状态空间模型图
状态转移矩阵
线性时不变系统 ( t ) e A t
STM:具有相应的物理意义,且 适用于时变系统和离散系统 注意:两者在概念上有区别。
Matrix exponent(矩阵指 数): 数学函数
作为函数, 具有如下性质: e At 具有如下性质
1) 如果 A 是对角阵,则 exp[At] 也是对角阵
9
e
At
At ( At ) 2状态方程的解 ( At ) 3 ( At ) k ( At ) k I 1! 2! 3! k! k! k 0
状态转移矩阵
4) 5)
exp( A t )
t0
I
e A t 总是非奇异矩阵,其逆矩阵为
[exp( [ p( A t )] 1 exp( p( A t )
状态方程的解
自动控制 自动控制理论
第三章 微分方程的解
周立芳 徐正国
浙江大学控制科学与工程学系
1
状态方程的解
第三章要点 绪论 稳态响应 暂态响应 时间常数定义 例:二阶系统 系统的暂态(动态) 时间响应性能指标 状态方程的解
2
状态方程的全解
求解微分方程 • 状态方程 • 状态转移矩阵(State St t transition t iti matrix, t i STM) • 计算状态转移矩阵 • 状态方程的全解 • 从状态空间模型到传递函数(矩阵)
exp[At]是无穷级数,且该无穷级数收敛,具有闭合形式。对于线性 是无穷级数 且该无穷级数收敛 具有闭合形式 对于线性 定常系统,exp[At] 称为系统的状态转移矩阵 (state transition matrix, STM),可记为
…
( t ) Ax ( t ) x
LT
s X ( s ) x ( 0 ) AX ( s )
3) 方法 3-----矩阵 A 对角化
( s ) ( sI A) 1
diag [ 1 , 2 , , n ]
A T T 1 , T 1 AT diag [ 1 , 2 , , n ]
e t diag [ e 1t , e 2 t , , e n t ]
14
1 0 0
状态方程的解
状态转移矩阵的计算:2) 拉普拉斯变换
例 2. 假定 A 矩阵为 解:
( s ) ( sI A ) 1
1 s 0 0 1 1 ( s 2 s 1 1 1 ( 2 s 1 s 1 1 ( 2 s 1 s
x ( t ) L 1 [( s I A ) 1 ] x ( 0 ) ( t ) x ( 0 )
k 0
(A t)k L 1 [( sI A ) 1 ] k!
( t ) e A t exp[ A t ]
8
e
At
A t ( A t ) 2 状态方程的解 ( At ) 3 ( At ) k ( At ) k I 1! 2! 3! k! k! k 0
状态转移矩阵
STM(—状态转移矩阵) 刻画了系统的非强迫响应或自然响应,它具
有如下性质:
1.
(t 2 t1 ) (t1 t 0 ) (t 2 t0 ), 对任意 t 0 , t 1 ,t 2
2.
3.
( t ) ( t ) ( t ) q ( t ) ( qt ), q 是 正 整 数
(t p ) k A e A( t p ) k! k 0
k
性质 5) 证明: 证明
[exp( A t )] 1 exp( A t )
令 p=-t,利用性质 利用性质 3) 可得
exp( A t ) exp( At ) exp( A 0) I
11
状态方程的解
At 1
0 1 0 A 0 0 1 0 1 0
s 0 0 1 s 1 0 1 s
1
, 利用方法 2求解exp(At) p( )
11 adj dj ( sI I A) 1 12 det( sI A ) 13
21 22 23
31 3 32 33
1 ) 1 1 ) 1 1 ) 1
1 1 1 1 ( ) s 1 s 2 s 1 1 1 1 ( ) 2 s 1 s 1 1 1 1 ( ) 2 s 1 s 1
A diag [ 1 , 2 , , n ]
2) d
dtБайду номын сангаас
e At diag [ e 1t , e 2 t , , e n t ]