小波分析2012第14讲:小波应用中几个常见问题PPT课件

合集下载

小波变换课件

小波变换课件

消失矩性质
消失矩定义:小波变换在高频部分具有快速衰减的特性
消失矩性质与信号处理:在信号处理中,消失矩性质使得小波变换能够有效地提取信号的 高频成分
消失矩与多分辨率分析:消失矩性质是实现多分辨率分析的关键,能够同时获得信号在不 同尺度上的信息
消失矩的应用:在图像处理、语音识别、信号去噪等领域,消失矩性质都有着广泛的应用
图像去噪:小波变换能够将噪声与 图像信号进行分离,从而去除噪声
语音处理
小波变换在语音 信号处理中的应 用
小波变换在语音 识别和合成中的 应用
小波变换在语音 增强和去噪中的 应用
小波变换在语音 编码和压缩中的 应用
其他应用领域
信号处理 图像处理 语音处理 模式识别
小波变换的优缺点分析
小波变换的优点
用的特征信息
图像处理:小波变换在图像 处理中也有广泛的应用,如
图像压缩、去噪、增强等
图像处理
图像压缩:小波变换能够去除图像 中的冗余信息,实现高效的图像压 缩
图像融合:将多个图像的小波系数 进行融合,可以得到一个新的、包 含多个图像信息的图像
添加标题
添加标题
添加标题
添加标题
图像增强:通过调整小波系数,可 以突出图像的某些特征,提高图像 的视觉效果
多维小波变换算法:介绍多维小波变换的基本原理和算法实现,包括多维小波变换 的定义、性质、算法流程等。
多维小波变换在图像处理中的应用:介绍多维小波变换在图像处理中的应用,包括 图像压缩、图像去噪、图像增强等。
多维小波变换的优缺点:介绍多维小波变换的优缺点,包括优点如多尺度分析、方 向性、时频局部化等,以及缺点如计算量大、需要选择合适的小波基等。
数学表达式:对于任意实数a,如果f(t)的小波变换为Wf(s,a),则f(t-a)的小波变换仍为 Wf(s,a)

小波分析的应用课件

小波分析的应用课件
小波分析的应用
报告人:张健明
组员:梁华庆、郭文彬、轩黎明、 周华、刘志平、王海婴、陈泽强、 常永宇、郭晓强、付景兴、李卫东

1
小波应用简介 小波在图像编码中的应用 小波在时变线性系统建模中的应用 小波分析的应用前景

2
小波应用简介
小波分析在时域和频域同时具有良好的 局部化特性,对于信号处理、信息处理 起着至关重要的作用。

10
小波在图像编码中的应用
一幅图像在二维频域
LL1
HL1
可被分解为四个子带,如
右图。图中LL1,LH1,
LH1
HH1
HL1,HH1分别表示
(x, y),1(x, y), 2(x, y), 3(x, y)
对应的分解。
L是图像的低频部分,H是图像的高频部分。

11
小波在图像编码中的应用
变换域编码的数据压缩过程如下图:
原始图像
正交 变换
量 化
熵 编 码
信道 解 码
逆 量 化
逆正交 重建图像 变换

6
小波在图像编码中的应用
为什么小波变换能用于图像编码
离散信号能量的度量
将离散信号x(n)用N维矢量表示x=(x0,x1,…,xN-1) 连表示,其能量定义为
N 1
Ex xT x xi2
图像压缩的变换域编码方法
将时域信号(如声音信号)或空域信号(如 图像信号)变换到另外一些正交矢量空间;
使变换域中的信号分量相关性很小,从而其码中的应用
常用的变换域方法有离散余弦变换、Haar 变换、Walsh-Hadamard变换等,小波变换 方法也属变换域方法中的一种;

小波分析

小波分析

小波分析小波分析是一种在信号处理领域中常用的数学工具。

它可以分析和处理各种类型的信号,包括音频、图像和视频等。

小波分析的概念来源于法国数学家Jean Morlet在20世纪80年代提出的一种数学理论,经过不断的发展和改进,如今已成为信号处理中不可或缺的技术之一。

小波分析的基本思想是将信号分解成不同尺度和频率的小波基函数。

这些小波基函数可以看作是时间和频率的局部性的权衡。

相比于传统的傅里叶分析和傅立叶变换方法,小波分析更加适用于处理非平稳信号,因为它允许信号在时间和频率上的变化。

小波分析的核心概念是小波变换,它将信号分解成不同频率的小波分量,并用小波系数表示。

这些小波系数可以提供关于信号的时间和频率信息。

小波变换可以通过离散小波变换(DWT)或连续小波变换(CWT)来实现。

DWT适用于离散信号,而CWT适用于连续信号。

小波分析有许多优点。

首先,它可以提供更精确的时间和频率信息。

由于小波基函数具有局部性,它们可以更好地捕捉信号的瞬时特性。

其次,小波分析可以有效地处理非平稳信号。

传统的傅里叶变换方法基于信号是稳态的假设,对于非平稳信号的处理效果会相对较差。

而小波分析通过局部分析的方式,可以更好地处理非平稳信号。

此外,小波分析还可以提供多分辨率分析的能力。

通过对小波系数的分层表示,可以在不同的分辨率下对信号进行分析,从而可以同时关注信号的整体结构和细节。

在实际应用中,小波分析有广泛的应用。

在音频和音乐领域,小波分析可以用于音频信号的压缩、去噪和特征提取等方面。

在图像和视频领域,小波分析可以用于图像压缩、边缘检测和运动分析等。

此外,小波分析还可以应用于金融领域的数据分析、生物医学信号的处理和地震信号的分析等。

总的来说,小波分析是一种强大的信号处理技术,它可以提供更精确和全面的信号分析。

小波分析在不同领域有广泛的应用,并且随着技术的发展和创新,其应用范围还会不断扩大。

通过深入研究和应用小波分析,我们可以更好地理解和处理各种类型的信号,为我们的生活和工作带来更大的便利和效益。

小波变换原理与应用PPT课件

小波变换原理与应用PPT课件

用傅立叶变换提取信号的频谱需要利用信号的全 部时域信息。
傅立叶变换没有反映出随着时间的变化信号频率 成分的变化情况。
傅立叶变换的积分作用平滑了非平稳信号的突变 成分。
由于上述原因,必须进一步改进,克服上述不足
,这就导致了小波分析。精选ppt
7
2.小波变换与傅里叶变换的比较
(1)克服第一个不足:小波系数不仅像傅立叶系 数那样,是随频率不同而变化的,而且对于同一个频 率指标j, 在不同时刻 k,小波系数也是不同的。
(0) (x)dx0
精选ppt
10
3.小波变换的基本原理与性质
信号的信息表示
➢ 时域表示:信号随时间变化的规律,信息包括均值、 方差、峰度以及峭陡等,更精细的表示就是概率密度 分布(工程上常常采用其分布参数)
➢ 频域表示:信号在各个频率上的能量分布,信息为频 率和谱值(频谱或功率谱),为了精确恢复原信号, 需要加上相位信息(相位谱),典型的工具为FT
与信号的初始段进行比较 ; ➢ 通过CWT的计算公式计算小波系数(反映了当前尺度
下的小波与所对应的信号段的相似程度); ➢ 改变平移因子,使小波沿时间轴位移,重复上述两个
步骤完成一次分析; ➢ 增加尺度因子,重复上述三个步骤进行第二次分析; ➢ 循环执行上述四个步骤,直到满足分析要求为止。
精选ppt
A x ( t)2 x ( t), m ,n ( t) 2 B x ( t)2 A ,B R
m ,n
x(t) Cm,n m,n(t) nZ
精选ppt
29
3.小波变换的基本原理与性质
正交小波变换与多分辨分析
多分辨分析也称为多尺度分析,是建立在函数空间概念上的理论 。它构造了一组正交基,使得尺度空间与小波空间相互正交。随 着尺度由大到小的变化,可在各尺度上由粗及精地观察目标。这 就是多分辨率分析的思想。在离散小波框架下,小波系数在时间尺度空间域上仍然具有冗余性,在数值计算或数据压缩等方面仍 然希望这种冗余度尽可能的小。在小波变换发展过程中, Stromberg、Meyer、Lemarie、Battle和Daubechies等先后成功的构 造了不同形式的小波基函数的基础上,是Meyer和Mallat将小波基 函数的构造纳入到了一个统一的框架中,形成了多分辨分析理论 。多分辨率分析理论不但将在那时之前的所有正交小波基的构造 统一了起来,而且为此后的小波基的构造设定了框架。

小波变换理论与方法ppt课件

小波变换理论与方法ppt课件
R
其中 g,t (t) g(t )eit g(t )eit ,窗口函数g(t)起着时
限作用,eit 起着频限作用。该变化具有不变化宽度(由时间 宽度决定)和不变的窗口面积4g∆g∆
10
短时傅里叶变换示意图
11
cos(440 t) x(t) cos(660 t)
傅里叶变换傅里叶变换小波变换小波变换小波变换的一些应用小波变换的一些应用1822年法国数学家傅里叶jfourier发表的研究热传导理论的热的力学分析提出每一个周期函数都可以表示成三角函数之和奠定了傅里叶级数的理论基础
1
主要内容
1. 傅里叶变换 2. 小波变换 3. 小波变换的一些应用
2
一 傅里叶变换
E(|Wn(j,t)|2)=0
D(|Wn(j,t)|2)= Ψ t 2
j
26
3.1.1小波包去噪步骤
① 选择小波基并确定最佳分解的层次,对信号 进行小波包分解; ② 对步骤(1)获得的小波包树,选择一定的嫡标准,计算最优树; ③ 估计阈值,并应用该阈值对最优树的小波包系数进行阈值量化; ④ 将经量化处理的小波包系数,重构回原始信号。
Gabor变换的基本思想为:取时间函数 g(t) 1/ e4 t2/2 作为窗口函 数,然后用 g(t ) 通待分析函数相乘,τ是时间延迟,是窗函数 g(t)的中心,窗函数根据τ进行时移,然后再进行傅里叶变换:
Gf (, ) f (t)g(t )eitdt f (t), g,t (t)
小波包阈值消噪有两个关键点:1、如何估计阈值;2 如何利用阈值量 化小波包系数。
27
熵的确定
熵:用来确定最优树的标准,熵值越小,对应的小波包基越好。
1)香农熵:约定0log(0)=0,则香农熵定义为: Es si2 logsi2

小波基础知识 PPT课件

小波基础知识 PPT课件

设T : X
军事电子对抗与武器的智能化;计算机分 类与识别;音乐与语言的人工合成;医学 成像与诊断;地震勘探数据处理;大型机 械的故障诊断等方面;例如,在数学方面, 它已用于数值分析、构造快速数值方法、 曲线曲面构造、微分方程求解、控制论等。 在信号分析方面的滤波、去噪声、压缩、 传递等。在图象处理方面的图象压缩、分 类、识别与诊断,去污等。在医学成像方 面的减少B超、CT、核磁共振成像的时间, 提高分辨率等。
2
2
3
V,ej
2
v2
2
j 1
3 2
v1
1 2
v2
3 2
v1
1 2
v2
3 2
[
v1
2
v2
2]
3 2
V
定义、定理及证明
1. (巴拿赫)Banach空间与Hibert(西耳伯特) 空间
由于F(0) = 0,故 =0
2. 线性算子与同构
我们只考虑可分的Hilbert空间。
1986年著名数学家Y.Meyer偶然构造出一个真正的 小波基,并与S.Mallat合作建立了构造小波基的 同样方法及其多尺度分析之后,小波分析才开始 蓬勃发展起来,其中比利时女数学家 I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作 用。它与Fourier变换、窗口Fourier变换(Gabor 变换)相比,这是一个时间和频率的局域变换, 因而能有效的从信号中提取信息,通过伸缩和平 移等运算功能对函数或信号进行多尺度细化分析 (Multiscale Analysis),解决了Fourier变换 不能解决的许多困难问题,从而小波变化被誉为 “数学显微镜”,它是调和分析发展史上里程碑 式的进展。

小波变换课件

小波变换课件

小波变换的基本思想是将信号分 解成一系列的小波函数,每个小 波函数都有自己的频率和时间尺
度。
小波变换通过平移和缩放小波函 数,能够适应不同的频率和时间 尺度,从而实现对信号的精细分
析。
小波变换的特点
01
02
03
多尺度分析
小波变换能够同时分析信 号在不同频率和时间尺度 上的特性,提供更全面的 信号信息。
图像去噪
利用小波变换去除图像中的噪声,提高图像的清晰度和质 量。
在小波变换中,噪声通常表现为高频系数较大的值,通过 设置阈值去除这些高频系数,可以达到去噪的效果。去噪 后的图像能够更好地反映原始图像的特征和细节。
图像增强
ቤተ መጻሕፍቲ ባይዱ
利用小波变换增强图像的某些特征,突出显示或改善图像的某些部分。
通过调整小波变换后的系数,可以增强图像的边缘、纹理等特定特征。这种增强 方式能够突出显示图像中的重要信息,提高图像的可读性和识别效果。
在信号处理、图像处理、语音识别等 领域有广泛应用。
特点
能够同时分析信号的时域和频域特性 ,具有灵活的时频窗口和多分辨率分 析能力。
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,通过对小波函数的离 散化处理,实现对信号的近似和
细节分析。
特点
计算效率高,适合于数字信号处理 和计算机实现。
应用
在信号处理、图像处理、数据压缩等领域有广泛应用,如语音压缩、图像压缩 、数据挖掘等。
CHAPTER 04
小波变换在图像处理中的应用
图像压缩
利用小波变换对图像进行压缩,减少存储空间和传输带宽的 需求。
通过小波变换将图像分解为不同频率的子带,去除高频细节 ,保留低频信息,从而实现图像压缩。压缩后的图像可以通 过逆小波变换重新构造,保持图像质量的同时减小数据量。

最新小波分析(讲稿)课件ppt

最新小波分析(讲稿)课件ppt

一.FFT、STFT到Wavelet
1.Fourier Analysis
FFT变换是将信号分解成不同频率的正弦波的叠加和,即把信号
投影到一组正交基 e j.t 上。
一.FFT、STFT到Wavelet
1.Fourier Analysis 存在的主要问题:
(1) 无时域局部化特性。为了求得傅里叶系数,理论上必须知道时域的全部
1.Fourier Analysis 存在的主要问题: (3)傅氏分析采用窗宽固定的窗函数。为了分析提取信号的低频成分,T0应
取较大值,且频率分辩率较高;为了分析提取信号的高频成分,T0应取较小 值,时域分辩率较高,而对频率分辨率要求不高。 但T0固定时,两者不能同 时满足。
2.短时傅里叶变换 STFT(Short-Time Fourier Transform)
主要缺陷:STFT的窗函数一旦确定,就不能再变换。对于频率成分较多 的信号,很难找到一个最合适的窗函数,从而很难获得一个最佳的分析 精度。
2.STFT(Short-Time Fourier Transform)
(SF wfT ) (,b) f(t).w (tb)ej.td t
3.Wavelet Analysis
(2) 不能实现时频分析。信号分解转换到频域后,丢失掉了时域的信息, 频域中某频率或频带内的信息和时域中某时刻或时宽内的信息没有直接的对 应关系,即不能给出某一指定频带内的时域图形。这种对应关系称为时频分 析,所以傅里叶分析不能进行时频分析,而时频分析在工程中却相当有用。
一.FFT、STFT到Wavelet
(SF wfT ) (,b) f(t).w (tb)ej.td t
STFT将信号在时域上加窗函数,然后进行傅立叶变换,再在时域上 移动窗函数,最后完成连续重叠变换,得到与时间有关的信号频谱的描 述。从而在时频域得到一个信号能量的三维分布。

小波变换ppt课件

小波变换ppt课件
在此添加您的文本16字
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。

小波分析的原理及应用

小波分析的原理及应用

小波分析的原理及应用什么是小波分析?小波分析是一种在时频领域中分析和处理信号的数学工具。

它通过将信号分解成一组不同频率的小波基函数来描述信号的时频特性,并能够提供更细致的时频信息。

相比于傅里叶变换,小波分析能够更好地适应非平稳信号。

小波分析的原理小波分析基于一组小波基函数,这些基函数是用来描述信号局部特征的。

小波基函数是由一个母小波函数通过平移和缩放得到的。

小波基函数可以在时域和频域之间进行转换,因此可以提供更为准确的时频分析。

以下是小波分析的基本原理:1.小波基函数的选择:在进行小波分析之前,需要选择适合信号特征的小波基函数。

不同的小波基函数适用于不同类型的信号,如哈尔小波、Daubechies小波和Morlet小波等。

2.小波变换:小波变换是将信号分解成一系列尺度和平移后的小波基函数的过程。

这样可以提供信号在不同频率和时间尺度上的信息。

3.尺度和平移参数的选择:小波分析中的关键问题之一是如何选择合适的尺度和平移参数。

不同的尺度和平移参数可以提供不同粒度的时频信息。

4.小波系数的计算:对于给定的信号,小波分析将其分解为一系列的小波系数。

这些小波系数表示信号在不同尺度和频率上的能量分布。

5.小波重构:通过将小波系数与小波基函数进行线性组合,可以将信号从小波域重新构建回时域。

小波分析的应用小波分析在许多领域中有着广泛的应用,包括:1. 信号处理小波分析在信号处理中被广泛应用。

通过小波变换,可以对非平稳信号进行时频分析,并能够提供更详细的时频特性。

小波分析可以用于音频处理、图像处理以及语音识别等领域。

2. 压缩与编码小波变换可以对信号进行压缩和编码。

通过选择合适的小波基函数和尺度参数,可以在保持较高的信号质量的同时,减小信号的数据量。

3. 金融分析小波分析在金融分析中也有应用。

通过小波变换,可以对不同频率的金融时间序列进行分析,揭示出不同周期的市场行情。

4. 医学图像处理小波分析在医学图像处理中也扮演重要的角色。

专题讲座——小波变换PPT课件

专题讲座——小波变换PPT课件

第10页/共79页
部分小波波形
第11页/共79页
小波基函数
将小波母函数(t)进行伸缩和平移,
令伸缩因子(称尺度因子)为a,平移因子为,则:
a( , t)
a12(t
),a0,R
a
则称a( , t)是依赖参数a,的小波基函数。
将信号在这个函数系上分解,就得到连续小波变换
第12页/共79页
小波分析
• 小波变换通过平移母小波(mother wavelet) 可获得信号的时间信息,而通过缩放小波的 宽度(或者叫做尺度)可获得信号的频率特性。 对母小波的缩放和平移操作是为了计算小波 的系数,这些系数代表小波和局部信号之间 的相互关系。
第15页/共79页
CWT的变换过程图示
第16页/共79页
CWT小结
• 小波的缩放因子与信号频率之间的关系可以 这样来理解。缩放因子小,表示小波比较窄,
度量的是信号细节,表示频率w 比较高;相
反,缩放因子大,表示小波比较宽,度量的
是信号的粗糙程度,表示频率w 比较低。
第17页/共79页
离散小波变换
第18页/共79页
离散小波变换定义
任意L2(R)空间中的x(t)的DWT为:
__________
Wx ( j, k) R x(t) j,k (t) dt其中Biblioteka j( ,k t) 1 2j
(
t 2
j
k)
需要强调指出的是,这一离散化都是针对连续 的尺度参数和连续平移参数的,而不是针对时 间变量t的。
第4页/共79页
短时傅里叶变换STFT
确定信号局部频率特性的比较简单的方法是 在时刻ґ附近对信号加窗,然后计算傅里叶变 换。

小波变换在信号处理中的应用完美版PPT

小波变换在信号处理中的应用完美版PPT

B ( s | x x 0 | ) | log | x x 0 |
则 f ( x ) 在 x 0 具有 Lipschitz
指数
奇异性分析的方法:
光滑函数。
一个实函 (X数 ),满足:

(X)dx1

lim(X)0
x
例如,可取为高斯函数或B_样条函数。
定义: 1 ( x ) d ( x ) dx
Donoho 去噪方法:
不同阀值选取算法的去噪结果:
研究重点:
信号与噪声在小波变换域上的特征。 小波基的选择。 阈值的选取方法。
二.小波变换应用于信号检测:
瞬时信号检测问题。
在噪声中检测短时,非平稳,波形和到达时间 未知的信号。
H 0: H 1:
x(t)n(t)
x(t)S(t)n(t) t [0,T] 其中 S(t)只 : [t0在 ,t0T 0]非零。 n(t)为噪 T 0声 T 。基于小波 Nhomakorabea换的复合
SAR图 像数据
取大法:
归一化
小波 变换
光学图 像数据
归一化
小波 变换
两组小波 变换系数 中选大, 输出一组 小波系数
解译
逆小波 变换
海岸线检测方法
检测总框图:
更多资料请到 天天学习网 免费下 载
f ( x ) 在 x 0 具有 Lipschitz
存在常数
A ,使:
指数 , 则:
| W ( f )( x , s ) | A ( s | x x 0 | )
x 属于
x
的某个邻域
0
.
反过来,若
1 . | W ( f )( x 0 , s ) | As

小波分析PPT课件

小波分析PPT课件
4
一首数学史诗
• 多年的政治生涯及颠簸不定的生活,并没有使他放弃研究数学的强 烈兴趣.事实上,早在1807年他就研究了现在称之为Fourier分析的核 心内容.
• 1822年,正式出版推动世界科学研究进展的巨著——《热的解析理 论》(The Analytic Theory of Heat).由于这一理论成功地求解了困扰 科学家150年之久的牛顿二体问题微分方程,因此Fourier分析成为几 乎每个研究领域科学工作者乐于使用的数学工具,尤其是理论科学家。
• 目前,Fourier的思想和方法被广泛用于线性规划、大地测量以及电 话、收音机、x射线等难以计数的科学仪器中,是基础科学和应用科 学研究开发的系统平台。所以物理学家Maxwell称赞Fourier 分析是一 首伟大的数学史诗。
5
Fourier分析的核心内容
①用数学语言提出任何一个周期函数都能表示为一组正弦函数和余 弦函数之和。这一无限和现称之为Fourier级数。也就是说,任 何一条周期曲线,无论多么跳跃或不规则,都能表示成一组光滑 的曲线之和,见图。
实际上是将信 号投影在由正 弦和余弦函数 组成的正交基 上,对其实施 Fourier变换。
6
Fourier分析的核心内容
②他解释了为什么这一数学论断是有用的。1807年,他显示任何周 期函数(最下图形)是由正弦和余弦函数叠加而成。 Fourier分析 从本质上改变了数学家对函数的看法.他提供了某些微分方程的 直接求解方法,为计算机和CD等数字技术的实现铺平了道路。
但FFT 的本质还是Fourier变换。
10
Fourier变换的缺点
① Fourier分析对非线性问题感到力不从心。
因为非线性系统具有高度不可预测性,输入端微小的 变化会对输出端产生重大影响。例如牛顿定律方程是非线 性的,若用它来预测空间三个物体之间较长时间的行为是 十分困难的,甚至是不可能的,原因是该系统高度不稳定。 正如著名科学家Korner指出:“19世纪的伟大发现是证 明自然方程是线性的,20世纪的伟大发现是证明自然方程 是非线性的。” ② Fourier变换公式没有反映出随时间变化的频率。实际

语音的小波分析PPT课件

语音的小波分析PPT课件
同 t生成 V0 一样,存在一个 t生成闭子空间 W0且有双
尺度方程:
t 2 gk2t k k
上式称为小波函数双尺度方程。 由尺度函数和小波函数的构造归结为系数 h(k),g(k) 的设计。 而 h(k)和 g(k) 之间关系如下:
gk 11k h*1 k, k Z
15
第15页/共22页
• 小波变换是采用一种面积不变但形状不断变化 的分析窗口来对非平稳信号进行变换。
1
第1页/共22页
引言
• 傅里叶分析实现的是一种全局变换,要么完全 时域要么完全频域,无法表述信号的时频局部 性质,而这种性质是非平稳信号最根本最关键 的性质。
• 短时傅里叶变换不能根据信号高低频率的变化, 自适应调整分析窗口的宽度因而在时频局部化 的精细方面和灵活性方面不好。
• 小波分析是在傅里叶分析基础上发展起来的, 具有多分辨分析的特点,在时频域都具有表征 信号局部特征的能力,是一种时间窗和频率窗 都可以改变的时频局部化分析方法。
2
第2页/共22页
2 傅里叶变换
• 传统傅里叶变换公式如下:
F() f (t)*exp( jt)dt
f (t) 1
F () *exp( jt)d
m
m
17
第17页/共22页
4 小波变换
分解算法: 周期
重构公式为:
18
第18页/共22页
5 小波变换实例
谢 谢!
19
第19页/共22页
20
第20页/共22页
amplitude
浊音与清音的倒谱
hamming windowed voiced speech frame
0.6
0.4
0.2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
小波基的特性描述
12
暂态引信号言定位
10
10
10
5
5
5
f(t)
0
0
0
0
10
20
30
0
10
20
30
0
10
20
30
2
o
2
2
0
0
0
a=1
-2
-2
o
-2
o
20
10
20
30
50
10
20
30
50
10
20
30
0
0
0
a=2
o
o
o
-2
-5
-5
50
10
20
30 100
10
20
30
50
10
20
30
0
0
0
a=4
o
-5
小波分析及其应用
Wavelet Analysis and It’s Applications
西南交通大学 电气工程学院
何正友
(2012年6月)
1
本讲要点
小波包变换及最佳小波包选择 8.1小波基的选择问题 8.2实用小波基的构造问题 8.3小波变换后后处理问题
2
小波包变换及最佳小波包选择
1.小波包变换
8
小波分析应用中几个常见问题
9
8.1 小波基的选择问题
小波变换中小波基的选择给予了你无限的自由 自然也带来无限的挑战
10
8.1小波基的选择问题
小波变换与傅氏变换只有一种函数或变换核不同, 它不具有单一性,理论上有无限多种小波基或变换 核,可以满足各种问题的需要,但是,必须根据具 体问题选择合适的的小波基,否则就难以达到满意 的效果。例如,一些小波基对突变信号是好基,但 对非突变信号却是坏的.小波基的许多性质是相互关 联和制约的,因此在选择小波基时,不能脱离应用 对象和分析问题的侧重点。
26
图像处理中小波基选择
27
图像处理中小波基选择
28
图像处理中小波基选择
29
图像处理中小波基选择
30
图像处理中小波基选择
31
图像处理中小波基选择
32
图像处理中小波基选择
正交比较好,双正交也可以 对称优于非对称 紧支集 光滑度越高越好 高阶消失矩比较好
33
图像处理中小波基选择34来自图像处理中小波基选择结论:上述5个标准不是绝对的,不可以用单一的标准来进行小波
基的选择,在实际应用中还是要考虑多种影响因素进行比较分析。
另外,还可以根据多幅图像的统计特性来确定。
40
8.2实用小波基的构造问题
对于一个具体信号的小波分析,除研究如
何选择合适的小波基来分解信号外,有时
还必须根据应用目的构造特殊的小波基。
Haar ( Db-1 ) 不具有消失矩, 对高阶奇异点 检测无效
Db-2具有一阶
消失矩,对高
阶奇异点检测
无效
24
结论: db-3小波具有二阶消失矩,很容易探测出高
阶奇异点,也能探测低阶奇异点。 因此,在电力暂态信号的检测和特征提取中,
应考虑选用具有一定消失矩的小波。
25
图像处理领域小波基的选取
38
图像处理中小波基选择
Db-4和db-20是非对称小波基,对对称边界的压缩较为明显;周期边界不要求小波基的 对称性,所以对周期边界的压缩影响不大;antonini小波要优于brislawn;
39
图像处理中小波基选择
Db-4和db-20是非对称小波基,对对称边界的压缩较为明显;周期边界不要求小波基的 对称性,所以对周期边界的压缩影响不大;antonini小波要差于brislawn;
V0
V1(L)
W1(H)
V21(LL)
W21(HL)
V22(LH)
W22(HH)
j0 j 1 j2
V31(LLL) W31(HLL) V32(LHL) W32(HHL) V33(LLH) W33(HLH) V34(HHH) W34(HH H)
j 3
3
用滤波器实现
H0(z)
↓2
d
1 2
d1
0
H0(z)
i 5
MATLAB中关于小波包变换的m文件
用于小波包分解的m文件
wpdec 一维小波包分解,返回小波包分解树 Wpdec2 二维小波包分解,返回对应数据阵的分解树 Wpsplt 对小波包分解树的某个节点再分解,返回新的分解树 Wpcoef 提取分解树中某一个节点处的小波包系数 Wpfun 对给定的小波名字wname生成相应的小波包 Wp2wtree 从小波包分解树中提取小波树 Wenergy 分别计算小波包分解后概貌和细节的能量百分比
↓2
d
1 2
H1(z)
↓2
d
3 2
d
1 1
H0(z)
↓2
d
2 2
H1(z)
↓2
H1(z)
↓2
d
0 1
4
最佳小波包的选择---Shannon熵范数判据
母空间 信号本身的性质; 信号分解的目的;
“最佳”原则的选择 子空间
求出 代价函数
E1(x) xi2lgxi2
i
E 2(x) xipxp p,1p2
16
小波基的特性描述
17
小波基的特性描述
4
18
电力暂态信号的检测和特征提取领域小波基的选取
19
高阶奇异信号的检测
20
高阶奇异信号的检测
21
高阶奇异信号的检测
22
高阶奇异信号的检测
Haar ( Db-1 ) 不具有消失矩, 对高阶奇异点 检测无效
23
高阶奇异信号的检测
Db-3具有高阶消失矩,能检 测高阶和低阶奇异点
6
MATLAB中关于小波包变换的m文件 用于小波包重构的m文件
Wprcoef 小波包系数重构,即计算小波包分解树某一 节点处的重构系数
Wprec 一维小波包重构,即返回对应小波包分解树的 重建向量
Wprec2 二维小波包重构
7
MATLAB中关于小波包变换的m文件
用于小波分解结构操作的m文件
Wpcutree 剪切小波包分解树 Wpjoin 重新组合小波包 Bestlevt 计算完整的最佳小波包树 Besttree 计算最佳的小波包分解树 Wentropy 计算小波包的熵 Entrupd 更新小波包的熵值
o
-10
-5
o
50
10
20
30 200
10
20
30 100
10
20
30
0
0
0
a=8
o
o
o
-5
-20
-10
300
10
20
30 400
10
20
30 300
10
20
30
0
0
0
a=16
o
o
o
13
-30
-40
-30
0
10
20
30
0
10
20
30
0
10
20
30
暂态信号定位
14
暂态信号定位
15
小波基的特性描述
35
图像处理中小波基选择
36
图像处理中小波基选择
Db-4和db-20是非对称小波基,对对称边界的压缩较为明显;周期边界不要求小波基的
对称性,所以对周期边界的压缩影响不大;稍差于后面两种小波基的压缩结果;
37
图像处理中小波基选择
Db-4和db-20是非对称小波基,对对称边界的压缩较为明显;周期边界不要求小波基的 对称性,所以对周期边界的压缩影响不大;antonini小波要优于brislawn;
相关文档
最新文档