【中考数学必备专题】实际应用问题(含答案)

合集下载

中考数学专题实际应用题(解析版)

中考数学专题实际应用题(解析版)
(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)

中考数学复习攻略 专题6 方程与不等式的实际应用(含答案)

中考数学复习攻略 专题6 方程与不等式的实际应用(含答案)

专题六 方程与不等式的实际应用解决方程与不等式的实际应用题的一般步骤:①认真审题,理解题意,弄清题中的已知量、未知量以及它们之间的关系;②设未知数(合理地选择未知数是解题的关键);③列方程(组)或不等式;④解方程(组)或不等式(注意:解分式方程时必须要有“验根”这一步);⑤检验,对所求结果进行检验,看是否符合题意;⑥作答.解决方程与不等式的实际应用题时,首先要认真审题,从题中找出已知量与未知量之间的关系,然后根据题意列出关系式,进而解决相关问题.在解决问题的过程中要注意方程与不等式的解是否符合题意,涉及函数要检验自变量的取值范围,当题干中出现方案设计问题或最值问题时,往往需要根据题干中的已知条件和函数的增减性来解决方案设计或最值问题.中考重难点突破一次方程(组)的实际应用【例1】(2021·陕西中考)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.【解析】设这种服装每件的标价是x 元,根据“这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等”列出方程,然后解方程即可求解.【解答】解:设这种服装每件的标价是x 元.根据题意,得10×0.8x =11(x -30).解得x =110.答:这种服装每件的标价为110元.1.现有一条长度为359 mm 的铜管料,把它锯成长度分别为39 mm 和29 mm 的两种不同规格的小铜管(要求没有余料).每锯一次损耗1 mm 的铜管料.为了使铜管料损耗最少,应分别锯成39 mm 的小铜管__6__段,29 mm 的小铜管__4__段.2.某中学组织七年级全体学生参加社会实践,若只调配45座客车若干辆,则有15人没有座位;若只调配30座客车,则用车数量将增加3辆,且空出15个座位.(1)该学校七年级总共有多少学生?(2)若同时调配45座和30座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?解:(1)设只调配45座客车x 辆,则该学校七年级共有学生(45x +15)人,只调配30座客车需要(x +3)辆.由题意,得30(x +3)-(45x +15)=15.解得x =4.∴45x +15=45×4+15=180+15=195.答:该学校七年级共有学生195人;(2)设需要调配45座客车m 辆,30座客车n 辆,由题意,得45m +30n =195.∴n =13-3m 2. 又∵m ,n 均为正整数,∴⎩⎪⎨⎪⎧m =1,n =5 或⎩⎪⎨⎪⎧m =3,n =2. 答:需调配45座客车1辆,30座客车5辆或调配45座客车3辆,30座客车2辆.分式方程的实际应用【例2】(2021·常州中考)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20 t 水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?【解析】本题考查了分式方程的应用,读懂题意,找到合适的等量关系是解决问题的关键.设该景点在设施改造后平均每天用水x t ,则在改造前平均每天用水2x t ,根据“20 t 水可以比原来多用5天”列出方程并解答.【解答】解:设该景点在设施改造后平均每天用水x t ,则在改造前平均每天用水2x t.根据题意,得20x -202x=5. 解得x =2.经检验,x =2是原方程的解,且符合题意.答:该景点在设施改造后平均每天用水2 t .3.(2021·徐州中考)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?解:设该商品打折前每件x 元,则打折后每件0.8x 元.根据题意,得400x +2=4000.8x. 解得x =50.经检验,x =50是原方程的解,且符合题意.答:该商品打折前每件50元.方程与不等式的综合应用【例3】某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?【解析】(1)设每副围棋x 元,则每副象棋(x -8)元,根据“420元购买象棋数量=756元购买围棋数量”列出方程求解即可;(2)设购买围棋m 副,则购买象棋(40-m )副,根据题意列出不等式求解即可.【解答】解:(1)设每副围棋x 元,则每副象棋(x -8)元.根据题意,得420x -8=756x .解得x =18. 经检验,x =18是原方程的解,且符合题意.∴x -8=10.答:每副围棋18元,每副象棋10元;(2)设该校购买m 副围棋,则购买(40-m )副象棋.根据题意,得18m +10(40-m )≤600.解得m ≤25.∵m 为正整数,∴m 的最大值是25.答:该校最多可再购买25副围棋.4.(2021·玉林中考)某市垃圾处理厂利用焚烧垃圾产生的热能发电.有A ,B 两个焚烧炉,每个焚烧炉每天焚烧垃圾均为100 t ,每焚烧一吨垃圾,A 焚烧炉比B 焚烧炉多发电50度,A ,B 焚烧炉每天共发电55 000度.(1)求焚烧一吨垃圾,A 焚烧炉和B 焚烧炉各发电多少度?(2)若经过改进工艺,与改进工艺之前相比每焚烧一吨垃圾,A 焚烧炉和B 焚烧炉的发电量分别增加a %和2a %,则A ,B 焚烧炉每天共发电至少增加(5+a )%,求a 的最小值.解:(1)设焚烧一吨垃圾,A 焚烧炉发电m 度,B 焚烧炉发电n 度.根据题意,得⎩⎪⎨⎪⎧m -n =50,100(m +n )=55 000. 解得⎩⎪⎨⎪⎧m =300,n =250.答:焚烧一吨垃圾,A 焚烧炉发电300度,B 发焚烧炉发电250度;(2)由题意,得改进工艺后每焚烧一吨垃圾A 焚烧炉发电300(1+a %)度,则B 焚烧炉发电250(1+2a %)度,由题意,得100×300(1+a %)+100×250(1+2a %)≥55 000[1+(5+a )%].整理,得5a ≥55.解得a ≥11.∴a 的最小值为11.一元二次方程的实际应用【例4】(2021·烟台中考)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?【解析】(1)根据日利润=每件利润×日销售量,可求出售价为60元时的原利润,设售价应定为x 元,则每件的利润为(x -40)元,日销售量为20+10(60-x )5=(140-2x )件,根据日利润=每件利润×日销售量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)设该商品需要打a 折销售,根据销售价格不超过50元,列出不等式求解即可.【解答】解:(1)设售价应定为x 元,则每件的利润为(x -40)元,日销售量为20+10(60-x )5=(140-2x )件. 由题意,得(x -40)(140-2x )=(60-40)×20.整理,得x 2-110x +3 000=0.解得x 1=50,x 2=60(舍去).答:每件售价应定为50元;(2)设该商品需要打a 折销售.由题意,得62.5×a 10≤50. 解得a ≤8.答:该商品至少需打8折销售.5.列方程(组)解应用题:某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600 m 2的矩形试验茶园,便于成功后大面积推广.如图,茶园一面靠墙,墙长35 m ,另外三面用69 m 长的篱笆围成,其中一边开有一扇1 m 宽的门(不包括篱笆).求这个茶园的长和宽.解:设茶园AB 边的长为x m ,则BC 边的长为(69+1-2x ) m .根据题意,得x (69+1-2x )=600.整理,得x 2-35x +300=0.解得x 1=15,x 2=20.当x =15时,70-2x =40>35,不符合题意,舍去;当x =20时,70-2x =30<35,符合题意.答:这个茶园的长和宽分别为30 m ,20 m .6.如图,某城建部门计划在新建的城市广场的一块长方形空地上修建一个面积为1 200 m 2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知整个长方形空地的长为50 m ,宽为40 m.(1)求四周通道的宽度;(2)某建筑公司希望用80万元的承包金额承揽这项工程,城建部门认为金额太高需要降价,经过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.解:(1)设四周通道的宽度为x m ,则停车场的长为(50-2x ) m ,宽为(40-2x ) m.由题意,得(50-2x )(40-2x )=1 200.整理,得x 2-45x +200=0.解得x 1=5,x 2=40.当x =5时,40-2x =40-2×5=30,符合题意;当x =40时,40-2x =40-2×40=-40<0,不符合题意,舍去.答:四周通道的宽度为5 m ;(2)设每次降价的百分率为a .由题意,得80(1-a )2=51.2.解得a 1=0.2=20%,a 2=1.8(不合题意,舍去).答:每次降价的百分率为20%.中考专题过关1.(2021·吉林中考)港珠澳大桥是世界上最长的跨海大桥,它由桥梁和隧道两部分组成,桥梁和隧道全长共55 km.其中桥梁长度比隧道长度的9倍少4 km.求港珠澳大桥的桥梁长度和隧道长度.解:设港珠澳大桥隧道长度为x km ,桥梁长度为y km.由题意,得⎩⎪⎨⎪⎧x +y =55,y =9x -4. 解得⎩⎪⎨⎪⎧x =5.9,y =49.1. 答:港珠澳大桥的桥梁长度和隧道长度分别为49.1 km 和5.9 km.2.(2021·郴州中考)“七·一”建党节前夕,某校决定购买A ,B 两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A 奖品比B 奖品每件多25元,预算资金为1 700元,其中800元购买A 奖品,其余资金购买B 奖品,且购买B 奖品的数量是A 奖品的3倍.(1)求A ,B 奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A 奖品的资金不少于720元,A ,B 两种奖品共100件,求购买A ,B 两种奖品的数量,有哪几种方案?解:(1)设A 奖品的单价为x 元,则B 奖品的单价为(x -25)元.由题意,得800x ×3=1 700-800x -25. 解得x =40.经检验,x =40是原方程的解,且符合题意.∴x -25=15.答:A 奖品的单价为40元,B 奖品的单价为15元;(2)设购买A 奖品的数量为m 件,则购买B 奖品的数量为(100-m )件.由题意,得⎩⎪⎨⎪⎧40×0.8×m ≥720,40×0.8×m +15×0.8×(100-m )≤1 700. 解得22.5≤m ≤25.∵m 为正整数,∴m 的值为23,24,25.∴有三种方案:①购买A 奖品23件,B 奖品77件;②购买A 奖品24件,B 奖品76件;③购买A 奖品25件,B 奖品75件.3.(2021·朝阳中考)某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于38元,经市场调查发现:该商品每天的销售量y (件)与每件售价x (元)之间符合一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)设商场销售这种商品每天获利w (元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0).由所给函数图象可知,⎩⎪⎨⎪⎧25k +b =70,35k +b =50. 解得⎩⎪⎨⎪⎧k =-2,b =120. ∴y 与x 之间的函数关系式为y =-2x +120(20≤x ≤38);(2)根据题意,得(x -20)(-2x +120)=600.整理,得x 2-80x +1 500=0.解得x =30或x =50(不合题意,舍去).答:每件商品的售价应定为30元;(3)∵y =-2x +120,∴w =(x -20)y=(x -20)(-2x +120)=-2x 2+160x -2 400=-2(x -40)2+800.∵-2<0,20≤x ≤38,∴当x =38时,w 最大=792.∴当每件商品的售价定为38元时,每天销售利润最大,最大利润是792元.。

新人教版九年级数学中考专项复习——函数与实际问题应用题(附答案)

新人教版九年级数学中考专项复习——函数与实际问题应用题(附答案)

中考专项复习——函数与实际问题1.已知小明的家、体育场、文化宫在同一直线上. 下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是分钟)y 表示到小明家的距离(单位是千米).请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅱ)填空:(i )小明在文化宫停留了_____________min(ii )小明从家到体育场的速度为_______________km /min (iii )小明从文化宫回家的平均速度为_______________km /min(iv )当小明距家的距离为0.6km 时,他离开家的时间为_________________min (Ⅲ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.2.共享电动车是一种新理念下的交通工具:主要面向3~10km 的出行市场,现有A B 两种品牌的共享电动车,给出的图象反映了收费y 元与骑行时间x min 之间的对应关系,其中A 品牌收费方式对应1y ,B 品牌的收费方式对应2y . 请根据相关信息,解答下列问题:(Ⅰ)填表:骑行时间/min 10 20 25 A 品牌收费/元 8 B 品牌收费/元8(Ⅱ)填空:①B 品牌10分钟后,每分钟收费 元;②如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为300m /min ,小明家到工厂的距离为9km ,那么小明选择 品牌共享电动车更省钱;③直接写出两种品牌共享电动车收费相差3元时x 的值是 . (Ⅲ)直接写出1y ,2y 关于x 的函数解析式.y /元O 10 20 x /min8 63. 小明的父亲在批发市场按每千克1.5元批发了若干千克的西瓜进城出售,为了方便他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,请根据相关信息,解答下列问题:(Ⅰ)填表:售出西瓜x /kg 0 10 20 30 40 80手中持有的钱数y /元 50______120155190 ______(Ⅱ)填空:①降价前他每千克西瓜出售的价格是________元②随后他按每千克下降1元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450 元, 他一共批发了_________千克的西瓜 (Ⅲ)当0≤x ≤80 时求y 与x 的函数关系式.4. 工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t (时),甲组加工零件的数量为 y 甲(个),乙组加工零件的数量为y 乙(个),其函数图象如图所示.(I )根据图象信息填表:(Ⅱ)填空:①甲组工人每小时加工零件 个 ②乙组工人每小时加工零件 个③甲组加工 小时的时候,甲、乙两组加工零件的总数为480个 (Ⅲ)分别求出 y 甲、y 乙与t 之间的函数关系式.加工时间t (时) 3 4 8 甲组加工零件的数量(个)a =5. 4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.在甲书店所有书籍按标价总额的8折出售.在乙书店一次购书的标价总额不超过100元的按标价总额计费,超过100元后的部分打6折.设在同一家书店一次购书的标价总额为x (单位:元,0x ). (Ⅰ)根据题意,填写下表:一次购书的标价总额/元 50150300… 在甲书店应支付金额/元 120 … 在乙书店应支付金额/元130…(Ⅱ)设在甲书店应支付金额1y 元,在乙书店应支付金额2y 元,分别写出1y 、2y 关于x 的函数关系式; (Ⅲ)根据题意填空:① 若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额 元;② 若在同一个书店一次购书应支付金额为280元,则在甲、乙两个书店中的 书店购书的标价总额多; ③ 若在同一个书店一次购书的标价总额120元,则在甲、乙两个书店中的 书店购书应支付的金额少.6. 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境. 已知小明家、体育场、文具店依次在同一条直线上. 体育场离家3km ,文具店离家1.5km .周末小明从家出发,匀速跑步15min 到体育场;在体育场锻炼15min 后,匀速走了15min 到文具店;在文具店停留20min 买笔后,匀速走了30min 返回家.给出的图象反映了这个过程中小明离开家的距离km y 与离开家的时间min x 之间的对应关系.请根据相关信息,解答下列问题: (I )填表:离开家的时间/min6 12 20 50 70离开家的距离/ km 1.23(II )填空:① 体育场到文具店的距离为______km ② 小明从家到体育场的速度为______km /min ③ 小明从文具店返回家的速度为______km /min④ 当小明离家的距离为0.6km 时,他离开家的时间为______min (III )当045x ≤≤时,请直接写出y 关于x 的函数解析式.7. 一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:①每分钟进水______升,每分钟出水______升 ②容器中储水量不低于15升的时长是_________分钟 (Ⅲ)当0≤x ≤12时,请直接写出y 关于x 的函数解析式.8. 明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y (单位:m )与所用时间x (单位:min )之间的对应关系.请根据相关信息,解决下列问题: (Ⅰ)填表:(Ⅱ)填空:①明明家与书店的距离是 m ②明明在书店停留的时间是 min③明明与家距离900m 时,明明离开家的时间是 min (Ⅲ)当6≤t 14≤时,请直接写出y 与x 的函数关系式.时间/min23412容器内水量/L1020离开家的时间/min25811离家的距离/m4006009. 甲,乙两车从A 城出发前往B 城.在整个行程中,甲乙两车都以匀速行驶,汽车离开A 城的距离ykm 与时刻t 的对应关系如下图所示.请根据相关信息,解答下列问题:(I )填表:(II )填空:①A ,B 两城的距离为 km②甲车的速度为 km/h 乙车的速度为 km/h ③乙车追上甲车用了 h 此时两车离开A 城的距离是 km ④当9:00时,甲乙两车相距 km① 当甲车离开A 城120km 时甲车行驶了 h ② 当乙车出发行驶 h 时甲乙两车相距20km10.大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x ( °C )时对应的华氏温度为y ( °F ),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0°F 时,摄氏温度是多少°C ?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能求出此值;若不可能请说明理由 .从A 城出发的时刻 到达B 城的时刻甲 5:00 乙9:00摄氏温度/°C 0 10 20 30 40 华氏温度/°F3250688610411.甲、乙两车从A城出发前往B城.在整个行程中,甲车离开A城的距离1kmy与甲车离开A城的时间 hx的对应关系如图所示.乙车比甲车晚出发1h2,以60 km/h的速度匀速行驶.(Ⅰ)填空:①A,B两城相距km②当02x≤≤时,甲车的速度为km/h③乙车比甲车晚h到达B城④甲车出发4h时,距离A城km⑤甲、乙两车在行程中相遇时,甲车离开A城的时间为h(Ⅱ)当2053x≤≤时,请直接写出1y关于x的函数解析式.(Ⅲ)当1352x≤≤时,两车所在位置的距离最多相差多少km?y1/ km532312.已知聪聪家、体育场、文具店在同一直线上,下面的图象反映的过程是:聪聪从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示过程中聪聪离开家的时间,y 表示聪聪离家的距离.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:③ 聪聪家到体育场的距离为______km④ 聪聪从体育场到文具店的速度为______km/min ⑤ 聪聪从文具店散步回家的速度为______ km/min⑥ 当聪聪离家的距离为2 km 时,他离开家的时间为______min (Ⅲ)当10045≤≤x 时,请直接写出y 关于x 的函数解析式.13.同一种品牌的空调在甲、乙两个电器店的标价均是每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售;乙电器店的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x 为正整数). (Ⅰ)根据题意,填写下表:(Ⅱ)设在甲电器店购买收费y 1元,在乙电器店购买收费y 2元,分别写出y 1、y 2关于x 的函数关系式; (Ⅲ)当x > 6时,该校在哪家电器店购买更合算?并说明理由.参考答案1. 解:(Ⅰ)231 0.5(Ⅱ)填空: (i ) 25 (ii )115(iii )160 (iv )9或42(ii ) (Ⅲ)y =⎩⎪⎨⎪⎧115x (0≤x ≤15),1(15<x ≤30), 130-x +2(30<x ≤ 45).2.解:(Ⅰ)(Ⅱ)①0.2 ②B ③152或35 (Ⅲ)10.4 (0)y x x =≥ 26 0100.24 10x y x x ⎧=⎨+⎩,≤≤.,,>3. 解:(Ⅰ)85 330(Ⅱ)3.5 128(Ⅲ)设y 与x 的函数关系式是)0(≠+=k b kx y∵图象过),(500和)(330,80 ∴⎩⎨⎧+==b k b8033050解得⎩⎨⎧==505.3b k∴y 与x 的函数关系式为505.3+=x y )800(≤≤x4. (Ⅰ)(II ) ① 40 ② 120 ③ 7 (III ) (1)当03t 时 t y 40=甲 当43≤t <时120=甲y 当84≤t <时 140b t y +=甲∵图象经过(4 120)则1440120b +⨯= 解得:401-=b∴ 当84≤t <时 4040-=t y 甲∴⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲(2)设2b kt y +=乙 把(5,0) (8,360)分别代入得⎩⎨⎧+=+=22836050b k b k解得⎩⎨⎧-==6001202b k ∴y 乙与时间t 之间的函数关系式为:)乙85(600120≤≤-=t t y5. 解:(Ⅰ)40 240 50 220 (Ⅱ)10.8y x =(0x >) 当0100x <≤时 2y x =当100x >时 21000.6100y x =+⨯-() 即20.640y x =+ (Ⅲ)① 200 ② 乙 ③ 甲6. 解:(Ⅰ)2.4 1.5 1.25(Ⅱ)①1.5 ②0.2 ③0.05 ④3或83(Ⅲ)当015≤≤x 时 0.2=y x 当1530<≤x 时 3=y当3045<≤x 时 0.16=-+y x 7. (Ⅰ)填表:(Ⅱ)①5 3.75 ②13 (Ⅲ)当04x ≤<时5y x = 当412x <≤时5154y x =+8. 解:(Ⅰ)1000 600 (Ⅱ)①600 ②4 ③4.5或7或338(Ⅲ)300300068600812450480014x x y x x x -+≤≤⎧⎪=≤⎨⎪-≤⎩()(<)(12<)9. 解:(I )甲 10:00 乙 6:00(II )①300 ②60 100 ③1.5 150④60 ⑤2 ⑥ 1或210. 解:(Ⅰ)过程略 ∴华氏温度关于摄氏温度的函数表达式为1832y .x(Ⅱ)令0=y 则0328.1=+x 解得9160-=x ∴当华氏温度为0 °F 时摄氏温度是1609°C (Ⅲ)令x y =则x x =+328.1解得40-=x答:当华氏温度为- 40 °F 时,摄氏温度为-40°C 时,华氏温度的值与对应的摄氏温度的值相等.时间/min 2 3 4 12 容器内水量/L1015203011. 解:(Ⅰ)①360 ②60 ③56④6803 ⑤52或196 (Ⅱ)当0≤x ≤2时 160y x = 当2223x <≤时 1120y = 当222533x <≤时 1280803y x =- (Ⅲ)当1352x ≤≤时 由题意,可知甲车在乙车前面,设两车所在位置的距离相差y km 则2801908060302033y x x x =---=-()() ∵ 200>∴ y 随x 的增大而增大∴ 当5x =时y 取得最大值1103答:两车所在位置的距离最多相差1103 km 12.解:(Ⅰ) 1.5(Ⅱ)①2.5 ② ③ ④12或 (Ⅲ)当时 当时 13. 解:(Ⅰ)16800 33000 14400 36000 (Ⅱ)当0<≤5时 当>5时, 即; =⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数),1800x +6000(x >5且x 为正整数). (x >0且x 为正整数) (Ⅲ)设与的总费用的差为元.则 即. 当时 即 解得. ∴当时 选择甲乙两家电器店购买均可 531153702756545≤≤x 5.1=y 10065≤<x 730703+-=x y x 13000y x x 1300053000605y x%()118006000y x 1y 23000802400y x x %1y 2y y 180060002400y x x 6006000y x 0y 60060000x 10x10x∵<0 ∴随的增大而减小 ∴当6<x <10时1y >2y 在乙家电器店购买更合算 当x >10时<在甲家电器店购买更合算 600y x 1y 2y。

最新中考数学专题复习——二次函数的实际应用(面积最值问题11页)及答案

最新中考数学专题复习——二次函数的实际应用(面积最值问题11页)及答案

第 1 页二次函数的实际应用——面积最大(小)值问题知识要点:在生活理论中,人们经常面对带有“最〞字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。

求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用根本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度挪动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度挪动,假如P 、Q 两点同时出发,分别到达B 、C 两点后就停顿挪动.〔1〕运动第t 秒时,△PBQ 的面积y(cm²)是多少?〔2〕此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.〔3〕t 为何值时s 最小,最小值时多少?答案:[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门〔木质〕.花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米那么长为:x x 4342432-=+-(米)那么:)434(x x S -= ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大. [例3]:边长为4的正方形截去一个角后成为五边形ABCDE 〔如图〕,其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,那么矩形PNDM 的面积S=xy 〔2≤x≤4〕易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H那么有△AFB ∽△BHP∴PH BH BF AF =,即3412--=y x , 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】此题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考察学生的综合应用才能.同时,也给学生探究解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖〔如图(1)所示〕是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,假设将此种地砖按图(2)所示的形式铺设,且能使中间的阴影局部组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 那么BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10]当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2021浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2021庆阳市)兰州市“安居工程〞新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);点(x ,y )都在一个二次函数的图像上,(如下图),那么6楼房子的价格为 元/平方米.提示:利用对称性,答案:2080.3.如下图,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2 ∵AD ∥BC ∴△MAD ∽△MBN第 3 页 ∴MB MA BN AD =,即5512x b -=,)5(512x b -= )5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值. 4.(2021湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大〔 C 〕A .7B .6C .5D .45.如图,铅球运发动掷铅球的高度y (m)与程度间隔 x (m)之间的函数关系式是:35321212++-=x x y ,那么该运发动此次掷铅球的成绩是( D ) A .6 m B .12 m C .8 m D .10m解:令0=y ,那么:02082=--x x 0)10)(2(=-+x x〔图5〕 〔图6〕 〔图7〕6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,假如抛物线的最高点M 离墙1 m ,离地面340m ,那么水流落地点B 离墙的间隔 OB 是( B )A .2 mB .3 mC .4 mD .5 m 解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=3 7.(2021乌兰察布)小明在某次投篮中,球的运动道路是抛物线21 3.55y x =-+的一局部,如图7所示,假设命中篮圈中心,那么他与篮底的间隔 L 是〔 B 〕A .4.6mB .4.5mC .4mD .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.假设设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;〔2〕根据〔1〕中求得的函数关系式,描绘其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解:)240(x x y -=)20(22x x --=∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,假如用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)假如中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比拟(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,那么宽为350x -米,设面积为S 平方米. ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大. (2) 中间有n 道篱笆,那么宽为250+-n x 米,设面积为S 平方米. 那么:)50(212502x x n n x x S -+-=+-⋅= ∴当25=x 时,2625max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式. 解:∵∠APQ=90°,∴∠APB+∠QPC=90°.∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90°.∴△ABP ∽△PCQ.11.(2021年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?解:∵矩形MFGN ∽矩形ABCD∴MF=2MN =2x ∴ EM=10-2x∴S=x 〔10-2x 〕=-2x 2+10x=-2(x-2.5)2+12.5当x=2.5时,S 有最大值12.512.(2021四川内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,那么绳子的最低点距地面的间隔 为 0.5 米.答案:如下图建立直角坐标系那么:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,第 5 页⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2021黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.〔1〕求S 与x 之间的函数关系式,并写出自变量x 的取值范围;〔2〕当x 是多少时,矩形场地面积S 最大?最大面积是多少?解:〔1〕根据题意,得x x x x S 3022602+-=⋅-= 自变量的取值范围是〔2〕∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2021年南宁市)随着绿城南宁近几年城市建立的快速开展,对花木的需求量逐年进步.某园林专业户方案投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)〔1〕分别求出利润与关于投资量的函数关系式; 〔2〕假如这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?解:〔1〕设=,由图12-①所示,函数=的图像过〔1,2〕,所以2=, 故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过〔2,2〕,所以,故利润2y 关于投资量的函数关系式是2221x y =; 〔2〕设这位专业户投入种植花卉万元〔〕,那么投入种植树木(x -8)万元, 他获得的利润是万元,根据题意,得∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧,z 随x 的增大而增大所以,当8 x 时,z 的最大值为32.15.(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子〔纸板的厚度忽略不计〕.〔1〕要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?〔2〕你感到折合而成的长方体盒子的侧面积会不会有更大的情况?假如有,请你求出最大值和此时剪去的正方形的边长;假如没有,请你说明理由;〔3〕假如把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;假如有,请你求出最大值和此时剪去的正方形的边长;假如没有,请你说明理由.解:〔1〕设正方形的边长为cm , 那么. 即. 解得〔不合题意,舍去〕,. 剪去的正方形的边长为1cm .〔2〕有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2, 那么与的函数关系式为: 即. 改写为. 当时,.即当剪去的正方形的边长为2.25cm 时,长方体盒子的侧面积最大为40.5cm 2.〔3〕有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2.假设按图1所示的方法剪折, 那么与的函数关系式为: 即. 当时,.假设按图2所示的方法剪折, 那么与的函数关系式为:即.当时,.比拟以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm2.16.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m,跨度20m,相邻两支柱间的间隔均为5m.〔1〕将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式;〔2〕求支柱的长度;〔3〕拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:〔1〕根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.〔2〕可设,于是从而支柱的长度是米.〔3〕设是隔离带的宽,是三辆车的宽度和,那么点坐标是.过点作垂直交抛物线于,那么.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.第 7 页。

2019中考数学专题强化训练--实际应用型问题(含答案)

2019中考数学专题强化训练--实际应用型问题(含答案)

2019中考数学专题强化训练--实际应用型问题(含答案)第二部分专题二类型1 购买、销售、分配类问题.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为甲种水果10元/千克,乙种水果20元/千克.若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克.若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?解:设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意,得8x+18y=1700,10x+20y=1700+300,解得x=100,y=50.答:该店5月份购进甲种水果100千克,购进乙种水果50千克.设购进甲种水果a千克,需要支付的货款为元,则购进乙种水果千克,根据题意,得=10a+20=-10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3,解得a≤90.∵=-103.4,答:该企业XX年的利润能超过3.4亿元..为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知XX年该市投入基础教育经费5000万元,XX年投入基础教育经费7200万元.求该市这两年投入基础教育经费的年平均增长率;如果按中基础教育经费投入的年平均增长率计算,该市计划XX年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需XX元,则最多可购买电脑多少台?解:设该市这两年投入基础教育经费的年平均增长率为x,根据题意得50002=7200,解得x1=0.2=20%,x2=-2.2.答:该市这两年投入基础教育经费的年平均增长率为20%.XX年投入基础教育经费为7200×=8640,设购买电脑台,则购买实物投影仪台,根据题意得3500+XX≤86400000×5%,解得≤880.答:XX年最多可购买电脑880台.类型4 方案设计问题与最值问题.某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.求y与x的函数表达式,其中0≤x≤21;若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.解:根据题意,得y=90x+70=20x+1470,∴y与x的函数表达式为y=20x+1470.∵购买B种树苗的数量少于A种树苗的数量,∴21-x10.5.又∵y=20x+1470,且x取整数,∴当x=11时,y有最小值为1690,答:使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元..某学校为改善办学条件,计划采购A,B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.求A型空调和B型空调每台各需多少元;若学校计划采购A,B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?在的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?解:设A型空调和B型空调每台各需x元、y元,由题意得3x+2y=39000,4x-=6000,解得x=9000,y=6000,答:A型空调和B型空调每台各需9000元、6000元.设购买A型空调a台,则购买B型空调台,a≥1230-a9000a+600030-a217000,解得10≤a≤1213,∴a=10,11,12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台.设总费用为元,=9000a+6000=3000a+180000,∴当a=10时,取得最小值,此时=210000,答:采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元..我市从XX年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A,B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.求A,B两种型号电动自行车的进货单价;若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车辆,两种型号的电动自行车全部销售后可获利润y元.写出y与之间的函数关系式;该商店如何进货才能获得最大利润?此时最大利润是多少元?解:设A,B两种型号电动自行车的进货单价分别为x 元、元.由题意得50000x=60000x+500,解得x=2500,检验:当x=2500时,x≠0,所以x=2500是分式方程的解,且符合题意,此时x+500=3000.答:A,B两种型号电动自行车的进货单价分别为2500元,3000元.∵购进A型电动自行车辆,∴购进B型电动自行车辆.根据题意得y=+=-200+15000.根据题意得,2500+3000≤80000,解得≥20.又∵<30,∴20≤<30,由得y=-200+15000,∵-200<0,∴y随的增大而减小,∴当=20时,y取最大值,最大值为-200×20+15000=11000.此时30-=10.答:当购进A种型号电动自行车20辆,B种型号电动自行车10辆时,能获得最大利润,此时最大利润是11000元..某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.解:根据题意,y=400x+500=-100x+50000.∵100-x≤2x,∴x≥1003=3313.∵y=-100x+50000中=-1000,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.类型5 图象类问题.一辆汽车在某次行驶过程中,油箱中的剩余油量y与行驶路程x之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?解:设该一次函数的解析式为y=x+b,将,代入y=x +b中,0+b=45,b=60,解得=-110,b=60,∴该一次函数的解析式为y=-110x+60.当y=-110x+60=8时,解得x=520.即行驶520千米时,油箱中的剩余油量为8升.30-520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米..一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y与销售价x之间的函数关系如图所示.求y与x之间的函数关系式,并写出自变量x的取值范围;求每天的销售利润与销售价x之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?解:设y与x的函数解析式为y=x+b,将,代入,得10+b=30,16+b=24,解得=-1,b=40,所以y与x的函数解析式为y=-x+40.根据题意知,===-x2+50x-400=-2+225,∵a=-1163;由y1>y2得,15x+80>30x,解得x<163.故当租车时间为163小时时,两种选择一样;当租车时间大于163小时时,选择租车公司合算;当租车时间小于163小时时,选择共享汽车合算.。

中考数学专题练习一元一次方程的实际应用方案选择问题(含解析)

中考数学专题练习一元一次方程的实际应用方案选择问题(含解析)

欢送下载2021中考数学专题练习-一元一次方程的实际应用-方案选择问题〔含解析〕 、单项选择题1.“地球停电一小时〞活动的某地区烛光晚餐中, 设座位有x 排,每排坐30人, 那么有8人无座位;每排坐31人,那么空26个座位.那么以下方程正确的选项是〔 〕A. 30x-8=31x-26B. 30x+8=31x+26C. 30x+8=31x-26D. 30x-8=31x+262.超市推出如下优惠方案:〔1〕 一次性购物不超过100元,不享受优惠;〔2〕 一次性购物超过100元,但不超过300元一律9折;〔3〕 一次性购物超过300 元一律8折.王波两次购物分别付款80元、252元,如果他将这两次所购商品 一次性购置,那么应付款〔 〕A. 288 元B. 332 元N C. 288元或316 元r,D. 332元或363元二、填空题 3 .在甲、乙两家复印店打印文件,收费标准如下表所示:打印 _________ 张,两家 复印店收费相同.如果小明每月拨打本地 时间是长途 时间的 2倍,且每月总通话时间在 65—70分钟之间,那么他选择 _______________ 较为省钱〔填“全球通〞或“神州行〞〕 5 .某学校要买精美笔记本〔大于10本〕用作奖品,可以到甲、乙两家商店购置, 两商店的标价都是每本10元,甲商店的优惠条件是:购置10本以上,前面 10本按标价出售,从第11本开始按标价的七折出售;乙商店的优惠条件是:从 第一本起都按标价的八折出售.〔1〕假设要购置20本,到 商店买更省钱.欢送下载 学习必备 学习必备(2)学校现准备用296元钱买此种奖品,最多可买本.(3)买本时,到两家商店购置付款相等?三、解做题6.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购置商品超出300元之后,超出局部按原价的八折优惠;在乙超市累计购置商品超出200元之后,超出局部按原价的九折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)试比拟顾客到哪家超市购物更优惠?说明你的理由.7.某誉印社复印文件,复印页数不超过20时,每页收费0.12元;复印页数超过20时,超过局部每页收费降为0.09元.在某图书馆复印同样的文件,不管复印多少页,每页收费0.1元.设需要复印文件x页(x为正整数),请根据表中提供的信息答复以下问题:(I )用含有x的式子填写下表:(H)当x为何值时,两处收费相等;(m)当40Vx<50时,你认为在哪里复印省钱?(直接写出结果即可)8.加油啊!小朋友!春节快到了,移动公司为了方便学生上网查资料,提供了两种上网优惠方法:A.计时制:0.05元/分钟,B.包月制:50元/月(只限一台电脑上网),另外,不管哪种收费方式,上网时都得加收通讯费0.02元/分.(1)设小明某月上网时间为x分,请写出两种付费方式下小明应该支付的费用.(2)什么时候两种方式付费一样多?(3)如果你一个月只上网15小时,你会选择哪种方案呢?9.甲乙两个商场以同样的价格出售同样的商品,并且又各自推出不同的优惠举措, 甲商场的优惠举措是:累计购置100元商品后,再买的商品按原价的90%攵费; 乙商场那么是:累计购置50元商品后,再买商品按原价的95%攵费,顾客选择哪个商店购物获得更多的优惠?10.某超市为了回馈广阔新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物所有商品价格可获九折优惠;优惠二:交纳200元会费成为该超市的一员,所有商品价格可优惠八折优惠. (1)假设用x (元)表示商品价格,请你用含x的式子分别表示两种购物优惠后所花的钱数;欢送下载学习必备(2)当商品价格是多少元时,两种优惠后所花钱数相同;(3)假设某人方案在该超市购置价格为2700元的一台电脑,请分析选择那种优惠更省钱?四、综合题11.酒泉某校安排2名老师带着学生参加今年的科技夏令营活动,现有两家旅行社前来承包,报价均为每人2021元,他们都表示优惠:敦煌旅行社表示带队老师免费,学生按8折收费;祁连旅行社表示师生一律按7折收费,经核算,教师和学生参加两家旅行社的实际费用正好相等.(1)该校参加科技夏令营的学生共有多少人?(2)如果又增加了6名学生,学校应选择哪家旅行社?12.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍增一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球假设干盒(不小于5盒)问:(1)当购置乒乓球多少盒时,两种优惠方法付款一样?(2)当购置15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?13.某社区活动中央为鼓励居民增强体育锻炼, 准备购置10副某种品牌的羽毛球拍,x (x>20)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%销售;B超市:买一副羽毛球拍送2个羽毛球.(1)在A超市购置羽毛球拍和羽毛球的费用为 ,在B超市购置羽毛球拍和羽毛球的费用为.(用含x的代数式表示)(2)该活动中央决定只在一家超市购置10副球拍和100个羽毛球,你认为在哪家超市购置划算?为什么?14.莒县两商场以同样的价格出售同样的商品, 并且又各自推出不同的优惠方案:在万德福商场累计购物超过100元后,超出100元的局部按八折收费;在新世纪商场累计购物超过50元后,超出50元的局部按九折收费.(1)假设小薇妈妈准备购120元的商品,你建议小薇妈妈去_______ 商场购物(在横线上直接填写“万德福〞或者“新世纪〞);(2)请根据两家商场的优惠活动方案,讨论顾客到哪家商场购物花费少?并说明理由.15.为庆祝“六一〞儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购置服装参加演出,下面是某服装厂给出的演出服装的价格表:学习必备欢送下载如果两校分别单独购置服装,一共应付元.〔1〕如果甲、乙两校联合起来购置服装,那么比各自购置服装共可以节省多少钱?〔2〕甲、乙两校各有多少学生准备参加演出?〔3〕如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出, 请为两校设计一种省钱的购置服装方案.答案解析局部一、单项选择题1.“地球停电一小时〞活动的某地区烛光晚餐中, 设座位有x排,每排坐30人, 那么有8人无座位;每排坐31人,那么空26个座位.那么以下方程正确的选项是〔〕A.30x-8=31x-26B.30x+8=31x+26C.30x+8=31x-26D. 30x-8=31x+26【答案】C【考点】一元一次方程的实际应用-方案选择问题【解析】【解答】设座位有x排,根据总人数是一定的,列出一元一次方程30x+8=31x-26.故答案为:C.【分析】根据总人数一定的等量关系列出方程即可.2.超市推出如下优惠方案:〔1〕一次性购物不超过100元,不享受优惠;〔2〕一次性购物超过100元,但不超过300元一律9折;〔3〕一次性购物超过300 元一律8折.王波两次购物分别付款80元、252元,如果他将这两次所购商品一次性购置,那么应付款〔〕A. 288 元B. 332元H C. 288元或316元Q. 332元或363元【答案】C【解析】【解答】〔1〕假设第二次购物超过100元,但不超过300元,设此时所购物品价值为x元,那么90%x=252解彳 4 x=280;两次所购物价值为80+280=360>300, 所以享受8折优惠;因此王波应付360X 80%=288 〔 2〕假设第二次购物超过300 元,设此时购物价值为y元,那么80%y=252解彳3y=315,两次所购物价值为80+315=395,因此王波应付395X 80%=3167s.所以选C.【分析】能够分析出第二次购物可能有两种情况,进行讨论是解决此题的关键. 二、填空题欢送下载学习必备3.在甲、乙两家复印店打印文件,收费标准如下表所示:打印_________ 张,两家复印店收费相同.【答案】【考点】一元一次方程的实际应用-方案选择问题【解析】【解答】解:设打印x张,两家复印店收费相同.〔1〕当0<xW 20 时,根据题意得:0.5x=0.4x,此方程无解;〔2〕当x- 20 时,根据题意得:20K 0.5+ 〔x-20〕x 0.35=0.4x ,解得:x=60.答:打印60张,两家复印店收费相同.故答案为:60.【分析】此题首先判断要想两家复印店收费相同,打印的张数需超过20张,然后根据等量关系列出方程即可.4.某地中国移动“全球通〞与“神州行〞收费标准如下表:如果小明每月拨打本地时间是长途时间的2倍,且每月总通话时间在65—70分钟之间,那么他选择________________ 较为省钱〔填“全球通〞或“神州行〞〕【答案】全球通【考点】一元一次不等式的应用【解析】【解答】解:设小明打长途的时间为x分钟,那么打本地的时间为2x分钟,,选择“全球通〞所需总费用为13+0.15x+0.35 X2x=0.85x+13,选择“神州行〞所需总费用为0.3x+0.6 X2x=1.5x,当0.85x+13 >1.5x ,即0Vx < 20时,选择神州行较为省钱;当0.85x+13=1.5x ,即x=20时,都一样省钱;当0.85x+13<1.5x ,即x>20时,选择全球通较为省钱;欢送下载学习必备•••每月总通话时间在65〜70分钟之间,.•・选择全球通较为省钱,故答案为:全球通.【分析】设小明打长途的时间为x分钟,那么打本地的时间为2x分钟, 然后用含x的式子表示出选择“全球通〞所需总费用为0.85X+13,选择“神州行〞所需总费用为1.5x ,然后分三类进行讨论:①当0.85x+13>1.5x ,即0V x<20时,选择神州行较为省钱;②当0.85x+13=1.5x ,即x=20时,都一样省钱;③当0.85x+13<1.5x ,即x>20时,选择全球通较为省钱;然后根据每月总通话时间在65〜70分钟之间作出判断即可.5.某学校要买精美笔记本(大于10本)用作奖品,可以到甲、乙两家商店购置, 两商店的标价都是每本10元,甲商店的优惠条件是:购置10本以上,前面10本按标价出售,从第11本开始按标价的七折出售;乙商店的优惠条件是:从第一本起都按标价的八折出售.(1)假设要购置20本,到商店买更省钱.(2)学校现准备用296元钱买此种奖品,最多可买本.(3)买本时,到两家商店购置付款相等?【答案】乙;38; 30【考点】一元一次方程的实际应用-方案选择问题【解析】【解答】解:(1)甲商店买的费用10X10+10X 70%=170%, 乙商店买的费用20X 10X80%=1607s假设要购置20本,到乙商店买更省钱.(2)甲商店购置:(296- 10X10) + ( 10X70% +10=38本,乙商店购置:296+ (10X80% =37本,学校现准备用296元钱买此种奖品,最多可买38本.(3)设买x本时,到两家商店购置付款相等,根据题意,得10X 10+10X 0.7 (x- 10) =10X 0.8x 解得:x=30买30本时,到两家商店购置付款相等.【分析】(1)根据甲乙两店给出的优惠条件,算出买20本笔记本花费的购书款, 通过比拟得到在哪个商店购置较省钱;(2)通过计算得出在甲乙商店所能购置的笔记本数,比拟得出最大值;(3)根据等量关系列方程求解:甲商店购书款=10本X标价+超出10本的数目X70%乙商店购书款=购置的本数X 80% 三、解做题6.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购置商品超出300元之后,超出局部按原价的八折优惠;在乙超市累计购置商品超出200元之后,超出局部按原价的九折优惠.设顾客预计累计购物x元(x>300).欢送下载学习必备(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)试比拟顾客到哪家超市购物更优惠?说明你的理由.【答案】解:(1)二.在甲超市累计购置商品超出300元之后,超出局部按原价的八折优惠,•••在甲超市购物所付的费用为:300+0.8 (x- 300) =0.8x+60,;在乙超市累计购置商品超出200元之后,超出局部按原价的九折优惠,•••设顾客预计累计购物x元(x>300),在乙超市购物所付的费用为:200+0.9 (x- 200) =0.9x+20;(2)当0.8x+60=0.9x+20 时,解得:x=400,・•・当x=400元时,两家超市一样;当 0.8x+60<0.9x+20 时,解得:x>400,当x >400元时,甲超市更合算;当 0.8x+60 >0.9x+20 时,解得:x<400,当x<400元时,乙超市更合算.【考点】一元一次方程的实际应用-方案选择问题【解析】【分析】(1)根据总费用等于两次费用之和就可以分别表示出在两家 超市购物所付的费用;(2)根据(1)的结论分别讨论,三种情况就可以求出结论.7.某誉印社复印文件,复印页数不超过20时,每页收费0.12元;复印页数超过 20时,超过局部每页收费降为0.09元.在某图书馆复印同样的文件,不管复印 多少页,每页收费0.1元.设需要复印文件x 页(x 为正整数),请根据表中提供的信息答复以下问题: (I )用含有x 的式子填写下表:(H)当x 为何值时,两处收费相等;(m)当40Vx<50时,你认为在哪里复印省钱?(直接写出结果即可)【答案】(I ) 2.4+0.09(x-20)0.1x欢送下载 (H )当x=60时,两处收费相等(田)当40<x<50时,图书馆收费更省钱 【考点】一元一次方程的实际应用-方案选择问题【解析】【解答】(I)当x>20时,誉印社收费为24+0.09(x-20), 图书馆收 费为:0.1x; (H)由题意得:2.4+0.09(x-20)=0.1x, 解得 x=60,所以当 x=60 时,两处收费一样.(田)当x=60时,两处收费相等,.••当40Vx<50时,图书馆收 费更省钱.【分析】(I )根据收费标准,列代数式就行;(H )当x020时,两处收费显然 不一样,根据(I)的关系式列出方程,解出答案;(田)根据(H)的结果就可 以判断;此题的关键是将实际问题转化为数学模型.8 .加油啊!小朋友!春节快到了,移动公司为了方便学生上网查资料,提供了两 种上网优惠方法:A.计时制:0.05元/分钟,B.包月制:50元/月(只限一台 电脑上网),另学习必备外,不管哪种收费方式,上网时都得加收通讯费0.02元/分.(1)设小明某月上网时间为x分,请写出两种付费方式下小明应该支付的费用.(2)什么时候两种方式付费一样多?(3)如果你一个月只上网15小时,你会选择哪种方案呢?【答案】解:(1)根据题意得:第一种方式为:(0.05+0.02 ) x=0.07x .第二种方式为:50+0.02x.(2)设上网时长为x分钟时,两种方式付费一样多,依题意列方程为:(0.05+0.02 ) x=50+0.02x,解得x=1000,答:当上网时全长为1000分钟时,两种方式付费一样多;(3)当上网15小时,得900分钟时,A方案需付费:(0.05+0.02 ) X 900=63 (元),B方案需付费:50+0.02X900=68 (元),.「63< 68, ••・当上网15小时,选用方案A合算.【考点】列式表示数量关系,一元一次方程的实际应用-方案选择问题【解析】【分析】(1)根据第一种方式为计时制,每分钟0.05,第二种方式为包月制,每月50元,两种方式都要加收每分钟通信费0.02元可分别有x表示出收费情况.(2)根据两种付费方式,得出等式方程求出即可;(3)根据一个月只上网15小时,分别求出两种方式付费钱数,即可得出答案.9.甲乙两个商场以同样的价格出售同样的商品,并且又各自推出不同的优惠举措, 甲商场的优惠举措是:累计购置100元商品后,再买的商品按原价的90%攵费;乙商场那么是:累计购置50元商品后,再买商品按原价的95%攵费,顾客选择哪个商店购物获得更多的优惠?【答案】解:设在甲商场购置x元的花费为W甲元,在乙商场购置的花费为W 乙元,由题意,得欢送下载学习必备Wff =100+(X-100) X0.9=0.9x+10 (x>100)WJL =50+0.95 (x-50) =0.95x+2.5 (x>50).当W甲 > 明时,0.9x+10 >0.95x+2.5 ,x<150Wff =此时,0.9x+10=0.95x+2.5 , x=150Wff <雌时,0.9x+10<0.95x+2.5 , x>150.综上所述:当50Vx<150时,在乙商场购置优惠些,当x=150或x050时,在甲、乙两商场购置一样优惠,当x>150时,在甲商场购置优惠些【考点】一元一次不等式的应用【解析】【分析】设在甲商场购置x元的花费为W甲元,在乙商场购置的花费为W%元,根据连个商场的不同优惠方案列出解析式,再分情况建立不等式求出其解即可.10.某超市为了回馈广阔新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物所有商品价格可获九折优惠;优惠二:交纳200元会费成为该超市的一员,所有商品价格可优惠八折优惠. (1)假设用x (元)表示商品价格,请你用含x的式子分别表示两种购物优惠后所花的钱数;(2)当商品价格是多少元时,两种优惠后所花钱数相同;(3)假设某人方案在该超市购置价格为2700元的一台电脑,请分析选择那种优惠更省钱?【答案】解:(1)由题意可得:优惠一:付费为:0.9x ,优惠二:付费为:200+0.8x;(2)当两种优惠后所花钱数相同,那么0.9x=200+0.8x ,解得:x=2021,答:当商品价格是2021元时,两种优惠后所花钱数相同;(3)二.某人方案在该超市购置价格为2700元的一台电脑,.•.优惠一:付费为:0.9x=2430,优惠二:付费为:200+0.8x=2360, 答:优惠二更省钱.【考点】一元一次方程的实际应用-方案选择问题【解析】【分析】(1)根据题意分别得出两种优惠方案的关系式即可;(2)利用(1)中所列关系式,进而解方程求出即可;(3)将数据代入(1)中代数式求出即可.四、综合题11.酒泉某校安排2名老师带着学生参加今年的科技夏令营活动,现有两家旅行社前来承包,报价均为每人2021元,他们都表示优惠:敦煌旅行社表示带队老欢送下载学习必备师免费,学生按8折收费;祁连旅行社表示师生一律按7折收费,经核算,教师和学生参加两家旅行社的实际费用正好相等.(1)该校参加科技夏令营的学生共有多少人?(2)如果又增加了6名学生,学校应选择哪家旅行社?【答案】(1)解:设参加夏令营的学生有工名那么200 8 30%工=2 x 2000 乂7.%+2000 * 70必X=14答:参加夏令营的学生有1珞.(2)解:那么:敦煌旅行社的费用为:2000 x 80% x 20 = 3200元祁连旅行社的费用为2000 X 70%乂(14 + 642)= 308沅答:学校应该选择祁连旅行社【考点】一元一次方程的实际应用-方案选择问题【解析】【分析】(1)设参加夏令营的学生有x人,那么敦煌旅行社需付的费用为:2021X 80%x元,那么祁连旅行社需付费用2X2021X 70%+2021K 70%x元, 根据师和学生参加两家旅行社的实际费用正好相等,列出方程求解即可;(2)根据题意现在有20名学生,把x=20代入2021X 80%x算出敦煌旅行社需付的费用,把x=20代入2X 2021X 70%+2021< 70%x算出祁连旅行社需付费用, 然后再比大小即可得出结论.12.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍增一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球假设干盒(不小于5盒)问:(1)当购置乒乓球多少盒时,两种优惠方法付款一样?(2)当购置15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?【答案】(1)解:设购置x盒乒乓球时,两种优惠方法付款一样,根据题意有:30 X 5+ (x-5) X5= (30X 5+5x) X 0.9 ,解得x=20,答:购置20盒乒乓球时,两种优惠方法付款一样(2)解:当购置15盒时,甲店需付款30X5+ (15- 5) X5=200元.乙店需付款(30X 5+15X 5) X 0.9=202.5 元.由于200V202.5,所以去甲店合算.当购置30盒时,甲店需付款30 X 5+ (30-5) X5=275元.乙店需付款(30X5+30X5) X 0.9=270 元.由于275> 270,去乙店合算【考点】一元一次方程的实际应用-方案选择问题第10页欢送下载学习必备【解析】【分析】〔1〕设该班购置乒乓球x盒,根据乒乓球拍每幅定价30元, 乒乓球每盒定价5元,经洽谈后,甲店买一副球拍增一盒乒乓球,乙店全部按定价的9折优惠.可列方程求解.〔2〕根据各商店优惠条件计算出所需款数确定去哪家商店购置合算.13.某社区活动中央为鼓励居民增强体育锻炼, 准备购置10副某种品牌的羽毛球拍,x 〔x>20〕个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折〔按标价的90%销售;B超市:买一副羽毛球拍送2个羽毛球.〔1〕在A超市购置羽毛球拍和羽毛球的费用为 ,在B超市购置羽毛球拍和羽毛球的费用为.〔用含x的代数式表示〕〔2〕该活动中央决定只在一家超市购置10副球拍和100个羽毛球,你认为在哪家超市购置划算?为什么?【答案】〔1〕 270+2.7x; 30x+240〔2〕解:当x=10 时,270+2.7X10=540, 30x+240=30X 10+240=54〔^答:A、B花费一样多【考点】一元一次方程的实际应用-方案选择问题【解析】【解答】解:〔1〕在A超市购置羽毛球拍和羽毛球的费用为:10X 30X 0.9+3 X 0.9 Xx=270+2.7x,在B超市购置羽毛球拍和羽毛球的费用:10 X 30+3 〔 10x- 20〕 =30x+240, 故答案为:270+2.7x; 30x+240;【分析】〔1〕根据购置费用=单价X数量建立关系就可以表示出在两个超市购置羽毛球拍和羽毛球的费用;〔2〕把x=10分别代入两个代数式可得答案.14.莒县两商场以同样的价格出售同样的商品, 并且又各自推出不同的优惠方案:在万德福商场累计购物超过100元后,超出100元的局部按八折收费;在新世纪商场累计购物超过50元后,超出50元的局部按九折收费.〔1〕假设小薇妈妈准备购120元的商品,你建议小薇妈妈去_____ 商场购物〔在横线上直接填写“万德福〞或者“新世纪〞〕;〔2〕请根据两家商场的优惠活动方案,讨论顾客到哪家商场购物花费少?并说明理由.【答案】〔1〕新世纪〔2〕解:I.当累计购物不超过50元时,两家商场购物都不享受优惠,且两家商场以同样价格出售同样商品,因此到两家商场购物花费一样II.当累计购物超过50元而不到100元时,享受新世纪的购物优惠,不享受万德福商场的购物优惠,因此到新世纪购物花费少;m.当累计超过100元时,设累计购物x〔x>100〕元.①假设到万德福商场购物花费少,那么第11页欢送下载学习必备100+0.8 (x- 100) <50+0.9 (x-50),解得x>150.这就是说,累计购物超过150元时,到万德福商场购物花费少.②假设到新世纪商场购物花费少,那么100+0.8 (x- 100) >50+0.9 (x-50),解得x<150.这就是说,累计购物超过100元而不到150元时,到新世纪商场购物花费少.③假设100+0.8 (x- 100) =50+0.9 (x-50),解得x=150.这就是说,累计购物为150元时,到万德福和新世纪两家商场购物花一样【考点】一元一次不等式的应用【解析】【解答】解:(1) 100+ (120— 100) X 0.8=116 (元),50+ (120-50) X 0.9=113 (元),116 元>113 元,故建议小薇妈妈去新世纪商场购物;故答案为:新世纪.【分析】(1)根据两种优惠方式算出购置120元物品需要消耗的钱算出来,选出较少的那一个即可.(2)根据题目所给的优惠方式分类讨论即可.15.为庆祝“六一〞儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购置服装参加演出,下面是某服装厂给出的演出服装的价格表:如果两校分别单独购置服装,一共应付元.(1)如果甲、乙两校联合起来购置服装,那么比各自购置服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出, 请为两校设计一种省钱的购置服装方案.【答案】(1)解:依题意知,甲乙共92人,联合购置比单独买节省:5000-92X40=1320 (元).(2)解:设甲学校人数为x人,x<90,那么乙人数为92-x人.x>92-x,解得x>46, 92-x <46所以甲单独购置花费50x元,乙单独购置花费60 (92-x)元得方程:50x+60 (92-x) =5000 .解得x=52.第12页欢送下载学习必备那么乙有92-52=40 〔人〕.〔3〕解:依题意知当甲少10人,那么全部人数为92-10=82 〔人〕.假设两校联合购置每套为50元,82 X 50=4100 〔元〕.假设两校联合购置91套,那么每套为40元,只需91X40=3640 〔元〕因此最省钱的购置服装方案是两校联合购置91套服装〔即比实际人数多购9套〕.【考点】一元一次不等式的应用【解析】【分析】〔1〕依题意知,甲乙共92人,由表中数据可以求出答案.〔2〕设甲学校人数为x人,x<90,那么乙人数为92-x人;根据题意可以得出x 的范围;从而得出方程50x+60 〔92-x〕 =5000 .解之即可.〔3〕依题意知当甲少10人,那么全部人数为92-10=82 〔人〕.由表中数据可以得出此时联合购置最优惠.第13页。

中考数学复习之一次不等式的实际应用(含答案)

中考数学复习之一次不等式的实际应用(含答案)

中考数学复习之一次不等式的实际应用(含答案)1. 为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A. 16个B. 17个C. 33个D. 34个2. 甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3∶2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了.这是因为()A. 商贩A的单价大于商贩B的单价B. 商贩A的单价等于商贩B的单价C. 商贩A的单价小于商贩B的单价D. 赔钱与商贩A、商贩B的单价无关3. 2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高之和不超过115 cm.某厂家生产符合该规定的行李箱,已知行李箱的宽为20 cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为____________cm.4. 东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,每套悠悠球的售价至少是多少元?5. 为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?6. 为迎接“七·一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好..全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?7. 某电子超市销售甲、乙两种型号的蓝牙音箱,每台进价分别为240元,140元,下表是近两周的销售情况:(1)求甲、乙两种型号蓝牙音箱的销售单价;(2)若超市准备用不多于6000元的资金再采购这两种型号的蓝牙音箱共30台,求甲种型号的蓝牙音箱最多能采购多少台?8. (2018娄底)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨,每台B型设备日处理能力为15吨,购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠,问:采用(1)设计的哪种方案,使购买费用最少,为什么?9. 某地2015年为做好“精准扶贫”工作,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天补助8元,1000户以后每天补助5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.10.某中学展开了“保护环境,绿化校园”主题月活动,在校团委的倡议下,全校师生共捐款4363元用于购买桂花树和丁香树绿化校园.(1)若购买5棵桂花树和4棵丁香树需花费410元,购买3棵桂花树和2棵丁香树需花费230元,求桂花树和丁香树的单价;(2)按校团委规划,准备购买桂花树和丁香树共100棵,且购买桂花树的数量不少于34棵,请你分析有哪几种购买方案.参考答案:1-2 AA3. 554. 解:(1)设第一批悠悠球每套的进价是x 元,根据题意,得1.5×500x =900x +5,解得x =25,经检验,x =25是原方程的解,且符合题意,答:第一批悠悠球每套的进价是25元;(2)设每套悠悠球售价为a 元,根据题意,得(50025+90025+5)a -(500+900)≥(500+900)×25% 解得a ≥35,答:每套悠悠球的售价至少是35元.5. 解:(1)设改建后绿化区的面积为x 亩,则休闲区的面积为20%x 亩,根据题意得,x +20%x =162,解得x =135,∴休闲区的面积为135×20%=27,答:改建后的绿化区的面积为135亩,休闲区的面积为27亩;(2)设绿化区的面积为x 亩,则休闲区的面积为(162-x )亩,根据题意得35000x +25000(162-x )≤5500000,解得x ≤145,答:绿化区的面积最多可以达到145亩.6. 解:(1)设每辆大客车的座位数为x 个,每辆小客车的座位数为y 个,根据题意得⎩⎨⎧x -y =15 4x +6y =310, 解得⎩⎨⎧x =40y =25, 答:每辆大客车的座位数为40个,每辆小客车的座位数为25个;(2)设租用小客车a 辆,则租用大客车(10-a )辆,根据题意得40(10-a )+25a ≥310+40,解得a ≤103,∵a 为整数,∴a 的最大值为3.答:最多租用小客车3辆.7. 解:(1)设甲种型号蓝牙音箱的销售单价为x 元,乙种型号蓝牙音箱的销售单价为y 元,根据题意得,⎩⎨⎧3x +7y =21605x +14y =4020, 解得⎩⎨⎧x =300y =180. 答:甲种型号蓝牙音箱的销售单价为300元,乙种型号蓝牙音箱的销售单价为180元;(2)设甲种型号的蓝牙音箱采购a 台,根据题意得,240a +140(30-a )≤6000,解得a ≤18.答:甲种型号的蓝牙音箱最多能采购18台.8. 解:(1)设购买A 型设备x 台,则购买B 型设备(10-x )台,根据题意得,12x +15(10-x )≥140,解得 x ≤103,∵x 为非负整数,∴x 可取值为0,1,2,3,∴共有4种方案:①A 型0台,B 型10台;②A 型1台,B 型9台;③A 型2台,B 型8台;④A 型3台,B 型7台;(2)方案①:A 型0台,B 型10台时,购买费用为4.4×10=44万元,∴44×90%=39.6万元, 方案②:A 型1台,B 型9台时,购买费用为3×1+4.4×9=42.6万元,∴42.6×90%=38.34万元,方案③:A 型2台,B 型8台时,购买费用为3×2+4.4×8=41.2万元,∴41.2×90%=37.08万元,方案④:A 型3台,B 型7台时,购买费用为3×3+4.4×7=39.8万元,∴采用方案③A 型2台,B 型8台时,购买费用最少.9. 解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意得:1280(1+x )2=1280+1600,解得x =0.5或x =-2.5(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设2017年该地有a 户享受到优先搬迁租房奖励,根据题意得,∵1000×8×400=3200000<5000000,∴a >1000,∴1000×8×400+(a -1000)×5×400≥5000000,解得a ≥1900,答:2017年该地至少有1900户享受到优先搬迁租房奖励.10.解:(1)设桂花树的单价为x 元,丁香树的单价为y 元,根据题意得,⎩⎨⎧5x +4y =4103x +2y =230, 解得⎩⎨⎧x =50y =40, 答:桂花树和丁香树的单价分别为50元和40元;(2)设购买a 棵桂花树,则购买(100-a )棵丁香树,则有50a +40(100-a )≤4363, 解得a ≤36.3,∵a ≥34且a 为正整数,∴a =34,35,36,∴共有3种购买方案,方案一:购买桂花树34棵,丁香树66棵;方案二:购买桂花树35棵,丁香树65棵;方案三:购买桂花树36棵,丁香树64棵;答:有三种购买方案;分别是购买桂花树34棵,丁香树66棵;购买桂花树35棵,丁香树65棵;购买桂花树36棵,丁香树64棵.。

2023年中考数学-----方程的实际应用篇专项练习题(含答案解析)

2023年中考数学-----方程的实际应用篇专项练习题(含答案解析)

2023年中考数学-----方程的实际应用篇专项练习题(含答案解析)1.中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.【分析】设高铁的平均速度为xkm/h,由运行里程缩短了40千米得:x+40=3.5(x﹣200),可解得高铁的平均速度为296km/h.【解答】解:设高铁的平均速度为xkm/h,则普通列车的平均速度为(x﹣200)km/h,由题意得:x+40=3.5(x﹣200),解得:x=296,答:高铁的平均速度为296km/h.2.在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【分析】(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,利用路程=速度×时间,结合甲追上乙时二者的行驶路程相等,即可得出关于x的一元一次方程,解之即可求出乙骑行的速度,再将其代入1.2x中即可求出甲骑行的速度;(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,利用时间=路程÷速度,结合乙比甲多用20分钟,即可得出关于y的分式方程,解之经检验后即可求出乙骑行的速度,再将其代入1.2y中即可求出甲骑行的速度.【解答】解:(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,依题意得:×1.2x=2+x,解得:x=20,∴1.2x=1.2×20=24.答:甲骑行的速度为24千米/时.(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,依题意得:﹣=,解得:y=15,经检验,y=15是原方程的解,且符合题意,∴1.2y=1.2×15=18.答:甲骑行的速度为18千米/时.3.为改善村容村貌,阳光村计划购买一批桂花树和芒果树.已知桂花树的单价比芒果树的单价多40元,购买3棵桂花树和2棵芒果树共需370元.(1)桂花树和芒果树的单价各是多少元?(2)若该村一次性购买这两种树共60棵,且桂花树不少于35棵.设购买桂花树的棵数为n,总费用为w元,求w关于n的函数关系式,并求出该村按怎样的方案购买时,费用最低?最低费用为多少元?【分析】(1)设桂花树的单价是x元,可得:3x+2(x﹣40)=370,解得桂花树的单价是90元,芒果树的单价是50元;(2)根据题意得w=40n+3000,由一次函数性质得购买桂花树35棵,购买芒果树25棵时,费用最低,最低费用为4400元.【解答】解:(1)设桂花树的单价是x元,则芒果树的单价是(x﹣40)元,根据题意得:3x+2(x﹣40)=370,解得x=90,∴x﹣40=90﹣40=50,答:桂花树的单价是90元,芒果树的单价是50元;(2)根据题意得:w=90n+50(60﹣n)=40n+3000,∴w关于n的函数关系式为w=40n+3000,∵40>0,∴w随n的增大而增大,∵桂花树不少于35棵,∴n≥35,∴n=35时,w取最小值,最小值为40×35+3000=4400(元),此时60﹣n=60﹣35=25(棵),答:w关于n的函数关系式为w=40n+3000,购买桂花树35棵,购买芒果树25棵时,费用最低,最低费用为4400元.4.某水果经营户从水果批发市场批发水果进行零售,部分水果批发价格与零售价格如下表:(1)第一天,该经营户用1700元批发了菠萝和苹果共300kg,当日全部售出,求这两种水果获得的总利润?(2)第二天,该经营户依然用1700元批发了菠萝和苹果,当日销售结束清点盘存时发现进货单丢失,只记得这两种水果的批发量均为正整数且菠萝的进货量不低于88kg,这两种水果已全部售出且总利润高于第一天这两种水果的总利润,请通过计算说明该经营户第二天批发这两种水果可能的方案有哪些?【分析】(1)设第一天,该经营户批发了菠萝xkg,苹果ykg,根据该经营户用1700元批发了菠萝和苹果共300kg,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用总利润=每千克的销售利润×销售数量(购进数量),即可求出结论;(2)设购进mkg菠萝,则购进kg苹果,根据“菠萝的进货量不低于88kg,且这两种水果已全部售出且总利润高于第一天这两种水果的总利润”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m,均为正整数,即可得出各进货方案.【解答】解:(1)设第一天,该经营户批发了菠萝xkg,苹果ykg,依题意得:,解得:,∴(6﹣5)x+(8﹣6)y=(6﹣5)×100+(8﹣6)×200=500(元).答:这两种水果获得的总利润为500元.(2)设购进mkg菠萝,则购进kg苹果,依题意得:,解得:88≤m<100.又∵m,均为正整数,∴m可以为88,94,∴该经营户第二天共有2种批发水果的方案,方案1:购进88kg菠萝,210kg苹果;方案2:购进94kg菠萝,205kg苹果.5.某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?【分析】(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,根据“购进A 种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,利用总价=单价×数量,结合购进A种农产品的件数不超过B种农产品件数的3倍且总价不超过5400元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,设两种农产品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.【解答】解:(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,依题意得:,解得:.答:每件A种农产品的价格是120元,每件B种农产品的价格是150元.(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,依题意得:,解得:20≤m≤30.设两种农产品全部售出后获得的总利润为w元,则w=(160﹣120)m+(200﹣150)(40﹣m)=﹣10m+2000.∵﹣10<0,∴w随m的增大而减小,∴当m=20时,w取得最大值,此时40﹣m=40﹣20=20.答:当购进20件A种农产品,20件B种农产品时获利最多.6.在某市组织的农机推广活动中,甲、乙两人分别操控A、B两种型号的收割机参加水稻收割比赛.已知乙每小时收割的亩数比甲少40%,两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;甲、乙在收割过程中对应收稻谷有一定的遗落或破损,损失率分别为3%,2%.(1)甲、乙两人操控A、B型号收割机每小时各能收割多少亩水稻?(2)某水稻种植大户有与比赛中规格相同的100亩待收水稻,邀请甲、乙两人操控原收割机一同前去完成收割任务,要求平均损失率不超过2.4%,则最多安排甲收割多少小时?【分析】(1)设甲操控A型号收割机每小时收割x亩水稻,则乙操控B型号收割机每小时收割(1﹣40%)x亩水稻,利用工作时间=工作总量÷工作效率,结合乙比甲多用0.4小时完成任务,即可得出关于x的分式方程,解之经检验后即可求出甲操控A型号收割机每小时收割水稻的亩数,再将其代入(1﹣40)x中即可求出乙操控B型号收割机每小时收割水稻的亩数;(2)设安排甲收割y小时,则安排乙收割小时,根据要求平均损失率不超过2.4%,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设甲操控A型号收割机每小时收割x亩水稻,则乙操控B型号收割机每小时收割(1﹣40%)x亩水稻,依题意得:﹣=0.4,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴(1﹣40%)x=(1﹣40%)×10=6.答:甲操控A型号收割机每小时收割10亩水稻,乙操控B型号收割机每小时收割6亩水稻.(2)设安排甲收割y小时,则安排乙收割小时,依题意得:3%×10y+2%×6×≤2.4%×100,解得:y≤4.答:最多安排甲收割4小时.7.习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1万元,用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过46万元,则甲种农机具最多能购买多少件?【分析】(1)设购买1件乙种农机具需要x万元,则购买1件甲种农机具需要(x+1)万元,利用数量=总价÷单价,结合用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同,即可得出关于x的分式方程,解之经检验后即可得出购买1件乙种农机具所需费用,再将其代入(x+1)中即可求出购买1件甲种农机具所需费用;(2)设购买m件甲种农机具,则购买(20﹣m)件乙种农机具,利用总价=单价×数量,结合总价不超过46万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设购买1件乙种农机具需要x万元,则购买1件甲种农机具需要(x+1)万元,依题意得:=,解得:x=2,经检验,x=2是原方程的解,且符合题意,∴x+1=2+1=3.答:购买1件甲种农机具需要3万元,1件乙种农机具需要2万元.(2)设购买m件甲种农机具,则购买(20﹣m)件乙种农机具,依题意得:3m+2(20﹣m)≤46,解得:m≤6.答:甲种农机具最多能购买6件.8.金鹰酒店有140间客房需安装空调,承包给甲、乙两个工程队合作安装,每间客房都安装同一品牌同样规格的一台空调,已知甲工程队每天比乙工程队多安装5台,甲工程队的安装任务有80台,两队同时安装.问:(1)甲、乙两个工程队每天各安装多少台空调,才能同时完成任务?(2)金鹰酒店响应“绿色环保”要求,空调的最低温度设定不低于26℃,每台空调每小时耗电1.5度;据预估,每天至少有100间客房有旅客住宿,旅客住宿时平均每天开空调约8小时.若电费0.8元/度,请你估计该酒店每天所有客房空调所用电费W(单位:元)的范围?【分析】(1)设乙工程队每天安装x台空调,则甲工程队每天安装(x+5)台空调,根据甲、乙两个工程队同时完成安装任务,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每天有m(100≤m≤140)间客房有旅客住宿,利用每天所有客房空调所用电费W=电费的单价×每天旅客住宿耗电总数,即可得出W关于m的函数关系式,再利用一次函数上点的坐标特征,即可求出W的取值范围.【解答】解:(1)设乙工程队每天安装x台空调,则甲工程队每天安装(x+5)台空调,依题意得:=,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴x+5=15+5=20.答:甲工程队每天安装20台空调,乙工程队每天安装15台空调,才能同时完成任务.(2)设每天有m (100≤m ≤140)间客房有旅客住宿,则W =0.8×1.5×8m =9.6m . ∵9.6>0,∴W 随m 的增大而增大,∴9.6×100≤W ≤9.6×140,即960≤W ≤1344.答:该酒店每天所有客房空调所用电费W (单位:元)的范围为不少于960元且不超过1344元.9.今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元,由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的32,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?【分析】(1)设去年每吨土豆的平均价格是x 元,则第一次采购每吨土豆的平均价格为(x +200)元,第二次采购每吨土豆的平均价格为(x ﹣500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列出分式方程求解即可;(2)先求出今年采购的土豆数,根据采购的土豆需不超过60天加工完毕,加工成薯片的土豆数量不少于加工成淀粉的土豆数量的,据此列出不等式组并求解,然后由一次函数的性质求出最大利润即可.【解答】解:(1)设去年每吨土豆的平均价格是x元,则今年第一次采购每吨土豆的平均价格为(x+200)元,第二次采购每吨土豆的平均价格为(x﹣200)元,由题意得:×2=,解得:x=2200,经检验,x=2200是原分式方程的解,且符合题意,答:去年每吨土豆的平均价格是2200元;(2)由(1)得:今年采购的土豆数为:×3=375(吨),设应将m吨土豆加工成薯片,则应将(375﹣m)吨加工成淀粉,由题意得:,解得:150≤m≤175,设总利润为y元,则y=700m+400(375﹣m)=300m+150000,∵300>0,∴y随m的增大而增大,∴当m=175时,y的值最大=300×175+150000=202500,答:为获得最大利润,应将175吨土豆加工成薯片,最大利润是202500元.10.如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.【分析】(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据扩充后的矩形绿地面积为800m,即可得出关于x的一元二次方程,解之即可得出x 的值,将其正值分别代入(35+x)及(15+x)中,即可得出结论;(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据实地测量发现新的矩形绿地的长宽之比为5:3,即可得出关于y的一元一次方程,解之即可得出y值,再利用矩形的面积计算公式,即可求出新的矩形绿地面积.【解答】解:(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据题意得:(35+x)(15+x)=800,整理得:x2+50x﹣275=0解得:x1=5,x2=﹣55(不符合题意,舍去),∴35+x=35+5=40,15+x=15+5=20.答:新的矩形绿地的长为40m,宽为20m.(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据题意得:(35+y):(15+y)=5:3,即3(35+y)=5(15+y),解得:y=15,∴(35+y)(15+y)=(35+15)×(15+15)=1500.答:新的矩形绿地面积为1500m2.11.建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?【分析】(1)设该市改造老旧小区投入资金的年平均增长率为x,利用2021年投入资金金额=2019年投入资金金额×(1+年平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设该市在2022年可以改造y个老旧小区,根据2022年改造老旧小区所需资金不多于2022年投入资金金额,即可得出关于y的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:(1)设该市改造老旧小区投入资金的年平均增长率为x,依题意得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市改造老旧小区投入资金的年平均增长率为20%.(2)设该市在2022年可以改造y个老旧小区,依题意得:80×(1+15%)y≤1440×(1+20%),解得:y≤,又∵y为整数,∴y的最大值为18.答:该市在2022年最多可以改造18个老旧小区.12.南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?【分析】(1)利用总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出a的值;(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,根据真丝围巾进货件数不低于真丝衬衣件数的2倍,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,设两种商品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w 关于x的函数关系式,再利用一次函数的性质,即可解决最值问题;(3)设每件真丝围巾降价y元,利用总利润=每件的销售利润×销售数量,结合要保证销售利润不低于原来最大利润的90%,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)依题意得:50a+80×25=15000,解得:a=260.答:a的值为260.(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,依题意得:300﹣x≥2x,解得:x≤100.设两种商品全部售出后获得的总利润为w元,则w=(300﹣260)x+(100﹣80)(300﹣x)=20x+6000.∵20>0,∴w随x的增大而增大,∴当x=100时,w取得最大值,最大值=20×100+6000=8000,此时300﹣x=300﹣100=200.答:当购进真丝衬衣100件,真丝围巾200件时,才能使本次销售获得的利润最大,最大利润是8000元.(3)设每件真丝围巾降价y元,依题意得:(300﹣260)×100+(100﹣80)××200+(100﹣y﹣80)××200≥8000×90%,解得:y≤8.答:每件真丝围巾最多降价8元.13.为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践基地开展劳动实践活动.在此次活动中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:3000元.(1)参加此次劳动实践活动的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车方案?(3)学校租车总费用最少是多少元?【分析】(1)设参加此次劳动实践活动的老师有x人,可得:30x+7=31x﹣1,即可解得参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人;(2)根据每位老师负责一辆车的组织工作,知一共租8辆车,设租甲型客车m辆,可得:,解得m的范围,解得一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;(3)设学校租车总费用是w元,w=400m+320(8﹣m)=80m+2560,由一次函数性质得学校租车总费用最少是2800元.【解答】解:(1)设参加此次劳动实践活动的老师有x人,参加此次劳动实践活动的学生有(30x+7)人,根据题意得:30x+7=31x﹣1,解得x=8,∴30x+7=30×8+7=247,答:参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人;(2)师生总数为247+8=255(人),∵每位老师负责一辆车的组织工作,∴一共租8辆车,设租甲型客车m辆,则租乙型客车(8﹣m)辆,根据题意得:,解得3≤m≤5.5,∵m为整数,∴m可取3、4、5,∴一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;(3)∵7×35=245<255,8×35=280>255,∴租车总费用最少时,至少租8两辆车,设租甲型客车m辆,则租乙型客车(8﹣m)辆,由(2)知:3≤m≤5.5,设学校租车总费用是w元,w=400m+320(8﹣m)=80m+2560,∵80>0,∴w随m的增大而增大,∴m=3时,w取最小值,最小值为80×3+2560=2800(元),答:学校租车总费用最少是2800元.14.金师傅近期准备换车,看中了价格相同的两款国产车.(2)若燃油车的每千米行驶费用比新能源车多0.54元.①分别求出这两款车的每千米行驶费用.②若燃油车和新能源车每年的其它费用分别为4800元和7500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?(年费用=年行驶费用+年其它费用)【分析】(1)根据表中的信息,可以计算出新能源车的每千米行驶费用;(2)①根据燃油车的每千米行驶费用比新能源车多0.54元和表中的信息,可以列出相应的分式方程,然后求解即可,注意分式方程要检验;②根据题意,可以列出相应的不等式,然后求解即可.【解答】解:(1)由表格可得,新能源车的每千米行驶费用为:=(元),即新能源车的每千米行驶费用为元;(2)①∵燃油车的每千米行驶费用比新能源车多0.54元,∴﹣=0.54,解得a=600,经检验,a=600是原分式方程的解,∴=0.6,=0.06,答:燃油车的每千米行驶费用为0.6元,新能源车的每千米行驶费用为0.06元;②设每年行驶里程为xkm,由题意得:0.6x+4800>0.06x+7500,解得x>5000,答:当每年行驶里程大于5000km时,买新能源车的年费用更低.15.2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)30件,求两款钥匙扣分别购进的件数;(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?【分析】(1)设购进A款钥匙扣x件,B款钥匙扣y件,利用总价=单价×数量,结合该网店第一次用850元购进A、B两款钥匙扣共30件,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进m件A款钥匙扣,则购进(80﹣m)件B款钥匙扣,利用总价=单价×数量,结合总价不超过2200元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题;(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出(78﹣2a)件,利用平均每天销售B款钥匙扣获得的总利润=每件的销售利润×平均每天的销售量,即可得出关于a的一元二次方程,解之即可得出结论.【解答】解:(1)设购进A款钥匙扣x件,B款钥匙扣y件,依题意得:,解得:.答:购进A款钥匙扣20件,B款钥匙扣10件.(2)设购进m件A款钥匙扣,则购进(80﹣m)件B款钥匙扣,依题意得:30m+25(80﹣m)≤2200,解得:m≤40.设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,则w=(45﹣30)m+(37﹣25)(80﹣m)=3m+960.∵3>0,∴w随m的增大而增大,∴当m=40时,w取得最大值,最大值=3×40+960=1080,此时80﹣m=80﹣40=40.答:当购进40件A款钥匙扣,40件B款钥匙扣时,才能获得最大销售利润,最大销售利润是1080元.(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出4+2(37﹣a)=(78﹣2a)件,依题意得:(a﹣25)(78﹣2a)=90,整理得:a2﹣64a+1020=0,解得:a1=30,a2=34.答:将销售价定为每件30元或34元时,才能使B款钥匙扣平均每天销售利润为90元.16.某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加m%.5月份每吨。

中考数学函数实际应用综合题(解析版)

中考数学函数实际应用综合题(解析版)

专题03 函数实际应用综合题1.(2019•常德中考)某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.【解析】(1)设y甲=k1x,根据题意得5k1=100,解得k1=20,∴y甲=20x;设y乙=k2x+100,根据题意得:20k2+100=300,解得k2=10,∴y乙=10x+100.(2)①y甲<y乙,即20x<10x+100,解得x<10,当入园次数小于10次时,选择甲消费卡比较合算;②y甲=y乙,即20x=10x+100,解得x=10,当入园次数等于10次时,选择两种消费卡费用一样;③y甲>y乙,即20x>10x+100,解得x>10,当入园次数大于10次时,选择乙消费卡比较合算.2.(2019•山西中考)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.【解析】(1)当游泳次数为x时,方式一费用为:y1=30x+200,方式二的费用为:y2=40x.(2)由y1<y2得:30x+200<40x,解得x>20时,当x>20时,选择方式一比方式二省钱.3.(2019•台州中考)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h (单位:m )与下行时间x (单位:s )之间具有函数关系3610h x =-+,乙离一楼地面的高度y (单位:m )与下行时间x (单位:s )的函数关系如图2所示. (1)求y 关于x 的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.【解析】(1)设y 关于x 的函数解析式是y kx b =+,6153b k b =⎧⎨+=⎩,解得,156k b ⎧=-⎪⎨⎪=⎩, 即y 关于x 的函数解析式是165y x =-+. (2)当0h =时,30610x =-+,得20x ,当0y =时,1065x =-+,得30x =, ∵2030<, ∴甲先到达地面.4.(2019•天门中考)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x 千克,付款金额为y 元.(1)求y 关于x 的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元? 【解析】(1)根据题意,得①当0≤x ≤5时,y =20x ; ②当x >5,y =20×0.8(x -5)+20×5=16x +20. (2)把x =30代入y =16x +20,∴y =16×30+20=500; ∴一次购买玉米种子30千克,需付款500元.5.(2019•天津中考)甲、乙两个批发店销售同一种苹果.在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过元50 kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超出50 kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为 kg x (0)x >.(1)根据题意填表:(2)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (3)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为__________kg ;②若小王在同一个批发店一次购买苹果的数量为120 kg ,则他在甲、乙两个批发店中的__________批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的__________批发店购买数量多.【解析】(1)当x =30时,1306180y =⨯=,2307210y =⨯=,当x =150时,11506900y =⨯=,2507515050850y =⨯+-=(), 故答案为:180,900,210,850. (2)16y x =(0)x >. 当050x <≤时,27y x =;当50x >时,27505(50)y x =⨯+-,即25100y x =+. (3)①∵0x >∴6x 7x ≠, ∴当21y y =时,即6x =5x +100,∴x =100, 故答案为:100. ②∵x =12050>,∴16120720y =⨯=;25120100=700y =⨯+, ∴乙批发店购买花费少, 故答案为:乙.③∵当x =50时乙批发店的花费是:350360<, ∵一次购买苹果花费了360元,∴x >50, ∴当1360y =时,6x =360,∴x =60, ∴当2360y =时,5x +100=360,∴x =52, ∴甲批发店购买数量多. 故答案为:甲.6.(2019•湖州中考)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校义骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B C D --分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当2530x ≤≤时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)【解析】(1)由题意,得:甲步行的速度是24003080÷=(米/分), ∴乙出发时甲离开小区的路程是8010800⨯=(米).(2)设直线OA 的解析式为:(0)y kx k =≠, ∵直线OA 过点()30,2400A , ∴302400k =, 解得80k =,∴直线OA 的解析式为:80y x =, ∴当18x =时,80181440y =⨯=,∴乙骑自行车的速度是()14401810180÷-=(米/分). ∵乙骑自行车的时间为251015-=(分), ∴乙骑自行车的路程为180152700⨯=(米).当25x =时,甲走过的路程是8080252000y x ==⨯=(米),∴乙到达还车点时,甲、乙两人之间的距离是27002000700-=(米). (3)乙步行的速度为:80-5=75(米/分),乙到达学校用的时间为:25+(2700-2400)÷75=29(分), 当25≤x ≤30时s 关于x 的函数的大致图象如图所示.7.2019•河南中考)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.【解析】(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得3212054210x y x y +=⎧⎨+=⎩,∴3015x y =⎧⎨=⎩,∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30-z )个,购买奖品的花费为W 元, 由题意可知,z ≥13(30-z ), ∴z ≥152, W =30z +15(30-z )=450+15z , ∵15>0,W 随z 的减小而减小 ∴当z =8时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少.8.(2019•宿迁中考)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x 元,每天售出y 件.(1)请写出y 与x 之间的函数表达式;(2)当x 为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w 元,当x 为多少时w 最大,最大值是多少? 【解析】(1)根据题意得,1502y x =-+. (2)根据题意得,()140(50)22502x x +-+=, 解得:150x =,210x =, ∵每件利润不能超过60元, ∴10x =,答:当x 为10时,超市每天销售这种玩具可获利润2250元. (3)根据题意得,()21140(50)30200022w x x x x =+-+=-++()213024502x =--+, ∵102a =-<, ∴当30x <时,w 随x 的增大而增大,∴当20x时,2400w =增大,答:当x 为20时w 最大,最大值是2400元.9.(2019•潍坊中考)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元? (2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w 元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计)【解析】(1)由题意,设这种水果今年每千克的平均批发价是x 元,则去年的批发价为()1x +元, 今年的批发销售总额为()10120%12-=万元, ∴12000010000010001x x -=+, 整理得2191200x x --=,解得24x =或5x =-(不合题意,舍去), 故这种水果今年每千克的平均批发价是24元. (2)设每千克的平均售价为m 元,依题意 由(1)知平均批发价为24元,则有()4124(180300)3mw m -=-⨯+260420066240m m =-+-, 整理得()260357260w m =--+, ∵600a =-<, ∴抛物线开口向下,∴当35m =元时,w 取最大值,即每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元.10.(2019•南充中考)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元. (1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加一支,单价降低0.1元;超过50支,均按购买50支的单价销售,笔记本一律按原价销售,学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等学生多少人时,购买奖品金额最少,最少为多少元? 【解析】(1)设钢笔、笔记本的单价分别为x 、y 元,根据题意可得23384570x y x y +=⎧⎨+=⎩, 解得:106x y =⎧⎨=⎩. 答:钢笔、笔记本的单价分别为10元,6元.(2)设钢笔单价为a 元,购买数量为b 支,支付钢笔和笔记本总金额为W 元, ①当30≤b ≤50时,100.1(30)0.113a b b =--=-+,w =b (-0.1b +13)+6(100-b )20.17600b b =-++20.1(35)722.5b =--+, ∵当30b =时,W =720,当b =50时,W =700, ∴当30≤b ≤50时,700≤W ≤722.5. ②当50<b ≤60时, a =8,86(100)2600W b b b =+-=+,∵700720W <≤,∴当30≤b ≤60时,W 的最小值为700元,∴当一等奖人数为50时花费最少,最少为700元.11.(2019•梧州中考)我市某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x 元/件(x ≥6,且x 是按0.5元的倍数上涨),当天销售利润为y 元. (1)求y 与x 的函数关系式(不要求写出自变量的取值范围); (2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.【解析】(1)由题意,y =(x -5)(100-60.5x -×5)=-10x 2+210x -800,故y与x的函数关系式为:y=-10x2+210x-800.(2)要使当天利润不低于240元,则y≥240,∴y=-10x2+210x-800=-10(x-10.5)2+302.5=240,解得,x1=8,x2=13,∵-10<0,抛物线的开口向下,∴当天销售单价所在的范围为8≤x≤13.(3)∵每件文具利润不超过80%,∴50.8xx-≤,得x≤9,∴文具的销售单价为6≤x≤9,由(1)得y=-10x2+210x-800=-10(x-10.5)2+302.5,∵对称轴为x=10.5,∴6≤x≤9在对称轴的左侧,且y随着x的增大而增大,∴当x=9时,取得最大值,此时y=-10(9-10.5)2+302.5=280,即每件文具售价为9元时,最大利润为280元.12.(2019•云南中考)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.【解析】(1)当6≤x≤10时,设y与x的关系式为y=kx+b(k≠0),根据题意得1000620010k bk b=+⎧⎨=+⎩,解得2002200kb=-⎧⎨=⎩,∴y=-200x+1200,当10<x≤12时,y=200,故y 与x 的函数解析式为:y =2002200(610)200(1012)x x x -+≤≤⎧⎨<≤⎩.(2)由已知得:W =(x -6)y , 当6≤x ≤10时,W =(x -6)(-200x +1200)=-200(x -172)2+1250, ∵-200<0,抛物线的开口向下, ∴x =172时,取最大值, ∴W =1250,当10<x ≤12时,W =(x -6)•200=200x -1200, ∵y 随x 的增大而增大,∴x =12时取得最大值,W =200×12-1200=1200, 综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.13.(2019•成都中考)随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系. (1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?【解析】(1)设函数的解析式为:y =kx +b (k ≠0),由图象可得,700055000k b k b +=⎧⎨+=⎩,解得5007500kb=-⎧⎨=⎩,∴y与x之间的关系式:y=-500x+7500.(2)设销售收入为w万元,根据题意得,w=yp=(-500x+7500)(12x+12),即w=-250(x-7)2+16000,∴当x=7时,w有最大值为16000,此时y=-500×7+7500=4000(元).答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元.14.(2019•武汉中考)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)50 60 80周销售量y(件)100 80 40周销售利润w(元)1000 1600 1600 注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是__________元/件;当售价是__________元/件时,周销售利润最大,最大利润是__________元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.【解析】(1)①依题意设y=kx+b,则有50100 6080k bk b+=⎧⎨+=⎩,解得2200 kb=-⎧⎨=⎩,所以y关于x的函数解析式为y=-2x+200.②该商品进价是50-1000÷100=40,设每周获得利润w=ax2+bx+c,则有2500501000 3600601600 6400801600a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩,解得22808000 abc=-⎧⎪=⎨⎪=-⎩,∴w=-2x2+280x-8000=-2(x-70)2+1800,∴当售价是70元/件时,周销售利润最大,最大利润是1800元;故答案为:40,70,1800;(2)根据题意得,w=(x-40-m)(-2x+200)=-2x2+(280+2m)x-8000-200m,∵对称轴x=1402m+,∴①当1402m+<65时(舍),②当1402m+≥65时,x=65时,w求最大值1400,解得:m=5.。

2023年九年级数学中考专题:实际问题与二次函数压轴应用题(含简单答案)

2023年九年级数学中考专题:实际问题与二次函数压轴应用题(含简单答案)

2023年九年级数学中考专题:实际问题与二次函数压轴应用题1.某工厂生产A 型产品,每件成本为20元,当A 型产品的销售单价为x 元时,销售量为y 万件.要求每件A 型产品的销售单价不低于20元且不高于28元.经市场调查发现,y 与x 之间满足一次函数关系,且当x =23时,y =34;x =25时,y =30. (1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)若某次销售刚好获得182万元的利润,则每件A 型产品的销售单价是多少元? (3)设该工厂销售A 型产品所获得的利润为w 万元,将该产品的销售单价定为多少元时,才能使销售该产品所获得的利润最大?最大利润是多少万元?2.如图,有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为12m )围成中间隔有一道篱笆的矩形花圃,设花圃的宽AB 为m x ,面积为2m S .(1)求S 与x 的函数表达式.(2)如果要围成面积为245m 的花圃,AB 的长是多少米?(3)根据(1)中求得的函数关系式,判断当x 取何值时,花圃的面积最大?最大面积是多少?3.2022年2月4日,第24届冬季奥林匹克运动会在北京举行,吉祥物“冰墩墩”备受人民的喜爱,某商店经销吉祥物“冰墩墩”玩具,销售成本为每件40元,据市场分析,若按每件50元销售,一个月能售出500件;销售单价每涨1元,月销售量就减少10件,针对这种玩具的销售情况,请解答以下问题:(1)求当销售单价涨多少元时,月销售利润能够达到8000元;(2)商店想在月销售成本不超过9000元的情况下,使得月销售利润达到8000元,求销售定价应为多少元?4.某大型商场准备购买一批A 型和B 型商品,已知一件A 型商品的进价比一件B 型商品的进价多30元,用6000元采购A 型商品的件数是用1200元采购B 型商品的件数的2倍.(1)求一件A ,B 型商品的进价分别为多少元?(2)该商场购进A 型和B 型商品若干,准备采取“买二送一”的优惠销售方案,即:买两件A 型商品赠送一件B 型商品,通过一段试销发现A 型商品每天的销售量y (件)与A 型商品的销售单价x (元)满足:2200y x =-+,若商场继续以上述优惠销售方案进行销售,当A 型商品的销售单价定为多少元时,每天的销售利润最大,并求出此时的最大销售利润.5.某数学兴趣小组想借助如图所示的直角墙角ADC ∠(两边足够长),用20m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边).(1)若围成的花园面积为291m ,求矩形花园AB 的长;(2)在点P 处有一棵树与墙CD ,AD 的距离分别为12m 和6m ,要能将这棵树围在花园内(含边界,不考虑树的粗细),又使得花园面积有最大值,求此时矩形花园AB 的长.6.第一届全国青年运动会射箭项目决赛于10月20-24日在福建省莆田市体育公园举行.我市某工艺厂为青运会设计了一款成本为每件20元的工艺品,投放市场进行试销后发现每天的销售量y (件)是售价x (元/件)的一次函数:当售价为20元/件时,每天销售量为800件;当售价为25元/件时,每天的销售量为750件. (1)求y 与x 的函数关系式(2)如果该工艺品售价最高不能超过每件50元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价-成本)7.中秋节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低1元,每天的销售量将增加40千克.根据他们的对话,解决下面所给问题:设降价(0)x x>元,每天所获得的利润为w元.(1)超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?(2)这种水果的销售价定为多少时,可使每天销售利润最大?最大的利润是多少?8.贫困户李大爷在某单位精准扶贫工作队的帮扶下,将一片坡地改造后种植了优质水果蓝莓,经核算,种植成本为18元/千克.今年正式上市销售,通过30天的试销发现:①第1天卖出20千克,以后每天比前一天多卖4千克:①销售价格y(元/千克)与时间x(天)之间满足如下函数关系:76(120)(2030)mx m x xyn x x-≤<⎧=⎨≤≤⎩,为正整数,为正整数,且第12天的售价为32元/千克,第23天的售价为25元/千克.(1)填空:m=_______,n=_______;试销中销售量P(千克)与时间x(天)之间的函数关系式为_______;(2)求销售蓝莓第几天时,当天的利润W最大?最大利润是多少元?(3)求试销的30天中,当天利润W不低于870元的天数共有几天?9.某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月售出500kg,销售价每涨价1元,月销售量就减少5kg.(1)当销售单价定为60元时,计算月销售量和销售利润.(2)商店想让顾客获得更多实惠的情况下,使月销售利润达到9000元,销售单价应定为多少?(3)当售价定为多少元时会获得最大利润?求出最大利润.10.某商店出售一款商品,经市场调查反映,该商品的日销售量y(件)与销售单价x (元)之间满足一次函数关系,关于该商品的销售单价,日销售量,日销售利润的部分对应数据如表:[注:日销售利润=日销售量×(销售单价﹣成本单价)](1)根据以上信息,求y关于x的函数关系式.(2)①填空:该产品的成本单价是元,表中a的值是.①求该商品日销售利润的最大值.11.小茗同学准备用一段长为50米的篱笆在家修建一个一边靠墙的矩形花圃(矩形ABCD,墙长为25米.设花圃的一边AD为x米.)(1)如图1,写出花圃的面积S(平方米)与x(米)的函数关系式;(2)图1中花圃的面积能为300平方米吗?若能,请求出x的值;若不能,请说明理由;(3)为方便进出,小茗同学决定在BC边上留一处长为a米(04)<<的门(如图2),且最a终围成的花圃的最大面积为325平方米,直接写出a的值.12.包河区发展农业经济产业,在大圩乡种植多品种的葡萄,已知某葡萄种植户李大爷的葡萄成本为10元/kg,如果在未来40天葡萄的销售单价p(元/kg)与时间t(天)之间的函数关系式为:120(120)4135(2140)2t t tpt t t⎧+≤<⎪⎪=⎨⎪+<≤⎪⎩,为整数,为整数,且葡萄的日销量y(千克)与时间t(天)的关系如下表:(1)请直接写出y与t之间的变化规律符合什么函数关系?并求在第15天的日销售量是多少千克?(2)在后20天(即2140t≤≤,t为整数),请求出哪一天的日销售利润最大?日销售利润最大为多少?(3)在实际销售的前20天中,李大爷决定每销售1千克水果就捐赠n元利润(8n<)给留守儿童作为助学金,前20天销售完后李大爷发现,每天扣除捐赠后的日销售利润随时间t的增大而增大,请求出n的取值范围.13.红灯笼,象征着国家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对,若规定每对乙灯笼的利润不能高于30元,设乙灯笼每对售价为x元,小明一天通过乙灯笼获得利润y元.①求出y与x之间的函数解析式;①乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?14.跳台滑雪是冬季奥运会的比赛项目之一,如图,运动员通过助滑道后在点A 处起跳经空中飞行后落在着陆坡BC 上的点P 处,他在空中飞行的路线可以看作抛物线的一部分,这里OA 表示起跳点A 到地面OB 的距离,OC 表示着陆坡BC 的高度,OB 表示着陆坡底端B 到点O 的水平距离,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系:2116y x bx c =-++,已知70m OA =,60m OC =,落点P 的水平距离是40m ,竖直高度是30m .(1)点A 的坐标是_____,点P 的坐标是_______; (2)求满足的函数关系2116y x bx c =-++; (3)运动员在空中飞行过程中,当他与着陆坡BC 竖直方向上的距离达到最大时,直接写出此时的水平距离.15.某商家销售一种纪念品.每个纪念品进价40元,规定销售单价不低于44元,且不高于52元.销售期间发现,当销售单价定为44元时,每天可售出300个,销售单价每上涨1元,每天销量减少10个.现商家决定提价销售,设每天销售量为y 个,销售单价为x 元.(1)在横线上直接写出y 与x 之间的函数关系式;(2)求当每个纪念品的销售单价是多少元时,商家每天获利2400元;(3)将纪念品的销售单价定为多少元时,商家每天销售纪念品获得的利润w 元最大?最大利润是多少元?16.金秋十月,我省某农业合作社有机水稻再获丰收,加工成有机大米后通过实体和电商两种渠道进行销售.该有机大米成本为每千克 14 元,销售价格不低于成本,且不超过25 元/千克,根据各销售渠道的反馈,发现该有机大米一天的销售量y(千克)是该天的售价x(元/千克)的一次函数,部分情况如表:(1)求一天的销售量y(千克)与售价x(元/千克)之间的函数关系式并写出x的取值范围.(2)若某天销售这种大米获利2400 元,那么这天该大米的售价为多少?(3)该有机大米售价定为多少时,当天获利w最大?最大利润为多少?17.某公司为了宣传一种新产品,在某地先后举行18场产品促销会,已知该产品每台成本为4万元,设第x场产品的销售量为y(台),在销售过程中获得以下信息:信息1:已知第一场销售产品38台,然后每增加一场,产品就少卖出2台;信息2:产品的每场销售单价p(万元)由基本价和浮动价两部分组成,其中基本价保持不变,第1场—第10场浮动价与销售场次x成正比,第11场—第18场浮动价与销售场次x成反比,经过统计,得到如下数据:(1)求y与x之间的函数关系式;(2)求销售单价p与销售场次x之间的函数关系式;(3)当产品销售单价为6.5万元时,求销售场次是第几场?(4)在这18场产品促销会中,哪一场获得的利润最大,最大利润是多少?(结果保留整数) 18.某商场经营A种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x 元()40x >,请用含x 的代数式表示该玩具的销售量______.(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于450件的销售任务,求商场销售该品牌玩具获得的最大利润.(3)该商场计划将(2)中所得的利润的一部分采购一批B 种玩具并转手出售,根据调查准备两种方案:方案①:月初出售,获利15%,并可用本和利再投资C 种玩具,到月末又可获利10%; 方案①:只到月末出售直接获利30%,但要另支付仓库保管费350元.请问商场如何使用这笔资金,采用哪种方案获利较多?尝试填写以下表格.参考答案:1.(1)y 与x 的函数关系式为280y x =-+,自变量x 的取值范围是2028x ≤≤ (2)每件A 型产品的销售单价是27元(3)该产品的销售单价定为28元时,才能使销售该产品所获得的利润最大,最大利润是192万元2.(1)()232448S x x x =-+≤<; (2)AB 的长为5m ;(3)当4x =时,围成的花圃的面积最大,最大面积为248m .3.(1)涨10元或30元 (2)80元4.(1)一件A ,B 型商品的进价分别为50元,20元(2)A 型商品的销售单价定为80元时,每天的销售利润最大,最大销售利润为800元5.(1)13m 和7m . (2)8m6.(1)101000y x =-+(2)当售价定为50元时,该工艺品每天获得的利润最大,最大利润为12000元.7.(1)每千克29元(2)定为32元时可使每天销售利润最大,最大的利润是4000元8.(1)12-,25,416P x =+;(2)第18天的利润最大,最大利润为968元; (3)共有12天9.(1)销售单价定为60元时,月销售量为450千克,销售利润为9000元 (2)销售单价应定为60元(3)当售价定为95元时会获得最大利润,求出最大利润为15125元.10.(1)10900y x =-+(2)①40,4560 ①该商品日销售利润的最大值为6250元11.(1)21252S x x =-+(2)能为300平方米,此时x 的值为20 (3)a 的值为112.(1)2120y t =-+;90kg (2)21天,1131元 (3)58n ≤<13.(1)甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对;(2)①222686930y x x =-+-,①乙种灯笼的销售单价为每对65元时,一天获得利润最大,最大利润是2040元.14.(1)()0,70A ,()40,30P ; (2)21370162y x x =-++; (3)18m15.(1)()107404452y x x =-+≤≤(2)当每个纪念品的销售单价是50元时,商家每天获利2400元(3)将纪念品的销售单价定为52元时,商家每天销售纪念品获得的利润w 元最大,最大利润是2640元答案第3页,共3页 16.(1)5501504201yx x(2)18元 (3)当22x =时,w 有最大值3200元.17.(1)240y x =-+ (2)()()1411044541118x x p x x⎧+≤≤⎪⎪=⎨⎪+≤≤⎪⎩ (3)当产品销售单价为6.5万元时,销售场次是第10场和第18场(4)在这18场产品促销会中,第11场获得的利润最大,最大利润约为74万元18.(1)101000x -+(2)max 11250w =元。

中考数学复习----《一次函数之实际应用》知识点总结与专项练习题(含答案解析)

中考数学复习----《一次函数之实际应用》知识点总结与专项练习题(含答案解析)

中考数学复习----《一次函数之实际应用》知识点总结与专项练习题(含答案解析)知识点总结1.分段函数:在一次函数的实际应用中,最常见为分段函数。

分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。

关键点:①分段函数各段的函数解析式。

②各个拐点的实际意义。

③函数交点的实际意义。

专项练习题1、(2022•攀枝花)中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km.一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM表示货车离西昌距离y1(km)与时间x(h)之间的函数关系:折线OABN表示轿车离西昌距离y2(km)与时间x(h)之间的函数关系,则以下结论错误的是()A.货车出发1.8小时后与轿车相遇B.货车从西昌到雅安的速度为60km/hC.轿车从西昌到雅安的速度为110km/hD.轿车到雅安20分钟后,货车离雅安还有20km【分析】根据“速度=路程÷时间”分别求出两车的速度,进而得出轿车出发的时间,再对各个选项逐一判断即可.【解答】解:由题意可知,货车从西昌到雅安的速度为:140÷4=60(km/h),故选项B不合题意;轿车从西昌到雅安的速度为:(240﹣75)÷(3﹣1.5)=110(km/h),故选项C不合题意;轿车从西昌到雅安所用时间为:240÷110=(小时),3﹣=(小时),设货车出发x小时后与轿车相遇,根据题意得:,解得x=1.8,∴货车出发1.8小时后与轿车相遇,故选项A不合题意;轿车到雅安20分钟后,货车离雅安还有60×=40(km),故选项D符合题意.故选:D.2、(2022•恩施州)如图1是我国青海湖最深处的某一截面图,青海湖水面下任意一点A的压强P(单位:cmHg)与其离水面的深度h(单位:m)的函数解析式为P=kh+P0,其图象如图2所示,其中P0为青海湖水面大气压强,k为常数且k≠0.根据图中信息分析(结果保留一位小数),下列结论正确的是()A.青海湖水深16.4m处的压强为189.36cmHgB.青海湖水面大气压强为76.0cmHgC.函数解析式P=kh+P0中自变量h的取值范围是h≥0D.P与h的函数解析式为P=9.8×105h+76【分析】由图象可知,直线P=kh+P0过点(0,68)和(32.8,309.2).由此可得出k和P0的值,进而可判断B,D;根据实际情况可得出h的取值范围,进而可判断C;将h=16.4代入解析式,可求出P的值,进而可判断A.【解答】解:由图象可知,直线P=kh+P0过点(0,68)和(32.8,309.2),∴,解得.∴直线解析式为:P=7.4h+68.故D错误,不符合题意;∴青海湖水面大气压强为68.0cmHg,故B错误,不符合题意;根据实际意义,0≤h≤32.8,故C错误,不符合题意;将h=16.4代入解析式,∴P=7.4×16.4+68=189.36,即青海湖水深16.4m处的压强为189.36cmHg,故A正确,符合题意.故选:A.3、(2022•绥化)小王同学从家出发,步行到离家a米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y(单位:米)与出发时间x(单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为()A.2.7分钟B.2.8分钟C.3分钟D.3.2分钟【分析】根据题意和函数图象中的数据,可以先表示出两人的速度,然后即可计算出两人第一次和第二次相遇的时间,然后作差即可.【解答】解:由图象可得,小王的速度为米/分钟,爸爸的速度为:=(米/分钟),设小王出发m分钟两人第一次相遇,出发n分钟两人第二次相遇,m=(m﹣4)•,n+[n﹣4﹣(12﹣4)÷2]=a,解得m=6,n=9,n﹣m=9﹣6=3,故选:C.4、(2022•毕节市)现代物流的高速发展,为乡村振兴提供了良好条件.某物流公司的汽车行驶30km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地.汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,判断以下说法正确的是()A.汽车在高速路上行驶了2.5hB.汽车在高速路上行驶的路程是180kmC.汽车在高速路上行驶的平均速度是72km/hD.汽车在乡村道路上行驶的平均速度是40km/h【分析】由3.5h到达目的地,在乡村道路上行驶1h可得下高速公路的时间,从而可判断A,由图象直接可判断B,根据速度=路程除以时间可判断C和D.【解答】解:∵3.5h到达目的地,在乡村道路上行驶1h,∴汽车下高速公路的时间是2.5h,∴汽车在高速路上行驶了2.5﹣0.5=2(h),故A错误,不符合题意;由图象知:汽车在高速路上行驶的路程是180﹣30=150(km),故B错误,不符合题意;汽车在高速路上行驶的平均速度是150÷2=75(km/h),故C错误,不符合题意;汽车在乡村道路上行驶的平均速度是(220﹣180)÷1=40(km/h),故D正确,符合题意;故选:D.5、(2022•桂林)桂林作为国际旅游名城,每年吸引着大量游客前来观光.现有一批游客分别乘坐甲乙两辆旅游大巴同时从旅行社前往某个旅游景点.行驶过程中甲大巴因故停留一段时间后继续驶向景点,乙大巴全程匀速驶向景点.两辆大巴的行程s(km)随时间t (h)变化的图象(全程)如图所示.依据图中信息,下列说法错误的是()A.甲大巴比乙大巴先到达景点B.甲大巴中途停留了0.5hC.甲大巴停留后用1.5h追上乙大巴D.甲大巴停留前的平均速度是60km/h【分析】根据函数图象中的数据,可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:由图象可得,甲大巴比乙大巴先到达景点,故选项A正确,不符合题意;甲大巴中途停留了1﹣0.5=0.5(h),故选项B正确,不符合题意;甲大巴停留后用1.5﹣1=0.5h追上乙大巴,故选项C错误,符合题意;甲大巴停留前的平均速度是30÷0.5=60(km/h),故选项D正确,不符合题意;故选:C.6、(2022•玉林)龟兔赛跑之后,输了比赛的兔子决定和乌龟再赛一场.图中的函数图象表示了龟兔再次赛跑的过程(x表示兔子和乌龟从起点出发所走的时间,y1,y2分别表示兔子与乌龟所走的路程).下列说法错误的是()A.兔子和乌龟比赛路程是500米B.中途,兔子比乌龟多休息了35分钟C.兔子比乌龟多走了50米D.比赛结果,兔子比乌龟早5分钟到达终点【分析】根据函数图象中的数据可以判断各个选项中的结论是否正确.【解答】解:A、“龟兔再次赛跑”的路程为500米,原说法正确,故此选项不符合题意;B、乌龟在途中休息了35﹣30=5(分钟),兔子在途中休息了50﹣10=40(分钟),兔子比乌龟多休息了35分钟,原说法正确,故此选项不符合题意;C、兔子和乌龟同时从起点出发,都走了500米,原说法错误,故此选项符合题意;D、比赛结果,兔子比乌龟早5分钟到达终点,原说法正确,故此选项不符合题意.故选:C.7、(2022•乐山)甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是()A.前10分钟,甲比乙的速度慢B.经过20分钟,甲、乙都走了1.6千米C.甲的平均速度为0.08千米/分钟D.经过30分钟,甲比乙走过的路程少【分析】观察函数图象,逐项判断即可.【解答】解:由图象可得:前10分钟,甲的速度为0.8÷10=0.08(千米/分),乙的速度是1.2÷10=0.12(千米/分),∴甲比乙的速度慢,故A正确,不符合题意;经过20分钟,甲、乙都走了1.6千米,故B正确,不符合题意;∵甲40分钟走了3.2千米,∴甲的平均速度为3.2÷40=0.08(千米/分钟),故C正确,不符合题意;∵经过30分钟,甲走过的路程是2.4千米,乙走过的路程是2千米,∴甲比乙走过的路程多,故D错误,符合题意;故选:D.8、(2022•阜新)快递员经常驾车往返于公司和客户之间.在快递员完成某次投递业务时,他与客户的距离s(km)与行驶时间t(h)之间的函数关系如图所示(因其他业务,曾在途中有一次折返,且快递员始终匀速行驶),那么快递员的行驶速度是km/h.【分析】根据图象求出快递员往返的时间为2(0.35﹣0.2)h,然后再根据速度=路程÷时间.【解答】解:∵快递员始终匀速行驶,∴快递员的行驶速度是=35(km/h).故答案为:35.9、(2022•资阳)女子10千米越野滑雪比赛中,甲、乙两位选手同时出发后离起点的距离y(千米)与时间t(分钟)之间的函数关系如图所示,则甲比乙提前分钟到达终点.【分析】根据图象求出20分钟后甲的速度,进而求出32分钟,甲和乙所处的交点位置,再根据速度公式求出20分钟后乙的速度,进而求出达到终点时乙所需的时间,即可求出答案.【解答】解:由图象可知,甲20~35分钟的速度为:(千米/分钟),∴在32分钟时,甲和乙所处的位置:(千米),乙20分钟后的速度为:(千米/分钟),∴乙到达终点的时间为:(分钟),∴甲比乙提前:36﹣35=1(分钟),故答案为:1.10、(2022•呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了千克糯米;设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额x(x>10)的函数解析式为.【分析】根据糯米的价格为5元/千克,如果一次购买2千克以上糯米,超过2千克的部分的糯米的价格打8折,即可得出解析式;再把x=14代入即可.【解答】解:∵x>10时,∴一次购买的数量超过2千克,∴y=,=.∵14>10,∴y=,=,=3.故答案为:3;y=.11、(2022•苏州)一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y(升)与时间x(分钟)之间的函数关系如图所示,则图中a的值为.【分析】设出水管每分钟排水x升.由题意进水管每分钟进水10升,则有80﹣5x=20,求出x,再求出8分钟后的放水时间,可得结论.【解答】解:设出水管每分钟排水x升.由题意进水管每分钟进水10升,则有80﹣5x=20,∴x=12,∵8分钟后的放水时间==,8+=,∴a=,故答案为:.。

中考数学复习专题(五)解直角三角形的实际应用(含答案)

中考数学复习专题(五)解直角三角形的实际应用(含答案)

(湖南株洲第23题)如图示一架水平飞行的无人机AB 的尾端点A 测得正前方的桥的左端点P 的俯角为α其中tanα=23,无人机的飞行高度AH 为5003米,桥的长度为1255米. ①求点H 到桥左端点P 的距离;②若无人机前端点B 测得正前方的桥的右端点Q 的俯角为30°,求这架无人机的长度A B .【答案】①求点H 到桥左端点P 的距离为250米;②无人机的长度AB 为5米.②设BC ⊥HQ 于C .在Rt △BCQ 中,∵BC =AH =5003,∠BQC =30°, ∴CQ =tan 30BC︒=1500米,∵PQ =1255米,∴CP =245米,∵HP =250米,∴AB =HC =250﹣245=5米.答:这架无人机的长度AB 为5米..考点:解直角三角形的应用﹣仰角俯角问题.(内蒙古通辽第22题)如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在OA 的位置时俯角030=⊥EOA ,在OB 的位置时俯角060=∠FOB .若EF OC ⊥,点A 比点B 高cm 7.求(1)单摆的长度(7.13≈);(2)从点A 摆动到点B 经过的路径长(1.3≈π).【答案】(1)单摆的长度约为18.9cm(2)从点A摆动到点B经过的路径长为29.295cm则在Rt△AOP中,OP=OAcos∠AOP=12 x,在Rt△BOQ中,OQ=OBcos∠BOQ=32x,由PQ=OQ﹣OP 3﹣12x=7,解得:x3(cm),.答:单摆的长度约为18.9cm;(2)由(1)知,∠AOP=60°、∠BOQ=30°,且OA=OB3,∴∠AOB=90°,则从点A摆动到点B经过的路径长为907+73180π⨯()≈29.295,答:从点A摆动到点B经过的路径长为29.295cm.考点:1、解直角三角形的应用﹣仰角俯角问题;2、轨迹.(湖南张家界第19题)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD 两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)【答案】4.2m.考点:解直角三角形的应用.(海南第22题)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度B C.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【答案】水坝原来的高度为12米..考点:解直角三角形的应用,坡度.(乌鲁木齐第21题)一艘渔船位于港口A的北偏东60方向,距离港口20海里B处,它沿北偏西37方向航行至C处突然出现故障,在C处等待救援,,B C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救≈≈≈,结果取整数)援的艇的航行速度.(sin370.6,cos370.8,3 1.732【答案】救援的艇的航行速度大约是64海里/小时.【解析】试题分析:辅助线如图所示:BD⊥AD,BE⊥CE,CF⊥AF,在Rt△ABD中,根据勾股定理可求AD,在Rt△BCE中,根据三角函数可求CE,EB,在Rt△AFC中,根据勾股定理可求AC,再根据路程÷时间=速度求解即可.试题解析:辅助线如图所示:答:救援的艇的航行速度大约是64海里/小时.考点:解直角三角形的应用﹣方向角问题(浙江省绍兴市)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)【答案】(1)38°;(2)20.4m.【解析】试题分析:(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.试题解析:(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan20°≈10.80m,在Rt△CDE中,DE=CD•tan18°≈9.60m,∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,则教学楼的高约为20.4m.考点:1.解直角三角形的应用﹣仰角俯角问题;2.应用题;3.等腰三角形与直角三角形.(·湖北随州·8分)某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.解:如图,过点E作EF⊥AC,EG⊥CD,在Rt△DEG中,∵DE=1620,∠D=30°,∴EG=DEsin∠D=1620×=810,∵BC=857.5,CF=EG,∴BF=BC﹣CF=47.5,在Rt△BEF中,tan∠BEF=,∴EF=BF,在Rt△AEF中,∠AEF=60°,设AB=x,∵tan∠AEF=,∴AF=EF×tan∠AEF,∴x+47.5=3×47.5,∴x=95,答:雕像AB的高度为95尺.2. (·吉林·7分)如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=43°,求飞机A与指挥台B的距离(结果取整数)(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)解:如图,∠B=α=43°,在Rt△ABC中,∵sinB=,∴AB=≈1765(m).答:飞机A与指挥台B的距离为1765m.3.(·江西·8分)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)解:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;(2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.4. (·辽宁丹东·10分)某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD即6=AB﹣AB解得:AB=≈14.7(米),∴建筑物的高度约为14.7米.5.(·四川宜宾)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A 点的仰角β=60°,求树高AB(结果保留根号)解:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF====x,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE===(x+4)米.∵CF﹣BE=DE,即x﹣(x+4)=3.解得:x=,则AB=+4=(米).答:树高AB是米.6.(·湖北黄石·8分)如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.( 1.414,CF结果精确到米)解:(1)作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=,∴BH=800•sin30°=400,∴EF=BH=400m;(2)在Rt△CBE中,∵sin∠CBE=,∴CE=200•sin45°=100≈141.4,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,山CF的高度约为541米.(·湖北荆门·6分)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小和小明同时分别从A处和B 处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小的行走速度为米/秒.若小明与小同时到达山顶C处,则小明的行走速度是多少?解:过点C 作CD ⊥AB 于点D ,设AD =x 米,小明的行走速度是a 米/秒, ∵∠A =45°,CD ⊥AB ,∴AD =CD =x 米, ∴AC =x .在Rt △BCD 中, ∵∠B =30°, ∴BC ===2x ,∵小的行走速度为米/秒.若小明与小同时到达山顶C 处,∴=,解得a =1米/秒.答:小明的行走速度是1米/秒.8.(·四川内江)(9分)如图,禁渔期间,我渔政船在A 处发现正北方向B 处有一艘可疑船只,测得A ,B 两处距离为200海里,可疑船只正沿南偏东45°方向航行.我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C 处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).[考点]三角函数、解决实际问题。

2020年中考数学复习专题练:《分式方程实际应用 》(含答案)

2020年中考数学复习专题练:《分式方程实际应用 》(含答案)

2020年中考数学复习专题练:《分式方程实际应用》1.在抗击“新冠肺炎”战役中,某公司接到转产生产1440万个医用防护口罩补充防疫一线需要的任务,临时改造了甲、乙两条流水生产线.试产时甲生产线每天的产能(每天的生产的数量)是乙生产线的2倍,各生产80万个,甲比乙少用了2天.(1)求甲、乙两条生产线每天的产能各是多少?(2)若甲、乙两条生产线每天的运行成本分别是1.2万元和0.5万元,要使完成这批任务总运行成本不超过40万元,则至少应安排乙生产线生产多少天?(3)正式开工满负荷生产3天后,通过技术革新,甲生产线的日产能提高了50%,乙生产线的日产能翻了一番.再满负荷生产13天能否完成任务?2.某口罩生产厂在春节期间接到紧急任务,要求几天内生产出70万只口罩,为了战胜疫情,口罩厂工人愿意奉献自己的休息时间来完成这项任务,厂长决定开足全厂口罩生产线进行生产,结果每天比原来多生产3万只,而且提前了3天完成了任务,问原来要求几天完成这项紧急任务?3.在我县创建“生态保护示范县”活动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍.如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天,求甲,乙两工程队每天各能完成多少面积的绿化?4.九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?5.某服装加工厂甲、乙两个车间共同加工一款休闲装,且每人每天加工的件数相同,甲车间比乙车间少10人,甲车间每天加工服装400件,乙车间每天加工服装600件.(1)求甲、乙两车间各有多少人;(2)甲车间更新了设备,平均每人每天加工的件数比原来多了10件,乙车间的加工效率不变,在两个车间总人数不变的情况下,加工厂计划从乙车间调出一部分人到甲车间,使每天两个车间加工的总数不少于1314件,求至少要从乙车间调出多少人到甲车间.6.某公司需要采购A、B两种笔记本,A种笔记本的单价高出B种笔记本的单价10元,并且花费300元购买A种笔记本和花费100元购买B种笔记本的数量相等.(1)求A种笔记本和B种笔记本的单价各是多少元;(2)该公司准备采购A、B两种笔记本共80本,若A种笔记本的数量不少于60本,并且采购A、B两种笔记本的总费用不高于1100元,那么该公司有种购买方案.7.哈市红十字预计在2019年儿童节前为郊区某小学发放学习用品,联系某工厂加工学习用品.机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的倍.(1)求手工每小时加工产品的数量;(2)经过调查该小学的小学生的总数不超过1332名,每名小学生分发两个学习用品,工厂领导打算在两天内(48小时)完成任务,打算以机器加工为主,同时人工也参与加工(人工与机器加工不能同时进行),为了保证按时完成加工任务,人工至多加工多少小时?8.甲、乙两个筑路队共同承担一段一级路的施工任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用15天.且甲队单独施工60天和乙队单独施工40天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了4天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?9.为维护市区的生态环境,政府决定对市区周边水域的水质进行改善,这项工程由甲、乙两个工程队承包,乙工程队单独施工140天后甲工程队加入,甲、乙两个工程队合作40天后,共完成总工程的,且甲工程队每天的施工量是乙工程队的3倍.(1)求甲工程队单独完成这项工程需要多少天?(2)若要求乙工程队施工工期不超过300天,则甲工程队至少要施工多少天?10.某工程队承接一铁路工程,在挖掘一条500米长的隧道时,为了尽快完成,实际施工时每天挖掘的长度是原计划的1.5倍,结果提前了25天完成了其中300米的隧道挖掘任务.(1)求实际每天挖掘多少米?(2)由于气候等原因,需要进一步缩短工期,要求完成整条隧道不超过70天,那么为了完成剩下的任务,在实际每天挖掘长度的基础上,至少每天还应多挖掘多少米?11.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.比亚迪油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为96元;若完全用电做动力行驶,则费用为36元.已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?12.某商店用1000元人民币购进水果销售,过了一段时间又用2800元购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)求该商店第一次购进水果多少千克?(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的100千克按照标价的半价出售.售完全部水果后,利润不低于1700元,则最初每千克水果的标价至少是多少?13.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?14.某体育用品商场预测某品牌运动服能够畅销,用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场第一次购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=×100%.)15.某周日,珂铭和小雪从新天地小区门口同时出发,沿同一条路线去离该小区1800米的少年宫参加活动,为响应节能环保,绿色出行的号召,两人步行,已知珂铭的速度是小雪的速度的1.2倍,结果珂铭比小雪早6分钟到达.(1)求小雪的速度;(2)活动结東后返回,珂铭与小雪的速度均与原来相同,若小雪计划比珂铭至少提前6分钟回到小区,则小雪至少要比珂铭提前多长时间出发?16.一项工程,甲队单独完成比乙队单独完成少用8天,甲队单独做3天的工作乙队单独做需要5天.(1)甲、乙两队单独完成此项工程各需几天?(2)甲队每施工一天则需付给甲队工程款5.5万元,乙队每施工一天则需付给乙队工程款3万元.该工程先由甲、乙两队合作若干天后,再由乙队完成剩下的工程.若要求完成此项工程的工程款不超过65万元,则甲、乙两队最多合作多少天?17.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?18.国庆70华诞期间,各超市购物市民络绎不绝,呈现浓浓节日气氛.“百姓超市”用320元购进一批葡萄,上市后很快脱销,该超市又用680元购进第二批葡萄,所购数量是第一批购进数量的2倍,但进价每市斤多了0.2元.(1)该超市第一批购进这种葡萄多少市斤?(2)如果这两次购进的葡萄售价相同,且全部售完后总利润不低于20%,那么每市斤葡萄的售价应该至少定为多少元?19.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?20.某学校计划选购A、B两种图书.已知A种图书每本价格是B种图书每本价格的2.5倍,用1200元单独购买A种图书比用1500元单独购买B种图书要少25本.(1)A、B两种图书每本价格分别为多少元?(2)如果该学校计划购买B种图书的本数比购买A种图书本数的2倍多8本,且用于购买A、B两种图书的总经费不超过1164元,那么该学校最多可以购买多少本B种图书?参考答案1.解:(1)设乙条生产线每天的产能是x万个,则甲条生产线每天的产能是2x万个,依题意有﹣=2,解得x=20,经检验,x=20是原方程的解,2x=2×20=40,故甲条生产线每天的产能是40万个,乙条生产线每天的产能是20万个;(2)设安排乙生产线生产y天,依题意有0.5y+1.2×≤40,解得y≥32.故至少应安排乙生产线生产32天;(3)(40+20)×3+[40×(1+50%)+20×2]×13=180+1300=1480(万个),1440万个<1480万个,故再满负荷生产13天能完成任务.2.解:设原来每天生产x万只口罩,则实际每天生产(x+3)万只口罩,依题意,得:﹣=3,解得:x=7,经检验,x=7是原分式方程的解,且符合题意,∴==10.答:原来要求10天完成这项紧急任务.3.解:设乙工程队每天能完成xm2的绿化,则甲工程队每天能完成2xm2的绿化,依题意,得:﹣=6,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天能完成100m2的绿化,乙工程队每天能完成50m2的绿化.4.解:设慢车与快车的速是xkm/h,则快车的速度是1.2xkm/h,根据题意得﹣=,解得:x=50,检验:经检验x=50是原方程的根,答:慢车速度为50千米/小时,快车速度为60千米/小时.5.解:(1)设甲车间有x人,乙车间有(x+10)人,则:,解得:x=20,经检验:x=20是原分式方程的解.答:甲车间有20人,乙车间有30人.(2)设从乙车间调a人到甲车间;则:,解得:a≥11.4.因为a为正整数,所以a的最小值为12.答:从乙车间至少调12人到甲车间.6.解:(1)设A种笔记本的单价是x元,则B种笔记本的单价是(x﹣10)元,根据题意得,=,解得:x=15,经检验:x=15是原方程的根,∴x﹣10=5,答:A种笔记本和B种笔记本的单价各是15元和5元;(2)设该公司准备采购A种笔记本a本,采购B种笔记本(80﹣a)本,根据题意得,15a+5(80﹣a)≤1100,解得:a≤70,∵A种笔记本的数量不少于60本,∴60≤a≤70,(a为正整数),∴该公司有11种购买方案.故答案为:11.7.解:(1)设手工每小时加工产品x件,则机器每小时加工产品(2x+9)件,根据题意,得:×=,解得x=27,经检验:x=27是原分式方程的解,答:手工每小时加工产品27件;(2)设人工要加工a小时,根据题意,得:27a+(2×27+9)(48﹣a)≥2×1332,解得a≤10,答:人工至多加工10小时.8.解:(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+15)天根据题意得经检验x=30是原方程的解,则x+15=45(天)答:甲队单独完成此项任务需45天,乙队单独完成此项任务需30天.(2)解:设甲队再单独施工y天,依题意,得,解得y≥4.答:甲队至少再单独施工4天.9.解:(1)设甲工程队单独完成这项工程需要x天,则甲每天的施工量为,乙每天的施工量为,由题意得140×+40(+)=∴+=∴x=200经检验x=200是原方程的解,且符合问题的实际意义.答:甲工程队单独完成这项工程需要200天.(2)由(1)可知,乙工程队单独完成这项工程需要3×200=600天设甲工程队至少要施工y天,由题意得≤300∴y≥199答:甲工程队至少要施工199天.10.解:(1)设原计划每天挖掘x米,则实际每天挖掘1.5x米,根据题意得:﹣=25,解得x=4.经检验,x=4是原分式方程的解,且符合题意,则1.5x=6答:实际每天挖掘6米.(2)设每天还应多挖掘y米,由题意,得(70﹣)(6+y)≥500﹣300,解得y≥4.答:每天还应多挖掘4米.11.解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,可得:=,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是36÷0.3=120(千米);(2)汽车行驶中每千米用油费用为0.3+0.5=0.8(元),设汽车用电行驶ykm,可得:0.3y+0.8(120﹣y)≤50,解得:y≥92,所以至少需要用电行驶92千米.12.解:(1)设第一次购进水果x千克,依题意可列方程:.解得x=200.经检验:x=200是原方程的解.答:第一次购进水果200千克;(2)由(1)可知,二次共购进水果600千克,设最初水果标价为y元,依题意可列不等式:500y+100×﹣3800≥1700.解得y≥10.答:最初每千克水果标价至少为10元.13.解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=25,经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25×2=50(m2),答:甲、乙两工程队每天能完成绿化的面积分别是50m2、25m2;(2)设应安排甲队工作y天,根据题意得:0.35y+×0.25≤8,解得:y≥20,答:至少应安排甲队工作20天.14.解:(1)设该商场第一次购进这种运动服x套,第二次购进2x套,由题意得,﹣=10,解得:x=200,经检验:x=200是原分式方程的解,且符合题意,答:该商场第一次购进200套;(2)设每套售价是y元,两批运动服总数:200+400=600由题意得:600y﹣32000﹣68000≥(32000+68000)×20%,解得:y≥200,答:每套售价至少是200元.15.解:设小雪的速度是x米/分钟,则珂铭速度是1.2x米/分钟,依题意得:,解得:x=50,经检验x=50是原方程的解,答:小雪的速度是50米/分钟.(2)1.2×50=60(米/分钟),1800÷50=36(分钟),1800÷60=30(分钟),设小雪比珂铭提前a分钟出发,根据题意得,a+30﹣36≥6,解得a≥12,答:小雪至少要比珂铭提前出发12分钟.16.解:(1)设甲队单独完成此项工程需x天,乙队单独完成此项工程需(x+8)天根据题意得:=解得x=12经检验x=12是原方程的解当x=12时,x+8=20答:甲队单独完成此项工程需12天,乙队单独完成此项工程需20天.(2)设甲乙两队合作m天,根据题意得:5.5m+×3≤65,解得m≤10;又∵(+)m≤1,∴m≤7.5,∴甲乙两队最多合作7天.答:甲乙两队最多合作7天.17.解:(1)设购买一副羽毛球拍需要x元,则购买一根跳绳需要(x﹣20)元,依题意,得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x﹣20=5.答:购买一副羽毛球拍需要25元,购买一根跳绳需要5元.(2)设八(1)班购买m副羽毛球拍,则购买(2m+10)根跳绳,依题意,得:25m+5(2m+10﹣m)≤350,解得:m≤10.答:八(1)班最多可购买10副羽毛球拍.18.解:(1)设该超市第一批购进这种葡萄x市斤,则第二批购进这种葡萄2x市斤,依题意,得:﹣=0.2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:该超市第一批购进这种葡萄100市斤.(2)设每市斤葡萄的售价应该定为y元,依题意,得:(100+100×2)y﹣320﹣680≥(320+680)×20%,解得:y≥4.答:每市斤葡萄的售价应该至少定为4元.19.解:(1)设甲工程队单独完成这项工程需要2x天,则乙工程队单独完成这项工程需要3x天,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60,3x=90.答:甲工程队单独完成这项工程需要60天,乙工程队单独完成这项工程需要90天.(2)由题意,得:+=1,∴n=90﹣m.设施工总费用为w万元,则w=15m+8n=15m+8×(90﹣m)=3m+720.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴,∴20≤m≤40.∵15>0,∴w值随m值的增大而增大,∴当m=20时,完成此项工程总费用最少,此时n=90﹣m=60,w=780万元.答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.20.解:(1)设B种图书每本价格为x元,则A种图书每本价格为2.5x元,依题意,得:﹣=25,解得:x=40.8,经检验,x=40.8是原方程的解,且符合题意,∴2.5x=102.答:A种图书每本价格为102元,B种图书每本价格为40.8元.(2)设购买y本A种图书,则购买(2y+8)本B种图书,依题意,得:102y+40.8(2y+8)≤1164,解得:y≤4.∵y为整数,∴y的最大值为4,∴(2y+8)的最大值为16.答:该学校最多可以购买16本B种图书.。

中考数学一次函数的实际应用专题训练(含答案)

中考数学一次函数的实际应用专题训练(含答案)

中考数学一次函数的实际应用专题训练(含答案)1.一鱼池有一进水管和一出水管,出水管每小时可排出5 m3 的水,进水管每小时可注入3 m3 的水,现鱼池中约有60 m3 的水.(1) 当进水管、出水管同时打开时,请写出鱼池中的水量y ( m3 ) 与打开的时间x ( 小时) 之间的函数关系式;(2) 根据实际情况,鱼池中的水量不得少于40 m3 . 如果管理人员在上午8:00 同时打开两水管,那么最迟不得超过几点,就应关闭两水管?【参考答案】解:(1) 由题意,可知y=60-5x+3x .∴y=60-2x ( 0 ≤x ≤30 );(2)根据题意,得60-2x ≥40,∴x ≤10 .∴最迟应在下午6:00 关闭两水管.2.艺术节期间,我校乐团在曲江音乐厅举行专场音乐会,成人票每张50 元,学生票每张10 元,为了丰富广大师生的业余文化生活,制定了两种优惠方案:方案1:购买一张成人票赠送一张学生票;方案2:按总价的90% 付款.我校现有4 名老师与若干名( 不少于4 人) 学生准备去听音乐会.(1) 设学生人数为x (人),付款总金额为y (元),请分别确定两种优惠方案中y 与x 的函数关系式;(2) 你认为哪种方案较节省费用?为什么?【参考答案】解:(1) 按优惠方案1 可得:y1=50 ×4+( x-4 ) ×10=10x+160 ( x ≥4 ),按优惠方案2 可得:y2=(10x+50 ×4) ×90%=9x+180 ( x ≥4 );(2) ∵y1-y2=x-20 ( x ≥4 ),①当y1-y2=0 时,得x-20=0,解得x=20,∴当x=20 时,两种优惠方案付款一样多;②当y1-y2<0 时,得x-20<0,解得x<20,∴当4 ≤x<20 时,y1<y2,选方案1 较划算;③当y1-y2>0 时,得x-20>0,解得x>20,∴当x>20 时,y1>y2,选方案2 较划算.3.某工厂计划生产甲、乙两种产品共2500 吨,每生产1 吨甲产品可获得利润0.3 万元,每生产1 吨乙产品可获得利润0.4 万元,设该工厂生产了甲产品x ( 吨),生产甲、乙两种产品获得的总利润为y ( 万元).(1) 求y 与x 之间的函数表达式;(2) 若每生产1 吨甲产品需要A 原料0.25 吨,每生产1 吨乙产品需要A 原料0.5 吨,受市场影响,该厂能获得的A 原料至多为1000 吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.【参考答案】解:(1) y=x ×0.3+( 2500-x ) ×0.4=-0.1x+1000 ( 0 ≤x ≤2500 );(2) 由题意得:x ×0.25+( 2500-x ) ×0.5 ≤1000,解得x ≥1000 .又∵x ≤2500,∴1000 ≤x ≤2500 .∵-0.1<0,∴y 的值随着x 的增加而减小,∴当x=1000 时,y 取最大值,此时生产乙种产品2500-1000=1500 ( 吨).答:工厂生产甲产品1000 吨,乙产品1500 吨时,能获得最大利润.4.随着科技的飞速发展,智能产品慢慢普及到人们的生活,给人们的生活带来极大的便利.智能拖地机也逐渐受到人们的青睐,走进人们的生活.某经销商决定购买甲、乙两种类型的智能拖地机共8 台进行试销.已知一台乙型智能拖地机的价格是一台甲型智能拖地机价格的1.5 倍;购买甲型智能拖地机3 台,乙型智能拖地机2 台,共需6000 元.(1) 求甲、乙两种类型的智能拖地机每台的价格各是多少元;(2)该公司实际购买时,厂家将甲型智能拖地机的价格下调10% 元,乙型智能拖地机的价格不变.设该公司购买甲型智能拖地机x ( 台),购买两种类型的智能拖地机的总费用为y ( 元),求出y 与x 的函数关系式;若要使总费用不超过9500 元,则该公司如何购买才能使总费用最低?【参考答案】解:(1) 设甲型智能拖地机每台的价格是a 元,乙型智能拖地机每台的价格是b 元,答:甲型智能拖地机每台的价格是1000 元,乙型智能拖地机每台的价格是1500 元;(2) 由题知该公司购买甲型智能拖地机x 台,则购买乙型智能拖地机( 8-x ) 台,则根据题意得,y=1000x ×0.9+1500 ( 8-x )=12000-600x,∵y ≤9500,解得x ≥25/6 ,又∵0 ≤x ≤8,∴25/6 ≤x ≤8,∵x 为整数,∴x 可取5,6,7,8,∵-600<0,∴y 随x 的增大而减小,∴当x=8 时,y 值最小,∴y 与x 的函数关系式为y=12000-600x,要使总费用不超过9500 元,且总费用最低,则该公司应购买8 台甲型智能拖地机,0 台乙型智能拖地机.5.延安是中国优秀旅游城市之一,有着“中国革命博物馆城”的美誉.小明和爸爸在节假日准备去延安革命纪念馆游玩,在去高铁站的途中准备网络呼叫专车.据了解,在非高峰期时,某种专车所收取的费用y ( 元) 与行驶里程x ( km ) 之间的函数关系如图所示,请根据图象解答下列问题:(1) 求y 与x 之间的函数关系式;(2) 若专车低速行驶( 时速≤12 km/h),每分钟另加0.4 元的低速费( 不足1 分钟的部分按1 分钟计算).若小明和爸爸在非高峰期乘坐专车,途中低速行驶了6 分钟,共付费32 元,求专车的行驶里程.【参考答案】解:(1)①当0<x<3 时,y=12;②当x ≥3 时,设y 与x 之间的函数关系式为y=kx+b ( k ≠0 ),将点(3,12),(8,23) 代入,∴y=2.2x+5.4,综上所述,y 与x 之间的函数关系式为(2) ∵车费为32 元,∴行驶里程超过3 km,∴由题意得2.2x+5.4+0.4 ×6=32,解得x=11.答:专车的行驶里程为11 km.6.周六上午8 点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家.如图是小颖一家这次行程中距姥姥家的距离y ( 千米) 与他们路途所用的时间x ( 时) 之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB 所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30 分钟时,距姥姥家还有80 千米,问小颖一家当天几点到达姥姥家?【参考答案】解:(1) 设直线AB 所对应的函数关系式为y=kx+b,把(0,320) 和(2,120) 代入y=kx+b,∴直线AB 所对应的函数关系式为y=-100x+320;(2) 设直线CD 所对应的函数关系式为y=mx+n,把(2.5,120) 和(3,80) 代入y=mx+n,∴直线CD 所对应的函数关系式为y=-80x+320,当y=0 时,x=4,∴小颖一家当天12 点到达姥姥家.7.已知A、B 两地之间有一条270 千米的公路,甲、乙两车同时出发,甲车以60 千米/时的速度沿此公路从A 地匀速开往B 地,乙车从B 地沿此公路匀速开往A 地,两车分别到达目的地后停止.甲、乙两车相距的路程y ( 千米) 与甲车的行驶时间x ( 时) 之间的函数关系如图所示.(1) 求甲、乙两车相遇后y 与x 之间的函数关系式;(2) 当甲车到达距B 地70 千米处时,求甲、乙两车之间的路程.【参考答案】解:(1) 乙车的速度为( 270-60 ×2 ) ÷2=75 千米/时,a=270 ÷75=3.6,b=270 ÷60=4.5.设甲、乙两车相遇后y 与x 之间的函数关系式为y=kx+m ( k ≠0 ),当2<x ≤3.6 时,斜率k 为两车速度和135,∴y=135x+m,又∵x=2 时,y=0,∴m=-270,∴y=135x-270;当3.6<x ≤4.5 时,斜率k 为甲车速度60,∴y=60x+n,又∵x=4.5 时,y=270,∴n=0,∴y=60x .综上,(2) 甲车距B 地70 千米时,两车行驶的时间为(270-70)/60=10/3 时,∵10/3 >2,∴当x=10/3 时,y=135 ×10/3-270=180.∴当甲车距B 地70 千米时,甲、乙两车之间的路程为180 千米.8.某校计划组织750 名师生外出参加集体活动,经研究,决定租用当地租车公司A、B 两种型号的客车共30 辆作为交通工具.下表是租车公司提供给学校有关这两种型号客车的载客量、租金单价和押金信息:设租用A 型号客车x 辆,租车总费用为y 元.(注:载客量指的是每辆客车最多可载的乘客数)(1) 求y 与x 之间的函数关系式;(2) 若要使租车总费用不超过17500 元,应如何租车才能使总费用最少.【参考答案】解:(1) 由题意,得y=360x+260×(30-x)+8000=100x+15800,∴y 与x 之间的函数关系式为y=100x+15800 ( 0 ≤x ≤30 );(2)∵30x+20(30-x) ≥750,∴x ≥15,∴15 ≤x ≤30,且x 为正整数.由题意得100x+15800 ≤17500,∴x ≤17,∴15 ≤x ≤17,∵在y=100x+15800 中,y 随x 的增大而增大,∴当x=15 时,y 取得最小值,此时30-x=15,∴租用A、B 两种型号客车各15 辆时,总费用最少.9.李大爷有大小相同的土地20 块和现金4000 元,计划2019 年种植水稻和豌豆这两种农作物,预计每块地种植两种农作物的成本、产量及每千克的收益如下表:若李大爷用x 块地种植水稻,一个收获季的纯收益为y 元.(纯收益=收益-成本)(1) 请写出y 与x 之间的函数关系式;(2) 李大爷应如何分配种植土地( 取整数),才能获得最大纯收益?最大纯收益为多少元?【参考答案】解:(1) 若李大爷用x 块地种植水稻,则用( 20-x ) 块地种植豌豆.由题意得,y=(800x ×3-240x)+[200(20-x) ×5-80(20-x)=1240x+18400 ( 0 ≤x ≤20 );(2) 由题意得,240x+80( 20-x ) ≤4000,解得x ≤15.由(1) 中的函数关系式知,y 随x 的增大而增大,∴当x=15 时,y 取得最大值,最大值为1240×15+18400=37000 (元).则20-15=5 (块).答:当李大爷用15 块地种植水稻、5块地种植豌豆时,才能获得最大纯收益,最大纯收益为37000元.。

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)(含答案)

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)(含答案)

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)一、单选题 1.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是21.560s t t =-+.飞机着陆后到停下来滑行的距离是( )mA .300B .400C .500D .6002.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数2142y x x =-刻画,斜坡可以用一次函数12y x =刻画.下列结论错误的是( )A .小球距O 点水平距离超过4米呈下降趋势B .当小球水平运动2米时,小球距离坡面的高度为6米C .小球落地点距O 点水平距离为7米D .当小球拋出高度达到8m 时,小球距O 点水平距离为4m3.小康在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()2116399y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则小康此次掷球的成绩(即OA 的长度)是( )A .8mB .7mC .6mD .5m4.如图,要修建一个圆形喷水池,在池中心O 点竖直安装一根水管,在水管的顶端A 处安一个喷水头,使喷出的抛物线形水柱与水池中心O 点的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心O 点3m ,则水管OA 的高是( )A.2m B.2.25m C.2.5m D.2.8m5.学校组织学生去同安进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且喷口B为该抛物线的顶点.洗手液瓶子的截面图下面部分是矩形CGHD.小王同学测得:洗手液瓶子的底面直径12cmGH=,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线.小王在距离台面15.5cm处接洗于液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是()A.122cm B.123cm C.62cm D.6cm6.某公园有一个圆形喷水池,喷出的水流呈抛物线形,一条水流的高度h(单位:m)与水流运动时间t(单位:s)之间的函数解析式为2305h t t=-,那么水流从喷出至回落到地面所需要的时间是()A.6s B.4s C.3s D.2s7.如图所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8m,两侧距地面3m高处各有一壁灯,两壁灯间的水平距离为6m,则厂门的高度约为()A.307B.387C.487D.5078.如图,一座拱桥的轮廓是抛物线型,桥高10米,拱高8米,跨度24米,相邻两支柱间的距离均为6米,则支柱MN的长度为()A.6米B.5米C.4.5米D.4米二、填空题9.如图,已知一抛物线形大门,其地面宽度AB长10米,一位身高1.8米的同学站在门下离门角B点1米的D 处,其头顶刚好顶在抛物线形门上C处.则该大门的最高处离地面高h为米.10.如图所示,抛物线形拱桥的顶点距水面2m时,测得拱桥内水面宽为12m.当水面升高1m后,拱桥内水面的宽度减少m.11.从地面竖直向上抛出一小球,小球的高度h(米)与小球的运动时间(秒)之间的关系式是()2h t t t=-≤≤,若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出秒时,两个30506小球在空中相撞.12.从地面竖直向上跑出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是()2=-≤≤,小球运动到s时,达到最大高度.h t t t3020613.如图,以40m/s的速度将小球沿与地面成30︒角的方向击出时,小球的飞行路线将是一条抛物线,如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系2=-+,小520h t t球飞行过程中能达到的最大高度为m.14.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到A最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为m.15.如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点为m.16.某次踢球,足球的飞行高度h(米)与水平距离x(米)之间满足2=-+,则足球从离地到落地的560h x x水平距离为米.三、解答题AA的17.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线的最高点C离地面1距离为8m.(1)按如图所示的直角坐标系,求该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m ,宽为4m ,如果该隧道内设双向行车道,那么这辆货车能否安全通过?18.掷实心球是中考体育考试的项目.如图是一男生所掷实心球的行进路线(抛物线的一部分)的高度()y m 与水平距离()x m 之间的函数图象,且掷出时起点处高度为2m ,当到起点的水平距离为4m 时,实心球行进至最高点,此时实心球与地面的距离为3m .(1)求抛物线的函数解析式;(2)在该市的评分标准中,实心球从起点到落地点的水平距离大于等于10m 时,即可得满分,试判断该男生在此项考试中能否得满分,并说明理由(参考数据:3 1.73≈).19.南湖大桥作为我市首个全面采用数控技术的桥体音乐喷泉项目,历经多年已经成为长春市民夜间休闲放松的网红打卡地.其中喷水头喷出的水柱轨迹呈抛物线形状,喷水头P 距水面7.5m ,水柱喷射水平距离为5m 时,达到最大高度,此时距水面10m ,水柱落在水面A 点处.将收集到数据建立如图所示的平面直角坐标系,水柱喷出的高度()m y 与水平距离()m x 之间的函数关系式是21()y a x h k =-+.(1)求抛物线的表达式.(2)现调整P 的出水角度,其喷出的水柱高度()m y 与水平距离()m x 之间的函数关系式是220.1 1.2y x x m =-++,落点恰好在A 点右边的B 点处,求AB 的长.(结果精确到0.1m ,参考数据:11110.54=)20.图①是古代的一种远程投石机,其投出去的石块运动轨迹是抛物线的一部分.据《范蠡兵法》记载:“飞石重十二斤,为机发,行二百步”,其原理蕴含了物理中的“杠杆原理”.在如图②所示的平面直角坐标系中,将投石机置于斜坡OA 的底部点O 处,石块从投石机竖直方向上的点C 处被投出,已知石块运动轨迹所在抛物线的顶点坐标是()50,25,5OC =.(1)求抛物线的表达式;(2)在斜坡上的点A 建有垂直于水平线OD 的城墙AB ,且75OD =,12AD =,9AB =,点D ,A ,B 在一条直线上.通过计算说明石块能否飞越城墙AB .参考答案:1.D2.B3.B4.B。

中考数学专题练习一元一次方程的实际应用计费问题(含解析)

中考数学专题练习一元一次方程的实际应用计费问题(含解析)

2019中考数学专题练习-一元一次方程的实际应用-计费问题(含解析)一、单选题1.某城市按以下规定收取每月煤气费:每月所用煤气按整立方米数计算;若每月用煤气不超过60立方米,按每立方米0.8元收费;若超过60立方米,超过部分按每立方米1.2元收费.已知某户人家某月的煤气费平均每立方米0.88元,则这户人家需要交煤气费()A. 60元B. 66元C. 75元D. 78元2.某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款多少元()A. 838B. 924C. 924或838D. 838或9103.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3 ,每立方米收费2元;若用水超过20m3 ,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水()m3 .A. 38B. 34C. 28D. 444.某超市推出如下优惠方案:(1)购物款不超过200元不享受优惠;(2)购物款超过200元但不超过600元一律享受九折优惠;(3)购物款超过600元一律享受八折优惠.小明的妈妈两次购物分别付款168元、423元.如果小明的妈妈在超市一次性购买与上两次价值相同的商品,则小明的妈妈应付款()元.A. 522.80B. 560.40C. 510.40D. 472.805.某市出租车的收费标准是:起步价7元,超过3km时,每增加1km加收2.4元(不足1km按1km计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是xkm,那么x的最大值是( )A. 11B. 8C. 7D. 56.为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费,超过15立方米,则超过部分按每立方米2.4元收费。

中考数学复习----《二次函数之实际应用》知识点总结与专项练习题(含答案解析)

中考数学复习----《二次函数之实际应用》知识点总结与专项练习题(含答案解析)

中考数学复习----《二次函数之实际应用》知识点总结与专项练习题(含答案解析)知识点总结1.利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题。

解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量的取值范围。

2.几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论。

3.构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题。

练习题1、(2022•自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是()A.方案1B.方案2C.方案3D.方案1或方案2【分析】分别计算三个方案的菜园面积进行比较即可.【解答】解:方案1:设AD=x米,则AB=(8﹣2x)米,则菜园面积=x(8﹣2x)=﹣2x2+8x=﹣2(x﹣2)2+8,当x=2时,此时菜园最大面积为8米2;方案2:解法一:如图,过点B作BH⊥AC于H,则BH≤AB=4,∵S△ABC=•AC•BH,∴当BH=4时,△ABC的面积最大为×4×4=8;解法二:过点A作AD⊥BC于D,设CD=x,AD=y,则x2+y2=16,∴S=•BC•AD=•2x•y=xy,∵(x﹣y)2=x2+y2﹣2xy≥0,∴16﹣2xy≥0,∴xy≤8,∴当且仅当x=y=2时,菜园最大面积=8米2;方案3:半圆的半径=米,∴此时菜园最大面积==米2>8米2;故选:C . 2、(2022•襄阳)在北京冬奥会自由式滑雪大跳台比赛中,我国选手谷爱凌的精彩表现让人叹为观止,已知谷爱凌从2m 高的跳台滑出后的运动路线是一条抛物线,设她与跳台边缘的水平距离为xm ,与跳台底部所在水平面的竖直高度为ym ,y 与x 的函数关系式为y =2213212++−x x (0≤x ≤20.5),当她与跳台边缘的水平距离为 m 时,竖直高度达到最大值.【分析】把抛物线解析式化为顶点式,由函数的性质求解即可.【解答】解:y =x 2+x +2=﹣(x ﹣8)2+4,∵﹣<0, ∴当x =8时,y 有最大值,最大值为4,∴当她与跳台边缘的水平距离为8m 时,竖直高度达到最大值.故答案为:8.3、(2022•黔西南州)如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是y =﹣121x 2+32x +35,则铅球推出的水平距离OA 的长是 m .【分析】根据题目中的函数解析式和图象可知,OA 的长就是抛物线与x 轴正半轴的交点的横坐标的值,然后令y =0求出相应的x 的值,即可得到OA 的长.【解答】解:∵y =﹣x 2+x +,∴当y=0时,0=﹣x2+x+,解得x1=﹣2,x2=10,∴OA=10m,故答案为:10.4、(2022•南通)根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是h=﹣5t2+20t,当飞行时间t为s时,小球达到最高点.【分析】把二次函数解析式化为顶点式,即可得出结论.【解答】解:h=﹣5t2+20t=﹣5(t﹣2)2+20,∵﹣5<0,∴当t=2时,h有最大值,最大值为20,故答案为:2.5、(2022•聊城)某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).【分析】利用待定系数法求一次函数解析式,然后根据“利润=单价商品利润×销售量”列出二次函数关系式,从而根据二次函数的性质分析其最值.【解答】解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.6、(2022•广安)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降米,水面宽8米.【分析】根据已知建立直角坐标系,进而求出二次函数解析式,再根据通过把x=4代入抛物线解析式得出y,即可得出答案.【解答】解:以水面所在的直线AB为x轴,以过拱顶C且垂直于AB的直线为y轴建立平面直角坐标系,O为原点,由题意可得:AO=OB=3米,C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,把A点坐标(﹣3,0)代入抛物线解析式得,9a+2=0,解得:a=﹣,所以抛物线解析式为y=﹣x2+2,当x=4时,y=﹣×16+2=﹣,∴水面下降米,故答案为:.7、(2022•新疆)如图,用一段长为16m的篱笆围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为m2.【分析】设与墙垂直的一边长为xm,然后根据矩形面积列出函数关系式,从而利用二次函数的性质分析其最值.【解答】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(16﹣2x)m,∴矩形围栏的面积为x(16﹣2x)=﹣2x2+16x=﹣2(x﹣4)2+32,∵﹣2<0,∴当x=4时,矩形有最大面积为32m2,故答案为:32.8、(2022•甘肃)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t (单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t=s.【分析】把一般式化为顶点式,即可得到答案.【解答】解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,故答案为:2.9、(2022•连云港)如图,一位篮球运动员投篮,球沿抛物线y=﹣0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为 3.05m,则他距篮筐中心的水平距离OH是m.【分析】根据所建坐标系,水平距离OH就是y=3.05时离他最远的距离.【解答】解:当y=3.05时,3.05=﹣0.2x2+x+2.25,x2﹣5x+4=0,(x﹣1)(x﹣4)=0,解得:x1=1,x2=4,故他距篮筐中心的水平距离OH是4m.故答案为:4.10、(2022•南充)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O 点3m.那么喷头高m时,水柱落点距O点4m.【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0,联立可求出a和b的值,设喷头高为h时,水柱落点距O点4m,则此时的解析式为y=ax2+bx+h,将(4,0)代入可求出h.【解答】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出6.25a+2.5b+2.5=0,整理得2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=﹣,b=,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=﹣x2+x+h,将(4,0)代入可得﹣×42+×4+h=0,解得h=8.故答案为:8.。

中考数学重难点突破专题三:方程、不等式的实际应用问题试题(含答案)

中考数学重难点突破专题三:方程、不等式的实际应用问题试题(含答案)

精品基础教育教学资料,仅供参考,需要可下载使用!专题三 方程、不等式的实际应用问题类型1 方程(组)、不等式的应用问题1.(2017·贵港)某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?解:(1)设甲队胜了x 场,则负了(10-x)场,根据题意可得:2x +10-x =18,解得:x =8,则10-x =2,答:甲队胜了8场,负了2场;(2)设乙队在初赛阶段胜a 场,根据题意可得:2a +(10-a)>15,解得:a >5,∵a 为整数,∴a 最小=6,答:乙队在初赛阶段至少要胜6场.2.(2017·玉林)某新建成学校举行美化绿化校园活动,九年级计划购买A ,B 两种花木共100棵绿化操场,其中A 花木每棵50元,B 花木每棵100元.(1)若购进A ,B 两种花木刚好用去8000元,则购买了A ,B 两种花木各多少棵?(2)如果购买B 花木的数量不少于A 花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.解:(1)设购买A 种花木x 棵,B 种花木y 棵,则:⎩⎪⎨⎪⎧x +y =10050x +100y =8000,解得:⎩⎪⎨⎪⎧x =40y =60,答:购买A 种花木40棵,B 种花木60棵;(2)设购买A 种花木a 棵,则购买B 种花木(100-a)棵,根据题意,得:100-a ≥a ,解得:a ≤50,设购买总费用为W ,则W =50a +100(100-a)=-50a +10000,∵W 随a 的增大而减小,∴当a =50时,W 取得最小值,最小值为7500元,3.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300 kg ,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少 kg?解:(1)设批发西红柿x kg ,西兰花y kg.由题意得⎩⎪⎨⎪⎧x +y =300,3.6x +8y =1520.解得⎩⎪⎨⎪⎧x =200,y =100.200×(5.4-3.6)+100×(14-8)=960(元). 答:两种蔬菜当天全部售完一共能赚960元钱.(2)设批发西红柿a kg ,由题意得(5.4-3.6)a +(14-8)×1520-3.6a 8≥1050.解得a ≤100. 答:该经营户最多能批发西红柿100 kg.类型2 方程(组)、不等式与函数的应用问题4.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?解:(1)设每吨水的政府补贴优惠价和市场调节价分别为a 元,b 元.依题意得⎩⎪⎨⎪⎧12a +12b =42,12a +8b =32.解得⎩⎪⎨⎪⎧a =1,b =2.5. 答:每吨水的政府补贴优惠价1元,市场调节价2.5元.(2)当0≤x ≤12时,y =x.当x >12时,y =12+2.5(x -12),即y =2.5x -18.∴y =⎩⎪⎨⎪⎧x (0≤x ≤12)2.5x -18(x >12) (3)当x =26时,y =2.5×26-18=65-18=47(元).答:小黄家三月份应交水费47元.5.某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x >0)件甲种玩具需要花费y 元,请你求出y 与x 的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.解:(1)设每件甲种玩具的进价是x 元,每件乙种玩具的进价是y 元,由题意得⎩⎪⎨⎪⎧5x +3y =231,2x +3y =141.解得{x =30,y =27.答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元.(2)当0<x ≤20时,y =30x ;当x >20时,y =20×30+(x -20)×30×0.7=21x +180.∴y =⎩⎪⎨⎪⎧30x (0<x ≤20)21x +180(x >20) (3)设购进玩具z 件(z >20),则乙种玩具消费27z 元;当27z =21z +180,则z =30.所以当购进玩具正好30件,选择购其中一种即可;当27z >21z +180,则z >30.所以当购进玩具超过30件,选择购甲种玩具省钱;当27z <21z +180,则z <30.所以当购进玩具多于20件少于30件,选择购乙种玩具省钱.6.(2017·郴州)某工厂有甲种原料130 kg ,乙种原料144 kg .现用这两种原料生产出A ,B 两种产品共30件.已知生产每件A 产品需甲种原料5 kg ,乙种原料4 kg ,且每件A 产品可获利700元;生产每件B 产品需甲种原料3 kg ,乙种原料6 kg ,且每件B 产品可获利900元.设生产A 产品x 件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A ,B 两种产品的方案有哪几种;(2)设生产这30件产品可获利y 元,写出y 关于x 的函数解析式,写出(1)中利润最大的方案,并求出最大利润.解:(1)根据题意得:⎩⎪⎨⎪⎧5x +3(30-x )≤1304x +6(30-x )≤144,解得18≤x ≤20,∵x 是正整数,∴x =18、19、20,共有三种方案:方案一:A 产品18件,B 产品12件,方案二:A 产品19件,B 产品11件,方案三:A 产品20件,B 产品10件; (2)根据题意得:y =700x +900(30-x)=-200x +27000,∵-200<0,∴y 随x 的增大而减小,∴x =18时,y 有最大值,y 最大=-200×18+27000=23400元.答:方案一利润最大,最大利润为23400元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【中考数学必备专题】实际应用问题
一、解答题(共2道,每道50分)
1.如图1、2,图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为5个单位(每个单位为5cm),设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,
∠MOA=α,且sinα=.(1)求点M离地面AC的高度BM(单位:厘米);(2)设人站立点C与点A的水平距离AC等于11个单位,求铁环钩MF的长度(单位:厘米).
答案:过作与平行的直线,与分别相交于.
(1)在中,,,
所以,

所以铁环钩离地面的高度为;
(2)因为,,
所以,
即得
在中,

由勾股定理,

解得

所以铁环钩的长度为50cm.
解题思路:分析题意把题目数据条件放在图中,注意到∠FMO=90°,同时为了把圆环半径OM放在直角三角形中研究,可以考虑构造双垂直模型:过作与平行的直线,与分别相交于,分别在和中利用三角函数知识处理。

试题难度:三颗星知识点:三角函数、实际应用题
2.图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形.当点O到BC(或DE)的距离大于或等于⊙O的半径时(⊙O是桶口所在圆,半径为OA),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,
C-D是,其余是线段),O是AF的中点,桶口直径AF=34cm,AB=FE=5cm,∠ABC=∠FED=149°.
请通过计算判断这个水桶提手是否合格.(参考数据:&asymp;17.72,tan73.6°&asymp;3.40,sin75.4°&asymp;0.97.)
答案:
解法一:连接OB,过点O作OG⊥BC于点G.
在Rt△ABO中,AB=5,AO=17,
∴tan∠ABO=,
∴∠ABO=73.6°
∴∠GBO=∠ABC-∠ABO=149°-73.6°=75.4°
又∵
∴在Rt△OBG中,
∴水桶提手合格.
解法二:连接OB,过点O作OG⊥BC于点G.
在Rt△ABO中,AB=5,AO=17,
∴tan∠ABO=,∴∠ABO=73.6°要使OG≧OA,只需∠OBC≧∠ABO,∵∠OBC=∠ABC-∠ABO=149°-73.6°=75.4°>73.6°∴水桶提手合格.
解题思路:分析题意把题目数据条件放在图中,为了把AB、OA放在直角三角形中研究,同时需要找到圆心O到BC之间的距离,所以过点O作OG⊥BC于点G,在两个直角三角形中分别使用三角函数来求解即可。

试题难度:三颗星知识点:三角函数、实际应用题。

相关文档
最新文档