中考总复习专题三:动态几何问题

合集下载

中考数学总复习课件(专题3:动点型问题)

中考数学总复习课件(专题3:动点型问题)

MN 1 x2 S 16 2( 1 x2
8. 8)
1
x2
8.
2
2
根据二次函数的图形和性质,这个函数的图形是开口向下,
对称轴是y轴,顶点是(0,8),自变量的取值范围是0<x
<4.
故答案选C.
(三)面动问题 【例题 4】(2014·玉林市)如图,边长分别为1和2的两个等边 三角形,开始它们在左边重合,大三角形固定不动,然后把 小三角形自左向右平移直至移出大三角形外停止.设小三角形 移动的距离为x,两个三角形重叠的面积为y,则y关于x的函 数图象是( )
解:(1)①当△BPQ∽△BAC时,
∵ BP BQ , BP=5t,QC=4t,
BA BC
AB=10 cm,BC=8 cm,
∴ 5t 8 4t ,∴t=1.
10 8
②当△BPQ∽△BCA时,

BP BC
BQ , BA

5t 8 4t , 8 10

t 32 . 41
∴t=1或 t 32 时,△BPQ与△ABC类似.
41
(2)如图a,过点P作PM⊥BC于点M,AQ,CP相交于点N.
则有PB=5t,PM=3t,CM=8-4t,
∵∠NAC+∠NCA=90°,
∠PCM+∠NCA=90°,
∴∠NAC=∠PCM且∠ACQ=∠PMC=90°.
∴△ACQ∽△CMP.
∴ AC QC .
CM PM
∴ 6 4t , 解得 t 7 ,
题型一 建立动点问题的函数关系式(或函数图象)
【例题 1】(2014·黑龙江省)如图,在平面直角坐标系中,边 长为1的正方形ABCD中,AD边的中点处有一动点P,动点P 沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走

中考几何-动态试题解法(解析版)

中考几何-动态试题解法(解析版)

中考几何动态试题解法专题知识点概述一、动态问题概述1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。

3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。

4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。

二、动点与函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。

2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。

3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。

4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。

三、图形运动与函数图象问题常见的三种类型1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。

2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。

3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。

四、动点问题常见的四种类型解题思路1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

点 的坐标
为 .……
一次函数的解读式
为 .
(3) 两点在直线 上, 的坐标分别是 .
, .
过点 作 ,垂足为点 .

又 , 点坐标为 .
3.(1)解方程 ,得 .
由m<n,知m=1,n=5.
∴A(1,0),B(0,5).………………………1分
∴ 解之,得
所求抛物线的解读式为 ……3分
(2)由 得 故C的坐标为(-5,0).………4分
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______
和位置关系为_____;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
4、(1)如图1所示,在四边形 中, = , 与 相交于点 , 分别是 的中点,联结 ,分别交 、 于点 ,试判断 的形状,并加以证明;
(2)如图2,在四边形 中,若 , 分别是 的中点,联结FE并延长,分别与 的延长线交于点 ,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
7.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.

中考数学专题——动态问题(非常全面)

中考数学专题——动态问题(非常全面)

(中考数学专题3) 动态几何问题【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).D NCM B A(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【例3】在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =42,3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)【例4】已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y与x 的函数关系式; (3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.【例5】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG CG ,. (1)直接写出线段EG 与CG 的数量关系;(2)将图1中BEF ∆绕B 点逆时针旋转45︒,如图2所示,取DF 中点G ,连接EG CG ,,. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中BEF ∆绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)A DC B P M Q 60图3图2图1FEABCDABC DEFGGFED C BA【总结】 通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。

2022年中考数学专题复习:动态几何问题

2022年中考数学专题复习:动态几何问题

2022年中考数学专题复习:动态几何问题1.在△ABC中,AB = AC,△ABC = 30°,△BDE是等边三角形,连接CD、AE.(1)如图1,当A、B、D三点在同一直线上时,AE、BC交于点P,且AE△AC.若PC = 4,求PE的长;(2)如图2,当B、E、C三点在同一直线上时,F是CD中点,连接AF、EF,求证:AE = 2AF;(3)如图3,在(2)的条件下,AB=8,E在直线BC上运动,将△AEF沿EF翻折得到△MEF,连接DM,G是AB上一点,且BG=14AB,O是直线BC上的另一个动点,连接OG,将△BOG沿OG翻折得到△HOG,连接HM,当HM最小时,直接写出此时点D到直线EM的距离.2.如图1和图2,在△ABC中,AB=AC=5,sinC=35.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接写出点K被扫描到的总时长.3.如图,在等腰梯形ABCD中,AB△CD,AB=8cm,CD=2cm,AD=6cm.点P从A 点出发,以2cm/s的速度沿AB向B点运动(运动到B点即停止);点Q从C点出发,以1cm/s的速度沿CD−DA向A点运动(当点P停止运动时,点Q也即停止),设P、Q同时出发并运动了t秒.(1)求梯形ABCD的高和△A的度数;(2)当PQ将梯形ABCD分成两个直角梯形时,求t的值;(3)试问是否存在这样的t的值,使四边形PBCQ的面积是梯形ABCD面积的一半,若存在,请求出t的值;若不存在,请说明理由.4.如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连结AG 、DE .(1)猜想AG 与DE 的数量关系,请直接写出结论;(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转,旋转角为α(0°<α<180°),得到图2,请判断:(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由; (3)在正方形OEFG 旋转过程中,请直接写出: △当α=30°时,△OAG 的度数;△当△AEG 的面积最小时,旋转角α的度数.5.如图1,在ABC 中,90,ACB CD ∠=︒平分ACB ∠,且AD BD ⊥于点D .(1)判断ABD △的形状;(2)如图2,在(1)的结论下,若3,75BQ DQ BQD ==∠=︒,求AQ 的长; (3)如图3,在(1)的结论下,若将DB 绕着点D 顺时针旋转()090αα︒<<︒得到DP ,连接BP ,作DE BP ⊥交AP 于点F .试探究AF 与DE 的数量关系,并说明理由.6.如图,在Rt ABCAB=,4∠=︒,5AC=.动点P从点A出发,沿AB △中,90C⊥交AC或BC于点Q,以每秒4个单位长度的速度向终点B运动.过点P作PQ AB分别过点P、Q作AC、AB的平行线交于点M.设PQM与ABC重叠部分的面积为t t>秒.S,点P运动的时间为()0(1)当点Q在AC上时,CQ的长为______(用含t的代数式表示).(2)当点M落在BC上时,求t的值.(3)当PQM与ABC的重合部分为三角形时,求S与t之间的函数关系式.(4)点N为PM中点,直接写出点N到ABC的两个顶点的距离相等时t的值.7.如图,△ABC是等边三角形,AB=4cm,动点P从A出发,以2cm/s的速度沿AB 向点B匀速运动,过点P作PQ△AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使A,D在PQ异侧,设点P的运动时间是x(s)(0<x<2).(1)AP的长为cm(用含x的代数式表示);(2)当Q与C重合时,则x=s;(3)△PQD的周长为y(cm),求y关于x的函数解析式,并写出自变量的取值范围.8.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P 在线段BC上以3cm/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.设P点的运动时间为t.(1)CP=cm.(用含t的式子表示);(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?9.如图,在Rt△ABC中,△B=90°,BC=5 ,△C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF△BC于点F,连接DE、EF.(1)AC的长是________,AB的长是________.(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF与AD是何关系,并给予证明;若变化,请说明理由.(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(4)当t为何值,△BEF的面积是2 ?10.在Rt△ABC中,△BAC=90°,AB=AC,动点D在直线BC上(不与点B,C重合),连接AD,把AD绕点A逆时针旋转90°得到AE,连接DE,F,G分别是DE,CD的中点,连接FG.【特例感知】(1)如图1,当点D是BC的中点时,FG与BD的数量关系是,FG 与直线BC的位置关系是;【猜想论证】(2)当点D在线段BC上且不是BC的中点时,(1)中的结论是否仍然成立?△请在图2中补全图形;△若成立,请给出证明;若不成立,请说明理由.【拓展应用】(3)若AB=AC,其他条件不变,连接BF、CF.当△ACF是等边三角形时,请直接写出△BDF的面积.11.如图,等腰三角形△ABC的腰长AB=AC=5cm,BC=8cm,动点P从B出发沿BC 向C运动,速度为2cm/s.动点Q从C出发沿CA向A运动,速度为1cm/s,当一个点到达终点时两个点同时停止运动.点P'是点P关于直线AC的对称点,连接PP′和P′Q,P′P和AC相交于点E.设运动时间为t秒.(1)若当t的值是多少时,P'P恰好经过点A?(2)设△P′PQ的面积为y,求y与t之间的函数关系式(0<t≤4);(3)是否存在某一时刻t,使PQ平分△P′PC?若存在,求出相应的t值,若不存在,请说明理由;(4)是否存在某一时刻t,使点Q在PC的垂直平分线上?若存在,求出相应的t值,若不存在,请说明理由.12.如图,△ABC为等腰三角形,AB=AC,将CA绕点C顺时针旋转至CD,连接AD,E为直线CD上一点,连接AE;(1)如图1,若△BAC=60°,△ACD=90°,E为CD中点,AB=△BCE的面积;(2)如图2,若△ACD=90°,点E在线段CD上且△DAE+△ABC=90°,AE的延长线与BC的延长线交于点F,连接DF,求证:BC=;(3)如图3,AB=1,△BAC=90°,△ACD=105°,若BE恰好平分△AEC,点P为线段AE上的动点,点E′与点E关于直线DP对称,AE′与CD交于点Q,连接CE′,当'+-''的值最小时,直接写出CQ的值.AE CE13.已知,如图△,在平行四边形ABCD中,AB=3cm,BC=5cm,AC△AB,△ACD 沿AC的方向匀速平移得到△PNM,速度为1cm/s:同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图△,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)CQ=,BQ=,AP=,CP=.(2)当t为何值时,PQ∥MN;(3)设△OMC的面积为y(cm2),求y与t之间的函数关系式;(4)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4.若存在,求出t的值;若不存在,请说明理由.14.如图,等腰ABC的底边BC=8,高AD=2,M是AB中点,连接MD.动点E从点B出发,以每秒1个单位的速度沿BC向点C运动,到点C停止,另一动点F从点B出发,以相同的速度沿BC运动,到点D停止.已知点E比点F早出发1秒,当点F出发后,以EF为边作正方形EFGH,使点G、H和点A在BC的同侧,设点E运动的时间为t秒.(1)当t≥1时,用含t的代数式表示EF的长;(2)设正方形EFGH面积为S 1,正方形EFGH与ABC重叠面积为S2,当S1:S2=2时,求t的值;(3)在点F开始运动时,点P从点D出发,以每秒DM ﹣MB﹣BM﹣MD运动,到达点D停止,在点E的整个运动过程中,求点P在正方形EFGH内(含边界)的时长.15.如图1,正方形ABCD中,点P、Q是对角线BD上的两个动点,点P从点B出发沿着BD以1cm/s的速度向点D运动;点Q同时从点D出发沿着DB以2cm的速度向点B运动.设运动的时间为x s,△AQP的面积为y cm2,y与x的函数图象如图2所示,根据图象回答下列问题:(1)a=.(2)当x为何值时,APQ的面积为6cm2;(3)当x为何值时,以PQ为直径的圆与APQ的边有且只有三个公共点.16.如图1,有一张矩形纸条ABCD ,边AB 、BC 的长分别是方程27100x x -+=的两个根()AB BC >,E 为CD 上一点,1CE =. (1)连接AE ,BE ,试说明90AEB =︒∠.(2)如图2,M 为边AB 上一个动点,将四边形BCEM 沿ME 折叠,使点B ,C 分别落在点B ′,C '上,边MB '与边CD 交于点N . △如图3,当点M 与点A 重合时,求N 到ME 的距离.△在点M 从点A 运动到点B 的过程中,求点N 相应运动的路径长(路程).17.如图,已知在Rt ABC 中,90ACB ∠=︒,8AC =,16BC =,D 是AC 上的一点,3CD =,点P 从B 点出发沿射线BC 方向以每秒2个单位的速度向右运动.设点P 的运动时间为t ,连接AP .(1)当3t =秒时,求AP 的长度;(2)当ABP △为等腰三角形时,求t 的值;(3)过点D 作DE AP ⊥于点E ,连接PD ,在点P 的运动过程中,当PD 平分APC ∠时,直接写出t 的值.18.如图,已知在Rt△ABC 中,△ACB =90°,AB =10,AC =6,点D 是斜边AB 上的动点,联结CD ,作DE △CD 交射线CB 于点E ,设AD =x . (1)当点D 是边AB 的中点时,求线段DE 的长; (2)当△BED 是等腰三角形时,求x 的值; (3)如果DEy DB=,求y 关于x 的函数解析式,并写出它的定义域.19.已知:如图,在长方形ABCD 中,4cm,6cm AB BC ==,点E 为AB 中点.点P 在线段BC 上以每秒2cm 的速度由点B 向点C 运动,同时,点Q 在线段CD 上由点C 向点D 运动.设点P 的运动时间为t 秒,解答下列问题:(1)线段,BP PC 的长可用含t 的式子分别表示为 cm , cm ;(2)若某一时刻BPE 与CQP 全等,求此时t 的值和点Q 的运动速度.20.在平面直角坐标系中,点A(0,4),点B(4,0),连接AB,点P(0,t)是y 轴上的一动点,以BP为一直角边构造等腰直角△BPC(B,P,C的顺序为顺时针),且△BPC=90°,过点A作AD△x轴并与直线BC交于点D,连接PD.(1)如图1,当t=2时,求点C的坐标;(2)如图2,当t>0时,求证:△ADC=△PDB;(3)如图3,当t<0时,求DP﹣DA的值(用含有t的式子表示).。

中考数学专题3动态几何问题

中考数学专题3动态几何问题

中考数学专题3 动态几何问题第一部分 真题精讲【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。

但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。

对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。

但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。

所以当题中设定MN//AB 时,就变成了一个静止问题。

由此,从这些条件出发,列出方程,自然得出结果。

【解析】 解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形.AB M CNE D∵AB DE ∥,AB MN ∥.∴DE MN ∥. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD =. (这个比例关系就是将静态与动态联系起来的关键) ∴ 1021035t t -=-.解得5017t =. 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。

在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。

具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】(2)分三种情况讨论:① 当MN NC =时,如图②作NF BC ⊥交BC 于F ,则有2MC FC =即.(利用等腰三角形底边高也是底边中线的性质)∵4sin 5DF C CD ∠==,∴3cos 5C ∠=,∴310225tt -=⨯,解得258t =.AB M CNF D② 当MN MC =时,如图③,过M 作MH CD ⊥于H . 则2CN CH =,∴()321025t t =-⨯.∴6017t =.AB M CN HD③ 当MC CN =时, 则102t t -=. 103t =.综上所述,当258t =、6017或103时,MNC △为等腰三角形.【例2】在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论. (2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC=3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)【思路分析1】本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给出那个“静止点”,所以需要我们去分析由D 运动产生的变化图形当中,什么条件是不动的。

中考数学经典总复习专题动线、动形问题完美全文

中考数学经典总复习专题动线、动形问题完美全文
的取值范围;
学 (2)点P 、 Q在运动的过程中,△PCQ面积S有最 大值吗?若有,请求出最大值;若没有,请说明理 由。
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2). 作 (1)求抛物线的表达式;
学 存在,请说明理由;
y
解析:
C
AO
DB
x
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2).
作 互
( 3)点E 是 线 段 BC上的一个动点,过点E 作x轴的垂线与抛物线相交于点F,当点E 运动到什么位置时,四边形CDBF的面积
8
1 2
3
x2+ 2

x+2;
∴抛物线的对称轴是x= ∴OD= .3
32.
∵C(0,2 2),
∴OC=2.
5
在Rt△OCD中,由勾股定理,得CD= .2
∵△CDP是以CD为腰的等腰三角形,
∴CP1=CP2=CP3=CD. 作CH⊥x轴于H,
∴HP1=HD=2,
∴∴DP1P(1=4.,32 4),P2(
中考数学---动线、动形问题
• 数学因运动而充满活力,数学因变化而精彩纷呈。动态题是中考 中必考的内容。
• 本节课重点来探究动态几何中的动线、动形问题。
• 一、关于动线、动形问题的解题方法:
• 1.“以静制动”,把动态问题转化成静态问题;
• 2.图形的运动主要有翻折、平移、旋转,在运动过程中,分清哪 些量不变,哪些量发生了变化,以不变的量作为解题基础,以变 化中的规律和特点作为解题的关键。

中考数学复习:专题三:动点或最值问题

中考数学复习:专题三:动点或最值问题

点拨:在 Rt△AOB 中,∵∠ABO=30°,AO=1,∴AB=2,BO = 22-12= 3,①当点 P 从 O→B 时,如图 1、图 2 所示,点 Q 运动的 路程为 3;②当点 P 从 B→C 时,如图 3 所示,这时 QC⊥AB,则∠ACQ =90°,∵∠ABO=30°,∴∠BAO=60°,∴∠OQD=90°-60°= 30°,∴cos30°=ACQQ,∴AQ=cosC3Q0°=2,∴OQ=2-1=1,则点 Q 运动的路程为 QO=1;③当点 P 从 C→A 时,如图 3 所示,点 Q 运动的 路程为 QQ′=2- 3;④当点 P 从 A→O 时,点 Q 运动的路程为 AO=1, ∴点 Q 运动的总路程为 3+1+2- 3+1=4,故答案为 4
【点评】 本题主要考查轴对称的应用,利用最小值的常规解法确定 出点A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利 用条件证明△AA′D是等边三角形,借助几何图形的性质可以减少复杂的 计算.
[对应训练] 2.(1)(2016·贵港)如图,抛物线 y=-112x2+32x+53与 x 轴交于 A,B 两点,与 y 轴交于点 C.若点 P 是线段 AC 上方的抛物线上一动点,当 △ACP 的面积取得最大值时,点 P 的坐标是( B ) A.(4,3) B.(5,3152) C.(4,3152) D.(5,3)
解决最值问题的两种方法: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连接直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆的所有弦中,直径最长. (2)运用代数证法: ①运用配方法求二次三项式的最值; ② 运用一元二次方程根的判别式.
【例 2】 (2016·雅安)如图,在矩形 ABCD 中,AD=6,AE⊥BD, 垂足为 E,ED=3BE,点 P,Q 分别在 BD,AD 上,则 AP+PQ 的最小 值为( D )

中考数学复习:专题三:动点或最值问题

中考数学复习:专题三:动点或最值问题

(2)(2016·泸州)如图,在平面直角坐标系中,已知点A(1,0),B(1-a ,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动 ,且始终满足∠BPC=90°,则a的最大值是___6_.
专题三 动点或最值问题
动点问题是指以几何知识和图形为背景,渗入运动变化观点的一类问 题,常见的形式是:点在线段、射线或弧线上运动等.此类题的解题方 法:
1.利用动点(图形)位置进行分类,把运动问题分割成几个静态问题, 然后运用转化的思想和方法将几何问题转化为函数和方程问题.
2.利用函数与方程的思想和方法将要解决图形的性质(或所求图形面 积)直接转化为函数或方程.
点拨:∵点 A,B 的坐标分别为(8,0),(0,2 3),∴BO=2 3,AO =8,由 CD⊥BO,C 是 AB 的中点,可得 BD=DO=12BO= 3=PE, CD=21AO=4,设 DP=a,则 CP=4-a,
延长 BP 交 CE 于 F,当 BP 所在直线与 EC 所在直线第一次垂直时, ∠FCP=∠DBP,又∵EP⊥CP,PD⊥BD,∴∠EPC=∠PDB=90°,∴ △EPC∽△PDB,∴DPEP=DPCB,即 a3=4-3a,解得 a1=1,a2=3(舍去), ∴DP=1,又∵PE= 3,∴P(1, 3)
【点评】 本题主要考查轴对称的应用,利用最小值的常规解法确定 出点A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利 用条件证明△AA′D是等边三角形,借助几何图形的性质可以减少复杂的 计算.
[对应训练] 2.(1)(2016·贵港)如图,抛物线 y=-112x2+32x+53与 x 轴交于 A,B 两点,与 y 轴交于点 C.若点 P 是线段 AC 上方的抛物线上一动点,当 △ACP 的面积取得最大值时,点 P 的坐标是( B ) A.(4,3) B.(5,3152) C.(4,3152) D.(5,3)

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;
(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形.
答案:
1、解:1)PD=PE。以图②为例,连接PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连结CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
3.在 中,AC=BC, ,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作 ,交直线AB于点H.判断FH与FC的数量关系并加以证明.
动态几何问题的解题技巧
解这类问题的基本策略是:
1.动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(AAS)
∴PD=PE
2)能,①当EP=EB时,CE= BC=1
②当EP=PB时,点E在BC上,则点E和C重合,CE=0
③当BE=BP时,若点E在BC上,则CE=

中考数学专题:《动态动点几何问题》带答案

中考数学专题:《动态动点几何问题》带答案

《动态几何问题》专题突破训练(附答案)1.如图,在直角三角形ABC 中,∠ACB =90°,AB =5cm ,BC =4cm .动点P 从点A 出发,沿线段AB 向终点B 以5cm /s 的速度运动,同时动点Q 从点A 出发沿射线AC 以5cm /s 的速度运动,当点P 到达终点时,点Q 也随之停止运动;连接PQ ,设∠APQ 与∠ABC 重叠部分图形的面积为S (cm 2),点P 运动的时间为t (s )(t >0).(1)直接写出AC = cm ;(2)当点A 关于直线PQ 的对称点A '落在线段BC 上时,求t 的值;(3)求S 与t 之间的函数关系式;(4)若M 是PQ 的中点,N 是AB 的中点,当MN 与BC 平行时,t = ;当MN 与AB 垂直时,t = .2.如图,矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当4AP =时,求 tan EBP ∠;(3)如果EBC ∆是以EBC ∠为底角的等腰三角形,求AP 的长A-,点3.如图,平行四边形ABCO位于直角坐标系中,O为坐标原点,点(8,0)()C BC交y轴于点.D动点E从点D出发,沿DB方向以每秒1个单位长度的速度3,4终点B运动,同时动点F从点O出发,沿射线OA的方向以每秒2个单位长度的速度运动,当点E运动到点B时,点F随之停止运动,运动时间为t(秒).(1)用t的代数式表示:BE=________,OF=________(2)若以A,B,E,F为顶点的四边形是平行四边形时,求t的值.(3)当BEF恰好是等腰三角形时,求t的值.4.在∠ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作∠ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE为多少?说明理由;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论,不需证明.5.问题情境:如图1,已知正方形ABCD与正方形CEFG,B、C、G在一条直线上,M是AF的中点,连接DM,EM.探究DM,EM的数量关系与位置关系.小明的思路是:小明发现AD//EF,所以通过延长ME交AD于点H,构造∠EFM和∠HAM全等,进而可得∠DEH是等腰直角三角形,从而使问题得到解决,请你参考小明同学的思路,探究并解决下列问题:(1)猜想图1中DM、EM的数量关系,位置关系.(2)如图2,把图1中的正方形CEFG绕点C旋转180°,此时点E在线段DC的延长线上,点G落在线段BC上,其他条件不变,(1)中结论是否成立?请说明理由;(3)我们可以猜想,把图1中的正方形CEFG绕点C旋转任意角度,如图3,(1)中的结论(“成立”或“不成立”)拓展应用:将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.6.如图,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0),B(3,0),与y轴交于点C,点P 是抛物线上一动点,连接PB,PC.(1)求抛物线的解析式;(2)如图1,当点P在直线BC上方时,过点P作PD上x轴于点D,交直线BC于点E.若PE=2ED,求∠PBC的面积;(3)抛物线上存在一点P,使∠PBC是以BC为直角边的直角三角形,求点P的坐标.7.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由;(3)解决问题:如图③,90ACB AED ∠∠︒==,AC =AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.8.如图,∠O 的半径为5,弦BC =6,A 为BC 所对优弧上一动点,∠ABC 的外角平分线AP 交∠O 于点P ,直线AP 与直线BC 交于点E .(1)如图1,①求证:点P 为BAC 的中点;②求sin∠BAC 的值;(2)如图2,若点A 为PC 的中点,求CE 的长;(3)若∠ABC 为非锐角三角形,求PA •AE 的最大值.9.如图1,已知∠ABC 中,∠ACB =90°,AC =BC =6,点D 在AB 边的延长线上,且CD =AB .(1)求BD 的长度;(2)如图2,将∠ACD 绕点C 逆时针旋转α(0°<α<360°)得到∠A'CD'.①若α=30°,A'D'与CD 相交于点E ,求DE 的长度;②连接A'D 、BD',若旋转过程中A'D =BD'时,求满足条件的α的度数.(3)如图3,将∠ACD 绕点C 逆时针旋转α(0°<α<360°)得到∠A'CD',若点M 为AC 的中点,点N 为线段A'D'上任意一点,直接写出旋转过程中线段MN 长度的取值范围.10.如图,P 是等边ABC 内的一点,且5PA =,4PB =,3PC =,将APB △绕点B 逆时针旋转,得到CQB △.(1)求点P 与点Q 之间的距离;(2)求BPC ∠的度数;(3)求ABC 的面积ABC S.11.如图,在矩形ABCD 中,6AB cm =,8BC cm =,如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为2/cm s 和1/cm s ,FQ BC ⊥,分别交AC ,BC 于点P 和Q ,设运动时间为()04ts t <<.(1)连接EF ,若运动时间t =_______s 时,EF =;(2)连接EP ,当EPC 的面积为23cm 时,求t 的值;(3)若EQP ADC ∽△△,求t 的值.12.如图,边长为ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90°得到BQ ,连接QP ,QP 与BC 交于点E ,其延长线与AD (或AD 延长线)交于点F .(1)连接CQ ,证明:CQ AP =;(2)设AP x =,CE y =,试写出y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)试问当P 点运动到何处时,PB PE +的值最小,并求出此时CE 的长.(画出图形,直接写出答案即可)13.已知:O 是ABC ∆的外接圆,且,60,AB BC ABC D =∠=︒为O 上一动点. (1)如图1,若点D 是AB 的中点,求DBA ∠的度数.(2)过点B 作直线AD 的垂线,垂足为点E .①如图2,若点D 在AB 上.求证CD DE AE =+.②若点D 在AC 上,当它从点A 向点C 运动且满足CD DE AE =+时,求ABD ∠的最大值.14.抛物线239344y x x =--与x 轴交于点A ,与y 轴交于点B .线段OA 上有一动点P (不与O A 、重合),过点P 作y 轴的平行线交直线AB 于点C ,交抛物线于点M (1)求直线AB 的解析式;(2)点N 为线段AB 下方抛物线上一动点,点D 是线段AB 上一动点;①若四边形CMND 是平行四边形,证明:点M N 、横坐标之和为定值;②在点P N D 、、运动过程中,平行四边形CMND 的周长是否存在最大值?若存在,求出此时点D 的坐标,若不存在,说明理由15.如图,在平面直角坐标系中,点C 在x 轴上,90,10cm,6cm OCD D AO OC CD ︒∠=∠====.(1)请求出点A 的坐标.(2)如图(2),动点P Q 、以每秒1cm 的速度分别从点O 和点C 同时出发,点P 沿OA AD DC 、、运动到点C 停止,点Q 沿CO 运动到点O 停止,设P Q 、同时出发t 秒. ①是否存在某个时间t (秒),使得OPQ △为直角三角形?若存在,请求出值;若不存在,请说明理由.②若记POQ △的面积为()2cm y ,求()2cm y 关于t (秒)的函数关系式. 16.已知,点O 是等边ABC 内的任一点,连接OA ,OB ,OC .(∠)如图1所示,已知150AOB ∠=︒,120BOC ∠=︒,将BOC 绕点C 按顺时针方向旋转60︒得ADC .①求DAO ∠的度数:②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明;(∠)设AOB α∠=,BOC β∠=.①当α,β满足什么关系时,OA OB OC ++有最小值?并说明理由;②若等边ABC 的边长为1,请你直接写出OA OB OC ++的最小值.17.如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作∠O 交AC 于点F ,连接DF 、PF .(1)则∠DPF 是 三角形;(2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将∠EFP 沿PF 翻折,得到∠QFP ,当点Q 恰好落在BC 上时,求t 的值.18.已知四边形ABCD 为矩形,对角线AC 、BD 相交于点O ,AD AO =.点E 、F 为矩形边上的两个动点,且60EOF ∠=︒.(1)如图1,当点E 、F 分别位于AB 、AD 边上时,若75OEB ∠=︒,求证:AD BE =;(2)如图2,当点E 、F 同时位于AB 边上时,若75OFB ∠=︒,试说明AF 与BE 的数量关系;(3)如图3,当点E 、F 同时在AB 边上运动时,将OEF 沿OE 所在直线翻折至OEP ,取线段CB 的中点Q .连接PQ ,若()20AD a a =>,则当PQ 最短时,求PF 之长.19.如图,在∠ABC中,AB=BC=AC=12cm,点D为AB上的点,且BD=34AB,如果点P在线段BC上以3cm/s的速度由B点向终点C运动,同时,点Q在线段CA上由C点向终点A运动.当一点到达终点时,另一点也随之停止运动.(1)如(图一)若点Q的运动速度与点P的运动速度相等,经过1s后,∠BPD与∠CQP是否全等,请说明理由.(2)如(图二)若点Q的运动速度与点P的运动速度相等(点P不与点B和点C重合),连接点A与点P,连接点B与点Q,并且线段AP,BQ相交于点F,求∠AFQ的度数.(3)若点Q的运动速度为6cm/s,当点Q运动几秒后,可得到等边∠CQP?20.如图,Rt∠ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若∠BPQ与∠ABC相似,求t的值;(2)试探究t为何值时,∠BPQ是等腰三角形;(3)试探究t为何值时,CP=CQ;(4)连接AQ,CP,若AQ∠CP,求t的值.21.如图1,在正方形ABCD 中,4AB m =,点P 从点D 出发,沿DA 向点A 匀速运动,速度是1/cm s ,同时,点Q 从点A 出发,沿AB 方向,向点B 匀速运动,速度是2/cm s ,连接PQ 、CP 、CQ ,设运动时间为()(02)t s t <<.()1是否存在某一时刻,使得//PQ BD 若存在,求出t 的值;若不存在,说明理由; ()2设PQC △的面积为()2S cm ,求S 与t 之间的函数关系式;()3如图2,连接AC ,与线段PQ 相交于点M ,是否存在某一时刻t ,使QCM S :4PCM S =:5?若存在,直接写t 的值;若不存在,说明理由.22.如图,在 RtΔABC 中,∠C=90°,BC=5cm ,tanA 512=.点 M 在边 AB 上,以 2 cm/s 的速度 由点B 出发沿BA 向点A 匀速运动;同时点N 在边AC 上,以1 cm/s 的速度由A 出发沿AC 向点C 匀速运动.当点M 到达A 点时,点M ,N 同时停止运动.连接MN ,设点M 运动的时间为t (单位:s).(1)求AB 的长;(2)当t 为何值时,ΔAMN 的面积为∠ABC 面积的326; (3)是否存在时间t ,使得以A ,M ,N 为顶点的三角形与ΔABC 相似?若存在,求出时间t 的值;若不存在,请说明理由.23.如图,抛物线y =ax 2+bx+3与x 轴交于A ,B 两点,且点B 的坐标为(2,0),与y 轴交于点C ,抛物线对称轴为直线x 12=-.连接AC ,BC ,点P 是抛物线上在第二象限内的一个动点.过点P 作x 轴的垂线PH ,垂足为点H ,交AC 于点Q .过点P 作PG∠AC 于点G . (1)求抛物线的解析式.(2)求PQG 周长的最大值及此时点P 的坐标.(3)在点P 运动的过程中,是否存在这样的点Q ,使得以B ,C ,Q 为顶点的三角形是等腰三角形?若存在,请写出此时点Q 的坐标;若不存在,请说明理由.24.如图,直线1:1l y kx =+与x 轴交于点D ,直线2:l y x b =-+与x 轴交于点A ,且经过定点(1,5)B -,直线1l 与2l 交于点(2,)C m .(1)求k 、b 和m 的值;(2)求ADC ∆的面积;(3)在x 轴上是否存在一点E ,使BCE ∆的周长最短?若存在,请求出点E 的坐标;若不存在,请说明理由;(4)若动点P 在线段DA 上从点D 开始以每秒1个单位的速度向点A 运动,设点P 的运动时间为t 秒.是否存在t 的值,使ACP ∆为等腰三角形?若存在,直接写出t 的值;若不存在,清说明理由.25.如图,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使CMP ∆为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由; (3)作直线BC ,若点(,0)D d 是线段BM 上的一个动点(不与B 、M 重合),过点D 作x 轴的垂线交抛物线于点F ,交BC 于点E ,当BDE CEF S S ∆∆=时,求d 的值.26.正方形ABCD 和等腰Rt DEF △共顶点D ,90DEF ∠=︒,DE EF =,将DEF 绕点D 逆时针旋转一周.(1)如图1,当点F 与点C 重合时,若2AD =,求AE 的长;(2)如图2,M 为BF 中点,连接AM 、ME ,探究AM 、ME 的关系,并说明理由; (3)如图3,在(2)条件下,连接DM 并延长交BC 于点Q ,若22AD DE ==,在旋转过程中,CQ 的最小值为_________.27.综合与探究 如图,抛物线245y x bx c =++经过点()0,4A ,()10B ,,与x 轴交于另一点C (点C 在点B 的右侧),点()P m n ,是第四象限内抛物线上的动点.(1)求抛物线的函数解析式及点C 的坐标;(2)若APC △的面积为S ,请直接写出S 关于m 的函数关系表达式,并求出当m 的值为多少时,S 的值最大?最大值为多少?(3)是否存在点P ,使得PCO ACB ∠=∠?若存在,求出点P 的坐标;若不存在,请说明理由.28.某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: 操作发现:(1)如图1,分别以AB 和AC 为边向∠ABC 外侧作等边∠ABD 和等边∠ACE ,连接BE 、CD ,请你完成作图并证明BE =CD .(要求:尺规作图,不写作法但保留作图痕迹)类比探究:(2)如图2,分别以AB 和AC 为边向∠ABC 外侧作正方形ABDE 和正方形ACFG ,连接CE 、BG ,则线段CE 、BG 有什么关系?说明理由.灵活运用:(3)如图3,在四边形ABCD 中,AC 、BD 是对角线,AB =BC ,∠ABC =60°,∠ADC =30°,AD =3,BD =5,求CD 的长.参考答案1.(1)3;(2)38t =;(3)当305t <≤时,210S t =;当315t <≤时,215309S t t =-+-;(4)38;58.2.(1)4y x x =-.定义域为25x <≤;(2)34;(3)4或53+ 3.(1)5-t ,2t ;(2)3t =或133t =;(3)53t =或910t = 4.(1)90°;(2)①α+β=180°;②点D 在直线BC 上移动,α+β=180°或α=β.5.(1)DM∠EM ,DM =ME ;(2)结论成立;(3)成立;拓展应用: 6.(1)y =﹣x 2+2x +3;(2)3;(3)点P 的坐标为(1,4)或(﹣2,﹣5)7.(1)60BD CE ,=;(2)45CEB BD ∠︒=,;(3)CE 的长为或48.(1)①证明;②3sin 5BAC ∠=;(2)CE =;(3)80.9.(1)﹣(2);②45°或225°;(3)﹣+310.(1)4PQ =;(2)150BPC ∠=︒;(3)9ABC S =. 11.(1)23;(2)2;(3)212.(1)见解析;(2)2(06)y x x =+<<;(3)P 位置如图所示,此时PB PE +的值最小,6CE =-13.(1)30DBA ∠=;(2)①;②当点D 运动到点I 时ABI ∠取得最大值,此时30ABD ∠=.14.(1)334y x =-;(2)①证明;②存在;点D 的坐标为111111,,3434⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭;. 15.(1)(8,6)A .(2)①存在,40 s 9t =或者50 s 9t =.②233(010)10S t t t =-+<<. 16.(1)①90°;②线段OA ,OB ,OC 之间的数量关系是OA 2+OB 2=OC 2,证明;(2)①当α=β=120°时,OA+OB+OC 有最小值.证明;②线段OA+OB+OC17.(1)等腰直角;(2)①当t 为1时,点E 恰好为AC 的一个三等分点;.18.(1)证明;(2)2AF BE =;(3).2FP a =19.(1)BPD CQP ≌;(2)60︒(3)4320.(1)1或3241;(2)23或89或6457;(3)329-;(4)78. 21.()1存在,43t =;()2228(02)S t t t =-+<<;()3存在,1t = 22.(1)13cm ;(2)t=2或92s ;(3)存在,15637t =或16938t =s23.(1)y 12=-x 212-x+3;(2))9108,P(32-,218);(3)存在,Q 1(,+3),Q 2(﹣1,2)24.(1)12k =,4b =,2m =;(2)6;(3存在,8(7E ,0);(4)存在,6-4或2.25.(1)223y x x =--+;(2)存在,P (-或(1,-或(1,6)-或5(1,)3-;(3)d =26.(1)AE =(2)AM ME =,AM ME ⊥;(3)227.(1)2424455x x y -+=;点C 的坐标为(5,0);(2)当m =52时,S 的值最大,最大值为252;(3)存在点P ,使得使得∠PCO =∠ACB .点P 的坐标为(2,-125). 28.(1);(2)CE=BG ;(3)CD=4。

初三数学专项复习之动态几何

初三数学专项复习之动态几何

初三数学专项复习之动态几何知识精讲一.与函数结合动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与知量间的一种变化关系,这种变化关系确实是动点问题中的函数关系.那么,我们一样用以下几种方法建立函数:(1)应用勾股定理建立函数解析式;(2)应用比例式建立函数解析式;(3)应用求图形面积的方法建立函数关系式.二.动态几何型压轴题动态几何特点----问题背景是专门图形,考查问题也是专门图形,因此要把握好一样与专门的关系;分析过程中,专门要关注图形的特性(专门角、专门图形的性质、图形的专门位置)动点问题一直是中考热点,近几年考查探究运动中的专门性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、专门角或其三角函数、线段或面积的最值.动态几何常见的题型有三大类:(1)点动问题;(2)线动问题;(3)面动问题.解决动态几何问题的常见方法有:(1)专门探路,一样推证;(2)动手实践,操作确认;(3)建立联系,运算说明.动态几何习题的共性:1.代数、几何的高度综合(数形结合);着力于数学本质及核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数;2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究专门情形下的函数值.三.双动点问题点动、线动、形动构成的问题称之为动态几何问题.它要紧以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力,其中以灵活多变而著称的双动点问题更成为今年中考试题的热点.常以双动点为载体,探求函数图象问题、探求结论开放性问题、探求存在性问题、探求函数最值问题.双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们猎取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观看和研究问题,挖掘运动、变化的全过程,并专门关注运动与变化中的不变量、不变关系或专门关系,动中取静,静中求动.三点剖析一.考点:1.三角形、四边形与函数综合问题;2.三角形、四边形中的动点问题.二.重难点:1.三角形、四边形与函数综合问题;2.三角形、四边形中的动点问题.题模精讲题模一:三角形与动点问题例1.1 如图1,在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D,A,E,连接CE.①依题意,请在图2中补全图形;②假如BP⊥CE,BP=3,AB=6,求CE的长.(2)如图3,连接PA,PB,PC,求PA+PB+PC的最小值.小慧的作法是:以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,那么就将PA+PB+PC的值转化为CP+PM+MN的值,连接CN,当点P落在CN上时,此题可解.请你参考小慧的思路,在图3中证明PA+PB+PC=CP+PM+MN.并直截了当写出当AC=BC=4时,PA+PB+PC的最小值.【答案】(1)①②33(2)见解析,2226【解析】(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=A D,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,(2)证明:如图所示,以点A为旋转中心,将△ABP顺时针旋转6 0°得到△AMN,连接BN.由旋转可得,△AMN≌△ABP,∴MN=BP,PA=AM,∠PAM=60°=∠BAN,AB=AN,∴△PAM、△ABN差不多上等边三角形,∴PA=PM,∴PA+PB+PC=CP+PM+MN,当AC=BC=4时,当C、P、M、N四点共线时,由CA=CB,NA=NB可得CN垂直平分AB,∴,例1.2 以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中(1)点E、F、M分别是AC、CD、DB的中点,连接EM.①如图1,当点D、C分别在AO、BO_;②如图2,将图1中的△AOB论进行证明;(2)如图3N在线段OD P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.【答案】 (12【解析】(1)①连接EF ,∵点E 、F 、M 分别是AC 、CD 、DB 的中位线, ∴EF 、FM 分别是△ACD 和△DBC 的中位线,∴EF//AD,FM//CB ,EFM EM//CD.∵Rt △AOB∵Rt △COD∴△AOD ∽△BOC .例1.3 在△ABCABC 绕顶点C 顺(1)如图1AC AB 相交于点D .证明:△BC D 是等边三角形;(2)如图2(3)如图3,设AC 中点为EP EP ,求:EP 长度最大,并求出EP 的最大值.【答案】 (123E P 【解析】 (11,∵在△ABCAC ,∴在△CDB∴△BCD 是等边三角形;(2)解:如图2(3EP 例1.4 在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC 和ED 重合),在BC 边上有一动点P .(1)当点P 运动到∠CFB 的角平分线上时,连接AP ,求线段AP 的长;(2)当点PPAB 的度数. 探究二:如图④,将△DEF 的顶点D 放在△ABC 的BC 边上的中点处,并以点D 为旋转中心旋转△DEF ,使△DEF 的两直角边与△ABC 的两直角边分别交于M 、N 两点,连接MN .在旋转△DEF 的过程中,△A MN 的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.【答案】 见解析【解析】 探究一:(1)依题意画出图形,如图所示:FP 为角平分线,过点A 作AG ⊥BC 于点G在Rt △APG(2)由(1 如图所示,以点A BC 交于点过点 在Rt∴∠PAB 的度数为15°或75°.探究二:△AMN 的周长存在有最小值.如图所示,连接AD∵△ABC ∵在△AMD 与△∴△AMD ≌△CND在Rt △AMN . 例1.5 如图,在△,DE=4c m .动线段DE (端点D 从点B 开始)沿BC 边以1cm/s 的速度向点C 运动,当端点E 到达点C 时运动停止.过点E 作EF ∥AC 交AB 于点F (当点E 与点C 重合时,EF 与CA 重合),连接DF ,设运动的时刻为t 秒(t ≥0).(1)直截了当写出用含t 的代数式表示线段BE 、EF 的长;(2)在那个运动过程中,△DEF 能否为等腰三角形?若能,要求出t 的值;若不能,请说明理由;(3)设M 、N 分别是DF 、EF 的中点,求整个运动过程中,MN 所扫过的面积.【答案】 (1)t+4)(cm )(2)t=03【解析】 (1)∵DE=4cm ,∴BE=BD+DE=(t+4)cm ,∵EF ∥AC ,∴△BEF ∽△BCA ,∴EF :CA=BE :BC ,即EF :t+4):16,解得:t+4)(cm ); (2①如图1,∵当DF=EF 时,∴∠EDF=∠DEF ,∵AB=AC ,∴∠B=∠C ,∵EF ∥AC ,∴∠DEF=∠C ,∴∠EDF=∠B ,∴点B 与点D 重合,∴t=0;,当DE=EF 时,则),DE=DF 时,有∠DFE=∠DEF=∠B=∠C , ABC .综上所述,当t=0DEF为等腰三角形.(3)如图4,设P BP,∵EF∥AC,∴△FBE∽△ABC.又∵∠BEN=∠C,∴△NBE∽△PBC,∴∠NBE=∠PBC.∴点B,N,P共线,∴点N沿直线BP运动,MN也随之平移.如图5,设MN从ST位置运动到PQ位置,则四边形PQST是平行四边形.∵M、N分别是DF、EF∴MN∥DE,且.分别过点T、P作TK⊥K,PL⊥BC,垂足为L,延长ST 交PL于点R TKLR∵当t=0时,0+4)当t=12时,,•10•∴PR=PL﹣RL=PL﹣TK=3∴S平行四边形PQST=ST•∴整个运动过程中,MN.题模二:四边形与动点问题例2.1 如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,连结AM、CM.(1)当M点在何处时,AM+CM的值最小;(2)当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM【答案】(1)见解析(2)见解析(3【解析】该题考查的是四边形综合.(1)当M点落在BD小.……………………………1分(2)如图,连接CE,当M点位于BD与CE的交点处时……………………………2分理由如下:∵M是正方形ABCD对角线上一点∴△ABM≌△CBM3分EC上取一点N BN∴△BNE≌△ABM……………………3分∴△BMN是等边三角形.4分∴当M点位于BD与CE于EC的长.……………………………5分(3)过E设正方形的边长为x6分在Rt△EFC中,7分例2.2 如图1B关于直线AC的对称点是点D,点E为射线CADE,BE.C关于直线BD的对称点为点F,连接FD、F(2B.将△CDE绕点D顺时针旋转αC①如图2②如图3,点M为DC中点,点P究:在此旋转过程中,线段PM长度的取值范畴?【答案】(1)如图1,证明见解析;(2)①见解析;②【解析】(1)补全图形,如图1所示;证明:由题意可知:射线CA垂直平分BD∴△EBD是等边三角形(2)①证明:如图2又∵点C与点F关于BD对称∴四边形BCDF为正方形,由(1)△BDE为等边三角形SAS)∴△EDF②线段PM设射线CA交BD于点O,I:如图3(1)DC,MP D、M、P、C共线时,PM有最小值II:如图3(2)P、D、M、C共线时,PM有最大值.当点P∴线段PM例2.3 如图1,在菱形ABCD中,tan∠ABC=2,点E从点D动身,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时刻为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BC D),得到对应线段CF.(1)求证:BE=DF;(2)当t=___秒时,DF的长度有最小值,最小值等于___;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BC D),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直截了当写出点F到直线AD的距离y关于时刻t的函数表达式.【答案】(1)见解析(2),12(3)6(4)﹣12ECF=∠BCD得∠DCF=∠BCE,结合DC =BC、CE=CF证△DCF≌△BCE即可得;(2)当点E运动至点E′时,由DF=BE′知现在DF最小,求得B E′、AE′即可得答案;(3)①∠EQP=90°时,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,依照tan∠ABC=tan∠ADC=2即可求得D E;②∠EPQ=90°时,由菱形ABCD的对角线AC⊥BD知EC与AC重合,可得(4)连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD 于点H,证△DCE≌△GCF可得∠3=∠4=∠1=∠2,即GF∥CD,从而知四边形CDMN是平行四边形,由平行四边形得CGN=∠DCN=∠CNG知tan∠ABC=tan∠CGN=2可得,由GF=DE=t得FM=t﹣12,利用tan∠FMH=tan∠ABC=2即可得FH.(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四边形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如图1,当点E运动至点E′时,DF=BE′,现在DF最小,在Rt△ABE′中,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,∴则AE′=6∴DE′,DF=BE′=12,故答案为:,12;(3)∵CE=CF,∴∠CEQ<90°,①当∠EQP=90°时,如图2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②当∠EPQ=90°时,如图2②,∵菱形ABCD的对角线AC⊥BD,∴EC与AC重合,∴∴(4﹣12如图GF AD、BC于点M、N,过点F作FH⊥A D于点H,由(1)知∠1=∠2,又∵∠1+∠DCE=∠2+∠GCF,∴∠DCE=∠GCF,在△DCE和△GCF中,∴△DCE≌△GCF(SAS),∴∠3=∠4,∵∠1=∠3,∠1=∠2,∴∠2=∠4,∴GF∥CD,又∵AH∥BN,∴四边形CDMN是平行四边形,∴∵∠BCD=∠DCG,∴∠CGN=∠DCN=∠CNG,∴∵tan∠ABC=tan∠CGN=2,∴GN=12,∴,∵GF=DE=t,∴FM=t﹣12,∵tan∠ABC=2,∴t﹣12),即﹣12例中,点E是对角线AC的中点,点F在边C D上,连接DE、AF,点G在线段AF上(1)如图①,若DG是△ADFD的中线,DG=2.5,DF=3,连接E G,求EG的长;(2)如图②,若DG⊥AF交AC于点H,点F是CD的中点,连接F H,求证:∠CFH=∠AFD;(3)如图③,若DG⊥AF交AC于点H,点F是CD上的动点,连接EG.当点F在边CD上(不含端点)运动时,∠EGH的大小是否发生EGH的度数;若发生改变,请说明理由.【答案】(1(2(3)不改变,∠EGH=45°【解析】(1)解:∵四边形ABCD是正方形,∴AD=CD=BC,∠ADF=∠BCD=90°,∠DAC=∠ACB=∠ACD=4 5°,∵DG是△ADF的中线,DG=2.5,∴AF=2DG=5,∴,∴CF=CD﹣DF=1,∵点E是对角线AC的中点,G是AF的中点,∴EG的中位线,∴(2DH交BC于M,如图所示,∵DG⊥AF,∴∠AGH=∠DGA=∠DGF=90°,∴∠AFD+∠FDG=90°,∵∠DMC+∠FDG=90°,∴∠AFD=∠DMC,在△CDM 和△DAF∴△CDM ≌△DAF (∴CM=DF ,∵点F 是CD 的中点, ∴DF=CF , ∴CM=CF ,在△CMH和△CFH ,∴△CMH ≌△CFH (∴∠CMH=∠CFH , ∴∠CFH=∠AFD ;(3)解:∠EGH 的大小不发生改变,∠EGH=45°;理由如下: ∵点AC 的中点,∠ADC=90°, ∴,∴∠∠DAC=45°, ∴∠AED=90°=∠AGD , ∴A 、D 、G 、E 四点共圆, ∴∠AGE=∠ADE=45°, ∴∠EGH=90°﹣45°=45°.例2.5 如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,且AC=6cm ,BD=8cm ,动点P ,Q 分别从点B ,D 同时动身,运动速度均为1cm/s ,点P 沿B →C →D 运动,到点D 停止,点Q 沿D →O →B 运动,到点O 停止1s 后连续运动,到点B 停止,连接AP ,AQ ,PQ .设△APQ 的面积为y (cm2)(那个地点规定:线段是面积0的几何图形),点P 的运动时刻为x (s ).(1)填空:AB=______cm ,AB 与CD 之间的距离为______cm ; (2)当4≤x ≤10时,求y 与x 之间的函数解析式;(3)直截了当写出在整个运动过程中,使PQ 与菱形ABCD 一边平行的所有x 的值.【答案】 (1)5(2)(3AC=6cm,BD=8cm,∴AC∴,设AB∴△ABC的面积•h,又∵△ABC的面积菱形•6×8=1 2,,∠CDB=θ,则易得:sinθcosθ①当4≤x≤5时,如答图1﹣1与点O P在线段BC上.∵PB=x,∴PC=BC﹣PB=5﹣x.过点P作PH于点H•cosθ﹣x).∴y=S△•35﹣x);②当5<x≤92OB上,点P 在线段CD上.PC=x﹣5,PD=CD﹣PC=5﹣(x﹣5)=10﹣x过点P作PH⊥BD于点H,则PH=PD•sinθ10﹣x).∴y=S△APQ=S菱形ABCD﹣S△ABQ﹣S BCPQ﹣S△APDABQ BCD﹣)﹣S△••OA•OC•PH×h6×x)×38×3x﹣1)•﹣x)]x1﹣3所示,现在点Q 与点B 重合,点P 5.x 之间的函数解析式为:1所示.现在BP=QD=x ,则BQ=8﹣x . ,BC ,如答图2﹣2所示. 现在PD=10﹣x ,QD=x ﹣1.x随堂练习随练1.1 在平面直角坐标系中,O 为原点,点A (4,0),点B(0,3),把△ABO 绕点B 逆时针旋转,得△A ′BO ′,点A ,O 旋转后的对应点为A ′,O ′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA ′的长; (Ⅱ)如图②,若α=120°,求点O ′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA 上 的一点P 旋转后的对应点为P ′,当O ′P+BP ′取得最小值时,求点P ′的坐标(直截了当写出结果即可)(2 (3【解析】 (1)如图①,∵点A (4,0),点B (0,3), ∴OA=4,OB=3, ∴,∵△ABO 绕点B 逆时针旋转90°,得△A ′BO ′, ∴BA=BA ′,∠ABA ′=90°, ∴△ABA ′为等腰直角三角形, ∴AA ′(2)作O ′H ⊥y 轴于H ,如图②,∵△ABO 绕点B 逆时针旋转120°,得△A ′BO ′, ∴BO=BO ′=3,∠OBO ′=120°, ∴∠HBO ′=60°,在RtBO ′HBO ′=30°, ∴′∴∴O(3)∵△ABO120°,得△A ′BO ′,点P 的对应点为P ′,∴BP=BP′,∴O ′P+BP ′=O ′P+BP ,作B 点关于x 轴的对称点C ,连结O ′C 交x 轴于P 点,如图②, 则O ′P+BP=O ′P+PC=O ′C ,现在O ′P+BP 的值最小, ∵点C 与点B 关于x 轴对称, ∴C (0,﹣3),设直线y=kx+b ,把OC (0∴直线当﹣3=0),∴∴O′P′作P′D⊥O′,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP=30∴O′′P′∴DH=O﹣O′∴P随练1.2点M为对角线BD(不含点B)上任意一点,△ABE是等边三角形,将B M绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①直截了当回答:当点M②当点M【答案】(1)见解析;(2)连接AC,当点M位于BD与AC的3)当点M位于BD、CE的交点处时,EC的长.理由见解析在△AMB和△ENB中,∴△AMB≌△ENB(SAS);(2)①依照“两点之间线段最短”,连接AC,当点M位于BD与AC②连接CE,当点M位于BD、CE理由如下:如图,连接CE交BD于点M,连接AM,在EM上取一点N在△ABD和△CBD中,∴△ABD≌△CBD(SSS),在△EBN和△CBM中,∴△EBN≌△CBM(ASA),∴现在BN由BM绕点B逆时针旋转60°得到,由(1)知:△AMB≌△ENB,∴△BMN是等边三角形,∴依照“两点之间线段最短”可知当点M位于BD、CE的交点处EC的长.为2的正方形ABCD与边长为的正方形AEFG按图1位置放置,A D与AE在同一直线上,AB与AG在同一直线上.(1)小明发觉DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出现在BE的长.(3)如图3,小明将正方形ABCD绕点A连续逆时针旋转,线段D G与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.【答案】(1)见解析(2(3)6【解析】(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE,在△ADG和△ABE中,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如图1所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°,在△EDH中,∠AEB+∠ADG+∠DHE=180°,∴∠DHE=90°,则DG⊥BE;(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=9 0°,∵BD为正方形ABCD的对角线,∴∠MDA=45°,在Rt△MDA=45°,∴cos45°∵AD=2,∴在Rt△AMG中,依照勾股定理得:,∵,∴(3)△GHE和△BHD面积之和的最大值为6,理由为:关于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;关于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.随练1.4 正方形ABCD的边长为3,点E,F分别在射线DC,DA 上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直截了当写出线段CK长的最大值.=(2)成立,证明见解析(3)323+【答案】(1)CH AB=.…………………………………1分【解析】(1)CH AB(2)结论成立.…………………………………2分证明:如图11,连接BE.在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=9 0°.[来∵DE=DF,∴AF=CE.在△ABF和△CBE中,∴△ABF≌△CBE.∴∠1=∠2.…………………………………………3分∵EH⊥BF,∠BCE=90°,∴H,C两点都在以BE为直径的圆上.∴∠3=∠2.∴∠3=∠1.∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC.∴CH=C B.…………………………………………………………………5分∴CH=A B.…………………………………………………………………6分(3)+.………………………………………………………………………7分323随练1.5 已知,如图①,在▱ABCD 中,AB=3cm ,BC=5cm .AC ⊥AB .△ACD 沿AC 的方向匀速平移得到△PNM ,速度为1cm/s ;同时,点Q 从点C 动身,沿CB 方向匀速运动,速度为1cm/s ,当△PNM 停止平移时,点Q 也停止运动.如图②,设运动时刻为t (s )(0<t <4).解答下列问题:(1)当t 为何值时,PQ ∥MN ?(2)设△QMC 的面积为y (cm2),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使S △QMC :S 四边形ABQP=1:4?若存在,求出t 的值;若不存在,请说明理由.(4)是否存在某一时刻t ,使PQ ⊥MQ ?若存在,求出t 的值;若不存在,请说明理由.【答案】 (1)2)y=3)2;(4)当时,PQ ⊥MQ【解析】 如图1,在Rt △ABC 中,由勾股定理得:,由平移性质可得MN ∥AB ; ∵PQ ∥MN ,,2PF ⊥由S ×5AE , ∴∵PF ⊥BC ,AE ⊥BC ∴AE ∥PF ,,解得:∵PM∥M因此,△QCM是面积×t(3)∵PM∥BC,∴S△PQC=S△MQC,∵S△QMC:S四边形ABQP=1:4,∴S△:5,则54×3,t2﹣解得:t1=t2=2,∴当t=2时,S△QMC:S四边形ABQP=1:4;(4)如图2,∵PQ⊥MQ,∴∠MQP=∠PFQ=90°,∵MP∥BC,∴∠MPQ=∠PQF,∴△MQP∽△PFQ,∴PQ2=PM×FQ,解得答:当PQ⊥随练1.6 ABCD中,AB=4,AD=8,点E、F分别在线段BC、CD上,将△CEF沿EF翻折,点C的落点为M(1)如图1,当CE=5,M点落在线段AD上时,求MD的长(2)如图2,若点F是CD的中点,点E在线段BC上运动,将△C EF沿EF折叠,①连接BM,△BME是否能够是直角三角形?假如能够,求现在CE 的长,假如不能够,说明理由②连接MD,如图3,求四边形ABMD的周长的最小值和现在CE的长【答案】(1)MD(2)①能够;CE=2②四边形ABMD),现在CE的长为4【解析】(1)如图1,作EN⊥AD于点N,∴∠ANE=∠ENM=90°.∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°,AB=CD=4,AD=BC=8,∴∠A=∠B=∠ANE=90°,∴AB=NE=4,AN=BE.∵EC=5,∴BE=3,∴AN=3.∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴EC=EM=5.在Rt△EMN中,由勾股定理,得MN=3,∴MD=8﹣3﹣3=2.答:MD的长为2;(2)①如图2,当∠BME=90°时,∵∠EMF=90°,∴∠BMF=180°,∴B、M、F在同一直线上.∵F是BC∴.∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴MF=CF=2,EC=EM.在Rt△BCF中,由勾股定理,得∴2.设EC=EM=x,则BE=8﹣x,在Rt△BME中,由勾股定理,得(8﹣2)2,∴如图°时,∴∠MEC=90°∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴∠EMF=∠C=90°,CF=FM=2,∴四边形ECFM是正方形,∴∴CE=2②如图4ABMD的周长最小,∴BM+MD最小,∴B、M、D在同一直线上,∴点M在BD上.连结MC,∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴EC=EM,FC=FM.∴EF垂直平分MC,∴MG=CG,∴GF是△CDM的中位线,∴FG∥BD,∴BE=CE.∵BC=8,∴CE=4.在Rt△ABD中,由勾股定理,得∴四边形ABMD的周长的最小值为:.答:四边形ABMD的周长的最小值为(),现在CE的长为4.随练1.7 如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,现在PD=3.(1)求MP的值;(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ= 2.当四边形MEQG的周长最小时,求最小周长值.(运算结果保留根号)【答案】(1)5(23【解析】(1为矩形,∴CD=AB=4,∠D=90°,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴PD=PH=3,CD=MH=4,∠H=∠D=90°,∴(2)如图1,作点M关于AB的对称点M′,连接M′E交AB于点F,则点F即为所求,过点E作EN⊥AD,垂足为N,∵AM=AD﹣MP﹣PD=12﹣5﹣3=4,∴AM=AM′=4,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴∠CEP=∠MEP,而∠CEP=∠MPE,∴∠MEP=∠MPE,∴ME=MP=5,在Rt△ENM中,∴NM′=11,∵AF∥NE,,由(2)知点M′是点M关于AB的对称点,在EN上截取ER=2,连接M′R交AB于点G,再过点E作EQ∥RG,交AB于点Q,∵ER=GQ,ER∥GQ,∴四边形ERGQ是平行四边形,∴QE=GR,∵GM=GM′,∴MG+QE=GM′+GR=M′R,现在MG+EQ最小,四边形MEQG的周长最小,在Rt△M′RN中,NR=4﹣2=2,M′∵ME=5,GQ=2,∴四边形MEQGA、C分别在正方形EFG随练1.8 边长为2H的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,AB边交DF于点M,BC边交DG于点N.(1(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD 旋转的度数;(3)如图3p,在旋转正方形ABCD的过程中,p23)见解析【答案】(1(12分..............................5分(3.............6分.......................................7分化............................8分课后作业作业1 已知,点O是等边△ABC内的任一点,连接OA,OB,O C.(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C 按顺时针方向旋转60°得△ADC.①∠DAO的度数是;②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直截了当写出OA+OB+OC的最小值.【答案】(1)①90°;②OA2+OB2=OC2;证明见解析(2)①α=β=120°,OA+OB+OC有最小值;图形见解析【解析】(1)①∠AOB=150°,∠BOC=120°,∴∠AOC=360°﹣120°﹣150°=90°,∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴∠OCD=60°,∠D=∠BOC=120°,∴∠DAO=360°﹣∠AOC﹣∠OCD﹣∠D=90°,故答案为:90°;②线段OA,OB,OC之间的数量关系是OA2+OB2=OC2,如图1,连接OD,∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°,∴CD=OC,∠ADC=∠BOC=120°,AD=OB,∴△OCD是等边三角形,∴OC=OD=CD,∠COD=∠CDO=60°,∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,∴∠AOD=30°,∠ADO=60°,∴∠DAO=90°,在Rt△ADO中,∠DAO=90°,∴OA2+OB2=OD2,∴OA2+OB2=OC2;(2)①当α=β=120°时,OA+OB+OC有最小值.如图2,将△AOC绕点C按顺时针方向旋转60°得△A′O′C,连接OO′,∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°,∴O′C=OC,O′A′=OA,A′C=BC,∠A′O′C=∠AOC.∴△OC O′是等边三角形,∴OC=O′C=OO′,∠COO′=∠CO′O=60°,∵∠AOB=∠BOC=120°,∴∠AOC=∠A′O′C=120°,∴∠BOO′=∠OO′A′=180°,∴四点B,O,O′,A′共线,∴OA+OB+OC=O′A′+OB+OO′=BA′时值最小;②∵∠AOB=∠BOC=120°,∴∠AOC=120°,∴O为△ABC的中心,∵四点B,O,O′,A′共线,∴BD⊥AC,∵将△AOC绕点C按顺时针方向旋转60°得△A′O′C,∴A′C=AC=BC,∴A′B=2BD,在Rt△BCD中,∴A′∴当等边△ABC的边长为1时,OA+OB+OC的最小值A′作业2 几何模型:条件:如图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连结A′B交l于点P,则P A+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC 上一动点.连结BD,由正方形对称性可知,B与D关于直线AC对称.连结ED交AC于P,则PB+PE的最小值是____;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.【答案】(12)3)【解析】(1)由题意知:连接ED交AC于点P,现在PB+PE最小,最小值为ED,∵点E是AB的中点,∴AE=1,由勾股定理可知:ED2=AE2+AD2=5,∴∴PB+PE(2)延长AO交⊙O于点D,连接DC,AC,∴AD=4,∵∠AOC=60°,OA=OC,∴△AOC是等边三角形,∴AC=OA=2,∵AD是⊙O直径,∴∠ACD=90°,∴由勾股定理可求得:∴PA+PC的最小值为(3)作点C,使得点P与点C关于OB对称,作点D,使得点P与点D关于OA对称,连接OC、OD、CD,CD交OA、OB于点Q、R,现在PR+RQ+PQ最小,最小值为CD的长,∵点P与点C关于OB对称,∴∠BOP=∠COB,OP=OC=10,同理,∠DOA=∠POA,OP=OD=10,∵∠BOP+∠POA=45°,∴∠COD=2(∠BOP+∠POA)=90°,由勾股定理可知:∴△PQR周长的最小值为作业3 如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点M是BC的中点,作正方形MNPQ,使点A、C分别在MQ和MN上,连接AN、BQ.(1)直截了当写出线段AN和BQ的数量关系是______.(2)将正方形MNPQ绕点M逆时针方向旋转θ(0°<θ≤36 0°)①判定(1)的结论是否成立?请利用图2证明你的结论;②若BC=MN=6,当θ(0°<θ≤360°)为何值时,AN取得最大值,请画出现在的图形,并直截了当写出AQ的值.【答案】(1)BQ=AN(2)【解析】(1)BQ=AN.理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点M是BC的中点,∴AM⊥BC,BM=AM,∴∠AMB=∠AMC=90°.∵四边形PQMN是正方形,∴QM=NM.在△QMB和△NMA中,∴△QMB≌△NMA(SAS),∴BQ=AN.故答案为:BQ=AN;(2)①BQ=AN成立.理由:如图2,连接AM,∵在Rt△BAC中,M为斜边BC中点,∴AM=BM,AM⊥BC,∴∠AMQ+∠QMB=90°.∵四边形PQMN为正方形,∴MQ=NM,且∠QMN=90°,∴∠AMQ+∠NMA=90°,∴∠BMQ=∠AMN.在△BMQ和△AMN中,∴△BMQ≌△AMN(SAS),∴BQ=AN;②由①得,BQ=AN,∴当BQ取得最大值时,AN取得最大值.如图3,当旋转角θ=270°时,BQ=AN(最大),现在∠AMQ=9 0°.∵BC=MN=6,BC的中点,∴MQ=6,,∴在Rt△AMQ作业4 (1)发觉:如图1,点A为线段BC外一动点,且BC=a,A B=b.填空:当点A位于_________时,线段AC的长取得最大值,且最大值为_________(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直截了当写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM= PB,∠BPM=90°,请直截了当写出线段AM长的最大值及现在点P的坐标.【答案】(1)CB的延长线上;a+b(2)见解析(3)见解析【解析】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N 在线段BA 的延长线时,线段BN 取得最大值, 最大值=AB+AN , ∵∴最大值为;如图2,过P 作PE ⊥x 轴于E , ∵△APN 是等腰直角三角形, ∴∴OE=BO3=2∴P (2作业5(1当写出你得到的结论.(21)中的结论是否仍旧成立?假如成立,请予以证明;假如不成立,请说明理由.若DEFG 绕点D【答案】 (1)垂直且相等(2【解析】 (1)如图(1∵△ABC D 是BC 的中点,∵在△BDG 和△ADE∴△BDG ≌△ADE (SAS 延长EA 到BG 于一点M∴线段BG 和AE 相等且垂直; (2)成立,如图(2),延长EA 分别交DG 、BG ∵△ABC D 是BC 的中点,∵在△BDG和△ADE∴△BDG≌△ADE(SASBG⊥AE(3)由(2)知,要使AE最大,只要将正方形绕点D逆时针旋旋转270°,即A,D,E在一条直线上时,AE最大;∵正方形DEFG在绕点D旋转的过程中,E点运动的图形是以点D为圆心,DE为半径的圆,∴当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG 绕点D为最大值时,1,已知B点坐标是(6),BA⊥x轴于A,BC⊥y轴于C,D在线段OA上,E在y轴的正半轴上,DE⊥BD,M是DE中点,且M在OB上.(1)点M的坐标是(____,____),DE=____;(2)小明在研究动点问题时发觉,假如有两点分别在两条互相垂直的直线上做匀速运动,连接这两点所得线段的中点将在同一条直线上运动,利用这一事实解答下列问题,如图2,假如一动点F从点B动身以每秒1个单位长度的速度向点A运动,同时有一点G从点D个单位长度的速度向点O运动,点H从点E开始沿y轴正方向自由滑动,并始终保持GH=DE,P为FG的中点,Q为GH的中点,F与G两个点分别运动到各自终点时停止运动,分别求出在运动过程中点P、Q运动的路线长.(3)连接PQ,求当运动多少秒时,【答案】(1)(2),8(23【解析】∵点B的坐标为(6∴tan∠∴∠BOA=30∵在M是ED的中点,∴∴∠°,∵BD⊥ED,∴∠EDB=90°.∴∠EDO+∠BDA=90°.∵∠BDA+∠DBA=90°,∴∠EDO=∠DBA=30°∴AD=AB•tan30°=6∴∴OE=ODtan30°.∵M是DE的中点,2).(2)依照题意画出点PD的运动时刻秒;点F运动的时刻=6÷1=6∵点P是BD∴点P P的坐标为(3),P1的坐标为(1)∴P;∵M EOD=90°∴∴点ME.∵∠BOA=30°,∴∠EOM=60°.∴点M运动的路线长∵GH=DE,∴点G(3P、Q分别为GH的中点,∴.∴当PQ最小,当FH⊥y轴时,FH最小值如图2,连接FH.设现在运动时刻为t秒,则AF=6﹣t,∴OG=(4﹣t在Rt△HOG中,由勾股定理得:OH2=GH2﹣OG2∴OH2=82﹣3(4﹣t)2.∵OH=AF,∴(6.PQ最小值作业AB= 8.问题摸索:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF.(1)当点P运动时,这两个正方形的面积之和是定值吗?若是,要求出;若不是,要求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB 为边作正方形ABCD ,动点P 、Q 在正方形ABC D 的边上运动,且PQ=8.若点P 从点A 动身,沿A →B →C →D 的线路,向点D 运动,求点P 从A 到D 的运动过程中,PQ 的中点O 所通过的路径的长.(4)如图3,在“问题摸索”中,若点M 、N 是线段AB 上的两点,且AM=BN=1,点G 、H 分别是边CD 、EF 的中点,请直截了当写出点P 从M 到N 的运动过程中,GH 的中点O 所通过的路径的长及OM+OB 的最小值.【答案】 (1)不是,最小值为32(2)存在两个面积始终相等的三角形,它们是△APK 与△DFK (3)6π(4【解析】(1)当点P 运动时,这两个正方形的面积之和不是定值. 设AP=x ,则PB=8-x ,依照题意得这两个正方形面积之和=x2+(8-x )2 =2x2-16x+64 =2(x-4)2+32,因此当x=4时,这两个正方形面积之和有最小值,最小值为32. (2)存在两个面积始终相等的三角形,它们是△APK 与△DFK . 依题意画出图形,如答图2所示. 设AP=a ,则PB=BF=8-a .AB8(8)8a ,∴DK=PD-PK=a-APK=1PK 2S △ •EF,(3)当点P 从点A 动身,沿A →B →C →D 的线路,向点D 运动时,不妨设点Q 在DA 边上,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三:中考动态几何问题(第1课时)
课程解读
一、学习目标:
了解几何动态问题的特点,学会分析变量与其他量之间的内在联系,探索图形运动的特点和规律,掌握动态问题的解题方法.
二、考点分析:
近几年在中考数学试卷中动态类题目成了压轴题中的常选内容,有点动、线动、图形运动等类型,呈现方式丰富多彩,强化各种知识的综合与联系,有较强的区分度,且所占分值较高,具有一定的挑战性.
知识梳理
几何动态问题是指:在图形中,当某一个元素,如点、线或图形等运动变化时,问题的结论随之改变或保持不变的几何问题.它是用运动变化的观点,创设一个由静止的定态到按某一规则运动的动态情景,通过观察、分析、归纳、推理,动中窥定,变中求静,以静制动,从中探求本质、规律和方法,明确图形之间的内在联系.几何动态问题关心“不变量”,所体现的数学思想方法是数形结合思想,这里常把函数与方程、函数与不等式联系起来,实际上是一般化与特殊化的方法.当求变量之间的关系时,通常建立函数模型或不等式模型求解;当求特殊位置关系或数值时,常建立方程模型求解.必要时,多作出几个符合条件的草图也是解决问题的好办法.
典型例题
知识点一:动点问题
例1.如图所示,在直角梯形ABCD中,CD∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M从点D出发,以1cm/s的速度向点C运动,点
N从点B同时出发,以2cm/s的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ANMD的面积y(cm2)与两动点运动的时间t(s)的函数图象大致是()
思路分析:
1)题意分析:本题涉及到的知识点主要有直角梯形、函数及其图象等.
解题后的思考:本题中有两个动点,在允许的范围内某一时刻四边形ANMD 是固定不动的,可用含t的式子表示出面积y,再根据y与t之间的关系式确定函数图象.
2、如图所示,已知直线
3
1
y x
=-+与x轴、y轴分别交于A、B两点,以线段AB
为直角边在第一限象内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点。

(1)求S△ABC;
(2)证明不论a取任何实数,△BOP的面积是一个常数;
(3)要使得△ABC和△ABP的面积相等,求实数a的值.
思路分析:
1)题意分析:本题中动点P的位置没有给出来,根据点P的坐标特征,它应该在一条直线上,这条直线与y轴平行,在y轴的右侧,到y轴的距离是1.点P的位置随a的变化而在直线x=1上运动.
2)解题思路:(1)因为△ABC为等腰直角三角形,所以只要求出AB即可.又因为A、B两点是已知直线与x轴、y轴的交点,所以两点坐标可求,这样OA、OB的长可求,在Rt△OAB中,利用勾股定理可求得AB.(2)求△BOP的面积可以以OB为底,点P到y轴的距离为高.底边OB不变,高为点P的横坐标1,所以S△BOP为常数.(3)注意满足条件的点P可能在第四象限,也可能在第一象限.
解题后的思考:求△ABC的面积实质是求它的两条直角边长,本题的(1)和(2)问比较容易,(3)问难度稍微大一些,应注意分情况讨论.小结:解答动点问题要“以静制动”,即把动态问题变为静态问题来解.一般方法是抓住变化中的“不变量”,首先根据题意理清题目中变量的变化情况并找出相关常量,第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表示出来,然后再根据题目的要求,依据几何、代数知识求解.
提分技巧
解答几何动态问题大致可分为三步:(1)审清题意,明确研究对象.(2)明确运动过程,抓住关键时刻的动点,如起点,终点.(3)将运动元素看作静止元素,运用数学知识解决问题.
同步练习
1:如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,
0).
(1)求抛物线的解析式及顶点D的坐标;(b=—3/2;D(3/2,—25/8))
(2)判断△ABC的形状,证明你的结论;Rt
(3)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值。

2、如图(1),在矩形ABCD中,AB=20cm,BC=4cm,点P从点A开始沿折线A→B→C→D以4cm/s的速度移动,点Q从点C开始沿CD边以1cm/s 的速度移动,如果点P、Q分别从点A、C同时出发,当其中一点到达点D时,另一点也随之停止运动.设运动时间为t(s).
(1)t为何值时,四边形APQD为矩形?
(2)如图(2),如果⊙P和⊙Q的半径都是2 cm,那么t为何值时,⊙P和⊙Q外切?
(1)根据题意,当AP=DQ时,由AP∥DQ,∠A=90º,得四边形APQD为矩形.此时,4t=20-t.解得t=4(s).∴t为4 s时,四边形APQD为矩形.(2)当PQ=4时,⊙P与⊙Q外切.①如果点P在AB上运动,只有当四边形APQD 为矩形时,PQ=4.由(1),得t=4(s).②如果点P在BC上运动,此时,
t ≥5.则CQ ≥5,PQ ≥CQ ≥5>4,∴⊙P 与⊙Q 外离.③如果点P 在CD 上运动,且点P 在点Q 的右侧.可得CQ =t ,CP =4t -24.当CQ -CP =4时,⊙P 与⊙Q 外切.此时,t -(4t -24)=4.解得t =(s ).④如果点P 在CD 上运动,且点P 在点Q 的左侧.当CP -CQ =4时,⊙P 与⊙Q 外切(t=4s ;t=20/3s ;t=28/3s )
3、 如图2,在矩形ABCD 中,AB=10cm ,BC=8cm ,点P 从A 出发,沿A →B →C →D 路线运动,到D 点停止;点Q 从D 点出发,沿D →C →B →A 路线运动,到A 停止。

若点P 、Q 同时出发,点P 的速度为每秒1cm ,点Q 的速度为每秒2cm ,a 秒时点P 、点Q 同时改变速度,点P 的速度变为每秒bcm ,点Q 的速度为每秒dcm 。

图3是点P 出发x 秒
后△APD 的面积
)cm (S 21与x (秒)的函数关系图象,图4是点Q 出发x 秒后△AQD 的面积)cm (S 22与x (秒)的函数关系图象。

图2
图3图4
(1)参照图3,求a 、b 及图3中c 的值。

(a=6;b=2;c=17) (2)求d 的值。

d=1
(3)设点P 离开点A 的路程为)cm (y 1,点Q 到点A 还需走的路程为)cm (y 2,请分别写出动点P 、Q 改变速度后,1y 、2y 与出发后的运动时间x (秒)的函数关系式。

并求出P 、Q 相遇时x 的值。

(4)当点Q 出发________秒时,点P 、点Q 在运动路线上相距的路程为25cm 。

分析与略解:解决此类问题的关键是应注意图形位置变化及动点运动的时间和速度,用分类讨论的思想来求解。

四:归纳总结
(1)几何动态、存在探索既是一类问题,也是一种观点与思维方法,运用几何动态、存在探索性的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”.(2)从以上各例可以看出,分类思想在几何中的应用较为广泛.这类试题的解题思路是:对具有位置关系的几何图形,要有分类讨论的意识,在熟悉几何问题所需要的基础知识的前提下,正确应用分类思想方法,恰当地选择分类标准,是准确全面求解的根本保证。

相关文档
最新文档