动态几何问题的解题技巧

合集下载

“动”中求“静”,“动”“静”互化——中考动态几何问题解题思路初探

“动”中求“静”,“动”“静”互化——中考动态几何问题解题思路初探

解法探究2024年3月下半月㊀㊀㊀动 中求 静 , 动 静 互化中考动态几何问题解题思路初探◉江苏省苏州市高新区实验初级中学㊀袁㊀媛㊀㊀摘要:在初中平面几何的学习中,要运用运动变化的思路研究图形,让静止的几何图形 动 起来,化抽象为具体,让变化的图形形象直观地揭示出恒定不变的几何规律,把相关的知识点串联起来,这样有助于提高分析问题和解决问题的能力.本文中结合中考试题,对常见的动态几何类题型的解题思路与方法进行了初步探索.关键词: 动 静 转化;动 点 类问题;动 线 类问题;动 图 类问题㊀㊀马克思主义哲学告诉我们,运动是绝对的,静止是相对的.在几何的学习过程中,我们发现 静 只是 动 的瞬间,是运动的一种特殊形式, 动 与 静 是可以相互转化的.如果能让静止的几何图形 动 起来,就可以帮助学生加深对图形概念的准确理解,探索图形的性质.教师可以用动态图形创设富有启发性的教学情境,引发学生对问题的讨论与思考;还可以通过动态图形让学生体验数学实验成功的乐趣.更重要的是,动态的几何图形能够把与几何㊁代数相关的知识联系起来,其中蕴含着动静结合㊁数形结合的思想方法,能够在运动变化中发展学生的空间想象能力,不断提高学生综合分析㊁解决问题的能力.在初中几何教学中,与动态图形有关的问题主要有以下几类.1动点 类问题动点问题是中考数学中最常见的题型,涉及面非常广泛.解决动点类问题的思路是化动为静,以相对静止的瞬间去寻求量与量之间的关系.图1例1㊀(2022年江苏省苏州市中考第16题)如图1,在矩形A B C D中,A B B C =23.动点M 从点A 出发,沿边A D 向点D 匀速运动,动点N从点B 出发,沿边B C 向点C 匀速运动,连接MN .动点M ,N 同时出发,点M 运动的速度为v 1,点N 运动的速度为v 2,且v 1<v 2.当点N 到达点C 时,M ,N 两点同时停止运动.在运动过程中,将四边形M A B N 沿MN 翻折,得到四边形M A ᶄB ᶄN .若在某一时刻,点B 的对应点B ᶄ恰好与C D 的中点重合,则v 1v 2的值为.图2解析:如图2所示,在矩形A B C D中,设A B =2a ,B C =3a ,运动时间为t ,则C D =A B =2a ,A D =B C =3a ,B N =v 2t ,AM =v 1t .在运动过程中,将四边形M A B N 沿MN 翻折,得到四边形M A ᶄB ᶄN ,所以B ᶄN =B N =v 2t ,A ᶄM =AM =v 1t .若在某一时刻,点B 的对应点B ᶄ恰好在C D 的中点重合,则D B ᶄ=B ᶄC =a .在R t әB ᶄC N 中,øC =90ʎ,B ᶄC =a ,B ᶄN =v 2t ,C N =3a -v 2t ,则v 2t =53a =B N .因为øA ᶄB ᶄN =øB =90ʎ,所以øA ᶄB ᶄD +øC B ᶄN =90ʎ.又øC N B ᶄ+øC B ᶄN =90ʎ,所以øA ᶄB ᶄD =øC N B ᶄ,故әE D B ᶄʐәB ᶄC N .因此,D E D B ᶄ=B ᶄC C N =B ᶄCB C -B N=a 3a -53a=34,可得D E =34D B ᶄ=34a ,则B ᶄE =D B ᶄ2+D E 2=54a ,于是A ᶄE =A ᶄB ᶄ-B ᶄE =34a ,即D E =34a =A ᶄE .在әA ᶄE M 和әD E B ᶄ中,øA ᶄ=øD =90ʎ,A ᶄE =D E ,øA ᶄE M =øD E B ᶄ,ìîíïïï所以әA ᶄE M ɸәD E B ᶄ(A S A ),则A ᶄM =B ᶄD =a ,即A M =v 1t =a .所以v 1v 2=v 1t v 2t =A M B N =a 53a =35.思路与方法:本题考查矩形背景下的动点问题,通过动态图形,将矩形的性质㊁对称性质㊁中点性质㊁三角形相似㊁全等的判定与性质㊁勾股定理及翻折的272024年3月下半月㊀解法探究㊀㊀㊀㊀运动形式等知识点联系起来.熟练掌握相关性质及三角形全等的判定定理,利用翻折及中点性质,根据三角形全等的性质求出相应线段的长是解题的重要方法.2动线 类问题动线类问题的特点很明显,动线在运动过程中可能会出现多种情况,尽管情况不同,但解题的思路是一致的,那就是 以静制动 ,通过特殊的静止状态去寻找量之间的关系.图3例2㊀(2022年江苏省盐城市中考第14题)如图3,在矩形A B C D 中,A B =2B C =2,将线段A B 绕点A 按逆时针方向旋转,使得点B 落在边C D 上的点B ᶄ处,线段A B 扫过的面积为.解析:由A B =2B C =2,得B C =1,所以A D =B C =1.因为将线段A B 绕点A 按逆时针方向旋转,所以A B ᶄ=A B =2.因为c o s øD A B ᶄ=A D A B ᶄ=12,所以øD A B ᶄ=60ʎ,则øB A B ᶄ=30ʎ.故线段A B 扫过的面积为30ˑπˑ22360=π3.思路与方法:首先由动线A B 旋转的性质可得A B ᶄ=A B =2,再由锐角三角函数可求出øD A B ᶄ=60ʎ,进而求出øB A B ᶄ,最后根据扇形面积公式即可获解.本题考查了旋转的性质㊁矩形的性质㊁扇形的面积公式㊁锐角三角函数等相关知识点.会观察和分析动态图形,灵活运用相关性质是解题的关键.3动图 类问题动图类问题常常结合图形的平移㊁旋转㊁翻折等变换,提出相关问题.解题的思路主要是从寻找图形运动的特殊情况中打开,进而灵活运用相关几何知识(如平行四边形的性质㊁切线的性质㊁圆的有关知识㊁锐角三角函数㊁直角三角形等)解决问题.例3㊀(2022年江苏省苏州市中考全真模拟试题第18题)在әA B C 中,A B =B C =6,øA B C =90ʎ,点D 在A C 上,且A D =22,E 是射线A B 上一动点,连接E D 并将E D 绕着点E 旋转60ʎ得线段E F ,当点F 恰好落在直线A C 上时,可求得A E 的长等于.解析:第一种情况.当E D 顺时针旋转60ʎ得到E F 时,如图4,过点E 作E M ʅA C 于点M.因为图4A B =B C =6,øA B C =90ʎ,所以әA B C 是等腰直角三角形,于是øA =45ʎ.根据旋转的性质,可得øD E F =60ʎ,E F =E D ,所以әD E F 是等边三角形,故øD E M =30ʎ.设DM =x ,则D E =2x ,AM =22+x .因为øA =45ʎ,E M ʅA C ,所以әA E M 是等腰直角三角形,故M E =AM =22+x .在R tәD E M 中,根据勾股定理,可得x 2+(22+x )2=(2x )2,解得x =2+6,或x =2-6(舍).所以M E =AM =22+x =32+6.在әA M E 中,根据勾股定理,可得A E =2A M =6+23.图5第二种情况:当E D 逆时针旋转60ʎ得到E F 时,如图5,作E M ʅA C 交A C 于点M .根据第一种情况,同理可设DM =x ,则有D E =2x ,AM =22-x .在әD E M 中,由勾股定理可得M E =3x ,所以3x =22-x ,解得x =6-2.故M E =A M =32-6.在әAM E 中,根据勾股定理,可得A E =2AM =6-23.综合上述两种情况,A E 的长为6ʃ23.思路与方法:首先要考虑到图形顺㊁逆两种旋转情况,根据旋转的性质可知әD E F 是等边三角形,过点E 作E M ʅA C ,又可证得әA E M 是等腰直角三角形,再设DM =x ,利用勾股定理便可求出x 的值,最后利用勾股定理即可求出A E 的长度.本题考查了图形旋转的性质㊁等边三角形的判定与性质㊁勾股定理等知识点.能够根据题意,按照E D 顺时针旋转与逆时针旋转两种情况,分别画出动态图形进行分类解析是解题的关键.综上所述,解决动态几何问题的基本思路是:把握运动规律,寻求运动中的特殊位置,在 动 中求 静 ,在 静 中探求 动 的普遍规律.在具体解题过程中,要用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,找出其中的等量关系和变量关系,并要特别关注一些不变量和不变关系或特殊关系.在解答动态几何类题型时,经常要用到数形结合思想㊁分类思想㊁转化思想和方程思想等重要的思想方法.Z37。

七年级数学专题02 化动为静,破解几何动态问题(解析版)

七年级数学专题02 化动为静,破解几何动态问题(解析版)

专题02 化动为静,破解几何动态问题遇动点,心莫慌,细思量,找到不变与变量;画出图,细讨论,动变静,将线段(角度)逐一标上;列方程,细求解.【动点问题解题步骤】1. 分析题目找到不动的点,动点,将动点运动方向及速度标记图上;2. 寻求表达式利用动点速度及运动时间表示出线段长度(角度大小)等;3. 找等量关系,列方程判断是否需要分类讨论,如果存在多种情况,逐一绘制图形,寻求各自的等量关系,列出方程求解.题型一:线段上的动点问题AC=厘【例1-1】(2020·成都市锦江区期中)(1)如图,己知点C在线段AB上,线段10 BC=厘米,点M,N分别是AC,BC的中点.求线段MN的长度;米,6-=,(2)己知点C在线段BA的延长线上,点M,N分别是AC,BC的中点,设BC AC a请根据题意画出图形并求MN的长度;(3)在(1)的条件下,动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点.【答案】见解析.【解析】解:(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,∴CM=12AC=5厘米,CN=12BC=3厘米,∴MN=CM+CN=8厘米;(2)作图如下,∵点M,N分别是AC,BC的中点,∴CM=12AC,CN=12BC,∴MN=CN-CM=12(BC-AC)=12a.(3)以C为数轴原点,向右为正方向建立数轴,则A点表示的数为:-10,B点表示的数为:+6,设运动时间为t s,C、P、Q三点有一点恰好是以另两点为端点的线段的中点,则P点表示的数为:-10+2t,Q点表示的数为:6-t,分三种情况讨论:①当C为P、Q中点时,-10+2t+6-t=0,解得:t=4,②当P为C、Q中点时,0+6-t=2(-10+2t),解得:t= 265,③当Q为C、P中点时,0-10+2t=2(6-t)解得:t=112,综上所述:t=4或265或112时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点.【例1-2】(2020·丹东市期中)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若8,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上一动点,满足AC CB acm +=,其它条件不变,你能猜想MN 的长度吗?你能用一句简洁的话描述你发现的结论吗? 【答案】见解析.【解析】解:(1)∵点M 、N 分别是AC 、BC 的中点,AC=8cm ,BC=6cm , ∴CM=12AC=4cm ,CN=12BC=3cm , ∵点C 在线段AB 上, ∴MN=CM+CN=4+3=7cm , (2)由(1)知CM=12AC ,CN=12BC , ∵点C 在线段AB 上, ∴MN=CM+CN=12AC +12BC =12(AC+BC ) =a cm ,∴无论点C 在线段上移动到哪里,线段MN 的长度等于线段AB 长度的一半.【变式1-1】(2020·江西南昌市期末)已知:如图1,点M 是线段AB 上一定点,AB =12cm ,C 、D 两点分别从M 、B 出发以1cm /s 、2cm /s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若AM =4cm ,当点C 、D 运动了2s ,此时AC = ,DM = ;(直接填空) (2)当点C 、D 运动了2s ,求AC +MD 的值.(3)若点C 、D 运动时,总有MD =2AC ,则AM = (填空) (4)在(3)的条件下,N 是直线AB 上一点,且AN ﹣BN =MN ,求MNAB的值. 【答案】(1)2,4;(2)6 cm ;(3)4;(4)13或1. 【解析】解:(1)根据题意知,CM =2cm ,BD =4cm , ∵AB =12cm ,AM =4cm , ∴BM =8cm ,∴AC =AM ﹣CM =2cm ,DM =BM ﹣BD =4cm , 故答案为:2cm ,4cm ;(2)当点C 、D 运动了2 s 时,CM =2 cm ,BD =4 cm ∵AB =12 cm ,CM =2 cm ,BD =4 cm∴AC +MD =AM ﹣CM +BM ﹣BD =AB ﹣CM ﹣BD =12﹣2﹣4=6 cm ; (3)根据C 、D 的运动速度知:BD =2MC , ∵MD =2AC ,∴BD +MD =2(MC +AC ),即MB =2AM , ∵AM +BM =AB , ∴AM +2AM =AB , ∴AM =13AB =4, 故答案为:4; (4)分两种情况讨论: ①当点N 在线段AB 上时,∵AN ﹣BN =MN , ∵AN ﹣AM =MN ∴BN =AM =4∴MN =AB ﹣AM ﹣BN =12﹣4﹣4=4 ∴13MN AB =; ②当点N 在线段AB 的延长线上时,∵AN ﹣BN =MN , 又∵AN ﹣BN =AB ∴MN =AB =12∴1MNAB=; 故答案为13MN AB =或1. 【变式1-2】(2020·河南南阳市期中)如图一,点C 在线段AB 上,图中有三条线段AB 、AC和BC,若其中一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”)(问题解决)和40,点C是线段AB的巧点,求(2)如图二,点A和B在数轴上表示的数分别是20点C在数轴上表示的数.(应用拓展)(3)在(2)的条件下,动点P从点A处,以每秒2个单位的速度沿AB向点B匀速运动,同时动点Q从点B出发,以每秒4个单位的速度沿BA向点A匀速运动,当其中一点到达终点时,两个点运动同时停止,当A、P、Q三点中,其中一点恰好是另外两点为端点的线t s的所有可能值.段的巧点时,直接写出运动时间()【答案】(1)是;(2)10或0或20;(3)见解析.【解析】解:(1)线段的中点是这条线段的巧点,故答案为:是;(2)设C点表示的数为x,则AC=x+20,BC=40-x,AB=40+20=60,根据“巧点”的定义可知:①当AB=2AC时,有60=2(x+20),解得,x=10;②当BC=2AC时,有40-x=2(x+20),解得,x=0;③当AC=2BC时,有x+20=2(40-x),解得,x=20.综上所述,C点表示的数为10或0或20;(3)由题意得,AP=2t,P点表示数为2t-20,AQ=60-4t,Q点表示的数为40-4t,∴PQ=|40-4t-2t+20|=|60-6t|,①当A为P、Q两点的“巧点”时,AQ=2AP,60-4t=2×2t,解得:t=7.5或AP=2AQ,2t=2(60-4t),解得:t=12 ②当P为A、Q两点的“巧点”时,PA=2PQ,2t=2|60-6t|,解得:t=607或t=12或PQ=2PA,|60-6t|=2×2t,解得:t=6或t=30(舍)③当Q为A、P两点的“巧点”时,QA=2PQ,60-4t=2|60-6t|,解得:t=7.5或t=45 4或QP=2AQ,|60-6t|=2(60-4t),解得:t=907或t=30(舍)综上所述,运动时间的可能值为7.5、12、607、6、454、907.题型二:折线上的动点问题【例2-1】(2020·镇江市月考)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P、Q同时出发,点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【答案】见解析.【解析】解:(1)动点P 从点A 运动至C 分成三段,分别为AO 、OB 、BC , AO 段时间为5s ,OB 段时间为10s ,BC 段时间为4s , ∴动点P 从点A 运动至C 点需要时间为5+10+4=19(秒);(2)点Q 经过8秒后从点C 运动到OB 段,再经进x 秒与点P 在OB 段相遇,此时P 所处点为3,依题意得:3+x+2x=10, 解得:x=73, 此时相遇点M 对应的数是为716333+=; (3)分四种情况讨论①当点P 在AO ,点Q 在BC 上运动时,依题意得: 10-2t=8-t , 解得:t=2,②当点P 、Q 两点都在OB 上运动时, t-5=2(t-8) 解得:t=11,③当P 在OB 上,Q 在BC 上运动时, 8-t=t-5, 解得:t=132; ④当P 在BC 上,Q 在OA 上运动时, t-8-5+10=2(t-5-10)+10, 解得:t=17;即PO=QB 时,运动的时间为2秒或132秒或11秒或17秒. 【变式2-1】(2020·浙江模拟)如图,数轴上,点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,在点B 和点C 处各折一下,得到条“折线数轴”,我们称点A 和点D 在数上相距20个长度单位,动点P 从点A 出发,沿着“折线数轴”的正方向运动,同时,动点Q 从点D 出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA 和射线CD 上的运动速度相同均为2个单位/秒,“上坡路段”从B 到C 速度变为“水平路线”速度的一半,“下坡路段”从C到B速度变为“水平路线”速度的2倍.设运动的时间为t秒,问:(1)动点P从点A运动至D点需要时间为________秒;(2)P、Q两点到原点O的距离相同时,求出动点P在数轴上所对应的数;(3)当Q点到达终点A后,立即调头加速去追P,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q追上点P时,直接写出它们在数轴上对应的数.【答案】(1)15;(2)(3)见解析.【解析】解:(1)由题意知:点A表示的数为-7,点B表示的数为-1,点C表示的数为9,点D表示的数为13,∴AB=6,BC=10,CD=4故动点P从点A运动到点D所需时间为6104212++=15(秒),故答案为:15;(2)由题意,PO=QO,分以下六种情况:①当点P在AB,点Q在CD时,点P表示的数为-7+2t,点Q表示的数为13-2t,∴-7+2t+13-2t=0,无解.②当点P在AB,点Q在CO时,点P表示的数为-7+2t,点Q表示的数为17-4t,∴-7+2t+17-4t=0,解得t=5,此时点P表示的数为3,不在AB上,舍去;③当点P在BO,点Q在CO时,点P表示的数为t-4,点Q表示的数为17-4t t-4+17-4t=0解得t=133,此时点P表示的数为13,不在BO上,舍去;④当点P、Q相遇时,点P、Q均在BC上,t-4=17-4t解得t=215,此时点P表示的数为15,点Q表示的数为15;⑤当点P在OC,点Q在OB时,点P表示的数为t-4,点Q表示的数为17-4t,∴t-4+17-4t=0解得t=133,此时点P表示的数为13,点Q表示的数为13-,符合题意;⑥当点P在OC,点Q在BA时,点P表示的数为t-4,点Q表示的数为8-2t,t-4+8-2t=0解得t=4,此时点Q表示的数为0,不在BA上,不符题设,舍去;综上所述,点P表示的数为15或13;(3)点Q到达点A所需时间为4106242++=7.5(秒),此时点P到达的点是3.5,点P到达点C所需时间为61021+=13(秒),此时点Q到达的点是6,故点Q在CD上追上点P,此时点P表示的数为2t-17,点Q表示的数为3t-34.5,2t-17=3t-34.5,解得t=17.5,此时点P表示的数为18,点Q表示的数为18.【变式2-2】(2019·武汉月考)如图1,在数轴上有一条线段AB,A,B表示的数分别是-2和-7.(1)若将线段AB的一端平移到原点处,则平移的距离为;(2)如图2,C为线段AB上一点,以点C为折点,将此数轴向右对折,若点A落在点B的左边且15AB BC=,求C点对应的数;(3)移动线段AB,使A对应的数为15,则B对应的数为(直接填空),此时数轴上的动点M,N分别从A,B出发向左作匀速运动,速度分别为4单位长度/秒和2单位长度/秒,请问数轴上是否存在定点P,当动点M在线段OA上移动过程中始终满足OM=2PN,若存在求点P对应的数;若不存在,请说明理由.【答案】(1) 2或7;(2)见解析;(3)B对应的数为10,见解析.【解析】解:(1)∵数轴上有一条线段AB,表示的数分别是-2和-7,∴平移的距离为2或7;故答案为:2或7;(2)设点C对应的数为x,则对折后B表示的数是2x+7∴BC=2x+7,∵AB=15 BC,∴2x+7-(-2)=15(x+7),解得:x=389 -,即C点对应的数是389 -;(3)移动线段AB,使A对应的数为15,则AB向右移动17个单位长度,B对应的数为10,故答案为:10;设点P对应的数是y,t秒时满足OM=2PN,点M表示的数是:15-4t,点N表示的数是:10-2t,∵OM=2PN,∴15-4t=2|y-10+2t|,①15-4t=2(y-10+2t),2y=35-8t,y随t的变化而变化,不符合题意,②15-4t=2(-y+10-2t),化简为15-4t=-2y+20-4t,即y=52,故存在,点P对应的数是52.题型三:角度中的动点问题【例3-1】(2020·江苏盐城市月考)七年级学生小聪和小明完成了数学实验《钟面上的数学》后,制作了一个模拟钟面,如图所示,点O为模拟钟面的圆心,M、O、N在一条直线上,指针OA、OB分别从OM、ON出发绕点O转动,OA顺时针转动,OB逆时针转动,OA运动速度为每秒转动15°,OB运动速度为每秒转动5°,当一根指针与起始位置重合时,运动停止,设转动的时间为t秒(t>0),请你试着解决他们提出的下列问题:(1)OA顺时针转动,OB逆时针转动,当t=秒时,OA与OB第一次重合;(2)OA顺时针转动,OB逆时针转动,当t=3秒时,∠AOB=°;(3)若他们同时顺时针转动,t为何值时,OA与OB的夹角为20°?(4)若他们同时顺时针转动,t为何值时,ON平分OA与OB的夹角?OA平分OB与ON 的夹角?【答案】(1)9;(2)120;(3)16或20;(4)9,14.4.【解析】解:(1)设t秒后,OA与OB第一次重合,根据题意可得:15t+5t=180,解得t=9,故答案为:9;(2)当t=3秒时,∠AOM=45°,∠BON=15°,∴∠AOB=120°故答案为:120;(3)设t秒后,OA与OB的夹角为20°,①当OA与OB重合之前,由题意:180+5t-15t=20,解得t=16;②当OA与OB重合之后,由题意:15-5t-180=20,解得t=20,∴当运动16或20秒时,OA与OB的夹角为20°;(4)由题意知:0≤t≤24,∴∠BON=5t,∠AON=|180-15t|,当ON平分OA与OB的夹角时,即∠AON=∠BON,即5t=180-15t,解得t=9;当OA平分OB与ON的夹角时,即∠AON=∠AOB,即5t=2(15t-180),解得t=14.4.【变式3-1】(2020·焦作市月考)已知数轴有A、B两点,分别表示的数为a、b,且|a+12|+|b ﹣18|=0.(1)a=,b=,点A和点B之间的距离为;(2)如图1,动点P沿线段AB自点A向点B以2个单位长度/秒的速度运动,同时动点Q 沿线段BA自点B向点A以4个单位/秒的速度运动,经过秒,动点P,Q两点能相遇;(3)如图1,点P沿线段AB自点A向点B以2个单位/秒的速度运动,点P出发3秒后,点Q沿线段BA自点B向A以4个单位/秒的速度运动,问再经过几秒P,Q两点相距6个单位长度;(4)如图2,AO=4厘米,PO=2厘米,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自点B向点A运动,假若点P,Q两点能相遇,直接写出点Q运动的速度.【答案】(1)﹣12,18,30;(2)5;(3)(4)见解析.【解析】解:(1)∵|a+12|+|b﹣18|=0,∴a+12=0,b﹣18=0,解得,a=﹣12,b=18,∴AB=|﹣12﹣18|=30,故答案为:﹣12,18,30;(2)30÷(2+4)=5(秒),故答案为:5;(3)设再经过x秒后点P、点Q相距6个单位长度,当P点在Q点左边时,2(x+3)+4x+6=30,解得,x=3;当点P在点Q右边时,2(x+3)+4x﹣6=30,解得,x=5;即再经过3或5秒后,点P、Q两点相距6个单位长度;(4)设点Q的运动速度为x cm,当P、Q两点在点O左边相遇时,120÷60x=30﹣6,解得,x=14;当P、Q两点在点O右边相遇时,240÷60x=30﹣2,解得,x=6;即点P,Q两点能相遇,则点Q的运动速度为每秒14cm或6cm.【变式3-2】(浙江月考)已知:如图1,点A、O、B依次在度线MN上,现将射线OA绕点O沿顺时针方向以每秒3°的速度旋转,同时射线OB绕点O沿进时针方向以每秒6°的速度前转,如图2,设旋转时间为t(0秒≤t≤60秒).(1)用含t 的代数式表示下列各角的度数:MOA ∠=______,NOB ∠=______. (2)在运动过程中,当0秒30t ≤≤秒时,AOB ∠=45°,求t 的值.(3)在旋转过程中是否存在这样的t ,使得射线OB 是由射线OM .射线OA 、射线ON 中的其中两条组成的角(指大于0°而不超过180°的角)的平分线?如果存在,请直接写出t 的值;如果不存在,请说明理由.【答案】(1)3t ,6t 或 360-6t ;(2)(3)见解析.【解析】解:(1)∠MOA=3t ,∠NOB=6t 或360-6t ,故答案为:3t ,6t 或 360-6t ;(2)若OA ,OB 相遇前,∠AOB=45°,∴3t+6t+45°=180°,∴t=15s若OA ,OB 相遇后,∠AOB=45°,∴3t+6t-45°=180°,∴t=25s∴t 为15秒或25秒时,∠AOB=45°;(3)分三种情况:①OB 平分∠AOM 时, 由12∠AOM=∠BOM 得32t=180-6t , 解得t=24②OB 平分∠MON 时,由∠BOM=12∠MON ,即∠BOM=90°, 得6t=90,或6t-180=90,解得:t=15,或t=45;③OB 平分∠AON 时,由∠BON=12∠AON,得6t=12(180-3t),解得:t=12;综上所述,当t的值分别为12、15、24、45秒时,射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角的平分线.。

培优提能10 立体几何中的动态问题

培优提能10 立体几何中的动态问题

培优提能10 立体几何中的动态问题立体几何中的“动态问题”是指空间中的某些点、线、面的位置是不确定的或可变的一类开放性问题,解答此类问题应该动静结合、化动为静,找到相应的几何关系,具体有以下几种解决方法:(1)函数法:某些点、线、面的运动,必然导致某些位置关系或一些变量的变化.变量变化时会引发其他变量的变化,从而建立函数关系,将立体几何问题转化为函数问题来解.(2)解析法:我们常利用空间直角坐标系解决立体几何问题,即实现几何问题代数化.因此利用空间直角坐标系将空间图形中的若干元素坐标化后,借助向量进行运算和分析,是解决这类问题的常用方法. (3)等价转换法:动和静是相对的,在运动变化过程中,要善于寻找或构造与之相关的一些不变因素,将一些变化的点、线、面进行合理转换,实现变量与不变量的结合.培优点1 以静制动(旋转问题、射影问题)典例1 正四面体ABCD的棱长为1,棱AB∥平面α(如图),则四面体上的所有点在平面α内的射影构成的图形面积的取值范围是.解析:去掉与问题无关的面,将四面体看成是以AB为棱的二面角C-AB-D(二面角大小一定),用纸折出这个二面角,不妨将AB置于平面α内,将二面角绕AB 转动一周,观察点C,D 在平面α上的射影,可以发现点C,D 在平面α上的射影始终在AB 的射影的中垂线上.当CD ∥平面α时,四边形ABCD 的面积最大,为12(如图1).当CD ⊥平面α时,四边形ABCD 的面积最小,为√24(如图2),转动过程中C,D 在平面α上的射影从C,D 变化到C ′,D ′(如图3),故图形面积的取值范围是[√24,12]. 答案:[√24,12]在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键.触类旁通1 如图,直线l ⊥平面α,垂足为O.正方体ABC D −A 1B 1C 1D 1的棱长为2.点A 是直线l 上的动点,点B 1在平面α内,则点O 到线段CD 1的中点P 的距离的最大值为 .解析:从题图中分化出4个点O,A,B1,P,其中△AOB1为直角三角形,固定A,B1,点P的轨迹是在与AB1垂直的平面上且以AB1的中点Q为圆心的圆,从而OP≤OQ+QP=12AB1+2=√2+2,当且仅当OQ⊥AB1,即点O,Q,P共线时,取到等号,此时直线AB1与平面α成45°角.答案:√2+2培优点2 动点轨迹(长度)问题典例2 在棱长为2√2的正方体ABCD-A1B1C1D1中,E,F分别为棱AB,AD 的中点,P为线段C1D上的动点,则直线A1P与平面D1EF的交点Q的轨迹长度为( )A.2√153B.4√33C.2√133D.4√23解析:如图,连接B1D1,因为E,F 分别为棱AB,AD 的中点,所以B 1D 1∥EF,则B 1,D 1,E,F 四点共面.连接A 1C 1,A 1D,设A 1C 1∩B 1D 1=M,A 1D ∩D 1F=N,连接MN,则点Q 的轨迹为线段MN,易得A 1D=√A 1D 12+DD 12=4,△A 1ND 1∽△DNF,且A 1D 1FD=2,所以A 1N=23A 1D=83.易知A 1C 1=C 1D=A 1D=4,所以∠C 1A 1D=60°,又A 1M=2,所以在△A 1MN 中,由余弦定理可得MN 2=A 1N 2+A 1M 2-2A 1N ·A 1Mcos 60°=529,所以MN=2√133,即点Q 的轨迹长度为2√133.故选C.空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆、圆锥曲线.很少有题目会脱离这三个方向.触类旁通2 (多选题)(2022·湖南郴州高三期末)如图,点P 是棱长为2的正方体ABCD-A 1B 1C 1D 1表面上的一个动点,则( AC )A.当点P 在平面BCC 1B 1上运动时,四棱锥P-AA 1D 1D 的体积不变B.当点P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是[π6,π2]C.当直线AP 与平面ABCD 所成的角为45°时,点P 的轨迹长度为π+4√2D.若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ∥平面B 1CD 1时,PF 长度的最小值是 √5解析:当P 在平面BCC 1B 1上运动时,点P 到平面AA 1D 1D 的距离不变,正方形AA 1D 1D 的面积不变,故四棱锥P-AA 1D 1D 的体积不变,故A 正确; 建立如图所示的空间直角坐标系,设P(x,2-x,0),0≤x ≤2,A 1(2,0,2),D 1(0,0,2),C 1(0,2,2),则D 1P →=(x,2-x,-2),A 1C 1→=(-2,2,0),设D 1P 与A 1C 1所成的角为θ(0≤θ≤π2),则cos θ=|cos<D 1P →,A 1C 1→>|=|D 1P →·A 1C 1→||D 1P →||A 1C 1→|=|x -1|√(x -1)2+3,因为0≤|x-1|≤1,当|x-1|=0时,θ=π2,当0<|x-1|≤1时,cos θ=|x -1|√(x -1)2+3=√1+3|x -1|2,0<cos θ≤12,则π3≤θ<π2,综上,π3≤θ≤π2,所以D 1P 与A 1C 1所成角的取值范围是[π3,π2],故B 错误;因为直线AP 与平面ABCD 所成的角为45°,若点P 在平面BCC 1B 1和平面DCC 1D 1内,因为∠B 1AB=45°,∠D 1AD=45°已为最大,不成立,在平面ADD 1A 1内,点P 的轨迹长度是AD 1=2√2,在平面ABB 1A 1内,点P 的轨迹长度是AB 1=2√2, 在平面A 1B 1C 1D 1内,如图所示,作PM ⊥平面ABCD,因为∠PAM=45°,所以PM=AM,又PM=AB,所以AM=AB,则A 1P=AB,所以点P 的轨迹是以A 1为圆心,以2为半径的四分之一圆,所以点P 的轨迹长度为14×2π×2=π,所以点P 的轨迹总长度为π+4√2,故C 正确; 建立如图所示的空间直角坐标系,设P(x,y,0),x,y ∈[0,2],B 1(2,2,2),D 1(0,0,2),C(0,2,0),F(2,1,2),则CB 1→=(2,0,2),CD 1→=(0,-2,2),FP →=(x-2,y-1,-2), 设平面B 1CD 1的法向量为n=(a,b,c),则{CD 1→·n =0,CB 1→·n =0,即{-2b +2c =0,2a +2c =0,令a=1,则n=(1,-1,-1), 因为PF ∥平面B 1CD 1,所以FP →·n=(x-2)-(y-1)+2=0,即y=x+1,所以|FP →|=√(x -2)2+(y -1)2+4=√2x 2-4x +8=√2(x -1)2+6≥√6,当x=1时,等号成立,故D 错误.故选AC.培优点3 翻折问题典例3 如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC 的中心为O.D,E,F 为圆O 上的点,△DBC,△ECA,△FAB 分别是以BC,CA,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB 为折痕折起△DBC,△ECA,△FAB,使得D,E,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积的最大值为 cm 3.解析:如图,连接OD,交BC于点G,由题意,知OD⊥BC,OG=√3BC.6设OG=x,则BC=2√3x,DG=5-x,×2√3x×3x=3√3x2,三棱锥的高h=√DG2-OG2=√25-10x,S△ABC=12则三棱锥的体积V=1S△ABC·h=√3x2·√25-10x=√3·√25x4-10x5.3),则f′(x)=100x3-50x4.令f′(x)=0,得令f(x)=25x4-10x5,x∈(0,52x=2.当x∈(0,2)时,f′(x)>0,f(x)单调递增;当x∈(2,5)时,f′2(x)<0,f(x)单调递减.故当x=2时,f(x)取得最大值80,则V≤√3×√80=4√15.所以三棱锥体积的最大值为4√15 cm3.答案:4√15在解决立体几何中的“动态”问题时,对于一些很难把握运动模型(规律)的求值问题,可以通过构建某个变量的函数,以数解形.触类旁通3 (1)(多选题)(2022·河北唐山高三期末)如图,四边形ABCD是边长为2的正方形,E为AB的中点,将△AED沿DE所在的直线翻折,使A与A′重合,得到四棱锥A′-BCDE,则在翻折的过程中( AB )A.DE⊥AA′B.存在某个位置,使得A′E⊥CDC.存在某个位置,使得A′B∥DED.存在某个位置,使四棱锥A′-BCDE的体积为1(2)(多选题)(2022·广东罗湖高三期末)在△ABC中,AB⊥BC,且AC=2,BC=1,若将△ABC沿AC边上的中线BD折起,使得平面ABD⊥平面BCD.点E在由此得到的四面体ABCD的棱AC上运动,则下列结论正确的为( BCD )A.∠ADC=π2B.四面体ABCD的体积为18C.存在点E使得△BDE的面积为14D.四面体ABCD外接球的表面积为13π3解析:(1)对于A,如图所示,过A′作A′O⊥DE,垂足为O,延长AO交BC于点F,因为DE⊥AO,且AO∩A′O=O,AO,A′O⊂平面A′AO,所以DE⊥平面A′AO,又因为A′A⊂平面A′AO,所以DE⊥AA′,A正确;对于B,取DC的中点G,连接EG,A′G,当A′在平面ABCD上的射影在直线EG上时,此时DC⊥平面A′EG,从而得到A′E⊥CD,B正确;对于C,连接A′B,因为点E∈平面A′BE,点D∉平面A′BE,所以直线A′B与DE是异面直线,所以不存在某个位置,使得A′B∥DE,C错误;对于D,由VA′BCDE =13×12×(1+2)×2×h=1,解得h=1,由A′O⊥DE,可得A′O=A′E·A′DDE =√5=√5,即此时四棱锥的高h∈(0,√5],此时√5<1,所以不存在某个位置,使四棱锥A′-BCDE的体积为1,D错误.故选AB.(2)对于A,取BD的中点M,连接CM,因为BC=CD=1,所以CM⊥BD,又平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,所以CM⊥平面ABD,则CM⊥AD,若∠ADC=π2,则AD⊥CD,所以AD⊥平面CBD,则AD⊥BD,显然不可能,A错误;对于B,易知△BCD的面积为√34,在平面ABD中,过A作BD的垂线,交BD的延长线于点H,易知AH=√32,因为平面ABD ⊥平面BCD,平面ABD ∩平面BCD=BD,所以AH ⊥平面BCD,即三棱锥A-BCD 的高为AH=√32,所以三棱锥A-BCD 的体积V=13×√34×√32=18,即四面体ABCD 的体积为18,B正确;对于C,显然当AC ⊥平面BDE 时,△BDE 的面积取得最小值,易知CD=1,DH=12,由余弦定理可得CH=√72,所以AC=√AH 2+CH 2=√102, 又四面体ABCD 的体积为18, 所以18=13×S ×√102,即S=3√1040<14, 且△BCD 的面积为√34>14,所以存在点E 使得△BDE 的面积为14,C 正确;对于D,设△BCD 与△ABD 的外心依次为O 1,O 2, 过O 1作平面BCD 的垂线l 1,过O 2作平面ABD 的垂线l 2,则四面体ABCD 的外接球球心O 为直线l 1与l 2的交点,延长CO 1交BD 于点M,则M 为BD 的中点,连接O 2M,则四边形MO 1OO 2为矩形,结合正弦定理可求得O 2M=√32,O 1C=√33, 所以四面体ABCD 的外接球半径为R=OC=√O 1O 2+O 1C 2=√O 2M 2+O 1C 2=√34+13=√1312,则四面体ABCD 外接球的表面积为S=4πR 2=4π×1312=13π3,D 正确.故选BCD.培优点4 动态最值问题典例4 (多选题)(2022·江苏常州高三期末)已知正方体ABCD-A 1B 1C 1D 1的棱长为3a,点M 是棱BC 上的定点,且BM=2CM,点P 是棱C 1D 1上的动点,则( )A.当PC 1=23a 时,△PAM 是直角三角形B.四棱锥A 1-PAM 体积的最小值为32a 3 C.存在点P,使得直线BD 1⊥平面PAM D.任意点P,都有直线BB 1∥平面PAM 解析:由已知及计算可得PC 1=23a,AM=√13a,AP=√2113a,MP=√943a,所以AP 2=MP 2+AM 2,所以△PAM 为直角三角形,A 正确;S △AA 1M =12×3a ×√13a=3√132a 2,当P 与C 1重合时,点P 到平面AA 1M 的距离最小,设点P 到平面AA 1M 的距离为h, 在B 1C 1上取M 1,使B 1M 1=2C 1M 1,sin ∠B 1M 1A 1=√13=ℎmin a,所以h min =√13a,所以V A 1PAM =V PAA 1M =13×S △AA 1M ×h ≥13×3√132a 2×√13a=32a 3,B 正确;因为BD 1⊥平面AB 1C,平面AB 1C 与平面PAM 不平行,所以BD 1与平面PAM 不垂直,C 错误;P 与C 1重合时,平面PAM 为平面C 1AM,BB 1∥CC 1,若BB 1∥平面PAM,则CC 1⊂平面C 1AM,与CC 1⊄平面C 1AM 矛盾,D 错误.故选AB.解决与空间图形有关的线段、角、距离、面积、体积等最值问题,一般可以从三方面着手:(1)从问题的几何特征入手,充分利用其几何性质去解决; (2)利用空间几何体的侧面展开图;(3)找出问题中的代数关系,建立目标函数,利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法,二次函数的配方法、公式法,函数有界法(如三角函数等)及导数法等.触类旁通4 (多选题)(2022·广东揭阳高三期末)如图所示,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M,N 分别是AD,CC 1的中点,P 是线段AB 上的动点,则下列说法正确的是( BD )A.平面PMN 截正方体所得的截面可以是四边形、五边形或六边形B.当点P 与A,B 两点不重合时,平面PMN 截正方体所得的截面是五边形C.△MPN 是锐角三角形D.△MPN 面积的最大值是√212解析:如图所示,当点P 与A,B 两点不重合时,将线段MP 向两端延长,分别交CD,CB 的延长线于点O,Q,连接NO,NQ 分别交DD 1,BB 1于R,S 两点,连接RM,SP,此时截面为五边形MPSNR,故B 正确;当点P 与点A 或点B 重合时,截面为四边形,不可能为六边形,故A 错误;考虑△MPN,当点P 与点A 重合时,MN=√6,PM=1,PN=3, 此时因为MN 2+PM 2<PN 2,故∠PMN 为钝角,故C 错误;当点P 与点B 重合时,点P 到直线MN 的距离取到最大值,△MPN 的面积取到最大值,此时MN=√6,BM=BN=√5,则MN 边上的高为√(√5)2-(√62)2=√142,△MPN的面积为12×√142×√6=√212,即最大值为√212,故D正确.故选BD.。

动态几何问题

动态几何问题

动态几何问题
(2)当直线MN绕着点C顺时针旋转到 MN与AB相交于点F(AF>BF)的位 置(如图2所示)时,请直接写出下列 问题的答案: ①请你判断△ADC和△CEB还具有 (1)中①的关系吗? ②猜想DE、AD、BE三者之间具有怎 样的数量关系.
动态几何问题
训练题2
如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4 √2, 另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合, 两腰分别落在AB、AC上,且G、F分别是AB、AC的中 点. (1)求等腰梯形DEFG的面积;
②探究2:设在运动过程中△ABC与等腰梯形 DEFG重叠部分的面积为y,求y与x的函数关系式.
动态几何问题
参考提示:
1、△ABC是等腰直角三角形,BC=,4√2,BC上的高为 2√2,梯形的底DE=4√2,GF=2√2,高为√2.。梯形面积 (4√2+2√2)*√2/2=6。 2、函数的定义域为0≤x≤4√2, 函数式分两个区间分析。
动态几何问题
动态几何问题
动态几何问题
动态几何问题
动态几何问题
Байду номын сангаас
动态几何问题
动态几何问题
解:(1)∵G、F分别是AB、AC的中点, ∴GF=1/2 BC=1/2×4√2 =2√2 , 过G点作GM⊥BC于M, ∵AB=AC,∠BAC=90°,BC=4√2 ,G 为AB中点 ∴GM=√2 又∵G,F分别为AB,AC的中点 ∴GF=1/2 BC=2√2 ∴S梯形DEFG=1/2 (2√2 +4√2 )×√2 =6, ∴等腰梯形DEFG的面积为6 .
动态几何问题
2)能为菱形
由BG∥DG′,GG′∥BC ∴四边形BDG′G是平行四边形 又AB=AC,∠BAC=90°,BC=4√2 , ∴AB=AC=4, 当BD=BG=1 2 AB=2时,四边形BDG′G为 菱形 此时可求得x=2, ∴当x=2秒时,四边形BDG′G为菱形

中考几何-动态试题解法(解析版)

中考几何-动态试题解法(解析版)

中考几何动态试题解法专题知识点概述一、动态问题概述1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。

3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。

4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。

二、动点与函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。

2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。

3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。

4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。

三、图形运动与函数图象问题常见的三种类型1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。

2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。

3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。

四、动点问题常见的四种类型解题思路1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。

初中数学动态几何定值问题(word版+详解答案)

初中数学动态几何定值问题(word版+详解答案)

动态几何定值问题【考题研究】数学因运动而充满活力,数学因变化而精彩纷呈。

动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。

以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

【解题攻略】动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。

解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.【解题类型及其思路】在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。

在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。

【典例指引】类型一【线段及线段的和差为定值】【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA ′D =15°时,作∠A ′EC 的平分线EF 交BC 于点F . ①写出旋转角α的度数; ②求证:EA ′+EC =EF ;(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接PA ,PF ,若AB=2,求线段PA +PF 的最小值.(结果保留根号) 【举一反三】如图(1),已知∠=90MON ,点P 为射线ON 上一点,且=4OP ,B 、C 为射线OM 和ON 上的两个动点(OC OP >),过点P 作PA ⊥BC ,垂足为点A ,且=2PA ,联结BP .(1)若12PAC ABOPS S ∆=四边形时,求tan BPO ∠的值; (2)设PC x =,ABy BC=求y 与x 之间的函数解析式,并写出定义域; (3)如图(2),过点A 作BP 的垂线,垂足为点H ,交射线ON 于点Q ,点B 、C 在射线OM 和ON 上运动时,探索线段OQ 的长是否发生变化?若不发生变化,求出它的值。

动态几何问题的解题探究

动态几何问题的解题探究

2023年12月下半月㊀解法探究㊀㊀㊀㊀动态几何问题的解题探究◉广东珠海市凤凰中学㊀魏庆雪㊀㊀摘要:初中数学中动态几何问题是难点,不少学生面对动态几何问题,常常不知如何入手.为了帮助学生掌握动态几何问题的解题方法,教师根据动态几何问题的特点,对其解题方式进行归纳总结,结合典型例题,将解题方法展现出来,引导学生把握解题细节,能够做到学以致用㊁举一反三.关键词:中学数学;动态几何问题;解题㊀㊀对于动态几何问题,解题的思路比较多,如利用函数性质㊁图形性质㊁点的对称知识㊁图形关系以及数形结合等,解题时需要根据题目的特点选择合适的思路.点对称的动态几何问题是根据 将军饮马模型 转化的,图形关系则是根据图形的全等或者相似而来的.本文中结合具体实例,探究初中数学中动态几何问题的解题方法.1利用函数性质解决动态几何问题动态几何问题通常比较复杂,难度较大,特别是求解最值问题时,利用函数性质解题是常见的思路.在解题过程中,需要仔细审题,理解题意,明确线段㊁角之间的关系,设出相应的参数,表示出求解参数的表达式,之后根据一次函数㊁二次函数和反比例函数性质完成解答.在解题时,最值与自变量有着直接关系,需要根据题意,确定自变量的范围[1].图1例1㊀如图1所示,矩形A B C D 中,A B =10c m ,A D =6c m ,动点E 从点A 开始以1c m /s的速度沿着A D 向点D 移动,另有一个动点F 从点D 出发,以2c m /s 的速度沿着D C 向C 点移动,设移动的时间为t s ,当S әD E F +S әA B E 取最大值时,t 的值是(㊀㊀).A.2㊀㊀㊀B .3㊀㊀㊀C .72㊀㊀㊀D.112分析:此题创设的情境并不十分复杂,根据动点的运动速度,可以得出D F =2A E ,将点的运动变化转化成线段的长度关系.根据已知条件中的参数,设出A E 的长度,用A E 表示出三角形的面积和,将问题转化成二次函数的最值问题.解析:由题意得A E =t c m ,D F =2t c m ,所以S әA B E =12ˑA B ˑA E =5t ,S әD E F =12ˑD E ˑD F =(6-t )t .故S әD E F +S әA B E =(6-t )t +5t =-t 2+11t(0<t <5).又-t 2+11t =-(t -112)2+1214,所以当t =112时,S әD E F +S әA B E 的值最大.故正确答案是选项D .点评:此题根据矩形和三角形的性质设计问题,结合点的变化对三角形面积的影响,引导学生联想一次函数㊁二次函数或者反比例函数,结合特点写出函数表达式,进而利用函数的性质解题.考查学生对函数性质的掌握和利用.2结合图形性质解决动态几何问题在求解动态几何问题时,利用图形性质是一种比较常见的思路.初中数学中图形比较多,如三角形㊁正方形㊁长方形㊁圆等,每种图形有其特有的性质.在求解问题时,通过分析题目中的图形,利用线段与角之间的关系,找出运动中的变量与不变量,明确解题突破点.例2㊀在平面直角坐标系x O y 中,点A 坐标是(12,0),点B 坐标是(0,9),经过点O 作一个圆和A B相切,圆与x 轴㊁y 轴分别相交于点P ,Q ,则线段P Q 的最小值是(㊀㊀).A.62B .10C .7.2D.63分析:通过审题发掘题目中的隐藏信息.在圆运动的过程中,øQ O P =90ʎ是不变的,圆和A B 相切是不变的.根据圆的性质分析,求解P Q 的最小值就是求解动圆直径的最小值.结合已知条件,当圆的直径是三角形A B O 中A B 边上的高时,圆的直径最小.图2解析:如图2所示,设F 是P Q 的中点,因为øQ O P =90ʎ,所以F 是动圆的圆心.设圆与A B 的切点是D ,连接O F ,F D ,则F D ʅA B .因为点A 坐标是(12,0),点B 坐标是(0,9),所以A B =15.因为øA O B =90ʎ,所以F O +F D =P Q ,F O +F D ȡO D ,当F ,O ,D 三点共线时,P Q 取得最小值,此时P Q =O D .因为S әA O B =12O B O A =12O D A B ,所57解法探究2023年12月下半月㊀㊀㊀以O D =O A O BA B =7.2.故正确答案为选项C .点评:此题将图形与坐标系结合,要求学生认真审题,根据圆的性质发掘隐含条件,如直径对应的圆周角为直角.通过这样的方式,对问题进行转化,完成题目的解答,考查学生对图形性质的掌握与应用.3利用点的对称解决动态几何问题在初中数学动态几何问题中,利用点的对称解题是一种有效的方式, 将军饮马模型 是具有代表性的问题.在动态几何问题的求解中,根据题目条件选择合适的点,找出对称的线段,根据图形性质确定对称点的问题,作出辅助线,构建相应的图形,利用图形性质和相关定理求解线段长度[2].图3例3㊀如图3所示,在菱形A B C D 中,øD =135ʎ,A D =32,C E =2,动点P ,F 分别在线段A C ,A B 上,则P E +P F 的最小值是(㊀㊀).A.22B .3C .25D.10分析:解答此题时,根据 将军饮马模型 ,找出点E 关于A C 的对称点,结合菱形的性质,可以确定对称点在C D 上,当对称点与P ,F 三点共线时,P E +P F 最小.作出辅助线,构建直角三角形,根据题目中的已知条件,求解出线段之和的最小值.解析:设点E 关于A C 的对称点为G ,因为四边形A B C D 是菱形,所以点G 在C D 上.连接P G ,B G ,过点B 作B H ʅC D ,垂足为H .根据菱形的性质可以得出C E =C G =2,P E =P G ,要求P E +P F 的最小值,即求P G +P F 的最小值.因为点P ,F 是动点,所以当G ,P ,F 三点共线时,P G +P F 取最小值.因为øD =135ʎ,A D =32,C E =2,所以øB C D =45ʎ,得出B H =C H =32c o s 45ʎ=3,H G =C H -C G =1.在直角三角形B H G 中,G B =B H 2+H G 2=10,所以P E +P F 的最小值为10.故正确答案是选项D .点评:点对称的动态几何问题源自于 将军饮马模型 .在解题时,根据 将军饮马模型 ,结合条件准确找出点的对称点,构建相应的图形,利用图形性质和相关定理解题.如,此题中构建直角三角形,利用勾股定理进行求解.4分析图形关系解决动态几何问题在解答一些初中动态几何问题时,可以根据图形关系分析等量关系与比例关系,运用平行线性质㊁三角形全等与相似等知识思考解题思路.解答此种类型题目时,可以采用逆向推理的方式,从需要求解的问题入手,分析需要的解题条件,作出相应的辅助线,找出问题与已知条件的联系,明确问题解答思路.例4㊀平面直角坐标系中,点A 坐标为(3,4),点C 坐标为(x ,0)且-2<x <3,点B 是直线x =-2上的动点,且B C ʅA C ,连接A B .设A B 与y 轴正半轴的夹角是α,当t a n α取最大值时,x 的值是(㊀㊀).A.12B .332C .1D.13分析:根据题意,利用平行线的性质,将角转化到三角形中,表示出角的正切,将问题转化成求解线段B G 的最大值.根据题目已知条件,利用三角形相似的性质,找出线段之间的关系,完成问题的求解.图4解析:如图4,过点A 作A F 垂直于x 轴,垂足为F ,作AH 垂直于直线x =-2,垂足为H .因为y 轴与直线x =-2平行,所以t a n α=AHB H.又因为AH =5,所以t a n α=5B H.当t a n α取最大值时,即B H 取最小值,此时B G 取最大值.因为B C ʅA C ,所以øB C O +øA C F =90ʎ,又øB C O +øC B G =90ʎ,所以øC B G =øA C F ,故әB G C ʐәC F A .设B G =y ,又C F =3-x ,C G =x +2,则由B G C F =C G A F 得y 3-x=x +24,所以y =-14(x -12)2+2516(-2<x <3),因此当x =12时,t a n α取最大值.故正确答案是选项A .点评:解答此类问题时,需要对图形进行观察分析,利用辅助线构建图形,结合线段平行㊁三角形相似等知识,对问题进行分析解答.主要考查学生对知识的理解与综合利用.5结语对于初中数学动态几何问题的解题教学,教师应当结合具体例题,向学生展示解题思路与方法,借助图形的变化,让学生直观了解数量关系.同时,教师应当注重与学生的交流,创设良好的课堂环境,加深学生的课堂学习体验,帮助学生理解和掌握不同类型问题的解题方法,提高解题能力.参考文献:[1]陈伟宁.动中分析,静中求解 谈中考动态几何压轴题的解题策略[J ].中学数学研究(华南师范大学版),2020(4):42G45.[2]王涵.初中数学动态几何问题的解题方法[J ].数理化解题研究,2022(26):2G4.Z67。

立体几何中“动态问题”的求解策略1

立体几何中“动态问题”的求解策略1

A. 30 5
B. 30 10
C. 4 3 9
D. 5 3 9
H
小试身手
跟踪练习1:
等边三角形ABC的边长为a,将它沿平行于BC 的线段DE折起,使平面ADE 平面BDEC, 若折叠后AB的长度为d,则d的最小值为( D )
A. 3 a B. 5 a
4
4
C. 3 a 4
D. 10 a 4



OE
F C
策略二、运动变化中寻求变化的“轨迹”
例2、正方体 ABCD A1B1C1D1中,M是棱的 DD1 中点,O是底面ABCD的中心,P为棱 A1B1 上任意一点,则直线OP与直线AM所成角为
(C)
A.
4
B.
3
C.
2
D.与P点的位置有关
D1
C1
A1 P M B1


AG
OH B
小试身手
跟踪练习2:
例1、如图,某人在垂直于水平地面ABC的墙面 前的点A处进行射击训练。已知点A到墙面的距离 为AB,某目标点P沿墙面上的射线CM移动,此 人为了准确瞄准目标点P,需计算由点A观察点P
的仰角 的大小(仰角 为直线AP与平面ABC
所成的角)。若AB=15,AC=25,BCM 30 则 tan 的最大值是( D )
A E DC
于A、D的任一点,

求证:EF FC1 ;
(2)若AB=2a,
在线段AD上是否存在点E,
使得直线EF与平面 BB1C1C
A1
成 60 角。
F C1
B1
小试身手
跟踪练习3:
在棱长为a的正方体 ABCD A1B1C1D1中,E、F 分别为棱AB、BC上的动点,且AE=BF。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态几何问题的解题技巧
解这类问题的基本策略是:
1.动中觅静:这里的“静”就是问题中的不变量、不变关系
........,动中觅静就是在运动变化中探索问题中的
不变性
....
2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使
一般情形转化为特殊问题
...........,从而找到“动”与“静”的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系
.........,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
总之,解决动态几何问题的关键是要善于运用运动与变化的眼光去观察和研究图形,把握图形运动与变化
的全过程,抓住变化中的不变,以不变应万变
.............。

这类问题与函数相结合时,注意使用分类讨论的思想,运用方程的思想、数形结合思想、转化的思想等。

1、在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图①,②,③是旋转得到的三种图形。

(1)观察线段PD和PE之间的有怎样的大小关系,并以图②为例,加以说明;
(2)△PBE是否构成等腰三角形?若能,指出所有的情况(即求出△PBE为等腰三角形时CE的长,直接写出结果);若不能请说明理由。

2、如图,等腰Rt △ABC(∠ACB =90°)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让△ABC 沿这条直线向右平移,直到点A 与点E 重合为止.设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y , (1)求y 与x 之间的函数关系式;
(2)当△ABC 与正方形DEFG 重合部分的面积为3
2
时,求CD 的长.
3、在平面直角坐标系中,直线1l 过点A(2,0)且与轴y 平行,直线2l 过点B(0,1)且与轴x 平行,直线1l 与
2l 相交于点P 。

点E 为直线2l 上一点,反比例函数
0,0(>>=
k x x
k
y 且k ≠2)的图象过点E 且与直线1l 相交于点F.
(1)写出点E 、点F 的坐标(用k 的代数式
表示); (2)求
PF
PE
的值; (3)连接OE 、OF 、EF ,
若△OEF 为直角三角形,求k 的值。

备用图
4、如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;
(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形.
答案:
1、解:1)PD=PE 。

以图②为例,连接PC
∵△ABC 是等腰直角三角形,P 为斜边AB 的中点, ∴PC=PB ,CP ⊥AB ,∠DCP=∠B=45°, 又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90° ∴∠DPC=∠EPB
∴△DPC ≌△EPB (AAS ) ∴PD=PE
2)能,①当EP=EB 时,CE=
2
1
BC=1 ②当EP=PB 时,点E 在BC 上,则点E 和C 重合,CE=0 ③当BE=BP 时,若点E 在BC 上,则CE=
若点E 在CB 的延长线上,则CE=
2、
3、
解:(1)∵直线l 1经过点A (2,0)且与y 轴平行,直线l 2经过点B (0,1)且与x 轴平行, ∴当y=1时,x=k ;当x=2时,y=2
k , ∴E (k ,1),F (2,
2
k
); (2)当0<k <2时,22
12=--=k k
PF
PE ;
当k >2时,212
2
=--=k k PF
PE 。

(3)①当∠OEF=90°时,
∵∠OEB+∠EOB=∠OEB+∠PEF=90°, ∴∠EOB=∠PEF , ∵∠OBE=∠EFP=90°, ∴△OBE ∽△EPF ,

2==PF PE
BE OB ∴21
=k ∴k=2
1;
②当∠OFE=90°时,
同理可得△OAF ∽△FPE ,
∴2==PF PE OA AF ∴22
2=k
解得k=8.
综上所述,k=2
1
或k=8.
6
5
4
3
2
1
1
2
2
2468
l 2
l 1
F
E
P O
A
B。

相关文档
最新文档