矩形正方形(同步)第二三次课

合集下载

20.4 正方形的判定

20.4 正方形的判定

§.20.4.正方形的判定第一课时.正方形的判定(一)&.教学目标:1.经历由正方形的定义探究正方形的判定方法的过程,培养学生动手实验、观察、推理的意识,发展学生的形象思维和逻辑思维.2.掌握正方形的判定方法.3.通过对几种特殊平行四边形的对比,丰富对正方形的认识,发展学生的形象思维.4.通过对正方形的研究,使学生认识到正方形、矩形、菱形、平行四边形的联系和区别,感受知识间的内在联系.&.教学重点、难点:重点:正方形判别方法的探究.难点:运用正方形的判别方法及性质进行证明或计算.&.教学过程:一、情景导入1.正方形的定义是什么?它能作为正方形的一个判别方法吗?2.正方形是轴对称图形吗?正方形是中心对称图形吗?3.正方形具有哪些性质?正方形还有其他的判定方法吗?(数形结合加以解释)二、探究新知操作演示:路径1:把平行四边形通过挤压,使一个角变成直角,再平移一边,使一组邻边相等.路径2:平移平行四边形的一边,使一组邻边相等,再通过挤压,使一个角变成直角.思考:通过上述两种不同途径的变换所得的图形是不是正方形?图 2A D E BA DEMBF C图 3§.正方形的判定方法:(1)有一个角为直角的菱形是正方形. (2)有一组邻边相等的矩形是正方形.方法归纳:要证明一个四边形是正方形,可以先证图形是矩形,再加上一个菱形的特征即可;或先证图形是菱形,再加上一个矩形的特征即可.三、讲解例题,巩固新知§.例1.如图1,ABC ∆中,︒=∠90ACB ,CD 平分ACB ∠,BC DE ⊥,AC DF ⊥,垂足分别为E 、F .求证:四边形CFDE 是正方形.解析:要证四边形CFDE 是正方形,可以先证四边形CFDE 是矩形,然后再证有一组邻边相等;也可以先证四边形CFDE 是菱形,然后再证有一个角是直角.证明:∵CD 平分ACB ∠,BC DE ⊥,AC DF ⊥ ∴DF DE =(角平分线上的点到线段两端点的距离相等) 又∵︒=∠=∠=∠90CFD ECF DEC∴四边形CFDE 是矩形(有三个角是直角的四边形是矩形) ∴四边形CFDE 是正方形(有一组邻边相等的矩形是正方形) 同步练习:(1)如图2,在ABC Rt ∆中,︒=∠90ACB ,A ∠、B ∠的平分线交于点E ,AC ED ⊥于点D ,BC EF ⊥于点F .求证:四边形DEFC 是正方形.(注本题可以从例题1加以演变得出)(2)如图3,已知矩形ABCD 中,B ∠的平分线交对角线于点M ,AB ME ⊥,BC MF ⊥,垂足分别为E 、F .求证:四边形EBFM 是正方形.(本题可以为例题2作铺垫)§.例2.如图4,已知矩形ABCD 中,AE 、BE 、DG 、CG 分别平分DAB ∠、ABC ∠、ADC ∠、DCB ∠.求证:四边形EFGH 是正方形.证明:∵矩形ABCD 中,︒=∠=∠90ABC DAB 又∵AE 、BE 平分DAB ∠、ABC ∠图 1 AFD图 4ADBCHE F G数学八年级(下)教案∴︒=∠=∠45ABE EAB ∴︒=∠90HEF同理的得:︒=∠=∠90FGH EFG∴四边形EFGH 是矩形,︒==∠45ADF DAF ∴DF AF =,而且HN HM =,EF HG =,FG EH = ∴EF FG EH == ∴矩形EFGH 是正方形.交流讨论:从一张彩纸上剪出一个正方形,你能检验你剪出的图形符合要求吗?你是如何检验的,与同伴交流.四、巩固练习教材118P 练习 2~1五、课堂小结通过本节课的学习,要求同学们 1.理解掌握正方形的判定方法.2.灵活地运用正方形的判定定理与正方形的性质解决一些简单的问题.六、课外作业1.教材118P 习题4.20 2~12.选用课时作业.§.20.4.正方形的判定第二课时.正方形的判定(二)&.教学目标:1.进一步掌握正方形常见的判定方法.2.学会利用正方形的判定进行简单的证明,培养学生演绎能力.3.在探究正方形的有关知识的活动中获得成功的体验,从而锻炼学生克服困难的意志,建立自信心.&.教学重点、难点:重点:正方形判别方法的应用.难点:运用正方形的判别方法进行证明或计算.&.教学过程:一、知识回顾1.正方形具有什么性质?(数形结合加以解释)2.正方形的判定方法有哪些?(数形结合加以解释)3.正方形的性质与判定有什么区别和联系?二、讲解例题,巩固新知数学八年级(下)教案ADAD §.例1.如图1,在ABC ∆中,AC DE //,AB DF //,AD 平分BAC ∠.(1)求证:四边形AEDF 是菱形;(2)连结EF ,若8=AE ,12=AD ,求EF 的长;(3)ABC ∆满足什么条件时,四边形AEDF 是正方形,说明理由. 解:(1)证明:∵AC DE //,AB DF // ∴四边形AEDF 是平行四边形 ∵AD 平分BAC ∠ ∴CAD BAD ∠=∠ ∵AB DF // ∴ADF BAD ∠=∠ ∴ADF CAD ∠=∠ ∴DF AF =∴四边形AEDF 是菱形 (2)设EF 交AD 于O∵四边形AEDF 是菱形,12=AD ∴6=AO ,AD EF ⊥在AOE Rt ∆中,726822=-=OE ∴742==OE EF(3)当︒=∠90BAC 时,四边形AEDF 是正方形. 根据正方形的判定,有一个角是直角的菱形是正方形.§.例2.如图2,点M 是矩形ABCD 边AD 的中点,点P 是BC 边上一动点,MC PE ⊥,BM PF ⊥,垂足分别为E 、F .(1)当矩形ABCD 的长与宽满足什么条件时,四边形PFME 为矩形,说明理由; (2)在(1)中,当P 运动到什么位置时,四边形PFME 是正方形,说明理由. 解:(1)当矩形ABCD 的长是宽的2倍时,四边形PFME 为矩形 理由:此时AMB ∆和MDC ∆为等腰三角形 ∴︒=∠=∠45DMC AMB ∴︒=∠90FME此时四边形PFME 为矩形.(2)当P 运动到BC 中点时,PE PF =,此时四边形PFME 是正方形.§.例3.如图3,正方形ABCD 中,AC 、BD 相交于点O ,E 为AC 上一点,过A 作EB AG ⊥于G .求证:OF OE =. 图 1AO EF D图 2 AMDB F EPC图 5ABCD FE AF B EPD C 图 6AGF DE图 7解析:要OF OE =,需证BOE AOF ∆≅∆,由于BO AO =,︒=∠=∠90BOC AOB ,只需证EBO FAO ∠=∠.同步练习:如图4,正方形ABCD 中,E 在AC 的延长线上,EB AG ⊥交EB 的延长线于G ,AG 的延长线交DB 的延长线于F .求证:OF OE =.三、巩固练习1.如图5,在正方形ABCD 的对角线AC 上取一点E ,使CE CD =,过E 点作AC EF ⊥交AD 于F .求证:DF EF AE ==.2.如图6,在正方形ABCD 中,点P 在AC 上,BC PE ⊥,AB PF ⊥,连结EF 、PD .求证:EF PD =.3.如图7,点C 是线段AB 上一点,分别作正方形ACDE 和BCFG ,连结BD 、AF . (1)求证:DB AF =;(2)若点C 在线段AB 的延长线上,猜想上述结论是否正确,并证明.四、课堂小结通过本节课的学习,要求同学们 1.理解掌握正方形的判定方法.2.灵活地运用正方形的判定定理与正方形的性质解决一些简单的问题.五、课外作业1.教材118P 习题4.20 32.选用课时作业A .(2005.山西省)如图8,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连结BE 、DG .数学八年级(下)教案图 8ADEFBC G图10(1) ADB EC PFA H D EGBF C 图 9AD BP F C E 图10(2)(1)观察BE 与DG 的大小关系,并证明你的结论;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程;若不存在,请说明理由.B .如图9,在边长为cm 6的正方形ABCD 中,点E 、F 、G 、H 分别按B A →、C B →、D C →、A D →的方向同时出发,以s cm /1的速度匀速运动.(1)在运动中,点E 、F 、G 、H 所形成的四边形EFGH 为( )①平行四边形;②矩形;③菱形;④正方形(填序号).(2)写出四边形EFGH 的面积()2cm S 随运动时间()s t 变换的函数关系式.C .(2007.资阳市)如图10(1),已知点P 为正方形ABCD 的对角线AC 上一点(不与A 、C 重合),BC PE ⊥于点E ,CD PF ⊥于F . (1)求证:DP BP =;(2)如图10(2)若四边形PECF 绕点C 按逆时针方向旋转,在旋转过程中是否总有=BPDP ?若是,请给予证明;若不是,请用反例加以说明;(3)试选取正方形ABCD 的两个顶点,分别与四边形PECF 的两个顶点连结,使得到的两条线段在四边形PECF 绕点C 按逆时针方向旋转过程中长度始终相等,并证明你的结论.。

北师大版九年级数学上册《正方形的性质与判定》第2课时示范公开课教学课件

北师大版九年级数学上册《正方形的性质与判定》第2课时示范公开课教学课件
已知:如图,点 A1,B1,C1,D1 分别是正方形 ABCD 各边的中点. 求证:四边形 A1B1C1D1 为正方形.
已知:如图,点 A1,B1,C1,D1 分别是正方形 ABCD 各边的中点. 求证:四边形 A1B1C1D1 为正方形.
又∵四边形 ABCD 是正方形,∴AC = BD(正方形的对角线相等) AC⊥BD(正方形的对角线互相垂直),∴A1B1 = A1D1 = B1C1 = C1D1,∠1 = 90°.∴四边形 A1B1C1D1是菱形,∠2 = 90°.∴四边形 A1B1C1D1为正方形.
活动1 准备一张矩形的纸片,按照下图折叠,然后展开,折叠部分得到一个正方形,可量一量验证.
满足怎样条件的矩形是正方形?
活动1 准备一张矩形的纸片,按照下图折叠,然后展开,折叠部分得到一个正方形,可量一量验证.
【猜想1】当矩形的___________时,会变成一个正方形.
一组邻边相等
【猜想2】当矩形的________________时,会变成一个正方形.
3 正方形的性质与判定第2课时
观察下列实物中的正方形,说一说什么是正方形?
一组邻边相等且有一个角是直角的平行四边形叫做正方形.
正方形具有哪些性质呢?
正方形
观察下列实物中的正方形,说一说什么是正方形?
正方形具有哪些性质呢?
正方形的四个角都是直角,四条边相等.正方形的对角线相等并且互相垂直平分.
在矩形ABCD中,∠ABC=90°,∠DCB=90°.
分析:
由BF∥CE,CF∥BE,可证四边形 BECF 是平行四边形.
又由BE 平分∠ABC,CE 平分∠DCB,可得∠EBC = ∠ECB =45°,所以EB = EC.从而四边形BECF 是菱形.

2020届中考数学总复习课件:第23课时 矩形、菱形、正方形

2020届中考数学总复习课件:第23课时 矩形、菱形、正方形
第 2 题答图
3.[2019·眉山]如图 23-1,在矩形 ABCD 中,AB=6,BC=8,过对角线交点 O 作 EF⊥AC 交 AD 于点 E,交 BC 于点 F,则 DE 的长是( B )
图 23-1
A.1
B.74
C.2
D.1பைடு நூலகம்2
【解析】 如答图,连结 CE.∵四边形 ABCD 是矩形,∴∠ADC=90°,CD=AB=6, AD=BC=8,OA=OC,∵EF⊥AC,∴AE=CE,设 DE=x,则 CE=AE=8-x,在 Rt△CDE 中,由勾股定理,得 x2+62=(8-x)2,解得 x=74,即 DE=74.
第五单元 四边形
第23课时 矩形、菱形、正方形
一、选择题(每题 3 分,共 15 分)
1.[2019·十堰]矩形具有而平行四边形不一定具有的性质是( C )
A 对边相等
B.对角相等
C.对角线相等
D.对角线互相平分
2.[2019·泸州]一个菱形的边长为 6,面积为 28,则该菱形的两条对角线的长度之和为
图 23-9
解:(1)证明:在矩形 EFGH 中,EH=FG,EH∥FG, ∴∠GFH=∠EHF. ∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF, ∴∠BFG=∠DHE. 在菱形 ABCD 中,AD∥BC,∴∠GBF=∠EDH. ∴△BGF≌△DEH(AAS),∴BG=DE;
第12题答图
【解析】 ∵阴影部分的面积与正方形 ABCD 的面积之比为 2∶3,∴S 阴影=23×9=6, ∴S 空白=9-6=3, ∵CE=DF,BC=CD,∠BCE=∠CDF,∴△BCE≌△CDF, ∴∠DCF=∠CBE,∵∠DCF+∠BCF=90°, ∴∠CBE+∠BCF=90°,∴∠BGC=90°, ∴S△BCG=S 四边形 DEGF=12×3=32, 设 BG=a,CG=b,则12ab=32,

苏教版三年级数学上册第三单元《长方形和正方形》二次说课稿

苏教版三年级数学上册第三单元《长方形和正方形》二次说课稿

苏教版三年级数学上册第三单元《长方形和正方形》二次说课稿一. 教材分析苏教版三年级数学上册第三单元《长方形和正方形》的内容包括长方形和正方形的特征、周长和面积的计算。

这部分内容是在学生已经掌握了平面图形的知识基础上进行学习的,旨在让学生进一步认识长方形和正方形,提高他们的空间观念和解决问题的能力。

二. 学情分析三年级的学生已经具备了一定的观察、操作和思考能力,他们可以通过观察和操作来发现长方形和正方形的特征,并能够运用这些特征来解决问题。

但同时,学生对于周长和面积的计算还比较陌生,需要通过实例和操作来进一步理解和掌握。

三. 说教学目标1.知识与技能:学生能够理解长方形和正方形的特征,掌握它们的周长和面积的计算方法。

2.过程与方法:学生通过观察、操作和思考,培养空间观念和解决问题的能力。

3.情感态度与价值观:学生能够积极参与学习活动,克服困难,增强自信心,培养合作精神。

四. 说教学重难点1.教学重点:长方形和正方形的特征,周长和面积的计算方法。

2.教学难点:周长和面积的计算方法,以及如何运用这些方法解决问题。

五. 说教学方法与手段1.教学方法:采用观察、操作、思考、交流的教学方法,让学生在活动中学习,培养空间观念和解决问题的能力。

2.教学手段:利用多媒体课件、实物模型、操作卡片等辅助教学,提高学生的学习兴趣和参与度。

六. 说教学过程1.导入:通过展示长方形和正方形的实物,引导学生观察和思考,激发学生的学习兴趣。

2.学习长方形和正方形的特征:学生通过观察和操作,发现长方形和正方形的特征,如四个角都是直角,四条边等。

3.学习周长和面积的计算方法:学生通过实例和操作,学习长方形和正方形的周长和面积的计算方法。

4.巩固练习:学生通过解决实际问题,巩固对长方形和正方形特征和计算方法的理解。

5.总结:教师引导学生总结本节课的学习内容,加深对知识的理解和记忆。

七. 说板书设计板书设计要简洁明了,突出长方形和正方形的特征和计算方法。

苏科版九年级数学目录

苏科版九年级数学目录

第一章图形与证明(二)
1.1等腰三角形的性质与判定
1.2直角三角形全等的判定
1.3平行四边形,矩形,菱形,正方形的性质和判定1.4等腰梯形的性质与判定
1.5中位线
第二章数据的离散程度
2.1 极差
2.2 方差与标准差
2.3 用计算器求标准差和方差
第三章二次根式
3.1 二次根式
3.2 二次根式的乘除
3.3 二次根式的加减
第四章二元一次方程
4.1 一元二次方程
4.2 一元二次方程的解法
4.3 用一元二次方程解集问题
第五章中心对称图形(二)
5.1 圆
5.2 圆的对称性
5.3 圆周角
5.4 确定圆的条件
5.5 直线与圆的位置关系
5.6 圆与圆的位置关系
5.7 正多边形与圆
5.8 弧长及扇形的面积
5.9 圆锥的侧面积与全面积
第六章二次函数
6.1 二次函数
6.2 二次函数的图像和性质6.3 二次函数与一元二次方程6.4 二次函数的应用
第七章锐角三角函数
7.1 正切
7.2 正弦,余弦
7.3 特殊角的三角函数
7.4 由三角函数值求锐角
7.5 解直角三角形
7.6 锐角三角函数的简单应用
第八章统计的简单应用
8.1 货比三家
8.2 中学生的视力情况检查
第九章概率的简单应用
9.1 抽签方法合理吗?
9.2 概率帮你做估计
9.3 保险公司怎样才能不亏本。

平行四边形、菱形、矩形、正方形的综合应用

平行四边形、菱形、矩形、正方形的综合应用

学生学校年级学科数学教师日期时段次数课题北师大版---正方形的性质与判定(二)考点分析1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.2.理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.教学步骤及教学内容教学过程:一、教学衔接(课前环节)1、回收上次课的教案,了解家长的反馈意见;2、检查学生的作业,及时指点3、捕捉学生的思想动态和了解学生的本周学校的学习内容二二、课前热身:学生总结菱形、矩形与正方形的性质与判定定理及它们之间的转换关系三、内容讲解:①.教学内容知识点1:矩形、菱形的综合应用 P3例1、例2、例3 P3- P5知识点2:菱形与勾股定理综合应用 P6例1、例2、例3P6-P7知识点3:正方形、勾股定理与三角形综合应用P8例1、例2、例3 P8-P10②.教学辅助练习(或探究训练)变式训练1 P5-P6变式训练2 P7-P8变式训练3 P10四、课堂小结五、作业布置P11-P13教导处签字:日期:年月日课后评价一、学生对于本次课的评价○特别满意○满意○一般○差学生签字:二、教师评定1、学生上次作业评价:○好○较好○一般○差2、学生本次上课情况评价:○好○较好○一般○差教师签字:作业布置教师留言家长留言家长签字:日期:年月日心灵鸡汤 1、我努力,我坚持,我一定能成功。

2、站在新起点,迎接新挑战,创造新成绩。

讲义:正方形的性质与判定(二)学生: 学科: 数 学 教师: 日期:教学步骤及教学内容包括的环节: 一、作业检查。

检查学生的作业,及时指点。

二、课前热身:回顾特殊平行四边形的性质与判定及它们之间的转化关系知识点一:矩形、菱形的综合应用例1.如图,在ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ;(2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.【解析】(1)∵四边形ABCD 是平行四边形 ∴∠1=∠C ,AD=CB ,AB=CD .∵点E 、F 分别是AB 、CD 的中点, ∴AE=12AB ,CF=12CD . ∴AE=CF .∴△ADE ≌△CBF .(2)当四边形BEDF 是菱形时,四边形AGBD 是矩形. ∵四边形ABCD 是平行四边形,∴AD ∥BC . ∵AG ∥BD ,∴四边形AGBD 是平行四边形. ∵四边形BEDF 是菱形, ∴DE=BE . ∵AE=BE , ∴AE=BE=DE .∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180°, ∴2∠2+2∠3=180°. ∴∠2+∠3=90°. 即∠ADB=90°,∴四边形AGBD 是矩形.例2、顺次连接矩形四边中点所得的四边形一定是( ) A . 正方形 B . 矩形C . 菱形D . 等腰梯形【答案】C 。

18.2.1【同步练习】《矩形》(人教版)

18.2.1【同步练习】《矩形》(人教版)

《正方形》同步练习1.正方形的定义:有一组邻边______并且有一个角是______的平行四边形叫做正方形,因此正方形既是一个特殊的有一组邻边相等的______,又是一个特殊的有一个角是直角的______.2.正方形的性质:正方形具有四边形、平行四边形、矩形、菱形的一切性质,正方形的四个角都______;四条边都______且__________________;正方形的两条对角线______,并且互相______,每条对角线平分______对角.它有______条对称轴.3.正方形的判定:(1)____________________________________的平行四边形是正方形;(2)____________________________________的矩形是正方形;(3)____________________________________的菱形是正方形;4.对角线________________________________的四边形是正方形.5.若正方形的边长为a,则其对角线长为______,若正方形ACEF的边是正方形ABCD的对角线,则正方形ACEF 与正方形ABCD 的面积之比等于______.6.延长正方形ABCD 的BC 边至点E ,使CE =AC ,连结AE ,交CD 于F ,那么∠AFC 的度数为______,若BC =4cm ,则△ACE 的面积等于______.7.在正方形ABCD 中,E 为BC 上一点,EF ⊥AC ,EG ⊥BD ,垂足分别为F 、G ,如果cm 25 AB ,那么EF +EG 的长为______.8.如图,将一边长为12的正方形纸片ABCD的顶点A 折叠至DC 边上的点E ,使DE =5,折痕为PQ ,则PQ 的长为( )(A)12(B)13 (C)14 (D)159.如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为( )cm 2.(A)6(B)8 (C)16(D)不能确定10.已知:如图,正方形ABCD 中,点E 、M 、N 分别在AB 、BC 、AD 边上,CE =MN , ∠MCE =35°,求∠ANM 的度数.。

第19章矩形菱形与正方形复习课教案华东师大版数学八年级下册

第19章矩形菱形与正方形复习课教案华东师大版数学八年级下册

《19章复习课》教学设计一、教材分析本节课是华师版八年级数学下册第十九章的内容,《特殊平行四边形》的学习是在学生掌握了平行四边形的性质和基本判定方法之后进行的,是在平行四边形的基础上进行扩充的,以平行四边形知识的综合应用为核心,是本章的教学重点。

它的探索方法与平行四边形性质的探索方法一脉相承,而平行四边形同特殊平行四边形之间的联系与区别是本章的教学难点,为了克服这一难点,主要运用思维导图,并结合关系图,让学生分清这些四边形的从属关系,从而梳理它们的性质和判定方法。

同时在网格中画这些四边形也是对本章知识的一个应用。

不仅要让学生了解三种特殊平行四边形的性质和判定,更重要的是让学生通过观察、比较、归类找出他们内在的转化方法。

通过自己经历和体验所画图形的内在联系,进一步发展学生的空间观念,培养学生的推理能力,为后续章节的学习打下基础。

二、教学目标1.知识目标:复习三种特殊平行四边形的性质及判定,及理解他们之间的关系。

2.能力目标:经历课前准备总结,探索三种特殊平行四边形的关系,发展总结归纳能力和初步的演绎推理的能力;在画图问题的证明过程中,有意识地渗透推理论证、逆向思维和分类讨论的思想,提高学生的能力。

3.情感目标:让学生品尝成功的喜悦,从而激发其求知的热情。

三、教学重难点1.重点:运用特殊的平行四边形的性质和判定做出相应的图形。

2.难点:运用分类讨论思想和特殊平行四边形的性质和判定解决画图问题和几何证明问题。

四、学情分析班级学生数学基础良好;同时学生在数学理解能力,动手能力,思维能力等方面参差不齐,对于运用思维导图来梳理知识的这种学习方法处于“被动、模仿”向“自主、领悟”过渡的阶段,学习习惯正在训练与培养中。

通过任务单下的自主学习,学生能够获得一定的知识,但是不一定能体会和掌握知识的本质和核心。

五、设计思想本课设计让学生自行完成任务单中的三个任务,通过回顾所学内容和借助教材自己梳理知识,小组交流,整理出本章的知识网络。

高效课堂《正方形》精品教案

高效课堂《正方形》精品教案

本节课是本单元中,对知识的理解和贯彻最重要的一堂课。

在高效课堂模式中,一堂课的紧凑性和教师活动的多少,决定着课堂容量的高低。

但在实际教学中,教师应尽可能少地利用讲授法进行教学,多与学生进行交流,增加学生的实际操练和练习时间,对于一堂课来讲,是至关重要的。

对于课堂环节的布置,应该力求简练,语言应用尽量通俗易懂。

对于一名教师而言,教学质量的高低,与备课的充足与否有很大关系。

而教案作为这一行为的载体,巨大作用是不言而喻的。

本节课的准备环节,就充分地说明了这个道理。

18.2.3 正方形一、教学目的1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.2.理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.二、重点、难点1.教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系.2.教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.3.难点的突破方法:本节的主要内容是正方形概念、性质和判定方法.重点是正方形定义.正方形学生在小学阶段已有初步了解,生活中应用很广,其时正方形不仅是特殊的平行四边形,而且是特殊的矩形,和特殊的菱形,学好正方形有助于巩固矩形、菱形各自特有的性质和判定.学生在小学学过了正方形,他们知道正方形的四个角都是直角,四条边相等,正方形的面积等于它的边长的平方,本节课的教学是加深学生的理论认识,拓宽学生的知识面,如何使学生理解为什么正方形的四个角都是直角,四条边相等,拓宽了正方形对角线性质的知识.在教学中可以让学生动手从一张矩形纸中折出一个正方形,培养学生实践能力.另外,通过对正方形定义和性质的讲解,培养学生类比思想、归纳思想、转化思想和隔离方法.(1)掌握正方形定义是学好本节的关键.正方形是在平行四边形的前提下定义的,它包含两层意思:①有一组邻边相等的平行四边形(菱形)②有一个角是直角的平行四边形(矩形)正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的菱形.教学时要结合教科书中P110中的图18.2-14,具体说明正方形与矩形、菱形的关系.这些关系是教学的一个难点,也是教学内容的重点和关键,要结合图形或者教具,或用简单的集合关系图,使学生把正方形与平行四边形、矩形、菱形的关系搞清楚.这些概念重叠交错,不易搞清楚,在教学这些内容时进度可稍放慢些.(2)因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们性质的综合,不仅有平行四边形的所有性质,也有矩形和菱形的特殊性质,所以讲正方形性质的关键是在复习矩形、菱形的基础上进行总结.可以将正方形的性质总结如下:边:对边平行,四边相等;角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.还要让学生注意到:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,这是正方形的特殊性质.要使学生熟悉这些最基本的内容.(3)对于怎样判定一个四边形是正方形,因为层次比较多,不必分析的太具体,只要强调能判定一个四边形是矩形,又能判定这个矩形也是菱形,或者先判定四边形是菱形,再判定这个菱形也是矩形,就可以判定这个四边形是正方形,实际上就是根据正方形定义来判定.(4)正方形的性质和判定是本大节讲的平行四边形、菱形、矩形的性质与判定的综合.可以通过本节的教学总结、归纳前面所学的内容.还可以通过本节的教学,澄清学生存在的一些模糊概念.三、例题的意图分析本节课安排了三个例题,例1是教材P58的例5,例2与例3都是补充的题目.其中例1与例2是正方形性质的应用,在讲解时,应注意引导学生能正确的运用其性质.例3是正方形判定的应用,它是先判定一个四边形是矩形,再证明一组邻边,从而可以判定这个四边形是正方形.随后可以再做一组判断题,进行练习巩固(参看随堂练习1),为了活跃学生的思维,也可以将判断题改为下列问题让学生思考:①对角线相等的菱形是正方形吗?为什么?②对角线互相垂直的矩形是正方形吗?为什么?③对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?④能说“四条边都相等的四边形是正方形”吗?为什么?⑤说“四个角相等的四边形是正方形”对吗?四、课堂引入1.做一做:用一张长方形的纸片(如图所示)折出一个正方形.学生在动手做中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?正方形定义:有一组邻边相等............的平行四边形......并且有一个角是直角叫做正方形.指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:(1)有一组邻边相等的平行四边形(菱形)(2)有一个角是直角的平行四边形(矩形)2.【问题】正方形有什么性质?由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.所以,正方形具有矩形的性质,同时又具有菱形的性质.五、例习题分析例1(教材P111的例4)求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图).求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.证明:∵四边形ABCD是正方形,∴ AC=BD,AC⊥BD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分).∴△ABO、△BCO、△CDO、△DAO都是等腰直角三角形,并且△ABO ≌△BCO≌△CDO≌△DAO.例2 (补充)已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG交OA于F.求证:OE=OF.分析:要证明OE=OF,只需证明△AEO≌△DFO,由于正方形的对角线垂直平分且相等,可以得到∠AOE=∠DOF=90°,AO=DO,再由同角或等角的余角相等可以得到∠EAO=∠FDO,根据ASA可以得到这两个三角形全等,故结论可得.证明:∵ 四边形ABCD是正方形,∴ ∠AOE=∠DOF=90°,AO=DO(正方形的对角线垂直平分且相等).又DG⊥AE,∴ ∠EAO+∠AEO=∠EDG+∠AEO=90°.∴∠EAO=∠FDO.∴△AEO ≌△DFO.∴ OE=OF.例3 (补充)已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1∥l2,作BM ⊥l1于M,DN⊥l1于N,直线MB、DN分别交l2于Q、P点.求证:四边形PQMN是正方形.分析:由已知可以证出四边形PQMN是矩形,再证△ABM≌△DAN,证出AM=DN,用同样的方法证AN=DP.即可证出MN=NP.从而得出结论.证明:∵PN⊥l1,QM⊥l1,∴ PN∥QM,∠PNM=90°.∵PQ∥NM,∴四边形PQMN是矩形.∵ 四边形ABCD是正方形∴∠BAD=∠ADC=90°,AB=AD=DC(正方形的四条边都相等,四个角都是直角).∴∠1+∠2=90°.又∠3+∠2=90°,∴∠1=∠3.∴△ABM≌△D AN.∴ AM=DN.同理 AN=DP.∴ AM+AN=DN+DP即 MN=PN.∴四边形PQMN是正方形(有一组邻边相等的矩形是正方形).六、随堂练习1.正方形的四条边____ __,四个角___ ____,两条对角线____ ____.2.下列说法是否正确,并说明理由.①对角线相等的菱形是正方形;()②对角线互相垂直的矩形是正方形;()③对角线垂直且相等的四边形是正方形;()④四条边都相等的四边形是正方形;()⑤四个角相等的四边形是正方形.()1.已知:如图,四边形ABCD为正方形,E、F分别为CD、CB延长线上的点,且DE=BF.求证:∠AFE=∠AEF.4.如图,E为正方形ABCD内一点,且△EBC是等边三角形,求∠EAD与∠ECD的度数.七、课后练习1.已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.2.已知:如图,△ABC中,∠C=90°,CD平分∠ACB,DE⊥BC于E,DF⊥AC于F.求证:四边形CFDE是正方形.3.已知:如图,正方形ABCD中,E为BC上一点,AF平分∠DAE交CD于F,求证:AE=BE+DF.课后反思:[教学反思] ABC D E F学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

2017秋北师大版九年级数学上册第一章同步课时(教案)1.3正方形的性质与判定第2课时正方形的判定

2017秋北师大版九年级数学上册第一章同步课时(教案)1.3正方形的性质与判定第2课时正方形的判定
2.教学难点
本节课的难点内容在于正方形判定方法的应用和实际问题解决。以下为具体细节:
(1)理解并区分正方形判定方法中各个条件的适用场景,如对角线互相垂直平分且相等的四边形是正方形,但并非所有对角线互相垂直平分的四边形都是正方形;
(2)在解决实际问题时,如何将复杂的几何图形分解为正方形判定问题,以及如何运用正方形的性质进行计算和推理;
2017秋北师大版九年级数学上册第一章同步课时(教案)1.3正方形的性质与判定第2课时正方形的判定
一、教学内容
《2017秋北师大版九年级数学上册第一章同步课时(教案)1.3正方形的性质与判定第2课时正方形的判定》
1.教材章节:第一章1.3节
2.内容:
(1)正方形的定义及其特点;
(2)正方形的判定方法:
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正方形的基本概念。正方形是一种四边相等、四角为直角的特殊四边形。它在几何学中具有重要地位,广泛应用于日常生活和各类工程设计。
2.案例分析:接下来,我们来看一个具体的案例。通过分析这个案例,了解正方形判定在实际中的应用,以及如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调正方形的判定方法及其应用这两个重点。对于难点部分,如对角线互相垂直平分且相等的四边形是正方形,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与正方形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用直尺和量角器测量图形的边长和角度,判断是否为正方形。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

苏教版三年级数学上册第三单元《长方形和正方形》二次备课教案

苏教版三年级数学上册第三单元《长方形和正方形》二次备课教案

苏教版三年级数学上册第三单元《长方形和正方形》二次备课教案一. 教材分析苏教版三年级数学上册第三单元《长方形和正方形》的内容包括长方形和正方形的特征、周长和面积的计算方法。

这部分内容是学生对平面几何图形认识的重要阶段,通过学习长方形和正方形,为学生后面学习其他几何图形打下基础。

教材通过生动的图片和实际生活中的例子,引导学生发现长方形和正方形的特征,以及运用这些特征解决实际问题。

二. 学情分析三年级的学生已经具备了一定的观察和思考能力,他们能够通过观察和动手操作,发现图形的特征。

但是,对于长方形和正方形的周长和面积的计算方法,学生可能需要一定的引导和实践。

因此,在教学过程中,我将以学生为主体,注重培养学生的观察能力、思考能力和动手操作能力。

三. 教学目标1.知识与技能:学生会识别长方形和正方形,掌握它们的特征,学会计算长方形和正方形的周长和面积。

2.过程与方法:学生通过观察、操作和思考,培养自己的观察能力、思考能力和动手操作能力。

3.情感态度与价值观:学生体验数学与生活的联系,培养学习数学的兴趣。

四. 教学重难点1.教学重点:学生能够识别长方形和正方形,掌握它们的特征,学会计算长方形和正方形的周长和面积。

2.教学难点:学生能够灵活运用长方形和正方形的特征,解决实际问题。

五. 教学方法1.情境教学法:通过生动有趣的图片和生活实例,引发学生的学习兴趣,引导学生发现长方形和正方形的特征。

2.动手操作法:让学生亲自动手操作,通过实际操作发现长方形和正方形的特征,培养学生的动手操作能力。

3.引导发现法:教师引导学生观察、思考,发现长方形和正方形的特征,培养学生的思考能力。

六. 教学准备1.教具准备:长方形和正方形的图片、实物、PPT等。

2.学具准备:学生自带长方形和正方形的实物。

七. 教学过程1.导入(5分钟)通过展示长方形和正方形的图片,引导学生观察并思考:它们有什么特征?2.呈现(10分钟)教师通过PPT展示长方形和正方形的特征,引导学生发现并总结出它们的特征。

1.3第2课时正方形的判定(作业教学设计)2024-2025学年九年级数学上册同步备课(北师大版)

1.3第2课时正方形的判定(作业教学设计)2024-2025学年九年级数学上册同步备课(北师大版)
-方法二:如果一个四边形的对角线相等且互相垂直,那么它是正方形。
-方法三:如果一个四边形的对角线把四边形分成四个全等的直角三角形,那么它是正方形。
3.正方形的对称性
-正方形是轴对称图形,它有四条对称轴,分别是两条对角线和两条中垂线。
-正方形也是中心对称图形,它的中心对称点是两条对角线的交点。
4.正方形与矩形、菱形的联系与区别
3.对角线互相垂直是正方形的性质,可以通过勾股定理证明对角线相等。
4.正方形的面积可以用于计算地毯的覆盖面积,周长可以用于计算围栏的周长。
5.正方形与矩形、菱形的关系是,正方形是矩形和菱形的特殊情形,矩形的对角线不一定是相等且互相垂直的,菱形的对角线也不一定是相等且互相垂直的。
教学反思与总结
在教学方法上,我采用了讲授法、实践活动法和合作学习法,让学生在理论学习的基础上,通过实际操作和小组合作,深入理解和掌握正方形的性质和判定方法。我发现,这种教学方法能够激发学生的学习兴趣,提高他们的参与度和学习效果。
教师活动:
-发布预习任务:通过在线平台或班级微信群,发布预习资料(如PPT、视频、文档等),明确预习目标和要求。
-设计预习问题:围绕“正方形的判定”课题,设计一系列具有启发性和探究性的问题,引导学生自主思考。
-监控预习进度:利用平台功能或学生反馈,监控学生的预习进度,确保预习效果。
学生活动:
-自主阅读预习资料:按照预习要求,自主阅读预习资料,理解正方形的基本性质。
-学生是否能够理解正方形的定义、性质和判定方法,并能正确运用。
-学生是否能够通过实际例子来解释和应用正方形的性质和判定方法。
2.小组讨论成果展示:
-小组成员是否能够积极参与讨论,提出自己的想法和观点。
-小组成员是否能够有效地沟通和合作,共同完成讨论任务。

人教版数学九年级上册第23课时 矩形、菱形、正方形(ppt版)-课件

人教版数学九年级上册第23课时 矩形、菱形、正方形(ppt版)-课件

对角线平分一 AC平分∠DAB与∠BCD;BD
组对角
平分∠ABC与∠ADC
性质
字母表示
对称性 面积
既是中心对称图形又是轴对称图形,有两 条对称轴
S=⑦______(m、n分别表示两条对角线 的长)
2.判定 (1)有一组邻边相等的平行四边形是菱形; (2)四条边都相等的平行四边形是菱形; (3)对角线互相垂直的平行四边形是菱形.
例1题图
【思维教练】要证四边形ABCD是矩形, 根据已知条件▱ABCD的性质推出∠F= ∠DAE,由AF是∠BAD的平分线易得 ∠DAB=90°,结合矩形的判定方法, 从而得证;
例1题图
证明:∵四边形ABCD是平行四边形, ∴AD∥BC,∴∠DAE=∠F, ∵∠F=45°,∴∠DAE=45°, ∵AF是∠BAD的平分线, ∴∠EAB=∠DAE=45°,∴∠DAB=90°, 又∵四边形ABCD是平行四边形, ∴四边形ABCD是矩形;
第2题图
基础点 2 1.性质
菱形的性质与判定
性质
字母表示
四边形④__相__等___ AB=BC=CD=DA 边
对边平行
AB//CD;AD//角线
对角相等
∠DAB=∠BCD; ∠ABC=∠ADC
对角线互相垂 AC⊥⑥_B__D__; 直且⑤_平__分___ AO=OC,DO=OB
假命题:如果题设成立时,不能保证结论一定成立,这 样的命题叫做假命题. 互逆命题:在两个命题中,如果第一个命题的题设是另 一个命题的结论,而第一个命题的结论是另一个命题的 题设,那么这两个命题叫做互逆命题.
重难点精讲优练 类型 1 矩形的相关证明与计算
例1 如图,在▱ABCD中,∠BAD的平分 线交CD于点E,交BC的延长线于点F, 连接BE,∠F=45°. (1)求证:四边形ABCD是矩形;

人教版九年级上册数学同步练习及答案合集

人教版九年级上册数学同步练习及答案合集

21.3 二次根式的加减同步测试题 一、选择题(本题共10小题,每题3分,共30分)
1.与 2 3 是同类二次根式的是( )
A. 18
B. 2 3
2.下列运算正确的是( )
C. 9
A. x 5x 6x B. 3 2 2 2 1
D. 27
C. 2 5 2 5
D. 5 x b x (5 b) x
( 1 3 ) (3) 2
3x y 9 y 22. 解: 5x 2 6 y
3x 5x
2y 9 y8
x y
1 3
23.原式=( 5 3 )2- ( 2 )2 =5-2 15 +3-2=6-2 15 .
( 2 7 4)2 ( 2 7 4)2 22
24.解:( 菱形的边长)2= 2
2
22,面积 1 (2 7 4)(2 7 4) 6
∴菱形的边长=
2
10
人教版九年级上册数学同步练习题及答案
25. 5
26.解:原式=(2 5 +1)( 2 1 + 3 2 + 4 3 +…+ 100 99 )
12.在 8, 12, 18, 20 中,与 2 是同类二次根式的 是

13. 5- 5 的整数部分是_________
14.计算: 12 3 3
15.方程 2 (x-1)=x+1 的解是____________.
x 1
x1
16.已知
5 2 ,则 x 的值等于

17.如图,矩形内两相邻正方形的面积分别是 2 和 6,那么矩形内阴影部分的面积

.(结果可用根号表示)
2
6
18.图 7 是由边长为 1m 的正方形地砖铺设的地面示意图,小明沿图中所示的折线从 A→B →C 所走的路程为_______m.(结果保留根号)

专题23菱形、矩形、正方形(知识点总结+例题讲解)-2021届中考数学一轮复习

专题23菱形、矩形、正方形(知识点总结+例题讲解)-2021届中考数学一轮复习

2021年中考数学专题23 菱形、矩形、正方形(知识点总结+例题讲解)一、菱形:1.菱形的概念:有一组邻边相等的平行四边形叫做菱形。

2.菱形的性质:(1)具有平行四边形的一切性质;(2)菱形的四条边相等;(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角;(4)菱形既是轴对称图形,又是中心对称图形;对称轴是两条对角线所在的直线,对称中心是对角线的交点。

3.菱形的判定:(1)定义:有一组邻边相等的平行四边形是菱形;(2)定理1:四边都相等的四边形是菱形;(3)定理2:对角线互相垂直的平行四边形是菱形。

4.菱形的有关计算:=4a (其中a为边长);(1)周长C菱形=ah=两条对角线乘积的一半;(其中a为边长,h为此边上的高)。

(2)面积S菱形【例题1】(2020•牡丹江)如图,在平面直角坐标系中,O是菱形ABCD对角线BD的中点,AD∥x轴且AD=4,∠A=60°,将菱形ABCD绕点O旋转,使点D落在x轴上,则旋转后点C的对应点的坐标是( )A.(0,2√3) B.(2,﹣4)C.(2√3,0) D.(0,2√3)或(0,﹣2√3)【答案】D【解析】点C旋转到y轴正半轴和y轴负半轴两种情况分别讨论,结合菱形的性质求解.解:根据菱形的对称性可得:当点D在x轴上时,A、B、C均在坐标轴上,如图,∵∠BAD=60°,AD=4,∴∠OAD=30°,∴OD=2,∴AO=√42−22=2√3=OC,∴点C的坐标为(0,−2√3),同理:当点C旋转到y轴正半轴时,点C的坐标为(0,2√3),∴点C的坐标为(0,2√3)或(0,−2√3)。

【变式练习1】(2020•营口)如图,在菱形ABCD中,对角线AC,BD交于点O,其中OA =1,OB=2,则菱形ABCD的面积为.【答案】4【解析】根据菱形的面积等于对角线之积的一半可得答案.∵OA=1,OB=2,∴AC=2,BD=4,×2×4=4。

2020年中考数学一轮专题复习课时练-第23课时矩形、菱形、正方形专题训练

2020年中考数学一轮专题复习课时练-第23课时矩形、菱形、正方形专题训练

2020年中考数学一轮专题复习课时练第五单元四边形第23课时矩形、菱形、正方形练习1 矩形点对点·课时内考点巩固35分钟1.(2019株洲)对于任意的矩形,下列说法一定正确的是()A. 对角线垂直且相等B. 四边都互相垂直C. 四个角都相等D. 是轴对称图形,但不是中心对称图形2.(2019眉山)如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是()A. 1B. 74 C. 2 D.125第2题图3.如图,四边形ABCD和四边形BEFD都是矩形,且点C恰好在EF上.若AB=1,AD=2,则S△BCE 为()A. 1B. 255 C.23D.45第3题图4.如图,矩形ABCD中,AB=2,AD=1,点M在边CD上.若AM平分∠DMB,则DM的长为()A.33 B.14 C. 3-32 D. 2- 3第4题图5.如图,四边形ABCD为矩形,点O为对角线的交点,∠BOC=120°,AE⊥BO交BO于点E,AB=4,则BE的长等于()A. 4B. 3C. 2D. 1第5题图6.(2019陕西黑马卷)如图,在矩形ABCD中,点M是BC边上一点,连接AM,DM.过点D作DE⊥AM,垂足为点E.若AM=AD,AE=2EM,AB=5,则BM的长为()A. 15B.25C. 5D. 2 5第6题图7.(2019西安交大附中模拟)如图,在矩形ABCD中,AB=6,BC=7,E、F、M分别为AB、BC、CD边上的点,连接EF、FM、ME,且AE=3,DM=2.若∠EFM=90°,BF>FC,则BF=()A. 3B. 4C. 5D. 6第7题图8.(2019龙东地区)如图,矩形ABCD的对角线AC、BD相交于点O,AB∶BC=3∶2,过点B作BE∥AC,过点C作CE∥DB,BE、CE交于点E,连接DE,则tan∠EDC=()A. 29B.14C.26D.310第8题图9.(2018遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB、CD于点E、F,连接PB、PD.若AE=2,PF=8,则图中阴影部分的面积为()A. 10B. 12C. 16D. 18第9题图10.如图,在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为()A. 125B. 2 C.52D. 1第10题图11. (2019徐州)如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点,若MN =4,则AC 的长为________.第11题图12.(全国视野创新题推荐·2019百色)四边形具有不稳定性.如图,矩形ABCD 按箭头方向变形成平行四边形A ′B ′C ′D ′,当变形后图形面积是原图形面积的一半时,则∠A ′=________°.第12题图13. 如图,在矩形ABCD 中,F 是BC 边上一点,AF 的延长线交DC 的延长线于点G ,DE ⊥AG ,垂足为点E ,且DE =DC .求证:BF =AE .第13题图14.(2019宁夏)如图,已知矩形ABCD 中,点E ,F 分别是AD ,AB 上的点,EF ⊥EC ,且AE =CD . (1)求证:AF =DE ;(2)若DE =25AD ,求tan ∠AFE .第14题图点对线·板块内考点衔接20分钟1.(2019临沂)如图,在▱ABCD 中,M ,N 是BD 上两点,BM =DN ,连接AM ,MC ,CN ,NA .添加一个条件,使四边形AMCN 是矩形,这个条件是( )第1题图A. OM =12ACB. MB =MOC. BD ⊥ACD. ∠AMB =∠CND2.(2019泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A. 2B. 4C. 2D. 2 2第2题图3.如图,在矩形ABCD中,AB=6,BC=8,点E、F、G、H分别在边AB、BC、CD、DA上.若四边形EFGH为平行四边形,且EF∥AC,则▱EFGH的周长为____________.第3题图4.如图,矩形ABCD中,AB=2,AD=1,E为CD中点,P为AB边上一动点(含端点),F为CP的中点,则△CEF周长的最小值为________.第4题图4.(2019龙东地区)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=12S△PCD,则PC+PD的最小值为________.第5题图6.如图,在△ABC中,AB=AC,D为边BC的中点,四边形ABDE是平行四边形,AC、DE相交于点O.(1)求证:四边形ADCE是矩形;(2)若∠AOE=60°,AE=2,求矩形ADCE对角线的长.第6题图练习2 菱形点对点·课时内考点巩固45分钟1.(2019大庆)下列说法中不正确...的是()A. 四边相等的四边形是菱形B. 对角线垂直的平行四边形是菱形C. 菱形的对角线互相垂直且相等D. 菱形的邻边相等2.(2019宁夏)如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是()A. AC⊥BDB. AB=ADC. AC=BDD. ∠ABD=∠CBD第2题图3.(2019河北)如图,菱形ABCD中,∠D=150°,则∠1=()A. 30°B. 25°C. 20°D. 15°第3题图4.(2019呼和浩特)已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为()A. 22B. 25C. 42D. 2105.(2019娄底)顺次连接菱形四边中点得到的四边形是()A. 平行四边形B. 菱形C. 矩形D. 正方形6.如图,在菱形ABCD中,∠B=60°,AB=3,点E是线段BC边上的一个点,点F、G分别是AE、CE的中点,则FG=()A. 32B. 3 C. 22D. 2 3第6题图7.(2019永州)如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为()A. 40B. 24C. 20D. 15第7题图8.如图,菱形ABCD的边长为6,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F.若AE=5,则四边形AECF的周长为()A. 16B. 17C. 32D. 34第8题图9.(2019陕西定心卷)如图,在菱形ABCD中,AB=5,AE⊥BC于点E,交对角线BD于点F.若AE=4,则DF的长为()A. 352 B.552 C.52D.32第9题图10.(2019陕西黑白卷)如图,在菱形ABCD中,BE⊥AD,垂足为点E,连接BD,过点E作EF⊥BD,分别交CD、BD于点F、G.若BC=10,BE=8,则EF的长为()A. 85B.855 C.165D.1655第10题图11.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是()A. 3B. 2C. 3D. 2第11题图12.(2019十堰)如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为________.第12题图13.(2019广西北部湾经济区)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=________.第13题图14.(2019衢州)已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,且BE=DF,连接AE,AF.求证:AE=AF.第14题图15.(2019岳阳)如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DE=DF.求证:∠1=∠2.第15题图16.(2019青海)如图,在△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F,连接CF.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形.第16题图点对线·板块内考点衔接15分钟1.(全国视野创新题推荐·2019江西)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有()A. 3种B. 4种C. 5种D. 6种第1题图2.如图,在矩形ABCD中,AB=8,BC=4,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是()A. 25B. 3C. 5D. 6第2题图3.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A. 38B.23C.35D.45第3题图4.如图,在菱形ABCD中,AC=8,BD=6,点E、F、G、H分别在AB、BC、CD、DA上,且EH∥BD,BE=2AE.若四边形EFGH是矩形,则EF的长为()A. 1B. 43C.163D. 2第4题图5.如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为________.第5题图点对面·跨板块考点迁移2分钟1.(2019绵阳)如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()第1题图A. (2,3)B. (3,2)C. (3,3)D. (3,3)练习3 正方形点对点·课时内考点巩固6分钟1.(2019遵义)我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.已知四边形ABCD的中点四边形是正方形,对角线AC与BD的关系,下列说法正确的是()A. AC,BD相等且互相平分B. AC,BD垂直且互相平分C. AC,BD相等且互相垂直D. AC,BD垂直且平分对角2.(2019毕节)如图,点E在正方形ABCD边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A. 3B. 3C. 5D. 5第2题图3.(2019扬州)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=________.第3题图点对线·板块内考点衔接15分钟1.(人教八下P67第1(3)题改编)如图,在正方形ABCD的外侧作等边△ADE,AC、BE相交于点F,则∠BFC为()A. 45°B. 55°C. 60°D. 75°第1题图2.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A. 16B.13C.15D.14第2题图3.(2019陕师大附中模拟)如图,在边长为2的正方形ABCD中,以对角线AC为一边作菱形AEFC,连接AF交BC于点G,则BG的长为()A. 22-2B. 22-1C. 2D. 1第3题图4.(2019菏泽)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF 的周长是________.第4题图5.(2019黄冈)如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF-DG=FG.第5题图6.(2019凉山州)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A 作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.第6题图参考答案第23课时矩形、菱形、正方形练习1 矩 形点对点·课时内考点巩固1. C 【解析】矩形的性质有:邻边垂直;四个内角都是直角;是轴对称图形,也是中心对称图形;对角线互相平分且相等.故选C .2. B 【解析】如解图,连接EC ,∵OA =OC ,且EF ⊥AC ,∴EC =AE ,设DE =x ,则EC =AE =8-x ,根据勾股定理可得(8-x )2=x 2+62,解得x =74.第2题解图3. D 【解析】由题意得△BCD 的面积占矩形BDFE 的一半,S △BCD =1,∴S △BCE +S △CDF =1,又∵CD ∶BC =AB ∶AD =1∶2,∴S △BCE ∶S △CDF =4∶1,故可得S △BCE =45.4. D 【解析】∵四边形ABCD 是矩形,∴CD =AB =2,AB ∥CD ,BC =AD =1,∠C =90°,∴∠BAM =∠AMD ,∵AM 平分∠DMB ,∴∠AMD =∠AMB ,∴∠BAM =∠AMB ,∴BM =AB =2,∴CM =MB 2-BC 2=3, ∴DM =CD -CM =2- 3.5. C 【解析】∵四边形ABCD 是矩形,∴OA =12AC ,OB =12BD ,AC =BD ,∴OA =OB ,∵∠BOC =120°,∴∠AOB =60°,∴△AOB 是等边三角形,∴OB =AB =4,∵AE ⊥BO ,∴BE =12OB =2.6. D 【解析】∵四边形ABCD 是矩形,∴∠B =∠C =90°,AD ∥BC ,AB =DC =5,∴∠ADM =∠DMC ,∵AD =AM ,∴∠ADM =∠AMD ,∴∠AMD =∠DMC ,∵DE ⊥AM ,∴∠DEM =∠C =90°,∴△DEM ≌△DCM (AAS ),∴DE =DC =5,EM =CM ,∵AE =2EM ,∴AE =23AM =23AD ,∴AE AD =23,设AE=2x ,则AD =3x ,在Rt △AED 中,由勾股定理得(2x )2+52=(3x )2,解得x =5,∴AE =25,∵AM =AD =BC ,EM =CM ,∴BM =AE =2 5.7. B 【解析】∵四边形ABCD 是矩形,∴∠B =∠C =90°,CD =AB =6,∵AE =3,DM =2,∴BE =3,CM =4,∵EF ⊥FM ,∴∠BEF +∠BFE =∠BFE +∠MFC =90°,∴∠BEF =∠CFM ,∴△BEF ∽△CFM ,∴BF CM =BE CF ,即BF 4=37-BF, 解得BF =4或BF =3(舍去),∴BF =4.8. A 【解析】如解图,连接EO ,延长交AD 于点F ,∵四边形ABCD 是矩形,∴OB =OC ,又∵BE ∥OC ,CE ∥OB ,∴四边形OCEB 是菱形,∴BC ⊥EF ,∵BC ⊥DC ,∴EF ∥CD ,∠EDC =∠FED ,在△EFD 中,tan ∠FED =DF EF =12BC 32AB =29,∴tan ∠EDC =29.第8题解图9. C 【解析】如解图,过点P 作PM ⊥AD 于点M ,反向延长线交BC 于点N ,∵DF =AE =2,PF =8,∴S 矩形MPFD =DF ·PF =2×8=16,S △PDF =8,∵S PDF S △PFC =DF FC =MPFC ,S △BEP =S △BNP ,S △BPN S △PNC =BN NC ,S △PNC =S △PFC ,∴S △BEP S △PFC =BN NC =EP NC ,∴四边形AEPM 与四边形PNCF 相似,∴PM PN =EP PF ,即DF FC =BNNC ,∴S △PFD S △PFC =S △BEP S △PFC,∴S △BEP=S △PDF ,∴S △BEP =8,∴S 阴影=16.第9题解图10. A 【解析】由题易得AC =BD =32+42=5,设AP =x ,则PD =4-x .∵∠EAP =∠DAC ,∠AEP =∠ADC ,∴△AEP ∽△ADC ,∴AP AC =PE CD ,故x 5=PE 3①.同理可得△DFP ∽△DAB ,∴DP DB =PFBA ,故4-x 5=PF 3②.①+②得45=PE +PF 3,∴PE +PF =125.11. 16 【解析】在△OBC 中,根据三角形中位线等于它所对的边的一半得到OB =2MN =8,又根据矩形的性质:对角线相等且互相平分得到AC =BD =2OB =16.12. 30 【解析】如解图,过点B ′作B ′E 垂直于A ′D ′于点E .设矩形ABCD 的边AD 长为a ,AB 长为b ,B ′E 长为c ,则S 矩形ABCD =ab ,S ▱A ′B ′C ′D ′=ac .∵S ▱A ′B ′C ′D ′=12S 矩形ABCD ,∴ac =12ab ,∴c =12b ,∴sin A ′=cb =12,∴∠A ′=30°.第12题解图13.证明:在矩形ABCD 中,AB =CD ,BC ∥AD ,∠B =90°,DE =CD , ∴AB =DE ,∠BF A =∠EAD . ∵DE ⊥AG , ∴∠AED =90°. ∴∠AED =∠B . 在△ABF 与△DEA 中, ⎩⎪⎨⎪⎧∠BF A =∠EAD ∠B =∠AED AB =DE, ∴△ABF ≌△DEA (AAS ). ∴BF =AE .14. (1)证明:∵四边形ABCD 是矩形, ∴∠A =∠D =90°. ∵EF ⊥CE , ∴∠FEC =90°.∴∠AFE +∠AEF =∠AEF +∠DEC =90°. ∴∠AFE =∠DEC , 在△AEF 与△DCE 中,⎩⎪⎨⎪⎧∠A =∠D ∠AFE =∠DEC AE =CD, ∴△AEF ≌△DCE (AAS ). ∴AF =DE ; (2)解:∵DE =25AD ,∴AE =32DE .∵AF =DE ,∴tan ∠AFE =AE AF =32DE DE =32.点对线·板块内考点衔接1. A 【解析】∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC ,∵BM =DN ,∴OM =ON ,∴四边形AMCN 是平行四边形.当OM =12AC 时,MN =AC ,∴四边形AMCN 是矩形,故选A .2. D 【解析】如解图,取DE 的中点M ,CD 的中点N ,连接MN ,则点P 一定在△CDE 的中位线MN 上,∴当BP ⊥MN 时,即点P 与CD 的中点N 重合时,PB 最小,此时点F 与点C 重合.∵AB =CD =4,P 为CD 的中点,∴PC =2.∵BC =AD =2,∠BCD =90°,∴PB =2 2.第2题解图3. 20 【解析】如解图,连接BD ,∵四边形ABCD 是矩形,∴BD =AC ,∠ABC =90°,∵AB =6,BC =8,∴AC =10,∵四边形EFGH 为平行四边形,且EF ∥AC ,∴EF ∥AC ∥GH ,EF =HG ,∴△BEF ∽△BAC ,△DHG ∽△DAC ,∴BE AB =EF AC ①,HG AC =DH DA ,∴BE AB =DH AD ,∴EH ∥BD ,∴EH ∥BD ∥FG ,∴AE AB =EH BD ,∴AE AB =EHAC ②,∴①+②得BE +AE AB =EF +EH AC,∵BE +AE =AB ,∴EF +EH =AC =10,∴▱EFGH 的周长为20.第3题解图4.2+1 【解析】如解图,连接PD ,∵E 为CD 中点,F 为CP 中点,∴EF =12PD ,∴C △CEF =CE +CF +EF =CE +12(CP +PD )=12 (CD +PC +PD )=12C △CDP ,∴当△CDP 的周长最小时,△CEF 的周长最小;即PC +PD 的值最小时,△CEF 的周长最小.作点D 关于AB 的对称点D ′,连接CD ′交AB 于点P ,∵AD =AD ′=BC ,AD ′∥BC ,∴四边形AD ′BC 是平行四边形,∴AP =PB =1,PD ′=PC ,∴CP =PD =2,∴C △CEF =12C △CDP =2+1.第4题解图5. 45 【解析】∵S △P AB =12S △PCD ,AB =CD ,∴点P 在直线AD 的三等分的直线上,又∵AB =4,BC=6,此题可以转化为在正方形A ′B ′CD 中求PC +PD 的最小值.如解图,点F 是点D 关于点A ′的对称点,∴PF =PD ,当PF 和PC 在一条直线上时,PC +PD 的值最小,FC =42+82=45,故PC +PD 的最小值是4 5.第5题解图6. (1)证明:∵四边形ABDE 是平行四边形, ∴BD =AE ,BD ∥AE . ∵D 为BC 的中点, ∴CD =BD ,∴CD =AE .∴四边形AECD 是平行四边形. 又∵AB =AC , ∴∠ADC =90°, ∴四边形ADCE 是矩形; (2)解:∵四边形ADCE 是矩形, ∴AO =EO . ∵∠AOE =60°, ∴△AOE 为等边三角形. ∴AO =AE =2. ∴AC =2OA =4.故矩形ADCE 对角线的长为4.练习2 菱 形点对点·课时内考点巩固1. C 【解析】A .四边相等的四边形是菱形,这是菱形的一个判定定理,此选项正确;B .对角线互相垂直的平行四边形是菱形,这是菱形的一个判定定理,此选项正确;C .菱形的对角线互相垂直,但不一定相等,此选项错误;D .菱形的四边都相等,邻边也一定相等,此选项正确.故选C .2. C 【解析】∵四边形ABCD 的两条对角线相交于点O ,且互相平分,∴四边形ABCD 是平行四边形,∴AD ∥BC ,当AB =AD 或AC ⊥BD 时,均可判定四边形ABCD 是菱形;当AC =BD 时,可判定四边形ABCD 是矩形,当∠ABD =∠CBD 时,由AD ∥BC 得:∠CBD =∠ADB ,∴∠ABD =∠ADB ,∴AB =AD ,∴四边形ABCD 是菱形.3. D 【解析】根据菱形的性质可知∠DAB =180°-∠D =30°,∴∠1=12∠DAB =15°.4. C 【解析】∵菱形的对角线相互垂直且平分,∴另一条对角线长为2×32-12=4 2.5. C 【解析】顺次连接任意四边形的四边中点,得到四边形一定是平行四边形,如果原四边形的对角线相等,则可得中点四边形的邻边相等,即是菱形;如果原四边形的对角线互相垂直,则可得中点四边形的邻边垂直,即是矩形.菱形的对角线互相垂直,所以它的中点四边形是矩形.6. A 【解析】如解图,连接AC ,∵四边形ABCD 是菱形,∴BC =AB =3,∵∠B =60°,∴△ABC 是等边三角形,∴AC =AB =3,∵点F 、G 分别是AE 、CE 的中点,∴FG 是△ACE 的中位线,∴FG =12AC =32.第6题解图7. B 【解析】∵AB =AD ,OB =OD ,∴AO ⊥BD ,∠ADO =∠ABO ,∵∠ABD =∠CDB ,∴AB ∥CD ,∠ADO =∠CDO ,又∵OD ⊥AC ,∴AD =CD .∴AB =CD ,∴四边形ABCD 是平行四边形.∵AB =AD ,∴四边形ABCD 是菱形.∴AC =2AO =2AB 2-OB 2=6,∴S 菱形ABCD =12AC ×BD =24.8. D 【解析】∵四边形ABCD 是菱形,∴AB =BC =6,AD ∥BC ,∴AF ∥CE ,∵AE ⊥AC ,AC ⊥CF ,∴AE ∥CF ,∴四边形AECF 是平行四边形,∴CF =AE =5,AF =CE ,∵AB =BC ,∴∠BAC =∠BCA ,∵AE ⊥AC ,∴∠EAC =90°,∴∠BAC +∠BAE =90°,∠BCA +∠E =90°,∴∠BAE =∠E ,∴BE =AB =6,∴CE =6+6=12,∴平行四边形AECF 的周长为2(AE +CE )=2×(5+12)=34.9. B 【解析】∵AE ⊥BC ,AB =5,AE =4,∴在Rt △ABE 中,BE =AB 2-AE 2=3.∵四边形ABCD 为菱形,∴AD ∥BE ,∴∠DAF =∠BEF =90°,∵∠AFD =∠EFB ,∴△DAF ∽△BEF ,∴DA BE =AF EF ,即53=AF 4-AF ,解得AF =52,∴在Rt △DAF 中,DF =AD 2+AF 2=552.10. D 【解析】如解图,连接AC ,交BD 于点O ,∵四边形ABCD 为菱形,∴AC ⊥BD ,AB =BC =AD =10,∵BE ⊥AD ,BE =8,∴在Rt △ABE 中,由勾股定理得,AE =AB 2-BE 2=6.∴DE =4.∴tan ∠ADB =BE DE =84=2,∵AB =AD ,∴∠ABD =∠ADB ,∴tan ∠ABD =2,∴AOOB =2,在Rt △ABO 中,由勾股定理得:OB 2+(2OB )2=102,解得OB =25,∴AC =2AO =4OB =85,∵EF ⊥BD ,AC ⊥BD ,∴EF ∥AC ,∴DE DA =EF AC =25,∴EF =25AC =1655.第10题解图11. A 【解析】∵菱形ABCD 和菱形ECGF 的边长分别为2和3,∴△BCM ∽△BGF ,∴CM GF =BCBG ,即CM 3=22+3,解得CM =65,∴DM =2-65=45,∵∠A =120°,∴∠ABC =180°-120°=60°,∴菱形ABCD 边CD 上的高为2sin60°=2×32=3,菱形ECGF 边CE 上的高为3sin60°=3×32=332,∴S 阴影=S △BDM +S △DFM =12×45×3+12×45×332= 3.12. 24 【解析】∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,BO =DO ,∵点E 是BC 的中点,∴OE 是△ABC 的中位线,∴AB =2OE =2×3=6,∴菱形ABCD 的周长为4×6=24.13.245 【解析】∵S 菱形ABCD =12AC ·BD =12×AC ×8=24,∴AC =6,∴OC =12AC =3,∴BC =42+32=5.∵BC ·AH =24,∴AH =245.14.证明:∵四边形ABCD 是菱形, ∴AB =AD ,∠B =∠D . ∵BE =DF ,∴△ABE ≌△ADF (SAS). ∴AE =AF .15.证明:∵四边形ABCD 是菱形, ∴AD =CD .∵DF =DE ,∠D =∠D , ∴△ADF ≌△CDE (SAS).∴∠1=∠2.16.证明:(1)∵点E 是AD 的中点, ∴AE =DE . ∵AF ∥BC ,∴∠EAF =∠EDB ,∠AFE =∠DBE . 在△AEF 和△DEB 中, ⎩⎪⎨⎪⎧∠EAF =∠EDB ∠AFE =∠DBF ,AE =DE∴△AEF ≌△DEB (AAS );(2)∵∠BAC =90°,点D 是BC 的中点, ∴AD =BD =DC . 由(1)知,△AEF ≌△DEB . ∴AF =DB . ∴AF =DC . 又∵AF ∥BC ,∴四边形ADCF 是平行四边形. ∵AD =DC ,∴平行四边形ADCF 是菱形.点对线·板块内考点衔接1. D 【解析】根据题目所给图形可知,原图中已经有2个菱形了,再添2根小棒只要使拼接后的图形再增加一个菱形即可.符合条件的拼接方法有6种,如解图所示.第1题解图2. C 【解析】如解图,连接EF ,交AC 于点O ,∵四边形EGFH 是菱形,∴EF 与GH 互相垂直平分.又∵CF ∥AE ,∴△AOE ≌△COF ,∴AO =CO .在Rt △ABC 中,AC =AB 2+BC 2=82+42=45,∴AO =12AC=2 5.∵∠OAE =∠BAC ,∠AOE =∠ABC =90°.∴Rt △AOE ∽Rt △ABC ,∴AO AB =AE AC ,即258=AE45,解得AE =5.第2题解图3. C 【解析】∵四边形MBND 是菱形,∴MD =MB .∵四边形ABCD 是矩形,∴∠A =90°.设AB =x ,AM =y ,(x 、y 均为正数)则MB =2x -y .在Rt △ABM 中,AB 2+AM 2=BM 2,即x 2+y 2=(2x -y )2, 解得x =43y ,∴MD =MB =2x -y =53y , ∴AM MD =y 53y =35.4. C 【解析】如解图,设EF 交BD 于点I ,AC 交BD 于点J ,∵四边形ABCD 是菱形,∴AC ⊥BD .∵EH ∥BD ,四边形EFGH 是矩形,∴EF ∥AC ,则EI ∥AJ .∴△BEI ∽△BAJ .∵2AE =BE ,∴BEBA =BI BJ =EI AJ =23.∵AJ =12AC =4,∴EI AJ =EI 4=23,解得EI =83. 易得EI =FI ,∴EF =2EI =2×83=163.第4题解图5.3 【解析】如解图,连接DE 、BD ,DE 与AC 的交点即为点P .由菱形的对角线互相垂直平分,可得B 、D 关于AC 对称,则PD =PB ,∴PE +PB =PE +PD =DE ,即DE 就是PE +PB 的最小值,∵∠BAD =60°,AD =AB ,∴△ABD 是等边三角形,∵AE =BE ,∴DE ⊥AB ,在Rt △ADE 中,DE =AD 2-AE 2= 3.第5题解图点对面·跨板块考点迁移1. D 【解析】如解图,过点E 作EF ⊥x 轴于点F ,∵四边形OABC 为菱形,∠AOC =60°,∴∠AOE =12∠AOC =30°,△AOC 为等边三角形,AC ⊥OB ,∴∠F AE =60°,∵A (4,0),∴OA =4,∴AE =12AO =12×4=2,∴AF =12AE =1,∴EF =AE 2-AF 2=22-12=3,∴OF =AO -AF =4-1=3,∴E (3,3).第1题解图练习3 正方形点对点·课时内考点巩固1. C 【解析】根据题意可得中点四边形一定是平行四边形,若AC 与BD 相等则中点四边形是菱形,若AC 与BD 互相垂直,则中点四边形是矩形,∴当AC 与BD 相等且互相垂直时,中点四边形是正方形.2. B 【解析】∵EC =2,EB =1,∠B =90°,利用勾股定理可得BC =3,则正方形ABCD 的面积为(3)2=3.3.132 【解析】 如解图,连接FC ,则MN =12CF ,在Rt △CFG 中,FG =5,CG =5+7=12,∴CF =52+122=13,∴MN =132.第3题解图点对线·板块内考点衔接1. C 【解析】∵四边形ABCD 是正方形,∴AB =AD ,又∵△ADE 是等边三角形,∴AE =AD =DE ,∠DAE =60°,∴AB =AE ,∴∠ABE =∠AEB ,∠BAE =90°+60°=150°,∴∠ABE =(180°-150°)÷2=15°,又∵∠BAC =45°,∴∠BFC =45°+15°=60°.2. A 【解析】如解图,设BC =x ,则CE =1-x ,易证△ABC ∽△FEC ,∴AB FE =BC EC =12=x1-x ,解得x=13, ∴阴影部分面积为:S △ABC =12×13×1=16.第2题解图3. A 【解析】如解图,连接EG .∵正方形ABCD 的边长为2,∴对角线AC =22,∠ACG =45°,∵四边形AEFC 为菱形,∴AE =AC =22,AF 平分∠CAE ,∴△ACG ≌△AEG (SAS),∴∠BEG =∠ACG =45°,∴△BEG 是等腰直角三角形,∴BG =BE =AE -AB =22-2.第3题解图4. 85 【解析】如解图,连接BD ,∵四边形ABCD 是正方形,AC 是对角线,∴CD =AD ,∠DAE =∠DCF =45°,BD ⊥AC . ∵AE =CF , ∴△DAE ≌△DCF (SAS), ∴DE =DF ,同理可证:DE =BE ,BE =BF ,∴四边形BEDF 是菱形,∵AC =8,AO =OD ,AE =2,∴OE =2,OD =4,∴DE =OD 2+OE 2=42+22=25.∴四边形BEDF 的周长为4DE =8 5.第4题解图5.证明:∵BF ⊥AE ,DG ⊥AE ,∴∠DGA =AFB =90°,∠ABF +∠F AB =90°.∵四边形ABCD 是正方形,∴∠F AB +∠DAG =90°.AB =AD .∴∠DAG =∠ABF ,∠DGA =∠AFB .在△DAG 和△ABF 中,⎩⎪⎨⎪⎧∠DAG =∠ABF ∠DGA =∠AFB AB =AD,∴△DAG ≌△ABF (AAS ).∴AF =DG , BF =AG .∴FG =AG -AF =BF -DG .∴BF -DG =FG .6.证明:在正方形ABCD 中,∵AC ⊥BD ,AM ⊥BE ,∴∠AOF =∠BOE =∠AME =90°.∴∠F AO +∠AEB =∠EBO +∠AEB =90°.∴∠F AO =∠EBO .∵AC =BD ,OA =12AC ,OB =12BD , ∴OA =OB .∴△AOF ≌△BOE (ASA). ∴OE =OF .。

北师大版九年级上册数学 知识点复习课件(共46张PPT)

北师大版九年级上册数学 知识点复习课件(共46张PPT)

知识点八 位似
(1) 如果两个图形不仅相似,而且对应顶点的连线相 交于一点,那么这样的两个图形叫做位似图形,这 个点叫做位似中心. (这时的相似比也称为位似比)
(2) 性质:位似图形上任意一对对应点到位似中心的 距离之比等于位似比;对应线段平行或者在 一条直 线上.
(3) 位似性质的应用:能将一个图形放大或缩小.
墙壁等)上得到的影子叫做物体的投影. 投影所在的平面叫做投影面.
投影
投影面
2.中心投影指的是由同一点(知点识光源专)题发出的光线所形成的投影。
中心投影的投射线相交于一点,这 一点称为投影中心。
3.中心投影的特点:
知识专题
1).物体离光源越远,影子越长。
2).物体方向改变,影子方向随之改变。
3).光源离物体越近,影子越短。 4).光源方向改变,影子方向随之改变。
第一章 特殊的平行四边形
本章小结
一、菱形、矩形、正方形的性质
对边

平行
对角相等
且四边相等 邻角互补
平行且相等
四个角 都是直角
平行
四个角
且四边相等 都是直角
对角线
互相垂直且平分, 每一条对角线平分
一组对角
互相平分且 相等
互相垂直平分且相 等,每一条对角线
平分一组对角
二、菱形、矩形、正方形的判定方法
(2) 反比例函数的性质
k>0
图象 y
o yk
x
(k≠0) k<0
y
o
所在象限 性质
一、三象 在每个象
限(x,y 限内,y
同号) 随 x 的增
x
大而减小
二、四象 在每个象
限(x,y 限内,y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩形正方形
【要点梳理】
要点一、矩形的定义
有一个角是直角的平行四边形叫做矩形.
要点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件. 要点二、矩形的性质
矩形的性质包括四个方面:
1.矩形具有平行四边形的所有性质;
2.矩形的对角线相等;
3.矩形的四个角都是直角;
4.矩形是轴对称图形,它有两条对称轴.
要点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过
中心的任意直线可将矩形分成完全全等的两部分.
(2)矩形也是轴对称图形,有两条对称轴(分别通过对边
中点的直线).对称轴的交点就是对角线的交点(即对
称中心).
(3)矩形是特殊的平行四边形,矩形具有平行四边形的所
有性质,从而矩形的性质可以归结为从三个方面看:
从边看,矩形对边平行且相等;从角看,矩形四个角
都是直角;从对角线看,矩形的对角线互相平分且相
等.
要点三、矩形的判定
矩形的判定有三种方法:
1.定义:有一个角是直角的平行四边形叫做矩形.
2.对角线相等的平行四边形是矩形.
3.有三个角是直角的四边形是矩形.
要点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.
要点四、直角三角形斜边上的中线的性质
直角三角形斜边上的中线等于斜边的一半.
推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.
要点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.
性质的前提是直角三角形,对一般三角形不可使用.
(2)学过的直角三角形主要性质有:①直角三角形两锐角
互余;②直角三角形两直角边的平方和等于斜边的平
方;③直角三角形中30°所对的直角边等于斜边的一
半.
(3)性质可以用来解决有关线段倍分的问题.
(正方形)知识要点
要点一、正方形的定义
四条边都相等,四个角都是直角的四边形叫做正方形.
要点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.
要点二、正方形的性质
正方形具有四边形、平行四边形、矩形、菱形的一切性质.
1.边——四边相等、邻边垂直、对边平行;
2.角——四个角都是直角;
3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;
4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的
交点是对称中心.
要点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形. 要点三、正方形的判定
正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形). 要点四、特殊平行四边形之间的关系
或者可表示为:
要点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状 (1)顺次连接平行四边形各边中点得到的四边形是平行四边形. (2)顺次连接矩形各边中点得到的四边形是菱形. (3)顺次连接菱形各边中点得到的四边形是矩形. (4)顺次连接正方形各边中点得到的四边形是正方形.
要点诠释:新四边形由原四边形各边中点顺次连接而成. (1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形.
(3)若原四边形的对角线垂直且相等,则新四边形是正方形. 【典型例题】
类型一、矩形的性质
例1、如图所示,已知四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P
在矩形上方,点Q 在矩形内.求证:(1)∠PBA =∠PCQ =30°;(2)PA =PQ .
举一反三:
【变式】1、如图所示,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B '处,
点A 落在点A '处.
(第3题图)
E
D
D′
C
B
A
(1)求证:B E BF '=;
(2)设AE =a ,AB =b ,BF =c ,试猜想a b c 、、之间有何等量关系,并给予
证明.
2、.如图,将长8cm ,宽4cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则折痕EF 的长为_____cm.
例2、如图所示,矩形ABCD 中,AC 、BD 相交于O ,AE 平分∠BAD 交BC 于E ,∠CAE
=15°,求∠BOE 的度数.
【方法提示】矩形被每条对角线分成两个直角三角形,被两条对角线分成四个等腰三角形,因此矩形中的计算问题可以转化到直角三角形和等腰三角形中去解决.
举一反三:
【变式】1.将矩形ABCD 沿AE 折叠,得到如图所示图形。

若∠CED ′
=56°,则∠AED 的大小是_______.
【变式】2.已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF =ED ,
EF ⊥ED .
求证:AE 平分∠BAD .
【变式】3.如图,矩形ABCD 中,AB =3,BC =4,P 是
边AD 上的动点,PE ⊥AC 于点E ,PF ⊥BD 于点F ,则PE +PF 的值为_________
.
类型二、矩形的判定
例3、如图所示,在△ABC中,点O是AC边上一动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)试证明EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?简要说明理由.
【方法要点】1、三角两线,2、利用对角线判定菱形和矩形。

举一反三:
【变式】1、如图,在△ABC中,D是BC的中点,E是AD的中点,过A点作BC的平行线交BE的延长线于F,连接CF.
(1)线段AF与CD相等吗?为什么?
(2)如果AB=AC,试猜测四边形ADCF是怎样的特殊四边形,并说明理由.
2、已知ABCD的对角线AC,BD相交于O,△ABO是等边三角形,AB=4cm,求这
个平行四边形的面积.
3、如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.
⑴求证:△ABF≌△ECF;
⑵若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.
类型三、直角三角形斜边上的中线的性质
例4、如图所示,BD、CE是△ABC两边上的高,G、F分别是BC、DE的中点.求证:FG⊥DE.
【总结升华】特殊性的应用,中点考虑中线和中位线,特殊的中线有直角三角形的斜边上的中线和等腰三角形底边上的中线。


举一反三:
【变式】如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB
=2,BC=1,运动过程中,点D到点O的最大距离为()
1
D.
5
2
D E
类型四、正方形的判定和性质
正方形的判定
例题2、已知:如图,在△ABC中,AB=AC,A D⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.
⑴求证:四边形ADCE为矩形;
⑵当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明..
练习1 如图,已知平行四边形ABCD中,对角线AC、BD交于点
O,E是BD延长线上的点,且△ACE是等边三角形.
⑴求证:四边形ABCD是菱形;
⑵若∠AED=2∠EAD,求证:四边形ABCD是正方形
正方形的性质
.如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的
中心,则阴影部分的面积是.
举一反三
O
E
D
C
B
A
M
E
N
C
D
B
A
1.已知正方形ABCD 的边长为a ,两条对角线AC 、BD 相交于点O ,P 是射
线AB 上任意一点,过P 点分别做直线AC 、BD 的垂线PE 、PF ,垂足为E 、F .
(1)如图1,当P 点在线段AB 上时,求PE +PF 的值;
(2)如图2,当P 点在线段AB 的延长线上时,求P E -PF 的值.
(A 考点:正方形的性质,正方形的对角线
互相垂直平分。


2. 已知:如图1,O 为正方形ABCD 的中心,分
别延长OA 到点F ,OD 到点E ,使OF =2OA ,OE =2OD ,连结EF ,将△FOE 绕点O 逆时针旋转α角得到△''F OE (如图2).
(1) 探究AE ′与BF'的数量关
系,并给予证明;
(2) 当α=30°时,求证:△
AOE ′为直角三角形.
(利用旋转的观点发现并利用全等三角形解决问题。

3如图,点E 是正方形ABCD 内一点,△CDE 是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F .(考点:利对称的观点观察和认识图形,寻找等腰三角形来解决问题。


(1)求证:△ADE ≌△BCE ; (2)求∠AFB 的度数.。

相关文档
最新文档