生物化学蛋白质1
生物化学总结 蛋白质
蛋白质一、概述1.蛋白质:一切生物体中普遍存在的,由天然氨基酸通过肽键连接而成的生物大分子;其种类繁多,各具有一定的相对分子质量,复杂的分子结构和特定的生物功能;是表达生物遗传性状的一类主要物质。
2.元素组成:CONH。
基本组成单位:氨基酸(氨基酸通过肽键连接为无分支的长链,该长链又称为多肽链)。
一些蛋白质含有非氨基酸成分.3.分类:按形状和溶解性:纤维状蛋白质(形状呈细棒或纤维状,多不溶于水);球状蛋白质(形状接近球形或椭球形,可溶于水);膜蛋白(与细胞的各种膜系统结合而存在。
“溶于膜”)。
4.性质:生物大分子;胶体性质;带电性质;溶解性与沉淀;灼烧时可以产生特殊气味;颜色反应;可以被酸、碱或蛋白酶催化水解。
5.为什么加热降低了蛋白质的溶解性?二、氨基酸1.α-氨基酸结构:2.分类:必需/半必需/非必需~~根据R基团的化学结构:脂肪族/芳香族/杂环~~根据R基团的极性和带电性质:a.非极性氨基酸:Gly、Ala、Val、Leu、Ile、Phe、Met、Pro、Trpb.极性氨基酸:不带电:Ser、Thr、Tyr、Asn、Gln、Cys;带正电:His、Lys、Arg;带负电:Asp、Glu*非极性氨基酸:R基团为一个氢原子/R基团为脂肪烃/R基团为芳香环。
*不带电荷的极性氨基酸:R基团含有羟基/R基团含有巯基(SH)/R基团含有酰胺基。
*带负电荷的极性氨基酸,R基团带有负电。
*带正电荷的极性氨基酸,R基团带有正电。
3.酸碱化学:氨基酸是两性电解质,氨基酸在水溶液中或在晶体状态时都以不带电形式和兼性离子形式离子形式存在,在同一个氨基酸分子上带有能放出质子的-NH3+正离子和能接受质子的-COO-负离子。
氨基酸完全质子化时,可以看成是多元酸,侧链不解离可看作二元酸(阳离子—兼性离子—阴离子)。
氨基酸的解离常数K1/K2可用测定滴定曲线的实验方法求得,二元酸的滴定曲线可大致分解为2条一元酸的滴定曲线。
生物化学习题及答案蛋白质
蛋白质(一)名词解释1.两性离子(dipolarion)2.必需氨基酸(essential amino acid)3.等电点(isoelectric point,pI)4.稀有氨基酸(rare amino acid)5.非蛋白质氨基酸(nonprotein amino acid)6.构型(configuration)7.蛋白质的一级结构(protein primary structure)8.构象(conformation)9.蛋白质的二级结构(protein secondary structure)10.结构域(domain)11.蛋白质的三级结构(protein tertiary structure)12.氢键(hydrogen bond)13.蛋白质的四级结构(protein quaternary structure)14.离子键(ionic bond)15.超二级结构(super-secondary structure)16.疏水键(hydrophobic bond)17.范德华力( van der Waals force)18.盐析(salting out)19.盐溶(salting in)20.蛋白质的变性(denaturation)21.蛋白质的复性(renaturation)22.蛋白质的沉淀作用(precipitation)23.凝胶电泳(gel electrophoresis)24.层析(chromatography)(二) 填空题1.蛋白质多肽链中的肽键是通过一个氨基酸的_____基和另一氨基酸的_____基连接而形成的。
2.大多数蛋白质中氮的含量较恒定,平均为___%,如测得1克样品含氮量为10mg,则蛋白质含量为____%。
3.在20种氨基酸中,酸性氨基酸有_________和________2种,具有羟基的氨基酸是________和_________,能形成二硫键的氨基酸是__________.4.蛋白质中的_________、___________和__________3种氨基酸具有紫外吸收特性,因而使蛋白质在280nm处有最大吸收值。
生物化学——蛋白质
38
1、氨基酸的物理性质
(一)一般物理性质
熔点:无色晶体,熔点高(200~300℃),均大于200℃。
研究发现aa都是晶体,而同等分子量的其它有机物则 是液态。 这说明了aa是以离子状态存在的(由静电引力维持的 离子晶格) ,而不是以中性分子存在的。
39
1、氨基酸的物理性质
(二)紫外吸收:
27
丙氨酸 精氨酸 天冬酰胺 天冬氨酸 半胱氨酸 谷氨酰胺 谷氨酸 甘氨酸 组氨酸 异亮氨酸 亮氨酸 赖氨酸 甲硫氨酸 苯丙氨酸 脯氨酸 丝氨酸 苏氨酸 色氨酸 酪氨酸
缬氨酸
Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr
K1 K2 = [H+ ]2 ·
已知在pI时, [R+]= [R-]
+ ]2 [H K1 K2 =
45
两边取负对数: -lg [H+ ] 2 = (- lg K1 ) + (- lg K2 ) ∵ -lg [H+ ] = pH; - lg K1 = pK1 ; - lg K2 = pK2 ∴ 2 pH = pK1 + pK2 令 pI为等电点时的pH,则 pI = ½ ( pK1 +pK2)
56
(5) 与异硫氰酸苯酯的反应
在弱碱性条件下,氨基酸中的 - 氨基还可以与 异硫氰酸苯酯 (PITC) 反应,产生相应的苯氨基 硫甲酰氨基酸 (PTC- 氨基酸 ) 。在硝基甲烷中与 酸作用发生环化,生成相应的苯硫乙内酰脲 (PTH-氨基酸)。
一氨基一羧基Gly,Ala,Val,Leu,Ile,Met,Cys,Ser,Thr 一氨基二羧基Glu, Gln, Asp, Asn 二氨基一羧基Lys, Arg
生物化学第一章蛋白质化学
组成蛋白质的元素:
主要元素组成: 碳(C) 50% ~ 55% 氧(O) 19% ~ 24% 氢(H) 6% ~ 8% 氮(N) 13% ~ 19% 硫(S) 0% ~ 4%
少量的 磷(P)、铁(Fe)、铜(Cu)、锌(Zn)和碘(I)等
蛋白质元素组成特点:
各种蛋白质含氮量很接近,平均为16%
故可根据以下公式推算出蛋白质的大致含量: 样品中蛋白质的含量〔g〕
脱水作用
脱水作用
--
碱
酸-
-
-
-- -
不稳定的蛋白质颗粒
带负电荷的蛋白质
溶液中蛋白质的聚沉
〔三〕蛋白质的变性、沉淀与凝固
1. 蛋白质的变性〔denaturation〕 在某些理化因素作用下,蛋白质的构
象被破坏,失去其原有的性质和生物活性, 称为蛋白质的变性作用。
变性后的蛋白称为变性蛋白质。
常见的变性因素:
2. 极性中性氨基酸
R-基含有极性基团; 生理pH条件下不解离。 包括7个:
甘氨酸(Trp)、 丝氨酸(Ser)、
半胱氨酸(Cys)、 谷氨酰胺(Gln)、 天冬酰胺(Asn)、 酪氨酸(Tyr) 苏氨酸(Thr)
3. 酸性氨基酸
R-基有COOH(COO-)
带负电荷
4. 碱性氨基酸
R-基有NH2(NH3+)
牛胰核糖核酸酶的变性与复性
尿素或盐酸胍 β-巯基乙醇
透析
有活性
无活性
〔二〕一级构造与功能的关系 1.一级构造相似的蛋白质功能相似 一级构造不同的蛋白质功能不同
胰岛素的一级构造及种属差异
一级构造不同的蛋白质功能不同
ACTH 促肾上腺素皮质激素
MSH 促黑激素
生物化学第三章蛋白质化学名词解释
第三章蛋白质化学1蛋白质:是一类生物大分子,由一条或多条肽链构成,每条肽链都有一定数量的氨基酸按一定序列以肽键连接形成。
蛋白质是生命的物质基础,是一切细胞和组织的重要组成成分。
2标准氨基酸:是可以用于合成蛋白质的20种氨基酸。
3、茚三酮反应:是指氨基酸、肽和蛋白质等与水合茚三酮发生反应,生成蓝紫色化合物,该化合物在570mm波长处存在吸收峰。
4、两性电解质:在溶液中既可以给出H+而表现出酸性,又可以结合H+而表现碱性的电解质。
5、兼性离子:即带正电和、又带负电荷的离子。
6、氨基酸的等电点:氨基酸在溶液中的解离程度受PH值影响,在某一PH值条件下,氨基酸解离成阳离子和阴离子的程度相等,溶液中的氨基酸以兼性离子形式存在,且净电荷为零,此时溶液的PH值成为氨基酸的等电点。
7、单纯蛋白质:完全由氨基酸构成的蛋白质。
8、缀合蛋白质:含有氨基酸成分的蛋白质。
9、蛋白质的辅基:缀合蛋白质所含有的非氨基酸成分。
10、肽键:存在于蛋白质和肽分子中,是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合时形成的化学键。
11、肽平面:在肽单元中,羧基的π键电子对与氮原子的孤电子对存在部分共享,C-N键具有一定程度的双键性质,不能自由旋转。
因此,肽单元的六个原子处在同一个平面上,称为肽平面。
12、肽:是指由两个或者多个氨基酸通过肽键连接而成的分子。
13、氨基酸的残基:肽和蛋白质分子中的氨基酸是不完整的,氨基失去了氢,羧基失去了羟基,因而称为氨基酸的残基。
14、多肽:由10个以上氨基酸通过肽键连接而成的肽。
15、多肽链:多肽的化学结构呈链状,所以又称多肽链。
16、生物活性肽:是指具有特殊生理功能的肽类物质。
它们多为蛋白质多肽链的一个片段,当被降解释放之后就会表现出活性,例如参与代谢调节、神经传导。
食物蛋白质的消化产物中也有生物活性肽,他们可以被直接吸收。
17、谷胱甘肽:由谷氨酸、半胱氨酸和甘氨酸通过肽键连接构成的酸性三肽,是一种生物活性肽,是机体内重要的抗氧化剂。
生物化学蛋白质化学
极性不带电氨基酸
O
O
O
H 2N C H C O H Nhomakorabea二、蛋白质的分类
• 2)根据溶解度: • 清蛋白:白蛋白,溶于水; • 精蛋白:溶于水和酸性溶液,含碱性氨基酸多 • 组蛋白:溶于水及稀酸,含碱性氨基酸较多 • 球蛋白:微溶于水而溶于稀中性盐溶液 • 谷蛋白:不溶于水、醇及中性盐溶液,溶于稀
酸、稀碱,如麦蛋白。 • 醇溶蛋白:不溶于水,溶于70~80%乙醇; • 硬蛋白:不溶于水、盐、稀酸、稀碱。
组成蛋白质的元素
组成蛋白质的元素有:C、H、O、N和S,这些元素 在蛋白质中的组成百分比约为:
C:50~55% H:6~8% O:20~23% N:15~18 % S:0~4% 其它(P、Cu2+、Mn2+ 、Fe3+等) 微量
蛋白质N平均含量为16%的特点作为凯氏(Kjedahl) 定氮法测定蛋白质含量的计算依据。
蛋白质含量 = N含量×6.25
二、蛋白质的分类
1. 分类依据——蛋白质不能按化学结构分类 常用依据:生物来源、理化性质、分子形状、化学 组成等。 2. 三种分类方法——按组成分类常用 1)根据分子形状:球状和纤维状蛋白; 球状蛋白:轴比小于10,较易溶解。 常见:血红蛋白,血清球蛋白,豆类球蛋白等。 纤维状蛋白:轴比大于10,不溶于水。 常见:羽毛中的角蛋白和蚕丝中的丝蛋白等。
Cα如是不对称C(除Gly),则: 1. 具有两种立体异构体 [D-型和L-型] 2. 2. 具有旋光性 [左旋(-)或右旋(+)]
生物化学蛋白质的一级结构
生物化学蛋白质的一级结构好嘞,咱们今天聊聊生物化学里那个超级重要的东西,蛋白质的一级结构。
哎呀,这个话题可不简单,但咱们要轻松点儿,别让它听起来像高深的学术报告。
咱们得知道,蛋白质是啥。
它可不是普通的食物,而是我们身体里各种功能的“建筑工人”。
想想看,肌肉、皮肤、头发,甚至咱们的小脑袋,都是靠蛋白质来支撑的。
现在说到一级结构,嘿,你知道是什么吗?简单来说,蛋白质的一级结构就是它的氨基酸排列顺序。
这就好比一条项链,每颗珠子的位置都得准确,不然这条项链就没法戴了。
不同的氨基酸就像不同颜色的珠子,每种氨基酸都有自己的特性,形成的组合决定了蛋白质的性质。
就像咱们做菜一样,调料搭配得当,才能做出美味的菜肴。
说到氨基酸,咱们有二十种哦!每种氨基酸就像是家里不同的家具,组合起来,才能装饰出一个温馨的家。
比如说,谷氨酸能让你的大脑运转得更快,亮晶晶的,像是灵光一闪。
还有那些必需氨基酸,咱们的身体无法自己合成,得通过食物来获取,就像手机没电了,得赶紧充电一样。
大家想象一下,咱们在健身房挥汗如雨,肌肉一块一块地长出来,这可少不了蛋白质的帮助。
肌肉的恢复和生长都是靠这些小氨基酸们在“默默奉献”。
就好比你在打怪升级,打完怪物得吃药回血,蛋白质就是那神奇的药水,帮助你满血复活。
再说说这个一级结构的重要性。
它可是决定蛋白质功能的基础,一级结构排列错了,就好比一个乐团,乐器没调好,能奏出好听的音乐吗?当然不能!如果氨基酸顺序变了,蛋白质的形状和功能就全变了。
有人就说了,哎,这不就是“细节决定成败”吗?没错,就是这个理儿。
这个氨基酸的顺序也是由基因来决定的。
基因就像一个蓝图,告诉身体如何组装这些氨基酸。
真是“天生我材必有用”,咱们每个人的基因都不一样,造就了每个人独特的蛋白质,独特的你。
你有没有想过,为什么有的人天生运动能力特别强,而有的人却像“木头人”一样?嘿,基因在这里面可是起了大作用呢。
一级结构的变化可不止是排列顺序的问题。
生物化学蛋白质章节考点总结
生物化学蛋白质章节考点总结第三章蛋白质第一节蛋白质概论蛋白质是所有生物中非常重要的结构分子和功能分子,几乎所有的生命现象和生物功能都是蛋白质作用的结果,因此,蛋白质是现代生物技术,尤其是基因工程,蛋白质工程、酶工程等研究的重点和归宿点。
一、蛋白质的化学组成与分类1、元素组成碳 50% 氢7% 氧23% 氮16% 硫 0-3% 微量的磷、铁、铜、碘、锌、钼凯氏定氮:平均含氮16%,粗蛋白质含量=蛋白氮?6.252、氨基酸组成从化学结构上看,蛋白质是由20种L-型α氨基酸组成的长链分子。
3、分类(1)、按组成:简单蛋白:完全由氨基酸组成结合蛋白:除蛋白外还有非蛋白成分(辅基)详细分类,P 75 表 3-1,表 3-2。
(注意辅基的组成)。
(2)、按分子外形的对称程度:球状蛋白质:分子对称,外形接近球状,溶解度好,能结晶,大多数蛋白质属此类。
纤维状蛋白质:对称性差,分子类似细棒或纤维状。
(3)、功能分:酶、运输蛋白、营养和贮存蛋白、激素、受体蛋白、运动蛋白、结构蛋白、防御蛋白。
4、蛋白质在生物体内的分布含量(干重) 微生物 50-80%人体 45%一般细胞 50%种类大肠杆菌 3000种人体 10万种1012 生物界 10-10,二、蛋白质分子大小与分子量蛋白质是由20种基本aa组成的多聚物,aa数目由几个到成百上千个,分子量从几千到几千万。
一般情况下,少于50个aa的低分子量aa多聚物称为肽,寡肽或生物活性肽,有时也罕称多肽。
多于50个aa的称为蛋白质。
但有时也把含有一条肽链的蛋白质不严谨地称为多肽。
此时,多肽一词着重于结构意义,而蛋白质原则强调了其功能意义。
P 76 表3-3 (注意:单体蛋白、寡聚蛋白;残基数、肽链数。
)蛋白质分子量= aa数目*110对于任一给定的蛋白质,它的所有分子在氨基酸组成、顺序、肽链长度、分子量等方面都是相同的,均一性。
三、蛋白质分子的构象与结构层次蛋白质分子是由氨基酸首尾连接而成的共价多肽链,每一种天然蛋白质都有自己特有的空间结构,这种空间结构称为蛋白质的(天然)构象。
生物化学——第一章蛋白质
丙氨酸 Alanine 缬氨酸 Valine 亮氨酸 Leucine 异亮氨酸 Ileucine 脯氨酸 Proline 甲硫氨酸 Methionine
非极性氨基酸
O H 2N CH C OH
CH CH 3 CH 3
丙氨酸 Alanine 缬氨酸 Valine 亮氨酸 Leucine 异亮氨酸 Ileucine 脯氨酸 Proline 甲硫氨酸 Methionine
谷氨酸(二羧基一氨基) pK1 pK2 pK3
碱性氨基酸:pI = (pK2 + pK3 )/2
赖氨酸(一pK羧1 基二p氨K2基pK)3
• 中性氨基酸pI一般为6.0答案:
• 提问:为什么偏酸性?
• -COOH解离程度略大于-NH2 • 提问:酸性氨基酸的pI(更偏酸、更偏碱)?
• 更酸(3.0 左 右)
非极性氨基酸
O H 2 N CH C OH
CH 2 CH CH 3 CH 3
丙氨酸 Alanine 缬氨酸 Valine 亮氨酸 Leucine 异亮氨酸 Ileucine 脯氨酸 Proline 甲硫氨酸 Methionine
非极性氨基酸
O H 2 N CH C OH
CH CH 3 CH 2 CH 3
丙氨酸 Alanine 缬氨酸 Valine 亮氨酸 Leucine 异亮氨酸 Ileucine 脯氨酸 Proline 甲硫氨酸 Methionine
非极性氨基酸
H N
CO OH
吡咯
丙氨酸 Alanine 缬氨酸 Valine 亮氨酸 Leucine 异亮氨酸 Ileucine 脯氨酸 Proline 甲硫氨酸 Methionine
2、分类
各种氨基酸的区别在于侧链R基的不同。 20种基本氨基酸按R的极性可分为: (1)非极性氨基酸 (2)极性氨基酸 (不带电荷氨基酸、酸性氨基酸和碱性氨基酸)
《生物化学》绪论 第1章 蛋白质化学
定的蛋白质肽键断裂,各自得到一系列大小不同 的肽段。
⑷分离提纯所得的肽,并测定它们的序列。
⑸从有重叠结构的各个肽的序列中推断出蛋白质
中全部氨基酸排列顺序。
一级结构确定的原则
蛋白质一级结构测定的战略原则是将大化小,逐
段分析,先后采用不同方法制成两套肽片断,并 对照两段肽段,找出重叠片断,排出肽的前后位 臵,最后确定蛋白质的完整序列。
α-螺旋结构
每个氨基酸残基的-NH
-与间隔三个氨基酸残 基的=C=0形成氢键。每 个 肽 键 的 =C=0 与 - NH -都参加氢键形成,因 此 保 持 了 α- 螺 旋 的 最 大 稳定性。
绝大多数蛋白质以右手
右手α螺旋
α- 螺 旋 形 式 存 在 。 1978 年发现蛋白质结构中也 有 左 手 α- 螺 旋 结 构 。
第一章 蛋白质化学
第一章 蛋白质化学
蛋白质是由不同的 α-氨基酸按一定
的序列通过酰胺键(蛋白质化学中专 称为肽键)缩合而成的,具有较稳定 的构像并具有一定生物功能的生物大 分子。
1.1 蛋白质的生物学意义
蛋白质是一切生物体的细胞和组织的主要组成成
分,也是生物体形态结构的物质基础,使生命活 动所依赖的物质基础。 蛋白质分子巨大、结构复杂,使得蛋白质的理论 研究及其应用受到限制。近年来在重组DNA技术 基础上发展起来的蛋白质工程为解决这方面的问 题提供了最大的可能性。蛋白质工程可改变蛋白 质的生物活性,改变蛋白质的稳定性,改变受体 蛋白质的特性。通过蛋白质工程可深入地研究蛋 白质的结构与功能的相互关系。
1.2 蛋白质的元素组成
经元素分析,蛋白质一般含碳50%~55%,氢
6%~8% , 氧 20%~23% , 氮 15%~18% , 硫 0%~4%。 有的蛋白质还含有微量的磷、铁、锌、铜、钼、 碘等元素。 氮含量在各种蛋白质中比较接近,平均为16%。 因此,一般可由测定生物样品中的氮,粗略的 计算出蛋白质的含量。(1g的氮≈ 6.25 g的蛋 白质)
生物化学 第一篇 蛋白质的结构与功能
第一篇蛋白质的结构与功能(第一~四章小结)第一章氨基酸氨基酸是一类同时含有氨基和羧基的有机小分子。
组成多肽和蛋白质的氨基酸除Gly外,都属于L型的α- 氨基酸(Pro为亚氨基酸)。
氨基酸不仅可以作为寡肽、多肽和蛋白质的组成单位或生物活性物质的前体,也可以作为神经递质或糖异生的前体,还能氧化分解产生ATP。
目前已发现蛋白质氨基酸有22种,其中20种最为常见,而硒半胱氨酸和吡咯赖氨酸比较罕见。
非蛋白质氨基酸通常以游离的形式存在,作为代谢的中间物和某些物质的前体,具有特殊的生理功能。
22种标准氨基酸可使用三字母或单字母缩写来表示。
某些标准氨基酸在细胞内会经历一些特殊的修饰成为非标准蛋白质氨基酸。
氨基酸有多种不同的分类方法:根据R基团的化学结构和在pH7时的带电状况,可分为脂肪族氨基酸、不带电荷的极性氨基酸、芳香族氨基酸、带正电荷的极性氨基酸和带负电荷的极性氨基酸;根据R基团对水分子的亲和性,可分为亲水氨基酸和疏水氨基酸;根据对动物的营养价值,可分为必需氨基酸和非必需氨基酸。
氨基酸的性质由其结构决定。
其共性有:缩合反应、手性(Gly除外)、两性解离、具有等电点,以及氨基酸氨基和羧基参与的化学反应,包括与亚硝酸的反应、与甲醛的反应、Sanger反应、与异硫氰酸苯酯的反应和与茚三酮的反应等。
与亚硝酸的反应可用于Van Slyke定氮,与甲醛的反应可用于甲醛滴定,Sanger反应和与异硫氰酸苯酯的反应可用来测定N-端氨基酸。
只有脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,其余生成蓝紫色物质,利用此反应可对氨基酸进行定性或定量分析。
多数氨基酸的侧链可能发生特殊的反应,可以此鉴定氨基酸。
不同氨基酸在物理、化学性质上的差异可用来分离氨基酸,其中最常见的方法是电泳和层析。
第二章蛋白质的结构肽是氨基酸之间以肽键相连的聚合物,它包括寡肽、多肽和蛋白质。
氨基酸是构成肽的基本单位。
线形肽链都含有N端和C端,书写一条肽链的序列总是从N端到C端。
生物化学名词解释——蛋白质
简单蛋白质:完全由氨基酸构成的蛋白质结合蛋白质:由AAs和其他非蛋白质化合物所组成球状蛋白质:多肽链能够折叠,使分子外形成为球状的蛋白质。
纤维状蛋白质:能够聚集为纤维状或细丝状的蛋白质。
主要起结构蛋白的作用,其多肽链沿一个方向伸展或卷曲,其结构主要通过多肽链之间的氢键维持。
单体蛋白质:仅含有AAs寡聚蛋白质:由两个以上、十个以下亚基或单体通过非共价连接缔合而成的蛋白质。
等电点:蛋白质或两性电解质(如氨基酸)所带净电荷为零时溶液的pH,此时蛋白质或两性电解质在电场中的迁移率为零。
符号为pI。
氨基酸残基:在多肽链中的氨基酸,由于其部分基团参与了肽键的形成,剩余的结构部分则称氨基酸残基。
它是一个分子的一部分,而不是一个分子。
氨基酸的氨基上缺了一个氢,羧基上缺了一个羟基。
简单的说,氨基酸残基就是指不完整的氨基酸。
一个完整的氨基酸包括一个羧基(—COOH),一个氨基(—NH2),一个H,一个R基。
缺少一个部分都算是氨基酸残基,并没有包括肽键的。
钛键:氨基和羧基脱去一分子水形成的化学键。
钛键平面:肽键所在的酰胺基成为的刚性平面。
由于肽键具有部分双键性质,使得肽基的六个原子共处一个平面,称为肽平面。
同源蛋白质:在不同有机体中实现同一功能的蛋白质。
(结构和功能类似的蛋白质。
)蛋白质一级结构:蛋白质多肽链的氨基酸通过肽键连接形成的线性序列。
蛋白质二级结构:指多肽链借助H键折叠盘绕成沿一维方向具有周期性结构的构象。
构象:分子的三维结构即分子中的所有原子在空间的位置总和。
构型:分子中的原子在空间的相对取向。
α-螺旋:它是蛋白质当中最为常见、最丰富的二级结构。
多肽主链沿中心轴盘绕成右手或左手螺旋;每个螺旋周期有3.6个氨基酸残基,螺距0.54nm,螺旋直径0.5nm;氨基酸残基侧链伸向外侧;同一肽链上的每个残基的酰胺氢原子和位于它后面的第4个残基上的羰基氧原子之间形成氢键,并且与螺旋轴保持大致上的平行。
此外,肽键上的酰胺氢和羰基氧既能形成内部氢键,也能与水分子形成外部氢键。
生物化学生物化学第一章蛋白质
PAGE
垂
直
平
低浓度浓缩胶
板
电
泳
高浓度分离胶
示
意
图
生物化学生物化学第一章蛋白质
生物化学生物化学第一章蛋白质
生物化学生物化学第一章蛋白质
生物化学生物化学第一章蛋白质
生物化学生物化学一章蛋白质
• 肌红蛋白和血红蛋白的每条链都含一个血 红素辅基。
• 血红素由四个吡咯环构成的原卟啉Ⅸ和一 个铁离子组成。作为亚铁离子,可形成6个 配位键:其中4个与卟啉与环的氮原子连接, 第五个与His93相连,第六个与氧可逆结合 附近有个His64辅助氧的结合。
生物化学生物化学第一章蛋白质
肌红蛋白与血红蛋白的结构与功能
生物化学生物化学第一章蛋白质
目录
• 肌红蛋白(Mb)由153个氨基酸残基组成,血 红蛋白(Hb)的α亚基有141个氨基酸,β亚基 有146个氨基酸残基。Mb and Hb的两种亚 基氨基酸残基数和序列均有变化,但它们 的三级结构几乎完全相同。
• 同功能蛋白质:不同生物体中表现同一功 能的蛋白质,又称同源蛋白质。
生物化学生物化学第一章蛋白质
• 对比不同生物的同源蛋白质的氨基酸序列 可以发现,它们长度相同或相近,而且许 多位置的氨基酸是相同的。这些相同的氨 基酸残基称为不变残基。
• 不变残基对于同源蛋白的功能是必需的。
生物化学生物化学第一章蛋白质
• 说明肌红蛋白和血红蛋白的α亚基和β亚基 都起源于一个共同的祖先。
生物化学生物化学第一章蛋白质
• 在血红蛋白和肌红蛋白分子中与辅基血红 素相连的氨基酸都是组氨酸。说明不同氨 基酸序列中只有关键的氨基酸不变才能产 生相同的构象,执行相同的功能。
• 这种关键氨基酸通常提供形成蛋白质构象 的必要基团。
生物化学--蛋白质
3.超二级结构和结构域 蛋白质二级结构和三级结构的过渡态。
(1)超二级结构 二级结构组合体,但没有结构域。
胶原蛋白
弹性蛋白
角蛋白
几种超二级结构
• 胶原蛋白 脊椎动物中最多、最普遍的蛋白质 普遍存在于结缔组织、真皮、腱、韧带、骨及软骨、血管壁、角膜 等处的细胞外基质中。
每条肽链是α左手 螺旋
共价键
③加人可与蛋白质结合成不溶解的化合物的物质 (变性)
重金属离子
酸根
4.蛋白质的变构和变性
(1)变构 蛋白质与效应物的结合引起整个蛋白质分子构象发生改变的现象就称为蛋白质的变构作用, 又称别构作用。(只涉及非共价键的断裂,是可逆的) (2)变性 蛋白质分子的空间结构发生改变和破坏从而丧失生物活性的现象叫变性。 一级结构不变,破坏二级结构以上的结构,即氢键等次级键部分或全部断裂。 溶解度降低,易沉淀(内部的疏水基团暴露); 失去结晶能力; 肽链松散,易被水解; 辅酶脱离。 蛋白质复性:如果不过于剧烈,变性后的蛋白质可以在一定的条件下恢复其生物活性。 ②致变因素 高温、振荡、搅拌、超声波、X射线、紫外线; 重金属离子、强酸、强碱、尿素,去污剂以及酒精、丙酮等有机溶剂等。
螺距0.54nm 3.6个氨基酸残基
右手螺旋居多
(2)β-折叠 并列的比α螺旋更为伸展的肽链,互相以氢键连接起来而成片层状的结构。 肽链比较伸展,弹性较差。
(3)β-转角和不规则卷曲 β转角:使多肽链发生180°的回折。 不规则卷曲:使一种没有规律的松散肽链结构。酶的功能部位常常 位于这种构象区域里。
3条α-螺旋共价相 连,形成右手螺 旋。
长, 肽链间的共价键数目增 加,使胶原纤维越来越 硬而脆,结果改变了结 缔组织的机械性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+H N-Tyr-Gly-Gly-Phe-Met-COO3 +H N-Tyr-Gly-Gly-Phe-Leu-COO3
Met-脑啡肽 Leu-脑啡肽
L-Leu-D-Phe-L-Pro-L-Val L-Orn L-Orn L-Val-L-Pro-D-Phe-L-Leu
短杆菌肽S(环十肽)
由于肽键的存在,肽可 以进行双缩脲反应。
(三)天然存在的活性肽 主要有:肽类激素、肽类抗生素和肽类毒素。
OH CH3 CH CH2OH CH O HN C H HO CH N C O CH2 NH O C S CH O CH2 CH O N H NH O C CH2 NH OH C NH CH CH2 O C NH CH2 C
第4章蛋白质(protein) 的共价结构
—、蛋白质通论
(一)蛋白质的化学组成和分类
蛋白质的元素组成:C、H、O、 N、S,其中含N平均为16%,这一数 据可用于蛋白质的含量测定。
1.简单蛋白 完全由氨基酸组成,不含非蛋白成分。 根据溶解性的不同,可将简单蛋白分为7类:清 蛋白(溶于水)、球蛋白(溶于稀盐溶液)、谷蛋 白(溶于稀酸或稀碱)、醇溶蛋白(溶于70%-80%的 乙醇)、组蛋白(溶于水或稀酸,可用稀氨水沉 淀)、精蛋白(溶于水或稀酸,不溶于氨水)和硬 蛋白(只能溶于强酸)。 2.结合蛋白 由蛋白质和非蛋白成分组成,后者称为辅基。 根据辅基的不同,可将结合蛋白分为以下7类: 核蛋白、脂蛋白、糖蛋白、磷蛋白、血红素蛋白、 黄素蛋白和金属蛋白。
3.按蛋白质的生物学功能分类
(1)催化功能 生物体内的酶都是由蛋白质构成的,没有酶,生物体内
的各种化学反应就无法正常进行。 (2)结构功能 蛋白质可以作为生物体的结构成分。高等动物的胶原蛋 白是主要的细胞外结构蛋白,占蛋白总量的1/4;细胞膜、线 粒体、叶绿体和内质网等膜系统都是由蛋白质与脂类组成的; 动物的毛发和指甲都是由角蛋白构成的。 (3)运输功能 脊椎动物的血红蛋白和无脊椎动物的血蓝蛋白起着运输 氧气的作用;血液中的载脂蛋白可运输脂肪,转铁蛋白可转 运铁;一些脂溶性激素的运输也需要蛋白,如甲状腺素要与 甲状腺素结合球蛋白结合才能在血液中运输。
可连续测定N末端氨基酸,广泛应用于肽链的的氨
基酸序列测定 。 (4)氨肽酶法:氨肽酶是一种肽链外切酶,
它能从多肽链的N-端逐个水解肽链,释放氨基酸。
根据不同的反应时间测出酶水解所释放出的氨基酸
种类和数量,按反应时间和氨基酸残基释放量作动
力学曲线,可以确定蛋白质的N-末端残基。
2.C-末端的测定
(1)还原法。C末端氨基酸可用硼氢化锂还原生成相应的
(1)二硝基氟苯(DNFB )法 (Sanger法):2,4-二硝基
氟苯在碱性条件下,能够与肽链N-端的游离氨基作用,生成
二硝基苯衍生物(DNP)。在酸性条件下水解,得到黄色 DNP-氨基酸。该产物能够用乙醚抽提分离。不同的DNP-氨基 酸可以用色谱法进行鉴定。
R O2N F NO2 DNFB H
+ + H2N
R H2N O HN R n -1O CH C HN Rn O OH CH C CH C
N- 端 氨 基 酸 H HN NH2NH2 2
+
C -端 氨 基 酸 O Rn O OH
R
CH C NHNH2 +H2N 氨基酸酰肼
CH C
C -端 氨 基 酸
(3)羧肽酶法:将蛋白质在pH 8.0, 30℃与 羧肽酶一起保温,按一定时间间隔取样,用纸层 析测定释放出来的氨基酸,根据氨基酸的量与时 间的关系,就可以知道C末端氨基酸的排列顺序。 目前常用的羧肽酶有四种:A,B,C和Y;A和B来自 胰脏;C来自柑桔叶;Y来自面包酵母。羧肽酶A 能水解除Pro,Arg和Lys以外的所有C-末端氨基酸 残基;B只能水解Arg和Lys为C-末端残基的肽键。 通常将二者混合使用。羧肽酶Y可作用于任何氨 基酸,因而,除用来测定C末端氨基酸外,还可 以用来测定氨基酸的排列顺序。
下列试剂和酶常用于蛋白质化学的研究中:CNBr、异硫氰酸 苯酯、丹黄酰氯、脲、6mol/L HCl、β-巯基乙醇、水合 茚三酮、过甲酸、胰蛋白酶、胰凝乳蛋白酶。其中哪一个 最适合完成以下各项任务?
(1)测定小肽的氨基酸序列。 (2)鉴定肽的氨基末端残基。 (3)不含二硫键的蛋白质的可逆变性;如有二硫键存在时 还需加什么试剂? (4)在芳香族氨基酸残基羧基侧水解肽键。 (5)在蛋氨酸残基羧基侧水解肽键。
(7)调节功能 某些激素、一切激素受体和许多其他调节因子都是蛋白质。 (8)感觉功能 生物体对信息的识别与传递过程也离不开蛋白质。例如, 感受味道需要味觉蛋白,视觉信息的传递要有视紫红质参与。 视杆细胞中的视紫红质,只需1个光子即可被激发,产生视觉。 (9)遗传调控功能 遗传信息的储存和表达都与蛋白质有关。DNA在在染色体中 是缠绕在蛋白质(组蛋白)上的。有些蛋白质,如阻遏蛋白, 与特定基因的表达有关。β-半乳糖苷酶基因的表达受到一种 阻遏蛋白的抑制,当需要合成β-半乳糖苷酶时经过去阻遏作 用才能表达。 (10)其他功能 某些生物能合成有毒的蛋白质,用以攻击或自卫。白喉毒 素可抑制真核生物的蛋白质合成。
(二)蛋白质的形状和大小
按蛋白质的形状和溶解度可将蛋白质分为: 纤维状蛋白质、球状蛋白质和膜蛋白质。
蛋白质的相对分子质量差别很大。
(肌联蛋白)
(三)蛋白质构象和蛋白质结构的组织层次
蛋白质的结构复杂,可分为不同的结构层次: 1.一级结构:多肽链的氨基酸序列。
2.二级结构:多肽链借助氢键形成的有规则的
(七)肽段在多 肽链中次序的 决定肽段
(八)二硫桥位置的确定
用对角线电泳法
(九)蛋白质 测序举例 (胰岛素的 序列测定)
(十)蛋白质序列数据库
1.欧洲生物信息中心研究所和瑞士生物信息研 究所共同管理的SWISS-PROT有10多万条肽链的信息;
2.美国国家生物医学基金会主持的PIR有近30
环状肽
共价主链
肽键的C和N均为sp2杂化,有部分双键的 性质,相关的6个原子处于共平面,称作肽 平面,肽平面内两个Cα多处于反式构型。
(二) 肽的物理和化
学性质 肽的等电点计算 需先分别判断各解离 基团的带电荷情况, 再统计净电荷的量 (P166表4-6)。 肽的化学反应与
氨基酸类似,同时,
与肌红蛋白
2. 丝氨酸蛋白酶类:显示明显的序列同源性。
3. 一些功能差异很大的蛋白质:如溶菌酶 和α-乳清蛋白功能差异很大,但有序列 同源性。蛋白质家族的形成可能有趋同 进化和趋异进化两种机制。
基本要求
1.掌握蛋白质的分类和功能多样性; 2.掌握肽的结构特点和基本性质; 3.熟悉蛋白质一级结构的测定方法; 4.掌握蛋白质一级结构与生物学功能的 关系,熟悉有关的典型例子。
2.测定多肽链的数目。
3.拆分多肽链。 4.分析每一条多肽链的氨基酸组成。
5.鉴定多肽链的N—末端和C—末端氨基酸残基。
6.用两种以上方法裂解多肽链成较小的肽段。 7.测定各肽段的氨基酸序列。 8.拼接各肽段成完整的多肽链。 9.确定二硫键的位置。
(二)N-末端和C-末端氨基酸残基的鉴定
1.N-末端的测定
α氨基醇。肽链水解后,再用层析法鉴定。 (2)肼解法。多肽与肼在无水条件下加热,可以断裂所
有的肽键,除C末端氨基酸外,其他氨基酸都转变为相应的酰
肼化合物。肼化物能够与苯甲醛缩合成不溶于水的物质而与C端氨基酸分离,C末端氨基酸可用纸层析鉴定。但精氨酸会变 成鸟氨酸,半胱氨酸、天冬酰胺和谷氨酰胺被破坏。
万条肽链的信息,但多数由核酸信息翻译而来,有 些未经严格检验。 3.美国政府支持的Gen Bank和欧洲的 EMBL有 大量的基因序列信息,从其阅读框可以得到蛋白质
序列的不少信息。
四、蛋白质的氨基酸 序列与生物功能
(一) 同源蛋白质的物种差异与生物进化
细 胞 色 素 C 的 物 种 差 异
(二)同源 蛋白质具有 共同的进化 起源 1.血红素蛋白
2.降解法:可用氨肽酶和羧肽酶,只能测出末端
的几个氨基酸。羧肽酶Y可作用于任何氨基酸,有可 能以此为基础开发出新的氨基酸的顺序测定仪。
3.根据核苷酸序列推定法:分离mRNA,经反转录
测定cDNA的核苷酸序列, 再用遗传密码推定氨基酸序 列。
4.质谱法:可分析微量的肽链,短肽在第一台质谱仪中经 电喷射电离,按荷质比分离,依次在经碰撞池被裂解成离子碎 片,在第二台质谱仪中测出各个离子碎片的谱线,推算出短肽 的氨基酸序列。在蛋白质组学中应用广泛,但不能区分亮氨酸 和异亮氨酸。
可以用酶水解 法或化学水解 法将蛋白质水 解成肽段
肽段的分离纯化 可用层析法或电泳法
溴化氰断裂法
羟胺断裂法:断裂Asn-Gly之间的肽键,但专一性不强,也可 以断裂Asn-Leu和Asn-Ala之间的键.
(六)肽段氨基 酸序列的测定
1.Edman化学降解法: 用此原理已制成蛋白质序列分析 仪。若每次循环的准确度为99%, 经60次循环,准确度为: 0.9960=0.54
由细菌分泌的多肽,含有D-氨基酸和一些不常 见氨基酸,如鸟氨酸(Ornithine, 缩写为 Orn)。
?1
Glutathione
谷胱甘肽
它的分子中有一个特殊的γ肽 键,是由谷氨酸的γ羧基与半 胱氨酸的α氨基缩合而成。
三、蛋白质一级 结构的测定
(一)蛋白质测序的策略
1.确定蛋白质的纯度在97%以上。
O O2N HN NO2 DNP 衍生物 O OH + 氨基酸
R
O
CH C
CH C
N- 端氨基酸 R HN NLeabharlann 2 DNP- 氨基酸H2O
O2N
CH C
(2)丹磺酰氯法:在碱性条件下,丹磺酰氯(二甲氨基