高中数学知识点2

合集下载

数学必修二知识点归纳

数学必修二知识点归纳

数学必修二知识点归纳一、函数的概念与性质1. 函数的定义:函数是从一个集合(称为定义域)到另一个集合(称为值域)的映射,每个定义域中的元素都有一个唯一的值与之对应。

2. 函数的表示方法:常用f(x) = y,其中x是自变量,y是因变量。

3. 函数的性质:包括单调性、奇偶性、周期性和有界性等。

- 单调性:函数在某个区间内单调递增或递减。

- 奇偶性:函数可能是奇函数(f(-x) = -f(x))或偶函数(f(-x) = f(x))。

- 周期性:函数如果存在一个非零常数T,使得对于所有x都有f(x + T) = f(x),则称函数具有周期T。

- 有界性:函数的值在某个范围内,即存在上界和下界。

二、基本初等函数1. 幂函数:形如y = x^n的函数,其中n是实数。

2. 指数函数:形如y = a^x的函数,其中a > 0且a ≠ 1。

3. 对数函数:形如y = log_a(x)的函数,其中a > 0且a ≠ 1。

4. 三角函数:包括正弦函数、余弦函数、正切函数等。

- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)三、函数的图像与变换1. 函数图像的绘制:通过坐标系中的点来表示函数的图像。

2. 函数的平移:包括水平平移(左加右减)和垂直平移(上加下减)。

3. 函数的伸缩:包括水平伸缩(y = af(x))和垂直伸缩(y =f(bx))。

4. 函数的对称性:函数图像关于x轴、y轴或原点的对称性。

四、函数的应用1. 实际问题的建模:将实际问题转化为函数关系式进行求解。

2. 最值问题:求解函数的最大值和最小值。

3. 函数的复合:两个或多个函数的组合,如(f ∘ g)(x) = f(g(x))。

五、极限与连续性1. 极限的概念:描述函数在某一点附近的行为。

2. 极限的性质:包括唯一性、局部有界性、保号性等。

3. 连续函数:在定义域内任意一点都连续的函数。

高中数学必修二知识点总结及公式大全

高中数学必修二知识点总结及公式大全

高中数学必修二知识点总结及公式大全高中数学是培养学生逻辑思维和抽象能力的重要学科。

《必修二》作为高中数学课程的重要组成部分,涉及了许多核心知识点和基础公式。

本文将为您详细总结《必修二》的知识点,并整理出一份公式大全,帮助您更好地掌握这门学科。

一、高中数学必修二知识点总结1.函数概念与性质- 函数的定义、表示方法、分类- 函数的性质(单调性、奇偶性、周期性、对称性等)- 反函数及其求法2.指数函数与对数函数- 指数函数的定义、性质、图像- 对数函数的定义、性质、图像- 指数方程与对数方程的解法3.三角函数- 角度制与弧度制互换- 三角函数的定义、图像、性质- 三角恒等变换- 三角方程与不等式的解法4.数列- 等差数列与等比数列的定义、性质、求和公式- 数列的通项公式与求和公式- 数列的极限5.平面向量- 向量的定义、表示、线性运算- 向量的坐标表示与几何表示- 向量的数量积与垂直关系- 向量的平行四边形法则与三角形法则6.解析几何- 直线方程的求法(点斜式、截距式、一般式等)- 圆的方程与性质- 常见图形的面积、周长、体积计算二、高中数学必修二公式大全1.函数类- y=f(x) 的反函数:y=f^(-1)(x)- 幂函数:y=x^a(a 为常数)- 指数函数:y=a^x(a>0 且a≠1)- 对数函数:y=log_a(x)(a>0 且a≠1)2.三角函数类- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 三角恒等变换公式(和差公式、倍角公式、半角公式等)3.数列类- 等差数列通项公式:a_n=a_1+(n-1)d- 等差数列求和公式:S_n=n/2(a_1+a_n)- 等比数列通项公式:a_n=a_1q^(n-1)- 等比数列求和公式:S_n=a_1(1-q^n)/(1-q)(q≠1)4.向量类- 向量加法:A+B=(a_x+b_x, a_y+b_y)- 向量减法:A-B=(a_x-b_x, a_y-b_y)- 向量数量积:A·B=a_xb_x+a_yb_y- 向量模长:|A|=√(a_x^2+a_y^2)5.解析几何类- 点斜式直线方程:y-y_1=k(x-x_1)- 截距式直线方程:x/a+y/b=1- 圆的标准方程:(x-a)^2+(y-b)^2=r^2总结:本文为您详细总结了高中数学必修二的知识点,并整理了一份公式大全。

高一数学第二章知识点总结

高一数学第二章知识点总结

高一数学第二章知识点总结第二章是高一数学学习中的重要章节,主要包括平面向量、数列与数学归纳法、不等式及其应用三个部分。

本文将对这些知识点进行总结和归纳,帮助同学们复习和巩固相关概念和方法。

一、平面向量平面向量是高中数学中的重要内容,掌握平面向量的相关概念和运算法则对于后续的学习非常重要。

在这一章节中,我们主要了解了平面向量的定义、加法、数乘以及模长的计算方法。

1. 平面向量的定义平面向量是具有大小和方向的量,通常用有向线段来表示。

平面向量的起点是固定的,终点可以在平面上任意取值。

2. 平面向量的加法平面向量的加法满足三角法则,即将两个向量的起点连接起来,然后从第一个向量的终点指向第二个向量的终点,这个指向的向量就是它们的和向量。

3. 平面向量的数乘平面向量的数乘指的是将向量的长度进行伸缩,即将向量的每一个分量都乘以一个实数。

4. 平面向量的模长平面向量的模长表示向量的长度,可以通过坐标值计算得出,也可以通过勾股定理来计算。

二、数列与数学归纳法数列与数学归纳法是数学中常见的概念和方法,能够帮助我们描述和研究一系列数字的规律和性质。

在这一章节中,我们主要了解了数列的定义、数列的通项公式、数列的求和及数学归纳法的应用。

1. 数列的定义数列是按照一定顺序排列的一组数字,可以用通项公式来表示。

常见的数列有等差数列和等比数列。

2. 数列的通项公式数列的通项公式是指可以通过一个公式来表示数列中任意一项与其序号之间的关系,从而求得数列中某一项的值。

3. 数列的求和通过计算数列中各项的和,我们可以得到数列的部分和或总和,这在解决实际问题时非常有用。

4. 数学归纳法的应用数学归纳法是证明数学命题的一种常用方法,通过证明当命题对某个整数成立时,它对这个整数的后续整数也成立,从而得出这个命题对所有正整数成立。

三、不等式及其应用不等式是数学中常见的比较关系,它在描述和研究问题时起着重要的作用。

在这一章节中,我们主要了解了不等式的性质、不等式的解集求解方法以及利用不等式解决实际问题的应用。

高中数学必修2知识点总结归纳

高中数学必修2知识点总结归纳

高中数学必修2知识点一:直线方程1、直线的斜率 过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 且tan k α=,当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当 90=α时,k 不存在。

2、直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= ⑤一般式:0=++C By Ax (A ,B 不全为0)3、平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线可设为:000=++C y B x A (C 为常数)4、当0:1111=++C y B x A l ,0:2222=++C y B x A l 时,,//2121k k l l =⇔或212211C C B A B A ≠=(01221=-B A B A ) 12121-=⇔⊥k k l l 或 02121=+B B A A5、两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的一组解。

6、两点间距离公式:设1122(,),A x y B x y,()是平面直角坐标系中的两个点,则||AB7、点到直线距离公式:点()00,y x P 到直线0:1=++C By Ax l 的距离2200B A CBy Ax d +++=8、两平行直线距离公式:2221B A C C d +-=二:圆的方程1、圆的方程(1)标准方程222)(r b y a x =-+-)(,圆心),(b a ,半径为r ;(2)一般方程022=++++F Ey Dx y x当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为:F E D r 42122-+= 2、求圆方程的方法:若利用圆的标准方程,需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

高中数学必修2知识点总结

高中数学必修2知识点总结

高中数学必修2知识点总结高中数学必修二知识点总结1. 一元二次方程一元二次方程的标准形式为ax^2+bx+c=0,并且a≠0。

求解一元二次方程的方法是配方法、公式法和因式分解法。

2. 三角函数常用的三角函数有正弦函数、余弦函数、正切函数和余切函数。

三角函数的定义域和值域以及其性质和图像都是必须掌握的。

3. 三角恒等式包括正弦、余弦和正切等三角函数的恒等式,例如正弦函数的和差公式、倍角公式、半角公式等。

三角恒等式是解决三角函数问题的重要工具。

4. 二次函数的图像和性质二次函数的标准形式为y=ax^2+bx+c,其中a≠0。

二次函数的图像是一个开口朝上或开口朝下的抛物线,其对称轴为x=-b/2a。

必须掌握二次函数的顶点、零点、对称轴等性质,这些性质是判断图像和求解问题的重要方法。

5. 平面向量平面向量包括向量的定义、向量之间的运算、向量的坐标表示等。

向量的运算包括向量的加法、减法、数量积和向量积。

向量的坐标表示是将向量投影在坐标轴上来表示的。

6. 点、直线、平面和空间几何点、直线、平面和空间几何的基本概念和性质是必须掌握的,例如点的坐标、直线的一般式方程、平面的法向量等。

此外,必须掌握两条直线和两个平面之间的位置关系、垂直平分线以及中垂线等概念。

7. 三视图和轴测图三视图是立体图形的三个视图,包括正视图、左视图和俯视图。

轴测图是用于三维图形表示的一种图形表示方法,包括斜二测和等轴测。

8. 四边形和圆的性质四边形和圆的主要性质包括四边形内角和定理、对角线定理、圆的周长和面积计算公式、圆内部和圆外部点与圆的位置关系等。

9. 三角形和圆的性质三角形和圆的主要性质包括三角形内角和、三角形的面积计算公式、圆心角和圆弧、圆的切线和切点等。

10. 函数及其应用函数的概念和图像、定义域和值域、单调性等性质必须掌握。

函数的应用包括函数的极值、最大值和最小值等问题。

以上是高中数学必修二知识点的总结,这些知识点是高中数学教育的重点和难点,学好这些知识点对于提高数学成绩和发展数学思维能力都具有重要的意义。

高中数学必修2知识点总结

高中数学必修2知识点总结

高中数学必修2知识点总结一、函数基础1. 函数的概念- 定义:一个从非空数集A到非空数集B的映射,记为y=f(x)。

- 函数的表示:解析式、图象、表格。

- 函数的符号:f(x),x∈A。

2. 函数的性质- 单调性:函数在某个区间内,随着x的增加,y值单调递增或递减。

- 奇偶性:f(-x)=f(x)为偶函数,f(-x)=-f(x)为奇函数。

- 周期性:存在正数T,使得f(x+T)=f(x)。

3. 函数的运算- 四则运算:两个函数的和、差、积、商。

- 复合函数:f(g(x))。

- 反函数:满足f(f^(-1)(x))=x的函数。

4. 基本初等函数- 幂函数:y=x^a,a∈R。

- 指数函数:y=a^x,a>0,a≠1。

- 对数函数:y=log_a(x),a>0,a≠1。

- 三角函数:正弦、余弦、正切等。

二、三角函数1. 三角函数的定义- 正弦、余弦、正切函数的定义。

- 弧度制与角度制的转换。

2. 三角函数的图象与性质- 周期性、单调性。

- 最大值、最小值。

- 特殊角的三角函数值。

3. 三角函数的运算- 三角函数的和差公式。

- 二倍角公式、半角公式。

- 积化和差与和差化积公式。

4. 解三角形- 正弦定理、余弦定理。

- 三角形面积公式。

三、数列1. 数列的概念- 定义:按照一定顺序排列的一列数。

- 有穷数列与无穷数列。

2. 等差数列与等比数列- 定义与通项公式。

- 求和公式。

- 性质与判定。

3. 数列的极限- 极限的概念。

- 极限的性质。

- 极限的运算法则。

四、解析几何1. 平面直角坐标系- 点的坐标。

- 距离公式、中点坐标公式。

2. 直线的方程- 点斜式、斜截式、一般式。

- 两直线的交点、平行与垂直。

3. 圆的方程- 标准方程。

- 一般方程。

4. 圆锥曲线- 椭圆、双曲线、抛物线的方程与性质。

五、概率与统计1. 随机事件与概率- 事件的概率定义。

- 条件概率、独立事件。

2. 随机变量及其分布- 离散型随机变量与连续型随机变量。

高一数学第二节知识点

高一数学第二节知识点

高一数学第二节知识点在高一数学的学习中,数学的第二节知识点是我们学习数学的基础。

本文将对高一数学第二节知识点进行探讨和总结,以帮助我们更好地理解和掌握这些知识。

1. 有理数与无理数在数学中,我们将数字分为有理数与无理数。

有理数是可以表示为两个整数的比值,包括整数、分数和小数。

无理数是不能表示为两个整数的比值,如π 和根号2。

有理数与无理数的概念在高中数学中非常重要,我们需要了解它们的性质和运算规律。

2. 实数的区间表示方法实数有无数个,为了方便表示和比较实数,我们使用区间表示方法。

例如,开区间 (a, b) 表示所有大于 a 且小于 b 的实数;闭区间 [a, b] 表示所有大于等于 a 且小于等于 b 的实数。

我们可以利用区间表示法来表示实数集合,以便更好地进行运算和推理。

3. 幂的性质幂的性质在高中数学中占据重要地位,它们有助于简化计算和解决复杂的问题。

幂的性质包括:指数相乘等于底数不变且指数相加,指数相除等于底数不变且指数相减。

我们需要熟练掌握这些性质,并能够灵活运用它们解决实际问题。

4. 实数的绝对值与模实数的绝对值表示该实数到原点的距离,它的性质包括:非负性、正定性和三角不等式。

绝对值的概念在解决绝对值方程和不等式时非常重要。

模是实数的绝对值的推广,它是一个复数的长度或大小。

我们需要了解实数绝对值和复数模的定义和性质,并能够灵活应用它们解决问题。

5. 数列与等差数列数列是按一定规律排列的一组数,等差数列是其中相邻两项之差相等的数列。

数列与等差数列在高中数学中经常出现,我们需要能够根据数列的定义和性质解决数列的各种问题。

等差数列的通项公式和求和公式是我们需要掌握的关键知识。

6. 数列与等比数列与等差数列类似,等比数列是其中相邻两项之比相等的数列。

等比数列在高中数学中也有重要的应用,如复利问题和指数函数的研究。

我们需要了解等比数列的定义和性质,并能够根据实际问题应用等比数列来解决各种问题。

高中数学必修2知识点总结归纳

高中数学必修2知识点总结归纳

高中数学必修2知识点总结归纳
1、二次函数及其图像的性质:二次函数的定义,形式,及其未知量的解析解,二次
函数图像的性质,凹凸性和极值点位置,及其判定方法。

2、三角函数及其图形:正弦函数、余弦函数、正切函数的定义,平面直角坐标系下
的正弦余弦正切函数图像的性质及其判定方法,正弦定理,余弦定理,根据图形求三角函
数值,及其应用。

3、小数和分数的运算:常用的小数转分数的方法,小数和分数的加减乘除运算,及
其规律性的分析。

4、指数及对数:指数的定义,特殊指数的运算及其规律性,指数函数的图像及性质,对数的定义及其特殊性质,对数函数及其图形性质,及其一元二次多项式的变换。

5、多项式及其因子分解:多项式的基本定义,及其分母和分子的几何概念,多项式
的因子分解,及其唯一性的判断。

6、不定积分及其应用:不定积分的定义及其特殊性,常用的不定积分计算方法,及
其实际应用,求积分近似值的方法,以及实际的应用案例。

7、应用题中的数字变换:应用题中常见的实数变化,及其最高次数的判定,同时变
化的最小公倍数及其关系,求解应用题中特殊方程组的方法,及其实际案例。

8、圆的参数方程及极坐标方程:圆的定义,参数方程与极坐标方程的转换,园的性质,及其圆上点的定位方法,过定点且与圆的关系及应用。

9、高等函数及应用:高次函数的定义,及其图像的特点,高次函数的求解及其实际
应用,对数及指数函数的求解及应用,以及多项式、二次曲线等拟合应用。

10、三角型函数与几何图形的关系:三角型函数的定义及其特殊性质,三角型函数的
变换及其图形改变,及其三角函数与几何图形联系的应用。

高中数学必修2知识点归纳

高中数学必修2知识点归纳

--必修2知识点归纳第一章 空间几何体1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

简单组合体的构成形式:一种是由简单几何体拼接而成,例如课本图1.1-11中(1)(2)物体表示的几何体;一种是由简单几何体截去或挖去一部分而成,例如课本图1.1-11中(3⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

1、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。

(1)定义:正视图:光线从几何体的前面向后面正投影得到的投影图;侧视图:光线从几何体的左面向右面正投影得到的投影图; 俯视图:光线从几何体的上面向下面正投影得到的投影图。

几何体的正视图、侧视图和俯视图统称为几何体的三视图。

(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''x O y ∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半; 一般地,原图的面积是其直观图面积的S 原图直观=4、空间几何体的表面积与体积 ⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l r S ⋅⋅=π侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体;()13V h S S =+下台体上 ⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。

高中数学必修知识点总结:第二章_直线与平面的位置关系

高中数学必修知识点总结:第二章_直线与平面的位置关系

第二章直线与平面的位置关系1. 三个公理:<1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内公理1作用:判断直线是否在平面内<2)公理2:过不在一条直线上的三点,有且只有一个平面。

公理2作用:确定一个平面的依据。

<3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

公理3作用:判定两个平面是否相交的依据2.空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。

3.公理4:平行于同一条直线的两条直线互相平行。

公理4作用:判断空间两条直线平行的依据。

4.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补5.注意点:① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上;b5E2RGbCAP② 两条异面直线所成的角θ∈(0, >;③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

6.直线与平面有三种位置关系:<1)直线在平面内——有无数个公共点<2)直线与平面相交——有且只有一个公共点<3)直线在平面平行——没有公共点7.直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

8.两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

9.定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行则线线平行。

作用:利用该定理可解决直线间的平行问题。

10.定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

高中数学必修2知识点归纳

高中数学必修2知识点归纳

高中数学必修2知识点归纳1、函数:函数就是定义在一个一个自变量之间的确定的关系,可以用一条曲线或者说一个方程表示的。

函数的概念是数学的基础,除了最简单的对称函数外,函数还可以是多项式函数、参数方程以及三角函数等多种类型。

2、直线:直线就是两个点连接而成的一维几何图形,它可以唯一确定一条直线。

在高中数学中,通过两点式我们可以表示方程,通过斜截式我们可以求出斜率。

四边形或者多边形的边就是一条直线。

3、圆:圆是椭圆的特例,半径r表示圆心到圆上任一点的距离,周长l表示圆的外接正多边形的边的长度,面积s表示圆的外接正多边形的面积。

以圆心为终点,以半径为边长的等腰三角形称为直径等腰三角形。

4、椭圆:椭圆是一种几何图形,它是一条穿过两个特殊点的椭圆形曲线,内切圆的弦长为短轴,外接圆的弦长为长轴。

椭圆的面积公式是s=(ab)π,其中a表示长轴,b表示短轴,π大约等于3.14。

5、抛物线:抛物线是二次函数的一类,它是一条开启或关闭的凹凸曲线,形状像箭头或者翅膀,舍入时具有“s”形。

它的一般方程为y=ax2+bx+c,交点为顶点,抛物线的突出可以用幂函数或者等比数列来表示。

6、向量:向量是固定长度和方向的线段,把向量看做一个矢量,可以用矢量和能够推导出向量或者向量的方程来构造。

向量可以表示一个物体在某个特定时刻的状态,也可以用于计算数量积或者力学加速度等。

7、平面向量:平面向量是一类几何性质,它指向一个平面上的点,标识某种分数形式。

平面向量可以用来表示平面之间的距离、某种物理量或者在空间中的位置。

向量的线积表示的是平面的投影距离,而其向量积表示的是两个向量之间的夹角。

8、误差:误差是指测量结果与标准值之间的差距,有时也称为模糊度、精度的偏差等。

它的分类有绝对误差和相对误差两类。

绝对误差是指实际测得的数与真值之间的差距,而相对误差则可以通过变化百分比来表示实际测得与真值之间的相对关系。

高中数学必修2知识点总结02点直线与平面的位置关系

高中数学必修2知识点总结02点直线与平面的位置关系

高中数学必修2知识点总结02点、直线、平面的位置关系点、直线、平面是构成空间几何体基本元素,研究它们之间的性质以及相互之间的位置关系,是研究空间几何体性质的一般方法。

教材要求:理解空间中点、直线、平面的位置关系;学会用数学语言表述有关平行、垂直的判定与性质,并对某些结论进行论证;掌握直线和平面平行的判定定理和性质定理;理解直线和平面垂直的概念;掌握直线和平面垂直的判定定理;掌握三垂线定理及其逆定理等一、直线与平面位置关系高考考试内容及考试要求:考试内容:1、平面及其基本性质;2、平行直线;对应边分别平行的角;异面直线所成的角;异面直线的公垂线;异面直线的距离;3、直线和平面平行的判定与性质;直线和平面垂直的判定与性质;点到平面的距离;斜线在平面上的射影;直线和平面所成的角;三垂线定理及其逆定理;4、平行平面的判定与性质;平行平面间的距离;二面角及其平面角;两个平面垂直的判定与性质;考试要求:1、掌握平面的基本性质;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系。

2、掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离;3、掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理和性质定理;掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念掌握三垂线定理及其逆定理;4、掌握两个平面平行的判定定理和性质定理,掌握二面角、二面角的平面角、两个平行平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。

二、空间中的平行关系课标要求:1.平面的基本性质与推论借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理:◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内;◆公理2:过不在一条直线上的三点,有且只有一个平面;◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;◆公理4:平行于同一条直线的两条直线平行;◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。

必修二数学知识点归纳

必修二数学知识点归纳

必修二数学知识点归纳高中数学必修二的内容主要包括立体几何初步、平面解析几何初步。

以下是对这些知识点的详细归纳:一、立体几何初步1、空间几何体多面体:由若干个平面多边形围成的几何体叫做多面体。

旋转体:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面,封闭的旋转面围成的几何体叫作旋转体。

2、棱柱、棱锥、棱台棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

3、圆柱、圆锥、圆台、球圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体叫做圆锥。

圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。

球:以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球体,简称球。

4、中心投影与平行投影中心投影:光由一点向外散射形成的投影,叫做中心投影。

平行投影:在一束平行光线照射下形成的投影,叫做平行投影。

5、直观图斜二测画法:建立直角坐标系,在已知水平放置的平面图形中取互相垂直的 x 轴和 y 轴,两轴相交于点 O。

画直观图时,把它们画成对应的 x'轴和 y'轴,两轴交于点 O',且使∠x'O'y' = 45°(或 135°),它们确定的平面表示水平平面。

已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x'轴或 y'轴的线段。

已知图形中平行于 x 轴的线段,在直观图中长度不变;平行于 y 轴的线段,长度变为原来的一半。

6、三视图正视图:光线从几何体的前面向后面正投影得到的投影图。

高考数学高中数学知识点第二章 第二节

高考数学高中数学知识点第二章 第二节

第二节函数的单调性与最值1.函数的单调性(1)增函数、减函数自左向右看图象是上升的自左向右看图象是下降的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.2.函数的最值1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(2)具有相同单调性的函数的和、差、积、商函数还具有相同的单调性.( ) (3)若定义在R 上的函数f (x )有f (-1)<f (3),则函数f (x )在R 上为增函数.( )(4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(6)所有的单调函数都有最值.( )答案:(1)× (2)× (3)× (4)× (5)× (6)× 2.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数. 3.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象(图略)可知函数的单调减区间是[1,2].4.若函数y =x 2-2ax +1在(-∞,2]上是减函数,则实数a 的取值范围是( ) A .(-∞,-2] B .[-2,+∞) C .[2,+∞)D .(-∞,2]解析:选C 函数y =x 2-2ax +1图象的对称轴方程为x =a ,要使该函数在(-∞,2]上是减函数,则需满足a ≥2.5.设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.解析:由图可知函数的增区间为[-1,1]和[5,7]. 答案:[-1,1]和[5,7]6.函数f (x )=2x -1在[-2,0]上的最大值与最小值之差为________. 解析:易知f (x )在[-2,0]上是减函数,∴f (x )max -f (x )min =f (-2)-f (0)=-23-(-2)=43.答案:43考点一 确定函数的单调性(区间) (重点保分型考点——师生共研)1.试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 解:法一:设-1<x 1<x 2<1, f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1, 则f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1).由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2. 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增. 2.求函数f (x )=-x 2+2|x |+1的单调区间.解:易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).[解题师说]1.掌握确定函数单调性(区间)的3种常用方法(1)定义法:一般步骤为设元→作差→变形→判断符号→得出结论.其关键是作差变形,为了便于判断差的符号,通常将差变成因式连乘(除)或平方和的形式,再结合变量的范围、假定的两个自变量的大小关系及不等式的性质进行判断.(如典题领悟第1题)(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性确定它的单调性.(如典题领悟第2题)(3)导数法:利用导数取值的正负确定函数的单调性.(如典题领悟第1题) 2.熟记函数单调性的4个常用结论(1)若f (x ),g (x )均是区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数; (2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (3)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反; (4)函数y =f (x )(f (x )≥0)在公共定义域内与y =f (x )的单调性相同. 3.谨防3种失误(1)单调区间是定义域的子集,故求单调区间应以“定义域优先”为原则.(如冲关演练第1题)(2)单调区间只能用区间表示,不能用集合或不等式表示.(3)图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.[冲关演练]1.(2017·全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)解析:选D 由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).2.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x -xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调,对于f (x )=1x -x ,因为y =1x 与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.3.已知函数y =1x -1,那么( ) A .函数的单调递减区间为(-∞,1)和(1,+∞) B .函数的单调递减区间为(-∞,1)∪(1,+∞) C .函数的单调递增区间为(-∞,1)和(1,+∞) D .函数的单调递增区间为(-∞,1)∪(1,+∞) 解析:选A 函数y =1x -1可看作是由y =1x 向右平移1个单位长度得到的,∵y =1x 在(-∞,0)和(0,+∞)上单调递减,∴y =1x -1在(-∞,1)和(1,+∞)上单调递减,∴函数y =1x -1的单调递减区间为(-∞,1)和(1,+∞),故选A. 4.判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性. 解:设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+ax 2=x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax (a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数. 考点二 求函数的值域(最值) (基础送分型考点——自主练透)[考什么·怎么考]1.函数y =x 2-1x 2+1的值域为________.解析:由y =x 2-1x 2+1,可得x 2=1+y1-y .由x 2≥0,知1+y1-y ≥0,解得-1≤y <1,故所求函数的值域为[-1,1). 答案:[-1,1)2.若函数f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. 解析:∵f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上是增函数, ∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.答案:152[方法点拨](1)先进行转化与分离,再利用函数的性质(如x 2≥0,e x >0等)求解即可.(2)如果函数y =f (x )在区间[a ,b ]上单调递增,那么f (x )在区间端点处取最值;如果函数y =f (x )在区间[a ,b ]上单调递增,在区间[b ,c ]上单调递减,那么y max =f (b );如果函数y =f (x )在区间[a ,b ]上单调递减,在区间[b ,c ]上单调递增,那么y min =f (b ),从而得出值域.方法(二) 数形结合法求函数的值域(最值) 3.函数y =|x +1|+|x -2|的值域为________. 解析:函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). 答案:[3,+∞)4.设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是________.解析:因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1.画出函数y =f (x )的大致图象如图所示,观察图象可知,当纵坐标在[0,+∞)上时,横坐标在(-∞,-1]∪[0,+∞)上变化.而f (x )的值域为[-1,+∞),f (g (x ))的值域为[0,+∞),因为g (x )是二次函数, 所以g (x )的值域是[0,+∞). 答案:[0,+∞) [方法点拨]先作出函数的图象,再观察其最高点或最低点,求出值域或最值. 方法(三) 换元法求函数的值域(最值) 5.函数y =x +1-x 2的最大值为________. 解析:由1-x 2≥0,可得-1≤x ≤1. 可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin ⎝⎛⎭⎫θ+π4,θ∈[]0,π, 所以-1≤y ≤2,故原函数的最大值为 2. 答案:[2]6.已知函数f (x )的值域为⎣⎡⎦⎤38,49,则函数g (x )=f (x )+1-2f (x )的值域为________. 解析:∵38≤f (x )≤49,∴13≤1-2f (x )≤12. 令t =1-2f (x ),则f (x )=12(1-t 2)⎝⎛⎭⎫13≤t ≤12, 令y =g (x ),则y =12(1-t 2)+t ,即y =-12(t -1)2+1⎝⎛⎭⎫13≤t ≤12. ∴当t =13时,y 有最小值79;当t =12时,y 有最大值78.∴g (x )的值域为⎣⎡⎦⎤79,78. 答案:⎣⎡⎦⎤79,78 [方法点拨]对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求值域或最值;换元法求值域时,一定要注意新元的范围对值域的影响.方法(四) 分离常数法求函数的值域(最值) 7.函数y =3x +1x -2的值域为________. 解析:y =3x +1x -2=3(x -2)+7x -2=3+7x -2,因为7x -2≠0,所以3+7x -2≠3, 所以函数y =3x +1x -2的值域为{y |y ∈R 且y ≠3}. 答案:{y |y ∈R 且y ≠3}8.当-3≤x ≤-1时,函数y =5x -14x +2的最小值为________.解析:由y =5x -14x +2,可得y =54-74(2x +1).∵-3≤x ≤-1,∴720≤-74(2x +1)≤74,∴85≤y ≤3 ∴所求函数的最小值为85答案:85[方法点拨]通过配凑函数解析式的分子,把函数分离成常数和分式的形式,而此式的分式,只有分母中含有变量,进而可利用函数性质确定其值域.[怎样快解·准解]求函数值域(最值)的类型及其方法(1)若所给函数为单调函数,可根据函数的单调性求值域;当函数解析式中出现偶次方幂、绝对值等时,可利用函数的性质(如x 2≥0,|x |≥0,x ≥0,e x >0等)确定函数的值域或最值.(2)若函数解析式的几何意义较明显(如距离、斜率等)或函数图象易作出,可用数形结合法求函数的值域或最值.(3)形如求y =ax +b +(cx +d )(ac ≠0)的函数的值域或最值,常用代数换元法、三角换元法结合题目条件将原函数转化为熟悉的函数,再利用函数的相关性质求解.(4)形如求y =cx +dax +b(ac ≠0)的函数的值域或最值常用分离常数法求解. 另外,基本不等式法、导数法求函数值域或最值也是常用方法,在后面章节中有重点讲述.考点三 函数单调性的应用 (题点多变型考点——追根溯源)角度(一) 比较函数值的大小1.(2018·哈尔滨联考)已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 因为f (x )的图象关于直线x =1对称,所以f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e), ∴b >a >c .[题型技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.角度(二) 解函数不等式2.定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f ⎝⎛⎭⎫12=0,则不等式f (log 19x )>0的解集为________.解析:∵y =f (x )是定义在R 上的奇函数,且y =f (x )在(0,+∞)上递增. ∴y =f (x )在(-∞,0)上也是增函数, 又f ⎝⎛⎭⎫12=0,知f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=0. 故原不等式f (log 19x )>0可化为f (log 19x )>f ⎝⎛⎭⎫12或f ⎝⎛⎭⎫-12<f (log 19x )<f ()0, ∴log 19x >12或-12<log 19x <0,解得0<x <13或1<x <3.所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <13或1<x <3. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <13或1<x <3[题型技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).角度(三) 利用单调性求参数的取值范围(或值)3.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12 B.⎣⎡⎦⎤14,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎭⎫12,1解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减, 故有⎩⎪⎨⎪⎧0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12.[题型技法] 利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题“根”探求]对于求解此类有关函数单调性应用的题目,其通用的方法是利用转化思想解题,其思维流程是:1.已知函数f (x )是定义在(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3,所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞)2.已知函数f (x )=x |2x -a |(a >0)在区间[2,4]上单调递减,则实数a 的值是________.解析:f (x )=x |2x -a |=⎩⎨⎧x (2x -a ),x >a 2,-x (2x -a ),x ≤a2(a >0),作出函数图象(图略)可得该函数的递减区间是⎣⎡⎦⎤a 4,a2,所以⎩⎨⎧a4≤2,a2≥4,解得a =8.答案:8(一)普通高中适用作业A 级——基础小题练熟练快1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =⎝⎛⎭⎫12xD .y =x +1x解析:选A 函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A.⎝⎛⎭⎫-14,+∞B.⎣⎡⎭⎫-14,+∞ C.⎣⎡⎭⎫-14,0 D.⎣⎡⎦⎤-14,0 解析:选D 当a =0时,f (x )=2x -3在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a , 因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综上,实数a 的取值范围是⎣⎡⎦⎤-14,0. 3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13. 所以0≤2x -1<13,解得12≤x <23.4.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( ) A .(-∞,0)B.⎣⎡⎦⎤0,12C .[0,+∞)D.⎝⎛⎭⎫12,+∞ 解析:选B y =|x |(1-x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0,-x (1-x ),x <0, =⎩⎪⎨⎪⎧-x 2+x ,x ≥0,x 2-x ,x <0, =⎩⎨⎧-⎝⎛⎭⎫x -122+14,x ≥0,⎝⎛⎭⎫x -122-14,x <0.画出函数的大致图象如图所示. 由图易知原函数在⎣⎡⎦⎤0,12上单调递增. 5.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)解析:选A 因为f (x )是偶函数, 所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数, 所以f (π)>f (3)>f (2), 即f (π)>f (-3)>f (-2). 6.已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0;当x 2∈(2,+∞)时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0.7.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:28.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)9.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数, ∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:410.给定函数:①y =x 12;②y =log 12(x +1);③y =|x -1|;④y =2x +1,其中在区间(0,1)上单调递减的函数序号是________.解析:①y =x 12在(0,1)上递增;②因为t =x +1在(0,1)上递增,且0<12<1,故y =log 12(x+1)在(0,1)上递减;③结合函数图象可知y =|x -1|在(0,1)上递减;④因为u =x +1在(0,1)上递增,且2>1,故y =2x+1在(0,1)上递增,故在区间(0,1)上单调递减的函数序号是②③.答案:②③B 级——中档题目练通抓牢1.若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均为增函数,则实数a 的取值范围是( )A.⎣⎡⎦⎤-113,-3 B .[-6,-4] C.[]-3,-22D.[]-4,-3解析:选B 由于f (x )为R 上的偶函数,因此只需考虑函数f (x )在(0,+∞)上的单调性即可.由题意知函数f (x )在[3,+∞)上为增函数,在[1,2]上为减函数,故-a2∈[2,3],即a∈[-6,-4].2.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).3.(2018·河南平顶山一模)已知f (x )是定义在(0,+∞)上的函数.对任意两个不相等的正数x 1,x 2,都有x 2f (x 1)-x 1f (x 2)x 1-x 2>0,记a =f (30.2)30.2,b =f (0.32)0.32,c =f (log 25)log 25,则a ,b ,c 的大小关系为( )A .a <b <cB .b <a <cC .c <a <bD .c <b <a解析:选B 对任意两个不相等的正数x 1,x 2,不妨设x 1>x 2, ∵x 2f (x 1)-x 1f (x 2)x 1-x 2>0,∴x 2f (x 1)-x 1f (x 2)>0, ∴x 2f (x 1)-x 1f (x 2)x 1x 2=f (x 1)x 1-f (x 2)x 2>0,即f (x 1)x 1>f (x 2)x 2, ∴f (x )x是(0,+∞)上的增函数. ∵1<30.2<30.5<2,0<0.32<1,log 25>2, ∴0.32<30.2<log 25, ∴b <a <c .4.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.作出函数图象如图所示,其递减区间是[0,1). 答案:[0,1) 5.若函数y =2x +kx -2与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是____________.解析:由于y =log 3(x -2)在(3,+∞)上为增函数,故函数y =2x +k x -2=2(x -2)+4+kx -2=2+4+k x -2在(3,+∞)上也是增函数,则有4+k <0,得k <-4. 答案:(-∞,-4)6.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上为增函数, ∴f ⎝⎛⎭⎫12=1a -2=12, f (2)=1a -12=2,解得a =25.7.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.解:(1)证明:当a =-2时,f (x )=x x +2. 任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1]. C 级——重难题目自主选做1.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)解析:选D ∵当x =0时,两个表达式对应的函数值都为0,∴函数的图象是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.2.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( ) A .[1,+∞) B .[0, 3 ] C .[0,1]D .[1, 3 ]解析:选D 因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x +32x -1,令g (x )=12x +32x-1(x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0,得1≤x ≤3,即函数f (x )x =12x -1+32x在区间[1, 3 ]上单调递减,故“缓增区间”I 为[1, 3 ].(二)重点高中适用作业A 级——保分题目巧做快做1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =⎝⎛⎭⎫12xD .y =x +1x解析:选A 函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)解析:选B 设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).3.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)解析:选A 因为f (x )是偶函数, 所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数, 所以f (π)>f (3)>f (2), 即f (π)>f (-3)>f (-2).4.已知定义在R 上的奇函数f (x )在[0,+∞)上单调递减,若f (x 2-2x +a )<f (x +1)对任意的x ∈[-1,2]恒成立,则实数a 的取值范围为( )A.⎝⎛⎭⎫-∞,134 B .(-∞,-3)C .(-3,+∞)D.⎝⎛⎭⎫134,+∞ 解析:选D 依题意得f (x )在R 上是减函数,所以f (x 2-2x +a )<f (x +1)对任意的x ∈[-1,2]恒成立,等价于x 2-2x +a >x +1对任意的x ∈[-1,2]恒成立,等价于a >-x 2+3x +1对任意的x ∈[-1,2]恒成立.设g (x )=-x 2+3x +1(-1≤x ≤2),则g (x )=-⎝⎛⎭⎫x -322+134(-1≤x ≤2),当x =32时,g (x )取得最大值,且g (x )max =g ⎝⎛⎭⎫32=134,因此a >134,故选D. 5.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.因为f (x )=x 3-2,f (x )=x -2在定义域内都为增函数, 且f (1)<f (2),所以f (x )的最大值为f (2)=23-2=6.6.(2018·安徽合肥模拟)已知函数f (x )=(x 2-2x )sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,则M +m =________.解析:由f (x )=(x 2-2x )sin(x -1)+x +1令t =x -1,则t ∈[-2,2],则y =(t 2-1)sin t +t +2,t ∈[-2,2].记g (t )=(t 2-1)sin t +t +2,则函数y =g (t )-2=(t 2-1)sin t +t 是奇函数.由已知得y =g (t )-2的最大值为M -2,最小值为m -2,所以M -2+(m -2)=0,即M +m =4.答案:47.已知函数f (x )=⎩⎪⎨⎪⎧e x-k ,x ≤0,(1-k )x +k ,x >0是R 上的增函数,则实数k 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧e 0-k ≤k ,1-k >0,解得12≤k <1.答案:⎣⎡⎭⎫12,1 8.若函数y =2x +kx -2与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是____________.解析:由于y =log 3(x -2)在(3,+∞)上为增函数,故函数y =2x +k x -2=2(x -2)+4+kx -2=2+4+k x -2在(3,+∞)上也是增函数,则有4+k <0,得k <-4.答案:(-∞,-4)9.已知函数f (x )=1a -1x (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), ∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上为增函数, ∴f ⎝⎛⎭⎫12=1a -2=12, f (2)=1a -12=2,解得a =25.10.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:当a =-2时,f (x )=x x +2. 任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1]. B 级——拔高题目稳做准做1.函数y =f (x )(x ∈R)的图象如图所示,则函数g (x )=f (log a x )(0<a <1)的单调递减区间是( )A.⎣⎡⎦⎤0,12 B .[a ,1] C .(-∞,0)∪⎣⎡⎭⎫12,+∞ D .[a ,a +1 ]解析:选B 由图象知f (x )在(-∞,0]和⎣⎡⎭⎫12,+∞上单调递减,而在⎣⎡⎦⎤0,12上单调递增.又因为当0<a <1时,y =log a x 为(0,+∞)上的减函数,所以要使g (x )=f (log a x )单调递减,则需log a x ∈⎣⎡⎦⎤0,12,即0≤log a x ≤12, 解得x ∈[a ,1].2.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( ) A .[1,+∞)B .[0, 3 ]C .[0,1]D .[1, 3 ]解析:选D 因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x +32x -1,令g (x )=12x +32x-1(x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x在区间[1, 3 ]上单调递减,故“缓增区间”I 为[1, 3 ].3.设函数f (x )=⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧ x 2,x >1,0,x =1,-x 2,x <1.作出函数图象如图所示,则其递减区间是[0,1).答案:[0,1)4.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4x +5,x ≤2,log 12(x -1)+1,x >2,若f (a 2-3a )>f (2a -6),则实数a 的取值范围是________.解析:因为f 1(x )=x 2-4x +5在(-∞,2]上为减函数,f 2(x )=log 12(x -1)+1在(2,+∞)上为减函数. 又f 1(2)=f 2(2)=1,所以函数f (x )在R 上为单调递减函数,所以f (a 2-3a )>f (2a -6),则a 2-3a <2a -6⇒a 2-5a +6<0,解得2<a <3.答案:(2,3)5.已知函数f (x )=2x -a x 的定义域为(0,1](a 为实数).(1)当a =1时,求函数y =f (x )的值域;(2)求函数y =f (x )在区间(0,1]上的最大值及最小值,并求当函数f (x )取得最值时x 的值.解:(1)当a =1时,f (x )=2x -1x ,任取0<x 2<x 1≤1,则f (x 1)-f (x 2)=2(x 1-x 2)-⎝⎛⎭⎫1x 1-1x 2 =(x 1-x 2)⎝⎛⎭⎫2+1x 1x 2.∵0<x 2<x 1≤1,∴x 1-x 2>0,x 1x 2>0.∴f (x 1)>f (x 2),∴f (x )在(0,1]上单调递增,当x =1时取得最大值1,∴f (x )的值域为(-∞,1].(2)当a ≥0时,y =f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值2-a ;当a <0时,f (x )=2x +-a x ,当 -a 2≥1,即a ∈(-∞,-2]时,y =f (x )在(0,1]上单调递减,无最大值,当x =1时取得最小值2-a ;当 -a 2<1,即a ∈(-2,0)时,y =f (x )在⎝⎛⎦⎤0, -a 2上单调递减,在⎣⎡⎦⎤ -a 2,1上单调递增,无最大值,当x = -a 2时取得最小值2-2a . 6.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)证明:f (x )为单调递减函数.(2)若f (3)=-1,求f (x )在[2,9]上的最小值.解:(1)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0, 因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(2)因为f (x )在(0,+∞)上是单调递减函数,所以f (x )在[2,9]上的最小值为f (9). 由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.所以f (x )在[2,9]上的最小值为-2. 古今中外有学问的人,有成就的人,总是十分注意积累的。

人教版高中数学知识点总结(二篇)

人教版高中数学知识点总结(二篇)

人教版高中数学知识点总结一、函数与方程1. 函数的定义与性质:函数的概念、关系与函数、函数的特性、函数的分类、函数的运算、函数的图象。

2. 一次函数:函数的表达式与图象、函数的增减性与单调性、零点与根的概念、函数的解与方程。

3. 二次函数:函数的表达式与图象、函数的增减性与单调性、函数的最值与极值、函数的解与方程。

4. 幂函数与指数函数:函数的定义域与值域、函数的图象与性质、函数的运算与应用。

二、数列与数列的表示方法1. 等差数列:等差数列的概念与特性、等差数列的通项公式、等差数列的前n项和、等差数列的应用。

2. 等比数列:等比数列的概念与特性、等比数列的通项公式、等比数列的前n项和、等比数列的应用。

3. 通项公式与通项公式的逆向推导:等差数列与等比数列的通项公式的推导与应用。

三、平面坐标系与直线1. 平面直角坐标系:直角坐标系的概念、直角坐标系的运用及常用定理。

2. 直线的方程:直线的一般方程、直线的斜截式方程、直线的截距式方程、两直线的位置关系。

四、图形的变换1. 平移:图形的平移规律、平移的定义与性质、平移的向量表示。

2. 旋转:图形的旋转规律、旋转的定义与性质、旋转的向量表示。

3. 对称:图形的对称规律、对称的定义与性质、对称的向量表示。

五、三角函数1. 角与弧度:角的度量与单位、角的标准位置、弧度制与角度制的换算。

2. 正弦函数:正弦函数的定义与性质、正弦函数的图象与性质、正弦函数的应用。

3. 余弦函数:余弦函数的定义与性质、余弦函数的图象与性质、余弦函数的应用。

4. 正切函数:正切函数的定义与性质、正切函数的图象与性质、正切函数的应用。

六、解析几何1. 平面与空间几何:平面的点坐标与方程、平面的性质及应用、空间几何的概念与基本性质。

2. 平面图形:平面图形的概念与性质、平面图形的参数方程、平面图形的拟合。

3. 空间图形:立体图形的概念与性质、立体图形的参数方程、立体图形的拟合。

七、立体几何1. 空间中的位置关系:直线的位置关系、平面的位置关系、直线与平面的位置关系。

高中数学必修二知识点总结

高中数学必修二知识点总结

高中数学必修二知识点总结高中数学必修二知识点11、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径.2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.3、空间几何体的直观图——斜二测画法斜二测画法特点:原来与x轴平行的线段仍然与x平行且长度不变;原来与y轴平行的线段仍然与y平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式高中数学必修二知识点2直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.斜截式:,直线斜率为k,直线在y轴上的截距为b两点式:()直线两点,截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系()斜率为k的直线系:,直线过定点;()过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.高中数学必修二知识点3圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:它是判定两个平面相交的方法.它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.它可以判断点在直线上,即证若干个点共线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行高中数学必修二知识点4空间直线与直线之间的位置关系异面直线定义:不同在任何一个平面内的两条直线异面直线性质:既不平行,又不相交.异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:aαa∩α=Aaα(9)平面与平面之间的位置关系:平行——没有公共点;αβ相交——有一条公共直线.α∩β=b2、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)3、空间中的垂直问题(1)线线、面面、线面垂直的定义两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.(2)垂直关系的判定和性质定理线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.4、空间角问题(1)直线与直线所成的角两平行直线所成的角:规定为.两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.(2)直线和平面所成的角平面的平行线与平面所成的角:规定为.平面的垂线与平面所成的角:规定为.平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.(3)二面角和二面角的平面角二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角高中数学必修二知识点5解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.高中数学必修二知识点6数列(1)数列的概念和简单表示法了解数列的概念和几种简单的表示方法(列表、图象、通项公式).了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列理解等差数列、等比数列的概念.掌握等差数列、等比数列的通项公式与前项和公式.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.了解等差数列与一次函数、等比数列与指数函数的关系.。

高中高二数学的相关知识点总结(2篇)

高中高二数学的相关知识点总结(2篇)

高中高二数学的相关知识点总结复合函数定义域求函数的定义域主要应考虑以下几点:⑴当为整式或奇次根式时,R的值域;⑵当为偶次根式时,被开方数不小于0(即≥0);⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

⑹分段函数的定义域是各段上自变量的取值集合的并集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

⑽三角函数中的切割函数要注意对角变量的限制。

复合函数常见题型(ⅰ)已知f(____)定义域为A,求f[g(____)]的定义域:实质是已知g(____)的范围为A,以此求出____的范围。

(ⅱ)已知f[g(____)]定义域为B,求f(____)的定义域:实质是已知____的范围为B,以此求出g(____)的范围。

(ⅲ)已知f[g(____)]定义域为C,求f[h(____)]的定义域:实质是已知____的范围为C,以此先求出g(____)的范围(即f(____)的定义域);然后将其作为h(____)的范围,以此再求出____的范围。

高中高二数学的相关知识点总结(二)高中高二数学是数学学科的重要一部分,它包含了许多核心的知识点和概念。

以下是高中高二数学的相关知识点总结:1. 二次函数和一次函数:了解二次函数的标准式方程、顶点式方程和描绘二次函数的图像;掌握一次函数的基本性质和图像的特征。

2. 集合与逻辑:了解集合的基本概念,如元素、包含关系、交集、并集等;学习如何运用逻辑运算符号。

3. 概率与统计:理解概率的基本概念和计算方法,如事件、样本空间、概率的计算公式等;学习如何统计和分析数据,如中心、离散度等。

高中数学必修二知识点

高中数学必修二知识点

高中数学必修二知识点
一、函数基本概念
函数是一种中介关系,即一个输入和另一个输出之间的数学关系,是由一个变量与另一个变量之间的对应关系组成,也可用“自变量与因变量之间的函数关系”来表示。

自变量表示“输入”,因变量表示“输出”,函数则表示输入与输出之间的关系
二、函数的基本性质
1、唯一性。

假定函数f(x)是定义在D上的连续函数,若对x∈D有f(x)=f(y)(x≠y),那么令x=y,从而可得矛盾结论,即函数的值有唯一性。

2、有界性。

函数值的范围是定义域D或定义域D的子集,取值有边界,且返回的值不会超出这个范围。

3、连续性。

函数取值连续,不可突变,这是状态变化的基础。

三、函数的表达式
1、定义式。

定义式表示指定某函数时用来决定函数关系的公式。

常用的函数定义式包括一次函数式,二次函数式,指数函数式,对数函数式等。

2、函数图像。

函数图像就是将函数定义式替换成对应的点对连线图形,可以帮助我们更好地理解函数表达式与函数关系。

四、函数的分类
1、多项式函数。

多项式函数是按照指数大小进行组合,其图像是一段一段连续的连线图形。

2、三角函数。

三角函数是通过极坐标和直角坐标间的关系来研究函数关系的函数,其图像是一段一段的波浪曲线。

3、指数函数。

指数函数是按照指数的大小组成的函数,其图像是一条以负斜率上升的连线图形。

4、对数函数。

对数函数就是以底数为参数,参数为10时为常用对数,其图像是一条以正斜率上升的连线图形。

高中数学必修二目录

高中数学必修二目录

高中数学必修二目录高中数学必修二的目录如下:
第一章:不等式
1.1 一次不等式
知识点1:一次不等式的解集
知识点2:一次不等式的性质
知识点3:一次不等式的应用
1.2 二次不等式
知识点1:二次不等式的解集
知识点2:二次不等式的性质
知识点3:二次不等式的应用
第二章:函数概念与初等函数
2.1 函数的概念
知识点1:函数的定义和性质
知识点2:函数的表示方法
2.2 幂函数
知识点1:幂函数的概念与性质
知识点2:常用幂函数的图像与性质
2.3 指数函数
知识点1:指数函数的概念与性质
知识点2:常用指数函数的图像与性质
2.4 对数函数
知识点1:对数函数的概念与性质
知识点2:常用对数函数的图像与性质第三章:三角函数
3.1 弧度制与角度制
知识点1:弧度制与角度制的换算
知识点2:弧度的性质与应用
3.2 正弦函数与余弦函数
知识点1:正弦函数与余弦函数的定义
知识点2:正弦函数与余弦函数的性质与图像
3.3 正切函数与余切函数
知识点1:正切函数与余切函数的定义
知识点2:正切函数与余切函数的性质与图像第四章:平面向量
4.1 平面向量的表示与运算
知识点1:平面向量的定义与表示方法
知识点2:平面向量的运算法则
4.2 平面向量的数量积
知识点1:平面向量的数量积的定义与性质知识点2:平面向量的数量积的应用
4.3 平面向量的叉积
知识点1:平面向量的叉积的定义与性质
知识点2:平面向量的叉积的应用
以上是高中数学必修二的目录,涵盖了不等式、函数概念与初等函数、三角函数以及平面向量等内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 、元素与集合的关系2 、集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有个.3 、二次函数的解析式的三种形式:(1)一般式:(2)顶点式:(当已知抛物线的顶点坐标时,设为此式)(3)零点式:(当已知抛物线与轴的交点坐标为时,设为此式)(4)切线式:。

(当已知抛物线与直线相切且切点的横坐标为时,设为此式)4、真值表:同真且真,同假或假5 、常见结论的否定形式;6 、四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)充要条件:(1)则P是q的充分条件,反之,q是p的必要条件;(2)且q ≠> p,则P是q的充分不必要条件;(3) p ≠> p ,且,则P是q的必要不充分条件;(4)p ≠> p ,且则P是q的既不充分又不必要条件。

7、函数单调性:增函数:(1)文字描述是:y随x的增大而增大。

(2)数学符号表述是:设f(x)在上有定义,若对任意的,都有成立,则就叫在上是增函数。

D则就是f(x)的递增区间。

减函数:(1)、文字描述是:y随x的增大而减小。

(2)、数学符号表述是:设f(x)在xD上有定义,若对任意的,都有成立,则就叫f(x)在上是减函数。

D则就是f (x)的递减区间。

单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数;(3)、增函数-减函数=增函数; (4)、减函数-增函数=减函数;注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。

复合函数的单调性:等价关系:(1)设,那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.8、函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称)奇函数定义:在前提条件下,若有,则f(x)就是奇函数。

性质:(1)、奇函数的图象关于原点对称;(2)、奇函数在x>0和x<0上具有相同的单调区间;(3)、定义在R上的奇函数,有f(0)=0 .偶函数定义:在前提条件下,若有f(—x)=f(x),则f(x)就是偶函数。

性质:(1)、偶函数的图象关于y轴对称;(2)、偶函数在x>0和x<0上具有相反的单调区间;奇偶函数间的关系:(1)、奇函数·偶函数=奇函数;(2)、奇函数·奇函数=偶函数;(3)、偶奇函数·偶函数=偶函数; (4)、奇函数±奇函数=奇函数(也有例外得偶函数的)(5)、偶函数±偶函数=偶函数; (6)、奇函数±偶函数=非奇非偶函数奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.9、函数的周期性:定义:对函数f(x),若存在,使得f(x+T)=f(x),则就叫f(x)是周期函数,其中,T是f(x)的一个周期。

周期函数几种常见的表述形式:(1)、 f(x+T)= - f(x),此时周期为2T ;(2)、 f(x+m)=f(x+n),此时周期为;(3)、此时期为2m 。

10、常见函数的图像:11、对于函数恒成立,则函数的对称轴是;两个函数f=(x+a)与y=(b-x)的图象关于直线对称.12、分数指数幂与根式的性质:13 、指数式与对数式的互化式: .指数性质:指数函数:(1)、在定义域内是单调递增函数;(2)、在定义域内是单调递减函数。

注:指数函数图象都恒过点(0,1)对数性质:对数函数:(1)、在定义域内是单调递增函数;(2)、在定义域内是单调递减函数;注:对数函数图象都恒过点(1,0)(3)、(4)、14、对数的换底公式 :对数恒等式推论15、对数的四则运算法则:若a>0,a≠1,M>0,N>0,则16、平均增长率的问题(负增长时):如果原来产值的基础数为N,平均增长率为p,则对于时间的总产值,有.17 、等差数列:通项公式:(1),其中为首项,d为公差,n为项数,为末项。

(2)推广:(3)(注:该公式对任意数列都适用)前n项和:(1);其中为首项,n为项数,为末项。

(2)(3)(注:该公式对任意数列都适用)(4)(注:该公式对任意数列都适用)常用性质:(1)、若m+n=p+q ,则有;注:若的等差中项,则有n、m、p成等差。

(2)、若、为等差数列,则为等差数列。

(3)、为等差数列,为其前n项和,则也成等差数列。

(4)、(5)等比数列:通项公式:(1),其中为首项,n为项数,q为公比。

(2)推广:(3)(注:该公式对任意数列都适用)前n项和:(1)(注:该公式对任意数列都适用)(2)(注:该公式对任意数列都适用)(3)常用性质:(1)、若m+n=p+q ,则有;注:若的等比中项,则有成等比。

(2)、若、为等比数列,则为等比数列。

18、分期付款(按揭贷款):每次还款元(贷款元,次还清,每期利率为).19、三角不等式:(1)若,则.(2) 若,则.(3) .20 、同角三角函数的基本关系式:21、正弦、余弦的诱导公式(奇变偶不变,符号看象限)22、和角与差角公式(辅助角所在象限由点(a,b) 的象限决定, ). 23、二倍角公式及降幂公式.24、三角函数的周期公式函数及函数),x ∈R(A,ω,为常数,且A≠0)的周期;函数,(A,ω,为常数,且A ≠0)的周期.三角函数的图像:25 、正弦定理:(R为外接圆的半径).26、余弦定理:27、面积定理:(1)分别表示a、b、c边上的高).28、三角形内角和定理:在△ABC中,有.29、实数与向量的积的运算律:设λ、μ为实数,那么:30、与的数量积(或内积):·31、平面向量的坐标运算:32 、两向量的夹角公式:33、平面两点间的距离公式:34、向量的平行与垂直:设=,=,,则:(交叉相乘差为零)(对应相乘和为零)35 、线段的定比分公式:设,是线段的分点,是实数,且,则36、三角形的重心坐标公式:三个顶点的坐标分别为则的重心的坐标是.37、三角形五“心”向量形式的充要条件:设为所在平面上一点,角所对边长分别为,则38、常用不等式:39、极值定理:已知都是正数,则有(1)若xy积是定值P,则当x=y时和有最小值;(2)若x+y和是定值S,则当x=y时积有xy最大值.(3)已知,若则有(4)已知,若则有40、一元二次不等式,如果a与同号,则其解集在两根之外;如果a与异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.即:.41 、含有绝对值的不等式:当a> 0时,有.42、斜率公式:43 、直线的五种方程:(1)点斜式:(直线).(2)斜截式:(b为直线在y轴上的截距).(3)两点式:两点式的推广:(无任何限制条件!)(4)截距式:(分别为直线的横、纵截距,)(5)一般式:(其中A、B不同时为0).直线的法向量:,方向向量:44 、夹角公式:45 、到的角公式:46、点到直线的距离:(点,直线:).47、圆的四种方程:(1)圆的标准方程:(2)圆的一般方程:(>0).(3)圆的参数方程:(4)圆的直径式方程:(圆的直径的端点是48、点与圆的位置关系:点与圆的位置关系有三种:若49、直线与圆的位置关系:直线与圆的位置关系有三种50 、两圆位置关系的判定方法:设两圆圆心分别为O1,O2,半径分别为r1,r2,,则:.51 、椭圆的参数方程是.离心率,准线到中心的距离为,焦点到对应准线的距离(焦准距)。

过焦点且垂直于长轴的弦叫通经,其长度为:.52、椭圆焦半径公式及两焦半径与焦距构成三角形的面积:53、椭圆的的内外部 :54、椭圆的切线方程:55 、双曲线的离心率,准线到中心的距离为,焦点到对应准线的距离(焦准距)。

过焦点且垂直于实轴的弦叫通经,其长度为:.焦半径公式,两焦半径与焦距构成三角形的面积。

56 、双曲线的方程与渐近线方程的关系:(1)若双曲线方程为渐近线方程:(2)若渐近线方程为双曲线可设为.(3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).(4) 焦点到渐近线的距离总是b。

57、双曲线的切线方程:.58、抛物线的焦半径公式:抛物线焦半径过焦点弦长.59、二次函数的图象是抛物线:(1)顶点坐标为;(2)焦点的坐标为;(3)准线方程是60 、直线与圆锥曲线相交的弦长公式 :或(弦端点,由方程消去y得到为直线的倾斜角,为直线的斜率61、证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行.62、证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面。

63、证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直;(3) 转化为两平面的法向量平行。

64、向量的直角坐标运算:65、夹角公式:设则66 、异面直线间的距离:(是两异面直线,其公垂向量为,C,D是上任一点,d为间的距离).67、点到平面的距离:(为平面的法向量,,是的一条斜线段).68、球的半径是R,则其体积,其表面积.69、球的组合体:(1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长,正方体的外接球的直径是正方体的体对角线长.(3)球与正四面体的组合体: 棱长为的正四面体的内切球的半径为(正四面体高,外接球的半径为(正四面体高70 、分类计数原理(加法原理):.分步计数原理(乘法原理):.71、排列数公式:72 组合数公式:组合数的两个性质:73 、二项式定理:二项展开式的通项公式:的展开式的系数关系:74 、互斥事件A,B分别发生的概率的和:P(A+B)=P(A)+P(B).个互斥事件分别发生的概率的和:P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).75 、独立事件A,B同时发生的概率:P(A·B)= P(A)·P(B).n个独立事件同时发生的概率:P(A1· A2·…· An)=P(A1)· P(A2)·…· P(An).76、 n次独立重复试验中某事件恰好发生k次的概率:77、数学期望:数学期望的性质(1).(2)若则.(3) 若服从几何分布,且78、方差:标准差:方差的性质:(1);(2)若(3) 若服从几何分布,且方差与期望的关系:79、正态分布密度函数:式中的实数是参数,分别表示个体的平均数与标准差.对于,取值小于x的概率:.80 、处的导数(或变化率):.81 、函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.82、几种常见函数的导数:83、导数的运算法则:84、判别是极大(小)值的方法:当函数f(x)在点处连续时,85 、复数的相等:86、复数的模(或绝对值)87、复平面上的两点间的距离公式:88、实系数一元二次方程的解实系数一元二次方程③若,它在实数集内没有实数根;在复数集内有且仅有两个共轭复数根.。

相关文档
最新文档