专题一 规律探索 类型二 图形规律探索
初中数学中规律探索型问题的类型与解题方法
初中数学中规律探索型问题的类型与解题方法关键词:初中数学规律探索型问题类型解题方法
规律探索型问题是中考中的必考知识点,我们把规律探索型问题也称为归纳猜想型问题,其特点是这样的:给出一组具有某种特定关系的数、式、图形;或是给出与图形有关的操作变化过程;或是给出某一具体的问题情境,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.规律探索型问题包括三类问题:数字类规律探索问题、图形类规律探索问题、点的坐标类规律探索问题.
一、数字类规律探索问题
1.解题思路
解答数字类规律探索问题,应在读懂题意、领会问题实质的前提下进行,或分类归纳,或整体归纳,得出的规律要具有一般性,而不是一些只适合于部分数据的“规律”.
2.例题展示
3.例题分析
二、图形类规律探索问题
1.解题思路
解答图形类规律探索问题,要注意分析图形特征和图形变换规律,一要合理猜想,二要加以实际验证.
2.例题展示
3.例题分析
针对几何图形的规律探索题,首先要仔细观察、分析图形,从中发现图形的变化特点,再将图形的变化以数或式的形式表示出来,从而得出图形的变化规律.如果图形的变化具有周期性,就要先确定循环周期及一个循环周期内图形的变化特点,然后用所求总数除以循环周期,得到余数,进而使所求问题得以解决.
本题就是一个典型的规律性问题,由AB为边长为2的等边三角形ABC的高,利用三线合一得到B为BC的中点,求出BB的长,利用勾股定理求出AB的长,进而求出S,同理求出S,依此类推,得到S.。
【中考复习】2018届甘肃中考数学《专题聚焦》总复习练习题含答案
题型一 规律探索类型一 数与式规律探索 1.(2017·百色)观察以下一列数的特点:0,1,-4,9,-16,25,…,则第11个数是(B )A .-121B .-100C .100D .121 2.(2017·武汉)按照一定规律排列的n 个数:-2、4、-8、16、-32、64、…,若最后三个数的和为768,则n 为(导学号 35694235)(B )A .9B .10C .11D .123.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…,第n 个三角形数记为x n ,则x n +x n+1=__(n +1)2__.4.若x 是不等于1的实数,我们把11-x 称为x 的差倒数,如2的差倒数是11-2=-1,-1的差倒数为11-(-1)=12,现已知x 1=-13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,以此类推,则x 2018=__34__.5.观察下列等式:1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2015=__1016064__.6.小明写出如下一组数:15,-39,717,-1533,…,请用你发现的规律,猜想第2014个数为__-22014-122015+1__.7.(2017·云南)观察下列各个等式的规律: 第一个等式:22-12-12=1,第二个等式:32-22-12=2,第三个等式:42-32-12=3,…请用上述等式反映出的规律解决下列问题: (1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的. 解:(1)第四个等式为:52-42-12=4;(2)第n 个等式为:(n +1)2-n 2-12=n;证明如下:∵(n +1)2-n 2-12=n 2+2n +1-n 2-12=2n 2=n ,∴左边=右边,等式成立.类型二 图形规律探索 1.(2017·德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图①);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图②,图③…),则图⑥中挖去三角形的个数为(导学号 35694236)(C )A .121B .362C .364D .7292.如图,在△ABC 中,BC =1,点P 1,M 1分别是AB ,AC 边的中点,点P 2,M 2分别是AP 1,AM 1的中点,点P 3,M 3分别是AP 2,AM 2的中点,按这样的规律下去,P n M n 的长为__12n__(n 为正整数).3.如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2016BC 和∠A 2016CD 的平分线交于点A 2017,则∠A 2017=__m22017__°.4.如图,是一组按照某种规律摆放成的图案,则图⑤中三角形的个数是(C )A .8B .9C .16D .17 5.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,依此规律,第11个图案需(B )根火柴.A .156B .157C .158D .1596.观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有点的个数为__(n +1)2__(用含n 的代数式表示).(导学号 35694237)类型三 与坐标系结合的规律探索1.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0),B (0,4),则点B 2016的横坐标为(D )A .5B .12C .10070D .100802.如图,在平面直角坐标系中有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1)…,根据这个规律探索可得第100个点的坐标为(D )A .(14,0)B .(14,-1)C .(14,1)D .(14,2)3.如图,已知菱形OABC 的两个顶点O (0,0),B (2,2),若将菱形绕点O 以每秒45°的速度逆时针旋转,则第2017秒时,菱形两对角线交点D 的坐标为.4.(2017·赤峰)在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P ′(-y +1,x +2),我们把点P ′(-y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2017的坐标为__(2,0)__.(导学号 35694238)5.如图,在平面直角坐标系中有一菱形OABC,且∠A=120°,点O、B在y轴上,OA =1,现在把菱形向右无滑动翻转,每次翻转60°,点B的落点依次为B1、B2、B3…,连续翻转2017次,则B2017的坐标为__(1345.5,2)__.题型二尺规作图类型一作与两条直线距离有关的点1.(2017·陕西)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)(导学号35694239)解:如解图,点P即为所求.2.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)解:如解图所示,作CD的垂直平分线,∠AOB的平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P1都是所求的点.3.(2017·绥化)如图,A、B、C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离,请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)解:如解图,连接AC,作线段AC的垂直平分线MN,直线MN交AB于点P.点P即为所求的点.4.如图,Rt△ABC中,∠C=90°,用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(保留作图痕迹,不写作法)解:如解图,点D即为所求.类型二作角平分线和垂直平分线1.(2017·福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D,求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.2.(2017·赤峰)已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.(1)解:如解图所示,AF即为所求;(2)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠4.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠4,∴CE=CF.3.如图,△ABC中,AB=AC,∠A=40°.(1)作边AB的垂直平分线MN;(保留作图痕迹,不写作法)(2)在已知的图中,若MN交AC于点D,连接BD,求∠DBC的度数.(导学号35694240)解:(1)如解图①即为所求垂直平分线MN;(2)如解图②,连接BD,∵AB的垂直平分线MN交AC于点D,∴AD=BD,∵∠A=40°,∴∠ABD=∠A=40°,∵AB=AC,∴∠ABC =∠C =12(180°-∠A)=70°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°. 4.如图,已知△ABC 中,∠ABC =90°.(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)①作线段AC 的垂直平分线l ,交AC 于点O ;②连接BO 并延长,在BO 的延长线上截取OD ,使得OD =OB ; ③连接DA 、DC ;(2)判断四边形ABCD 的形状,并说明理由. (1)①②③如解图所示; (2)四边形ABCD 是矩形,理由:∵在Rt △ABC 中,∠ABC =90°,BO 是AC 边上的中线, ∴BO =12AC ,∵BO =DO ,AO =CO ,∴AO =CO =BO =DO ,∴四边形ABCD 是矩形.类型三 作圆1.如图,在图中求作⊙P ,使⊙P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)解:如解图所示,⊙P 即为所作的圆.2.如图,已知在△ABC 中,∠A =90°.(1)请用圆规和直尺作出⊙P ,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明);(2)若∠B =60°,AB =3,求⊙P 的面积.解:(1)如解图所示, ⊙P 为所求作的圆; (2)∵∠B =60°, BP 平分∠ABC ,∴∠ABP =30°, ∵tan ∠ABP =AP AB, ∴AP =3, ∴S ⊙P =3π.3.(2017·舟山)如图,已知△ABC ,∠B =40°.(1)在图中,用尺规作出△ABC 的内切圆O ,并标出⊙O 与边AB ,BC ,AC 的切点D ,E ,F(保留痕迹,不必写作法);(2)连接EF ,DF ,求∠EFD 的度数. 解:(1)如解图①,⊙O 即为所求;(2)如解图②,连接OD ,OE , ∴OD ⊥AB ,OE ⊥BC , ∴∠ODB =∠OEB =90°, ∵∠B =40°,∴∠DOE =140°,∴∠EFD =70°.4.已知△ABC 中,∠A =25°,∠B =40°.(1)求作:⊙O ,使得⊙O 经过A 、C 两点,且圆心O 落在AB 边上(要求尺规作图,保留作图痕迹,不必写作法);(2)求证:BC 是(1)中所作⊙O 的切线. (1)解:作图如解图①;(2)证明:如解图②,连接OC ,∵OA =OC ,∠A =25°,∴∠BOC =50°, 又∵∠B =40°,∴∠BOC +∠B =90°, ∴∠OCB =90°,∴OC ⊥BC ,∴BC 是⊙O 的切线.5.如图,在直角三角形ABC 中,∠ABC =90°. (1)先作∠ACB 的平分线,设它交AB 边于点O ,再以点O 为圆心OB 为半径作⊙O(尺规作图,保留作图痕迹,不写作法);(2)证明:AC 是所作⊙O 的切线;(3)若BC =3,sin A =12,求△AOC 的面积.(1)解:作图如解图所示:(2)证明:过点O 作OE ⊥AC 于点E , ∵FC 平分∠ACB ,∴OB =OE ,∴AC 是所作⊙O 的切线;(3)解:∵sin A =12,∠ABC =90°,∴∠A =30°,∴∠ACO =∠OCB =12∠ACB =30°,∵BC =3,∴AC =23,BO =BC tan 30°=3³33=1, ∴S △AOC =12AC·OE =12³23³1= 3.题型三 与三角形、四边形有关的证明与计算类型一 与三角形有关的证明与计算 1.(2017·黄冈)已知:如图,∠BAC =∠DAM ,AB =AN ,AD =AM ,求证:∠B =∠ANM.证明:∵∠BAC =∠DAM ,∠BAC =∠BAD +∠DAC ,∠DAM =∠DAC +∠NAM , ∴∠BAD =∠NAM , 在△BAD 和△NAM 中,⎩⎨⎧AB =AN ,∠BAD =∠NAM ,AD =AM ,∴△BAD ≌△NAM(SAS ),∴∠B =∠ANM. 2.(2017·孝感)如图,已知AB =CD ,AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F ,BF =DE ,求证:AB ∥CD.证明:∵AE ⊥BD , CF ⊥BD ,∴∠AEB =∠CFD =90°, ∵BF =DE ,∴BF +EF =DE +EF , ∴BE =DF.在Rt △AEB 和Rt △CFD 中,⎩⎨⎧AB =CD ,BE =DF ,∴Rt △AEB ≌Rt △CFD(HL ), ∴∠B =∠D ,∴AB ∥CD. 3.(2017·连云港)如图,已知等腰三角形ABC 中,AB =AC ,点D 、E 分别在边AB 、AC 上,且AD =AE ,连接BE 、CD ,交于点F.(1)判断∠ABE 与∠ACD 的数量关系,并说明理由;(2)求证:过点A 、F 的直线垂直平分线段BC.(1)解:∠ABE =∠ACD ;理由如下:在△ABE 和△ACD 中,⎩⎨⎧AB =AC ,∠A =∠A ,AE =AD ,∴△ABE ≌△ACD(SAS ),∴∠ABE =∠ACD ; (2)证明:∵AB =AC , ∴∠ABC =∠ACB ,由(1)可知∠ABE =∠ACD , ∴∠FBC =∠FCB , ∴FB =FC , ∵AB =AC ,∴点A 、F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC. 4.(2017·荆门)已知:如图,在Rt △ACB 中,∠ACB =90°,点D 是AB 的中点,点E 是CD 的中点,过点C 作CF ∥AB 交AE 的延长线于点F.(1)求证:△ADE ≌△FCE ;(2)若∠DCF =120°,DE =2,求BC 的长.(1)证明:∵点E 是CD 的中点, ∴DE =CE , ∵AB ∥CF ,∴∠BAF =∠AFC , 在△ADE 与△FCE 中,⎩⎨⎧∠DAF =∠AFC ,∠AED =∠FEC ,DE =CE ,∴△ADE ≌△FCE(AAS ); (2)解:由(1)得,CD =2DE , ∵DE =2,∴CD =4.∵点D 为AB 的中点,∠ACB =90°, ∴AB =2CD =8,AD =CD =12AB.∵AB ∥CF ,∴∠BDC =180°-∠DCF =180°-120°=60°, ∴∠DAC =∠ACD =12∠BDC =12³60°=30°,∴BC =12AB =12³8=4.5.(2017·重庆A )在△ABM 中,∠ABM =45°,AM ⊥BM ,垂足为M ,点C 是BM 延长线上一点,连接AC.(1)如图①,若AB =32,BC =5,求AC 的长;(2)如图②,点D 是线段AM 上一点,MD =MC ,点E 是△ABC 外一点,EC =AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF =∠CEF.(导学号 35694241)(1)解:AC =13;(2)证明:如解图,延长EF 到点G ,使得FG =EF ,连接BG. ∵DM =MC ,∠BMD =∠AMC , BM =AM ,∴△BMD ≌△AMC(SAS ), ∴AC =BD ,又∵CE =AC ,∴BD =CE , ∵BF =FC ,∠BFG =∠CFE , FG =FE ,∴△BFG ≌△CFE(SAS ),∴BG =CE ,∠G =∠CEF ,∴BD =CE =BG ,∴∠BDG =∠G =∠CEF. 6.(2017·呼和浩特)如图,等腰三角形ABC 中,BD ,CE 分别是两腰上的中线. (1)求证:BD =CE ;(2)设BD 与CE 相交于点O ,点M ,N 分别为线段BO 和CO 的中点,当△ABC 的重心到顶点A 的距离与底边长相等时,判断四边形DEMN 的形状,无需说明理由.(1)证明:由题意得,AB =AC , ∵BD ,CE 分别是两腰上的中线, ∴AD =12AC ,AE =12AB ,∴AD =AE ,在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠A =∠A ,AD =AE ,∴△ABD ≌△ACE(SAS ).∴BD =CE ; (2)解:四边形DEMN 是正方形,证明:略7.△ABC 的三条角平分线相交于点I ,过点I 作DI ⊥IC ,交AC 于点D. (1)如图①,求证:∠AIB =∠ADI ;(2)如图②,延长BI ,交外角∠ACE 的平分线于点F. ①判断DI 与CF 的位置关系,并说明理由; ②若∠BAC =70°,求∠F 的度数.(1)证明:∵AI 、BI 分别平分∠BAC ,∠ABC , ∴∠BAI =12∠BAC ,∠ABI =12∠ABC ,∴∠BAI +∠ABI =12(∠BAC +∠ABC)=12(180°-∠ACB)=90°-12∠ACB ,∴在△ABI 中,∠AIB =180°-(∠BAI +∠ABI)=180°-(90°-12∠ACB)=90°+12∠ACB ,∵CI 平分∠ACB ,∴∠DCI =12∠ACB ,∵DI ⊥IC ,∴∠DIC =90°,∴∠ADI =∠DIC +∠DCI =90°+12∠ACB ,∴∠AIB =∠ADI ;(2)解:①结论:DI ∥CF.理由:∵∠IDC =90°-∠DCI =90°-12∠ACB ,∵CF 平分∠ACE ,∴∠ACF =12∠ACE =12(180°-∠ACB)=90°-12∠ACB ,∴∠IDC =∠ACF ,∴DI ∥CF ;②∵∠ACE =∠ABC +∠BAC ,∴∠ACE -∠ABC =∠BAC =70°, ∵∠FCE =∠FBC +∠F , ∴∠F =∠FCE -∠FBC ,∵∠FCE =12∠ACE ,∠FBC =12∠ABC ,∴∠F =12∠ACE -12∠ABC =12(∠ACE -∠ABC)=35°.8.(8分)(2017·北京)在等腰直角△ABC 中,∠ACB =90°,P 是线段BC 上一动点(与点B 、C 不重合),连接AP ,延长BC 至点Q ,使得CQ =CP ,过点Q 作QH ⊥AP 于点H ,交AB 于点M.(1)若∠PAC =α,求∠AMQ 的大小(用含α的式子表示);(2)用等式表示线段MB 与PQ 之间的数量关系,并证明.(导学号 35694242)解:(1)∠AMQ =45°+α;理由如下:∵∠PAC =α,△ACB 是等腰直角三角形, ∴∠BAC =∠B =45°,∠PAB =45°-α, ∵QH ⊥AP , ∴∠AHM =90°, ∴∠AMQ =180°-∠AHM -∠PAB =45°+α;(2)PQ =2MB.理由如下:如解图,连接AQ ,作ME ⊥QB , ∵AC ⊥QP ,CQ =CP , ∴∠QAC =∠PAC =α, ∴∠QAM =45°+α=∠AMQ ,∴AP =AQ =QM , 在△APC 和△QME 中,⎩⎨⎧∠MQE =∠PAC ,∠ACP =∠QEM ,AP =QM ,∴△APC ≌△QME(AAS ),∴PC =ME , ∴△MEB 是等腰直角三角形,∴12PQ =22MB ,∴PQ=2MB.类型二 与四边形有关的证明与计算1.在▱ABCD 中,点E 、F 分别在AB 、CD 上,且AE =CF. (1)求证:△ADE ≌△CBF ;(2)若DF =BF ,求证:四边形DEBF 为菱形.证明:(1)∵四边形ABCD 是平行四边形, ∴AD =BC ,∠A =∠C , 在△ADE 和△CBF 中,⎩⎨⎧AD =BC ,∠A =∠C ,AE =CF ,∴△ADE ≌△CBF(SAS );(2)∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD , ∵AE =CF ,∴DF =EB ,∴四边形DEBF 是平行四边形,又∵DF =FB ,∴四边形DEBF 为菱形.2.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE =∠BAD ,AE ⊥AC.(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB =5,AD =6,求AC 的长. (导学号 35694243)(1)证明:∵AE ⊥AC ,BD 垂直平分AC , ∴AE ∥BD ,∵∠ADE =∠BAD , ∴DE ∥AB ,∴四边形ABDE 是平行四边形; (2)解:∵DA 平分∠BDE , ∴∠BAD =∠ADB , ∴AB =BD =5,设BF =x ,则52-x 2=62-(5-x)2, 解得x =75,∴AF =AB 2-BF 2=245,∴AC =2AF =485. 3.(2017·上海)已知:如图,四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =E C .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 和△CDE 中,⎩⎨⎧AD =CD ,DE =DE ,EA =EC ,∴△ADE ≌△CDE(SSS ), ∴∠ADE =∠CDE ,∵AD ∥BC ,∴∠ADE =∠CBD , ∴∠CDE =∠CBD ,∴BC =CD , ∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形,∵AD =CD ,∴四边形ABCD 是菱形; (2)∵BE =BC ,∴∠BCE =∠BEC , ∵∠CBE ∶∠BCE =2∶3, ∴∠CBE =180°³22+3+3=45°,∵四边形ABCD 是菱形,∴∠ABE =45°, ∴∠ABC =90°,∴四边形ABCD 是正方形.4.如图,在▱ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°.(1)求证:四边形ABCD 是矩形;(2)若AB =14,DE =8,求sin ∠AEB 的值.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠DAF =∠F =45°.∵AE 是∠BAD 的平分线, ∴∠EAB =∠DAE =45°, ∴∠DAB =90°,又∵四边形ABCD 是平行四边形, ∴四边形ABCD 是矩形;(2)解:如解图,过点B 作BH ⊥AE 于点H , ∵四边形ABCD 是矩形, ∴AB =CD ,AD =BC , ∠DCB =∠D =90°,∵AB =14,DE =8,∴CE =6. 在Rt △ADE 中,∠DAE =45°, ∴AD =DE =8,∴BC =8. 在Rt △BCE 中,由勾股定理得BE =BC 2+CE 2=10, 在Rt △AHB 中,∠HAB =45°, ∴BH =AB·sin 45°=72, ∵在Rt △BHE 中,∠BHE =90°, ∴sin ∠AEB =BH BE =7210.5.(2017·大庆)如图,以BC 为底边的等腰△ABC ,点D ,E ,G 分别在BC ,AB ,AC 上,且EG ∥BC ,DE ∥AC ,延长GE 至点F ,使得BE =BF.(1)求证:四边形BDEF 为平行四边形; (2)当∠C =45°,BD =2时,求D ,F 两点间的距离.(导学号 35694244) (1)证明:∵△ABC 是等腰三角形, ∴∠ABC =∠C ,∵EG ∥BC ,DE ∥AC , ∴∠AEG =∠ABC =∠C ,∴四边形CDEG 是平行四边形, ∴∠DEG =∠C , ∵BE =BF ,∴∠BFE =∠BEF =∠AEG =∠ABC , ∴∠F =∠DEG ,∴BF ∥DE , ∴四边形BDEF 为平行四边形; (2)解:∵∠C =45°,∴∠ABC =∠BFE =∠BEF =45°, ∴△BDE 、△BEF 是等腰直角三角形,∴BF =BE =22BD =2, 作FM ⊥BD 于点M ,连接DF ,如解图所示,则△BFM 是等腰直角三角形, ∴FM =BM =22BF =1, ∴DM =3,在Rt △DFM 中,由勾股定理得: DF =12+32=10,即D ,F 两点间的距离为10. 6.(2017·张家界)如图,在平行四边形ABCD 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接AF ,BE.(1)求证:△AGE ≌△BGF ;(2)试判断四边形AFBE 的形状,并说明理由.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠AEG =∠BFG , ∵EF 垂直平分AB , ∴AG =BG ,在△AGE 和△BGF 中,⎩⎨⎧∠AEG =∠BFG ,∠AGE =∠BGF ,AG =BG ,∴△AGE ≌△BGF(AAS );(2)解:四边形AFBE 是菱形,理由如下: ∵△AGE ≌△BGF ,∴AE =BF ,∵AD ∥BC ,∴四边形AFBE 是平行四边形, 又∵EF ⊥AB ,∴四边形AFBE 是菱形.7.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC +∠ADC =180°.(1)求证:四边形ABCD 是矩形.(2)若∠ADF ∶∠FDC =3∶2,DF ⊥AC ,则∠BDF 的度数是多少?(1)证明:∵AO =CO ,BO =DO∴四边形ABCD 是平行四边形, ∴∠ABC =∠ADC ,∵∠ABC +∠ADC =180°, ∴∠ABC =∠ADC =90°,∴四边形ABCD 是矩形;(2)解:∵∠ADC =90°,∠ADF ∶∠FDC =3∶2, ∴∠FDC =36°,∵DF ⊥AC ,∴∠DCO =90°-36°=54°, ∵四边形ABCD 是矩形, ∴OC =OD ,∴∠ODC =54°,∴∠BDF =∠ODC -∠FDC =18°. 8.(2017·娄底)如图,在▱ABCD 中,各内角的平分线分别相交于点E ,F ,G ,H. (1)求证:△ABG ≌△CDE ;(2)猜一猜:四边形EFGH 是什么样的特殊四边形?证明你的猜想; (3)若AB =6,BC =4,∠DAB =60°,求四边形EFGH 的面积.(1)证明:∵GA 平分∠BAD ,EC 平分∠BCD , ∴∠BAG =12∠BAD ,∠DCE =12∠DCB ,∵在▱ABCD 中,∠BAD =∠DCB ,AB =CD ,∴∠BAG =∠DCE ,同理可得,∠ABG =∠CDE ,∵在△ABG 和△CDE 中,⎩⎨⎧∠BAG =∠DCE ,AB =CD ,∠ABG =∠CDE ,∴△ABG ≌△CDE(ASA ); (2)解:四边形EFGH 是矩形.证明:∵GA 平分∠BAD ,GB 平分∠ABC , ∴∠GAB =12∠BAD ,∠GBA =12∠ABC ,∵在▱ABCD 中,∠DAB +∠ABC =180°,∴∠GAB +∠GBA =12(∠DAB +∠ABC)=90°,即∠AGB =90°,同理可得,∠DEC =90°,∠AHD =90°=∠EHG , ∴四边形EFGH 是矩形;(3)解:依题意得:∠BAG =12∠BAD =30°,∵AB =6,∴BG =12AB =3,AG =33=CE ,∵BC =4,∠BCF =12∠BCD =30°,∴BF =12BC =2,CF =23,∴EF =33-23=3,GF =3-2=1, ∴S 矩形EFGH 的面积=EF·GF = 3.题型四解直角三角形的实际应用1.(2017·镇江)如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15 m,求实验楼的垂直高度即CD长.(精确到1 m,参考值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)解:作AE⊥CD于E,如解图,∵AB=15 m,∴DE=AB=15 m,∵∠DAE=45°,∴AE=DE=15 m,在Rt△ACE中,tan∠CAE=CE AE,则CE=AE·tan37°=15³0.75≈11 m,∴CD=CE+DE=11+15=26 m.答:实验楼的垂直高度CD长为26 m.2.(2017·宜宾)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边取两点B、C测得∠α=30°,∠β=45°,量得BC长为100米,求河的宽度.(结果保留根号)解:过点A作AD⊥BC于点D,如解图,∵∠β=45°,∠ADC=90°,∴AD=DC,设AD=DC=x m,则tan 30°=x x +100=33, 解得x =50(3+1).答:河的宽度为50(3+1) m . 3.(2017·宿迁)如图所示,飞机在一定高度上沿水平直线飞行,先在点A 处测得正前方小岛C 的俯角为30°,面向小岛方向继续飞行10 km 到达B 处,发现小岛在其正后方,此时测得小岛的俯角为45°,如果小岛高度忽略不计,求飞机飞行的高度.(结果保留根号)(导学号 35694245)解:过点C 作CD ⊥AB 于点D ,如解图,设CD =x , ∵∠CBD =45°, ∴BD =CD =x ,在Rt △ACD 中, ∵tan ∠CAD =CDAD,∴AD =CD tan ∠CAD =x tan 30°=x33=3x ,由AD +BD =AB 可得3x +x =10,解得x =53-5.答:飞机飞行的高度为(53-5) km . 4.(2016·菏泽)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B 处时,测得该岛位于正北方向20(1+3)海里的C 处,为了防止某国海巡警干扰,就请求我A 处的渔监船前往C 处护航,已知C 位于A 处的北偏东45°方向上,A 位于B 的北偏西30°的方向上,求A 、C 之间的距离.解:如解图,作AD ⊥BC ,垂足为D ,由题意得,∠ACD =45°, ∠ABD =30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=3x,又∵BC=20(1+3),CD+BD=BC,即x+3x=20(1+3),解得:x=20,∴AC=2x=202(海里).答:A、C之间的距离为20 2 海里.5.(2017·荆门)金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度.(计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73)解:如解图,过点C作CM⊥AB于M.则四边形MEDC是矩形,∴ME=DC=3,CM=ED,在Rt△AEF中,∠AFE=60°,设EF=x,则AF=2x,AE=3x,在Rt△FCD中,CD=3,∠CFD=30°,∴DF=33,在Rt △AMC 中, ∠ACM =45°,∴∠MAC =∠ACM =45°,∴MA =MC , ∵ED =CM ,∴AM =ED ,∵AM =AE -ME ,ED =EF +DF , ∴3x -3=x +33,解得x =6+33, ∴AE =3(6+33)=63+9,∴AB =AE -BE =9+63-1≈18.4米. 答:旗杆AB 的高度约为18.4米. 6.(2016·贺州)如图,是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面10米处有一建筑物HQ ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角∠BDC =30°,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数.参考数据:2≈1.414,3≈1.732)(导学号 35694246)解:由题意得,AH =10米,BC =10米, 在Rt △ABC 中,∠CAB =45°, ∴AB =BC =10,在Rt △DBC 中,∠CDB =30°, ∴DB =BCtan ∠CDB=103,∴DH =AH -AD =AH -(DB -AB)=10-103+10=20-103≈2.7(米), ∵2.7米<3米,∴该建筑物需要拆除.7.(2017·鄂州)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A 处,测得树顶端E 的仰角为30°,他又继续走下台阶到达C 处,测得树的顶端E 的仰角是60°,再继续向前走到大树底D 处,测得食堂楼顶N 的仰角为45°.已知A 点离地面的高度AB =2米,∠BCA =30°,且B 、C 、D 三点在同一直线上.(1)求树DE 的高度;(2)求食堂MN 的高度. 解:(1)如解图,设DE =x ,∵AB =DF =2,∴EF =DE -DF =x -2, ∵∠EAF =30°, ∴AF =EFtan ∠EAF =x -233=3(x -2),又∵CD =DE tan ∠DCE =x 3=33x ,BC =AB tan ∠ACB =233=23,∴BD =BC +CD =23+33x , 由AF =BD 可得3(x -2)=23+33x , 解得:x =6,∴树DE 的高度为6米;(2)延长NM 交DB 延长线于点P ,如解图,则AM =BP =3, 由(1)知CD =33x =33³6=23,BC =23, ∴PD =BP +BC +CD =3+23+23=3+43,∵∠NDP =45°,且MP =AB =2, ∴NP =PD =3+43,∴NM =NP -MP =3+43-2=1+43, ∴食堂MN 的高度为1+4 3 米.题型五 与圆有关的证明与计算类型一 与切线判定有关的证明与计算1.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC 、AC 交于点D 、E ,过点D 作DF ⊥AC 于点F.(1)求证:DF 是⊙O 的切线;(2)若⊙O 的半径为2,BC =22,求DF 的长. (导学号 35694247)(1)证明:连接OD ,如解图,∵OB =OD ,∴∠ABC =∠ODB , ∵AB =AC ,∴∠ABC =∠ACB , ∴OD ∥AC ,∵DF ⊥AC ,∴DF ⊥OD ,∴DF 是⊙O 的切线;(2)解:连接AD ,如解图, ∵AB 是⊙O 的直径, ∴AD ⊥BC ,又∵AB =AC ,∴BD =DC =2,∴AD =AB 2-BD 2=42-(2)2=14, ∵DF ⊥AC ,∴△ADC ∽△DFC ,∴AD DF =AC DC ,∴14DF =42,∴DF =72. 2.如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点D ,∠ABD =∠ACB. (1)求证:AB 是⊙O 的切线;(2)若点E 是BC 上一点,已知BE =4,tan ∠AEB =53,AB ∶BC =2∶3,求⊙O 的直径.(1)证明:∵BC 是直径, ∴∠BDC =90°,∴∠ACB +∠DBC =90°,∵∠ABD =∠ACB , ∴∠ABD +∠DBC =90°, ∴∠ABC =90°, ∴AB ⊥BC , ∴AB 是⊙O 的切线;(2)解:在Rt △AEB 中,tan ∠AEB =53,∴AB BE =53,即AB =53BE =203, 在Rt △ABC 中,AB BC =23,∴BC =32AB =10,∴⊙O 的直径为10.3.如图,AB 为⊙O 的直径,C 为⊙O 上一点,点D 是BC ︵的中点,DE ⊥AC 于点E ,DF ⊥AB 于点F.(1)求证:DE 是⊙O 的切线; (2)若OF =2,求AC 的长度.(导学号 35694248)(1)证明:如解图①,连接OD 、AD , ∵点D 是BC ︵的中点,∴BD ︵=CD ︵,∴∠DAO =∠DAC , ∵OA =OD ,∴∠DAO =∠ODA ,图①∴∠DAC =∠ODA ,∴OD ∥AE , ∵DE ⊥AE ,∴∠AED =90°, ∴∠AED =∠ODE =90°, ∴OD ⊥DE , ∴DE 是⊙O 的切线;图②(2)解:如解图②,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥AE,∴∠DOB=∠EAB,∵∠DFO=∠ACB=90°,∴△DFO∽△BCA,∴OFAC=ODAB=12,即2AC=12,∴AC=4.4.(2017·张家界)在等腰△ABC中,AC=BC,以BC为直径的⊙O分别与AB,AC相交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)分别延长CB,FD,相交于点G,∠A=60°,⊙O的半径为6,求阴影部分的面积.(1)证明:连接OD,如解图所示,∵AC=BC,OB=OD,∴∠ABC=∠A,∠ABC=∠ODB,∴∠A=∠ODB,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线;(2)解:∵AC=BC,∠A=60°,∴△ABC是等边三角形,∴∠ABC=60°,∵OD=OB,∴△OBD是等边三角形,∴∠BOD =60°,∵DF ⊥OD ,∴∠ODG =90°,∴∠G =30°, ∴DG =3OD =63,∴S 阴影部分=S △ODG -S 扇形OBD =12³6³63-60π³62360=183-6π.5.(2017·安顺)如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD ⊥BC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连接BE.(1)求证:BE 与⊙O 相切;(2)设OE 交⊙O 于点F ,若DF =1,BC =23,求阴影部分的面积.(1)证明:连接OC ,如解图, ∵CE 为切线,∴OC ⊥CE , ∴∠OCE =90°,∵OD ⊥BC ,∴CD =BD , 即OD 垂中平分BC , ∴EC =EB ,在△OCE 和△OBE 中,⎩⎨⎧OC =OB ,OE =OE ,EC =EB ,∴△OCE ≌△OBE ,∴∠OBE =∠OCE =90°, ∴OB ⊥BE ,∴BE 与⊙O 相切;(2)解:设⊙O 的半径为r ,则OD =r -1, 在Rt △OBD 中,BD =CD =12BC =3,∴(r -1)2+(3)2=r 2,解得r =2, ∵tan ∠BOD =BDOD =3,∴∠BOD =60°,∴∠BOC =2∠BOD =120°, 在Rt △OBE 中,BE =3OB =23, ∴S 阴影部分=S 四边形OBEC -S 扇形BOC =2S △OBE -S 扇形BOC=2³12³2³23-120π³22360=43-43π.类型二 与切线性质有关的证明与计算 1.(2017·绵阳)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的⊙O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N.(1)求证:CA =CN ;(2)连接OF ,若cos ∠DFA =45,AN =210,求⊙O 的直径的长度.(1)证明:连接OF ,则∠OAF =∠OFA ,如解图①所示, ∵ME 与⊙O 相切, ∴OF ⊥ME. ∵CD ⊥AB ,∴∠M +∠FOH =180°.∵∠BOF =∠OAF +∠OFA =2∠OAF ,∠FOH +∠BOF =180°, ∴∠M =2∠OAF. ∵ME ∥AC ,∴∠M =∠C =2∠OAF.∵CD ⊥AB ,∴∠ANC +∠OAF =∠BAC +∠C =90°, ∴∠ANC =90°-∠OAF ,∠BAC =90°-∠C =90°-2∠OAF , ∴∠CAN =∠OAF +∠BAC =90°-∠OAF =∠ANC , ∴CA =CN ;(2)解:连接OC ,如解图②所示. ∵cos ∠DFA =45,∠DFA =∠ACH , ∴CH AC =45. 设CH =4a ,则AC =5a ,AH =3a , ∵CA =CN ,∴NH =a ,∴AN =AH 2+NH 2=(3a )2+a 2=10a =210, ∴a =2,AH =3a =6,CH =4a =8. 设⊙O 的半径为r ,则OH =r -6,在Rt △OCH 中,OC =r ,CH =8,OH =r -6, ∴OC 2=CH 2+OH 2,r 2=82+(r -6)2, 解得:r =253,∴⊙O 的直径的长度为2r =503.2.(2017·大连)如图,AB 是⊙O 直径,点C 在⊙O 上,AD 平分∠CAB ,BD 是⊙O 的切线,AD 与BC 相交于点E.(1)求证:BD =BE ;(2)若DE =2,BD =5,求CE 的长. (导学号 35694249)(1)证明:设∠BAD =α,∵AD 平分∠BAC ,∴∠CAD =∠BAD =α,∵AB 是⊙O 的直径,点C 在⊙O 上,∴∠ACB =90°, ∴∠ABC =90°-2α,∵BD 是⊙O 的切线,∴BD ⊥AB ,∴∠DBE =2α,∠BED =∠BAD +∠ABC =90°-α, ∴∠D =180°-∠DBE -∠BED =90°-α, ∴∠D =∠BED ,∴BD =BE ;(2)解:设AD 交⊙O 于点F ,CE =x ,则AC =2x ,连接BF ,如解图, ∵AB 是⊙O 的直径, ∴∠AFB =90°,∵BD =BE ,DE =2,∴FE =FD =1,∵BD =5,∴BF =2, ∵∠BAD +∠D =90°,∠D +∠FBD =90°, ∴∠FBD =∠BAD =α,∴tan α=FD BF =12,∴AB =BF sin α=255=25,在Rt △ABC 中,由勾股定理可知(2x)2+(x +5)2=(25)2, 解得x =-5(舍去)或x =355,∴CE =355.3.(2017·南京)如图,PA ,PB 是⊙O 的切线,A ,B 为切点,连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D.(1)求证:PO 平分∠APC ; (2)连接DB ,若∠C =30°,求证:DB ∥AC.证明:(1)如解图,连接OB , ∵PA ,PB 是⊙O 的切线, ∴OA ⊥AP ,OB ⊥BP , 又OA =OB ,∴PO 平分∠APC ;(2)∵OA ⊥AP ,OB ⊥BP , ∴∠CAP =∠OBP =90°,∵∠C =30°, ∴∠APC =90°-30°=60°, ∵PO 平分∠APC ,∴∠OPC =12∠APC =12³60°=30°,∴∠POB =90°-∠OPC =90°-30°=60°,又∵OD =OB ,∴△ODB 是等边三角形, ∴∠OBD =60°,∴∠DBP =∠OBP -∠OBD =90°-60°=30°, ∴∠DBP =∠C ,∴DB ∥AC.4.如图,直线l 经过点A(4,0),B(0,3).(1)求直线l 的函数表达式;(2)若圆M 的半径为2,圆心M 在y 轴上,当圆M 与直线l 相切时,求点M 的坐标.(1)∵A(4,0),B(0,3),∴直线l 的解析式为:y =-34x +3;(2)作MH ⊥AB ,垂足为H ,如解图所示, ∵M 在y 轴上,∴设M(0,t),2S △ABM =BM·AO =AB·MH , ∴|3-t|³4=5³2, 解得t 1=12,t 2=112,∴M 1(0,12),M 2(0,112).题型六 二次函数与几何图形综合题类型一 探究特殊三角形的存在性问题 1.(2017·乌鲁木齐)如图,抛物线y =ax 2+bx +c(a ≠0)与直线y =x +1相交于A(-1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E.①当PE =2ED 时,求P 点坐标;②是否存在点P ,使△BEC 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.(导学号 35694250)解:(1)∵点B(4,m)在直线y =x +1上, ∴m =4+1=5,∴B(4,5),把A 、B 、C 三点坐标代入抛物线解析式可得 ⎩⎨⎧a -b +c =0,16a +4b +c =5,25a +5b +c =0, 解得⎩⎨⎧a =-1,b =4,c =5,∴抛物线的解析式为y =-x 2+4x +5;(2)①设P(x ,-x 2+4x +5),则E(x ,x +1),D(x ,0),则PE =|-x 2+4x +5-(x +1)|=|-x 2+3x +4|,DE =|x +1|, ∵PE =2ED ,∴|-x 2+3x +4|=2|x +1|,当-x 2+3x +4=2(x +1)时,解得x =-1或x =2,但当x =-1时,P 与A 重合不合题意,舍去,∴P(2,9);当-x 2+3x +4=-2(x +1)时,解得x =-1或x =6,但当x =-1时,P 与A 重合,不合题意,舍去,∴P(6,-7);综上可知,P 点坐标为(2,9)或(6,-7);②点P 的坐标为(34,11916)或(4+13,-413-8)或(4-13,413-8)或(0,5)时,△BEC 为等腰三角形.2.(2017·阜新)如图,抛物线y =-x 2+bx +c 的图象与x 轴交于A(-5,0),B(1,0)两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D.(1)求抛物线的函数表达式;(2)如图①,点E(x ,y)为抛物线上一点,且-5<x<-2,过点E 作EF ∥x 轴,交抛物线的对称轴于点F ,作EH ⊥x 轴于点H ,得到矩形EHDF ,求矩形EHDF 周长的最大值;(3)如图②,点P 为抛物线对称轴上一点,是否存在点P ,使以点P ,A ,C 为顶点的三角形是直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)把A(-5,0),B(1,0)代入y =-x 2+bx +c ,得到⎩⎨⎧-25-5b +c =0,-1+b +c =0,解得⎩⎪⎨⎪⎧b =-4,c =5.∴抛物线的函数表达式为y =-x 2-4x +5;(2)如解图①,∵抛物线的对称轴为直线x =-2,E(x ,-x 2-4x +5), ∴EH =-x 2-4x +5, EF =-2-x ,∴矩形EFDH 的周长=2(EH +EF)=2(-x 2-5x +3)=-2(x +52)2+372,∵-2<0,∴x =-52时,矩形EHDF 的周长最大,最大值为372;(3) 如解图②,设P(-2,m),①当∠ACP =90°时, AC 2+PC 2=PA 2,∴(52)2+22+(m -5)2=32+m 2, 解得m =7, ∴P 1(-2,7).②当∠CAP =90°时, AC 2+PA 2=PC 2,∴(52)2+32+m 2=22+(m -5)2, 解得m =-3,∴P 2(-2,-3).③当∠APC =90°时,PA 2+PC 2=AC 2,∴32+m 2+22+(m -5)2=(52)2, 解得m =6或m =-1,∴P 3(-2,6),P 4(-2,-1),综上所述,满足条件的点P 坐标为(-2,7)或(-2,-3)或(-2,6)或(-2,-1). 3.(2017·重庆A )如图,在平面直角坐标系中,抛物线y =33x 2-233x -3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E(4,n)在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE.当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM +MN +NK 的最小值;(3)点G 是线段CE 的中点,将抛物线y =33x 2-233x -3沿x 轴正方向平移得到抛物线y′,y ′经过点D ,y ′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q ,使得△FGQ为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.解:(1)直线AE 的解析式为y =33x +33.(2)设直线CE 的解析式为y =mx -3, ∴直线CE 的解析式为y =233x - 3. 过点P 作PF ∥y 轴,交CE 于点F.如解图①, 设点P 的坐标为(x ,33x 2-233x -3), 则点F(x ,233x -3),则FP =-33x 2+433x.∴△EPC 的面积=-233x 2+833x.∴当x =2时,△EPC 的面积最大.∴P(2,-3).如解图②,作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 于N 、M.∵K 是CB 的中点,∴K(32,32).∴tan ∠KCP =33.∵OD =1,OC =3, ∴tan ∠OCD =33. ∴∠OCD =∠KCP =30°. ∴∠KCD =30°.∵K 是BC 的中点,∠OCB =60°, ∴OC =CK.∴点O 与点K 关于CD 对称. ∴点G 与点O 重合. ∴点G(0,0).∵点H 与点K 关于CP 对称,∴点H 的坐标为(32,-332).∴KM +MN +NK =MH +MN +GN.当点G 、N 、M 、H 在一条直线上时,KM +MN +NK 有最小值,最小值=GH. ∴GH =(32)2+(332)2=3. ∴KM +MN +NK 的最小值为3.(3)点Q 的坐标为(3,-43+2213)或(3,-43-2213)或(3,23)或(3,-235).类型二 探究特殊四边形的存在性问题1.(2017·宜宾)如图,抛物线y =-x 2+bx +c 与x 轴分别交于A(-1,0),B(5,0)两点. (1)求抛物线的解析式;(2)在第二象限内取一点C ,作CD 垂直x 轴于点D ,连接AC ,且AD =5,CD =8,将Rt △ACD 沿x 轴向右平移m 个单位,当点C 落在抛物线上时,求m 的值;(3)在(2)的条件下,当点C 第一次落在抛物线上记为点E ,点P 是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q ,使以点B 、E 、P 、Q 为顶点的四边形是平行四边形?若存在,请求出点Q 的坐标;若不存在,请说明理由.(导学号 35694251)解:(1)抛物线的解析式为y =-x 2+4x +5; (2)∵AD =5,且OA =1,∴OD =6, 又∵CD =8,∴C(-6,8),设平移后的点C 的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=-x 2+4x +5,解得x =1或x =3,∴C ′点的坐标为(1,8)或(3,8), ∵C(-6,8),∴当点C 落在抛物线上时,向右平移了7或9个单位,∴m 的值为7或9;(3)Q 点的坐标为(-2,-7)或(6,-7)或(4,5)时,以点B 、E 、P 、Q 四点为顶点的四边形为平行四边形.。
专题08 整式中规律性探索的三种考法(原卷版)-2024年常考压轴题攻略(7年级上册北师大版)
专题08整式中规律探索的三种考法类型一、数字类规律探索问题-,A B.30,D C.29,BA.29类型二、图表类规律探索问题【变式训练1】我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非”,数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n 的式子表示第n 个图的钢管总数.【分析思路】图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手(统一用n S 表示第n 个图形钢管总数).【解决问题】(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像123n n n ===,,的情形那样,在所给横线上,请用数学算式表达你发现的规律.123122343456S S S +++=++=+=,,,4S =___________.(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:1S =___________,2S =___________,3S =___________,4S =___________.(3)用含n 的式子列式,并计算第n 个图的钢管总数为___________.类型二、程序类问题【变式训练1】按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种【变式训练2】按如图所示的运算程序,能使输出结果的值为11的是()A.x=3,y=1B.x=2,y=2C.x=2,y=3D.x=0,y=1.5【变式训练3】按图示的程序计算,若开始输入的x为正整数,最后输出的结果为67,则x 的值是()A.2或7B.2或22C.2或22或7D.2或12或22课后训练A.31B.49C.62D2.如图所示的运算程序中,如果开始输入的x的值为23,我们发现第一次输出的结果为A.13-B.2A.73B.81C.915.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数12,22…为五边形数,则第7个五边形数是()A.62B.70C.846.如图是按照一定规律“生长”的“勾股树”.经观察可以发现:图②中共有7个正方形,图③中共有15个正方形,照此规律形的个数是()A.31B.32C.637.下列图形都是由大小相同的小正方形按一定规律组成的,其中第①个图形中有1个小正方形,第②个图形中有5个小正方形,第③个图形中有11个小正方形,…,按此规律排列下去,第⑦个图形中的小正方形个数为()个A.40B.49C.55D.71的直径,点B、C、D将半圆分成四等分,把五位同学分别编为序号1、8.如图1,AE是O2、3、4、5按顺序站在半圆的五个点上,现把最右边的5号同学调出,站到2号和3号两位同学之间,再把最右边的4号同学调出,站到1号和2号两位同学之间,得到图2,称为“1次换序”.接着按同样的方法,把最右边的3号同学调出,站到4号和2号两位同学之间,再把最右边的5号同学调出,站到1号和4号两位同学之间,得到图3,称为“2次换序”.以此类推……;若从图1开始,经过“n次换序”后,得到的顺序与图1相同,则n的值可以是()A.11B.12C.13D.14。
中考数学重难点突破专题一:规律探索型问题试题(含答案)
精品基础教育教学资料,仅供参考,需要可下载使用!专题一 规律探索问题类型1 数字规律1.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2020时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是__337__分.解析:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n 个数为1+3(n -1)=3n -2,3n -2=2020,则n =674,甲报出了674个数,一奇一偶,所以偶数有674÷2=337个,得337分.2.如图,给正五边形的顶点依次编号为1,2,3,4,5,若从某一顶点开始,沿五边形的边顺时针行走,顶点编号是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”,则他所处顶点的编号为__3__.3.(2017·六盘水)计算1+4+9+16+25+…的前29项的和是__8555__.解析:12+22+32+42+52+…+292+…+n 2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n -1)n +n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n -1)n]=n (n +1)2+{13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+13(3×4×5-2×3×4)+…+13[(n -1)·n·(n +1)-(n -2)·(n -1)·n]}=n (n +1)2+13[(n -1)·n·(n +1)]=n (n +1)(2n +1)6, ∴当n =29时,原式=29×(29+1)×(2×29+1)6=8555. 类型2 图形规律4.(2017·天水)观察下列的“蜂窝图”则第n 个图案中的“”的个数是__3n +1__.(用含有n 的代数式表示)5.(2017·临沂)将一些相同的“○“按如图所示摆放,观察每个图形中的“○“的个数,若第n 个图形中“○“的个数是78,则n 的值是( B )A .11B .12C .13D .14解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n 个图形有1+2+3+…+n =n (n +1)2个小圆;∵第n 个图形中“○“的个数是78,∴78=n (n +1)2,解得:n 1=12,n 2=-13(不合题意舍去).6.(2017·德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为( C )A .121B .362C .364D .729解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,类型3 坐标变化规律7.在平面直角坐标系中,对于平面内任一点(a ,b),若规定以下三种变换:①△(a ,b)=(-a ,b);②○(a ,b)=(-a ,-b);③Ω(a ,b)=(a ,-b),按照以上变换例如:△(○(1,2))=(1,-2),则○(Ω(3,4))等于__(-3,4)__.8.(2017·衢州)如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经一次翻滚后得到△A 1B 1O ,则翻滚3次后点B的对应点的坐标是__(5,3)__,翻滚2017次后AB 中点M 经过的路径长为 (134633+896)π .解析:如图作B 3E ⊥x 轴于E ,易知OE =5,B 3E =3,∴B 3(5,3),观察图象可知三次一个循环,一个循环点M 的运动路径为120·π·3180+120π·1180+120π·1180=(23+43)π,∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672·(23+43)π+233π=(134633+896)π.9.(2017·菏泽)如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y =-33x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y =-33x 上,依次进行下去…若点B 的坐标是(0,1),则点O 12的纵坐标为__(-9-93,9+33)__.解:观察图象可知,O 12在直线y =-33x 时,OO 12=6·OO 2=6(1+3+2)=18+63, ∴O 12的横坐标=-(18+63)·cos30°=-9-93,O 12的纵坐标=12OO 12=9+33,∴O 12(-9-93,9+33). 10.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( C )A .2B .3C .4D .5解析:如图,∵到直线l 1的距离是l 的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离为2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上,∴“距离坐标”是(1,2)的点是M 1,M 2,M 3,M 4,一共4个.11.(2017·绍兴模拟)在平面直角坐标系中,对图形F 给出如下定义:如图形F 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度.例如,图中的矩形ABCD 的坐标角度是90°.现将二次函数y =ax 2(1≤a ≤3)的图象在直线y =1下方的部分沿直线y =1向上翻折,则所得图形的坐标角度α的取值范围是( B )A .30°≤α≤60°B .60°≤α≤90°C .90°≤α≤120°D .120°≤α≤150°12.(2017·昆山二模)赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x 轴和y 轴,大正方形的顶点B 1,C 1,C 2,C 3,…,C n 在直线y =-12x +72上,顶点D 1,D 2,D 3,…,D n 在x 轴上,则第n 个阴影小正方形的面积为__(23)2n -2__.解:设第n 个大正方形的边长为a n ,则第n 个阴影小正方形的边长为55a n,当x =0时,y =-12x +72=72,∴72=55a 1+52a 1,∴a 1= 5.∵a 1=a 2+12a 2,∴a 2=235,同理可得:a 3=23a 2,a 4=23a 3,a 5=23a 4,…,∴a n =(23)n -1a 1=5(23)n -1,∴第n 个阴影小正方形的面积为(55a n )2=[(23)n -1]2=(23)2n -2.。
人教版七年级数学上图形的规律和线段及角度的计算专题训练含答案
专题训练(一) 图形的规律探索——教材P70T10的变式与应用教材母题:(教材P70T10)如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,每个图形总的点数S是多少?当n=5,7,11时,S是多少?【思路点拨】观察图形,可得到点的总数S与n之间的关系,用含n的式子表示S,便可分别求出当n=5,7,11时,S的值.【解答】观察图形,当n=2时,有两排点,总的点数为1+2=3(个);当n=3时,有三排点,总的点数为1+2+3=6(个);当n=4时,有四排点,总的点数为1+2+2+4=9(个);当n=5时,有五排点,总的点数为1+2+2+2+5=12(个).根据此规律,可知点的总数S=1+2(n-2)+n=3n-3,当n=7时,S=3×7-3=18;当n=11时,S=3×11-3=30.故当n=5,7,11时,S的值分别是12,18,30.【方法归纳】解决图形规律探索问题,首先从简单的基本图形入手,随着“序号”或“编号”增加时,后一个图形与前一个图形相比,在数量上的变化情况或图形变化情况,找出变化规律,从而推出一般性结论.1.如图是用相同长度的小棒摆成的一组有规律的图案,其中图1需要4根小棒,图2需要10根小棒,…,按此规律摆下去,则第11个图案所需小棒的根数为(C)A.70 B.68 C.64 D.582.(荆州中考)如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有2 017个白色纸片,则n的值为(B)A.671 B.672 C.673 D.6743.(益阳中考)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是13枚.4.如图是用棋子摆成的图案:根据图中棋子的排列规律解决下列问题:(1)第4个图中有22枚棋子,第5个图中有32枚棋子;(2)写出你猜想的第n 个图中棋子的枚数(用含n 的式子表示)是n +2+n 2.5.下面是用棋子摆成的“小房子”.摆第10个这样的“小房子”需要多少枚棋子?摆第n 个这样的“小房子”呢?你是如何得到的?解:第1个“小房子”,下边正方形棋子4×2-4=4(枚),上边1枚,共4+1=5(枚); 第2个“小房子”,下边正方形棋子4×3-4=8(枚),上边3枚,共8+3=11(枚); 第3个“小房子”,下边正方形棋子4×4-4=12(枚),上边5枚,共12+5=17(枚); 第4个“小房子”,下边正方形棋子4×5-4=16(枚),上边7枚,共16+7=23(枚); …第n 个“小房子”,下边正方形棋子4×(n+1)-4=4n(枚),上边(2n -1)枚,共4n +2n -1=(6n -1)(枚).当n =10时,6n -1=6×10-1=59(枚).专题训练(二) 线段的计算——教材P128练习T3的变式与应用教材母题:(教材P 128练习T 3)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4 cm ,求线段CD 的长度.【解答】 因为点D 是线段AB 的中点,AB =4 cm , 所以AD =12AB =12×4=2(c m ).因为C 是线段AD 的中点, 所以CD =12AD =12×2=1(cm ).【方法归纳】 结合图形,将待求线段长转化为已知线段的和、差形式.若题目中出现线段的中点,常利用线段中点的性质,结合线段的和、差、倍、分关系求解.同时应注意题目中若没有图形,或点的位置关系不确定时,常需要分类讨论,确保答案的完整性.1.如图,线段AB =22 cm ,C 是线段AB 上一点,且AC =14 cm ,O 是AB 的中点,求线段OC 的长度.解:因为点O 是线段AB 的中点,AB =22 cm , 所以AO =12AB =11 cm .所以OC =AC -AO =14-11=3(cm ).2.如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.(1)若DE =9 cm ,求AB 的长; (2)若CE =5 cm ,求DB 的长.解:(1)因为D 是AC 的中点,E 是BC 的中点, 所以AC =2CD ,BC =2CE.所以AB =AC +BC =2DE =18 cm . (2)因为E 是BC 的中点, 所以BC =2CE =10 cm .因为C 是AB 的中点,D 是AC 的中点, 所以DC =12AC =12BC =5 cm .所以DB =DC +BC =5+10=15(cm ).3.如图,B ,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.解:设AB =2x cm ,BC =5x cm ,CD =3x cm , 所以AD =AB +BC +CD =10x cm . 因为M 是AD 的中点, 所以AM =MD =12AD =5x cm .所以BM =AM -AB =5x -2x =3x(cm ). 因为BM =6 cm , 所以3x =6,x =2.故CM =MD -CD =5x -3x =2x =2×2=4(cm ), AD =10x =10×2=20(cm ).4.如图,线段AB =1 cm ,延长AB 到C ,使得BC =32AB ,反向延长AB 到D ,使得BD =2BC ,在线段CD 上有一点P ,且AP =2 cm .(1)请按题目要求画出线段CD ,并在图中标出点P 的位置;(2)求出线段CP 的长度.解:(1)线段CD 和点P 的位置如图1、2所示.(2)因为AB =1 cm , 所以BC =32AB =32 cm .所以BD =2BC =3 cm .当点P 在点A 的右边时,CP =AB +BC -AP =12cm ;当点P 在点A 的左边时,点P 与点D 重合,CP =BD +BC =92 cm .专题训练(三) 角的计算类型1 利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算. 1.如图,已知∠AOC=∠BOD=75°,∠BOC =30°,求∠AOD 的度数.解:因为∠AOC=75°,∠BOC =30°,所以∠AO B =∠AOC-∠BOC=75°-30°=45°. 又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°. 2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD 时,求∠CAE 的度数; (2)如图2所示,在此种情形下,当∠ACE=3∠BCD 时,求∠ACD 的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC =4∠B AD , 所以5∠BAD=90°,即∠BAD=18°. 所以∠DAC=4×18°=72°. 因为∠DAE =90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE =3∠BCD, 所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°. 解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2 利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A ,O ,E 在同一直线上,∠AOB =40°,∠EOD =28°46′,OD 平分∠COE,求∠COB 的度数.解:因为∠EOD=28°46′,OD 平分∠COE, 所以∠COE=2∠EOD=2×28°46′=57°32′. 又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD 是∠BOC 的平分线.(1)如图1,当∠AOB 与∠BOC 互补时,求∠COD 的度数; (2)如图2,当∠AOB 与∠BOC 互余时,求∠COD 的度数. 解:(1)因为∠AOB 与∠BOC 互补, 所以∠AOB+∠BOC =180°. 又因为∠AOB=40°,所以∠BOC=180°-40°=140°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=70°.(2)因为∠AOB 与∠BOC 互余, 所以∠AOB+∠BOC=90°. 又因为∠AOB=40°,所以∠BOC=90°-40°=50°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决. 5.一个角的余角比它的补角的23还少40°,求这个角的度数.解:设这个角的度数为x °,根据题意,得 90-x =23(180-x)-40.解得x =30.所以这个角的度数是30°. 6.如图,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °. 因为OB 平分∠AOC, 所以∠AOB=3x °.所以2x +3x +3x +20=180. 解得x =20.所以∠BOC=3×20°=60°.7.如图,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠C OD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °. 因为∠AOB=12∠BOC,所以∠BOC=2x °.所以3x +3x +2x +x =360. 解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性. 8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小.解:因为∠AOB=75°,∠AOC =23∠AOB,所以∠AOC=23×75°=50°.因为O D 平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°; 如图2,∠BOD =75°-25°=50°.9.已知:如图,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AOE 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线, 所以∠AOC=12∠AOB.因为∠AOB=60°, 所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°. (3)90°+α2 或90°-α2.。
中考数学压轴题重难点突破一 规律探索 类型二:图形规律
10.★(2022·大庆)观察下列“蜂窝图”,按照这样的规律,则第 16 个 图案中的“ ”的个数是 4949 .
…
11.★(2022·十堰)如图,某链条每节长为 2.8 cm,每两节链条相连接
部分重叠的圆的直径为 1 cm,按这种连接方式,50 节链条总长度为 991 cm. 1
12.★(2022·牡丹江)如图,下列图形是将正三角形按一定规律排列, 则第 5 个图形中所有正三角形的个数是 48485 个.
16.★(2022·遂宁)“勾股树”是以正方形一边为斜边向外作直角三角 形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所 画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分 别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图 原理作图,则第六代勾股树中正方形的个数为 12127.
对于图形个数变化规律探索题,解决的一般步骤: 1.标序号:记每个(组)图形的序数为“1,2,3,…,n”; 2.数图形个数:对应的图形个数用 a1, a2, a3,…,an 表示;
3.观察:a1,a2,a3,…,an 与对应序数之间的关系; ①图形个数与图序数是倍数或平方关系; ②图形个数与图序数关系不明确时,按照以下步骤找寻关系: 步骤一:列表表示 an-an-1 的值; 步骤二:将所列等式左右相加,得到(a2-a1)+(a3-a2)+…+(an-an-1) =an-a1 的值; 步骤三:表示 an; 4.验证:代入序号检验所得式子是否正确.
类型二:图形规律 (省卷 2017T18;天水 2017T16)
(一题多设问)
(1) ★如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需
要 3 根火柴棍;拼第二个图形共需要 5 根火柴棍;…,照这样拼图,则 第 n 个图形需要 ((22n+n+1) 根火柴棍;
部编数学七年级上册专题05整式中的两种规律探索问题(解析版)(人教版)含答案
专题05 整式中的两种规律探索问题类型一、数字类规律探索例.观察:(x ﹣1)(x +1)=x 2﹣1,(x ﹣1)(x 2+x +1)=x 3﹣1,(x ﹣1)(x 3+x 2+x +1)=x 4﹣1,据此规律,当(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=0时,代数式x 2019﹣1的值为 _____.【答案】0或﹣2【详解】解:根据题意得∶ (x ﹣1)(x +1)=x 2﹣1,(x ﹣1)(x 2+x +1)=x 3﹣1,(x ﹣1)(x 3+x 2+x +1)=x 4﹣1,……∴(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=x 6﹣1∵(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=0,∴x 6﹣1=0,解得:x =1或x =﹣1,则x 2019﹣1=0或﹣2,故答案为:0或﹣2.【变式训练1】a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为1-11-2=,-1的差倒数为111(1)2=--,已知15a =,2a 是1a 差倒数,3a 是2a 差倒数,4a 是3a 差倒数,以此类推……,2021a 的值是()A .5B .14-C .43D .45【答案】B【解析】∵15a = , 2a 是1a 的差倒数,∴211154a ==--,∵3a 是2a 的差倒数,4a 是3a 的差倒数,∴314151-4a ==æö-ç÷èø,∴415415a ==-,根据规律可得n a 以5,1-4,45为周期进行循环,因为2021=673×3…2,所以202114a =-.故选B .【变式训练2】有2021个数排成一行,对于任意相邻的三个数,都有中间数等于前后两数的和,如果第一个数是0,第二个数是1, 那么前6个数的和是______, 这2021个数的和是______.【答案】0 1【解析】由题意得:第3个数是101-=,第4个数是110-=,第5个数是011-=-,第6个数是101--=-,则前6个数的和是()()0110110++++-+-=,第7个数是1(1)0---=,第8个数是0(1)1--=,归纳类推得:这2021个数是按0,1,1,0,1,1--循环往复的,202163365=´+Q ,且前6个数的和是0,\这2021个数的和与前5个数的和相等,即为()011011++++-=,故答案为:0,1.【变式训练3】有一列数11315,,,,228432---,…,那么第n 个数为______.【答案】()12n nn-【详解】解:()11122-=-´,()221221242==-´,()3333182-=-´,()4414414162==-´,()55551322-=-´,……由此发现:第n 个数为()12n n n -.故答案为:()12n nn-【变式训练4】杨辉三角又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则()7a b +的展开式中从左起第三项为______.()1a b a b +=+()2222a b a ab b +=++()3322333a b a a b ab b +=+++()4432234464a b a a b a b ab b +=++++LL【答案】5221a b 【详解】解:根据题意,()7a b +=7652433425677213535217a a b a b a b a b a b ab b +++++++,∴()7a b +的展开式中从左起第三项为5221a b ,故答案为:5221a b .类型二、图形类规律探索例.如图,两条直线相交,有1个交点,三条直线相交最多有3个交点,四条直线相交最多有______个交点,n 条直线相交最多有______个交点.【答案】 6 (1)2n n -【详解】解: 如图,两条直线相交最多有1个交点,即()22112´-=;三条直线相交最多有3个交点,即()33132´-=;四条直线相交最多有6个交点,即()44162´-=,五条直线相交最多有10个交点,即()551102´-=,……∴n 条直线两两相交,最多有(1)2n n -个交点(n 为正整数,且n ≥2).故答案为6;(1)2n n -.【变式训练1】如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第_____个图形共有45个小球.【答案】9【详解】解:第1个图中有1个小球,第2个图中有3个小球,3=1+2,第3个图中有6个小球,6=1+2+3,第4个图中有10个小球,10=1+2+3+4,……n(1+n)个小球,照此规律,第n个图形有1+2+3+4+…+n=12n(1+n)=45,∴12解得n=9或-10(舍去),故答案为:9.【变式训练2】为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第n个“金鱼”和第(n+1)个“金鱼”需用火柴棒的根数为130根,则n的值为______.【答案】10【详解】解:由题可知:第n个图形有(6n+2)根火柴棒,第(n+1)个图形有(6n+8)根火柴棒,∵摆第n个“金鱼”和第(n+1)个“金鱼”需用火柴棒的根数为130根,∴6n+2+6n+8=130,解得n=10.故答案为:10.【变式训练3】如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数为___个,第n层含有正三角形个数为___个.n-【答案】114 126【解析】根据题意分析可得:从里向外的第1层包括6个正三角形,第2层包括18个正三角形,此后,每层都比前一层多12个,依此递推,第10层中含有正三角形个数是6+12×9=114个,则第n层中含有正三角形个数是6+12×(n-1)=126n-个,故答案为:114,126n-.【变式训练4】观察下列图形:它们是按一定规律排列的,依照此规律,用6064个五角星摆出的图案应该是第_______个图形.【答案】2021【解析】观察发现,第1个图形五角星的个数是:1+3=4,第2个图形五角星的个数是:1+3×2=7,第3个图形五角星的个数是:1+3×3=10,第4个图形五角星的个数是:1+3×4=13,⋯第n个图形五角星的个数是:1+3•n=1+3n,∵6064120213-=,∴用6064个五角星摆出的图案应该是第2021个图形,故答案为:2021.课后训练1.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图有3张黑色正方形纸片,第2个图有5张黑色正方形纸片,第3个图有7张黑色正方形纸片,…,按此规律排列下去,若第n个图中有201张黑色正方形纸片,则n的值为( )A.99B.100C.101D.102【答案】B【详解】解:观察图形知:第一个图中有3=1+2×1个正方形,第二个图中有5=1+2×2个正方形,第三个图中有7=1+2×2个正方形,…故第n 个图中有1+2×n =2n +1=201(个)正方形,解得n =100故选B .2.如图,将若干颗棋子按箭头方向依次摆放,记第一颗棋子摆放的位置为第1列第1排,第二颗棋子摆放的位置为第2列第1排,第三颗棋子摆放的位置为第2列第2排……,按此规律摆放在第16列第8排的是第( )颗棋子.A .85B .86C .87D .88【答案】B 【详解】偶数列数与排数表:偶数列数排数22436485……n 12n +∴当n =16时,排数为:192n +=,∴前16列共有棋子:()9102123+-3=2-3=872´+++´…9(颗),∴第16列第8排的棋子位次是:87-1=86.故选B .3.将一正方形按如图方式分成n 个完全相同的长方形,上、下各横排三个,中间两行各竖排若干个,则n 的值为( )A .12B .16C .18D .20【答案】C 【详解】解:设长方形的长为a ,宽为b ,根据题意得,2a +2b =3a , 整理得,a =2b ,∴竖排的一行的长方形的个数为3a ÷b =(3×2b )÷b =6,∴n =3×2+6×2=6+12=18.故选:C .4.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .12【详解】解:设如图表所示:根据题意可得:x +6+20=22+z +y ,整理得:x -y =-4+z ,x +22+n =20+z +n ,20+y +m =x +z +m ,整理得:x =-2+z ,y =2z -22,∴x -y =-2+z -(2z -22)=-4+z ,解得:z =12,∴x +y =3z -24=12故选:D .5.如图,按此规律,第6行最后一个数字是_____,第_____行最后一个数是2020.【答案】16 674【详解】Q 每一行的最后一个数字分别是1,4,7,10 ,……,\第n 行的最后一个数字为:1+3(1)32n n -=-,\第6行最后一个数字为:36216´-=;322020n -=,解得:674n =,故答案为:16,674.6.如图,每个图形中的三个数之间均具有相同的规律.根据此规律,若图形中11m =,12n =,则M 的值为________.【详解】解:∵1×(2+1)=3,3×(4+1)=15,5×(6+1)=35,∴右下圆圈内的数=上方圆圈内的数×(左下圆圈内的数+1),∴M =m (n +1),∴M =11×(12+1)=143.故答案为:143.7.为了求220211222+++¼+的值,可令220211222S =+++¼+,则220222222S =++¼+,因此2022221S S -=-,所以220212022122221+++¼+=-.按照以上推理计算出1220211333---+++¼+的值是______.【答案】2021332--【详解】解:令1220211333S ---=+++¼+,则1220212022133333S ----=++¼++,因此20221313S S --=-,则20222313S --=-,得:2021332S --=,所以20211220213313332-----+++¼+=.故答案为:2021332--.8.今年“10.1”黄金周,适逢祖国70大庆,广西柳州赛长桌宴,民族风情浓郁,吸引了大量游客如果长桌宴按下图方式就坐(其中□代表桌子,〇代表座位),则拼接n (n 为正整数)张桌子时,最多可就坐_____人.【答案】(6n +2)【详解】解:根据图示知,拼1张桌子,可以坐(2+6)人.拼2张桌子,可以坐[2+(6×2)]人.拼3张桌子,可以坐[2+(6×3)]人.…拼接n (n 为正整数)张桌子,可以坐(6n +2)人.故答案是:(6n +2).9.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7136147´-´=,172316247´-´=,不难发现,结果都是7.2012年8月日一二三四五六12345678910111213141516171819202122232425262728293031(1)请你再选择两个类似的部分试一试,看看是否符合这个规律;(2)换一个月的月历试一下,是否有同样的规律?(3)请你利用整式的运算对以上的规律加以证明.【答案】(1)111710187´-´=,符合;(2)392107´-´=;(3)见解析【详解】解:(1)由题意得:111710187´-´=,符合;(2)392107´-´=;答:换一个月的月历试一下还是同样的规律;(3)设上边第一个数为x ,则其后的数为(x +1),第二行的两个数分别为(x +7),(x +8),根据题意,得22(1)(7)(8)8787x x x x x x x x ++-+=++--=.10.(1)你知道下面每一个图形中各有多少个小圆圈吗?第5个图形中应该有多少个小圆圈?为什么?(2)完成下表:边上的小圆圈数12345每个图中小圆圈的总数(3)如果用n 表示六边形边上的小圆圈数,m 表示这个六边形中小圆圈的总数,那么m 和n 的关系是什么?【答案】(1)第1个图形:1个;第2个图形:7个;第3个图形:19个;第4个图形:37个;第5个图形:61个,理由见解析;(2)1,7,19,37,61;(3)2331m n n =-+【详解】(1)观察每个图形的特点,就可以算出第1个图形的小圆圈有1个,第2个图形的小圆圈有2+3+2=7个,第3个图形的小圆圈有3+4+5+4+3=19个,第4个图形的小圆圈有4+5+6+7+6+5+4=37个,由此可推知第5个图形的小圆圈有5+6+7+8+9+8+7+6+5=61个;(2)将(1)算出的结果填入下列表格,如下表所示,边上的小圆圈数12345每个图中小圆圈的总数17193761(3)结合(1)(2)可知,m 与n 之间的函数关系为:()()()()()1...212...1m n n n n n n n n n n=+++++-++-++-++++首尾相加得()()21...(2)1m n n n n n n =+++++-++-éùëû()()21322213312n n n n n --=+-=-+2331m n n =-+.11.对任意一个四位正整数m ,如果m 的百位数字等于个位数字与十位数字之和,m 的千位数字等于十位数字的2倍与个位数字之和,那么称这个数m 为“筋斗数”.例如:m =5321,满足1+2=3,2×2+1=5,所以5321是“筋斗数”.例如:m =8523,满足2+3=5,但2×2+3=7≠8,所以8523不是“筋斗数”.(1)判断9633和2642是不是“筋斗数”,并说明理由;(2)若m 是“筋斗数”,且m 与13的和能被11整除,求满足条件的所有“筋斗数”m .【答案】(1)9633是“筋斗数”;2642不是“筋斗数”; 理由见解析(2)m 的值为9909或2110或6422【解析】(1)解:9633是“筋斗数”,2642不是“筋斗数”,理由如下:∵6=3+3,9=2×3+3,∴9633是“筋斗数”;∵6=4+2,28+2¹,∴2642不是“筋斗数”;(2)设m 的个位数为a ,0≤a ≤9,十位数为0<b ≤9,且a 、b 为整数∵m 是“筋斗数”,∴m 的百位数为a +b ,千位数为2b +a ;∴m =1000(2b +a )+100(a +b )+10b +a =1100a +110b +2000b +a∵m 与13的和能被11整除,∴1100a +110b +2000b +a +13能被11整除,∵2b +a ≤9且a 、b 为整数,∴b ≤4.5∵1100a +110b 能被11整除,∴2000b +a +13能被11整除,∴b =0,a =9或b =1,a =0或b =2,a =2或b =3,a =4,或b =4,a =6,∴a +b =9,2b +a =9或a +b =1,2b +a =2或a +b =4,2b +a =6或a +b =7,2b +a =10(舍去)或a +b =10,2b +a =14(舍去),∴m 的值为9909或2110或642212.看图填空:如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的长方形,再把面积为14的长方形等分成面积为18的长方形,如此进行下去……(1)试利用图形揭示的规律计算:1111111112481632641282562n ++++++++L =_______.并使用代数方法证明你的结论.(2)请给利用图(2),再设计一个能求:2341111122222n +++++L 的值的几何图形.【答案】(1)112n - ,证明见解析;(2)见解析【解析】(1)解:①由题意可知当最后一个小长方形的面积为12n时 ,1111111112481632641282562n ++++++++L 的值为正方形面积减去最后一个小长方形面积,即:112n - ,1111111111124816326412825622n n \++++++++=-L ;②设1111111112481632641282562n s =++++++++L ,111111111212481632641282n s -=++++++++L ,1212n s s \-=-,即112ns =-,1111111111124816326412825622n n \++++++++=-L ;(2)如图所示,将面积为1的正方形等分成两个面积为12的三角形,接着把面积为12的三角形等分成两个面积为14的三角形,再把面积为14的三角形等分成面积为18的三角形,如此进行下去,则2341111122222n +++++L 的值即为正方形面积减去最后一个小三角形面积:112n -。
中考数学复习材料 题型一 规律探索题(针对演练)
目录题型一规律探索题 (2)类型一探索图形累加规律 (2)类型二探索图形循环规律 (13)拓展类型数式规律 (16)题型一规律探索题类型一探索图形累加规律针对演练1. (2016荆州改编)下列图形是将黑白两种颜色的菱形纸片按一定的规律排列组成,第1个图形有4张白色纸片,第2个图形有7张白色纸片,第3个图形有10张白色纸片,…,依此规律,则第12个图形中白色纸片的个数为()第1题图A. 34B. 37C. 42D. 462. (2016重庆八中初三(下)第三次月考)下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第⑧个图案用火柴棒的根数为()第2题图A. 33B.32C. 31D. 303. (2015重庆B卷)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依此规律,图⑩中黑色正方形的个数是()第3题图A.32B. 29C. 28D. 264. (2014重庆B卷)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是()第4题图A. 22B. 24C. 26D. 285. 如图,下列图形是由边长为2的等边三角形按照一定规律排列而成,第①个图形的周长为6,第②个图形的周长为8,第③个图形的周长为10,第④个图形的周长为12,按照这样的规律来摆放,则第⑧个图形的周长为()第5题图A. 18B. 19C. 20D. 216. (2016天水改编)将一些相同的“○”按如图所示的规律依次摆放,其中图①中“○”的个数为5个,图②中“○”的个数为7个,图③中“○”的个数为11个,图④中“○”的个数为17个,…,若图○,n)中有245个“○”,则n =()第6题图A. 10B. 12C. 14D. 167. (2016重庆外国语学校二诊)下列图案均是用长度相同的小木棒按一定的规律拼搭而成,拼搭第(1)个图案需4根小木棒,拼搭第(2)个图案需10根小木棒,…,依此规律,拼搭第(6)个图案需小木棒的根数是()第7题图A. 53B. 54C. 55D. 568. (2016重庆江津中学初三下半期考试)用同样大小的黑色五角星按如图所示的方式摆图案,按照这样的规律摆下去,第⑬个图案需要的黑色五角星的个数是()第8题图A. 18B. 19C. 21D. 229. (2016重庆十一中一诊)下列图形是将正三角形按一定规律排列,则第④个图形中所有正三角形的个数有()第9题图A. 160B. 161C. 162D. 16310. (2016重庆巴蜀一诊)如图,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6 cm2,第②个图形的面积为18 cm2,第③个图形的面积为36 cm2,…,那么第⑥个图形的面积为()第10题图A. 84 cm2B. 90 cm2C. 126 cm2D. 168 cm211. (2016重庆西大附中第九次月考)下列图形都是用同样大小的♥按一定规律组成的,则第(8)个图形中♥共有()第11题图A. 80个B. 73个C. 64个D. 72个12. (2016重庆一中三模)如图所示,图①中含“〇”的矩形有1个,图②“〇”的矩形有7个,图③中含“〇”的矩形有17个,按此规律,图⑥中含“〇”的矩形个数为()A. 70B. 71C. 72D. 7313. (2016大渡口区诊断性检测)如图是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要棋子的枚数为()第13题图A. 115B. 122C. 127D. 13914. (2016重庆一中二模)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心小圆圈的个数为()第14题图A. 61B. 63C. 76D. 7815. (2016重庆巴蜀中学保送生考试)如图,各图都由同样大小的图形①按一定规律组成,其中第①个图形中共有一个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,…,则第⑥个图形中完整菱形的个数为()第15题图A. 60B. 61C. 62D. 6316. (2016重庆一中第一次定时作业)已知四边形ABCD对角线相交于点O,若在线段BD上任意取一点(不与点B、O、D重合),并与A、C连接,如图①,则三角形个数为15个;若在线段BD上任意取两点(不与点B、O、D重合),如图②,则三角形个数为24个;若在线段BD上任意取三点(不与点B、O、D重合),如图③,则三角形个数为35个;…;以此规律,则图⑤中三角形的个数为()第16题图A. 48B. 56C. 61D. 6317. (2016徐州)如图,每个图案都由大小相同的正方形组成.按照此规律,第n 个图案中这样的正方形的总个数可用含n的代数式表示为________.第17题图18. (2016安顺改编)观察下列砌钢管的横截面图:第18题图则第5个图形中钢管数为________个.19. 如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图案中花盆的个数为6个,第2个图案中花盆的个数为12个,第3个图案中花盆的个数为20个,…,则第8个图案中花盆的个数为________.第19题图20. (2016龙岩改编)用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图①几何体表面积为6,图②几何体表面积为18,则图④中所示几何体的表面积为________.第20题图答案类型一探索图形累加规律1. B【解析】每个图形中白色纸片的个数依次是4,7,10,13,….那么,第n个图形中白色纸片的个数为3n+1,∴第12个图形中白色纸片的个数为3×12+1=37.2.A【解析】∵图①用了5根火柴,即5=5+4×0;图②用了9根火柴,即9=5+4×1;图③用了13根火柴,即13=5+4×2;…;以此规律,第○n个图形中,火柴的根数为5+4(n-1),故第⑧个图案用火柴棒的根数为5+4×(8-1)=33.3.B【解析】图①有2+3×0=2个黑色正方形;图②有2+3×1=5个黑色正方形;图③有2+3×2=8个黑色正方形;图④有2+3×3=11个黑色正方形,…,按照这个规律,图○n有2+3(n-1)个黑色正方形,故图⑩一共有2+3×9=29个黑色正方形.4.C【解析】第一个图形中有2个三角形:6×1-4=2;第二个图形中有8个三角形:6×2-4=8;第三个图形中有14个三角形:6×3-4=14;…;第n个图形中三角形的个数为:6n-4,故第五个图形中三角形的个数为:6×5-4=26.5. C【解析】第①个图形的周长为6+0×2=6,第②个图形的周长为6+1×2=8,第③个图形的周长为6+2×2=10,第④个图形的周长为6+3×2=12,…,依此规律,可知第○n个图形的周长为6+(n-1)×2,所以第⑧个图形的周长为6+7×2=20.6. D【解析】图①中有1×(1-1)+5=5个“○”,图②中有2×(2-1)+5=7个“○”,图③中有3×(3-1)+5=11个“○”,图④中有4×(4-1)+5=17个“○”,…,据此得出:图○n中有n(n-1)+5个“○”,则可得方程n(n-1)+5=245,解得n 1=16,n 2=-15(不合题意,舍去).7. B 【解析】观察图形可知,每个图案都是由横排小木棒和纵排小木棒搭建而成,且横排和纵排数相同,其中第(1)个图案有2横排,每排有1个小木棒;第(2)个图案有3横排,每排的小木棒个数分别为2,2,1;第(3)个图案有4横排,每排的小木棒个数分别为3,3,2,1;第(4)个图案有5横排,每排的小木棒个数分别为4,4,3,2,1,…;由此可推测第(n )个图案共有n +1横排,每排木棒个数分别为n ,n ,n -1,n -2,…,2,1,故第(6)个图案共有7横排,每排的小木棒个数分别为6,6,5,4,3,2,1,共有27根,则对应的纵排也有27根小木棒,则搭建第(6)个图案共需要小木棒54根.8. C 【解析】观察图形可以发现图①中黑色五角星的个数为1+2=3,图②中黑色五角星个数为1+2+1=4,图③中黑色五角星个数为1+2+1+2=6,图④中黑色五角星个数为1+2+1+2+1=7,图⑤中黑色五角星个数为1+2+1+2+1+2=9,…,则图○n 中,当n 为奇数时,黑色五角星个数为2)1(3+n ,当n 为偶数时,黑色五角星个数为123+n ,∴第⑬个图案需要的黑色五角星的个数为3×(13+1)2=21个. 9. B 【解析】第①个图形中正三角形的个数为:1+4,第②个图形中正三角形的个数为:1+4+3×4,第③个图形中正三角形的个数为:1+4+3×4+9×4,…,第○n 个图形中正三角形的个数为:1+4+3×4+9×4+…+3n -1×4,∴第④个图形中正三角形的个数为1+4+3×4+9×4+34-1×4=1+4+12+36+108=161.10. C 【解析】∵所有的小矩形都是大小相同的,第①个图形是由2个小矩形组成,面积为6,∴每个小矩形的面积是3,∵第①个图形中有2个小矩形,第②个图形中有6个小矩形,第③个图形中有12个小矩形,12=2+4+6=2×(1+2+3),第④个图形中有20个小矩形,20=2+4+6+8=2×(1+2+3+4),则第○n个图形中有2×(1+2+…+n)个小矩形,故第⑥个图形中小矩形的个数为2×(1+2+3+4+5+6)=42个,则其面积为42×3=126 cm2.11. A【解析】第(1)个图形中♥的个数为3=22-1;第(2)个图形中♥的个数为8=32-1;第(3)个图形中♥的个数为15=42-1;第(4)个图形中♥的个数为24=52-1;…,于是,第(n)个图形中♥的个数为(n+1)2-1,所以第(8)个图形中♥的个数为92-1=80(个),故选A.12.B【解析】图①中含“○”的矩形有1=2×12-1个,图②中含“○”的矩形有7=2×22-1个,图③中含“○”的矩形有17=2×32-1个,…,按此规律,则图○n中含“○”的矩形个数为2n2-1,所以图⑥中含“○”的矩形有2×62-1=71个,故选B.13. C【解析】由题意可知,摆第1个图案需要7=1+6枚棋子,摆第2个图案需要19=1+6+6×2枚棋子,摆第3个图案需要37=1+6+6×2+6×3枚棋子,…,则摆第n个图案需要1+6+6×2+6×3+…+6n=3n(n+1)+1枚棋子,所以摆第6个图案需要:3×6×(6+1)+1=127枚棋子,故选C.14. A【解析】∵第①个图形中空心小圆圈个数为:4×1-3+1×0=1个;第②个图形中空心小圆圈个数为:4×2-4+2×1=6个;第③个图形中空心小圆圈个数为:4×3-5+3×2=13个;…,依此规律,第○n个图形中空心小圆圈个数为:4n-(n+2)+n(n-1),∴第⑦个图形中空心小圆圈个数为:4×7-9+7×6=61个.15.B【解析】∵第①个图形中菱形个数为02+12=1个;第②个图形中菱形个数为12+22=5个;第③个图形中菱形个数为22+32=13个;第④个图形中菱形个数为32+42=25个,…,依此规律第○n个图形中菱形个数为(n-1)2+n2个,∴第⑥个图形中菱形个数为52+62=61个.16. D【解析】在图①中,线段BD上共有4个点,所得三角形的个数共15个,15=16-1=42-1;图②中,线段BD上共5个点,所得三角形的个数共24个,24=25-1=52-1;图③中,线段BD上共6个点,所得三角形的个数共35个,35=36-1=62-1,…,由此可猜想,图○n中,线段BD上共有n +3个点,所得三角形的个数为(n+3)2-1,∴图⑤中三角形的个数为(5+3)2-1=63.17. n(n+1)【解析】由题图知,第1、2、3个图案对应的小正方形的个数分别为2=1×2、6=2×3、12=3×4,…,∴第n个图案所对应的小正方形的个数为n(n+1).18. 45【解析】根据题意,可得序号 1 2 3 4钢管数 3 9 18 30找规律3×1 3×3=3×(1+2)3×6=3×(1+2+3)3×10=3×(1+2+3+4)综上可知,第5个图形中钢管数为3×(1+2+3+4+5)=3×15=45个.19. 90【解析】观察可得,第1个图案:正三角形每条边上有3个花盆,共计32-3个花盆;第2个图案:正四边形每条边上有4个花盆,共计42-4个花盆;第3个图案:正五边形每条边上有5个花盆,共计52-5个花盆;…;由此可知第n个图案:正(n+2)边形每条边上有(n+2)个花盆,共计(n+2)2-(n +2)个花盆,则第8个图案中花盆的个数为(8+2)2-(8+2)=90.20. 60【解析】图①几何体的表面积为:6=6×1;图②几何体的表面积为:18=6×(1+2);图③几何体的表面积为:6×(1+2+3)=36.由此规律得,图④几何体的表面积为:6×(1+2+3+4)=60.类型二探索图形循环规律针对演练1. 如图所示,两个全等的等边三角形的边长为1 m,一个微型机器人由A点开始按A→B→C→D→B→E→A的顺序沿等边三角形的边循环运动,行走2017 m 停下,则这个微型机器人停在()第1题图A. A点B. B点C. C点D. E点2.(2016重庆八中强化训练一)将正六边形ABCDEF的各边按如图所示延长,从射线F A开始,分别在各射线上标记点O1,O2,O3,…,按此规律,则点O2016所在射线是()第2题图A. ABB. DEC. BCD. EF3. 下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2017个梅花图案中,共有________个“”图案.第3题图4. 有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是________.第4题图5.如图,在平面直角坐标系中,已知点A(1, 1),B(-1, 1),C(-1, -2),D (1, -2),把一根长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在矩形ABCD的边上,则细线的另一端落在________线段上第5题图答案类型二探索图形循环规律1. B【解析】∵两个全等的等边三角形的边长为1 m,∴机器人由A点开始按A→B→C→D→B→E→A的顺序沿等边三角形的边循环运动一圈,即为6 m,∵2017÷6=336……1,即正好行走了336圈多1米,到第二个点,∴行走2017 m 停下,则这个微型机器人停在B点.2. C【解析】观察图形可知12个点依次排列在射线F A、CD、AB、DE、BC、EF、CD、F A、DE、AB、EF、BC上,依此规律循环,又因2016÷12=168,则点O2016在第12条射线BC上,故选C.3. 505【解析】观察题图可知,“”图案方向依次向上、向右、向下、向左,每四个图案为一个循环周期.∵2017÷4=504……1,∴前2017个梅花图案中,共有505个“”图案.4. 3【解析】观察可知,点数3与点数4相对,点数2与点数5相对,且循环周期为4. ∵2014÷4=503……2,∴滚动2014次后与第二次相同,∴骰子朝下一面的点数为3.5.CD【解析】∵矩形四个顶点的坐标分别为:A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴AB=CD=2,BC=AD=3,∴矩形的周长为2+3+2+3=10,则循环一周所需的单位长度是10,∵2016÷10=201……6,∴细线的另一端落在绕矩形第202圈的第6个单位长度的位置,即是点C与点D的中间位置,即在线段CD上.拓展类型数式规律针对演练1. (2016张家界)观察下列等式:71=7,72=42+92=97,73=343,74=2401,75=16807,76=117649,…,那么:71+72+73+…+72016的末位数字是() A. 9 B. 7 C. 6 D. 02. (2016丹东)观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是________.3. (2016贵港)已知a1=tt-1,a2=11-a1,a3=11-a2,…,a n+1=11-a n(n为正整数,且t≠0,1),则a2016=________(用含有t的代数式表示).4. (2016泉州)指出下列各图形中数的规律,依此,a的值为________.第4题图5. (2016南宁)观察下列等式:第1层1+2=3第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24…在上述数字宝塔中,从上往下数,2016在第________层.答案拓展类型 数式规律1. D 【解析】根据题意,7的幂的最终结果的末位数字是以7,9,3,1为循环,其和结果的末位数字是0,因为2016÷4=504,所以71+72+73+…+72016的末位数字是0.2. -12211 【解析】∵-2=-12+11,52=22+12,-103=-32+13,174=42+14,-265=-52+15,…,∴第11个数据是:-112+111=-12211. 3. t 1【解析】∵a 1=1-t t ,a 2=111--t t =1-t ,a 3=t +-111=t 1,a 4=t 111-=1-t t ,…,∴每3个一次循环,∵2016÷3=672,∴a 2016的值为t1. 4. 226 【解析】观察可得:2=1×0+2,10=2×3+4,26=4×5+6,50=6×7+8,…,可以得到规律:右下角三角形中的数字等于左下角三角形中的数字与正上方三角形中数字的积加上中间三角形中的数字,故a =14×15+16=226.5. 44 【解析】根据题中给出的式子,观察得出规律,第一层第一个数为12,第2层第一个数为22,第3层第一个数为32,…,∵442=1936,452=2025,且442<2016<452,∴2016位于第44层.。
总复习专题一规律探索型
B.
C.
D.
规律:由图可知,每4个数为一个循环组依次循环,
2013÷4=503……1
∴2013是第504个循环组的第2个数
∴从2013到2014再到2015箭头的方向是 D
D
6.如图中每一个小方格的面积为1,则可根据面积计算得到如 下算式:1+3+5+7+…+(2n-1)=______(用n表示,n是正整数)
(1)等差数列类.即相邻数字的差值相等,整个数字序列
02
【强化运用1 】
如下表,从左到右在每个小格中都填入一个整数,使得 任意பைடு நூலகம்个相邻格子中所填整数之和都相等,则第2016个 格子中的整数是________.
-4
a
b
c
6
b
-2
……
-4
6
-4
6
-2
02
01
01
【类型解读】
02
图形数量方面的规律
中考第二轮复习
202X
专题一《规律探索型》
类型一 数字规律类
等比数列类.即相邻数字的比值相等. 加、减、乘、除、平方规律类. 个位数字规律类.
数字规律类试题一般是给定一些具有某种特定关系的数 字,考查学生的观察、分析、类比、猜想和归纳能力, 常有以下类型:
【类型解读】
01
依次递增或递减的一类数.
n
2n-1
1
2
3
4
1
3
5
7
1
2
3
4
n
解析:利用每个小方格的面积为1,可以得出
1+3=4=22
1+3+5=9=32
安徽省2023中考数学题型5规律探索题习题
题型五 规律探索题高分帮类型1数与式的规律探索1.[2021山东济宁]按规律排列的一组数据:12,35,,717,926,1137,…,其中□内应填的数是 (D)A.23B.511C.59D.122.[2021湖北随州]根据图中数字的规律,若第n 个图中的q=143,则p 的值为 (B)A.100B.121C.144D.1693.[2021湖南怀化]观察等式:2+22=23-2,2+22+23=24-2,2+22+23+24=25-2,….已知按一定规律排列的一组数:2100,2101,2102,…,2199.若2100=m ,用含m 的代数式表示这组数的和是 m 2-m . 4.[2014安徽,16]观察下列关于自然数的等式: 32-4×12=5;① 52-4×22=9;② 72-4×32=13;③ …根据上述规律解决下列问题:(1)完成第四个等式:92-4×( 4 )2=( 17 );(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性. 解:(1)4 17(2)第n 个等式为(2n+1)2-4×n 2=4n+1.因为左边=4n 2+4n+1-4n 2=4n+1=右边, 所以第n 个等式成立.5.[2021合肥包河区一模]观察下列等式: 第1个等式:1+11=43×(1+12);第2个等式:1+12=98×(1+13); 第3个等式:1+13=1615×(1+14);第4个等式:1+14=2524×(1+15);……根据你观察到的规律,解决下列问题: (1)请写出第5个等式: 1+15=3635×(1+16) ; (2)请写出第n 个等式: 1+1n =(n +1)2(n +1)2-1×(1+1n +1) (用含n 的等式表示),并证明.(1)1+15=3635×(1+16)(2)1+1n =(n +1)2(n +1)2-1×(1+1n +1)证明:右边=(n +1)2n (n +2)×n +2n +1=n +1n =1+1n=左边, ∴等式成立.6.观察以下等式:第1个等式:(1-12)÷16=3; 第2个等式:(1-13)÷412=2; 第3个等式:(1-14)÷920=53; 第4个等式:(1-15)÷1630=32;第5个等式:(1-16)÷2542=75; ……按照以上规律,解决下列问题:(1)写出第7个等式: (1-18)÷4972=97 ;(2)写出你猜想的第n 个等式(n 为正整数),并证明. (1)(1-18)÷4972=97(2)(1-1n +1)÷n 2(n +1)(n +2)=n +2n .证明:左边=(1-1n +1)÷n 2(n +1)(n +2)=n n +1·(n +1)(n +2)n 2=n +2n =右边. 7.[2021合肥庐阳区二模]阅读下面内容,并将问题解决过程补充完整.√2+1=√2-(√2+√1)(√2-√1)=√2-1; √3+√2=√3-√2)(√3+√2)(√3-√2)=√3-√2; …√100+√99=√100-√99)(√100+√99)(√100-√99)=√100-√99.由此,我们可以解决下面这个问题:S=1+√2+√3+…+√100,请求出S 的整数部分.解:S=1+√2+√3+…+√100=21+1+√2+√2+√3+√3+…+√100+√100<21+1+1+√2+√2+√3+…+√99+√100=1+2(√2-1+√3-√2+…+√100-√99)=19,S=1+√2+√3+…+√100=21+1+√2+√2+√3+√3+…+√100+√100> √2-1+√3-√2+…+√101-√100)=2(√101-1)>18,∴S的整数部分是18.类型2图形中的规律探索8.[2021广西玉林]观察下列树枝分杈的规律图,若第n个图树枝数用Y n表示,则Y9-Y4=(B)A.15×24B.31×24C.33×24D.63×249.[2021湖南常德]如图中的三个图形都是由边长为1的小正方形组成的网格,其中第一个图形有1×1个小正方形,所有线段的和为4,第二个图形有2×2个小正方形,所有线段的和为12,第三个图形有3×3个小正方形,所有线段的和为24,按此规律,则第n个图形中所有线段的和为2n(n+1).(用含n的代数式表示)10.[2013安徽,18]我们把正六边形的顶点及其对称中心称作如图(1)所示基本图的特征点,显然这样的基本图共有7个特征点.将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2),图(3)……图(1)图(2)图(3)(1)观察以上图形并完成下表:图形的名称基本图的个数特征点的个数图(1) 1 7图(2) 2 12图(3) 3 17图(4) 4 22………猜想:在图(n)中,特征点的个数为5n+2(用含n的式子表示).(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1= √3;图(2013)的对称中心的横坐标为2013√3.图(n)11.[2021合肥蜀山区一模]观察与思考:我们知道,1+2+3+…+n=n(n+1),那么13+23+33+…+n3的结果等于多少呢?2请你仔细观察,找出下面图形与算式的关系,解决下列问题:…13=1213+23=3213+23+33=6213+23+33+43=102(1)推算:13+23+33+43+53= 152;(2)概括:13+23+33+…+n3= [n(n+1)2]2;(3)拓展应用:求13+23+33+…+10031+2+3+…+100的值.解:(1)15 (2)[n(n+1)2]2(3)13+23+33+…+1003 1+2+3+…+100=[100×(100+1)2]2 100×(100+1)2=100×(100+1)2=5050.12.[2016安徽,18](1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中“”的个数,用含有n的代数式填空:1+3+5+…+(2n-1)+(2n+1)+(2n-1)+…+5+3+1= 2n2+2n+1.13.[2020合肥蜀山区模拟]如图,已知正方形ABCD内部有若干个点,则用这些点以及正方形ABCD的顶点A,B,C,D的连线把原正方形分割成一些三角形(线不交叉,三角形不重叠).(1)填写下表:正方形ABCD内点的个数1 2 3 4 …n分割后三角形的个数4 6 8 10 …2(n+1)(2)原正方形能否被分割成2021个三角形?若能,求此时正方形ABCD内部有多少个点;若不能,请说明理由.解:(1)补全表格如下.正方形ABCD 内点的个数 1 2 3 4 … n 分割后三角 形的个数4 6 8 10 … 2(n+1)(2)不能.设点数为n ,则2(n+1)=2021, 解得n=20192.∵20192不是整数,∴不能被分割成2021个三角形.【参考答案】题型五 规律探索题1.D 观察该组数据,第n 个式子的分子为2n-1,分母为n 2+1,当n=3时,2n -1n 2+1=510=12.故选D . 2.B 由题图可知,p=n 2,q=(n+1)2-1.∵q=143,∴(n+1)2-1=143,∴n=11,∴p=n 2=112=121. 3.m 2-m 由题意可知2+22+23+24+…+2198+2199=2200-2①,2+22+23+24+…+298+299=2100-2②,由①-②,得2100+2101+…+2198+2199=(2200-2)-(2100-2)=2200-2100=(2100)2-2100=m 2-m. 4~7.略8.B 9.2n (n+1)10.(1)22 5n+2 (2)√3 2013√3 11.略12.(1)42 n 2 (2)2n+1 2n 2+2n+1 13.略。
中考数学必考题型《规律探索》分类专项练习含答案
中考数学必考题型《规律探索》分类专项练习类型一 数式规律1. 我国战国时期提出了“一尺之棰,日取其半,万世不竭”这一命题,用所学知识来解释可理解为:设一尺长的木棍,第一天折断一半,其长为12尺,第二天再折断一半,其长为14尺,…,第n 天折断一半后得到的木棍长应为________尺. 12n2. 如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是________.第2题图41【解析】由图形可知,第n 行最后一个数为1+2+3+…+n =n (n +1)2,∴第8行最后一个数为8×92=36=6,则第9行从左至右第5个数是36+5=41.3. 观察下列关于自然数的式子:第一个式子:4×12-12 ① 第二个式子:4×22-32 ② 第三个式子:4×32-52 ③ …根据上述规律,则第2019个式子的值是______.8075 【解析】∵4×12-12=3①,4×22-32=7②,4×32-52=11③,…,4n 2-(2n -1)2=4n -1,∴第2019个式子的值是4×2019-1=8075. 4. 将数1个1,2个12,3个13,…,n 个1n (n 为正整数)顺次排成一列:1,12,12,13,13,13,…,1n ,1n ,…,记a 1=1,a 2=12,a 3=12,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2019=________.63364 【解析】根据题意,将该数列分组,1个1的和为1,2个12的和为1,3个13的和为1,…;∵1+2+3+…+63=2016个数,则第2019个数为64个164的第3个数,则此数列中,S 2019=1×63+3×164=63364. 类型二 图形规律5. 如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,…,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).观察每次变换前后的三角形的变化,按照变换规律,则点A n 的坐标是________.第5题图(2n,3)【解析】∵A(1,3),A1(2,3),A2(4,3),A3(8,3),…,∴纵坐标不变,为3,横坐标都和2有关,为2n,即点An的坐标是(2n,3).6. 如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,点P的坐标为________.第6题图(6058,1)【解析】∵铁片OABC为正方形,A(3,0),P(1,2),∴正方形铁片OABC 的边长为3,如解图第一个循环周期内的点P1,P2,P3,P4的坐标分别为(5,2),(8,1),(10,1),(13,2),每增加一个循环,对应的点的横坐标就增加12.而2019÷4=504……3,即504个循环周期后点P2016的横坐标为504×12+1=6049,纵坐标为2,所以点P2019的横坐标为6049+9=6058,纵坐标为1.故P2019(6058,1).第6题解图7. 如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P 的坐标是________.第7题图(2019,-1) 【解析】∵圆的半径都为1,∴半圆的周长=π,以时间为点P 的下标.观察发现规律:P 0(0,0),P 1(1,1),P 2(2,0),P 3(3,-1),P 4(4,0),P 5(5,1),…,∴P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,-1).∵2019÷4=504……3,∴第2019秒时,点P 的坐标为(2019,-1).8. 如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为________.第8题图(-1,-1) 【解析】∵菱形OABC 的顶点O (0,0),B (2,2),∴BO 与x 轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D是线段OB的中点,∴点D的坐标是(1,1),∵菱形绕点O逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时是把菱形绕点O 逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D 的对应点落在第三象限,且对应点与点D关于原点O成中心对称,∴第60秒时,菱形的对角线交点D的坐标为(-1,-1).9. 如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1,边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于点A3、F3,再以A3F3为边作正六边形A3B3C3D3E3F3,…,依此规律,经第n次作图后,点B n到ON的距离是________.第9题图3n-13【解析】由题可知,∠MON=60°,设B n到ON的距离为h n,∵正六边形A1B1C1D1E1F1的边长为1,∴A1B1=1,易知△A1OF1为等边三角形,∴A1B1=OA1=1,∴OB1=2,则h1=2×32=3,又∵OA2=A2F2=A2B2=3,∴OB2=6,则h2=6×32=33,同理可得:OB3=18,则h3=18×32=93,…,依此可得OB n=2×3n-1,则h n=2×3n -1×32=3n -1 3.∴B n 到ON 的距离h n = 3n -1 3.10. 如图,正方形AOBO 2的顶点A 的坐标为A (0,2),O 1为正方形AOBO 2的中心;以正方形AOBO 2的对角线AB 为边,在AB 的右侧作正方形ABO 3A 1,O 2为正方形ABO 3A 1的中心;再以正方形ABO 3A 1的对角线A 1B 为边,在A 1B 的右侧作正方形A 1BB 1O 4,O 3为正方形A 1BB 1O 4的中心;再以正方形A 1BB 1O 4的对角线A 1B 1为边,在A 1B 1的右侧作正方形A 1B 1O 5A 2,O 4为正方形A 1B 1O 5A 2的中心;…;按照此规律继续下去,则点O 2018的坐标为________.第10题图(21010-2,21009) 【解析】由A (0,2)和A 1(2,4)可知直线AA 1的解析式为y =x +2,由图可知点A 1,A 2,…,A n 的纵坐标分别为22,23,…,2n +1,将y =2n +1代入y =x +2,得2n +1=x +2,∴x =2n +1-2,∴点A n 的坐标为(2n +1-2,2n +1),由图可知O 2n 横坐标与A n 的横坐标相同,O 2n 纵坐标是A n 的纵坐标的12,∴O 2n 的坐标为(2n +1-2,2n),∴当n =1009时,O 2018的坐标为(21010-2,21009). 真题反馈:1. 观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.2. 如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为( )A.671 B.672 C.673 D.6743. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A.43 B.45 C.51 D.534. 请你计算:(1-x)(1+x),(1-x)(1+x+x2),…,猜想(1-x)(1+x+x2+…+x n)的结果是( ).A. 1-x n+1B. 1+x n+1C. 1-x nD. 1+x n5. 如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2019次变换后,正方形ABCD的对角线交点M的坐标变为().A. (-2012,2)B. (-2012,-2)C. (-2013,-2)D. (-2013,2)6. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是.7. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是.8. 正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.9. 如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2015个图形是.10. 如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n 次碰到矩形的边时的点为P n,则点P3的坐标是;点P2 019的坐标是.11.观察下列关于自然数的等式:32-4×12=5 ①52-4×22=9 ②72-4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.12.(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图(1)写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)(2)如图(2),在▱ABCD中,对角线焦点为O,A1,B1,C1,D1分别是OA,OB,OC,OD的中点,A2,B2,C2,D2分别是OA1,OB1,OC1,OD1的中点,…,以此类推.若▱ABCD的周长为1,直接用算式表示各四边形的周长之和l;(3)借助图形(3)反映的规律,猜猜l可能是多少?(1)(2) (3)。
专题一 图形规律探索题
A. 32019
B. 32017
C. ( 3 )2019
D. ( 3 )2017
例题图
【解析】如解图,延长BA交x轴于点C,∵A( 3,1), ∴tan∠AOC= AC 1 3 ,∴∠AOC=30°,
OC 3 3
∴OA=2,同理,由B( 3 ,3)得∠BOC=60°, ∠OBC=30°,∴∠AOB=∠BOC-∠AOC=
空白正方形的规律为:0,1,1,2,2,3,3,…, ∵(2019-1)÷2=2018÷2=1009, ∴空白正方形个数为1009, 则第2019个图形中黑色正方形的数量是4038-1009=3029, 故答案为:3024.
6. 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,
30°,∴∠AOB=∠OBC,∴△AOB是等腰
三角形.在Rt△OBC中,OB=
OC2 BC2 3 2 32 2 3 ,
例题解图
∵∠OA1B=∠AOB=30°,∴OB=A1B=2 , ∴B31(3 ,9),3∴yB1=9=32.同理可得 B2(9 3,27),∴yB2=27=33, ∴yBn=3n+1 , ∴点B2018的纵坐标为32019.
针对演练
1. 有一串彩色的珠子,按白黄蓝的顺序重复排列,其中有一部分放在盒子
里,如图所示,则这串珠子被放在盒子里的颗数可能是
(B)
A. 2010
B. 2011
C. 2012
D. 2013
第1题图
2. (2017连云港)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线
A0O方向运动到⊙O上的点A1处;再向左沿着与射线A1O夹角为60°的方向运
置,依次类推.这样连续旋转99次后顶点A在整个旋转过程中所经过的路程
2024年中考数学二轮复习课件:专题一 规律探索题
图1
A.正十二边形
图2
B.正十边形
C.正九边形
D.正八边形
10.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如
果搭建正三角形和正六边形共用了172根火柴棍,并且正三角形的个数比正六边形
30
的个数多8个,那么连续搭建正三角形的个数是____.
综与语文之间,得到如图3,称为2次整理;…若从如图1开始,经过 n 次整理后,
得到的顺序与如图1相同,则 n 的值可以是( B )
A.11
B.12
C.13
D.14
9.(2ቤተ መጻሕፍቲ ባይዱ23石家庄裕华区模拟)小明同学用一些完全相同的 △ ABC 纸片,已知六个
△ ABC 纸片按照图1所示的方法拼接可得外轮廓是正六边形图案,若用 n 个 △ ABC
再证明结论的正确性;
解:由题意规律,得 +
= + + .
证明:等式左边 = + + ,
等式右边 = + + ,
∴ 左边 = 右边,故等式成立.
【迁移】 思考“ 152 = 15 × 15 , 252 = 25 × 25 , ⋯ ”的特征:两个乘数十位上
上分别取点 A2 , B2 ,使 B1 A2 = B1 B2 ,
连接 A2 B2 ⋯ 按此规律下去,记
∠A2 B1 B2 = θ1 , ∠A3 B2 B3 = θ2 , ⋯ , ∠An+1 Bn Bn+1 = θn ,则:
180∘ +α
(1) θ1 = _______;
2
中考规律探索题—(类型二:图形规律)
中考规律探索题—(类型二:图形规律)一、典题讲解题型1 :分类法例1(2021江苏扬州)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为.例2(2021内蒙鄂尔多斯)将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有个“〇”.例3(2020山西)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n个图案有个三角形(用含n的代数式表示)题型2 :补形法例1(2021黑龙江绥化)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…依此规律,则第n 个图形中三角形个数是 .例2(2020鸡西)如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……按此规律排列下去,第9个图形中圆的个数是 个.题型3:数形结合法例1(2020四川遂宁)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为1a ,第2幅图中“▱”的个数为2a ,第3幅图中“▱”的个数为3a ,…,以此类推,若 20202...222321n a a a a n =+++(n 为正整数),则n 的值为 .二、跟踪练习1. (2017娄底17题3分)刘莎同学用火柴棒依图中的规律摆六边形图案,用10086根火柴棒摆出的图案应该是第________个.2. (2021湘西州18题4分)古希腊数学家把1,3,6,10,15,21,…这样的数叫做三角形数,因为它的规律性可以用如图表示.根据图形,若把第一个图形表示的三角形数记为a1=1,第二个图形表示的三角形数记为a2=3,…,则第n个图形表示的三角形数a n=________.(用含n的式子表达)3. (万唯原创) 如图,是由黑白两色的圆按照一定的方法摆放而成的图形,按照这样的方法摆放下去,能满足黑色圆的个数是白色圆个数的2倍还多1个的图形是()A. 第11个B. 第12个C. 第13个D. 第14个4. 如图是一组有规律的图案,第1个图案中有1个“·”,第2个图案中有5个“·”,第3个图案中有9个“·”,第4个图案中有13个“·”,…,按此规律排下去,第n个图案中有________个“·”.(用含n的代数式表示)5. 如图是一组形似“山”字的图案,它们是由边长相等的小正方形组合而成,图①有8个小正方形,图①有13个小正方形,图①有18个小正方形,…,按照这个规律,第n个图形中,小正方形的个数为()A. 2n-5B. 2n+5C. 5n+3D. 5n-36. 观察下列图形,它们是按一定规律排列的,依此规律,第20个图形中①的个数是()A. 398B. 439C. 450D. 4727.(2020海南)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有个菱形,第n个图中有个菱形(用含n的代数式表示).8. 如图是一组有规律的图案,它们是由相同的矩形拼接而成,已知矩形的长为a,宽为b,则第①个图案的周长为________.9. 如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多________个.(用含n的代数式表示)10.(2017永州)一小球从距地面1m高处自由落下,每次着地后又跳回到原高度的一半再落下.(1)小球第3次着地时,经过的总路程...为________________m;(2)小球第n次着地时,经过的总路程...为________________m.。
最新成都中考数学B卷专题:规律探索
专题2 规律探索类型一:数字类规律探索1.(2021·成都双流中考二模)设n a 为正整数4n 的末位数,如12341,6,1,6a a a a ====,⋯,则123201*********a a a a a a ++++++=________.2.(2018·成都中考真题)已知0a >,11S a=,211S S =--,321S S =,431S S =--,541S S =,…(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S =__________. 3.(2021·内江市中考一模)对于实数0x >,规定()1=+xf x x ,例如()222213f ==+,111212312f ⎛⎫== ⎪⎝⎭+,那么计算1111(1)(2)(3)(2020)2020201920182f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋯+++++⋯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的结果是______. 4.已知:11ta t =-,2111a a =-,3211a a =-,……,111n n a a +=-;则2020a =_______.(用含t 的代数式表示)5.(2021·湖南怀化中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.6.(2021·广东光明中考三模)已知整数1a ,2a ,…,n a (n 为正整数)满足10a =,211a a =-+,32|2|a a =-+,433a a =-+,…,以此类推,则2021a =__________.7.(2021·内蒙古中考一模)有这样一组数据1a ,2a ,3a ,…n a ,满足以下规律:12111,,21a a a ==-3211a a =-,…,111n n a a -=-(n 为正整数),则2018a 的值为_____________. 8.(2021·广西中考一模)若1213n =-,2111n n =-,3211n n =-,4311n n =-,…,则2020n =__________. 9.(2021·山东中考一模)定义一种对正整数n 的“F 运算”:①当n 为奇数时,结果为35n +;②当n 为偶数时,结果为2n k (其中k 是使2nk为奇数的最小正整数),并且运算重复进行.例如:取26n =,则运算过程如图,那么当9n =时,第2022次“F 运算”的结果是______10.(2021·广东南海中考一模)一列数a 1,a 2,a 3,…满足条件:a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 1+a 2+a 3+…+a 2021=_____.11.(2021·成都中考模拟)阅读下列材料,然后回答问题: 已知a >0,S 1=1a,S 2=﹣S 1﹣1,S 3=21s ,S 4=﹣S 3﹣1,S 5=41s ,….当n 为大于1的奇数时,S n =11n s -;当n 为大于1的偶数时,S n =﹣S n ﹣1﹣1.直接写出S 2020=_____(用含a 的代数式表示);计算:S 1+S 2+S 3+…+S 2022=_____.12.(2021·广西南宁市中考二模)如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上由左至右第1个数是1,第2个数是13,第3个数是41,…,依此规律,第7个数是_______.类型二:图形类规律探索13.(2021·内蒙古东胜中考二模)如图,在平面直角坐标系中,()()1,0,0,1A B 将ABO 绕A 顺时针旋转得到11AB P,此时1AP 11AP B 绕点1P 顺时针旋转得到122PP B,此时21AP =将122PP B 绕点2P 继续顺时针旋转,此时32AP =按此规律继续旋转,直至得到点100P 为止,则100AP =_________. 14.(2021·广东佛山市中考一模)如图,在Rt △ABC 中,∠C =90°,AC =2,BC =4.点M 1,N 1,P 1分别在AC ,BC ,AB 上,且四边形M 1CN 1P 1是正方形,点M 2,N 2,P 2分别在P 1N 1,BN 1,BP 1上,且四边形M 2N 1N 2P 2是正方形,…,点M n ,N n ,P n 分别在P n ﹣1N n ﹣1,BN n ﹣1,BP n ﹣1上,且四边形M n N n ﹣1N n P n 是正方形,则线段M n P n 的长度是_____.第13题图第14题图15.(2021·成都锦江区中考二模)用一些棋子摆成如图所示的长方形点阵和等边三角形点阵,长方形点阵的长所用棋子的颗数是宽所用棋子颗数的2倍,等边三角形点阵的边长所用棋子与长方形的长所用棋子一样多.如果等边三角形点阵比长方形点阵多用20颗棋子,则等边三角形点阵所用棋子的颗数为________.第15题图第16题图16.(2021·成都中考一模)如图,在直角坐标系中,四边形ABCD 是正方形,()1,1A -,()1,1B --,()1,1C -,()1,1D .曲线123AA A A 叫做“正方形的渐开线”,其中弧1AA 、弧12A A 、弧23A A 、弧34A A …所在圆的圆心依次是点B 、C 、D 、A 循环,则点2021A 坐标是__________.17.(2021·成都中考二模)如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a ,第2幅图中“□”的个数为2a ,第3幅图中“□”的个数为3a ,……,以此类推,若123201922222020n a a a a +++⋅⋅⋅+=(n 为正整数),则(1)5a =________;(2)n 的值为________.18.(2021—2022成都九年级期中)如图,在△ABC 中,点A 1,B 1,C 1分别是AC ,BC ,AB 的中点,连接A 1C 1,A 1B 1,四边形A 1B 1BC 1的面积记作S 1:点A 2,B 2,C 2分别是A 1C ,B 1C ,A 1B 1的中点,连接A 2C 2,A 2B 2,四边形A 2B 2B 1C 2的面积记作S 2……,按此规律进行下去,若S △ABC =a ,则S 2021=___.19.(2021·内江市九年级开学考试)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则11a +21a +31a +…+201a 的值为_____.20.(2021·辽宁锦州中考真题)如图,∠MON =30°,点A 1在射线OM 上,过点A 1作A 1B 1⊥OM 交射线ON 于点B 1,将△A 1OB 1沿A 1B 1折叠得到△A 1A 2B 1,点A 2落在射线OM 上;过点A 2作A 2B 2⊥OM 交射线ON 于点B 2,将△A 2OB 2沿A 2B 2折叠得到△A 2A 3B 2,点A 2落在射线OM 上;…按此作法进行下去,在∠MON 内部作射线OH ,分别与A 1B 1,A 2B 2,A 3B 3,…,A n B n 交于点P 1,P 2,P 3,…P n ,又分别与A 2B 1,A 3B 2,A 4B 3,…,A n +1B n ,交于点Q 1,Q 2,Q 3,…,Q n .若点P 1为线段A 1B 1的中点,OA 1A n P n Q n A n +1的面积为___________________(用含有n 的式子表示).21.(2021·云南文山中考一模)如图,在平面直角坐标系中,点1234,,,,A A A A ⋅⋅⋅在x 轴正半轴上,点123,,,B B B ⋅⋅⋅在直线(0)y x =≥上,若1A 的坐标为()1,0,且112223334,,,A B A A B A A B A ⋅⋅⋅均为等边三角形,则线段20202021B B 的长度为____.22.(2021·黑龙江中考三模)如图,在等腰直角三角形ABC 中,90ABC ∠=︒,4AB =,分别连接AB ,AC ,BC 的中点,得到第1个等腰直角三角形111A B C ;分别连接1A B ,11A C ,1BC 的中点,得到第2个等腰直角三角形222A B C ……以此规律作下去,得到等腰直角三角形202020202020A B C ,则12020B B 的长为______.23.(2021·湖北恩施中考二模)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为1a ,第2幅图形中“●”的个数为2a ,第3幅图形中“●”的个数为3a ,…,以此类推,则123181111a a a a ++++的值为________.24.(2021·辽宁立山中考一模)如图,射线OM 在第一象限,且与x 轴正半轴的夹角为60°,过点D (6,0)作DA ⊥OM 于点A ,作线段OD 的垂直平分线BE 交x 轴于点E ,交AD 于点B ,作射线OB ,以AB 为边在△AOB 的外侧作正方形ABCA 1,延长A 1C 交射线OB 于点B 1,以A 1B 1为边在△A 1OB 1的外侧作正方形A 1B 1C 1A 2,延长A 2C 1交射线OB 于点B 2,以A 2B 2为边在△A 2OB 2的外侧作正方形A 2B 2C 2A 3…按此规律进行下去,则正方形A 2020B 2020C 2020A 2021的周长为______.25.(2021·云南镇雄中考一模)如图,ABC 是边长为1的等边三角形,取BC 边中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的周长记作C 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的周长记作C 2.照此规律作下去,则C 2021=___.26.(2021·湖南台州市中考一模)如图,在平面直角坐标系中,等腰直角三角形1OAA 的直角边OA 在x 轴上,点1A 在第一象限,且1OA ,以点1A 为直角顶点,1OA 为直角边作等腰直角三角形12OA A ,再以点2A 为直角顶点,2OA 为直角边作等腰直角三角形23OA A ……以此规律,则点2018A 的坐标是_____.27.(2021—2022山东龙口九年级期中)如图,在正方形ABCB 1中,AB =1,AB 与直线l 的夹角为30°,延长CB 1交直线l 于点A 1,做正方形A 1B 1C 1B 2,延长C 1B 2交直线l 于点A 2,做正方形A 2B 2C 2B 3;延长C 2B 3交直线l 于点A 3,…,依此规律,则A 2023B 2023=_______.28.(2022·黑龙江九年级期末)如图所示,在矩形ABCD 中,AB a ,BC b ,两条对角线相交于点O ,OB 、OC 为邻边作第1个平行四边形1OBB C ,对角线相交于点1A ,以为11A B 、1A C 邻边作第2个平行四边形111A B C C ,对角线相交于1O ;再以11O B 、11O C 为邻边作第3个平行四边形1121O B B C ……此类推,第2020个平行四边形的面积__________.。
专题一 规律探究问题
第2个图Y2=3
第3个图Y3=7
第4个图Y4=15
A.15×24
C.33×24
B.31×24
D.63×24
B )
2.(2022 临淄一模)如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第
1 幅图形中“•”的个数为 a1,第 2 幅图形中“•”的个数为 a2,第 3 幅图形中“•”的个数为 a 3,…,以此
2.(2021十堰)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位
于第32行第13列的数是( B )
A.2 025
B.2 023
C.2 021
D.2 019
3.(2022 淄川一模)观察下列等式:4-2=4÷2, -3= ÷3,- - =- ÷ .请你找出一个满足以上特征的两个
类推,则 + + +…+
A.
C.
B.
D.
的值为(
C )
3.(2022芝罘一模)如图所示,某果农将苹果树种在正方形的果园,为了保护苹果树不被风吹,他在苹
果树的周围种植针叶树,根据图中规律,该果农计划种植100棵苹果树,需要种植针叶树的棵数
A.18
B.19
C.20
D.21
A)
(1)等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,这个常数叫做
等差数列的公差,公差常用字母d表示,例如:等差数列1,3,5,7,9,…,2n-1中,通项公式为a n =
(word完整版)中考数学规律探索专题复习
中考数学规律探索专题复习一、典例精析类型之一 数字规律型例1. (2011丽江)下面是按一定规律排列的一列数:23,45-,87,169-,…那么第n 个数是 . 【简析】根据题意,首先从各个数开始分析,n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;…,即可推出第n 个数为12(1)21nn n +-•+。
【答案】解:∵n=1时,分子:2=(-1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(—1)3•22,分母:5=2×2+1; n=3时,分子:8=(—1)4•23,分母:7=2×3+1;n=4时,分子:﹣16=(-1)5•24,分母:9=2×4+1;…,∴第n 个数为:12(1)21n n n +-•+ 故答案为:12(1)21n n n +-•+. 例2:(2010深圳) 观察下列算式,用你所发现的规律得出22010的末位数字是( )。
21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8【简析】有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解.通过观察可以发现,本题中的数字从第1个到第4个为一个循环节,以此规律总结下来,第2010个图形应该就是一个循环节中的第2个数字,故选B.【答案】B对应练习1。
有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .2.(2011湛江)若:A 32=3×2=6,A 53=5×4×3=60,A 54=5×4×3×2=120,A 64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A 73= (直接写出计算结果),并比较A 103 A 104(填“>”或“<”或“=”) 类型之二 图形规律型例3:(2011•临沂)如图,上面各图都是用全等的等边三角形拼成的一组图形.则在第10个这……样的图形中共有 个等腰梯形.【简析】本题考查了图形的变化,解题的关键是按照一定的顺序依次找到符合条件的等腰梯形,做到不重复不遗漏.由于图②4个=2+1+1,图③8个3+2+2+1+1,图④16=4+3+3+2+2+1+1,由此即可得到第10个图形中等腰梯形的个数为:10+9+9+8+8+7+7+6+6+5+5+4+4+3+3+2+2+1+1=100. 【答案】100.例4: (2011兰州)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 3 32 33 3 n+1 2 3= 2 [1+4+(4) +(4) +„„+(4) +„„]
数学
专题一 规律探索
类型二 图形规律探索
例1
(2017·黑龙江 )观察下列图形 ,第一个图形中有一个三角形;
第二个图形中有5个三角形;第三个图形中有 9个三角形;„„,则第 2017个图形中有________ 8065 个三角形.
【针对练习】 1. (2017·临沂)将一些相同的“○”按如图所示摆放,观察每个图 形中的“○”的个数,若第n个图形中“○”的个数是78,则n的值 是( B )
A.11
B.12
C.13
D.14
2. (2017·重庆)下列图形都是由同样大小的菱形按照一定规律所组 成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱 形,第③个图形中一共有13个菱形,„„,按此规律排列下去,第⑨ 个图形中菱形的个数为( C )
A.73 B.81 C.91 D.109
3.(2017·宁波) 如图,用同样大小的黑色棋子按如图所示的规律摆 放:
则第⑦个图案有_____个黑色棋子. 19
4.(2017·荆州)观察下列图形:它们是按一定规律排列的,依照此 135 个点. 规律,第9个图形中共有______
3 -1 第三个图形中有13个点,„„,按此规律,第n个图形中有________个点. 2
7.(2017· 乐山)庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文 字语言)表达了古人将事物无限分割的思想,用图形语言表示为图①,按此 1 1 1 1 图分割的方法, 可得到一个等式(符号语言): 1=2+22+23+„„+2n+„„.
图①
ห้องสมุดไป่ตู้图②
图②也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作 CC1⊥AB于点C1,再过点C1作C1C2⊥BC于点C2,又过点C2作C2C3⊥AB于点C3
图②也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作 CC1⊥AB于点C1,再过点C1作C1C2⊥BC于点C2,又过点C2作C2C3⊥AB于点C3
,如此无限继续下去,可将△ABC分割成△ACC1、△CC1C2、△AC1C2C3、
△C2C3C4、……、△Cn-2Cn-1Cn、…….假设AC=2,这些三角形面积和可以得 到的一个等式是 _____________________________________________
,如此无限继续下去,可将△ABC分割成△ACC1、△CC1C2、△AC1C2C3、
△C2C3C4、……、△Cn-2Cn-1Cn、…….假设AC=2,这些三角形面积和可以得 到的一个等式是 _____________________________________________
3 3 32 33 3 n+1 2 3= 2 [1+4+(4) +(4) +„„+(4) +„„]
5.(2017·桂林)如图,第一个图形中有 1个点,第二个图形中有 4个点, n
6.(2017·湖州)如图,已知∠AOB=30°,在射线OA上取点O1,以O1为 圆心的圆与OB相切;在射线O1A上取点O2,以O2为圆心,O2O1为半径的圆 与OB相切;在射线O2A 上取点 O3 ,以O3 为圆心, O3O2为半径的圆与 OB相 切;„„;在射线O9A上取点O10,以O10为圆心,O10O9为半径的圆与OB相 切.若⊙O1的半径为1,则⊙O10的半径长是________. 512(或29)