人教版B版高一数学必修三导学习型教学案

合集下载

人教版高中数学必修第三册全册WORD讲义《导学案》

人教版高中数学必修第三册全册WORD讲义《导学案》

8.1.1向量数量积的概念(教师独具内容)课程标准:1.通过物理中功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积.2.通过几何直观,了解平面向量投影的概念以及投影向量的意义.3.会用数量积判断两个平面向量的垂直关系.教学重点:平面向量数量积的含义及几何意义.教学难点:向量的投影及数量积的几何意义.知识点一两个向量的夹角(1)定义:给定两个01非零向量a,b(如图所示),在平面内任选一点O,作OA→=a,OB→=b,则称02[0,π]内的∠AOB为向量a与向量b的夹角,记作03〈a,b〉.(2)根据向量夹角的定义可知,两个非零向量的夹角是唯一确定的,而且040≤〈a,b〉≤π,〈a,b〉=05〈b,a〉.时,称向量a与向量b垂直,记作07a⊥b.在(3)垂直:当〈a,b〉=06π2讨论垂直问题时,规定08零向量与任意向量垂直.知识点二向量数量积(内积)的定义一般地,当a与b都是非零向量时,称01|a||b|cos〈a,b〉为向量a与b的数量积(也称为内积),记作a·b,即a·b=02|a||b|cos〈a,b〉.由定义可知,两个非零向量a与b的数量积是一个实数.知识点三平面向量的数量积的性质(1)当e是单位向量时,因为|e|=1,所以a·e=01|a|·cos〈a,e〉.(2)a⊥b⇔02a·b=0.(3)a·a=03|a|2,即04|a|=a·a.(4)cos〈a,b〉=05a·b(|a||b|≠0).|a||b|(5)|a·b|06≤|a||b|,当且仅当a∥b时等号成立.知识点四向量的投影如图1,设非零向量AB→=a,过A,B分别作直线l的垂线,垂足分别为A′,B′,则称向量为向量a在直线l上的01投影向量或投影.类似地,给定平面上的一个非零向量b,设b所在的直线为l,则a在直线l 上的投影称为a在向量b上的02投影.如图2中,向量a在向量b上的投影为03.可以看出,一个向量在一个非零向量上的投影,一定与这个非零向量04共线,但它们的方向既有可能05相同,也有可能06相反.知识点五向量数量积的几何意义如图(1)(2)(3)所示.当〈a ,b 〉<π2时,A ′B ′→的方向与b 的方向01相同,而且||=02|a |cos〈a ,b 〉;当〈a ,b 〉=π2时,为零向量,即||=030;当〈a ,b 〉>π2时,的方向与b 的方向04相反,而且||=05-|a |cos 〈a ,b 〉.一般地,如果a ,b 都是非零向量,则称06|a |cos 〈a ,b 〉为向量a 在向量b 上的投影的数量.投影的数量与投影的长度有关,但是投影的数量既可能是07非负数,也可能是08负数.两个非零向量a ,b 的数量积a ·b ,等于a 在向量b 上的投影的数量与b 的模的乘积.这就是两个向量数量积的几何意义.1.a 在b 方向上的投影的数量也可以写成a ·b|b |,它的符号取决于角θ的余弦值.2.在运用数量积公式解题时,一定要注意两向量夹角的范围是0°≤θ≤180°.3.a ·b 的符号与a 与b 的夹角θ的关系设两个非零向量a与b的夹角为θ,则(1)若a·b>0⇔θ为锐角或零角.当θ=0°时,a与b共线同向,a·b>0.或a与b中至少有一个为0.(2)a·b=0⇔θ=π2(3)a·b<0⇔θ为钝角或平角,当θ=180°时,a与b共线反向,a·b<0.特别注意a,b共线同向与共线反向的特殊情况,即a·b>0(<0),向量夹角不一定为锐角(钝角).4.向量的数量积a·b=|a||b|cosθ的主要应用(1)利用公式求数量积,应先求向量的模,正确求出向量的夹角(向量的夹角由向量的方向确定).求夹角,应正确求出两个整体:数量积a·b与模(2)利用公式变式cosθ=a·b|a||b|积|a||b|,同时注意θ∈[0,π].(3)利用a·b=0证明垂直问题.1.判一判(正确的打“√”,错误的打“×”)(1)若a·b=0,则a⊥b.()(2)两个向量的数量积是一个向量.()(3)当a∥b时,|a·b|=|a||b|.()答案(1)√(2)×(3)√2.做一做(1)已知向量a与向量b的夹角为30°且|a|=3,则a在b上的投影的数量为____.(2)已知|a|=4,|b|=22,且a与b的夹角为135°,则a·b=____.(3)在直角坐标系xOy内,已知向量AB→与x轴和y轴正向的夹角分别为120°和30°,则BA→在x轴、y轴上的投影的数量分别为____和____.答案(1)32(2)-8(3)12|AB→|-32|AB→|题型一两个向量夹角的定义例1已知向量a,b的夹角为60°,试求下列向量的夹角:(1)-a,b;(2)2a,23b.[解]如图,由向量夹角的定义可知:(1)向量-a,b的夹角为120°.(2)向量2a,23b的夹角为60°.(1)向量的夹角是针对非零向量定义的.(2)注意向量的夹角是[0°,180°].(3)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC不是向量CA→与AB→的夹角,作AD→=CA→,则∠BAD才是向量CA→与AB→的夹角.|a|,求a-b与a的夹角.[跟踪训练1]已知向量a与b的夹角为60°且|b|=12解如图,作OA→=a,OB→=b,则∠BOA=60°,连接BA,则BA→=a-b.取OA的中点D,连接BD,∵|b|=1|a|,∴OD=OB=BD=DA,2∴∠BDO=60°=2∠BAO,∴∠BAO=30°.∴a-b与a的夹角为30°.题型二向量数量积的定义例2(1)已知|a|=5,|b|=2,若①a∥b;②a⊥b;③a与b的夹角为30°,分别求a·b.(2)已知|a|=4,|b|=2,b2-a2=3a·b,求向量a与向量b的夹角.[解](1)①当a∥b时,若a与b同向,则它们的夹角为0°,∴a·b=|a||b|cos0°=5×2×1=10;若a与b反向,则它们的夹角为180°,∴a·b=|a||b|cos180°=5×2×(-1)=-10.②当a⊥b时,则它们的夹角为90°,∴a ·b =|a ||b |cos90°=5×2×0=0.③当a 与b 的夹角为30°时,a ·b =|a ||b |cos30°=5×2×32=53.(2)由题意,得4-16=3a ·b ,∴a ·b =-4,∴cos 〈a ,b 〉=a ·b |a ||b |=-12,向量a 与向量b 的夹角为120°.1.求向量数量积的一般步骤及注意事项(1)确定向量的模和夹角,根据定义求出数量积.(2)a 与b 垂直当且仅当a ·b =0.(3)非零向量a 与b 共线当且仅当a ·b =±|a ||b |.2.求向量夹角的一般步骤及注意事项(1)确定向量的模和数量积,根据夹角公式求出向量夹角的余弦值.(2)注意向量夹角的范围为[0,π],从而确定夹角的大小.[跟踪训练2](1)已知|a |=4,|b |=5,向量a 与b 的夹角θ=π3,求a ·b .(2)已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,求a 与b 的夹角.解(1)a ·b =|a ||b |cos θ=4×5×12=10.(2)设a 与b 的夹角为θ,cos θ=a ·b |a ||b |=21×4=12,又因为θ∈[0,π],所以θ=π3.题型三向量的投影例3已知直线l ,(1)|OA →|=4,〈OA→,l 〉=60°,求OA →在l 上的投影的数量OA 1;(2)|OB →|=4,〈OB →,l 〉=90°,求OB →在l 上的投影的数量OB 1;(3)|OC→|=4,〈OC→,l〉=120°,求OC→在l上的投影的数量OC1.=2.[解](1)OA1=4cos60°=4×12(2)OB1=4cos90°=4×0=0.(3)OC1=4cos120°=4 2.对向量投影的理解从定义上看,向量b在直线(或非零向量)上的投影是一个向量,投影的数量可正、可负、可为零.(1)当θ(2)当θ(3)当θ=0时,该数量为|b|.(4)当θ=π时,该数量为-|b|.注意:此处b为非零向量.时,该数量为0.(5)当θ=π2时,a在e方向[跟踪训练3]已知|a|=8,e为单位向量,当它们的夹角为π3上的投影的数量为()A.43B.4C.42D.8+32答案B解析因为a在e方向上的投影的数量为|a|cosπ=4,故选B.3题型四向量数量积的几何意义及应用例4(1)已知|b |=3,a 在b 方向上的投影的数量是32,则a ·b 为()A .3 B.92C .2D.12(2)如图,四边形ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,且AB =2DC =4.E 为腰BC 上的动点.求AE→·AB →的取值范围.[解析](1)设a 与b 的夹角为θ,a ·b =|a ||b |cos θ=|b ||a |cos θ=3×32=92.(2)如图,过E 作EE ′⊥AB ,垂足为E ′,过C 作CC ′⊥AB ,垂足为C ′.则AE →在AB →上的投影为AE ′→,∴AE →在AB →上的投影的数量为|AE ′→|,由向量数量积的几何意义知AE →·AB →=|AE ′→||AB →|=4|AE ′→|.∵E 在腰BC 上运动,∴点E ′在线段C ′B 上运动,∴|AC ′→|≤|AE ′→|≤|AB→|,∴2≤|AE ′→|≤4,∴8≤4|AE ′→|≤16,∴AE→·AB→的取值范围是[8,16].[答案](1)B(2)见解析利用向量数量积的几何意义求两向量的数量积需明确两个关键点:相关向量的模和一个向量在另一向量方向上的投影的数量,代入向量数量积的公式即可.利用向量数量积判断几何图形形状或解决最值范围问题时,常结合图形直观分析得到结果.[跟踪训练4](1)若E,F,G,H分别为四边形ABCD所在边的中点,且(AB→+BC→)·(BC→+CD→)=0,则四边形EFGH是()A.梯形B.菱形C.矩形D.正方形(2)已知a·b=16,若a在b方向上的投影的数量为4,则|b|=____.答案(1)C(2)4解析(1)因为(AB→+BC→)·(BC→+CD→)=0,所以AC→·BD→=0,所以AC→⊥BD→.又因为E,F,G,H分别为四边形ABCD所在边的中点,所以四边形EFGH的两组对边分别与AC,BD平行,且EF⊥EH,所以四边形EFGH为矩形.(2)设a与b的夹角为θ,因为a·b=16,所以|a||b|cosθ=16.又a在b方向上的投影的数量为4,所以|a|cosθ=4,所以|b|=4.1.已知|a|=3,|b|=5,且a·b=12,则向量a在向量b上的投影的数量为()A.125B.3C.4D.5答案A解析设a与b的夹角为θ,则向量a在b上的投影的数量为|a|cosθ=a·b|b|=12 5.2.已知|a|=4,|b|=2,当它们之间的夹角为π3时,a·b=() A.43B.4C.83D.8答案B解析根据向量数量积的定义得a·b=|a||b|cos〈a,b〉=4×2×cosπ3=4.3.已知|a|=2|b|≠0,且关于x的方程x2+|a|x+a·b=0有实根,则a与b的夹角θ的取值范围是()A.0,π6 B.π3,πC.π3,2π3 D.π6,π答案B解析由题意可得,Δ=|a|2-4a·b≥0,∵|a|=2|b|,∴cosθ≤12θ∈π3,π.故选B.4.(多选)已知两个单位向量e1,e2的夹角为θ,则下列结论正确的是() A.e1在e2上的投影的数量为sinθB.e21=e22C.任给θ∈[0,π],(e1+e2)⊥(e1-e2)D.不存在θ,使e1·e2=2答案BCD解析对于A,因为e1,e2为单位向量,所以e1在e2上的投影的数量为|e1|cosθ=cosθ,A错误;对于B,e21=e22=1,B正确;对于C,如图,设AB→=e1,AD→=e2,则易知四边形ABCD是菱形,AC⊥BD,即(e1+e2)⊥(e1-e2),C正确;对于D,e1·e2=1×1×cosθ=cosθ≤1,所以D正确.5.在△ABC中,已知|AB→|=|AC→|=6,且AB→·AC→=18,则△ABC的形状是____.答案等边三角形解析∵AB→·AC→=|AB→||AC→|cos∠BAC,∴cos∠BAC=12,∴∠BAC=60°.又|AB→|=|AC→|,∴△ABC为等边三角形.一、选择题1.若|a|=2,|b|=12,〈a,b〉=60°,则a·b等于()A.1 2B.1 4C.1D.2答案A解析a·b=|a||b|cos〈a,b〉=2×12×12=12.2.在Rt△ABC中,角C=90°,AC=4,则AB→·AC→等于()A.-16B.-8C.8D.16答案D解析解法一:∵AB→·AC→=|AB→||AC→|cos A,△ACB为直角三角形,∴AB→·AC→=|AB→|·|AC→|·|AC→||AB→|=|AC→|2=16.故选D.解法二:∵△ACB为直角三角形,∴AB→在AC→上的投影为AC→,∴AB→·AC→=AC→2=16.故选D.3.向量a的模为10,它与x轴正方向的夹角为150°,则它在x轴正方向上的投影的数量为()A.-53B.5C.-5D.53答案A解析a在x轴正方向上的投影的数量为|a|cos150°=-53.4.已知向量a,b满足|a|=4,|a·b|≥10,则|a-2b|的最小值是()A.1B.2C.3D.4答案A解析设a,b的夹角为θ,因为|a·b|=4|b||cosθ|≥10,所以|b|≥104|cosθ|≥52,由向量形式的三角不等式得,|a-2b|≥||a|-|2b||=|2|b|-4|≥|2×52-4|=1.5.(多选)关于菱形ABCD的下列说法中,正确的是()A.AB→∥CD→B.(AB→+BC→)⊥(BC→+CD→)C.(AB→-AD→)·(BA→-BC→)=0D.AB→·AD→=BC→·CD→答案ABC解析∵四边形ABCD为菱形,∴AB∥CD,∴AB→∥CD→,A正确;∵对角线AC 与BD互相垂直,且AB→+BC→=AC→,BC→+CD→=BD→,∴AC→⊥BD→,即(AB→+BC→)⊥(BC→+CD→),B正确;∵AB→-AD→=DB→,BA→-BC→=CA→,∵DB→⊥CA→,即DB→·CA→=0,∴(AB→-AD→)·(BA→-BC→)=0,C正确;易知〈AB→,AD→〉=180°-〈BC→,CD→〉,且|AB→|=|AD→|=|BC→|=|CD→|,∴AB→·AD→=-BC→·CD→,D错误.故选ABC.二、填空题6.△ABC中,∠A,∠B,∠C的对边长分别为a,b,c,a=3,b=1,∠C=30°,则BC→·CA→等于____.答案-332解析BC→·CA→=|BC→||CA→|cos(180°-30°)=ab cos150°=-332.7.若|a|=2,b=-2a,则a·b=____.答案-8解析|b|=2|a|=4,且b与a反向,∴〈a,b〉=180°.∴a·b=|a||b|cos180°=2×4×(-1)=-8.8.给出下列命题:①若a=0,则对任一向量b,有a·b=0;②若a≠0,则对任意一个非零向量b,有a·b≠0;③若a≠0,a·b=0,则b=0;④若a·b=0,则a,b至少有一个为0;⑤若a≠0,a·b=a·c,则b=c;⑥若a·b=a·c,且b≠c,当且仅当a=0时成立.其中真命题为____.答案①解析由数量积的定义逐一判断可知,只有①正确.三、解答题9.已知正方形ABCD的边长为1,分别求:(1)AB→·CD→;(2)AB→·AD→;(3)AC→·DA→.解如图,(1)〈AB→,CD→〉=π,∴AB→·CD→=-1.(2)〈AB →,AD→〉=π2,∴AB →·AD →=0.(3)〈AC →,DA →〉=3π4,∴AC →·DA →=2×1×cos 3π4=-1.10.已知△ABC 的面积S 满足3≤S ≤3,且AB →·BC →=6,AB →与BC →的夹角为θ.求θ的取值范围.解∵AB→·BC →=|AB →||BC →|cos θ=6>0,∴cos θ>0,∴θ为锐角,如图,过C 作CD ⊥AB ,垂足为D ,则|CD |=|BC |sin θ.由题意,知AB→·BC →=|AB →||BC →|cos θ=6,①S =12|AB ||CD |=12|AB →||BC →|sin θ.②由②÷①得S 6=12tan θ,即3tan θ=S .∵3≤S ≤3,∴3≤3tan θ≤3,即33≤tan θ≤1.又θ为AB →与BC →的夹角,θ∈[0,π],∴θ∈π6,π4.1.(多选)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,AH 为BC 边上的高,给出以下结论,其中正确的是()A.AH→·(AC→-AB→)=0B.AB→·BC→<0⇒△ABC为钝角三角形C.AC→·AH→|AH→|=c sin BD.BC→·(AC→-AB→)=a2答案ACD解析因为AC→-AB→=BC→,且AH⊥BC,所以AH→·(AC→-AB→)=0,故A正确;在△ABC中,由AB→·BC→<0,只能得出角B为锐角,不能判断出△ABC的形状,故B不正确;AH→|AH→|是AH→的单位向量,依据数量积的几何意义可知AC→·AH→|AH→|为AC→在AH→方向上的投影,为b sin C=c sin B,故C正确;因为AC→-AB→=BC→,所以BC→·(AC→-AB→)=|BC→|2=a2,故D正确.2.已知a,b是两个非零向量.(1)若|a|=3,|b|=4,|a·b|=6,求a与b的夹角;(2)若|a|=|b|=|a-b|,求a与a+b的夹角.解(1)∵a·b=|a||b|cos〈a,b〉,∴|a·b|=||a||b|cos〈a,b〉|=|a||b||cos〈a,b〉|=6.又|a|=3,|b|=4,∴|cos〈a,b〉|=6|a||b|=63×4=12,∴cos〈a,b〉=±12.∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π3或2π3.(2)如图所示,在平面内取一点O ,作OA→=a ,OB →=b ,以OA →,OB →为邻边作平行四边形OACB ,使|OA →|=|OB →|,所以四边形OACB 为菱形,OC 平分∠AOB ,这时OC→=a +b ,BA →=a -b .由于|a |=|b |=|a -b |,即|OA→|=|OB →|=|AB →|,所以∠AOC =π6,即a 与a +b 的夹角为π6.8.1.2向量数量积的运算律(教师独具内容)课程标准:理解掌握数量积的性质和运算律.教学重点:向量数量积的性质与运算律及其应用.教学难点:平面向量数量积的运算律的证明.知识点平面向量数量积的运算律已知向量a ,b ,c 与实数λ,则交换律a ·b =01b ·a结合律(λa)·b=02λ(a·b)=03a·(λb)分配律(a+b)·c=04a·c+b·c对向量数量积的运算律的几点说明(1)向量数量积不满足消去律:设a,b,c均为非零向量且a·c=b·c,不能得到a=b.事实上,如右图所示,OA→=a,OB→=b,OC→=c,AB⊥OC于D,可以看出,a,b在向量c上的投影分别为|a|cos∠AOD,|b|cos∠BOD,此时|b|cos∠BOD=|a|cos∠AOD=OD.即a·c=b·c.但很显然b≠a.(2)向量的数量积不满足乘法结合律:一般地,向量的数量积(a·b)c≠a(b·c),这是由于a·b,b·c都是实数,(a·b)c表示与c方向相同或相反的向量,a(b·c)表示与a方向相同或相反的向量,而a与c不一定共线.1.判一判(正确的打“√”,错误的打“×”)(1)对于向量a,b,c等式(a·b)·c=a·(b·c)恒成立.()(2)若a·b=a·c(a≠0),则b=c.()(3)(a+b)·(a-b)=a2-b2.()答案(1)×(2)×(3)√2.做一做(1)已知|a|=2,b在a上的投影的数量为-2,则a·(a-b)=____.(2)已知|a|=3,|b|=4,则(a+b)·(a-b)=____.(3)已知|a|=6,|b|=8,〈a,b〉=120°,则|a2-b2|=____,|a-b|=____,|a2+b2|=____.答案(1)8(2)-7(3)28237100题型一求向量的数量积例1已知|a|=2,|b|=3,a与b的夹角为120°,求:(1)a·b;(2)a2-b2;(3)(2a-b)·(a+3b).[解](1)a·b=|a||b|cos120°=2×3 3.(2)a2-b2=|a|2-|b|2=4-9=-5.(3)(2a-b)·(a+3b)=2a2+5a·b-3b2=2|a|2+5|a||b|cos120°-3|b|2=8-15-27=-34.求向量的数量积的两个关键点求向量的数量积时,需明确两个关键点:相关向量的模和夹角.若相关向量是两个或两个以上向量的线性运算,则需先利用向量数量积的运算律及多项式乘法的相关公式进行化简.[跟踪训练1]在边长为1的正三角形ABC中,设BC→=2BD→,CA→=3CE→,则AD→·BE→=____.答案-14解析由已知得AD→=12(AB→+AC→),AE→=23AC→,BE→=BA→+AE→=23AC→-AB→,所以AD→·BE→=12(AB→+AC→)·-=12×→|2-|AB→|2-13AB→·=1 2×1-13cos60°=-14.题型二求向量的夹角例2已知单位向量e1,e2的夹角为60°,求向量a=e1+e2,b=e2-2e1的夹角.[解]设a,b的夹角为θ,∵单位向量e1,e2的夹角为60°,∴e1·e2=|e1||e2|cos60°=12.∴a·b=(e1+e2)·(e2-2e1)=e1·e2+e22-2e21-2e1·e2=e22-2e21-e1·e2=1-2-12=-32,|a|=a2=(e1+e2)2=|e1|2+|e2|2+2e1·e2=1+1+1=3.|b|=b2=(e2-2e1)2=|e2|2-4e1·e2+4|e1|2=1+4-4×12=3.∴cosθ=a·b|a||b|=-323×3=-12.∵θ∈[0,π],∴θ=120°.求向量a,b夹角θ的思路(1)解题流程求|a|,|b|→计算a·b→计算cosθ=a·b|a||b|→结合θ∈[0,π],求出θ(2)解题思想:由于|a|,|b|及a·b都是实数,因此在涉及有关|a|,|b|及a·b的相应等式中,可用方程的思想求解(或表示)未知量.[跟踪训练2]已知|a|=3,|b|=5,|a+b|=7,求a·b及a与b的夹角.解∵|a+b|=7,∴(a+b)2=a2+2a·b+b2=|a|2+2a·b+|b|2=34+2a·b=49,∴a·b=152.设a与b的夹角为θ,则cosθ=a·b|a||b|=1523×5=12又θ∈[0,π],故a与b的夹角θ=60°.题型三求向量的模例3已知x=1是方程x2+|a|x+a·b=0的根,且a2=4,〈a,b〉=120°.求:(1)向量b的模;(2)向量2b+a的模.[解](1)∵a2=4,∴|a|2=4,即|a|=2.把x=1代入方程x2+|a|x+a·b=0,得1+|a|+a·b=0,∴a·b=-3,则a·b=|a||b|cos〈a,b〉=2|b|cos120°=-3,∴|b|=3.(2)(2b+a)2=4b2+a2+4a·b=4×9+4+4×(-3)=28,∴|2b+a|=27.极化恒等式求模长(1)两个结论①(a+b)2=a2+2a·b+b2;②(a+b)·(a-b)=a2-b2.证明:①(a+b)2=(a+b)·(a+b)=a·a+a·b+b·a+b·b=a2+2a·b+b2.②(a+b)·(a-b)=a·a-a·b+b·a-b·b=a2-b2.说明:下列结论也是成立的:(a-b)2=a2-2a·b+b2,(a+b)·(c+d)=a·c+a·d+b·c+b·d.(2)由上述结论,我们不难得到4a·b=(a+b)2-(a-b)2,即a·b=1[(a+b)2-(a-b)2].4我们把该恒等式称为“极化恒等式”.(3)应用向量数量积的运算律求向量的模的方法①求模问题一般转化为求模平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.②一些常见的等式应熟记,如(a±b)2=a2±2a·b+b2,(a+b)(a-b)=a2-b2等.提醒:向量的模是非负实数;一个向量与自身的数量积等于它的模的平方.,求|a-b|,|a+b|.[跟踪训练3]已知|a|=|b|=5,向量a与b的夹角为π3解解法一:|a+b|=(a+b)2=a2+b2+2a·b=|a|2+|b|2+2|a||b|cos〈a,b〉=53.=52+52+2×5×5×cosπ3|a-b|=(a-b)2=a2+b2-2a·b=|a|2+|b|2-2|a||b|cos〈a,b〉=5.=52+52-2×5×5×cosπ3解法二:以a,b为邻边作▱ABCD,设AC,BD相交于点E,如图所示.∵|a|=|b|且∠DAB=π3,∴△ABD为正三角形,∴|a-b|=|DB→|=5,|a+b|=|AC→|=2|AE→|=2|AB→|2-|BE→|2=252-5 2253.题型四用向量数量积解决垂直问题例4已知平面上三个向量a,b,c的模均为1,它们相互之间的夹角为120°,求证:(a-b)⊥c.[证明]证法一:∵|a|=|b|=|c|=1,且a,b,c之间的夹角均为120°,∴(a-b)·c=a·c-b·c=|a||c|·cos120°-|b||c|cos120°=0.∴(a-b)⊥c.证法二:如图,设OA→=a,OB→=b,OC→=c,连接AB,AC,BC,三条线段围成正三角形ABC,O为△ABC的中心,∴OC ⊥AB.又BA→=a-b,∴(a-b)⊥c.要解决的问题是用向量表示,它往往对应一个几何图形;如果是几何的形式表示,它往往对应一个向量关系式.要善于发现这二者之间的关系,从一种形式转化为另一种形式,用哪种形式解决问题方便就选用哪种形式.[跟踪训练4]如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .证明设AD→=a ,AB →=b ,则|a |=|b |,a ·b =0,又DE→=DA →+AE →=-a +b 2,AF →=AB →+BF →=b +a 2,所以AF →·DE →a 12a 2-34a ·b +b 22=-12|a |2+12|b |2=0.故AF →⊥DE→,即AF ⊥DE .1.若向量a 的方向是正北方向,向量b 的方向是西偏南30°方向,且|a |=|b |=1,则(-3a )·(a +b )等于()A.32B .-32C.23D .-23答案B解析由题意知a 与b 的夹角为120°,∴a ·b =-12.∴(-3a )·(a +b )=-3a 2-3a ·b =-32.2.已知a ,b 均为单位向量,它们的夹角为60°,那么|a -b |等于()A.1 B.2C.3D.2答案A解析|a-b|=(a-b)2=a2+b2-2a·b=12+12-2·1·cos〈a,b〉=2-2cos60°=1.3.若O为△ABC所在平面内一点,且满足(OB→-OC→)·(OB→+OC→-2OA→)=0,则△ABC的形状为()A.正三角形B.直角三角形C.等腰三角形D.以上均不正确答案C解析由(OB→-OC→)·(OB→+OC→-2OA→)=0,得CB→·(AB→+AC→)=0,又CB→=AB→-AC→,∴(AB→-AC→)·(AB→+AC→)=0,即|AB→|2-|AC→|2=0.∴|AB→|=|AC→|.∴△ABC为等腰三角形.,则4.已知a,b,c为单位向量,且满足3a+λb+7c=0,a与b的夹角为π3实数λ=____.答案-8或5解析由3a+λb+7c=0,可得7c=-(3a+λb),则49c2=9a2+λ2b2+6λa·b.,即λ2+3λ-40由a,b,c为单位向量,得a2=b2=c2=1,则49=9+λ2+6λcosπ3=0,解得λ=-8或λ=5.5.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61,(1)求a与b的夹角θ;(2)求|a+b|和|a-b|.解(1)因为(2a-3b)·(2a+b)=61,所以4a2-4a·b-3b2=61,,所以4×42-4×4×3cosθ-3×32=61,cosθ=-12又因为θ∈[0,π],所以θ=120°.(2)因为|a+b|2=a2+2a·b+b2=16+2×4×3cos120°+9=13,所以|a+b|=13,同理可求得|a-b|=37.一、选择题1.已知向量a,b满足|a|=2,|b|=1,(a-b)·b=0,那么向量a与b的夹角为()A.30°B.45°C.60°D.90°答案C,解析由题意可得a·b-b2=0,设a与b的夹角为θ,则2cosθ=1,cosθ=12又θ∈[0,π],∴θ为60°.2.已知平面向量a,b满足|a|=3,|b|=2,a·b=-3,则|a+2b|=()A.1 B.7C.4+3D.27答案B解析根据题意,得|a+2b|=a2+4a·b+4b2=7.3.若AB →·BC →+AB →2=0,则△ABC 为()A .直角三角形B .钝角三角形C .锐角三角形D .等腰直角三角形答案A解析∵0=AB→·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →,∴AB →⊥AC →,∴∠BAC =90°.故选A.4.如图,O ,A ,B 是平面上的三点,C 为线段AB 的中点,向量OA→=a ,OB →=b ,设P 为线段AB 的垂直平分线上任意一点,向量OP →=p .若|a |=4,|b |=2,则p ·(a -b )=()A .1B .3C .5D .6答案D解析由题图知CP →⊥BA →,则CP →·BA →=0,p =OP→=OC →+CP →=12(OA →+OB →)+CP →,则p ·(a -b )=12(a +b )+CP →·(a -b )=12(a +b )·(a -b )+CP→·(a -b )=12(a 2-b 2)+CP →·BA →=12(|a |2-|b |2)+0=12×(42-22)=6.5.(多选)设a ,b ,c 是任意的非零向量,且它们相互不共线,则下列结论正确的是()A .a ·c -b ·c =(a -b )·cB .(b ·c )·a -(c ·a )·b 不与c 垂直C .|a |-|b |<|a -b |D .(3a +2b )·(3a -2b )=9|a |2-4|b |2答案ACD解析因为a ,b ,c 是任意的非零向量,且它们相互不共线,则由向量数量积的运算律,知A ,D 正确;由向量减法的三角形法则,知C 正确;因为[(b ·c )·a -(c ·a )·b ]·c =(b ·c )·(a ·c )-(c ·a )·(b ·c )=0.所以(b ·c )·a -(c ·a )·b 与c 垂直,B 错误.故选ACD.二、填空题6.若a ⊥b ,c 与a 及与b 的夹角均为60°,|a |=1,|b |=2,|c |=3,则(a +2b -c )2=____.答案11解析原式展开,得|a |2+4|b |2+|c |2+4|a ||b |cos90°-2|a ||c |cos60°-4|b ||c |cos60°=11.7.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 的夹角的余弦值为____.答案-13解析由|a |=3|b |,得|b ||a |=13.由|a |=|a +2b |,两边平方得|a |2=|a +2b |2=|a |2+4|b |2+4a ·b ,整理得a ·b =-|b |2.设a ,b 的夹角为θ,则cos θ=a ·b |a ||b |=-|b |2|a ||b |=-|b ||a |=-13.8.已知向量AB→与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP→⊥BC →,则实数λ的值为____.答案712解析因为向量AB→与AC→的夹角为120°,且|AB→|=3,|AC→|=2,所以AB→·AC→=|AB→||AC→|cos120°=3×2 3.由AP→⊥BC→,得AP→·BC→=0,即AP→·BC→=(λAB→+AC→)·(AC→-AB→)=0,所以AC→2-λAB→2+(λ-1)AB→·AC→=0,即4-9λ-3(λ-1)=0,解得λ=7.12三、解答题9.已知|a|=4,|b|=8,a与b的夹角是120°.(1)计算|4a-2b|;(2)当k为何值时,(a+2b)⊥(k a-b).解由已知,得a·b=4×816.(1)∵(4a-2b)2=16a2-16a·b+4b2=16×16-16×(-16)+4×64=3×162,∴|4a-2b|=16 3.(2)若(a+2b)⊥(k a-b),则(a+2b)·(k a-b)=0.∴k a2+(2k-1)a·b-2b2=0,即16k-16(2k-1)-2×64=0,∴k=-7.10.如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足AP→=λPB→.(1)若λ=12,用向量OA →,OB →表示OP →;(2)若|OA→|=4,|OB →|=3,且∠AOB =60°,求OP →·AB →的取值范围.解(1)∵AP →=12PB →,∴OP →-OA →=12(OB →-OP →).∴32OP →=OA →+12OB →,即OP →=23OA →+13OB →.(2)OA→·OB →=|OA →||OB →|cos60°=6.∵AP→=λPB →,∴OP→-OA →=λ(OB →-OP →),(1+λ)OP →=OA →+λOB →,∴OP →=11+λOA →+λ1+λOB →.∵AB→=OB →-OA →,∴OP →·AB →+λ1+λOB OB →-OA →)=-11+λOA →2+λ1+λOB →2·OB →=-16+9λ+6-6λ1+λ=3λ-101+λ=3-131+λ.∵λ>0,∴3-131+λ∈(-10,3).∴OP→·AB →的取值范围是(-10,3).1.已知向量OA→与OB→的夹角为θ,|OA→|=2,|OB→|=1,OP→=tOA→,OQ→=(1-t)OB→,t∈R,|PQ→|在t=t0时取得最小值,当0<t0<15时,夹角θ的取值范围是()A.0,π3π3,π2C.π2,2π30,2π3答案C解析因为向量OA→与OB→的夹角为θ,|OA→|=2,|OB→|=1,所以OA→·OB→=2cosθ,由PQ→=OQ→-OP→=(1-t)OB→-tOA→,得|PQ→|2=PQ→2=(1-t)2OB→2-2t(1-t)·OA→·OB→+t2OA→2=(5+4cosθ)t2-(2+4cosθ)t+1,所以t0=1+2cosθ5+4cosθ,由0<1+2cosθ5+4cosθ<15,解得-1 2<cosθ<0,因为0≤θ≤π,所以π2<θ<2π3.故选C.2.平面四边形ABCD中,AB→=a,BC→=b,CD→=c,DA→=d,且a·b=b·c=c·d=d·a,试问四边形ABCD的形状.解∵AB→+BC→+CD→+DA→=0,即a+b+c+d=0,∴a+b=-(c+d),由上式可得(a+b)2=(c+d)2,即a2+2a·b+b2=c2+2c·d+d2.又a·b=c·d,故a2+b2=c2+d2.①同理可得a2+d2=b2+c2②由①②,得a2=c2,且b2=d2,即|a|=|c|,且|b|=|d|,也即AB=CD,且BC=DA.∴四边形ABCD为平行四边形.故AB→=-CD→,即a=-c,∴a·b=b·c=-a·b,即a·b=0,∴a⊥b,即AB→⊥BC→.综上知,四边形ABCD为矩形.8.1.3向量数量积的坐标运算(教师独具内容)课程标准:1.能用坐标表示平面向量的数量积,会表示两个平面向量的夹角.2.能用坐标表示平面向量垂直的条件.教学重点:平面向量数量积的坐标表示以及模、角度、垂直关系的坐标表示.教学难点:用坐标法处理模、角度、垂直问题.知识点一向量数量积的坐标运算已知a=(x1,y1),b=(x2,y2),则a·b=01x1x2+y1y2,即两个向量的数量积等于02它们对应坐标乘积的和.知识点二向量的长度已知a=(x1,y1),则|a|=01x21+y21,即向量的长度等于02它的坐标平方和的算术平方根.知识点三两向量夹角的余弦设a=(x1,y1),b=(x2,y2),则cos〈a,b〉=01x1x2+y1y2x21+y21x22+y22.知识点四两点间的距离如果A(x1,y1),B(x2,y2),则|AB→|=01(x2-x1)2+(y2-y1)2.知识点五用坐标表示两向量垂直设a=(x1,y1),b=(x2,y2),则a⊥b⇔01x1x2+y1y2=0.1.两个向量垂直的条件已知a=(x1,y1),b=(x2,y2),如果a⊥b,则x1x2+y1y2=0;反之,如果x1x2+y1y2=0,则a⊥b.运用向量垂直的条件,既可以判定两向量是否垂直,又可以由垂直关系去求参数.如果a⊥b,则向量(x1,y1)与(-y2,x2)平行.这是因为a⊥b,有x1x2+y1y2=0(*),当x2y2≠0时,(*)式可以表示为x1-y2=y1x2,即向量(x1,y1)与向量(-y2,x2)平行.对任意的实数k,向量k(-y2,x2)与向量(x2,y2)垂直.2.不等式|a·b|≤|a||b|的代数形式若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,|a |=x 21+y 21,|b |=x 22+y 22.由|a·b |≤|a ||b |得|x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22,当且仅当a ∥b ,即x 1y 2-x 2y 1=0时取等号,即不等式(x 1x 2+y 1y 2)2≤(x 21+y 21)(x 22+y 22)成立.1.判一判(正确的打“√”,错误的打“×”)(1)若a =(1,1),b =(-2,2),则a·b =0.()(2)若a =(4,2),b =(6,m )且a ⊥b ,则m =-12.()(3)若a·b >0(a ,b 均为非零向量),则〈a ,b 〉为锐角.()答案(1)√(2)√(3)×2.做一做(1)已知向量a =(1,3),b =(3,1),则a 与b 夹角的大小为____.(2)已知a =(1,3),b =(-2,0),则|a +b |=____.(3)设a =(2,0),|b |=1,〈a ,b 〉=60°,则a·b =____.(4)已知a =(3,4),则与a 垂直的单位向量有________,与a 共线的单位向量有________.答案(1)π6(2)2(3)1-45,-35,-题型一向量数量积的坐标运算例1已知向量a 与b 同向,b =(1,2),a ·b =10,求:(1)向量a 的坐标;(2)若c=(2,-1),求(a·c)b.[解](1)∵a与b同向,且b=(1,2),∴a=λb=(λ,2λ)(λ>0).又a·b=10,∴λ+4λ=10,∴λ=2,∴a=(2,4).(2)∵a·c=2×2+(-1)×4=0,∴(a·c)b=0.(1)通过向量的坐标表示实现向量问题代数化,应注意与方程、函数等知识的联系.(2)向量问题的处理有两种思路:一种是纯向量式,另一种是坐标式,两者互相补充.[跟踪训练1]已知a=(2,-1),b=(3,-2),求(3a-b)·(a-2b).解解法一:(3a-b)·(a-2b)=3a2-7a·b+2b2.∵a·b=2×3+(-1)×(-2)=8,a2=22+(-1)2=5,b2=32+(-2)2=13,∴(3a-b)·(a-2b)=3×5-7×8+2×13=-15.解法二:∵a=(2,-1),b=(3,-2),∴3a-b=(6,-3)-(3,-2)=(3,-1),a-2b=(2,-1)-(6,-4)=(-4,3),∴(3a-b)·(a-2b)=3×(-4)+(-1)×3=-15.题型二向量的夹角问题例2已知a+b=(2,-8),a-b=(-8,16),求a与b的数量积及a与b的夹角的余弦值.[解]+b =(2,-8),-b =(-8,16),=(-3,4),=(5,-12).∴a ·b =(-3,4)·(5,-12)=(-3)×5+4×(-12)=-63.cos 〈a ,b 〉=a ·b |a ||b |=-63(-3)2+42×52+(-12)2=-635×13=-6365.∴a 与b 的夹角的余弦值为-6365.利用数量积求两向量夹角的步骤特别提醒:已知两个非零向量的坐标,就可以利用该公式求得两个向量的夹角,因为向量的夹角范围为[0,π],故不存在讨论角的终边所在象限的问题.[跟踪训练2]设向量a =(-2sin α,2cos α)(0≤α≤π),b =(-25,0),则a 与b 的夹角为____.答案|π2-α|解析设a 与b 的夹角为θ,则cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22=45sin α2×25=sin α,∵α∈[0,π],∴θ=|π2-α|.题型三向量的长度、距离问题例3已知向量a,b满足|a|=|b|=1,且|3a-2b|=3.求|3a+b|的值.[解]设a=(x1,y1),b=(x2,y2).∵|a|=|b|=1,∴x21+y21=1,x22+y22=1,3a-2b=3(x1,y1)-2(x2,y2)=(3x1-2x2,3y1-2y2),∵|3a-2b|=(3x1-2x2)2+(3y1-2y2)2=3,∴9x21-12x1x2+4x22+9y21-12y1y2+4y22=9,∴13-12(x1x2+y1y2)=9.∴x1x2+y1y2=13.∵3a+b=3(x1,y1)+(x2,y2)=(3x1+x2,3y1+y2),∴|3a+b|=(3x1+x2)2+(3y1+y2)2=9x21+6x1x2+x22+9y21+6y1y2+y22=10+6(x1x2+y1y2)=10+6×13=23.(1)在上述解题过程中,根据|a|=|b|=1,可以设a=(cosβ,sinβ),b=(cosα,sinα).(2)利用本题的解法可解决下面的一般性问题:若向量a,b满足|a|=|b|=r1,及|λ1a+μ1b|=r2求|λ2a+μ2b|的值.(3)注意区别m=n与|m|=|n|,其中m=n表示的是向量关系,即(x1,y1)=(x2,y2),而|m|=|n|表示的是数量关系,即x21+y21=x22+y22.[跟踪训练3]若向量OA→=(1,-3),|OA→|=|OB→|,OA→·OB→=0,则|AB→|=____.答案25解析解法一:设OB→=(x,y),由|OA→|=|OB→|,知x2+y2=10.①由题意知OA→·OB→=x-3y=0.②=3,=1=-3,=-1.当x=3,y=1时,AB→=OB→-OA→=(2,4),则|AB→|=25;当x=-3,y=-1时,AB→=(-4,2),则|AB→|=25.故|AB→|=25.解法二:由题意知,|AB→|就是以OA→,OB→对应线段为邻边的正方形的对角线长,因为|OA→|=10,所以|AB→|=2×10=25.题型四两向量垂直条件的应用例4如图所示,以原点O和点A(5,2)为两个顶点作等腰直角三角形AOB,使∠B=90°,求点B的坐标.[解]设点B(x,y),则OB→=(x,y),AB→=(x-5,y-2).因为∠B=90°,所以x(x-5)+y(y-2)=0,又|AB→|=|OB→|,所以x2+y2=(x-5)2+(y-2)2,2+y 2-5x -2y =0,x +4y =29,1=72,1=-322=32,2=72.即点B利用向量可以解决与长度、角度、垂直、平行等有关的几何问题,解题的关键在于把其他语言转化为向量语言,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题.常用方法是建立平面直角坐标系,借助向量的坐标运算再将向量问题转化为代数问题来解决.[跟踪训练4]在等腰直角三角形ABC 中,∠ACB 是直角,AC =BC ,D 是BC 的中点,E 是AB 上一点,且AE =2EB .求证:AD ⊥CE .证明建立如图所示的平面直角坐标系,设CA =CB =2,则A (2,0),B (0,2),C (0,0),设E (x ,y ).∵D 为BC 的中点,∴D (0,1).∵AE =2EB ,∴AE →=23AB →,∴(x -2,y )=23(-2,2),-2=-43,=43,=23,=43,∴∴AD→·CE→=(-=-43+43=0,∴AD→⊥CE→,∴AD⊥CE.题型五向量数量积的综合应用例5若函数f(x)=-2<x<10)的图像与x轴交于点A,过点A的直线l与函数的图像交于B,C两点,O为坐标原点,则(OB→+OC→)·OA→=() A.-32B.-16C.16D.32[解析]令f(x)=0,得π6x+π3kπ,k∈Z,∴x=6k-2,k∈Z.∵-2<x<10,∴x=4,即A(4,0).设B(x1,y1),C(x2,y2),∵过点A的直线l与函数的图像交于B,C两点,∴B,C两点关于点A对称,即x1+x2=8,y1+y2=0.故(OB→+OC→)·OA→=(x1+x2,y1+y2)·(4,0)=4(x1+x2)=32.[答案]D与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点问题.解此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、夹角的坐标运算公式外,还应掌握三角函数的图像和性质等知识.[跟踪训练5]设O(0,0),A(1,0),B(0,1),点P是线段AB上的一个动点,AP→=λAB→.若OP→·AB→≥P A→·PB→,则实数λ的取值范围是()A.12≤λ≤1B.1-22≤λ≤1C.12≤λ≤1+22D.1-22≤λ≤1+22答案B解析设P(x,y),则由AP→=λAB→,得(x-1,y)=λ(-1,1),-1=-λ,=λ,∴x-1+y=0.①又OP→·AB→≥PA→·PB→,∴(x,y)·(-1,1)≥(1-x,-y)·(-x,1-y).整理,得x2+y2-2y≤0,即x2+(y -1)2≤1.②将①整理,得x=1-y,代入②中,得(y-1)2≤12.即-22≤y-1≤22.∴1-22≤y≤1+22.结合题意,得1-22≤y≤1,即1-22≤λ≤1.故选B.1.若a=(2,-3),b=(x,2x),且3a·b=4,则x等于()A.3 B.13C.-13D.-3答案C解析∵3a·b=(6,-9)·(x,2x)=-12x=4,∴x=-13.2.已知A(1,2),B(4,0),C(8,6),D(5,8)四点,则四边形ABCD是() A.梯形B.矩形C.菱形D.正方形答案B解析∵AB→=(3,-2),DC →=(3,-2),∴AB →=DC →,又AD→=(4,6),∴AB →·AD →=0,∴AB →⊥AD →.∵|AB→|≠|AD →|,∴选B.3.正三角形ABC 的边长为1,设AB →=c ,BC →=a ,CA →=b ,那么a ·b +b ·c +c ·a 的值是____.答案-32解析解法一:如图,以点A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系,则A (0,0),B (1,0),∴a -12,b -12,-c =(1,0),∴a ·b +32×=-12,同理b ·c =c ·a =-12,∴a ·b +b ·c +c ·a =-32.解法二:a·b +b·c +c·a =1×1×cos120°+1×1×cos120°+1×1×cos120°=3=-32.4.设向量a 与b 的夹角为α,且a =(3,3),2b -a =(-1,1),则cos α=____.答案31010解析∵a =(3,3),由2b -a =(-1,1)可得b =(1,2),∴cos α=a ·b |a ||b |=918×5=31010.5.如图,已知△ABC 的面积为32,AB =2,AB→·BC →=1,求边AC 的长.解以点A 为坐标原点,AB →为x 轴正方向建立平面直角坐标系,设点C 的坐标为(x ,y )(y >0),因为AB =2,∴点B 的坐标是(2,0),∴AB→=(2,0),BC →=(x -2,y ).∵AB →·BC →=1,∴2(x -2)=1,解得x =52.又S △ABC =32,∴12·|AB |·y =32,∴y =32,∴C AC →∴|AC→|==342,故边AC 的长为342.一、选择题1.已知a=(-3,4),b=(5,2),则a·b=()A.23B.7C.-23D.-7答案D解析a·b=(-3)×5+4×2=-7.2.已知A(1,2),B(2,3),C(-2,5),则△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形答案A解析∵AB→=(1,1),AC→=(-3,3),∴AB→·AC→=1×(-3)+1×3=0,∴AB→⊥AC→,∴A=90°,故选A.3.已知a=(2,-3),b=(1,-2),且c⊥a,b·c=1,则c的坐标为() A.(3,-2)B.(3,2)C.(-3,-2)D.(-3,2)答案C解析设c=(x,y)2x-3y=0,x-2y=1,x=-3,y=-2.4.与已知向量a 72,12,b12,-72的夹角相等,且模为1的向量是()-45,-223,答案B解析设与向量ab1的向量为(x,y)+y2=1,+12y=12x-72y,=45,=-35=-45,=35,故选B.5.(多选)设A(a,1),B(2,b),C(4,5)为坐标平面上的三点,O为坐标原点.若OA→与OB→在OC→方向上的投影相同,则a,b的取值可能为()A.a=2,b=1B.a=7,b=5C.a=9,b=6D.a=12,b=9答案ABD解析由图知,要使OA→与OB→在OC→方向上的投影相同,只需使AB→⊥OC→,即(2-a,b-1)·(4,5)=0,得4a-5b-3=0,则a,b需满足关系式4a-5b=3,结合选项可知,A,B,D中a,b的取值满足条件.故选ABD.二、填空题6.若a=(x,2),b=(-3,5),且a与b的夹角是钝角,则实数x的取值范围是____.答案103,+∞解析x应满足(x,2)·(-3,5)<0且a,b不共线.解得x>103且x≠-65,∴x>103.7.已知向量a=(1,2),b=(-2,-4),|c|=5,若(a+b)·c=52,则a与c的夹角为____.答案120°解析由已知,得a+b=-a,∴a与c的夹角与c与a+b的夹角互补.又cos〈a+b,c〉=(a+b)·c|a+b||c|=12.∴〈a+b,c〉=60°.∴a与c的夹角是120°.8.已知向量a=(cos2θ,sin2θ),向量b=(2,0),则|2a-b|的最大值是____.答案22解析令t=cos2θ(0≤t≤1),则a=(t,1-t),所以|2a-b|2=(2t-2)2+(2-2t)2=8(t-1)2.所以|2a-b|=22|t-1|=22(1-t),故当t=0时,|2a-b|取得最大值22.三、解答题9.在△ABC中,A(2,-1),B(3,2),C(-3,-1),AD是BC边上的高,求。

学新教材高中数学导数及其应用导数求导法则及其应用教案新人教B版选择性必修第三册

学新教材高中数学导数及其应用导数求导法则及其应用教案新人教B版选择性必修第三册

6.1.4求导法则及其应用学习目标核心素养1.熟记基本初等函数的导数公式,并能运用这些公式求基本初等函数的导数.(重点)2.掌握导数的运算法则,并能运用法则求复杂函数的导数.(难点)3.掌握复合函数的求导法则,会求复合函数的导数.(易混点)1.通过学习导数的四则运算法则,培养数学运算素养.2.借助复合函数的求导法则的学习,提升逻辑推理、数学抽象素养.如何求下列函数的导数:(1)y=x错误!;(2)y=2x2+sin x.问题:由此你能类比联想一下[f(x)+g(x)]′的求导法则吗?1.导数的运算法则(1)和差的导数[f(x)±g(x)]′=f′(x)±g′(x).(2)积的导数1[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);2[C f(x)]′=C f′(x).(3)商的导数错误!′=错误!,g(x)≠0.拓展:1[f1(x)±f2(x)±…±f n(x)]′=f′1(x)±f′2(x)±…±f′n(x).2[af(x)+bg(x)]′=af′(x)+bg′(x)(a,b为常数).2.复合函数的概念及求导法则(1)复合函数的概念一般地,已知函数y=f(u)与u=g(x),给定x的任意一个值,就能确定u的值.如果此时还能确定y的值,则y可以看成x的函数,此时称f(g(x))有意义,且称y=h(x)=f(g(x))为函数f (u)与g(x)的复合函数,其中u称为中间变量.(2)一般地,如果函数y=f(u)与u=g(x)的复合函数为y=h(x)=f(g(x)),则可以证明,复合函数的导数h′(x)与f′(u),g′(x)之间的关系为h′(x)=[f(g(x))]′=f′(u)g′(x)=f′(g(x))g′(x).这一结论也可以表示为y′x=y′u u′x.思考:函数y=log2(x+1)是由哪些函数复合而成的?[提示] 函数y=log2(x+1)是由y=log2u及u=x+1两个函数复合而成.1.思考辨析(正确的画“√”,错误的画“×”)(1)函数f(x)=错误!是复合函数.()(2)函数f(x)=sin(—x)的导数f′(x)=cos(—x).()(3)y=e2x的导数y′=2e2x. ()(4)[f(x)g(x)h(x)]′=f′(x)g′(x)h′(x).()[答案] (1)√(2)×(3)√(4)×2.函数f(x)=x e x的导数f′(x)=()A.e x(x+1)B.1+e xC.x(1+e x)D.e x(x—1)A[f′(x)=x′e x+x(e x)′=e x+x e x=e x(x+1),选A.]3.若函数f(x)=ax2+c,且f′(1)=2,则a=________.1[∵f(x)=ax2+c,∴f′(x)=2ax,故f′(1)=2a=2,∴a=1.]4.若y=错误!,则y′=________.错误![∵y=错误!ln x,∴y′=错误!·错误!=错误!.]导数四则运算法则的应用(1)y=x—2+x2;(2)y=3x e x—2x+e;(3)y=错误!;(4)y=x2—sin 错误!cos错误!.[解] (1)y′=2x—2x—3.(2)y′=(ln 3+1)·(3e)x—2x ln 2.(3)y′=错误!.(4)∵y=x2—sin错误!cos错误!=x2—错误!sin x,∴y′=2x—错误!cos x.1.解答此类问题时要熟练掌握导数的四则运算法则.2.对一个函数求导时,要紧扣导数运算法则,联系基本初等函数的导数公式,当不易直接应用导数公式时,应先对函数进行化简(恒等变形),然后求导.这样可以减少运算量,优化解题过程.错误!1.已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)=________.3[因为f(x)=(2x+1)e x,所以f′(x)=2e x+(2x+1)e x=(2x+3)e x,∴f′(0)=3.]2.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x(其中e为自然对数的底数),则f′(e)=________.—错误![因为f(x)=2xf′(e)+ln x,所以f′(x)=2f′(e)+错误!.∴f′(e)=2f′(e)+错误!,即f′(e)=—错误!.]复合函数的导数(1)y=e2x+1;(2)y=错误!;(3)y=5log2(1—x);(4)y=sin3x+sin 3x.[思路点拨] 先分析函数是怎样复合而成的,找出中间变量,分层求导.[解] (1)函数y=e2x+1可看作函数y=e u和u=2x+1的复合函数,∴y′x=y′u·u′x=(e u)′(2x+1)′=2e u=2e2x+1.(2)函数y=错误!可看作函数y=u—3和u=2x—1的复合函数,∴y′x=y′u·u′x=(u—3)′(2x—1)′=—6u—4=—6(2x—1)—4=—错误!.(3)函数y=5log2(1—x)可看作函数y=5log2u和u=1—x的复合函数,∴y′x=y′u·u′x=(5log2u)′·(1—x)′=错误!=错误!.(4)函数y=sin3x可看作函数y=u3和u=sin x的复合函数,函数y=sin 3x可看作函数y=sin v和v=3x的复合函数.∴y′x=(u3)′·(sin x)′+(sin v)′·(3x)′=3u2·cos x+3cos v=3sin2x cos x+3cos 3x.1.解答此类问题常犯的两个错误(1)不能正确区分所给函数是否为复合函数;(2)若是复合函数,不能正确判断它是由哪些基本初等函数复合而成.2.复合函数求导的步骤错误!3.求下列函数的导数.(1)y=错误!;(2)y=log2(2x2—1).[解] (1)y=错误!=错误!=错误!=1+错误!.设y=1+错误!,u=1—x,则y′=y′u·u′x=(1+错误!)′·(1—x)′=错误!·(—1)=—错误!.(2)设y=log2u,u=2x2—1,则y′=y′u·u′x=错误!·4x=错误!.导数运算法则的综合应用若点P是曲线y=e x上的任意一点,如何求点P到直线l:y=x的最小距离?[提示] 如图,当曲线y=e x在点P(x 0,y0)处的切线与直线y=x平行时,点P到直线l的距离最小.设P(x0,y0),则y′|x=x0=e x0,由e x0=1可知x0=0,此时y0=e0=1.即P(0,1),利用点到直线的距离公式得最小距离d=错误!.【例3】(1)设曲线y=e ax在点(0,1)处的切线与直线x+2y+b=0垂直,则a=________.(2)曲线y=ln(2x—1)上的点到直线2x—y+3=0的最短距离为________.[思路点拨] (1)错误!→错误!(2)错误!→错误!→错误!(1)2(2)错误![(1)因为y=e ax,所以y′=a e ax,由题意可知y′|x=0=a=2可知a=2.(2)设曲线y=ln(2x—1)在点(x0,y0)处的切线与直线2x—y+3=0平行,又因为y′=错误!,所以y′|x=x0=错误!=2,解得x0=1.∴y0=ln(2—1)=0,即切点坐标为(1,0),∴点(1,0)到直线2x—y+3=0的距离d=错误!=错误!,即曲线y=ln(2x—1)到直线2x—y+3=0的最短距离是错误!.]正确的求出复合函数的导数是解题的前提,审题时,注意所给点是否是切点,挖掘题目隐含条件,求出参数,解决已知经过一定点的切线问题,寻求切点是解决问题的关键.错误!4.已知函数f(x)=ax2+2ln(2—x)(a∈R),设曲线y=f(x)在点(1,f(1))处的切线为l,若直线l与圆C:x2+y2=错误!相切,求实数a的值.[解] 因为f(1)=a,f′(x)=2ax+错误!(x<2),所以f′(1)=2a—2,所以切线l的方程为2(a—1)x—y+2—a=0.因为直线l与圆相切,所以圆心到直线l的距离等于半径,即d=错误!=错误!,解得a=错误!.1.如果求导公式比较复杂,则需要对式子先变形再求导,常用的变形有乘积式展开为和式求导,商式变乘积式求导,三角恒等变换后求导等.2.求简单复合函数f(ax+b)的导数,实质是运用整体思想,先把复合函数转化为常见函数y=f (u),u=ax+b的形式,然后再分别对y=f(u)与u=ax+b进行求导,并把求导结果相乘,灵活应用整体思想把函数化为y=f(u),u=ax+b的形式是求解的关键.1.函数y=(2020—8x)3的导数y′=()A.3(2020—8x)2B.—24xC.—24(2020—8x)2D.24(2020—8x)2C[y′=3(2020—8x)2×(2020—8x)′=3(2020—8x)2×(—8)=—24(2020—8x)2.]2.函数y=x2cos 2x的导数为()A.y′=2x cos 2x—x2sin 2xB.y′=2x cos 2x—2x2sin 2xC.y′=x2cos 2x—2x sin 2xD.y′=2x cos 2x+2x2sin 2xB[y′=(x2)′cos 2x+x2(cos 2x)′=2x cos 2x+x2(—sin 2x)·(2x)′=2x cos 2x—2x2sin 2x.]3.已知f(x)=ln(3x—1),则f′(1)=________.错误![f′(x)=错误!·(3x—1)′=错误!,∴f′(1)=错误!.]4.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.y=3x[y′=3(2x+1)e x+3(x2+x)e x=e x(3x2+9x+3),斜率k=e0×3=3,∴切线方程为y=3x.]5.求下列函数的导数.(1)y=cos(x+3);(2)y=(2x—1)3;(3)y=e—2x+1.[解] (1)函数y=cos(x+3)可以看作函数y=cos u和u=x+3的复合函数,由复合函数的求导法则可得y x′=y u′·u x′=(cos u)′·(x+3)′=—sin u·1=—sin u=—sin(x+3).(2)函数y=(2x—1)3可以看作函数y=u3和u=2x—1的复合函数,由复合函数的求导法则可得y x′=y u′·u x′=(u3)′·(2x—1)′=3u2·2=6u2=6(2x—1)2.(3)y′=e—2x+1·(—2x+1)′=—2e—2x+1.。

2017年新课标人教B版高一数学必修3全套教案

2017年新课标人教B版高一数学必修3全套教案

人教B版高中数学必修3全册教案目录1.1.1算法的概念0011.1.2 程序框图0021.2.1输入、输出语句和赋值语句0031.2.2条件语句0041.2.3循环语句0051.3秦九韶算法与排序0071.3辗转相除法与更相减损术0081.3进位制0062.1.1简单随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2.2用样本的数字特征估计总体的数字特征2.3.1变量之间的相关关系2.3.2两个变量的线性相关2.3.3实习作业3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.3几何概型3.4概率的应用期中试卷阅读材料:割圆术§1.1.1 算法的概念(两个课时)教学目标: (1)了解算法的含义,体会算法的思想。

(2)能够用自然语言叙述算法。

(3)掌握正确的算法应满足的要求。

(4)会写出解线性方程(组)的算法。

(5)会写出一个求有限整数序列中的最大值的算法。

教学重点: 算法的含义、解二元一次方程组和判断一个数为质数的算法设计。

.教学难点: 把自然语言转化为算法语言。

.学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。

2、要使算法尽量简单、步骤尽量少。

3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。

教学过程一、章头图体现了中国古代数学与现代计算机科学的联系,它们的基础都是“算法”。

算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。

但是我们却从小学就开始接触算法,熟悉许多问题的算法。

如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。

2017-2018学年高中数学人教B版必修3 同步导学案:第3章 3-1 事件与概率 含答案 精品

2017-2018学年高中数学人教B版必修3 同步导学案:第3章 3-1 事件与概率 含答案 精品
二、新课讲授
(一)知识点讲解
基本概念:
1.必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;
2.不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;
3.确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;
4.随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件.
发芽的粒数
2
4
9
60
116
282
639
1339
2715
发芽的频率
(1)完成上面表格:
(2)该油菜子发芽的概率约是多少?
4.某篮球运动员,在同一条件下进行投篮练习,结果如下表如示.
投篮次数
进球次数m
进球频率
(1)计算表中进球的频率;
(2)这位运动员投篮一次,进球的概率约为多少?
5.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗?
射击次数n
10
20
50
100
200
500
击中靶心次数m
8
19
44
92
178
455
击中靶心的频率
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率约是什么?
分析:事件A出现的频数nA与试验次数n的比值即为事件A的频率,当事件A发生的频率fn(A)稳定在某个常数上时,这个常数即为事件A的概率。
课题
3.1.1随机事件的概率,3.1.2概率的意义
总课时
1
教学要求
1.了解随机事件、必然事件、不可能事件及确定事件的概念;

人教版高中数学B版必修三导学案(全册)

人教版高中数学B版必修三导学案(全册)

学案:1.1.1-1.1.2算法与程序框图一、【使用说明】1、课前完成导学案,牢记基础知识,掌握基本题型;2、认真限时完成,规范书写;课上小组合作探究,答疑解惑。

二、【重点难点】1、体会算法的思想,了解算法的含义。

2、能说明解决简单问题的步骤,提高逻辑思维能力。

三、【学习目标】1、通过实例,发展对解决具体问题的过程与步骤进行分析的能力,发展应用算法的能力。

问题的能力;2初步了解高斯消去法的思想四、自主学习1、算法的要求例1、写出二元一次方程组11112212112222a x a xb a x a x b +=⎧⎨+=⎩的算法例2:用数学语言写出对任意3个整数. ,,a b c 求出最大值的算法。

五、合作探究1.试写出判断直线0Ax By C ++=与圆222()()x a y b r -+-=的位置关系算法。

2. 用数学语言写出对任意3个整数. ,,a b c 求出最小值的算法。

3正三棱锥S ABC -的侧棱长为l ,底面边长为a 写出求此三棱锥S ABC -体积的一个算法。

4.某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼、羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃菜,设计过河的算法。

六、总结升华1、知识与方法:2、数学思想及方法:七、当堂检测(见大屏幕)导学案:1.1.3(1)算法的三种基本逻辑结构和框图表示一、【使用说明】1、课前完成导学案,牢记基础知识,掌握基本题型;2、认真限时完成,规范书写;课上小组合作探究,答疑解惑。

二、【重点难点】1、重点是利用三种逻辑结构编写框图;2、解决实际问题。

三、【学习目标】1、理解三种框图的逻辑结构;2、会利用三种逻辑结构编写框图;3、通过设计程序框图解决实际问题;四、自主学习1、框图的三种逻辑结构有哪些?例1、已知点00(,)p x y 和直线:0l Ax By C ++=,求点00(,)p x y 到直线:0l Ax By C ++=的距离d 的算法,及其程序框图。

人教新课标版数学高一人教B版数学必修三导学案 3.1.3频率与概率

人教新课标版数学高一人教B版数学必修三导学案 3.1.3频率与概率

3.1.3频率与概率一、梯度目标(学习要求)了解:频率和概率的含义理解:频率和概率的区别与联系应用:能够理解概率在实际应用中的含义二、知识探究问题1:什么是频率?问题2:概率的概念是什么?问题3:概率和频率的区别和联系是什么? 你能否形象地解释你的理解?三、能力探究题型1 对概率概念的理解例1:如何理解“明天北京的降雨概率为60%,济南的降雨概率为90%”,北京降雨而济南没有,有没有这种可能?试从概率的角度加以分析例2.某医院治疗某种疾病的治愈率为10%,现有10人前来就诊,前9人都未治愈,那么第10个人一定能治愈吗?如何理解10%?题型2 频率与概率的关系及求法例3.为了测试贫困和发达地区同龄儿童的智力水平,出了10个题每题10分,统计如下:贫困地区:参加人数30 50 100 200 500 800,60分以上人数16 27 52 104 256 402 ,则60分以上频率分别为发达地区:参加人数为30 50 100 200 500 800 ,60分以上人数为17 29 56 111 276 440 ,则60分以上频率分别为1)利用计算器求出各个频率(填在前面的横线上)2)求两地区参加测试的儿童得60分以上的概率3)试分析贫富差距带来人的智力差别的原因例4.将一枚硬币掷1000次,正面朝上的频数最接近__________次四、回顾总结1.这节课你弄清楚了几个概念,举生活实例说明一下?2.生活中还有没有让你困惑的,关于概率方面的问题,提出来大家探讨一下?五、课后作业(一)课后习题(二)双基达标1.天气预报,预报“明天降水概率为85%”,是指()A.明天有85%的地区降水,其他15%的地区不降水B.明天该地区约有85%的时间降水,其他时间不降水C.气象台的专家中,有85%的人认为会降水,另外15%的专家认为不降水D.明天该地区降水的可能性为85%2.下列叙述, 说法正确的是()A.频率就是概率B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会越来越接近概率D.概率是随机的,在试验前不能确定3.一枚硬币连掷10次,正面朝上出现6次,用A表示正面朝上这一事件,则A的()A.概率为6B.频率接近0.6C.频率为0.6D.概率是0.64. 某医院治疗某种疾病的治愈率为20%,前4人都未治愈,那么第5个人的治愈率为()A1 B 0 C 20% D 10%5.射手在同一条件下进行射击,结果如下:射击次数分别为10 20 100 200 500,击中靶心次数分别为8 19 92 178 455 ,频率分别为___ ___ ___ __ ____ 根据表中有关数据,指出这位射手击中靶心的频率和概率.6.(1)某厂一批产品的次品率为10%,问任意抽取其中10件产品是否一定会发现一件次品?为什么?(2)10件产品中次品率为10%,问这10件产品中必有一件次品的说法是否正确?为什么?(三)综合提高7.有一个容量为66的样本,数据的分组及频数分别如下:[11.5,15.5)2 [15.5,19.5)4 [19.5,23.5)9 [23.5,27.5)18 [27.5,31.5)11 [31.5,35.5)12 [35.5,39.5)7 [39.5,43.5)3 ,根据样本的频率分布估计,数据落在[31.5,43.5)的概率是_________8. 38班班主任对全班50名同学进行了作业量多少的调查,数据如下:认为作业多作业不多总数喜欢电脑游戏18 9 27不喜欢电脑游戏8 15 23总数26 24 50如果校长随机地问这个班的一名同学,下面事件发生的概率是多少,如果是你,你回答多少?1)认为作业多2)喜欢电脑游戏并认为作业不多另外,这些数据你怎么看待?9.某产品质量指标值越大,说明质量越好,且大于或等于102位优质产品,现用配方A 和配方B做试验,各生产100件,测量如下:A配方的频数分布表指标值分组[90,94)[94,98)[98, 102)[102,106)[106, 110)频数分别为8,20 ,42 ,22,8。

人教新课标版数学高一人教B版数学必修三导学案 3.1.4概率的加法公式

人教新课标版数学高一人教B版数学必修三导学案 3.1.4概率的加法公式

3.1.4概率的加法公式一、学习目标了解:集合中的交,并,补在概率中的应用理解:互斥事件和对立事件的区别与联系,互斥事件的加法公式并熟练运用应用:利用互斥和对立事件求复杂事件的概率二、知识探究问题1:____________________________________ 叫做互斥事件1)互斥所研究的是两个或者_______事件的关系2)每个事件总是由几个基本事件组成的,从集合的角度讲,互斥事件就是它们的交集为___ 问题2:对立事件的概念是什么? 判断是否为对立事件的依据是什么?问题3:互斥事件和对立事件的区别和联系是什么?区别:联系:问题4:互斥事件的概率加法公式为:(1)___________________________________ (2)___________________________________三、能力探究题型1 互斥事件和对立事件的判断例1:投掷一颗骰子,观察点数.判断下列事件是否为对立事件:1)出现奇数与出现偶数2)数字大于4与数字小于4例2:某辩论小组有3名男生和2名女生,从中任选2名参加演讲比赛.指出下列事件哪些是对立事件,哪些是互斥事件. 1) 恰有1名男生与恰有2名男生2) 至少有1名男生与全是男生3) 至少有1名男生与全是女生4) 至少有1名女生与至少有1名男生5) 有1名男生与有1名女生互斥:对立:题型2 概率的加法公式例3:投掷一颗骰子,出现3点或者5点的概率是多少?例4 王瑞射击一次中10环,9环,8环,7环的概率分别为0.24,0.28,0.19,0.16,求射击1次1)射中10环或者9环的概率2)至少射中7环的概率题型3 对立事件概率公式的应用例5 投掷两颗骰子,至少出现一个奇数点的概率是多少?题型4 利用互斥和对立事件求概率例6袋中12个球,红黑黄绿四色.任取1球,得到红球的概率是1/3,得到黑球或者黄球的概率是5/12,得到黄球或者绿球的概率也是5/12,求得到黑球,黄球,绿球的概率分别是多少?四、探究应用1.甲乙两人下棋,下成和棋的概率是1/2,乙获胜的概率是1/3,则乙不输的概率是__________2.一个箱子内有9张票,标号1到9,从中任取2张,至少有一个奇数号的概率是___________五、回顾总结1.本节课的概念有几个?易混淆的是哪些?你如何区分?2.本节课的公式你记住几个?什么情况下用该公式?3本节课你学到了哪些新方法?六、课后作业(一)课本课后习题(二)双基达标1. 判断下列事件是否是互斥事件,对立事件,并说明原因. 某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中(1)恰有1名男生和恰有2名男生;(2)至少有一名男生和至少有一名女生;(3)至少有一名男生和全是男生;(4)至少有1名男生和全是女生;2.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.不可能事件C.互斥但不对立事件D.以上答案都不对3.从装有2个红球和2白球的口袋内任取2个球,那么互斥但不对立的两个事件是()A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是红球4.李锐在打靶,连续射击2次,事件“至少有一次中靶”的对立事件是()A至少有1次中靶B 两次都中靶C 两次都不中靶D只有一次中靶5.如果事件A,B互斥,那么()A.A并B 是必然事件B. A补并B补是必然事件C. A补与B 补一定互斥D. A补与B补一定不互斥6.现有语文,数学,物理,化学,英语书5本,胡老师任取1本,是理科书的概率是___________7.在某一时期内,“母猪”河的年最高水位在各个范围内的概率如下:年最高水位(m)[8,10)0.1 [10,12)0.28 [12,14)0.38 [14,16)0.08 [16,18)0.16 计算在同一时期内,河流这一处的年最高水位在下列范围内的概率:(1)[10,16)(2)[8,12)(3)[14,18)8.射手张强在一次射击中射中10环、9环、8环、7 环、7环以下的概率分别是0.24,0.28,0.19,0.16,0.13.。

【名校】辽宁庄河市高级中学人教b版高一数学必修三导学案1.3算法案例

【名校】辽宁庄河市高级中学人教b版高一数学必修三导学案1.3算法案例

1.3 算法案例【教学目】:1.理解相除法与更相减中含的数学原理,并能根据些原理行算法分析。

2.根本能根据算法句与程序框的知完整的程序框并写出算法程序。

【教学重点】:重点:理解相除法与更相减求最大公数的方法。

点:把相除法与更相减的方法成程序框与程序言。

【教学程】:情境入:1. 教首先提出:在初中,我已学求最大公数的知,你能求出18 与30的公数?2. 接着教一步提出,我都是利用找公数的方法来求最大公数,如果公数比大而且根据我的察又不能得到一些公数,我又怎求它的最大公数?比方求8251 与 6105 的最大公数?就是我一堂所要探的内容。

新知探究:1.相除法例 1 求两个正数8251 和 6105 的最大公数。

〔分析: 8251 与 6105 两数都比大,而且没有明的公数,如能把它都小一点,根据已有的知即可求出最大公数〕解: 8251= 6105× 1+ 2146然 8251 的最大公数也必是2146 的数,同6105 与 2146 的公数也必是8251的数,所以8251 与 6105 的最大公数也是6105 与 2146 的最大公数。

6105= 2146×2+ 18132146= 1813×1+ 3331813= 333× 5+ 148333=148× 2+37148=37× 4+037 8251 与 6105 的最大公数。

以上我求最大公数的方法就是相除法。

也叫欧几里德算法,它是由欧几里德在公元前 300 年左右首先提出的。

利用相除法求最大公数的步如下:第一步:用大的数m除以小的数 n 得到一个商 q和一个余数 r ;00第二步:假设 r = 0, n m, n 的最大公数;假设r ≠ 0,用除数 n 除以余数 r得到000一个商 q1和一个余数 r1;第三步:假设 r=0, r m,n 的最大公数;假设r ≠ 0,用除数 r0除以余数 r得到1111一个商 q2和一个余数 r2;⋯⋯依次算直至r n=0,此所得到的 r n-1即所求的最大公数。

数学人教B版必修3导学案:§3.3 几何概型 Word版含解析

数学人教B版必修3导学案:§3.3 几何概型 Word版含解析

教学目标:1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.一、导入新课:1、复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?2、在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.二、新课讲授:提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m 的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验 2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?撰稿教师:赵志岩结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P (正,正)=P (正,反)=P (反,正)=P (反,反)=1/4.两次出现相同面的概率为214141=+. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为 3 m的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31, 于是事件A 发生的概率P(A)=31. 第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B 发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.三、知能训练:1.与长度有关的几何概型例1 有一段长为10米的木棍,现要将其截成两段,要求每一段都不小于3米,则符合要求的截法的概率是多大?2.与面积有关的几何概型例2 郭靖、潇湘子与金轮法王等武林高手进行一种比赛,比赛规则如下:在很远的地方有一顶帐篷,可以看到里面有一张小方几,要将一枚铜板扔到这张方几上.已知铜板的直径是方几边长的43,谁能将铜板整个地落到方几上就可以进行下一轮比赛.郭靖一扔,铜板落到小方几上,且没有掉下,问他能进入下一轮比赛的概率有多大?3.与体积有关的几何概型例4 在5升水中有一个病毒,现从中随机地取出1升水,含有病毒的概率是多大?4.与角度有关的几何概型例6 在圆心角为90°的扇形中,以圆心为起点作射线OC,求使得∠AOC 和∠BOC 都不小于30°的概率.注意:在高中数学阶段,我们对于与面积有关的几何概型和与体积有关的几何概型要求重点掌握.这里只是列出了几道与几何概型有关的题目,可以说,在高中数学学习阶段,这四种几何概率模型基本上包括了我们所要学习的几何概型,希望能对大家有一点帮助.3.3.2 随机数的含义与应用------阅读教材110---114.。

人教新课标版数学高一人教B版数学必修三导学案 -随机现象事件与基本事件空间

人教新课标版数学高一人教B版数学必修三导学案 -随机现象事件与基本事件空间

3.1.1.随机现象3.1.2.事件与基本事件空间一、学习目标:了解:随机现象和必然现象,明确试验的含义理解:不可能事件,必然事件,随机事件,基本事件,基本事件空间的概念应用:理解新概念,反思生活中的实例二、知识探究:问题1:必然现象的关键词是______, 即在一定条件下______发生某种结果的现象. 比如:问题2:随机现象的特点是什么?1结果的性2 各种结果在数量上呈一定的性问题3:你知道实验和试验的区别吗?问题4:什么是随机事件,必然事件,不可能事件? 你能举出些与众不同的实例吗?问题5:什么样的事件是基本事件?问题6:基本事件空间是什么?三、能力探究题型1随机现象和必然现象含义的理解例1.判断下列哪些是随机现象?(1)高一3班运动会总分排名第一;(2)王瑞同学早自习迟到;(3)杆石桥路口单位时间通过10辆奥迪;(4)郭店2012年4月1日刮西北风;(5)当x是实数时,x的平方≥0;(6)手电筒的电池没电,灯泡发亮;(7)一个电影院某天的上座率超过50%.(8)标准大气压下,100摄氏度的水沸腾题型2随机事件,必然事件,不可能事件的判断例2.从12个苹果手机中任意抽取出3个,其中10个正品,2个次品,下列事件:A.3个都是正品 B.至少有一个是次品C.3个都是次品D.至少有一个正品E.有1个正品F.有2个次品G.至多有2个次品H .没有次品K.没有正品,其中随机事件有不可能事件有必然事件有第一页题型3. 基本事件与基本事件空间的理解例3.将数字1,2,3任意排成一排,写出该试验的基本事件空间例4.投掷两枚硬币,观察朝上的面,写出基本事件空间例5.投掷两颗骰子,用(x,y)表示结果,x,y分别代表第一和第二颗骰子出现的点数,写出1)事件“出现点数之和大于8”2)事件“出现点数相等”3)事件“出现点数均为偶数”4) 事件“点(x,y)在直线y=x的上方区域内”四、探究应用1.投掷三枚硬币,观察朝上的面,该试验基本事件总数为2.投掷两颗骰子,观察点数,基本事件总数为可思考:投掷三颗呢?四颗呢?3. 从A,B,C,D,E,F6名同学中选出4人参加数学趣味赛,1)写出该试验的基本事件空间2)写出“A没被选中”所包含的基本事件可思考3)如果题目改为选出2人参加,基本事件空间总数是多少?你的所悟是什么?五、回顾总结1.本节的新概念你知道有几个?谁记的最多?2.本节的方法你学到了哪些?是解决什么问题的?第二页六、课后作业(一)课本习题(二)双基达标1.下列现象是随机现象的是()A.太阳从东边升起B买彩票中奖. C水结冰体积变小. D.三角形内角和为180度2.下列事件中,必然事件是()A. 10人中至少2人生日在同一月B.11人中至少2人生日在同一月C.13人中至少有2人是同一个星座D.12人中至少有2人是同一个星座3.一盒有9个球标号分别为1,2,3,…,9,从中摸出一球,观察标号,则这个试验的基本空间总数是()A. 10 B 9 . C 6. D.1.4.在1到10这10个数字中,任取3个数字,那么事件“这3个数字之和大于6”是()A. 必然事件 B.随机事件 C. 不可能事件 D.以上均不是5.在10件同类产品中,8件是正品,2件是次品,从中任意抽取3件的必然事件是( ) A.3件都是正品 B.至少有1件是次品 C. 3件都是次品 D.至少有1件是正品6.投掷两颗骰子,点数之和为8的事件包含的基本事件有_______个7. 从甲,乙,丙,丁中任选3人当代表,其基本事件空间为_____________________________8.袋中白球1个,红球1个,每次任取1个,有放回的取3次,基本事件空间为:9.一盒放5个相同的球,分别标有号码1,2,3,4,5。

【2020最新】人教B版高中数学-必修3教学案-第一章-第一课时顺序结构与条件分支结构(Word)

【2020最新】人教B版高中数学-必修3教学案-第一章-第一课时顺序结构与条件分支结构(Word)
A.33B.34
C.40D.45
解析:选B x=3,a=2×32-1=17,b=a-15=2,y=ab=17×2=34,则输出y的值为34.
2.如图所给的程序框图描述的算法的运行结果是( )
A.-5B.5
C.-1D.-2
解析:选A ∵x=-1<0,
∴y=3×(-1)-2=-5.
3.根据所给的程序框图,如图所示,输出的结果是________.
解:用c表示顾客所付的金额,a表示顾客购买的唱片数量,则c是a的一个分段函数:c=
程序框图如图所示.
[解析] (1)由程序框图知:
a=2,b=3,c=4,a=b,b=c+2,c=b+4知,
赋值后,a=3,b=6,c=10,
所以d===.
答案:
(2)解:算法如下:
S1 x=3.
S2 y1=x2-2x-3.
S3 x=-5.
S4 y2=x2-2x-3.
S5 x=5.
S6 y3=x2-2x-3.
S7 y=y1+y2+y3.
[解] 算法如下:
S1 输入住房面积S.
S2 根据面积选择计费方式:若S≤90,则租金为M=3S;若S>90,则租金为M=5S-180.
S3 输出房租M的值.
程序框图如下:
利用条件分支结构求解实际应用题的策略
与现实生活有关的题目经常需用到条件分支结构.解答时,首先根据题意写出函数解析式,然后设计成程序框图,解答此题的关键是写出函数解析式.
[活学活用]
1.如图的程序框图是交换两个变量的值并输出,则图中①处应填写________.
解析:要交换两个变量x,y的值,需引入中间量T.令T等于其中一个量的值后,令第一个量x等于第二个量y的值,再令第二个量y等于中间量T的值.

新教材人教B版高中数学选择性必修第三册教案设计-利用导数解决实际问题

新教材人教B版高中数学选择性必修第三册教案设计-利用导数解决实际问题

6.3利用导数解决实际问题学习目标核心素养1.了解导数在解决利润最大、效率最高、用料最省等实际问题中的作用.(重点) 2.能利用导数求出某些实际问题的最大值(最小值).(难点、易混点)1.通过导数的实际应用的学习,培养数学建模素养.2.通过解决利润最大、效率最高、用料最省等实际问题,提升逻辑推理、数学运算素养.“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学.”著名数学家华罗庚曾如此精辟地论述了数学与生活的关系.导数作为数学工具是如何在生活中应用的呢?用导数解决最优化问题的基本思路1.思考辨析(正确的画“√”,错误的画“×”)(1)在经济活动中,怎样使经营成本最小的问题属于最优化问题.()(2)解决应用问题的关键是建立数学模型.()(3)生活中常见的收益最高,用料最省的问题就是数学中的最大、最小值问题.() [答案](1)√(2)√(3)√2.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时时,原油温度(单位:℃)为f(x)=13x3-x2+8(0≤x≤5),那么原油温度的瞬时变化率的最小值是()A .8 B.203 C .-1 D .-8C [原油温度的瞬时变化率为f ′(x )=x 2-2x =(x -1)2-1(0≤x ≤5),所以当x =1时,原油温度的瞬时变化率取得最小值-1.]3.做一个容积为256 m 3的方底无盖水箱,所用材料最省时,它的高为( ) A .6 m B .8 m C .4 m D .2 mC [设底面边长为x m ,高为h m ,则有x 2h =256,所以h =256x 2.所用材料的面积设为S m 2,则有S =4x ·h +x 2=4x ·256x 2+x 2=256×4x +x 2.S ′=2x -256×4x 2,令S ′=0,得x =8, 因此h =25664=4(m).]4.某一件商品的成本为30元,在某段时间内,若以每件x 元出售,可卖出(200-x )件,当每件商品的定价为______元时,利润最大.115 [利润为S (x )=(x -30)(200-x ) =-x 2+230x -6 000, S ′(x )=-2x +230,由S ′(x )=0,得x =115,这时利润达到最大.]面积、体积的最值问题片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,点E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x (cm).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.[思路点拨]弄清题意,根据“侧面积=4×底面边长×高”和“体积=底面边长的平方×高”这两个等量关系,用x将等量关系中的相关量表示出来,建立函数关系式,然后求最值.[解]设包装盒的高为h cm,底面边长为a cm.由已知得a=2x,h=60-2x2=2(30-x),0<x<30.(1)S=4ah=8x(30-x)=-8(x-15)2+1 800,所以当x=15时,S取得最大值.(2)V=a2h=22(-x3+30x2),V′=62x(20-x).令V′=0,得x=0(舍去)或x=20.当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0.所以当x=20时,V取得极大值,也是最大值.此时ha=12,即包装盒的高与底面边长的比值为12.1.解决面积、体积最值问题的思路要正确引入变量,将面积或体积表示为变量的函数,结合实际问题的定义域,利用导数求解函数的最值.2.解决优化问题时应注意的问题(1)列函数关系式时,注意实际问题中变量的取值范围,即函数的定义域;(2)一般地,通过函数的极值来求得函数的最值.如果函数f(x)在给定区间内只有一个极值点或函数f(x)在开区间上只有一个点使f′(x)=0,则只要根据实际意义判断该值是最大值还是最小值即可,不必再与端点处的函数值进行比较.[跟进训练]1.将一张2×6 m 的矩形钢板按如图所示划线,要求①至⑦全为矩形,且左右对称、上下对称,沿线裁去阴影部分,把剩余部分焊接成一个有盖的长方体水箱(其中①与③、②与④分别是全等的矩形,且⑤+⑥=⑦),设水箱的高为x m,容积为y m3.(1)写出y 关于x 的函数关系式; (2)x 取何值时,水箱的容积最大. [解] (1)由水箱的高为x m ,得水箱底面的宽为(2-2x ) m ,长为6-2x2=(3-x ) m. 故水箱的容积为y =2x 3-8x 2+6x (0<x <1). (2)由y ′=6x 2-16x +6=0, 解得x =4+73(舍去)或x =4-73.因为y =2x 3-8x 2+6x (0<x <1)在⎝ ⎛⎭⎪⎫0,4-73内单调递增,在⎝ ⎛⎭⎪⎫4-73,1内单调递减,所以当x 的值为4-73时,水箱的容积最大.用料最省、成本(费用)最低问题村用同型号线架设输电线路,问变压器设在输电干线何处时,所需电线总长最短.[思路点拨] 可设CD =x km ,则CE =(3-x )km ,利用勾股定理得出AC ,BC 的长,从而构造出所需电线总长度的函数.[解] 设CD =x km ,则CE =(3-x )km. 则所需电线总长l =AC +BC =1+x 2+ 1.52+(3-x )2(0≤x ≤3), 从而l ′=x1+x 2-3-x 1.52+(3-x )2.令l ′=0,即x1+x 2-3-x 1.52+(3-x )2=0, 解得x =1.2或x =-6(舍去).因为在[0,3]上使l ′=0的点只有x =1.2,所以根据实际意义,知x =1.2就是我们所求的最小值点,即变压器设在DE 之间离点D 的距离为1.2 km 处时,所需电线总长最短.1.用料最省、成本(费用)最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答.2.利用导数的方法解决实际问题,当在定义区间内只有一个点使f ′(x )=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值.[跟进训练]2.甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/时,已知该汽车每小时的运输成本P (元)关于速度v (千米/时)的函数关系是P =119 200v 4-1160v 3+15v .(1)求全程运输成本Q (元)关于速度v 的函数关系式;(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值.[解] (1)Q =P ·400v=⎝ ⎛⎭⎪⎫119 200v 4-1160v 3+15v ·400v =⎝ ⎛⎭⎪⎫119 200v 3-1160v 2+15·400 =v 348-52v 2+6 000(0<v ≤100). (2)Q ′=v 216-5v ,令Q ′=0,则v =0(舍去)或v =80,当0<v <80时,Q ′<0; 当80<v ≤100时,Q ′>0,∴v =80千米/时时,全程运输成本取得极小值,即最小值,且Q 最小值=Q (80)=2 0003(元).利润最大、效率最高问题在实际问题中,如果在定义域内函数只有一个极值点,则函数在该点处取最值吗?[提示] 根据函数的极值与单调性的关系可以判断,函数在该点处取最值,并且极小值点对应最小值,极大值点对应最大值.【例3】 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.[思路探究] (1)根据x =5时,y =11求a 的值.(2)把每日的利润表示为销售价格x 的函数,用导数求最大值. [解] (1)因为x =5时,y =11,所以a2+10=11,故a =2. (2)由(1)知,该商品每日的销售量y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6,从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6),于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:x(3,4)4(4,6)f ′(x ) + 0 - f (x )↗极大值42↘由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点, 所以,当x =4时,函数f (x )取得最大值,且最大值等于42.故当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.(变条件)本例条件换为:该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克,1<x ≤12)满足:当1<x ≤4时,y =a (x -3)2+bx -1,(a ,b 为常数);当4<x ≤12时,y =2 800x -100.已知当销售价格为2元/千克时,每日可销售出该商品800千克;当销售价格为3元/千克时,每日可售出150千克.(1)求a ,b 的值,并确定y 关于x 的函数解析式;(2)若该商品的销售成本为1元/千克,试确定销售价格x 的值,使商场每日销售该商品所获利润f (x )最大.(7≈2.65)[解] (1)由题意:x =2时y =800,∴a +b =800, 又∵x =3时y =150, ∴b =300,可得a =500.∴y =⎩⎪⎨⎪⎧500(x -3)2+300x -1,1<x ≤4,2 800x -100,4<x ≤12.(2)由题意:f (x )=y (x -1)=⎩⎨⎧500(x -3)2(x -1)+300,1<x ≤4,(x -1),4<x ≤12.当1<x ≤4时,f (x )=500(x -3)2(x -1)+300, ∴f ′(x )=500(3x -5)(x -3),当且仅当100x=2 800x,即x=27≈5.3时取等号,∴x=5.3时有最大值1 840.∵1 800<1 840,∴当x=5.3时f(x)有最大值1 840,即当销售价格为5.3元/千克时,商场所获利润最大.1.经济生活中优化问题的解法经济生活中要分析生产的成本与利润及利润增减的快慢,以产量或单价为自变量很容易建立函数关系,从而可以利用导数来分析、研究、指导生产活动.2.关于利润问题常用的两个等量关系(1)利润=收入-成本.(2)利润=每件产品的利润×销售件数.1.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x).(2)求函数的导函数f′(x),解方程f′(x)=0.(3)比较函数在区间端点和使f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值.2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路.另外需要特别注意:(1)合理选择变量,正确写出函数解析式,给出函数定义域;(2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.1.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件C [因为y ′=-x 2+81,所以当x >9时,y ′<0;当0<x <9时,y ′>0,所以函数y =-13x 3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增,所以x =9时函数取最大值.]2.某箱子的体积与底面边长x 的关系为V (x )=x 2⎝⎛⎭⎪⎫60-x 2(0<x <60),则当箱子的体积最大时,箱子底面边长为( )A .30B .40C .50D .60 B [V ′(x )=-32x 2+60x =-32x (x -40), 因为0<x <60,所以当0<x <40时,V ′(x )>0, 此时V (x )单调递增;当40<x <60时,V ′(x )<0,此时V (x )单调递减.所以x =40是V (x )的极大值,即当箱子的体积最大时,箱子底面边长为40.]3.某关系式为y =13x 3-392x 2-40x (x >0),为使y 最小,则x 应为________. 40 [由题设知y ′=x 2-39x -40,令y ′>0,解得x >40或x <-1,故函数y =13x 3-392x 2-40x (x >0)在(40,+∞)上递增,在(0,40)上递减.∴当x =40时,y 取得最小值.]4.某产品的销售收入y 1(万元)是产量x (千台)的函数:y 1=17x 2(x >0),生产成本y 2(万元)是产量x (千台)的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产________千台.6 [设利润为y ,则y =y 1-y 2=17x 2-(2x 3-x 2)=-2x 3+18x 2(x >0), ∴y ′=-6x 2+36x =-6x (x -6).令y ′=0,解得x =0或x =6,经检验知x =6既是函数的极大值点又是函数的最大值点.]5.某商品每件成本9元,售价30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元,0≤x≤30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成x的函数;(2)如何定价才能使一个星期的商品销售利润最大?[解](1)若商品降价x元,则多卖的商品数为kx2件,由题意知24=k·22,得k=6.若记商品在一个星期的获利为f(x),则依题意有f(x)=(30-x-9)·(432+6x2)=(21-x)(432+6x2),所以f(x)=-6x3+126x2-432x+9 072,x∈[0,30].(2)f′(x)=-18x2+252x-432=-18(x-2)(x-12).当x变化时,f′(x),f(x)的变化情况如下表:所以定价为30-12=18(元)能使一个星期的商品销售利润最大.。

新教材人教B版高中数学选择性必修第三册教案设计-导数与函数的单调性

新教材人教B版高中数学选择性必修第三册教案设计-导数与函数的单调性

6.2利用导数研究函数的性质6.2.1导数与函数的单调性学习目标核心素养1.理解导数与函数的单调性的关系.(易混点)2.掌握利用导数判断函数单调性的方法.(重点)3.会用导数求函数的单调区间.(重点、难点)1.通过利用导数判断函数单调性法则的学习,提升数学抽象素养.2.借助判断函数单调性及求函数的单调区间,提升逻辑推理、数学运算素养.图(1)表示高台跳水运动员的高度h随时间t变化的函数h(t)=-4.9t2+6.5t+10的图像,图(2)表示高台跳水运动员的速度v随时间t变化的函数v(t)=h′(t)=-9.8t+6.5的图像.问题:运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?(1)(2)导数与函数的单调性的关系(1)如果在区间(a,b)内,f′(x)>0,则曲线y=f(x)在区间(a,b)对应的那一段上每一点处切线的斜率都大于0,曲线呈上升状态,因此f(x)在(a,b)上是增函数,如图(1)所示;(2)如果在区间(a,b)内,f′(x)<0,则曲线y=f(x)在区间(a,b)对应的那一段上每一点处切线的斜率都小于0,曲线呈下降状态,因此f(x)在(a,b)上是减函数,如图(2)所示.(1)(2)思考1:如果在某个区间内恒有f′(x)=0,那么函数f(x)有什么特性?[提示]f(x)是常函数.思考2:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的什么条件?[提示]充分不必要条件,如f(x)=x3在(-∞,+∞)上单调递增,但f′(x)=3x2≥0.1.思考辨析(正确的画“√”,错误的画“×”)(1)函数f(x)在定义域上都有f′(x)>0,则函数f(x)在定义域上单调递增.()(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”.()(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.() [答案](1)×(2)×(3)√2.函数y=f(x)的图像如图所示,则()A.f′(3)>0B.f′(3)<0C.f′(3)=0D.f′(3)的正负不确定B[由图像可知,函数f(x)在(1,5)上单调递减,则在(1,5)上有f′(x)<0,故f′(3)<0.]3.已知函数f(x)=12x2-x,则f(x)的单调递增区间为________.(1,+∞)[∵f′(x)=x-1,令f′(x)>0,解得x>1,故f(x)的单调递增区间是(1,+∞).]4.(一题两空)若定义域为R的函数f(x)的导数f′(x)=2x(x-1),则f(x)在区间________内单调递增,在区间________内单调递减.(1,+∞)(-∞,1)[由f′(x)>0得x>1,由f′(x)<0得x<1,故f(x)在区间(1,+∞)内单调递增,在区间(-∞,1)内单调递减.]函数与导函数图像间的关系①函数y=f(x)的定义域是[-1,5];②函数y=f(x)的值域是(-∞,0]∪[2,4];③函数y=f(x)在定义域内是增函数;④函数y=f(x)在定义域内的导数f′(x)>0.其中正确的是()A.①②B.①③C.②③D.②④(2)设函数f(x)在定义域内可导,y=f(x)的图像如图所示,则导函数y=f′(x)的图像可能为()(1)A(2)D[(1)由图像可知,函数的定义域为[-1,5],值域为(-∞,0]∪[2,4],故①②正确,选A.(2)由函数的图像可知:当x<0时,函数单调递增,导数始终为正;当x>0时,函数先增后减再增,即导数先正后负再正,对照选项,应选D.]研究一个函数的图像与其导函数图像之间的关系时,注意抓住各自的关键要素,对于原函数,要注意其图像在哪个区间内单调递增,在哪个区间内单调递减;而对于导函数,则应注意其函数值在哪个区间内大于零,在哪个区间内小于零,并分析这些区间与原函数的单调区间是否一致.[跟进训练]1.(1)设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图像画在同一个直角坐标系中,不正确的是()A B C D(2)若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图像可能是()A B C D(1)D(2)A[(1)A,B,C均有可能;对于D,若C1为导函数,则y=f(x)应为增函数,不符合;若C2为导函数,则y=f(x)应为减函数,也不符合.(2)因为y=f(x)的导函数在区间[a,b]上是增函数,则从左到右函数f(x)图像上的点的切线斜率是递增的.]利用导数求函数的单调区间【例2】 求下列函数的单调区间. (1)f (x )=3x 2-2ln x ;(2)f (x )=x 2·e -x ; (3)f (x )=x +1x .[解] (1)函数的定义域为(0,+∞). ∵f ′(x )=6x -2x ,令f ′(x )=0,得x 1=33,x 2=-33(舍去), 用x 1分割定义域,得下表:x ⎝ ⎛⎭⎪⎫0,3333 ⎝ ⎛⎭⎪⎫33,+∞ f ′(x ) - 0 + f (x )↘↗∴函数f (x )的单调递减区间为 ⎛⎪⎫0,3,单调递增区间为 ⎛⎪⎫3,+∞.(2)函数的定义域为(-∞,+∞). ∵f ′(x )=(x 2)′e -x +x 2(e -x )′ =2x e -x -x 2e -x =e -x (2x -x 2),令f ′(x )=0,由于e -x >0,∴x 1=0,x 2=2,用x 1,x 2分割定义域,得下表: x (-∞,0)0 (0,2) 2 (2,+∞)f ′(x ) - 0 + 0 - f (x )↘↗↘(3)函数的定义域为(-∞,0)∪(0,+∞).∵f ′(x )=1-1x 2,令f ′(x )=0,得x 1=-1,x 2=1,用x 1,x 2分割定义域,得下表:x (-∞,-1)-1(-1,0)(0,1)1(1,+∞) f′(x)+0--0+f(x)↗↘↘↗+∞).角度二含参数的函数的单调区间【例3】讨论函数f(x)=12ax2+x-(a+1)ln x(a≥0)的单调性.[思路点拨]求函数的定义域→求f′(x)――→分a>0,a=0解不等式f′(x)>0或f′(x)<0→表述f(x)的单调性[解]函数f(x)的定义域为(0,+∞),f′(x)=ax+1-a+1x=ax2+x-(a+1)x.(1)当a=0时,f′(x)=x-1 x,由f′(x)>0,得x>1,由f′(x)<0,得0<x<1.∴f(x)在(0,1)上为减函数,在(1,+∞)上为增函数.(2)当a>0时,f′(x)=a⎝⎛⎭⎪⎫x+a+1a(x-1)x,∵a>0,∴-a+1a<0.由f′(x)>0,得x>1,由f′(x)<0,得0<x<1.∴f(x)在(0,1)上为减函数,在(1,+∞)上为增函数.综上所述,当a≥0时,f(x)在(0,1)上为减函数,在(1,+∞)上为增函数.利用导数求函数单调区间的步骤(1)确定函数f(x)的定义域.(2)求导数f′(x).(3)由f′(x)>0(或f′(x)<0),解出相应的x的范围.当f′(x)>0时,f(x)在相应的区间上是增函数;当f′(x)<0时,f(x)在相应的区间上是减函数.(4)结合定义域写出单调区间.[跟进训练]2.设f(x)=e x-ax-2,求f(x)的单调区间.[解]f(x)的定义域为(-∞,+∞),f′(x)=e x-a.若a≤0,则f′(x)>0,所以f(x)在(-∞,+∞)上单调递增.若a>0,则当x∈(-∞,ln a)时,f′(x)<0;当x∈(ln a,+∞)时,f′(x)>0.所以f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.综上所述,当a≤0时,函数f(x)在(-∞,+∞)上单调递增;当a>0时,f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.已知函数的单调性求参数的范围1.在区间(a,b)内,若f′(x)>0,则f(x)在此区间上单调递增,反之也成立吗?[提示]不一定成立.比如y=x3在R上为增函数,但其在x=0处的导数等于零.也就是说f′(x)>0是y=f(x)在某个区间上单调递增的充分不必要条件.2.若函数f(x)为可导函数,且在区间(a,b)上是单调递增(或递减)函数,则f′(x)满足什么条件?[提示]f′(x)≥0(或f′(x)≤0).【例4】已知函数f(x)=x3-ax-1在(-∞,+∞)上为单调递增函数,求实数a的取值范围.[思路点拨]f(x)单调递增→f′(x)≥0恒成立→分离参数求a的范围[解]由已知得f′(x)=3x2-a,因为f(x)在(-∞,+∞)上是单调增函数,所以f′(x)=3x2-a≥0在(-∞,+∞)上恒成立,即a ≤3x 2对x ∈R 恒成立, 因为3x 2≥0,所以只需a ≤0. 又因为a =0时,f ′(x )=3x 2≥0,所以,f (x )=x 3-1在R 上是增函数.综上,a ≤0.1.(变条件)若函数f (x )=x 3-ax -1的单调减区间为(-1,1),求a 的值. [解] f ′(x )=3x 2-a , ①当a ≤0时,f ′(x )≥0,∴f (x )在(-∞,+∞)上为增函数.不符题意. ②当a >0时,令3x 2-a =0,得x =±3a3, 当-3a 3<x <3a3时,f ′(x )<0. ∴f (x )在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数, ∴f (x )的单调递减区间为⎝ ⎛⎭⎪⎫-3a 3,3a 3, ∴3a3=1,即a =3.2.(变条件)若函数f (x )=x 3-ax -1在(-1,1)上单调递减,求a 的取值范围. [解] 由题意可知f ′(x )=3x 2-a ≤0在(-1,1)上恒成立, ∴⎩⎨⎧ f ′(-1)≤0f ′(1)≤0,即⎩⎨⎧3-a ≤03-a ≤0,∴a ≥3. 即a 的取值范围是[3,+∞).3.(变条件)若函数f (x )=x 3-ax -1在(-1,1)上不单调,求a 的取值范围. [解] ∵f (x )=x 3-ax -1, ∴f ′(x )=3x 2-a ,由f ′(x )=0,得x =±3a3(a ≥0), ∵f (x )在区间(-1,1)上不单调, ∴0<3a3<1,即0<a <3.故a的取值范围为(0,3).1.可导函数f(x)在(a,b)上单调递增(或单调递减)的充要条件是f′(x)≥0(或f′(x)≤0)在(a,b)上恒成立,且f′(x)在(a,b)的任何子区间内都不恒等于0.2.已知f(x)在区间(a,b)上的单调性,求参数范围的方法(1)利用集合的包含关系处理f(x)在(a,b)上单调递增(减)的问题时,区间(a,b)应是相应单调区间的子集;(2)利用不等式的恒成立处理f(x)在(a,b)上单调递增(减)的问题时,可转化为f′(x) ≥0(f′(x)≤0)在(a,b)内恒成立,注意验证等号是否成立.判断函数单调性的方法如下:(1)定义法.在定义域内任取x1,x2,且x1<x2,通过判断f(x1)-f(x2)的符号来确定函数的单调性.(2)图像法.利用函数图像的变化趋势进行直观判断:图像在某个区间呈上升趋势,则函数在这个区间内是增函数;图像在某个区间呈下降趋势,则函数在这个区间内是减函数.(3)导数法.利用导数判断可导函数f(x)在区间(a,b)内的单调性,步骤是:①求f′(x);②确定f′(x)在(a,b)内的符号;③确定单调性.函数y=f(x)的单调增区间、减区间分别是解不等式f′(x)>0和f′(x)<0所得的x的取值集合.反过来,如果已知f(x)在区间D上单调递增,求f(x)中参数的值,这类问题往往转化为不等式的恒成立问题,即f′(x)≥0在D上恒成立且仅在有限个点上等号成立,求f(x)中参数的值.同样也可以解决已知f(x)在区间D上单调递减,求f(x)中参数的值的问题.1.函数y=f(x)的图像如图所示,则导函数y=f′(x)的图像可能是()D [∵函数f (x )在(0,+∞),(-∞,0)上都是减函数,∴当x >0时,f ′(x )<0,当x <0时,f ′(x )<0.]2.函数f (x )=ln x -x 的单调递增区间是( ) A .(-∞,1) B .(0,1) C .(0,+∞)D .(1,+∞)B [函数的定义域为(0,+∞),又f ′(x )=1x -1, 由f ′(x )=1x -1>0,得0<x <1,所以函数f (x )=ln x -x 的单调递增区间是(0,1),故选B.] 3.函数f (x )=2x 3-9x 2+12x +1的单调减区间是________.(1,2) [f ′(x )=6x 2-18x +12,令f ′(x )<0,即6x 2-18x +12<0,解得1<x <2.]4.若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围为________.[1,+∞) [因为f ′(x )=3x 2-2ax -1,由题意可知 f ′(x )≤0在(0,1)内恒成立. ∴⎩⎨⎧f ′(0)≤0,f ′(1)≤0,即a ≥1.] 5.试求函数f (x )=kx -ln x 的单调区间. [解] 函数f (x )=kx -ln x 的定义域为(0,+∞), f ′(x )=k -1x =kx -1x .当k ≤0时,kx -1<0,∴f ′(x )<0,则f (x )在(0,+∞)上单调递减.当k >0时,由f ′(x )<0,即kx -1x <0,解得0<x <1k ;由f ′(x )>0,即kx -1x >0,解得x >1k .∴当k >0时,f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,1k ,单调递增区间为⎝ ⎛⎭⎪⎫1k ,+∞. 综上所述,当k ≤0时,f (x )的单调递减区间为(0,+∞),无单调递增区间;当k >0时,f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,1k ,单调递增区间为⎝ ⎛⎭⎪⎫1k ,+∞.。

2024-2025学年高一数学必修第三册(人教B版)教案向量数量积的坐标运算

2024-2025学年高一数学必修第三册(人教B版)教案向量数量积的坐标运算

教 案即:||||cos ,a b a b a b ⋅=2||a a a =⋅,也可以写成||a a a =⋅,此处需注意:在写法上,2a a a =⋅。

这个公式可以用来求向量的模。

当a 与b 都是非零向量时,cos ,||||a ba b a b ⋅=,这个公式可以用来求两向量之间的夹角。

0a b a b ⊥⇔⋅=,这个公式可以用来证明某些垂直问题,或者将某些垂直问题转化成向量数量积的语言进行求解。

接下来我们复习回顾第2个知识点,必修第二册学习过的平面向量坐标表示的定义?在平面直角坐标系中,分别给定与x 轴、y 轴正方向相同的单位向量1e 和2e 之后,根据平面向量基本定理可知,对平面内的任意向量a ,有且只有一对实数,x y ,使得12a xe ye =+。

这时我们称有序实数对(,)x y 是向量a 的坐标,记作(,)a x y =。

而且,12{,}e e 是一组单位正交基底,根据前面学习过的向量数量积的定义,可得11221e e e e ⋅=⋅=,12210e e e e ⋅=⋅=。

向量可以用坐标表示,前面我们学习了向量数量积的定义,那么向量的数量积可以用坐标表示吗?我们看第1个思考题:设1122(,),(,)a x y b x y ==,你能用,a b 的坐标表示复习旧知,引出新知,为后续的学习提供铺垫12{,}e e ,使得1112a x e y e =+,2122b x e y e =+,因此a b ⋅=1112()x e y e +2122()x e y e ⋅+=1211121212211222x x e e x y e e y x e e y y e e ⋅+⋅+⋅+⋅,根据刚才的结论,其中11221e e e e ⋅=⋅=,12210e e e e ⋅=⋅=,所以a 与b 的数量积等于1212x x y y +。

从而1212a b x x y y ⋅=+,即两个向量的数量积等于这两个向量的横坐标之积与纵坐标之积的和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版B版高一数学必修三导学案
本资料为woRD文档,请点击下载地址下载全文下载地址导学案:3.4概率的应用
一、【使用说明】
、课前完成导学案,牢记基础知识,掌握基本题型;
2、认真限时完成,规范书写;课上小组合作探究,答疑解惑。

二、【重点难点】
重点:应用概率解决实际问题;
难点:如何把实际问题转化为概率的有关问题.
三、【学习目标】
、把实际问题转化为概率的有关问题,并用概率和数学的方法来分析问题和解决问题;
四、
自主学习
例:为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如XX尾,给每尾鱼作上记号,不影响存活,然后放回水库,经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库内鱼的尾数。

五、
合作探究
1、李炎是一位喜欢调查研究的好学生,他对高三年级的12个班(每班50人)同学的生日作过一次调查,结果发现每班都有三位同学的生日相同,难道这是一种巧合吗?
2、
你能设计一个摸奖方案吗?
某食品公司为新产品问世拟举办XX年国庆促销活动,方法是买一份糖果摸一次彩,摸彩的器具是黄、白两色乒乓球,这些乒乓球的大小与质地完全相同。

另有一只棱长约为30厘米密封良好且不透光的长方体木箱(木箱上方可容一只手伸人)。

该公司拟按中奖率1%设大奖,其余99%则为小奖,大奖奖品的价值为400元,小奖奖品的价值为2元。

请你按公司的要求设计一个摸彩方案。

六、总结升华
、知识与方法:
2、数学思想及方法:
七、当堂检测(见大屏幕)
导学案:章末复习
一、【使用说明】
、课前完成导学案,牢记基础知识,掌握基本题型;
2、认真限时完成,规范书写;课上小组合作探究,答疑解惑。

二、知识结构
三、思考与交流
、掷一颗骰子得到6点的概率是,是否意味着把它掷6次能得到一次6点?用概率的统计定义说明你的观点。

2、古典概型和几何概型的区别是什么,各自有什么特征?
四、巩固与提高:
、从甲乙丙三人中任选两名代表,求甲被选中的概率。

2、若以连续投掷两次骰子,分别得到的点数m,n作为点P的坐标,求点P落在外的概率。

3某班有50名学生,其中男女各25名,今有这个班的一名学生在街上碰到另一名同班同学,试问:碰到异性同学的概率大还是碰到同性同学的概率大?
4、两人独立地破译1份密码,已知甲破译密码的成功率是0.4,乙破译密码的成功率是0.3,甲乙同时破译密码的成功率是0.12,求该密码能被破译的概率。

5、把一个体积为64的正方体木块表面涂上红漆,然后锯成体积为1的小正方体,从中任取一块,求这块有两面涂红漆的概率。

五、总结升华
、知识与方法:
2、数学思想及方法:
六、当堂检测(见大屏幕)
必修三第三章概率测试题
一、选择题(3分×10=30分)
、如果事件、是互斥事件,则
[
]
A、是必然事件
B、是必然事件
c、与一定互斥
c、与一定不互斥
2、设、是互斥事件,它们都不发生的概率是且,则=[
]
A、
B、
c、
D、
3、一个家庭有三个小孩,所有可能的基本事件的个数是
[
]
A、4
B、6
c、8
D、10
4、平面上画有等距的平行线组,间距为,把一枚半径为的硬币随机掷在平面上,硬币与平行线相交的概率
[
]
A、
B、
c、
D、
5、掷两个骰子,恰好出现一个点数比另一个点数大3的概率
[
]
A、
B、
c、
D、
6、有100张卡片(从1号到100号),从中任取一张,取到的卡片是6或8的倍数的概率[
]
A、0.24
B、0.23
c、0.15
D、0.14
7、掷一枚硬币,若出现正面记1分,出现反面记2分,则恰好得3分的概率为[
]
A、
B、
c、
D、
8、在区间(0,1)中,随机的取出两数,其和小于的概率
[
]
A、
B、
c、
D、
9、A、B两人约定6时到7时之间在某处会面,并约定先到者应该等候另一个一刻钟,过时即离开,两人能会面的概率
[
]
A、
B、
c、
D、
10、3名代表都以相同的概率分配到4个单位中的任一个工作,则至少有2人被分配到同一单位工作的概率
[
]
A、
B、
c、
D、
二、填空题(3分×5=15分)
1、在1万的海域中有40的大陆架贮藏着石油,假如在海域中任意一点钻探时随机的,钻到石油层的概率是;
2、同学4人各写一张贺卡,先集中起来,然后每人从中各拿出一张贺卡,则贺卡不同的分配方法有
种;
3、在平面直角坐标系中,点的且,则点在线的上方的概率

4、将骰子先后各抛一次,用分别记录它们的点数,若落在不等式(为常数)所表示的区域内,设为事件A使,则的最小值为

5、从3双规格相同颜色不同的手套中任取2只,恰成一双(颜色不同的也可成为一双)的概率

三、解答题(9分×5+10分=55分)
6、某射手在一次射击中命中9环概率0.28,命中8环的概率是0.19,少于8环的概率是0.29,计算这个射手在一次射击中命中9环或10环的概率。

17、如图,,,在线段上任取一点,求
(1)为钝角的概率;
(2)为锐角三角形的概率。

8、一工厂有、两名独立工作的机器,平均来说,每台机器24小时发生故障一次,若修理A需2小时,修理B需3小时,试求生产在24小时内能进行的概率。

19、把长度为1的线段任意分成三段,求分得的三条线段能构成三角形的概率。

20、随意安排甲、乙、丙三人在三天节日中值班,每人值班一天,求甲安排在乙前面的概率。

21、盒中装有标上1、2、3、4的卡片各2张。

从盒中任意抽3张,每张卡片被抽到的可能性相等。


(1)抽出的3张卡片上的最大数字是4的概率;
(2)抽出的3张卡片中有2张卡片上的数字是3的概率。

地方。

相关文档
最新文档