2011-2012学年新课标高三上学期单元测试(3)(数学)

合集下载

三年级上册数学试卷 第三单元测试卷-3 (无答案)北师大版

三年级上册数学试卷   第三单元测试卷-3  (无答案)北师大版

北师大版三上第三单元测试卷加与减一、选择题1.冬冬有50元钱,买玩具用去26元,还剩( )元钱. A .36B .34C .242.算式614348+=□,□里应该填( )符号。

A .+B .-C .×3.甲数是426,比乙数多126,甲、乙两数的和是多少?正确的列式是( ). A .426 + 126B .426 + 126 + 426C .426 - 126 + 4264.草地上有山羊128只,绵羊比山羊多8只,绵羊和山羊一共有( ) A .136只B .254只C .264只D .224只5.那两个数相加最接近300? A 、150+300 B 、200+110 C 、120+100 D 、180+3006.甲、乙两人进行骑车比赛,同时出发,当甲骑到全程的,乙骑到全程的时,这时两人相距70米,如果继续按各人的速度骑下去,当甲到达终点时,两人最大距离是( ) A .1600米B .70米C .80米D .无法确定7.在放大镜下看一个直角,结果看到的是( ) A .直角B .钝角C .锐角8.参加合唱的男生有45人,女生有14人,一共有多少人?( ) A .59B .49C .489.下列算式中,哪个结果更接近400( ) A .220+180 B .281+127 C .225+213 10.比42多55的数是多少?正确的列式是( ). A .84+55 B .55-42 C .42+55二、其他计算1.直接写出下面各题的得数.三、填空题1.在估算691+342,可以把691看成(________),把(________)看成350,估算结果是(_________________).2.食堂有大米600千克,第一天吃了126千克,第二天吃了134千克,那么126 +134表示(________),800 -(126 +134)表示(__________)。

3.爸爸是司机,他星期一上班时,汽车里程表的读数是45千米,回家时里程表的读数是134千米,他行了(________)千米。

2024-2025学年高一数学苏教版必修第一册单元测试:第3章 不等式(含解析)

2024-2025学年高一数学苏教版必修第一册单元测试:第3章 不等式(含解析)

2024-2025学年高一数学苏教版必修第一册单元测试:第3章 不等式一、选择题1.已知,,则( )A. B.C. D.P,Q 的大小与x 有关在R 上恒成立,则实数a 的取值范围为( )A. B. C. D.3.已知正实数a 、b 满足,则4.已知函数在上恒成立,则实数a 的取值范围是( )A. B. C. D.5.已知函数,若对任意的实数x,恒有成立,则实数a 的取值范围为( )A. B. C. D.6.“不等式在R 上恒成立”的充要条件是( )A.D.7.设,,,的大小关系是( )A. B. C. D.8.若,则下列不等式正确的是( )[)2,+∞22P x =+43Q x =+P Q >P Q<P Q =b ad bc d =-2x ax->3,2⎛⎤-∞ ⎥⎝⎦3,2⎛⎫-∞ ⎪⎝⎭3,2⎛⎫+∞ ⎪⎝⎭3,2⎡⎫+∞⎪⎢⎣⎭2222e e e e a b a b ---+=+a ()23,033,x x f x x x ⎧-≤=⎨->⎩)0x ax +≥[]1,2x ∈-[]2,0-(][),20,-∞-+∞ []0,2(2()ln e 1xf x x =-+()2(1)2f ax x f x -+-+<()0,+∞[)0,+∞()1,+∞[)1,+∞20x x m -+>m ><1<1m >1a b >>1y =2y =3y =1y 2y 3y 123y y y <<213y y y <<321y y y <<231y y y <<0b a <<二、多项选择题9.已知正数a ,b 满足,则下列说法一定正确的是( )A. B. C. D.10.已知关于x 的不等式的解集是,则( )A. B. C. D.11.若,且,则( )的最小值为三、填空题12.已知命题p :“不等式有解”为真命题,则a 的取值范围是__________.13.定义表示x ,y 中的最小者,设函数,若14.已知,四、解答题15.已知a ,b,c 均为正数,若,求证:(2).16.已知关于x 的不等式.(1)若对任意实数x ,不等式恒成立,求实数m 的取值范围;(2)若对于,不等式恒成立,求实数x 的取值范围.>a <1a>22a b ab +=4a b +≥24a b +≥2ab ≥2248a b +≥()22320a x x --->{}12x x x x <<1213x x -<<<122x x +=123x x <-214x x -<0a >0b >1a b +=6a 3-+2320x x a ++≤min{,}x y {}2()min 33,3|3|f x x x x =-+--()f x >m n +=0>n >+1a b c ++=+≤()33323a b c ab bc ac abc ++≥++-244x mx x m +>+-04m ≤≤17.已知,,且.(1)求ab 的最小值;(2)求的最小值.18.用篱笆在一块靠墙的空地围一个面积为的等腰梯形菜园,如图所示,用墙的一部分做下底,用篱笆做两腰及上底,且腰与墙成,当等腰梯形的腰长为多少时,所用篱笆的长度最小?并求出所用篱笆长度的最小值.19.已知.(1)若a 与b 均为正数,求的最大值;的最小值.0a >0b >0a b ab +-=23a b +2AD 60︒2284a b +=ab 22b参考答案1.答案:D解析:由题意可得,当即,当即,当即,故P、Q的大小与x有关.故选:D.2.答案:C等价于,即,所以,解得等价于,即.因为,所以,所以3.答案:A解析:由题,构造函数,则,显然在R上单调递增,所以,即所以,当且仅当时等号成立.所以故选:A.4.答案:C解析:当时,,即,当恒成立。

一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

 一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

第二章一元二次函数、方程和不等式(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a>b,则下列结论正确的是( )A.ac2>bc2B.a2>b2C.|a|>|b|D.a+c>b+c2.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B或A>BD.A>B3.已知a∈R,则“a>6”是“a2>36”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式(组)表示是( )A.Error!B.Error!Error! D.Error!5.下列说法正确的是( )A.若a>b,c>d,则ac>bdB.若1a>1b,则a<bC.若b>c,则|a|b≥|a|cD.若a>b,c>d,则a-c>b-d6.下列不等式中,正确的是( )A.a+4a≥4 B.a2+b2≥4abC.ab≥a+b2D.x2+3x2≥237.不等式x+61-x≥0的解集为( )A.{x|-6≤x≤1}B.{x|x≥1或x≤-6}C.{x|-6≤x<1}D.{x|x>1或x≤-6}8.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x(单位:元)的取值范围是( )A.{x|10≤x<16}B.{x|12≤x<18}C.{x|15<x<20}D.{x|10≤x<20}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.若x>y>0,则下列不等式成立的是( )A.x2>y2B.-x>-yC.1x<1yD.xy<x+1y+110.已知实数a,b,下列不等式一定正确的有( )A.a+b2≥ab B.a+1a≥2C.≥2D.2(a2+b2)≥(a+b)211.若正实数a,b满足a+b=1,则下列选项中正确的是( )A.ab有最大值14B.a+b有最小值2C.1a+1b有最小值4 D.a2+b2有最小值22三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.如果a>b,ab<0,那么1a与1b的大小关系是________13.已知a>0,b>0,则1a+ab2+b的最小值为________14.若不等式x2+ax+b<0的解集为{x|-1<x<2},则a+b= ;不等式bx2+ax+1<0的解集为 W.四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(13分)设a>0,b>0,比较a2b +b2a与a +b的大小.a b || b a16.(16分)已知关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1}.(1)求a,b的值;(2)若c∈R,解关于x的不等式ax2-(ac+b-1)x+(b-1)c<0.17.(16分)已知关于x的不等式(x-a)(x-a2)<0.(1)当a=2时,求不等式的解集;(2)当a∈R,a≠0且a≠1时,求不等式的解集.18.(16分)如图所示,要设计一张矩形广告,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空间的宽度为5 cm,怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌最省料?19.(16分)已知关于x 的不等式2kx 2+kx -38<0,k ≠0.(1)若不等式的解集为,求k 的值;(2)若不等式的解集为R ,求k的取值范围.{}3x |x 12-<<参考答案及解析:一、选择题1.D 解析:对于A,当c=0时,ac2=bc2,A错误;对于B,当a=1,b=-1时,a2=b2,B 错误;对于C,当a=1,b=-1时,|a|=|b|,C错误;对于D,由于a>b,所以a+c>b+c,D 正确.故选D.2.B 解析:因为A-B=a2+3ab-(4ab-b2)=+34b2≥0,所以A≥B.3.A 解析:由a>6,得a2>36,所以“a>6”是“a2>36”的充分条件;由a2>36,得a>6或a<-6,所以“a>6”不是“a2>36”的必要条件,故“a>6”是“a2>36”的充分不必要条件.故选A.4.D 解析:由题中x不低于95,即x≥95;y高于380,即y>380;z超过45,即z>45.5.C 解析:A项,a,b,c,d的符号不确定,故无法判断;B项,不知道ab的符号,无法确定a,b的大小;C项,|a|≥0,所以|a|b≥|a|c成立;D项,同向不等式不能相减.6.D 解析:若a<0,则a+4a≥4不成立,故A错;a=1,b=1,a2+b2<4ab,故B错;a=4,b=16,则ab<a+b2,故C错;由基本不等式可知D项正确.7.C 解析:不等式x+61-x≥0等价于Error!解得-6≤x<1.故解集为{x|-6≤x<1}8.C 解析:设这批台灯的销售单价为x元,则[30-(x-15)×2]x>400,即x2-30x+200<0,∴10<x<20,又∵x>15,∴15<x<20.故选C.二、选择题9.AC 解析:对于A,当x>y>0时,x2>y2,A成立;对于B,当x>y>0时,-x<-y,B不成立;对于C,当x>y>0时,xxy>yxy,即1x<1y,C成立;对于D,xy-x+1y+1=x(y+1)-y(x+1)y(y+1)=x-yy(y+1),∵x>y>0,∴x-y>0,∴xy-x+1y+1>0,即xy>x+1y+1,D不成立.故选AC.2b(a)210.CD 解析:当a <0,b <0时,a +b 2≥ab 不成立;当a <0,时,a +1a≥2不成立;因为≥2,故C 正确;因为2(a 2+b 2)-(a +b)2=a 2+b 2-2ab =(a -b)2≥0,所以2(a 2+b 2)≥(a +b)2,故D 正确.故选CD .11.AC 解析:∵a>0,b>0,且a +b =1,∴1=a +b ≥2ab ,∴ab ≤14,∴ab 有最大值14,∴A 正确;(a +b)2=a +b +2ab =1+2ab ≤1+(a +b)=2,∴0<a +b ≤2,∴B 错误;1a +1b =a +b ab =1ab ≥4,∴1a +1b 有最小值4,∴C 正确;∵a 2+b 2=(a +b)2-2ab =1-2ab ,且ab ≤14,∴a 2+b 2≥1-2×14=12,∴a 2+b 2的最小值是12,∴D 错误.故选AC .三、填空题12.答案:1a >1b 解析:1a -1b =b -a ab >0,所以1a >1b.13.答案:22 解析:∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22,当且仅当1a =a b 2且b =2b ,即a =b =2时取等号,∴1a +a b 2+b 的最小值为22.14.答案:-3, 解析:根据题意,不等式x 2+ax +b <0的解集为{x|-1<x <2},则-1和2是方程x 2+ax +b =0的两个根,则有(-1)+2=-a ,(-1)×2=b ,解得a =-1,b =-2.故a +b =-3.bx 2+ax +1<0⇒-2x 2-x +1<0⇒2x 2+x -1>0,解得x <-1或x >12,即不等式bx 2+ax +1<0的解集为.四、解答题a b a b ||||||b a b a+=+{1x |x 1x 2⎫<->⎬⎭或{1x |x 1x 2⎫<->⎬⎭或15.解:因为a>0,b>0,所以a2b +b2a=ab+ba.根据均值不等式可得ab+b≥2a,①ba+a≥2b,②当且仅当a=b时,取等号.由①+②,得ab+ba+ a +b≥2( a +b),即a2b+b2a≥ a +b.16.解:(1)关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1},即方程ax2-x-b=0的根为2,-1,∴Error!解得a=1,b=2.(2)由(1)得关于x的不等式x2-(c+1)x+c<0,即(x-1)(x-c)<0,当c>1时,不等式的解集为{x|1<x<c};当c=1时,不等式的解集为;当c<1时,不等式的解集为{x|c<x<1}.17.解:(1)当a=2时,不等式为(x-2)(x-4)<0,解得2<x<4,所以该不等式的解集为{x|2<x<4}.(2)因为a∈R,a≠0且a≠1,当0<a<1时,a2<a,解不等式(x-a)(x-a2)<0,得a2<x<a;当a<0或a>1时,a<a2,解不等式(x-a)(x-a2)<0,得a<x<a2.综上所述,当0<a<1时,不等式的解集为{x|a2<x<a};当a<0或a>1时,不等式的解集为{x|a<x<a2}.18.解:设矩形栏目的高为a cm,宽为b cm,则ab=9 000.①广告牌的高为(a+20)cm,宽为(2b+25)cm,其中a>0,b>0.广告牌的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b≥18 500+2 25a·40b=18 500+21 000ab=24 500.当且仅当25a=40b时,等号成立,此时b=58a,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24 500 cm2.故广告牌的高为140 cm,宽为175 cm时,可使矩形广告牌最省料.19.解:(1)因为关于x的不等式2kx2+kx-38<0的解集为,所以-32和1是方程2kx2+kx-38=0的两个实数根,由根与系数的关系可得-32×1=,得k=18.(2)因为关于x的不等式2kx2+kx-38<0的解集为R,k≠0,所以Error!解得-3<k<0,故k的取值范围为{k|-3<k<0}.{}3x|x12-<<382k-。

2011-2012学年高二数学上学期 命题范围单元测试(3) 新人教A版选修1-1

2011-2012学年高二数学上学期 命题范围单元测试(3) 新人教A版选修1-1

2011—2012学年度上学期单元测试高二数学试题(3)【人教版】命题范围: 选修1-1第Ⅰ卷(选择题 共60分)一、选择题:(共12小题,每小题5分,共60分)在下列各小题的四个选项中,只有一项是符合题目要求的.请将选项前的字母填入下表相应的空格内. 1.对抛物线24y x =,下列描述正确的是 ( )A .开口向上,焦点为(0,1)B .开口向上,焦点为1(0,)16 C .开口向右,焦点为(1,0) D .开口向右,焦点为1(0,)162.已知A 和B 是两个命题,如果A 是B 的充分条件,那么A ⌝是B ⌝的 ( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 3.抛物线y x 22=的准线方程是 ( )A .81=y B .21=y C .81-=y D .21-=y 4.有下列4个命题:①“菱形的对角线相等”; ②“若1xy =,则x ,y 互为倒数”的逆命题;③“面积相等的三角形全等”的否命题;④“若a b >,则22a b >”的逆否命题。

其中是真命题的个数是 ( ) A .1个 B .2个 C .3个 D .4个 5.如果p 是q 的充分不必要条件,r 是q 的必要不充分条件;那么 ( )A .p r ⌝⌝⇒B .p r ⌝⌝⇐C .p r ⌝⌝⇔D .p r ⇔6.若方程x 2+ky 2=2表示焦点在x 轴上的椭圆,则实数k 的取值范围为 ( ) A .(0,+∞) B .(0,2) C .(1,+∞) D .(0,1) 7.已知命题p :c b a ,,成等比数列,命题q :2b ac =,那么p 是q 的 ( ) A .必要不充分条件 B .充要条件 C .充分不必要条件 D .既不充分也不必要条件8.下列说法中正确的是 ( ) A .一个命题的逆命题为真,则它的逆否命题一定为真 B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真9.已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是( )A .21y x =-B .y x =C .32y x =-D .23y x =-+10.已知圆的方程422=+y x,若抛物线过定点(0,1),(0,1)A B -且以该圆的切线为准线,则抛物线焦点的轨迹方程是 ( )A .)0(14322≠=+y y xB .)0(13422≠=+y y xC .)0(14322≠=+x y xD .)0(13422≠=+x y x11.函数x e x x f )3()(-=的单调递增区间是 ( )A .)2,(-∞B .(0,3)C .(1,4)D .),2(+∞ 12.已知直线y=x+1与曲线y ln()x a =+相切,则α的值为 ( )A .1B .2C .-1D .-2第II 卷(非选择题 共90分)二、填空题:(共4小题,每小题5分,共20分)请将答案直接添在题中的横线上. 13.曲线21xy x =-在点()1,1处的切线方程为 _____ ___ . 14.命题“2,x x R x >∈∃+”的否定是 .15.以)0,1(-为中点的抛物线x y 82-=的弦所在直线方程为: .16.若14122222=--+my m x 表示双曲线方程,则该双曲线的离心率的最大值是 .三、解答题:(共6小题,共70分)解答应写出文字说明,证明过程或演算步骤。

高中数学 第三章 函数概念与性质单元测试卷精品练习(含解析)新人教A版必修第一册-新人教A版高一第一

高中数学 第三章 函数概念与性质单元测试卷精品练习(含解析)新人教A版必修第一册-新人教A版高一第一

第三章单元测试卷一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一个是符合题目要求的)1.函数f(x)=x -1x -2的定义域为( ) A .(1,+∞) B .[1,+∞) C .[1,2) D .[1,2)∪(2,+∞)2.德国数学家狄利克雷在数学上做出了名垂史册的重大贡献,函数D(x)=⎩⎪⎨⎪⎧0,x ∉Q 1,x∈Q是以他名字命名的函数,则D(D(π))=( )A .1B .0C .πD .-13.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=2x 2-2x +1,则f(-1)=( )A .3B .-3C .2D .-24.若函数y =f(x)的定义域是[0,2],则函数g(x)=f ⎝ ⎛⎭⎪⎫-x 2x +1的定义域是( )A .[-4,0]B .[-4,0)C .[-4,-1)∪(-1,0]D .(-4,0)5.若幂函数y =(m 2-3m +3)xm -2的图象不过原点,则m 的取值X 围为( )A .1≤m≤2B .m =1或m =2C .m =2D .m =16.已知函数f(x)是定义在R 上的偶函数,x ≥0时,f (x )=x 2-2x ,则函数f (x )在R 上的解析式是( )A .f (x )=-x (x -2)B .f (x )=x (|x |-2)C .f (x )=|x |(x -2)D .f (x )=|x |(|x |-2)7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤0,1,x >0,若f (x -4)>f (2x -3),则实数x 的取值X 围是( )A .(-1,+∞) B.(-∞,-1)C .(-1,4)D .(-∞,1)8.甲、乙二人从A 地沿同一方向去B 地,途中都使用两种不同的速度v 1与v 2(v 1<v 2),甲前一半的路程使用速度v 1,后一半的路程使用速度v 2;乙前一半的时间使用速度v 1,后一半的时间使用速度v 2,关于甲、乙二人从A 地到达B 地的路程与时间的函数图象及关系,有如图所示的四个不同的图示分析(其中横轴t 表示时间,纵轴s 表示路程,C 是AB 的中点),则其中可能正确的图示分析为( )二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.关于函数f (x )=-x 2+2x +3的结论正确的是( )A .定义域、值域分别是[-1,3],[0,+∞) B.单调增区间是(-∞,1] C .定义域、值域分别是[-1,3],[0,2] D .单调增区间是[-1,1] 10.已知f (2x -1)=4x 2,则下列结论正确的是( ) A .f (3)=9 B .f (-3)=4 C .f (x )=x 2D .f (x )=(x +1)211.关于定义在R 上的函数f (x ),下列命题正确的是( ) A .若f (x )满足f (2 018)>f (2 017),则f (x )在R 上不是减函数 B .若f (x )满足f (-2)=f (2),则函数f (x )不是奇函数C .若f (x )在区间(-∞,0)上是减函数,在区间[0,+∞)也是减函数,则f (x )在R 上是减函数D .若f (x )满足f (-2 018)≠f (2 018),则函数f (x )不是偶函数12.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )满足( )A .f (0)=0B .y =f (x )是奇函数C .f (x )在[m ,n ]上有最大值f (n )D .f (x -1)>0的解集为(-∞,1)三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.14.长为4,宽为3的矩形,当长增加x ,宽减少x2时,面积达到最大,此时x 的值为________.15.定义在R 上的奇函数f (x )满足:当x ≥0,f (x )=x 2-2x +a ,则a =________,f (-3)=________.(本题第一空2分,第二空3分)16.已知f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x >1,3-2a x -1,x ≤1是R 上的单调递增函数,则实数a 的取值X围为________.四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=2x -1x +1,x ∈[3,5].(1)判断f (x )在区间[3,5]上的单调性并证明; (2)求f (x )的最大值和最小值.18.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧1+1x,x >1,x 2+1,-1≤x ≤1,2x +3,x <-1.(1)求f (f (-2))的值; (2)若f (a )=32,求a .19.(本小题满分12分)已知幂函数f (x )=x -2m 2-m +3,其中m ∈{x |-2<x <2,x ∈Z }满足:(1)在区间(0,+∞)上是增函数; (2)对任意的x ∈R ,都有f (-x )+f (x )=0.求同时满足条件(1)(2)的幂函数f (x )的解析式,并求当x ∈[0,3]时,f (x )的值域.20.(本小题满分12分)设f(x)为定义在R上的偶函数,当x≥0时,f(x)=-(x-2)2+2.(1)求函数f(x)在R上的解析式;(2)在直角坐标系中画出函数f(x)的图象;(3)若方程f(x)-k=0有四个解,某某数k的取值X围.21.(本小题满分12分)如图所示,A、B两城相距100 km,某天然气公司计划在两地之间建一天然气站D给A、B两城供气.已知D地距A城x km,为保证城市安全,天然气站距两城市的距离均不得少于10 km.已知建设费用y(万元)与A、B两地的供气距离(km)的平方和成正比,当天然气站D距A城的距离为40 km时,建设费用为1300万元.(供气距离指天然气站到城市的距离)(1)把建设费用y(万元)表示成供气距离x(km)的函数,并求定义域;(2)天然气供气站建在距A城多远,才能使建设费用最小,最小费用是多少?22.(本小题满分12分)已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1).(1)求f(1),f(4),f(8)的值;(2)若有f(x)+f(x-2)≤3成立,求x的取值X围.第三章单元测试卷1.解析:根据题意有⎩⎪⎨⎪⎧x -1≥0,x -2≠0,解得x ≥1且x ≠2.答案:D2.解析:∵函数D (x )=⎩⎪⎨⎪⎧0,x ∉Q 1,x ∈Q,∴D (π)=0,D (D (π))=D (0)=1.故选A.答案:A3.解析:令x =1,得f (1)+g (1)=1,令x =-1,得f (-1)+g (-1)=5,两式相加得:f (1)+f (-1)+g (1)+g (-1)=6.又∵f (x )是偶函数,g (x )是奇函数,∴f (-1)=f (1),g (-1)=-g (1).∴2f (-1)=6, ∴f (-1)=3,故选A. 答案:A4.解析:∵y =f (x )的定义域是[0,2],∴要使g (x )=f ⎝ ⎛⎭⎪⎫-x 2x +1有意义,需⎩⎪⎨⎪⎧0≤-x2≤2,x +1≠0,∴-4≤x ≤0且x ≠-1.∴g (x )=f ⎝ ⎛⎭⎪⎫-x 2x +1的定义域为[-4,-1)∪(-1,0].答案:C5.解析:由题意得⎩⎪⎨⎪⎧m -2≤0,m 2-3m +3=1,解得⎩⎪⎨⎪⎧m ≤2,m =1或m =2,∴m =1或m =2.答案:B6.解析:设x <0,则-x >0,f (x )=f (-x )=x 2-2(-x )=x 2+2x .故f (x )=|x |(|x |-2).答案:D 7.解析:f (x )的图象如图.由图知, 若f (x -4)>f (2x -3), 则⎩⎪⎨⎪⎧x -4<0,x -4<2x -3,解得-1<x <4.故实数x 的取值X 围是(-1,4). 答案:C8.解析:由题意可知,开始时,甲、乙速度均为v 1,所以图象是重合的线段,由此排除C ,D.再根据v 1<v 2可知两人的运动情况均是先慢后快,图象是折线且前“缓”后“陡”,故图示A 分析正确.答案:A9.解析:f (x )=-x 2+2x +3则定义域满足:-x 2+2x +3≥0解得:-1≤x ≤3 即定义域为[-1,3]考虑函数y =-x 2+2x +3=-(x -1)2+4在-1≤x ≤3上有最大值4,最小值0. 在[-1,1]上单调递增,在(1,3]上单调递减.故f (x )=-x 2+2x +3的定义域为[-1,3],值域为[0,2],在[-1,1]上单调递增,在(1,3]上单调递减.故选CD. 答案:CD10.解析:f (2x -1)=(2x -1)2+2(2x -1)+1,故f (x )=x 2+2x +1,故选项C 错误,选项D 正确;f (3)=16,f (-3)=4,故选项A 错误,选项B 正确.故选BD.答案:BD11.解析:由题意,对于A 中,由2 018>2 017,而f (2 018)>f (2 017),由减函数定义可知,f (x )在R 上一定不是减函数,所以A 正确;对于B 中,若f (x )=0,定义域关于原点对称,则f (-2)=f (2)=-f (2),则函数f (x )可以是奇函数,所以B 错误;对于C 中,由分段函数的单调性的判定方法,可得选项C 不正确;对于D 中,若f (x )是偶函数,必有f (-2 018)=f ( 2018),所以D 正确.故选AD.答案:AD12.解析:令x =y =0,则f (0)=f (0)+f (0),所以f (0)=0,故A 正确;再令y =-x ,代入原式得f (0)=f (x )+f (-x )=0,所以f (-x )=-f (x ),故该函数为奇函数,故B 正确;由f (x +y )=f (x )+f (y )得f (x +y )-f (x )=f (y ),令x 1<x 2,再令x 1=x +y ,x 2=x ,则y =x 1-x 2<0,结合x <0时,f (x )>0,所以f (x 1)-f (x 2)=f (x 1-x 2)>0,所以f (x 1)>f (x 2),所以原函数在定义域内是减函数,所以函数f (x )在[m ,n ]上递减,故f (n )是最小值,f (m )是最大值,故C 错误;又f (x -1)>0,即f (x -1)>f (0),结合原函数在定义域内是减函数可得,x -1<0,解得x <1,故D 正确.故选ABD.答案:ABD13.解析:若a >0,则2a +2=0,得a =-1,与a >0矛盾,舍去;若a ≤0,则a +1+2=0,得a =-3,所以实数a 的值等于-3.答案:-314.解析:由题意,S =(4+x )⎝ ⎛⎭⎪⎫3-x 2,即S =-12x 2+x +12,∴当x =1时,S 最大. 答案:115.解析:由定义在R 上的奇函数f (x )满足:当x ≥0,f (x )=x 2-2x +a , 可得f (0)=a =0,当x ≥0,f (x )=x 2-2x , 则f (-3)=-f (3)=-(32-2×3)=-3. 答案:0 -316.解析:f (x )=⎩⎪⎨⎪⎧x -12+a -1,x >1,3-2ax -1,x ≤1显然函数f (x )在(1,+∞)上单调递增.故由已知可得⎩⎪⎨⎪⎧3-2a >0,a -1≥3-2a ×1-1,解得1≤a <32.答案:⎣⎢⎡⎭⎪⎫1,32 17.解析:(1)函数f (x )在[3,5]上为增函数,证明如下: 设x 1,x 2是[3,5]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=2x 1-1x 1+1-2x 2-1x 2+1=3x 1-x 2x 1+1x 2+1.∵3≤x 1≤x 2≤5,∴x 1-x 2<0,x 1+1>0,x 2+1>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )在[3,5]上为增函数. (2)由(1)知函数f (x )在[3,5]单调递增,所以 函数f (x )的最小值为f (x )min =f (3)=2×3-13+1=54,函数f (x )的最大值为f (x )max =f (5)=2×5-15+1=32.18.解析:(1)因为-2<-1,所以f (-2)=2×(-2)+3=-1, 所以f (f (-2))=f (-1)=2.(2)当a >1时,f (a )=1+1a =32,所以a =2>1;当-1≤a ≤1时,f (a )=a 2+1=32,所以a =±22∈[-1,1]; 当a <-1时,f (a )=2a +3=32,所以a =-34>-1(舍去).综上,a =2或a =±22. 19.解析:因为m ∈{x |-2<x <2,x ∈Z }, 所以m =-1,0,1.因为对任意的x ∈R ,都有f (-x )+f (x )=0, 即f (-x )=-f (x ),所以f (x )是奇函数.当m =-1时,f (x )=x 2只满足条件(1)而不满足条件(2); 当m =1时,f (x )=x 0,条件(1)(2)都不满足; 当m =0时,f (x )=x 3,条件(1)(2)都满足. 因此m =0,且f (x )=x 3在区间[0,3]上是增函数, 所以0≤f (x )≤27,故f (x )的值域为[0,27]. 20.解析:(1)若x <0,则-x >0,f (x )=f (-x ) =-(-x -2)2+2=-(x +2)2+2,则f (x )=⎩⎪⎨⎪⎧-x -22+2,x ≥0,-x +22+2,x <0.(2)图象如图所示,(3)由于方程f (x )-k =0的解就是函数y =f (x )的图象与直线y =k 的交点的横坐标,观察函数y =f (x )图象与直线y =k 的交点情况可知,当-2<k <2时,函数y =f (x )图象与直线y =k 有四个交点,即方程f (x )-k =0有四个解.21.解析:(1)由题意知D 地距B 城(100-x )km ,则⎩⎪⎨⎪⎧100-x ≥10,x ≥10,∴10≤x ≤90.设比例系数为k ,则y =k [x 2+(100-x )2](10≤x ≤90). 又x =40时,y =1 300,所以1 300=k (402+602),即k =14,所以y =14[x 2+(100-x )2]=12(x 2-100x +5 000)(10≤x ≤90).(2)由于y =12(x 2-100x +5 000)=12(x -50)2+1 250,所以当x =50时,y 有最小值为1 250万元.所以当供气站建在距A 城50 km 时,能使建设费用最小,最小费用是1 250万元. 22.解析:(1)f (1)=f (1)+f (1),所以f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=1+2=3.(2)因为f (x )+f (x -2)≤3, 所以f [x (x -2)]≤f (8),又因为对于函数f (x ),当x 2>x 1>0时,f (x 2)>f (x 1),所以f (x )在(0,+∞)上为增函数,所以⎩⎪⎨⎪⎧x >0,x -2>0,x x -2≤8,解得2<x ≤4.故x 的取值X 围为(2,4].。

人教版数学高一第三章直线与方程单元测试精选(含答案)3

人教版数学高一第三章直线与方程单元测试精选(含答案)3

d
Ax0 By0 C A2 B2
.已知点 P1, P2
到直线 l
的有向距离分别是 d1, d2 ,给出以下命题:
试卷第 6页,总 10页
①若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ②若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ③若 d1 d2 0 ,则直线 P1P2 与直线 l 垂直;④若 d1d2 0 ,则直线 P1P2 与直线 l 相交;
25.直线 l1:x+my+6=0 与 l2:(m-2)x+3y+2m=0,若 l1//l2 则 m =__________;
【来源】[中学联盟]山东省栖霞市第一中学 2017-2018 学年高一上学期期末测试数学试 题
【答案】 1 1
26.直线 y= x 关于直线 x=1 对称的直线方程是________;
则 m 的倾斜角可以是:①15°;② 30°;③ 45°;④ 60°;⑤ 75°. 其中正确答案的序号是______.(写出所有正确答案的序号) 【来源】2011 届陕西省师大附中、西工大附中高三第七次联考文数
【答案】①或⑤
30.定义点 P(x0 , y0 ) 到直线 l : Ax By C 0( A2 B 2 0) 的有向距离为
评卷人 得分
二、填空题
22.在四边形 ABCD 中,AB = DC = (1,1),且 BA + BC =
|BA| |BC|
|B3BDD| ,则四边形 ABCD 的面积


【来源】2015 高考数学(理)一轮配套特训:4-3 平面向量的数量积及应用(带解析)
【答案】 3
23.直线 ax+2y-4=0 与直线 x+y-2=0 互相垂直,那么 a=______________ ;

人教新课标数学三年级上学期第1单元测试卷(含答案)

人教新课标数学三年级上学期第1单元测试卷(含答案)

人教新课标数学三年级上学期第一单元测试卷(含答案)一、填一填。

1.有些钟面上有3根针,它们分别是()、()、(),其中()走得最快,它走一圈是(),()走得最慢,它走一大格是()。

2.我们学过的时间单位有()、()、()。

计量很短的时间时,常用比分更小的单位()。

3.秒针走一小格是()秒,走一圈是()秒,也就是()分。

分针走一小格是()分,走一圈是()分,也就是()时。

4.秒针从一个数走到下一个数,经过的时间是()。

5.在括号里填上合适的时间单位。

(1)一节课时长40()。

(2)爸爸每天工作8()。

(3)李静跑50米的成绩是13()。

(4)做一次深呼吸要4()。

6.体育老师对第一小组同学进行50米跑测试,成绩如下:小红9秒,小丽11秒,小明8秒,小军10秒。

()跑得最快,()跑得最慢。

二、辨一辨。

(正确的画“√”,错误的画“✕”)1.6分=600秒()2.分针走一大格,时针就走一小格。

()3.秒针走一圈,分针走一小格。

()4.小红每天早晨7:15从家出发,7:35到达学校,她在路上用了20分钟。

()5.小军早上6:30起床,小强早上6:40起床,小强比小军起得早。

()三、单位换算。

1时=()分5分=()秒4时=()分3分=()秒20分+50分=()分24秒+48秒=()秒1时-40分=()分四、在○里填上“>”“<”或“=”。

6分○60秒 160分○3时4分○200秒3时○300分250分○5时60秒○60分10分○600秒120分○2时五、我会写。

(写出每个钟面所表示的时刻,并算出经过时间)1.2.3.六、解决问题。

1.火车9:20开,李华从家到火车站要35分,李华至少要在几时几分从家出发才能赶上火车?2.一个钟表显示的时间是11:45,它比准确时间慢了5分,你知道准确时间是几时几分吗?3.小军、小红和小伟三个好朋友住在同一个小区,他们一起去公园游玩。

(1)汽车还有5分钟出发,汽车什么时候出发?(2)他们什么时候到达公园?路上用了多长时间?4.一根长24米的木棒,每4米锯一段,锯一次用4分钟。

新课标2011-2012学年度七年级语文上册第二单元测试题1

新课标2011-2012学年度七年级语文上册第二单元测试题1

第二单元A卷单元学习目标:结合课文回忆童年的美好生活,熟悉热爱初中的新生活。

提高阅读兴趣。

第一部分基础知识及运用1、给下列加点注音(4分)菜畦.()骨髓.()拗.过去()笑靥.()2、根据拼音写出汉字(4分)玉zān()花 mò()池戏xuè()心旷神yí()3、解释下列词语(3分)大言不惭:蹒跚:明察秋毫:4、鲁迅原名他是我国伟大的、、。

(4分)5、文学作品除了散文以外,其他的三种文体是。

(3分)6、散文的最大特点是:。

(2分)7、《从百草园到三味书屋》是鲁迅先生的一篇(体裁)选自集。

(3分)第二部分阅读训练(一)阅读下文回答问题不必说的菜畦,的石井栏,的皂荚树,的桑椹;也不必说鸣蝉在树叶里,肥胖的黄蜂在菜花上,轻捷的叫天子(云雀)忽然从草间直云霄里去了。

单是周围的短短的泥墙根一带,就有无限趣味。

油蛉在这里低唱,蟋蟀们在这里弹琴。

翻开断砖来,有时会遇见蜈蚣;还有斑蝥,倘若用手指按住它的脊梁,便会拍的一声,从后窍喷出一阵烟雾。

何首乌藤和木莲藤着,木莲有莲房一般的果实,何首乌有的根。

8、在文中横线处填上准确的词。

(3分)嫩绿翠绿碧绿光亮光滑光洁高耸高挺高大粉红紫红深红长吟呻吟沉吟伏趴卧升向飞向窜向缠络纠缠缠扭肥胖拥肿发肿9、这段文字,是_______描写,读后给人鲜明的印象,主要原因是(3分)_____________________________________________________________。

10、“不必说……也不必说……”这样安排的主要目的是(2分)________________________________________________________。

11、“油蛉在这里低唱,蟋蟀们在这里弹琴。

”是_______的修辞方法。

这样写,洋溢着对虫儿们的_______,是童年生活___________________________________________。

第一章 集合与常用逻辑用语(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

第一章 集合与常用逻辑用语(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

第一章集合与常用逻辑用语(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列表述中正确的是( )A.{0}=∅B.{(1,2)}={1,2}C.{∅}=∅D.0∈N2.已知集合A={1,2},B={1},则下列关系正确的是( )A.B AB.B∈AC.B⊆AD.A⊆B3.已知集合A={a-2,2a2+5a,12},且-3∈A,则a=( )A.-1B.-23C.-32D.-134.集合A={1,2},B={2,4,6},则A∪B=( )A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}5.“x为整数”是“2x+1为整数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设集合M={菱形},N={平行四边形},P={四边形},Q={正方形},则这些集合之间的关系为( )A.P⊆N⊆M⊆QB.Q⊆M⊆N⊆PC.P⊆M⊆N⊆QD.Q⊆N⊆M⊆P7.已知a,b为实数,M:a<b ,N:a<b,则M是N的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.若命题“p:∀x∈R,x2-2x+m≠0”是真命题,则实数m的取值范围是( )A.{m|m≥1}B.{m|m>1}C.{m|m<1}D.{m|m≤1}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.下列关系正确的有( )A.12∈R B.2∉R C.|-3|∈N D.|-3|∈Q10.方程组Error!的解集可表示为( )A.Error!B.Error!C.(1,2)D.{(2,1)}11.已知A ={x|x +1>0},B ={-2,-1,0,1},则(A)∩B 中的元素有( )A.-2B.-1C.0D.1三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.若a ,b ∈R ,且a ≠0,b ≠0,则|a|a +|b|b的可能取值所组成的集合中元素的个数为________13.已知命题p :x 0∈R ,x 20-3x 0+3≤0,则¬p 为________14.已知集合A ={-2,1},B ={x|ax =2},若A ∪B =A ,则实数a 值集合为________四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知全集U =R ,集合A ={x|-1≤x ≤2},B ={x|-3≤x ≤1}.(1)求A ;(2)求B ∪(A).16.(14分)命题p 是“对任意实数x ,有x -a >0或x -b ≤0”,其中a ,b 是常数.(1)写出命题p 的否定;(2)当a ,b 满足什么条件时,命题p 的否定为真?R ð R ðR ð17.(15分)已知集合A ={x|2≤x <7},B ={x|5<2x -1<17}.(1)求A ∩B ,(B)∪A ;(2)已知C ={x|m +2<x ≤2m},若C ∩B =C ,求实数m 的取值范围.18.(16分)已知P ={x|1≤x ≤2},S ={x|1-m ≤x ≤1+m}.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件?若存在,求出m 的取值范围;若不存在,请说明理由.(2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件?若存在,求出m 的取值范围;若不存在,请说明理由.19.(18分)设集合A ={x|x 2-3x +2=0},B ={x|x 2+2(a -1)x +(a 2-5)=0}.(1)若A∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.R ð参考答案及解析:一、选择题1.D 解析:由集合的性质可知,∅表示没有任何元素的集合,而{0}表示有一个元素0,故A 错误;{(1,2)}表示有一个元素,是点的集合,而{1,2}表示有2个元素的集合,是数集,故B 错误;∅表示没有任何元素的集合,而{∅}表示有一个元素∅,故C 错误.故选D .2.C 解析:因两个集合之间不能用“∈或”,首先排除选项A ,B .因为集合A ={1,2},B ={1},所以集合B 中的元素都是集合A 中的元素,由子集的定义知B ⊆A .故选C .3.C 解析:因为-3∈A ,所以-3=a -2或-3=2a 2+5a ,所以a =-1或a =-32.所以当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去;当a =-32时,a -2=-72,2a 2+5a =-3,满足,所以a =-32.故选C .4.D 解析:∵A ={1,2},B ={2,4,6},∴A ∪B ={1,2,4,6}.故选D .5.A 解析:x 为整数时,2x +1也是整数,充分性成立;2x +1为整数时,x 不一定是整数,如2x +1=2时,x =12,所以必要性不成立,是充分不必要条件.故选A .6.B 解析:正方形都是菱形,菱形都是平行四边形,平行四边形都是四边形.故选B .7.A 解析:因为a ,b 为实数,所以由a <b ,能够得到a <b ,反之,由a <b ,不一定有a <b ,如-3<-2,而-3无意义,所以M 是N 的充分不必要条件.故选A .8.B 解析:命题p :∀x ∈R ,x 2-2x +m ≠0是真命题,则Δ<0,即m >1.二、选择题9.AC 解析:AC 正确,BD 错误.10.ABD 解析:方程组Error!只有一个解,解为Error!所以方程组Error!的解集中只有一个元素,且此元素是有序数对,所以A ,B ,D 都符合题意.11.AB 解析:∵A ={x|x +1>0}={x|x >-1},∴A ={x|x≤-1}.又∵B ={-2,-1,0,1},∴(A)∩B ={-2,-1}.∴(A)∩B 中的元素有-2,-1.三、填空题12.答案:3解析:当a ,b 同正时,|a|a +|b|b =a a +b b=1+1=2.当a ,b 同负时,|a|a +|b|b =-a a +-b b =-1-1=-2.当a ,b 异号时,|a|a +|b|b=0. R ðR ðR ð∴|a|a +|b|b的可能取值所组成的集合中元素共有3个.13.答案:x ∈R ,x 2-3x +3>0 解析:命题p :x 0∈R ,x 20-3x 0+3≤0,则¬p :x ∈R ,x 2-3x +3>0.14.答案:{0,-1,2} 解析:因为A ∪B =A ,所以B ⊆A ,当B =∅时,a =0;当B ≠∅时,B ={2a },则2a =-2或2a=1,解得a =-1或a =2,所以实数a 值集合为{0,-1,2}.四、解答题15.解:(1)∵A ={x|-1≤x ≤2},∴A ={x|x <-1或x >2}.(2)B ∪(A)={x|-3≤x ≤1}∪{x|x <-1或x >2}={x|x ≤1或x >2}.16.解:(1)命题p 的否定:存在实数x ,有x -a ≤0且x -b >0.(2)要使命题p 的否定为真,则需要使不等式组Error!的解集不为空集,通过画数轴(画数轴略)可看出,a ,b 应满足的条件是b <a .17.解:(1)因为B ={x|5<2x -1<17}={x|3<x <9},所以A ∩B ={x|3<x <7},B ={x|x ≤3或x ≥9},所以(B)∪A ={x|x <7或x ≥9}.(2)因为C ∩B =C ,所以C ⊆B .当C =∅时,m +2≥2m ,解得m ≤2;当C ≠∅时,{m +2<2m ,m +2≥3,2m <9,解得2<m <92.综上可得,实数m 的取值范围为Error!.18.解:(1)要使x ∈P 是x ∈S 的充要条件,需使P =S ,即Error!此方程组无解,故不存在实数m ,使x ∈P 是x ∈S 的充要条件.(2)要使x ∈P 是x ∈S 的必要条件,需使S ⊆P .当S =∅时,1-m >1+m ,解得m <0,满足题意;当S ≠∅时,1-m ≤1+m ,解得m ≥0,要使S ⊆P ,则有Error!解得m ≤0,所以m =0.综上可得,当实数m ≤0时,x ∈P 是x ∈S 的必要条件.∀∃∀R ðR ðR ðR ð19.解:(1)由题可知A ={x|x 2-3x +2=0}={1,2}.因为A∩B ={2},所以2∈B ,将2代入集合B 中,得4+4(a -1)+(a 2-5)=0,解得a =-5或a =1.当a =-5时,集合B ={2,10}符合题意;当a =1时,集合B ={2,-2},符合题意.综上所述,a =-5或a =1.(2)若A ∪B =A ,则B ⊆A .因为A ={1,2},所以B =∅或B ={1}或{2}或{1,2}.若B =∅,则Δ=4(a -1)2-4(a 2-5)=24-8a <0,解得a >3;若B ={1},则{Δ=24-8a =0,x =-2(a -1)2=1-a =1,不存在满足式子同时成立的a 值;若B ={2},则{Δ=24-8a =0,x =-2(a -1)2=1-a =2,不存在满足式子同时成立的a 值;若B ={1,2},则{Δ=24-8a >0,1+2=-2(a -1),1×2=a 2-5,不存在满足式子同时成立的a 值.综上所述,a >3.。

2020-2021学年人教版数学六年级上册第二单元《位置与方向(二)》单元测试卷

2020-2021学年人教版数学六年级上册第二单元《位置与方向(二)》单元测试卷

2020-2021学年人教版数学六年级上册第二单元《位置与方向(二)》单元测试卷2020-2021学年人教版数学六年级上册第二单元《位置与方向(二)》单元测试卷学校:___________姓名:___________班级:___________考号:___________1.观察下图的位置关系,其中说法错误的是()。

A.学校在公园北偏西40°方向400m处B.公园在少年宫东偏北70°方向300m处C.公园在学校东偏南50°方向400m处D.少年宫在公园北偏东20°方向300m处2.如图,A、B、C三个小岛的位置正好构成了一个直角三角形.那么A岛的位置在B岛的()A.东偏北30°的方向,距离4千米B.北偏东60°的方向,距离4千米C.西偏南30°的方向,距离4千米D.西偏南60°的方向,距离4千米3.甲从A点出发向北偏东60°方向走了30米到达B点,乙从A点出发向西偏南30°的方向走了40米到达C点,那么,BC之间的距离是()。

A.35 米B.30米C.10米D.70米4.李明的座位用数对表示是(4,5),张玲的座位在李明南偏东45°方向上,她的座位用数对表示可能是()。

A.(3,4)B.(5,4)C.(5,6)D.(3,6)5.小丽先向东偏北45°的方向走了50m,又向南偏东45°的方向走了50m,她现在的位置在起点的()方向.A.正东B.正北C.东北D.东南6.如下图:小明和几个小朋友星期天从小明家出发骑车去博物馆参观,下面是他们所走的路线图.描述他们所走的正确的路线是().A.小明家——向西偏北30°方向走600 米到火车站——从火车站向西偏南50°方向走200米.B.小明家——向北偏西30°方向走600米到火车站——从火车站向西偏南50°方向走200米.C.小明家——向西偏北30°方向走600米到火车站——从火车站向南偏西50°方向走200米.D.小明家——向北偏西30°方向走600米到火车站——从火车站向南偏西50°方向走200米.7.如果电影院在学校的东偏南30°方向上,那么学校在电影院南偏东30°方向上。

人教版三年级数学上册第3单元测试卷

人教版三年级数学上册第3单元测试卷

人教新课标数学三年级上学期第3单元测试姓名:班级:学号:一、填空。

(25分)1、常见的长度单位有()()()()()。

2、常见的重质量单位有()()()。

3、1只大象重约4()。

4、一台拖拉机可以装货物1()。

5、直尺上从“0”到“1”的这一段长度是()厘米。

把这一段长度平均分成10小格,每小格的长度是()毫米。

6、一分硬币的厚度,大约是()毫米。

7、一根绳子长80分米,也就是()米。

8、9000千克=()吨 70毫米=()厘米5吨=()千克 3厘米—1厘米3毫米=()毫米30毫米=()厘米 9500千克=()吨()千克7厘米—18毫米=()毫米 7010千克=()吨()千克9、一袋大米重200千克,()袋大米重1吨。

二、判断题。

(10分)①飞机每小时飞行800千米()②8千克=8000吨()③一头猪重135千克。

()④一袋大米重50千克,20袋大米重1吨。

()⑤40毫米与4分米同样长。

()三、选择。

(20分)1、李平的身高146()A、米B、分米C、厘米2、回形针的长度是28()。

A、厘米B、毫米C、分米3、一本书大约重150()。

A、克B、千克C、吨4、一袋大米重10()。

A、克B、千克C、吨5、比较下面的重量,最重的是()。

A、5吨500千克B、5900千克C、5550千克6、计量重型物品的重量,通常用()作单位。

A、吨B、千克C、克7、1吨棉花比1吨石头()。

A、轻B、重C、一样重8、一枝铅笔长约2()。

A、米B、分米C、毫米9、教室地面长9()8()。

A、米B、分米C、毫米四、在括号里填上适当的单位。

(15分)一个鸡蛋重50()汽车每小时行80()一辆货车载重4()一头牛重约200()跑步每秒钟约8() 1袋水泥重约50()小明的身高是146()小宇的体重是32()数学课本长约2()标准运动场跑道一圈是400()五、想一想,画一画。

(5分)1、画一条长3厘米长的线段。

2、画一条比5厘米短3毫米的线段。

第一章 直线与圆 单元测试 2024-2025学年高二上学期数学北师大版(2019)选择性必修第一册

第一章 直线与圆 单元测试 2024-2025学年高二上学期数学北师大版(2019)选择性必修第一册

第一章 直线与圆 单元测试一、单选题1.若直线l 斜率为k ,向量在直线l 上,且向量在方向上的投影的模是其在方向上投影的模的2倍,则该直线的斜率k 的值为( )A .2B .C .D .2.已知圆:与圆:关于直线对称,则的方程为( )A .B .C .D .3.已知直线与圆:()交于A ,两点,且线段关于圆心对称,则( )A .1B .2C .4D .54.已知点,,,点是直线上的动点,若恒成立,则最小正整数( )A .1B .2C .3D .45.已知定点和直线,则点到直线的距离的最大值为( )A .BC .D .6.若点P 在直线上,点Q 在圆上,则线段PQ 长度的最小值为( )A .B .C .D .7.莱莫恩定理指出:过的三个顶点作它的外接圆的切线,分别和所在直线交于点,则三点在同一条直线上,这条直线被称为三角形的线.在平面直角坐标系中,若三角形的三个顶点坐标分别为,则该三角形的线的方程为( )A .B .C .D .8.直线l 过点,则直线l 的方程为( )A .B .C .D .二、多选题9.已知直线与圆交于,两点,点为线段的中点,且点的坐标为.当)A .B .的最小值为C .存在点,使D.存在,使10.下列说法正确的是( )A .已知直线过点,且在轴上截距等于轴上截距2倍,则直线的方程为B .直线没有倾斜角C .,,“直线与直线垂直”是“”的必要不充分条件D .已知直线的斜率满足,则它的倾斜角的取值范围是或11.已知直线l ∶x +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值可以是( )A .0B .1C .-1D .-2.三、填空题12.已知斜率均为负的直线与直线平行,则两条直线之间的距离为 .13.已知圆和圆,M 、N 分别是圆C 、D 上的动点,P 为x 轴上的动点,则的最小值是 .14.过点,且与直线垂直的直线方程是.四、解答题15.圆内有一点,AB 为过点P 且倾斜角为的弦.(1)当时,求AB 的长;(2)当弦AB 被点P 平分时,写出直线AB 的方程.16.圆过、两点,且圆心在直线上.(1)求圆的方程;(2)若直线在轴上的截距是轴上的截距的2倍,且被圆截得的弦长为6,求直线的方程.17.已知动点与点的距离是它与原点的距离的2倍.m m ()1,0i =()0,1j = 122±12±M ()2211x y ++=N ()()22231x y -+-=l l 210x y --=210x y -+=230x y +-=230x y +-=20x y r -+=C ()()22213x y r ++-=0r >B AB r =()0,1A ()10B ,(),0C t M AC 2MA MB ≤t =()2,0P -()():34330l m x y m m ++-+=∈R P l d 34120x y +-=221x y +=12575175225()Lemoine ABC V ,,A B C BC,CA,AB ,,P Q R ,,P Q R Lemoine xOy ()()()0,1,2,0,0,4A B C -Lemoine 2320x y --=2380x y +-=32220x y +-=23320x y --=(1,1),(2,4)A B -2y x =-2y x =--2y x =-+2y x =+:0(R)l mx y m m --=∈222:()0O x y r r +=>A B Q AB T (3,0)1m =2r =AB A 45ATO ∠=︒m 54QO QT ⋅=-l ()2,1P x y l 240x y +-=10x +=R a ∈R b ∈210ax y +-=()1210a x ay +-+=3a =l k 11k -≤<α045α≤< 135180α≤< :0l bx ay +=:20m ax by a ++=()22:21C x y +-=22:610300D x y x y +--+=PM PN +()1,5-126x y+=228x y +=()1,2P -α3π4α=C ()0,3()4,5C 80-+=x y C l x y C l (,)M x y (3,0)P O(1)求动点的轨迹的方程;(2)求的最小值;(3)经过原点的两条互相垂直的直线分别与轨迹相交于,两点和,两点,求四边形ACBD 的面积的最大值.M E x y O E A B C D S参考答案1.D【分析】设出,求出向量在和方向上的投影的模,从而得到,求出直线斜率.【详解】设,则向量在方向上的投影的模为,向量在方向上的投影的模为,则,故该直线的斜率.故选:D 2.C【分析】根据两点的坐标,求其中点坐标以及斜率,根据对称轴与两对称点连接线段的关系,可得答案.【详解】由题意得,,则的中点的坐标为,直线的斜率.由圆与圆关于对称,得的斜率.因为的中点在上,所以,即.故选:C.3.D【分析】先求得圆心的坐标,进而列出关于的方程,解之即可求得的值.【详解】圆:的圆心,由圆心在直线上,可得,解之得.故选:D 4.D【分析】先设出,得到的方程为:,由得到圆的方程,结合点到直线的距离公式,求出的最小值即可.【详解】设,由在上,得:,即,由得:,化简得,依题意,线段与圆,至多有一个公共点,故(),m a b = m()1,0i =()0,1j = 2a b=(),m a b =m()1,0i =m ia i⋅=m ()0,1j =m jb j⋅= 2ab =12b k a ==±()0,1M -()2,3N MN ()1,1MN 31220MNk +==-M N l l 112l MN k k -==-MN l ()1112y x -=--230x y +-=C r r C ()()22213x y r ++-=(1,3)C -(1,3)C -20x y r -+=230r --+==5r (,)M x y AM 0x ty t +-=2MA MB ≤t (,)M x y M AC 1xy t+=0x ty t +-=2MA MB ≤()2222(1)41x y x y ⎡⎤+-≤-+⎣⎦22418((339x y -++≥AM 22418()()339x y -++=41,33⎛⎫- ⎪⎝⎭解得:,是使恒成立的最小正整数,由于,故选:D5.B【分析】先求得直线所过定点,然后根据两点间的距离公式求得正确答案.【详解】直线,即,由解得,所以直线过定点,所以的最大值为故选:B 6.B【分析】求出圆的圆心和半径,判断直线与圆的位置关系,则线段PQ 长度的最小值为圆心到直线的距离减去半径即可.【详解】圆的圆心为,半径,因为圆心到直线的距离为,所以线段PQ长度的最小值为.故选:B 7.B【分析】待定系数法求出外接圆方程,从而得到外接圆在处的切线方程,进而求出的坐标,得到答案.【详解】的外接圆设为,,解得,外接圆方程为,即,易知外接圆在处切线方程为,又,令得,,,在处切线方程为,又,令得,,则三角形的线的方程为,即故选:B.8.D2t ≥2t ≤t 2MA MB ≤324<<4t ∴=l ()():34330l m x y m m ++-+=∈R ()33430m x x y +++-=303430x x y +=⎧⎨+-=⎩33x y =-⎧⎨=⎩l ()3,3Q -d =221x y +=(0,0)O 1r =34120x y +-=1215d ==>127155-=,A C ,P R ABC V 220x y Dx Ey F ++++=104201640E F D F E F ++=⎧⎪∴++=⎨⎪-+=⎩034D E F =⎧⎪=⎨⎪=-⎩∴22340x y y ++-=2232524x y ⎛⎫++=⎪⎝⎭A 1y =:124x y BC +=-1y =52x =,152P ⎛⎫∴ ⎪⎝⎭()0,4C -4y =-:12xAB y +=4y =-10x =()10,4R ∴-Lemoine 410514102y x +-=+-2380x y +-=【分析】根据直线的两点式方程运算求解.【详解】因为,则线l 的方程为,整理得,所以直线l 的方程为.故选:D.9.AD【分析】利用圆的弦长公式判断A 、B ;假设存在点,求出直线方程,判断与圆的位置关系,判断C ,求出点的轨迹方程,可判断D.【详解】当时,直线,圆心到直线的距离,又,解得,A 正确;由上可知圆,圆心到直线的距离,则,B 错误;若,则直线斜率为,从而直线:,此时圆心到直线的距离,则直线与圆相离,即不存在点,使,C 错误;设点,因为直线过定点,则,即,化简为,为点的轨迹方程,若,则,即,得,故存在存在,使,D 正确.故选:AD.10.CD【分析】根据截距的概念可判定A ,根据倾斜角的定义可判定B ,利用两直线垂直的位置关系可判定C ,根据倾斜角与斜率的关系可判定D.【详解】对于A ,当直线在两个坐标轴的截距都是0时,显然直线方程为,故A 错误;B ,直线倾斜角是,故B错误;对于C ,若直线与直线垂直,则有或,所以不满足充分性,反之时,此时两直线垂直,满足必要性,故C 正确;对于D ,由直线的斜率与倾斜角的关系知:12,14-≠≠()()114121x y ---=---2y x =+2y x =+A AT Q 1m =:10l x y --=O d AB ===2r =22:4O x y +=O d ==AB ===>45ATO ∠=︒AT 1-AT 30x y +-=O 2d r >=AT O A 45ATO ∠=︒(),Q x y ():1(R)l y m x m =-∈()1,0C 222OQ QC OC +=()2222211x y x y ++-+=221124x y ⎛⎫-+= ⎪⎝⎭Q 54QO QT ⋅=- ()2534x x y -⋅-+=-()2534x x x x -⋅-+-=-[]50,18x =∈m 54QO QT ⋅=- 12y x =10x +=90 210ax y +-=()1210a x ay +-+=()1400a a a a +-=⇒=3a =3a =k满足的直线,则它的倾斜角的取值范围是或,故D 正确.故选:CD 11.ABCD【分析】求出两坐标轴上的截距,进而判断的可能取值.【详解】令y =0,得到直线在x 轴上的截距是,令x =0,得到直线在y 轴上的截距为2+a ,∴不论a 为何值,直线l 在x 轴和y 轴上的截距总相等.故选:ABCD.12.33/133【分析】利用斜率为负的两直线平行,找到,表示出直线,利用两平行线间的距离公式计算即可.【详解】因为斜率均为负的直线与直线平行,所以同号,且,解得:,所以直线与直线,所以这两条直线之间的距离为.13【分析】先得到,当且仅当三点共线,且三点共线时,等号成立,设C 关于x 轴的对称点,求出的最小值,进而得到的最小值.【详解】的圆心为,半径为1,,圆心为,半径为2,结合两圆位置可得,,当且仅当三点共线,且三点共线时,等号成立,设C 关于x 轴的对称点,连接,与轴交于点,此点即为所求,此时,即为的最小值,故的最小值为11k -≤<α045α≤< 135180α≤< a 2a +a =:0l bx ay +=:20m ax by a ++=,a b 02b a a b a=≠a =:0l x +=:10m x +=d ==3-3PM PN PC PD +≥+-,,P M C ,,P N D ()0,2C '-PC PD +PM PN +()22:21C x y +-=()0,2C ()()2222:610300354D x y x y x y +--+=⇒-+-=()3,5D 3PM PN PC CM PD DN PC PD +≥-+-=+-,,P M C ,,P N D ()0,2C '-CD'x P C D =='PC PD +PM PN +3314.【分析】根据垂直求出斜率,再由点斜式方程可得答案.【详解】直线的斜截式为,故斜率是,所以所求直线的斜率是,所以所求直线方程是,即.故答案为:.15.(2)【分析】(1)根据倾斜角以及求解出直线的方程,再根据半径、圆心到直线的距离、半弦长构成的直角三角形求解出;(2)根据条件判断出,结合和点坐标可求直线的方程.【详解】(1)圆的圆心,半径因为,所以直线的斜率,所以,即,所以圆心到的距离所以(2)因为弦被平分,所以,又因为,所以,所以,即.16.(1),,【分析】(1)先求得两点,的中垂线方程,再与联立,求得圆心即可;(2)先由直线且被圆截得的弦长为6,求得圆到直线的距离,再分截距为零和不为零求解.【详解】(1)解:两点,的中垂线方程为:,联立,解得圆心,则,故圆的方程为:;(2)由直线且被圆截得的弦长为6,故圆心到直线的距离为,3160x y -+=126x y+=36y x =-+3-13()1513y x -=+3160x y -+=3160x y -+=250x y -+=()1,2P -AB AB OP AB ⊥AB k P AB 228x y +=()0,0O r =3π4α=AB 3πtan14AB k ==-()()():211AB y x -=-⨯--:10AB x y +-=O AB d AB ===AB P OP AB ⊥20210OP k -==---12AB k =()()1:212AB y x -=--:250AB x y -+=()22825x y +-=0y ±=2160x y +--=2160x y +-+=()0,3()4,580-+=x y l C C l ()0,3()4,5280x y +-=80-+=x y ()0,8C =5r C ()22825x y +-=l C C l 4d =A .若直线过原点,可知直线的斜率存在,设直线为:,此时直线的方A .若直线不过原点,设直线为:,此时直线的方程为:,综上:直线,,.17.(1)(2)(3)7【分析】(1),根据两点间的距离公式化简可得方程;(2),法一:换元后与圆的方程联立,利用判别式法求解最小值;法二:几何法,利用直线与圆的位置关系列不等式求出最小值;法三:三角换元,结合辅助角公式利用余弦函数的性质求解最小值;(3),根据直线是否存在斜率进行分类讨论,当直线存在斜率时,利用点斜式写出两直线的方程,分别求出弦长,将四边形的面积用弦长表示,即可求出最大值.【详解】(1)由已知得化简得,即,所以动点的轨迹的方程为:;(2)法一:设,得,代入轨迹的方程消去并整理得,∴,即,解得故的最小值为;法二:设,即,由(1)的结论可知,轨迹是以点为圆心,半径长为2的圆,由题意可知,直线和圆有公共点,所以圆心到直线的距离不大于半径,即,解得故的最小值为;法三:由(1)可设,,则,因为,所以当时,y kx =4d k ==⇒=l 0y ±=12202x yx y a a a+=⇒+-=48d a ⇒=±l 2160x y +--=2160x y +-+=l 0y ±=2160x y +--=2160x y +-+=22(1)4x y ++=1--=22230x y x ++-=22(1)4x y ++=M E 22(1)4x y ++=x y t -=y x t =-E y ()2222(1)30x t x t +-+-=()22Δ4(1)830t t =---≥2270t t +-≤11t --≤≤-+x y -1--x y t -=0x y t --=E (1,0)-0x y t --=22(1)4x y ++=2≤11t --≤≤-+x y -1--12cos 2sin x y θθ=-+⎧⎨=⎩(02π)θ≤<π12cos 2sin 14x y θθθ⎛⎫-=-+-=-++ ⎪⎝⎭πcos 14θ⎛⎫+≥- ⎪⎝⎭3π4θ=的最小值为;(3)i )若两直线都有斜率,可设直线AB 的方程为,则直线CD 的方程为,由(1)的结论可知,轨迹是以点为圆心,半径长为2的圆.到直线AB 的距离同理,所以,ⅱ)若AB 、CD 两直线中有一条没有斜率,则另一条的斜率为0,此时线段AB 、CD 的长分别为4(或4、,所以.综上所述,当且仅当,即时,四边形ACBD 的面积取得最大值,最大值为7.x y -1--(0)y kx k =≠1=-y x kE 1(1,0)O -1O d =||AB ==CD ==11||||22S AB CD ==⨯==7=≤1||||72S AB CD ==<21112k =+1k =±S。

人教新课标数学三年级上学期第3单元测试卷1

人教新课标数学三年级上学期第3单元测试卷1

第三单圆测试题一,在括号里填上合适地单位。

1.一只蚂蚁身长约5( )。

2.一根黄瓜长约2( )。

3.一辆货车地载质量是5( )。

4.地球绕太阳每秒运行30( )。

5.小学生一步长约4( )。

二,在○里填上“>”“<”或“=”。

5吨○5200千克 60千米○9千米3200分米○2300米2300克○3千克60毫米○6厘米5分米○5米三,辨一辨。

(正确地画“√”,错误地画“✕”)1.一根跳绳长5分米。

( )2.3吨石头比3吨棉花重。

( )3.4吨比4100千克少100千克。

( )4.北京到广州地铁路线长2313米。

( )5.量比较短地物体或者要求结果较精确时,可以用毫米作单位。

( )四,在括号里填上合适地数。

2分米=( )厘米 1米=( )分米2厘米=( )毫米6000米=( )千米3千米=( )米80毫米=( )厘米五,解决问题。

1.一辆农用三轮车地载质量是3吨,要一次运走1100千克地苹果和2000千克地梨,在不超载地情况下,可以吗?2.把下图中两地相距1千米地路线画出来。

3.张奶奶编中国结,每个中国结需要4分米彩绳。

(1)张奶奶有32分米地彩绳,能编几个中国结?(2)小丽要编6个中国结,需要多少分米彩绳?4.昆仑超市要进货,用载质量是2吨地卡车运送。

假如派两辆这样地车,怎样装才能一次运完,而且不超载?5.一根4米长地木头,现在要把它锯成5分米地木桩,可以锯成多少段?需要锯几第三单圆测试题参考结果一,1.毫米 2.分米 3.吨 4.千米 5.分米二,< > < < = <三,1.✕ 2.✕ 3.√ 4.✕ 5.√四,20 10 20 6 3000 8五,1.1100+2000=3100(千克) 3吨=3000千克 3100千克>3000千克 不可以。

2.小明家→少年宫→体育馆3.(1)32÷4=8(个)(2)4×6=24(分米)4.一辆车装1000千克地大米和900千克地油,另一辆车装400千克地水果,800千克地蔬菜和700千克地饮料;也可以一辆车装1000千克地大米和800千克地蔬菜,另一辆车装400千克地水果,900千克地油和700千克地饮料。

新课标单元测试卷:高中数学

新课标单元测试卷:高中数学

推荐
《新课标单元测试卷:高中数学(选修1-1)(北师大版)》由北京师范大学出版社出版。
目录
第一章常用逻辑用语 单元梳理卷 单元测试卷 第二章圆锥曲线与方程 第一单元椭圆(2.1) 单元梳理卷 单元测试卷 第二单元抛物线(2.2) 单元梳理卷 单元测试卷 第三单元双曲线(2.3)谢谢观看Fra bibliotek内容简介
《新课标单元测试卷:高中数学(选修2-1)(北师大版)》由北京师范大学出版社出版。
图书目录
第一章常用逻辑用语 单元梳理卷 单元测试卷 第二章空间向量与立体几何 第一单元空间向量的坐标表示及空间向量基本定理(2.1~2.3) 单元梳理卷 单元测试卷 第二单元空间向量计算(2.4~2.6) 单元梳理卷 单元测试卷 阶段调研卷(一)(第一至第二章)
新课标单元测试卷:高中数学
2014年北京师范大学出版社出版的图书
01 内容简介
03 推荐
目录
02 图书目录 04 目录
《新课标单元测试卷:高中数学(选修2-1)(北师大版)》是2014年北京师范大学出版社出版的图书,作者是北 京师范大学出版社。本书秉承“自主学习与探究”的新课标理念,根据学科特点设置了单元梳理卷、单元测试卷、 阶段调研卷、专项训练卷、期末冲刺卷等试卷结构,实现了平时梳理、阶段测试到冲刺备考的有机结合,构成了 一个科学完整的学习检测体系。

人教新课标数学三年级上学期第7单元测试卷1

人教新课标数学三年级上学期第7单元测试卷1

第七单圆测试题一,填一填。

1.封闭图形( )地长度,叫做它地周长。

2.长方形地周长就是( )款边长地总和。

3.长方形相邻两款边地和是50厘米,它地周长是( )厘米。

4.给一块边长为20分米地正方形桌布四周缝上花边,花边地总长是( )分米。

5.正方形地周长是它边长地( )倍。

6.把两个边长都是3厘米地正方形拼成一个长方形,它地周长是( )厘米。

二,选一选。

(在括号里填上正确结果地序号)1.用同样长地两根铁丝,一根围成长方形,一根围成正方形,它们地周长( )。

A.相等B.长方形周长长C.正方形周长长D.不确定2.用红线描出图形地周长是( )。

A B C D3.一个长方形地周长是24厘米,宽是4厘米,假如把它平均剪成两个正方形,每个正方形地周长是( )厘米。

A.12B.14C.16D.244.用一张长10厘米,宽6厘米地长方形纸,折一个最大地正方形,正方形地边长是( )厘米。

A.3B.5C.6D.10三,辨一辨。

(正确地画“√”,错误地画“✕”)1.把一张长方形纸沿对角线剪成两块,这两块纸地周长相等。

( )2.一个正方形地边长增加2厘米,周长就增加4厘米。

( )3.两个完全一样地长方形一定能拼成一个正方形。

( )4.是一个四边形。

( )5.长方形地对边相等。

( )四,计算下面各个图形地周长。

1. 2.五,在下图中画出两种周长是12厘米地长方形或正方形。

(每个方格边长是1厘米)六,解决问题。

1.学校操场是一个长130米,宽40米地近似长方形,它地周长是多少米?2.一块长方形菜地地宽是4米,比长少1米,这块菜地地周长是多少米?3.一个长方形镜框长2米,宽1米。

用一款长7米地花边能绕镜框一周吗?4.有一个篮球场是长28米,宽19米地长方形,小明沿篮球场跑了1圈,他共跑了多少米?5.王大妈沿着一面墙用篱笆围一个长25米,宽10米地长方形菜地,最少需要准备多长地篱笆?6.用两个长8厘米,宽4厘米地长方形拼成一个长方形和一个正方形,它们地周长分别是多少厘米?7.下面是一个长20分米,宽16分米地长方形复合板,在它地四个角上各锯掉一个边长是2分米地正方形。

北师版数学三年级(上)第三单元测试卷3(含答案)

北师版数学三年级(上)第三单元测试卷3(含答案)

加与减的应用能力检测卷一、我会填。

(第6题6分,其余每题4分,共26 分)1.321比106多(),87比()少137。

2.103与109的和减去98,列式为()。

3.一个数比251与338的和小274,这个数是()。

4.850-356-176与混合运算850-()的结果相等。

5.900-372-210=(),可以用()进行验算比较简单。

6.本届“梦之蓝杯”绘画大赛共有425幅作品获奖,比上届少了49幅。

要求两届共有多少幅作品获奖,先算(),再算(),列综合算式是()。

二、我会辨。

(对的在括号里画“√”,错的画“×”)(每题3分,共9 分) 1.最大的三位数加最大的两位数的和是1099。

()2.上面线段图中求男生人数,列式是357+119。

() 3.549-()>253,求括号里最大能填多少,思路是549-253+1。

()三、我会选。

(把正确答案的序号填在括号里)(每题3分,共9 分) 1.估算787+196,下面说法正确的是:()A.它们的和比1000大些。

B.它们的和比900小些。

C.它们的和比900大些,比1000小些。

2.园林工人给路边的小树修剪,上午修剪了158棵,下午修剪了189棵,还剩下106棵小树没修剪,一共要修剪()棵小树。

A.241B.264C.4533.一根绳子长300米,第一次用去149米,第二次用去86米,现在绳子的长度比原来短了多少米?正确列式是()。

A.300-149+86B.300-(149+86)C.149+86四、我会计算,用竖式计算,带☆的要验算。

(每题4分,共8分)368+219-506=☆537-423+335=五、我会看图列式计算。

(每题4分,共8分)1.2.六、我会应用。

(第1题18分,第2题10分,第3题12分,共40分) 1.淘气周日要去笑笑家做客。

(1)填一填。

(2)淘气家到笑笑家一共有1012米,电影院到笑笑家有多少米?(3)公园离淘气家与公园离笑笑家哪段路程长?长多少米?2.电器城国庆节搞促销活动,李阿姨买了一台洗衣机,先付了900元,余下的用信用卡免息分期付款,每月付350元,几个月能全部付清?3.奇思家买了一辆小汽车,奇思连续记录了这一周每天行驶的里程数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011—2012学年度上学期高三一轮复习数学单元验收试题(3)【新人教】命题范围:立体几何说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分;答题时间120分钟。

第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。

1.一条直线与一个平面所成的角等于3π,另一直线与这个平面所成的角是6π。

则这两条直线的位置关系 ( )A .必定相交B .平行C .必定异面D .不可能平行 2.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 ( )A .3523cm 3 B .3203cm 3 C .2243cm 3D .1603cm 33.如图,若Ω是长方体1111ABCD A BC D -被平面EFGH 截去几何体11EFGHB C 后得到的几何体,其中E 为线段11A B 上异于1B 的点,F 为线段1BB 上异于1B 的点,且11//EH A D ,则下列结论中不正确...的是( )A .//EH FGB .四边开EFGH 是矩形C .Ω是棱柱D .Ω是棱台4.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为 ( ) A .75° B .60° C .45°D .30° 5.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 ( )A .若l m ⊥,m α⊂,则l α⊥B .若l α⊥,l m //,则m α⊥C .若l α//,m α⊂,则l m //D .若l α//,m α//,则l m //6.与正方体1111ABCD A BC D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点( )A .有且只有1个B .有且只有2个C .有且只有3个D .有无数个7.已知正四棱锥S ABCD -中,SA = )A .1BC .2D .38.已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为 ( )A B C D .349.有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是 ( )A .(B .(1,C .D .(0,10.在半径为R 的球内有一内接正三棱锥,它的底面三个顶点恰好都在同一个大圆上,一个动点从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,则经过的最短路程是( ) A.2R πB .73R πC .83R πD .76Rπ 11.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O 的表面积等于( )A .4πB .3πC .2πD .π12.将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 ( )AB .C .D第Ⅱ卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。

13.某地球仪上北纬30纬线的长度为12πcm ,该地球仪的半径是__________cm ,表面积是______________cm 2。

14.如图,矩形ABCD 中,DC=3,AD=1,在DC 上截取DE=1,将△ADE 沿AE 翻折到D 1点,点D 1在平面ABC 上的射影落在AC 上时,二面角D 1—AE —B 的平面角的余弦值是 。

15.如图,在三棱锥O ABC -中,三条棱OA ,OB ,OC 两两垂直,且OA >OB >OC ,分别经过三条棱OA ,OB ,OC 作一个截面平分三棱锥的体积,截面面积依次为1S ,2S ,3S ,则1S ,2S ,3S 的大小关系为 。

16.如图,在透明材料制成的长方体容器ABCD —A 1B 1C 1D 1内灌注一些水,固定容器底面一边BC 于桌面上,再将容器倾斜根据倾斜度的不同,有下列命题:(1)水的部分始终呈棱柱形; (2)水面四边形EFGH 的面积不会改变; (3)棱A 1D 1始终与水面EFGH 平行;(4)当容器倾斜如图所示时,BE ·BF 是定值。

其中所有正确命题的序号是 。

三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共76分)。

17.(12分)在平面α内有△ABC ,在平面α外有点S ,斜线SA ⊥AC ,SB ⊥BC,且斜线SA 、SB与平面α所成角相等。

(1)求证:AC=BC(2)又设点S 到α的距离为4cm,AC ⊥BC 且AB=6cm,求S 与AB 的距离。

18.(12分)平面EFGH分别平行空间四边形ABCD中的CD与AB且交BD、AD、AC、BC于E、F、G、H.CD=a,AB=b,CD⊥AB.(1)求证EFGH为矩形;(2)点E在什么位置,S EFGH最大?19.(12分)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面)。

(Ⅰ)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(Ⅱ)若要制作一个如图放置的,底面半径为0.3米的灯笼,请作出用于灯笼的三视图(作图时,不需考虑骨架等因素)。

20.(12分)如图,四边形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,若在线段PD 上存在点E使得BE⊥CE,求线段AD的取值范围,并求当线段PD上有且只有一个点E使得BE⊥CE时,二面角E—BC—A正切值的大小。

21.(14分)如图,四棱锥P —ABCD 的底面是AB=2,BC=2的矩形,侧面PAB 是等边三角形,且侧面PAB ⊥底面ABCD(I )证明:侧面PAB ⊥侧面PBC ;(II )求侧棱PC 与底面ABCD 所成的角; (III )求直线AB 与平面PCD 的距离.22.(14分)如图,圆柱1OO 内有一个三棱柱111ABC A B C -,三棱柱的 底面为圆柱底面的内接三角形,且AB 是圆O 的直径。

(I )证明:平面11A ACC ⊥平面1B BCC ;(II )设1AB AA =,在圆柱1OO 内随机选取一点,记该点取自三棱柱111ABC A B C -内的概率为p 。

(i )当点C 在圆周上运动时,求p 的最大值;(ii )如果平面11A ACC 与平面1B OC 所成的角为(090)θθ<≤。

当p 取最大值时,求cos θ的值。

参考答案一、选择题1.D ;2.B ;3.D ;4.C ;5.B ;6.D ;7.C ;8.D ;9.A ;10.B ;11.A ;12.B ; 二、填空题13.43,192π;14.32-;15.321S S S <<;16.①③④; 三、解答题 17.(1)证明:过S 作SO ⊥面ABC 于O⇒S 到AB 的距离为2234+=5cm .又∵AB ⊥CD ⇒EF ⊥FG ⇒EFGH 为矩形. (2)AG=x,AC=m,m x a GH = GH=m axm x m b GF -==m x m - GF=m b (m -x ) S EFGH =GH·GF=m a x·m b (m -x )=2m ab (mx -x 2)= 2m ab(-x 2+mx -42m +)42m =2m ab [-(x -2m )2+42m ]当x=2m 时,S EFGH 最大=2m ab ·42m =4ab.19.解:(Ⅰ) 设圆柱形灯笼的母线长为l ,则l =1.2-2r (0<r <0.6),S =-3π(r -0.4)2+0.48π,所以当r =0.4时,S 取得最大值约为1.51平方米; (Ⅱ) 当r =0.3时,l =0.6,作三视图略.20.若以BC 为直径的球面与线段PD 有交点E ,由于点E 与BC 确定的平面与球的截面是一个大圆,则必有BE ⊥CE ,因此问题转化为以BC 为直径的球与线段PD 有交点。

设BC 的中点为O (即球心),再取AD 的中点M ,易知OM ⊥平面PAD ,作ME ⊥PD 交PD 于点E ,连结OE ,则OE ⊥PD ,所以OE 即为点O 到直线PD 的距离,又因为OD >OC ,OP >OA >OB ,点P ,D 在球O 外,所以要使以BC 为直径的球与线段PD 有交点,只要使OE ≤OC (设OC=OB=R )即可。

由于△DEM ∽△DAP ,可求得ME=,所以OE 2=9+ 2244R R + 令OE 2≤R 2,即9+ 2244RR +≤R 2 ,解之得R ≥23; 所以AD=2R ≥43,所以AD 的取值范围[ 43,+∞),当且仅当AD= 43时,点E 在线段PD 上惟一存在,此时易求得二面角E —BC —A 的平面角正切值为21。

21.(I )证明:在矩形ABCD 中,BC ⊥AB又∵面PAB ⊥底面ABCD 侧面PAB ∩底面ABCD=AB ∴BC ⊥侧面PAB 又∵BC ⊂侧面PBC∴侧面PAB ⊥侧面PBC )(II )解:取AB 中点E ,连结PE 、CE 又∵△PAB 是等边三角形 ∴PE ⊥AB又∵侧面PAB ⊥底面ABCD ,∴PE ⊥面ABCD ∴∠PCE 为侧棱PC 与底面ABCD 所成角332322=+===BC BE CE BA PE在Rt △PEC 中,∠PCE=45°为所求 (Ⅲ)解:在矩形ABCD 中,AB//CD∵CD ⊂侧面PCD ,AB ⊄侧面PCD ,∴AB//侧面PCD 取CD 中点F ,连EF 、PF ,则EF ⊥AB 又∵PE ⊥AB ∴AB ⊥平面PEF 又∵AB//CD ∴CD ⊥平面PEF∴平面PCD ⊥平面PEF作EG ⊥PF ,垂足为G ,则EC ⊥平面PCD在Rt △PEF 中,EG=530=⋅PF EC PE 为所求 22.解:(Ⅰ)因为1AA ⊥平面ABC ,BC ⊂平面ABC ,所以1AA ⊥BC ,因为AB 是圆O 直径,所以BC ⊥AC ,又AC ⋂1AA A =,所以BC ⊥平面11A ACC , 而BC ⊂平面11B BCC ,所以平面11A ACC ⊥平面11B BCC 。

(Ⅱ)(i )设圆柱的底面半径为r ,则AB=1AA =2r ,故三棱柱111ABC-A B C 的体积为11V =AC BC 2r 2⋅⋅=AC BC r ⋅⋅,又因为2222AC BC =AB =4r +,所以22AC +BC AC BC 2⋅≤=22r,当且仅当时等号成立,从而31V 2r ≤,而圆柱的体积23V=r 2r=2r ππ⋅,故p =313V 2r 1=,V 2r ππ≤当且仅当,即OC AB ⊥时等号成立, 所以p 的最大值是1π。

相关文档
最新文档