2020届高考数学(文科)总复习课时跟踪练:(十一)函数与方程 Word版含解析
2020大一轮高考总复习文数(北师大版)课时作业提升:11 函数与方程 Word版含解析.doc
课时作业提升(十一) 函数与方程A 组 夯实基础1.(2018·皖北四校联考)已知函数y =f (x )的图像是连续不断的曲线,且有如下的对应值表:则函数y A .2个 B .3个 C .4个D .5个解析:选B 依题意, f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.2.(2018·汕头检测)下列函数中,在(-1,1)内有零点且单调递增的是( ) A .y =log 2x B .y =2x -1 C .y =x 2-2D .y =-x 3解析:选B y =log 2x 在(-1,0]上没有意义,故A 不满足题意;y =x 2-2在(-1,0)上单调递减,故C 不满足题意;y =-x 3在(-1,1)上单调递减,故D 不满足题意;因为y =2x -1在(-1,1)上单调递增,f (-1)<0,f (1)>0,所以在(-1,1)内存在零点,故选B .3.(2018·潍坊月考)若函数f (x )的唯一零点同时在(0,4),(0,2),(1,2),⎝⎛⎭⎫1,32内,则与f (0)符号相同的是( )A .f (4)B .f (2)C . f (1)D .f ⎝⎛⎭⎫32解析:选C 由题意得f (x )的零点在⎝⎛⎭⎫1,32内,∴f (0)与f (1)符号相同,故选C . 4.函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:选C 由条件可知f (1)f (2)<0,即(2-2-a )·(4-1-a )<0,即a (a -3)<0,解得0<a <3.5.方程|x 2-2x |=a 2+1(a >0)的解的个数是( ) A .1 B .2 C .3D .4解析:选B (数形结合法)∵a >0,∴a 2+1>1.而y =|x 2-2x |的图像如图,∴y =|x 2-2x |的图像与y =a 2+1的图像总有两个交点.6.(2018·大连月考)已知函数f (x )=mx 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧,则实数m 的取值范围是( )A .(0,1)B .(0,1]C .(-∞,1)D .(-∞,1]解析:选D 令m =0,由f (x )=0得x =13,满足题意,可排除选项A ,B .令m =1,由f (x )=0得x =1,满足题意,排除选项C .7.(2018·天津月考)已知函数f (x )=⎩⎪⎨⎪⎧2x -2-1,x ≥0,x +2,x <0,g (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,1x,x <0,则函数f (g (x ))的所有零点之和是( )A .-12+ 3B .12+ 3C .-1+32D .1+32解析:选B 由f (x )=0得x =2或x =-2,由g (x )=2得x =1+3,由g (x )=-2得x =-12,所以函数f (g (x ))的所有零点之和是-12+1+3=12+3,故选B .8.已知函数f (x )=23x +1+a 的零点为1,则实数a 的值为______.解析:由已知得f (1)=0,即231+1+a =0,解得a =-12.答案:-129.(2018·吉林模拟)函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________.解析:求函数f (x )=3x -7+ln x 的零点,可以大致估算两个相邻自然数的函数值,因为f (2)=-1+ln 2,由于ln 2<ln e =1,所以f (2)<0,f (3)=2+ln 3,由于ln 3>1,所以f (3)> 0,所以函数f (x )的零点位于区间(2,3)内,故n =2.答案:210.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是__________.解析:令g (x )=a x (a >0,且a ≠1),h (x )=x +a ,分0<a <1,a >1两种情况. 在同一坐标系中画出两个函数的图像,如图,若函数f (x )=a x -x -a 有两个不同的零点,则函数g (x ),h (x )的图像有两个不同的交点.根据画出的图像只有当a >1时符合题目要求.答案:(1,+∞)11.(2016· 连云港模拟)已知函数f (x )=ax 2-2x +3,x ∈(0,3]. (1)当a =1时,求函数f (x )的值域;(2)如果函数f (x )在定义域内有零点,求实数a 的取值范围. 解:(1)当a =1时,f (x )=x 2-2x +3=(x -1)2+2,x ∈(0,3].所以f (x )的最小值是f (1)=2,最大值为f (3)=6,所以函数f (x )的值域为[2,6]. (2)函数f (x )在定义域内有零点即方程ax 2-2x +3=0在x ∈(0,3]上有实根.等价于求函数a =2x -3x2在x ∈(0,3]上的值域,令h (x )=2x -3x 2,则h (x )=2x -3x 2=-3⎝⎛⎭⎫1x 2+2⎝⎛⎭⎫1x ,x ∈(0,3]. 令1x =t ∈⎣⎡⎭⎫13,+∞,则g (t )=-3t 2+2t =-3⎝⎛⎭⎫t -132+13, 当t =13时,g (t )有最大值13,所以a ≤13.12.已知函数f (x )=4x +m ·2x +1有且仅有一个零点,求m 的取值范围,并求出该零点. 解:∵f (x )=4x +m ·2x +1有且仅有一个零点,即方程(2x )2+m ·2x +1=0仅有一个实根. 设2x =t (t >0),则t 2+mt +1=0. ①若Δ=0,即m 2-4=0,当m =-2时,t =1;当m =2时,t =-1不合题意,舍去. ∴2x =1,x =0符合题意. ②若Δ>0,即m >2或m <-2, t 2+mt +1=0有一正一负两根, 即t 1t 2<0,这与t 1t 2>0矛盾. ∴这种情况不可能.综上可知,m =-2时,f (x )有唯一零点,该零点为x =0.B 组 能力提升1.(2018·安阳模拟)已知函数f (x )=⎝⎛⎭⎫12x-log 3x ,若x 0是函数y =f (x )的零点,且0<x 1<x 0,则f (x 1)的值( )A .恒为正值B .等于0C .恒为负值D .不大于0解析:选A 注意到函数f (x )=⎝⎛⎭⎫12x -log 3x 在(0,+∞)上是减函数,因此当0<x 1<x 0时,有f (x 1)>f (x 0).又x 0是函数f (x )的零点,因此f (x 0)=0,所以f (x 1)>0,即此时f (x 1)的值恒为正值,选A .2.(2018·兰州月考)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5,已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( )A .1B .2C .3D .4解析:选B 作出函数f (x )与g (x )的图像如图所示,发现有2个不同的交点.3.(2018·泰安模拟)已知函数f (x )=⎩⎪⎨⎪⎧a ·e x ,x ≤0,-ln x ,x >0,其中e 为自然对数的底数,若关于x的方程f (f (x ))=0有且只有一个实数解,则实数a 的取值范围为( )A .(-∞,0)B .(-∞,0)∪(0,1)C .(0,1)D .(0,1)∪(1,+∞)解析:选B 由f (f (x ))=0得f (x )=1,作出函数f (x )的图像,如图所示,当a <0,0<a <1时,直线y =1与函数f (x )的图像有且只有一个交点,所以实数a 的取值范围是(-∞,0)∪(0,1),故选B .4.若函数f (x )=x ln x -a 有两个零点,则实数a 的取值范围为________.解析:令g (x )=x ln x ,h (x )=a ,则问题可转化成函数g (x )与h (x )的图像有两个交点.g ′(x )=ln x +1,令g ′(x )<0,即ln x <-1,可解得0<x <1e ;令g ′(x )>0,即ln x >-1,可解得x >1e ,所以,当0 <x <1e 时,函数g (x )单调递减;当x >1e 时,函数g (x )单调递增,由此可知当x =1e时,g (x )min =-1e .在同一坐标系中作出函数g (x )和h (x )的简图如图所示,据图可得-1e<a <0.答案:-1e<a <05.已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x )x-4ln x 的零点个数.解:(1)因为f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }, 所以f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. 所以f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3.(2)因为g (x )=x 2-2x -3x -4ln x =x -3x -4ln x -2(x >0),所以g ′(x )=1+3x 2-4x =(x -1)(x -3)x 2.令g ′(x )=0,得x 1=1,x 2=3.当x 变化时,g ′(x ),g (x )的取值变化情况如下:又因为g (x )在(3,+∞)上单调递增,且g (3)<0,g (e 3)=e 3-3e 3-14>0,因而g (x )在(3,+∞)上只有1个零点.故g (x )在(0,+∞)上只有1个零点.。
2020版高考数学一轮复习课后限时集训11函数与方程文含解析北师大版
课后限时集训(十一)(建议用时:60分钟) A 组 基础达标一、选择题1.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是( ) A .0,2 B .0,12C .0,-12D .2,-12C [由题意知2a +b =0, 即b =-2a .令g (x )=bx 2-ax =0,得x =0或x =a b =-12.]2.已知函数f (x )=⎝ ⎛⎭⎪⎫12x-cos x ,则f (x )在[0,2π]上的零点个数是( )A .1B .2C .3D .4C [作出g (x )=⎝ ⎛⎭⎪⎫12x 与h (x )=cos x 的图像如图所示,可以看到其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3,故选C .]3.已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)C [∵f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2在(0,+∞)上是增函数,又f (1)=ln 1-⎝ ⎛⎭⎪⎫12-1=-2<0,f (2)=ln 2-⎝ ⎛⎭⎪⎫120<0,f (3)=ln 3-⎝ ⎛⎭⎪⎫121>0,∴x 0∈(2,3),故选C .]4.已知函数f (x )=2ax -a +3,若存在x 0∈(-1,1),f (x 0)=0,则实数a 的取值范围是( ) A .(-∞,-3)∪(1,+∞)B .(-∞,-3)C .(-3,1)D .(1,+∞)A [当a =0时,f (x )=3,不合题意,当a ≠0时,由题意知f (-1)·f (1)<0,即(-3a +3)(a +3)<0,解得a <-3或a >1,故选A .]5.已知函数f (x )=⎩⎪⎨⎪⎧e x+a ,x ≤0,3x -1,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值范围是( )A .(-∞,-1)B .(-∞,0)C .(-1,0)D .[-1,0)D [当x >0时,f (x )=3x -1有一个零点x =13,所以只需要当x ≤0时,e x+a =0有一个根即可,即e x =-a .当x ≤0时,e x∈(0,1],所以-a ∈(0,1],即a ∈[-1,0),故选D.]二、填空题6.已知关于x 的方程x 2+mx -6=0的一个根比2大,另一个根比2小,则实数m 的取值范围是________.(-∞,1) [设函数f (x )=x 2+mx -6,则根据条件有f (2)<0,即4+2m -6<0,解得m <1.] 7.方程2x+3x =k 的解在[1,2)内,则k 的取值范围为________. [5,10) [令函数f (x )=2x+3x -k , 则f (x )在R 上是增函数.当方程2x+3x =k 的解在(1,2)内时,f (1)·f (2)<0, 即(5-k )(10-k )<0, 解得5<k <10. 当f (1)=0时,k =5.]8.(2019·衡阳模拟)若函数f (x )=|2x-2|-b 有两个零点,则实数b 的取值范围是__________.(0,2) [由f (x )=|2x-2|-b =0得|2x-2|=b .在同一平面直角坐标系中画出y =|2x-2|与y =b 的图像,如图所示,则当0<b <2时,两函数图像有两个交点,从而函数f (x )=|2x-2|-b 有两个零点.] 三、解答题9.已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈⎝ ⎛⎭⎪⎫0,12,使f (x 0)=x 0.[证明] 令g (x )=f (x )-x .∵g (0)=14,g ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫12-12=-18,∴g (0)·g ⎝ ⎛⎭⎪⎫12<0. 又函数g (x )在⎣⎢⎡⎦⎥⎤0,12上连续, ∴存在x 0∈⎝ ⎛⎭⎪⎫0,12,使g (x 0)=0, 即f (x 0)=x 0.10.已知二次函数f (x )=x 2+(2a -1)x +1-2a .(1)判断命题:“对于任意的a ∈R ,方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,求实数a 的取值范围. [解] (1)“对于任意的a ∈R ,方程f (x )=1必有实数根”是真命题. 依题意,f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根.因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根.(2)依题意,要使y =f (x )在区间(-1,0)及⎝⎛⎭⎪⎫0,12内各有一个零点,只需⎩⎪⎨⎪⎧ f -1>0,f 0<0,f ⎝ ⎛⎭⎪⎫12>0,即⎩⎪⎨⎪⎧3-4a >0,1-2a <0,34-a >0,解得12<a <34.故实数a 的取值范围为⎝ ⎛⎭⎪⎫12,34. B 组 能力提升1.已知函数f (x )=⎩⎪⎨⎪⎧|2x-1|,x <2,3x -1,x ≥2,若方程f (x )-a =0有三个不同的实数根,则实数a 的取值范围是( )A .(1,3)B .(0,3)C .(0,2)D .(0,1)D [画出函数f (x )的图像如图所示,观察图像可知,若方程f (x )-a =0有三个不同的实数根,则函数y =f (x )的图像与直线y =a 有3个不同的交点,此时需满足0<a <1.故选D.]2.已知函数y =f (x )是周期为2的周期函数,且当x ∈[-1,1]时,f (x )=2|x |-1,则函数F (x )=f (x )-|lg x |的零点个数是( )A .9B .10C .11D .18B [在坐标平面内画出y =f (x )与y =|lg x |的大致图像如图,由图像可知,它们共有10个不同的交点,因此函数F (x )=f (x )-|lg x |的零点个数是10.]3.(2019·昆明模拟)已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0ln x ,x >0,g (x )=f (x )-a (x -2).若g (x )存在两个零点,则实数a 的取值范围是________.⎣⎢⎡⎭⎪⎫-12,0∪(0,+∞) [函数g (x )有两个零点,就是方程g (x )=f (x )-a (x -2)=0有两个解,也就是函数y =f (x )与y =a (x -2)的图像有两个交点.y =f (x )=⎩⎪⎨⎪⎧e x,x ≤0ln x ,x >0的图像如图所示.直线y =a (x -2)过定点(2,0).当a =0时,两个函数的图像只有一个交点,不符合题意;当a <0时,两个函数的图像要有两个交点,则直线y =a (x -2)过点(0,1)时,斜率a 取得最小值,为-12,所以-12≤a <0;当a >0时,两个函数的图像一定有两个交点.综上,实数a 的取值范围是⎣⎢⎡⎭⎪⎫-12,0∪(0,+∞).]4.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图像;(2)当0<a <b 且f (a )=f (b )时,求1a +1b的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围.[解] (1)如图所示.(2)因为f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈0,1],1-1x ,x ∈1,+∞,故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数, 由0<a <b 且f (a )=f (b ),得0<a <1<b , 且1a -1=1-1b ,所以1a +1b=2.(3)由函数f (x )的图像可知,当0<m <1时,方程f (x )=m 有两个不相等的正根.。
2020年高中数学课时跟踪检测含解析(全一册)新人教A版
2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。
2020高考数学(文)一轮复习课时作业11函数与方程Word版含解析
显然两函数图象在y轴右侧必有一交点,不符合题意;时,作出g(x)=ln(x+1)与h(x)=-a(x2-x)的函数图象如(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围.解析:(1)当a =1,b =-2时,f (x )=x 2-2x -3, 令f (x )=0,得x =3或x =-1. ∴函数f (x )的零点为3或-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根, ∴b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立, 所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1, 因此实数a 的取值范围是(0,1).10.已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x .(1)写出函数y =f (x )的解析式;(2)若方程f (x )=a 恰有3个不同的解,求a 的取值范围. 解析:(1)设x <0,则-x >0,所以f (-x )=x 2+2x .又因为f (x )是奇函数, 所以f (x )=-f (-x )=-x 2-2x .所以f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.(2)方程f (x )=a 恰有3个不同的解.即y =f (x )与y =a 的图象有3个不同的交点.作出y =f (x )与y =a 的图象如图所示,故若方程f (x )=a 恰有3个7 14由题中函数图象知f (±1)=0,f (0)=0,g ⎛⎪⎫±32=3x +134-8cos ⎣⎢⎡πx +134=8sinπx 在8sinπx 在(0,+∞(x )=8sinπx ,易知函数方程f (x )=ax 恰有2个互异的实数解即函数y =g (x )有两个零点,即y =g (x )的图象与x 轴有2个交点,满足条件的y =g (x )的图象有以下两种情况:情况一:则⎩⎪⎨⎪⎧Δ1=a 2-4a >0,Δ2=a 2-8a <0,∴4<a <8. 情况二:则⎩⎪⎨⎪⎧Δ1=a 2-4a <0,Δ2=a 2-8a >0,不等式组无解. 综上,满足条件的a 的取值范围是(4,8). 答案:(4,8)。
2020届高考数学(文科)总复习课时跟踪练:(一)集合 Word版含解析
课时跟踪练(一)A组 基础巩固1.(2018·全国卷Ⅲ)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0} B.{1} C.{1,2} D.{0,1,2}解析:因为A={x|x-1≥0}={x|x≥1},所以A∩B={1,2}.故选C.答案:C2.(2019·天门三地联考)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为( )A.3 B.4 C.5 D.6解析:因为A={1,2,3},b={4,5},又M={x|a+b,a∈A,b∈B},所以M={5,6,7,8},即M中有4个元素.答案:B3.(2018·天津卷)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1} B.{0,1}C.{-1,0,1} D.{2,3,4}解析:因为A={1,2,3,4},B={-1,0,2,3},所以A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},所以(A∪B)∩C={-1,0,1}.故选C.答案:C4.设集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=( )A.[2,3] B.(-2,3]C.[1,2) D.(-∞,-2)∪[1,+∞)解析:易知Q={x|x≥2或x≤-2}.所以∁R Q={x|-2<x<2},又P={x|1≤x≤3},故P∪(∁R Q)={x|-2<x≤3}.答案:B5.(2019·延安模拟)若全集U={-2,-1,0,1,2},A={-2,2},B={x|x2-1=0},则图中阴影部分所表示的集合为( )A.{-1,0,1} B.{-1,0}C.{-1,1} D.{0}解析:B={x|x2-1=0}={-1,1},阴影部分表示的集合为∁U(A∪B).A∪B={-2,-1,1,2},全集U={-2,-1,0,1,2},所以∁U(A∪B)={0}.答案:D6.(2019·百校联盟TOP20联考)已知集合A={x∈N|x2-2x-8≤0},B={x|2x≥8},则集合A∩B的子集个数为( )A.1 B.2 C.3 D.4解析:因为A={x∈N|x2-2x-8≤0}={0,1,2,3,4},B={x|x≥3},所以A∩B={3,4},所以集合A∩B的子集个数为22=4.答案:D7.(2019·德州二模)设集合A={x|x(4-x)>3},B={x|x≥a},若A∩B=A,则a的取值范围是( )A.a≤1 B.a<1 C.a≤3 D.a<3解析:由x(4-x)>3解得1<x<3,即集合A={x|1<x<3}.因A∩B=A,则A⊆B,而B={x|x≥a},所以a≤1.答案:A8.(2019·豫北名校联考)已知集合M={x|y=},N={x|y=x-1log2(2-x)},则∁R(M∩N)=( )A.[1,2) B.(-∞,1)∪[2,+∞)C.[0,1] D.(-∞,0)∪[2,+∞)解析:由题意可得M={x|x≥1},N={x|x<2},所以M∩N={x|1≤x<2},所以∁R(M∩N)={x|x<1或x≥2}.答案:B9.(2017·江苏卷)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为________.解析:因为A∩B={1},A={1,2},所以1∈B且2∉B.若a=1,则a2+3=4,符合题意.又a2+3≥3≠1,故a=1.答案:110.集合A={x|x<0},B={x|y=lg[x(x+1)]},若A-B={x|x∈A,且x∉B},则A-B=________.解析:由x(x+1)>0,得x<-1或x>0,所以B=(-∞,-1)∪(0,+∞),所以A-B=[-1,0).答案:[-1,0)11.(2019·上海黄浦模拟)已知集合A ={1,2,3},B ={1,m },若3-m ∈A ,则非零实数m 的值是________.解析:若3-m =1,则m =2,符合题意;若3-m =2,则m =1,此时集合B 中的元素不满足互异性,故m ≠1;若3-m =3,则m =0,不符合题意.故答案为2.答案:212.(2019·安徽皖南八校联考)已知集合A ={(x ,y )|x 2=4y },B ={(x ,y )|y =x },则A ∩B 的真子集个数是________.解析:由得或即A ∩B ={(0,0),(4,{x 2=4y ,y =x ,){x =0,y =0,){x =4,y =4,)4)},所以A ∩B 的真子集个数为22-1=3.答案:3B 组 素养提升13.(2017·全国卷Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B = B .A ∩B =∅{x |x <32)}C .A ∪B = D .A ∪B =R{x |x <32)}解析:因为B ={x |3-2x >0}=,A ={x |x <2},所以A ∩B {x |x <32)}=,A ∪B ={x |x <2}.{x |x <32)}故选A.答案:A14.(2019·南昌二中月考)已知集合A ={x |y =},B ={x |a ≤x4-x 2≤a +1},若A ∪B =A ,则实数a 的取值范围为( )A .(-∞,-3]∪[2,+∞)B .[-1,2]C .[-2,1]D .[2,+∞)解析:集合A ={x |y =}={x |-2≤x ≤2},因A ∪B =A ,4-x 2则B ⊆A ,所以有所以-2≤a ≤1.{a ≥-2,a +1≤2,)答案:C15.集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合是________.解析:易知A =(-1,2),B =(-∞,1),所以∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.答案:[1,2)16.(2019·中原名校联考)已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.解析:由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}={x |0<x <1},B ={x |x 2-cx <0,c >0}={x |0<x <c }.由A ⊆B ,画出数轴,如图所示,得c ≥1.答案:[1,+∞)。
2020年高中数学课时跟踪检测含解析(全一册)新人教A版
2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。
2020版高考数学人教版理科一轮复习课时作业:11 函数与方程
课时作业11 函数与方程一、选择题1.函数f (x )=⎩⎪⎨⎪⎧ln x ,x >0,-x (x +2),x ≤0的零点个数是( D ) A .0B .1C .2D .3解析:当x >0时,令f (x )=0可得x =1;当x ≤0时,令f (x )=0可得x =-2或x =0.因此函数的零点个数为3.故选D.2.方程ln(x +1)-2x =0(x >0)的根存在的大致区间是( B )A .(0,1)B .(1,2)C .(2,e)D .(3,4)解析:令f (x )=ln(x +1)-2x ,则f (1)=ln(1+1)-2=ln2-2<0,f (2)=ln3-1>0,所以函数f (x )的零点所在大致区间为(1,2).故选B.3.已知函数f (x )=log 3x +2x -a 在区间(1,2)内有零点,则实数a的取值范围是( C )A .(-1,-log 32)B .(0,log 52)C .(log 32,1)D .(1,log 34)解析:∵单调函数f (x )=log 3x +2x -a 在区间(1,2)内有零点,∴f (1)·f (2)<0,即(1-a )·(log 32-a )<0,解得log 32<a <1,故选C.4.关于x 的方程|x 2-2x |=a 2+1(a >0)的解的个数是( B )A .1B .2C .3D .4解析:∵a >0,∴a 2+1>1.而y =|x 2-2x |的图象如图所示,∴y =|x 2-2x |的图象与y =a 2+1的图象总有2个交点,即方程|x 2-2x |=a 2+1(a >0)的解的个数是2.5.(2019·广东七校联合体联考)若函数f (x )=2x +a 2x -2a 的零点在区间(0,1)上,则实数a 的取值范围是( C )A.⎝ ⎛⎭⎪⎫-∞,12 B .(-∞,1) C.⎝ ⎛⎭⎪⎫12,+∞ D .(1,+∞)解析:易知函数f (x )的图象连续,且在(0,1)上单调递增.∴f (0)f (1)=(1-2a )(2+a 2-2a )<0,解得a >12.6.已知函数f (x )=ln x -ax 2+ax 恰有两个零点,则实数a 的取值范围为( C )A .(-∞,0)B .(0,+∞)。
2020届高考数学(理科)总复习课时跟踪练:(十一)函数与方程 Word版含解析
课时跟踪练(十一)A 组 基础巩固1.已知函数f (x )=则函数f (x )的零点为( ){2x -1,x ≤1,1+log 2x ,x >1,)A.,0 B .-2,012C. D .012解析:当x ≤1时,由f (x )=2x -1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =,又因为x >1,所以此时方程无12解.综上,函数f (x )的零点只有0.答案:D2.(2019·豫西南部分示范性高中联考)函数f (x )=ln x -的零点2x 2所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:f (x )=ln x -在定义域(0,+∞)上是增函数,2x 2又f (1)=-2<0,f (2)=ln 2->0,12则f (1)·f (2)<0,故f (x )的零点在区间(1,2)内.答案:B3.函数f (x )=3x |ln x |-1的零点个数为( )A .1B .2C .3D .4解析:函数f (x )=3x |ln x |-1的零点即3x |ln x |-1=0的解,即|lnx |=的解.(13)x作出函数g (x )=|ln x |和函数h (x )=的图象,由图象可知,两(13)x 函数图象有两个公共点,故函数f (x )=3x |ln x |-1有2个零点.答案:B4.函数f (x )=2x --a 的一个零点在区间(1,2)内,则实数a 的2x取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:因为函数f (x )=2x --a 在区间(1,2)上单调递增,又函2x数f (x )=2x --a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所2x以(-a )(4-1-a )<0,即a (a -3)<0,所以0<a <3.答案:C5.(2019·湖北七校联考)已知f (x )是奇函数且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A. B. C .- D .-14187838解析:令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ,即2x 2-x +1+λ=0只有一个实根,则Δ=1-8(1+λ)=0,解得λ=-.78答案:C6.已知函数f (x )=2x +x +1,g (x )=log 2x +x +1,h (x )=log 2x -1的零点依次为a ,b ,c ,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c解析:令函数f (x )=2x +x +1=0,可知x <0,即a <0;令g (x )=log 2x +x +1=0,则0<x <1,即0<b <1;令h (x )=log 2x -1=0,可知x =2,即c =2.显然a <b <c .答案:A7.已知函数f (x )=则使方程x +f (x )=m 有解的实{1,x ≤0,1x ,x >0,)数m 的取值范围是( )A .(1,2)B .(-∞,-2]C .(-∞,1)∪(2,+∞)D .(-∞,1]∪[2,+∞)解析:当x ≤0时,x +f (x )=m ,即x +1=m ,解得m ≤1;当x >0时,x +f (x )=m ,即x +=m ,解得m ≥2,即实数m 的取值范围是(-1x∞,1]∪[2,+∞).答案:D8.(2019·安庆二模)定义在R 上的函数f (x ),满足f (x )=且f (x +1)=f (x -1),若g (x )=3-log 2x ,{x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),)则函数F (x )=f (x )-g (x )在(0,+∞)内的零点有( )A .3个B .2个C .1个D .0个解析:由f (x +1)=f (x -1),即f (x +2)=f (x ),知y =f (x )的周期T =2.。
2020版高考数学人教版理科一轮复习课时作业:11 函数与方程含解析
课时作业11 函数与方程一、选择题1.函数f (x )=Error!的零点个数是( D )A .0B .1C .2D .3解析:当x >0时,令f (x )=0可得x =1;当x ≤0时,令f (x )=0可得x =-2或x =0.因此函数的零点个数为3.故选D.2.方程ln(x +1)-=0(x >0)的根存在的大致区间是( B )2x A .(0,1)B .(1,2)C .(2,e)D .(3,4)解析:令f (x )=ln(x +1)-,则f (1)=ln(1+1)-2=ln2-2<0,f (2)2x =ln3-1>0,所以函数f (x )的零点所在大致区间为(1,2).故选B.3.已知函数f (x )=log 3-a 在区间(1,2)内有零点,则实数a 的取值范x +2x 围是( C )A .(-1,-log 32)B .(0,log 52)C .(log 32,1)D .(1,log 34)解析:∵单调函数f (x )=log 3-a 在区间(1,2)内有零点,∴f (1)·f (2)x +2x <0,即(1-a )·(log 32-a )<0,解得log 32<a <1,故选C.4.关于x 的方程|x 2-2x |=a 2+1(a >0)的解的个数是( B )A .1B .2C .3D .4解析:∵a >0,∴a 2+1>1.而y =|x 2-2x |的图象如图所示,∴y =|x 2-2x |的图象与y =a 2+1的图象总有2个交点,即方程|x 2-2x |=a 2+1(a >0)的解的个数是2.5.(2019·广东七校联合体联考)若函数f (x )=2x +a 2x -2a 的零点在区间(0,1)上,则实数a 的取值范围是( C )A.B .(-∞,1)(-∞,12)C.D .(1,+∞)(12,+∞)解析:易知函数f (x )的图象连续,且在(0,1)上单调递增.∴f (0)f (1)=(1-2a )(2+a 2-2a )<0,解得a >.126.已知函数f (x )=ln x -ax 2+ax 恰有两个零点,则实数a 的取值范围为( C )A .(-∞,0)B .(0,+∞)C .(0,1)∪(1,+∞)D .(-∞,0)∪{1}解析:由题意,显然x =1是函数f (x )的一个零点,取a =-1,则f (x )=ln x +x 2-x ,f ′(x )==>0恒成立.则f (x )仅有一个零2x 2-x +1x 2(x -14)2+78x 点,不符合题意,排除A 、D ;取a =1,则f (x )=ln x -x 2+x ,f ′(x )==,f ′(x )=0得x =1,则f (x )在(0,1)上递增,在1-2x 2+x x (1+2x )(1-x )x (1,+∞)上递减,f (x )max =f (1)=0,即f (x )仅有一个零点,不符合题意,排除B ,故选C.二、填空题7.已知f (x )=Error!则函数g (x )=f (x )-e x 的零点个数为2.解析:函数g (x )=f (x )-e x 的零点个数即为函数y =f (x )与y =e x 的图象的交点个数.作出函数图象可知有2个交点,即函数g (x )=f (x )-e x 有2个零点.8.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是.{x |-32<x <1}解析:∵f (x )=x 2+ax +b 的两个零点是-2,3.∴-2,3是方程x 2+ax +b =0的两根,由根与系数的关系知Error!∴Error!∴f (x )=x 2-x -6.∵不等式af (-2x )>0,即-(4x 2+2x -6)>0⇔2x 2+x -3<0,解集为.{x|-32<x <1}9.已知函数f (x )=Error!则函数f (x )的零点个数为3.解析:解法1:当x >1时,由log 2(x -1)=0得x =2,即x =2为函数f (x )在区间(1,+∞)上的一个零点;当x ≤1时,∵f (x )=x 3-3x +1,∴f ′(x )=3x 2-3,由f ′(x )=0得x =-1或x =1,∵当x <-1时,f ′(x )>0,当-1≤x ≤1时,f ′(x )≤0,∴x =-1为函数f (x )=x 3-3x +1在(-∞,1]上的极大值点,∵f (-1)=3>0,f (1)=-1<0,且当x →-∞时,f (x )→-∞,∴函数f (x )=x 3-3x +1在(-∞,1]上有两个不同的零点.综上,函数f (x )的零点个数为3.解法2:当x >1时,作出函数y =log 2(x -1)的图象如图1所示,当x ≤1时,由f (x )=x 3-3x +1=0得,x 3=3x -1,在同一个平面直角坐标系中分别作出函数y =x 3和y =3x -1的图象如图2所示,由图1,2可知函数f (x )的零点个数为3.10.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 015x +log 2 015x ,则在R 上,函数f (x )零点的个数为3.解析:因为函数f (x )为R 上的奇函数,所以f (0)=0,当x >0时,f (x )=2 015x +log 2015x 在区间内存在(0,12 015)一个零点,又f (x )为增函数,因此在(0,+∞)内有且仅有一个零点.根据对称性可知函数在(-∞,0)内有且仅有一个零点,从而函数f (x )在R 上的零点个数为3.三、解答题11.已知函数f (x )=x 3-x 2++.x 214证明:存在x 0∈,使f (x 0)=x 0.(0,12)证明:令g (x )=f (x )-x .∵g (0)=,g =f -=-,∴g (0)·g <0.14(12)(12)1218(12)又函数g (x )在上是连续曲线,[0,12]∴存在x 0∈,使g (x 0)=0,即f (x 0)=x 0.(0,12)12.已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.解:f (x )=2ax 2+2x -3-a 的对称轴为x =-.12a ①当-≤-1,即0<a ≤时,须使Error!12a 12即Error!∴无解.②当-1<-<0,即a >时,须使Error!即12a 12Error!解得a ≥1,∴a 的取值范围是[1,+∞).13.(2019·惠州市调研考试)函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=Error!则函数g (x )=xf (x )-1在[-6,+∞)上的所有零点之和为( A )A .8B .32C.D .012解析:令g (x )=xf (x )-1=0,则x ≠0,所以函数g (x )的零点之和等价于函数y =f (x )的图象和y =的图象的交点的横坐标之和,分别作出x >0时,1x y =f (x )和y =的大致图象,如图所示,1x 由于y =f (x )和y =的图象都关于原点对称,因此函数g (x )在[-6,6]上的1x 所有零点之和为0,而当x =8时,f (x )=,即两函数的图象刚好有1个交点,18且当x ∈(8,+∞)时,y =的图象都在y =f (x )的图象的上方,因此g (x )在1x [-6,+∞)上的所有零点之和为8.故选A.14.已知关于x 的方程|2x -10|=a 有两个不同的实根x 1,x 2,且x 2=2x 1,则实数a =6.尖子生小题库——供重点班学生使用,普通班学生慎用15.(2019·福州四校联考)已知函数f (x )=Error!若F (x )=f [f (x )+1]+m 有两个零点x 1,x 2,则x 1·x 2的取值范围是( D)A .[4-2ln2,+∞) B .(,+∞)e C .(-∞,4-2ln2] D .(-∞,)e 16.(2019·德州模拟)已知函数f (x )=-x 2-2x .g (x )=Error!(1)求g [f (1)]的值;(2)若方程g [f (x )]-a =0有4个实数根,求实数a 的取值范围.解:(1)∵f (1)=-12-2×1=-3,∴g [f (1)]=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象,如图所示,由图象可知,当1≤a <时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值54范围是.[1,54)。
2020版高考数学一轮复习课时作业11函数与方程(理)(含解析)新人教版
课时作业11 函数与方程一、选择题1.函数f (x )=⎩⎪⎨⎪⎧ln x ,x >0,-x x +2,x ≤0的零点个数是( D )A .0B .1C .2D .3解析:当x >0时,令f (x )=0可得x =1;当x ≤0时,令f (x )=0可得x =-2或x =0.因此函数的零点个数为3.故选D.2.方程ln(x +1)-2x=0(x >0)的根存在的大致区间是( B )A .(0,1)B .(1,2)C .(2,e)D .(3,4)解析:令f (x )=ln(x +1)-2x,则f (1)=ln(1+1)-2=ln2-2<0,f (2)=ln3-1>0,所以函数f (x )的零点所在大致区间为(1,2).故选B.3.已知函数f (x )=log 3x +2x-a 在区间(1,2)内有零点,则实数a 的取值范围是( C ) A .(-1,-log 32) B .(0,log 52) C .(log 32,1)D .(1,log 34)解析:∵单调函数f (x )=log 3x +2x-a 在区间(1,2)内有零点,∴f (1)·f (2)<0,即(1-a )·(log 32-a )<0,解得log 32<a <1,故选C.4.关于x 的方程|x 2-2x |=a 2+1(a >0)的解的个数是( B ) A .1 B .2 C .3 D .4解析:∵a >0,∴a 2+1>1.而y =|x 2-2x |的图象如图所示,∴y =|x 2-2x |的图象与y =a 2+1的图象总有2个交点,即方程|x 2-2x |=a 2+1(a >0)的解的个数是2.5.(2019·广东七校联合体联考)若函数f (x )=2x+a 2x -2a 的零点在区间(0,1)上,则实数a 的取值范围是( C )A.⎝⎛⎭⎪⎫-∞,12 B .(-∞,1) C.⎝ ⎛⎭⎪⎫12,+∞D .(1,+∞)解析:易知函数f (x )的图象连续,且在(0,1)上单调递增.∴f (0)f (1)=(1-2a )(2+a 2-2a )<0,解得a >12.6.已知函数f (x )=ln x -ax 2+ax 恰有两个零点,则实数a 的取值范围为( C ) A .(-∞,0) B .(0,+∞) C .(0,1)∪(1,+∞)D .(-∞,0)∪{1}解析:由题意,显然x =1是函数f (x )的一个零点,取a =-1,则f (x )=ln x +x 2-x ,f ′(x )=2x 2-x +1x=2⎝ ⎛⎭⎪⎫x -142+78x>0恒成立.则f (x )仅有一个零点,不符合题意,排除A 、D ;取a =1,则f (x )=ln x -x 2+x ,f ′(x )=1-2x 2+x x =1+2x 1-xx,f ′(x )=0得x =1,则f (x )在(0,1)上递增,在(1,+∞)上递减,f (x )max =f (1)=0,即f (x )仅有一个零点,不符合题意,排除B ,故选C.二、填空题7.已知f (x )=⎩⎪⎨⎪⎧x +3,x ≤1,-x 2+2x +3,x >1,则函数g (x )=f (x )-e x的零点个数为2.解析:函数g (x )=f (x )-e x的零点个数即为函数y =f (x )与y =e x的图象的交点个数.作出函数图象可知有2个交点,即函数g (x )=f (x )-e x有2个零点.8.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是⎩⎨⎧⎭⎬⎫x|-32<x <1.解析:∵f (x )=x 2+ax +b 的两个零点是-2,3. ∴-2,3是方程x 2+ax +b =0的两根,由根与系数的关系知⎩⎪⎨⎪⎧-2+3=-a ,-2×3=b .∴⎩⎪⎨⎪⎧a =-1,b =-6,∴f (x )=x 2-x -6.∵不等式af (-2x )>0,即-(4x 2+2x -6)>0⇔2x 2+x -3<0,解集为⎩⎨⎧⎭⎬⎫x|-32<x <1.9.已知函数f (x )=⎩⎪⎨⎪⎧log 2x -1,x >1,x 3-3x +1,x ≤1,则函数f (x )的零点个数为3.解析:解法1:当x >1时,由log 2(x -1)=0得x =2,即x =2为函数f (x )在区间(1,+∞)上的一个零点;当x ≤1时,∵f (x )=x 3-3x +1,∴f ′(x )=3x 2-3,由f ′(x )=0得x =-1或x =1,∵当x <-1时,f ′(x )>0,当-1≤x ≤1时,f ′(x )≤0,∴x =-1为函数f (x )=x 3-3x +1在(-∞,1]上的极大值点,∵f (-1)=3>0,f (1)=-1<0,且当x →-∞时,f (x )→-∞,∴函数f (x )=x 3-3x +1在(-∞,1]上有两个不同的零点.综上,函数f (x )的零点个数为3.解法2:当x >1时,作出函数y =log 2(x -1)的图象如图1所示,当x ≤1时,由f (x )=x 3-3x +1=0得,x 3=3x -1,在同一个平面直角坐标系中分别作出函数y =x 3和y =3x -1的图象如图2所示,由图1,2可知函数f (x )的零点个数为3.10.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 015x+log 2 015x ,则在R 上,函数f (x )零点的个数为3.解析:因为函数f (x )为R 上的奇函数,所以f (0)=0,当x >0时,f (x )=2 015x+log 2 015x 在区间⎝ ⎛⎭⎪⎫0,12 015内存在一个零点,又f (x )为增函数,因此在(0,+∞)内有且仅有一个零点.根据对称性可知函数在(-∞,0)内有且仅有一个零点, 从而函数f (x )在R 上的零点个数为3. 三、解答题11.已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈⎝ ⎛⎭⎪⎫0,12,使f (x 0)=x 0. 证明:令g (x )=f (x )-x .∵g (0)=14,g ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫12-12=-18,∴g (0)·g ⎝ ⎛⎭⎪⎫12<0. 又函数g (x )在⎣⎢⎡⎦⎥⎤0,12上是连续曲线,∴存在x 0∈⎝ ⎛⎭⎪⎫0,12,使g (x 0)=0,即f (x 0)=x 0. 12.已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.解:f (x )=2ax 2+2x -3-a 的对称轴为x =-12a.①当-12a ≤-1,即0<a ≤12时,须使⎩⎪⎨⎪⎧f -1≤0,f 1≥0,即⎩⎪⎨⎪⎧a ≤5,a ≥1,∴无解.②当-1<-12a <0,即a >12时,须使⎩⎪⎨⎪⎧f ⎝⎛⎭⎪⎫-12a ≤0,f 1≥0,即⎩⎪⎨⎪⎧-12a -3-a ≤0,a ≥1,解得a ≥1,∴a 的取值范围是[1,+∞).13.(2019·惠州市调研考试)函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=⎩⎪⎨⎪⎧2|x -1|-1,0<x ≤2,12f x -2,x >2,则函数g (x )=xf (x )-1在[-6,+∞)上的所有零点之和为( A )A .8B .32 C.12D .0解析:令g (x )=xf (x )-1=0,则x ≠0,所以函数g (x )的零点之和等价于函数y =f (x )的图象和y =1x 的图象的交点的横坐标之和,分别作出x >0时,y =f (x )和y =1x的大致图象,如图所示,由于y =f (x )和y =1x的图象都关于原点对称,因此函数g (x )在[-6,6]上的所有零点之和为0,而当x =8时,f (x )=18,即两函数的图象刚好有1个交点,且当x ∈(8,+∞)时,y =1x的图象都在y =f (x )的图象的上方,因此g (x )在[-6,+∞)上的所有零点之和为8.故选A.14.已知关于x 的方程|2x-10|=a 有两个不同的实根x 1,x 2,且x 2=2x 1,则实数a =6.尖子生小题库——供重点班学生使用,普通班学生慎用 15.(2019·福州四校联考)已知函数f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,1-x2,x <1,若F (x )=f [f (x )+1]+m 有两个零点x 1,x 2,则x 1·x 2的取值范围是( D ) A .[4-2ln2,+∞) B .(e ,+∞) C .(-∞,4-2ln2]D .(-∞,e)16.(2019·德州模拟)已知函数f (x )=-x 2-2x .g (x )=⎩⎪⎨⎪⎧x +14x,x >0,x +1,x ≤0.(1)求g [f (1)]的值;(2)若方程g [f (x )]-a =0有4个实数根,求实数a 的取值范围. 解:(1)∵f (1)=-12-2×1=-3, ∴g [f (1)]=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象,如图所示,由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎢⎡⎭⎪⎫1,54.。
2020届高考总复习数学(文科)课时跟踪练(二)
课时跟踪练(二)A 组基础巩固1. 设m € R,命题“若m>0,则方程x2+ x—m= 0有实根”的逆否命题是()A .若方程x2+ x—m= 0有实根,则m>0B.若方程x2+ x—m= 0有实根,则m<0C .若方程x2+ x—m= 0没有实根,则m>0D .若方程x2+ x—m= 0没有实根,则m< 0解析:根据逆否命题的定义,命题“若m>0,则方程x2+ x —m=0有实根”的逆否命题是“若方程x2+ x—m = 0没有实根,则m< 0”.答案:D2. (2018 天津卷)设x€ R 则x3>8”是“|>2 的()A .充分不必要条件B.必要不充分条件C .充要条件D.既不充分也不必要条件解析:由x3>8? x>2? |x|>2,反之不成立,故“X3>8”是仪|>2”的充分不必要条件.故选 A.答案:A3. (20佃济南外国语中学月考)设a>b, a, b, c€ R,则下列命题为真命题的是()2 2 aA. ac2>bc B・b>12 2C. a—c>b—cD. a >b解析:对于选项A, a>b,若c= 0,则ac2= bc?,故A错;对于a选项B,a>b,若a>0,b<0,则b<1,故B错;对于选项C,a>b,则a—c>b—c,故C正确;对于选项D,a>b,若a,b均小于0,则a2<b,故D错.答案:C4. (2019 张家界二模)设集合A= {x|x> —1},B = {x|x> 1},则“x€ A且x?B”成立的充要条件是()A. —1<x< 1B. x< 1C. x> —1D. —1<x<1解析:因为集合A= {x|x>—1},B = {x|x> 1},又因为“x€ A且x?B”,所以—1<x<1;又当—1<x<1时,满足x€ A且x?B,所以“x € A且x?B”成立的充要条件是“—1vxv1 ”.答案:D-J25. (2019焦作模拟)设0€ R,贝厂cos皓专”是“tan 0= 1”的()A .充分不必要条件B. 必要不充分条件C .充要条件D .既不充分也不必要条件解析:由COS B=¥,得0= ± + k n, k€ Z,由tan 0= 1,得0= 4 + k n, k € Z,所以“ COS0=¥”是“tan 0= 1”的既不充分也不必要条件.答案:D6. 原命题:设a、b、C€ R,若“ a>b”,贝卩“ ac2>be2”,以及它的逆命题、否命题、逆否命题中,真命题共有()A. 0个B. 1个C. 2个D. 4个解析:原命题:若e= 0,则不成立,由等价命题同真同假知其逆否命题也为假;逆命题为设a, b, e€ R,若“ae2>be2”,贝S “a >b”.由ac >be2知e2>0,所以由不等式的基本性质得a>b,所以逆命题为真,由等价命题同真同假知否命题也为真,所以真命题共有2个,故选C.答案:C7. 已知条件p:x>1或x< —3,条件q:5x —6>x2,贝卩?p 是?q的()A .充分不必要条件B. 必要不充分条件C .充要条件D.既不充分也不必要条件解析:由5x—6>x2,得2<x<3,即q: 2<x<3.所以q? p, p ' q,所以?p? ?q, ?q * ?p,所以?p是?q的充分不必要条件.答案:A8. 下列结论错误的是()A. 命题“若x2-3x —4= 0,则x= 4”的逆否命题为“若X M4, 则x2-3x-4M0”B. “x= 4”是“ x2—3x—4= 0”的充分条件C .命题“若m>0,则方程x2+ x—m = 0有实根”的逆命题为真命题D .命题“若m2+ n2= 0,则m = 0且n= 0”的否命题是“若m2 + n2M0,贝卩m M0或n M0”解析:C项命题的逆命题为“若方程x2+ x—m= 0有实根,则1m>0”.若方程有实根,则△= 1+ 4m>0,即m> —4,所以不是真命题.答案:C9. (2019广东省际名校联考)王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的__________ 件.解析:“不破楼兰终不还”的逆否命题为“若返回家乡,则攻破楼兰”,所以“攻破楼兰”是“返回家乡”的必要条件.答案:必要10. 直线x—y—k= 0与圆(x—1)2+ y2= 2有两个不同交点的充要条件是________ .解析:直线x —y- k= 0与圆(x —1)2+ y2= 2有两个不同交点等价于n—;k|< 2,解得—i<k<3.答案:—1<kv311.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+ y= 0,则x, y互为相反数”的逆命题;③“若x2v4,则—2v x v 2”的逆否命题.其中真命题的序号是________ .解析:①原命题的否命题为“若a<b,则a2<b2”,错误.②原命题的逆命题为“若x, y互为相反数,则x + y= 0”正确.③原命题的逆否命题为“若x>2或x< —2,则x2>4”,正确. 答案:②③12. (2019 湖南师大附中月考)设p:ln(2x—1)< 0, q:(x —a)[x —(a + 1)]< 0,若q是p的必要不充分条件,则实数a的取值范围是■A .充分不必要条件B. 必要不充分条件C. 充分必要条件D .既不充分也不必要条件解析:法一因为数列{a n}是公差为d的等差数列,所以S4= 4a1+ 6d, S5= 5a1+ 10d, S6 = 6a1+ 15d,所以S4+ S6= 10a i + 21d, 2S5= 10a i + 20d・若d>0,贝S 21d>20d, 10a1 + 21d>10a1 + 20d,即S4+ S6>2S5・若S4 + S6>2S5,则10a1 + 21d>10a1 + 20d,即21d>20d,所以d>0•所以d>0”是“S4 + S6>2S5”的充分必要条件.故选C・法二因为S4+ S6>2S5? S4+ S4+ a5+ a6>2(S4+ a5)? a6>a5? a5 + d>a5?d>0,所以d>0”是“S4 + S6>2S5”的充分必要条件.故选C・答案:C14. (2019河南高考适应性考试)下列说法中,正确的是()A .命题“若am2<bm2,则avb”的逆命题是真命题B. 命题“ ?x°€ R, x0 —X o>0” 的否定是“ ?x€ R, x2—x< 0”C. 命题“ p或q”为真命题,则命题p”和命题q”均为真命题D. 已知x€ R,贝S x>1”是x>2”的充分不必要条件解析:选项A的逆命题为“若avb,则am2vbm2”,当m = 0时,不成立,所以是假命题;易知选项B正确;对于选项C,命题“p或q”为真命题,则命题p”和命题q”至少有一个是真命题,所以是假命题;对于选项D,X>1”是X>2”的必要不充分条件,所以是假命题.答案:BM a15. (2019天津六校联考)“a= 1”是函数f(x)=——e x是奇函数a e的_______ 件.解析:当[a= 1 时,f( —x) = —f(x)(x€ R),则f(x)是奇函数,充分性成立.若f(x)为奇函数,恒有f( —x)= —f(x),得(1 —a2)(e2x+1)= 0,则a =±,必要性不成立.e x a故“a= 1”是“函数f(x) = - —e是奇函数”的充分不必要条件.a e答案:充分不必要16. (2019江西新课程教学质量监测)已知命题p:x2+ 2x—3>0;x——a命题q: -------- >0,且?q的一个必要不充分条件是?p,则a的取值x—a —1范围是________ .解析:由x2+ 2x —3>0 得x< —3 或x>1.则?p:—3< x< 1.命题q:x>a+ 1 或x<a,贝U ?q:a< x< a+1.依题意?q是?p的充分不必要条件.a》一3,则解得—3w a w 0.l a+1 w 1.答案:[—3, 0]1解析:由p得:2<x w 1,由q得:a<x<a+1,因为q是p的必1 1要不充分条件,所以a< 2且a+ 1> 1,所以0w a<2・答案:0, * 1B组素养提升13. [一题多解](2017浙江卷)已知等差数列{a n}的公差为d,前n 项和为S n,则d>0” 是“S4+ S6>2S5”的()。
高考数学文科总复习课时跟踪检测试卷(11)函数与方程
高考数学文科总复习课时跟踪检测试卷(11)函数与方程一抓基础,多练小题做到眼疾手快1.下列函数中,在(-1,1)内有零点且单调递增的是( ) A .y =log 12xB .y =2x -1C .y =x 2-12D .y =-x 3解析:选B 函数y =log 12x 在定义域上是减函数,y =x 2-12在(-1,1)上不是单调函数,y =-x 3在定义域上单调递减,均不符合要求.对于y =2x -1,当x =0∈(-1,1)时,y =0且y =2x -1在R 上单调递增.故选B.2.(2017·豫南十校联考)函数f (x )=x 3+2x -1的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:选A 因为f (0)=-1<0,f (1)=2>0,则f (0)·f (1)=-2<0,且函数f (x )=x 3+2x -1的图象是连续曲线,所以f (x )在区间(0,1)内有零点.3.已知函数y =f (x )的图象是连续不断的曲线,且有如下的对应值表:则函数y =f (x )在区间[1,6]上的零点至少有( ) A .2个 B .3个 C .4个D .5个解析:选B 依题意,f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.4.已知函数f (x )=23x +1+a 的零点为1,则实数a 的值为______.解析:由已知得f (1)=0,即231+1+a =0,解得a =-12.答案:-125.已知关于x 的方程x 2+mx -6=0的一个根比2大,另一个根比2小,则实数m 的取值范围是______.解析:设函数f (x )=x 2+mx -6,则根据条件有f (2)<0,即4+2m -6<0,解得m <1. 答案:(-∞,1)二保高考,全练题型做到高考达标1.函数f (x )=ln x +2x -6的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:选C ∵y =ln x 与y =2x -6在(0,+∞)上都是增函数, ∴f (x )=ln x +2x -6在(0,+∞)上是增函数. 又f (1)=-4,f (2)=ln 2-2<ln e -2<0, f (3)=ln 3>0.∴零点在区间(2,3)上,故选C.2.函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .7D .0解析:选B 法一:由f (x )=0得⎩⎪⎨⎪⎧ x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e.因此函数f (x )共有2个零点.法二:函数f (x )的图象如图所示,由图象知函数f (x )共有2个零点.3.(2017·郑州质检)已知函数f (x )=⎝⎛⎭⎫12x-cos x ,则f (x )在[0,2π]上的零点个数为( ) A .1 B .2 C .3D .4解析:选C 作出g (x )=⎝⎛⎭⎫12x 与h (x )=cos x 的图象如图所示,可以看到其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3,故选C. 4.(2016·宁夏育才中学第四次月考)已知函数f (x )=错误!(a ∈R),若函数f (x )在R 上有两个零点,则a 的取值范围是( )A .(-∞,-1)B .(-∞,0)C .(-1,0)D .[-1,0)解析:选D 当x >0时,f (x )=3x -1有一个零点x =13,所以只需要当x ≤0时,e x +a =0有一个根即可,即e x =-a .当x ≤0时,e x ∈(0,1],所以-a ∈(0,1],即a ∈[-1,0),故选D.5.(2016·湖南考前演练)设x 0是函数f (x )=2x -|log 2x |-1的一个零点,若a >x 0,则f (a )满足( ) A .f (a )>0 B .f (a )<0 C .f (a )≥0D .f (a )≤0解析:选A 当x >1时,f (x )=2x -log 2x -1,易证2x >x +1>x .又函数y =2x 的图象与y =log 2x 的图象关于直线y =x 对称,所以2x >x +1>x >log 2x ,从而f (x )>0.故若a >1,有f (a )>0;若0<a ≤1,因为当0<x ≤1时,f (x )=2x +log 2x -1,显然f (x )单调递增,又f (1)=1>0,f ⎝⎛⎭⎫12=2-2<0,所以x 0是f (x )唯一的零点,且0<x 0<1,所以f (a )>0,故选A.6.已知函数f (x )=⎩⎪⎨⎪⎧-2, x >0,-x 2+bx +c ,x ≤0,若f (0)=-2,f (-1)=1,则函数g (x )=f (x )+x 的零点个数为________.解析:依题意得⎩⎪⎨⎪⎧ c =-2,-1-b +c =1,解得⎩⎪⎨⎪⎧b =-4,c =-2.令g (x )=0,得f (x )+x =0,该方程等价于①⎩⎪⎨⎪⎧ x >0,-2+x =0,或②⎩⎪⎨⎪⎧x ≤0,-x 2-4x -2+x =0,解①得x =2,解②得x =-1或x =-2, 因此,函数g (x )=f (x )+x 的零点个数为3. 答案:37.已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是______.解析:函数g (x )=f (x )-m 有3个零点,转化为f (x )-m =0的根有3个,进而转化为y =f (x ),y =m 的交点有3个.画出函数y =f (x )的图象,则直线y =m 与其有3个公共点.又抛物线顶点为(-1,1),由图可知实数m 的取值范围是(0,1).答案:(0,1)8.方程2x +3x =k 的解在[1,2)内,则k 的取值范围为______. 解析:令函数f (x )=2x +3x -k , 则f (x )在R 上是增函数.当方程2x +3x =k 的解在(1,2)内时,f (1)·f (2)<0, 即(5-k )(10-k )<0, 解得5<k <10. 当f (1)=0时,k =5. 答案:[5,10)9.已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈⎝⎛⎭⎫0,12,使f (x 0)=x 0. 证明:令g (x )=f (x )-x .∵g (0)=14,g ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12-12=-18,∴g (0)·g ⎝⎛⎭⎫12<0.又函数g (x )在⎣⎡⎦⎤0,12上是连续曲线, ∴存在x 0∈⎝⎛⎭⎫0,12,使g (x 0)=0,即f (x 0)=x 0. 10.已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.解:f (x )=2ax 2+2x -3-a 的对称轴为x =-12a.①当-12a ≤-1,即0<a ≤12时,须使⎩⎪⎨⎪⎧f (-1)≤0,f (1)≥0,即⎩⎪⎨⎪⎧a ≤5,a ≥1,∴无解.②当-1<-12a <0,即a >12时,须使⎩⎪⎨⎪⎧ f ⎝⎛⎭⎫-12a ≤0,f (1)≥0,即⎩⎪⎨⎪⎧-12a -3-a ≤0,a ≥1, 解得a ≥1,∴a 的取值范围是[1,+∞). 三上台阶,自主选做志在冲刺名校1.函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0,f (x +1),x <0,若方程f (x )=-x +a 有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(-∞,0)B .[0,1)C .(-∞,1)D .[0,+∞)解析:选C 函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0,f (x +1),x <0的图象如图所示,作出直线l :y =a -x ,向左平移直线l ,观察可得函数y =f (x )的图象与直线l :y =-x +a 的图象有两个交点,即方程f (x )=-x +a 有且只有两个不相等的实数根, 即有a <1,故选C.2.已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}. (1)求函数f (x )的解析式;(2)求函数g (x )=f (x )x-4ln x 的零点个数.解:(1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}, ∴f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. ∴f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3.(2)∵g (x )=x 2-2x -3x -4ln x =x -3x -4ln x -2(x >0),∴g ′(x )=1+3x 2-4x =(x -1)(x -3)x 2.令g′(x)=0,得x1=1,x2=3.当x变化时,g′(x),g(x)的取值变化情况如下:当0<x又因为g(x)在(3,+∞)上单调递增,因而g(x)在(3,+∞)上只有1个零点.故g(x)在(0,+∞)上仅有1个零点.。
2020版高考文科数学(北师大版)一轮复习试题:第二章+函数+课时规范练11+Word版含答案
2020版高考文科数学(北师大版)一轮复习试题课时规范练11函数的图像基础巩固组1.函数f(x)=则y=f(x+1)的图像大致是()2.已知f(x)=2x,则函数y=f(|x-1|)的图像为()3.(2018浙江,5)函数y=2|x|sin 2x的图像可能是()4.(2017全国3,文7)函数y=1+x+的部分图像大致为()5.已知函数f(x)=x2+e x- (x<0)与g(x)=x2+ln(x+a)的图像上存在关于y轴对称的点,则a的取值范围是()A. B.(-∞,)C. D.6.(2018衡水中学押题二,7)函数y=sin x+ln|x|在区间[-3,3]的图像大致为()7.已知函数f(x)(x∈R)满足f(x)=-f(2x),若函数y=|x2-2x-3|与y=f(x)图像的交点为(x1,y1),(x2,y2),…,(x m,y m),则x i=()A.0B.mC.2mD.4m8.已知函数f(x)满足f(x+1)=-f(x),且f(x)是偶函数,当x∈[0,1]时,f(x)=x2.若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围为.综合提升组9.已知当0<x≤时,4x<log a x,则a的取值范围是()A. B.C.(1,)D.(,2)10.(2018湖南长郡中学四模,8)若实数x,y满足|x-1|-ln=0,则y关于x的函数图像大致形状是()11.已知f(x)=则函数y=2f2(x)-3f(x)+1的零点个数是.12.(2018河北衡水中学押题二,16)已知函数f(x)=若函数g(x)=f(x)+3m有3个零点,则实数m的取值范围是.创新应用组13.(2018河北衡水中学金卷一模,12)若函数y=f(x)满足:①f(x)的图像是中心对称图形;②当x∈D时,f(x)图像上的点到其对称中心的距离不超过一个正数M,则称f(x)是区间D上的“M对称函数”.若函数f(x)=(x+1)3+m(m>0)是区间[-4,2]上的“M对称函数”,则实数M的取值范围是()A.[3,+∞)B.[,+∞)C.(0,3]D.(3,+∞)14.(2018河北衡水中学17模,9)函数y=x∈的图像大致是()。
2020年高考一轮复习数学(文)课时跟踪检测(十一)函数与方程
课时跟踪检测(十一) 函数与方程一抓基础,多练小题做到眼疾手快21已知函数f(x)= JXR+ a的零点为1,则实数a的值为 ______________解析:2 1由已知得f(1) = 0,即717 + a= 0,解得a=—-.1答案:-22.已知关于x的方程x2+ mx- 6= 0的一个根比2大,另一个根比2小,则实数m的取值范围是_______________ .解析:设函数f(x) = x2+ mx-6,则根据条件有f(2) v 0,即卩4 + 2m-6v 0,解得m v 1. 答案:(—3 1)f- 2, x> 0,3•已知函数f(x)= 2若f(0)=- 2, f(- 1) = 1,则函数g(x) = f(x)-x2+ bx+ c, x< 0,+x的零点个数为 ________c=- 2,解析:依题意得*—1 —b+ c= 1,由此解得b=- 4, c=- 2.由g(x)= 0 得f(x) + x = 0,该方程等价于广°—2 + x= 0,严0,—x2- 4x —2+ x= 0.解①得x= 2,解②得x=- 1或x=- 2.因此,函数g(x) = f(x) + x的零点个数为 3.答案:34. (2019连云港调研)已知函数f(x)= 2-x2- x+ b有一个零点,则实数b的取值范围为.解析:由已知,函数f(x) = 2- x2-x + b有一个零点,即函数y= x- b和y= .2—x2的图象有1个交点,如图,其中与半圆相切的直线方程为y= x+ 2,过点(0, 2)的直线方程为y= x+ .2,所以满足条件的b的取值范围是b=-2 或—2 v b< 2.答案:{- 2} U (- 2, 2]5. (2018苏州质检)已知函数f(x) = 1 x- cos x,贝V f(x)在[0,2n]的零点个数为解析:作出g(x)= [2 x与h(x)= cosx的图象如图所示,可以看到其在[0,2 n上的交点个数为3,所以函数f(x)在[0,2 n上的零点个数为3.答案:36. (2018泰州中学上学期期中)已知函数y= f(x)的周期为2,当x€ [—1,1]时,f(x)= x2, 那么函数y= f(x)的图象与函数y= |lg x|的图象的交点共有 ______________ 个.解析:在同一直角坐标系中分别作出y= f(x)和y= |lg x|的图象,如图,结合图象知,共有10个交点.答案:10二保咼考,全练题型做到咼考达标1. ________ 设X0为函数f(x)= 2x+ x—2的零点,且x°€ (m, n),其中m, n为相邻的整数,则m + n= _____ .解析:函数f(x)= 2x+ x—2为R上的单调增函数,又f(0) = 1 + 0 —2=—1V 0, f(1) = 2 + 1 —2 = 1>0,所以f(0)屮)V 0,故函数f(x) = 2x+ x —2的零点在区间(0,1)内,故m= 0, n =1, m+ n = 1.答案:12. ______________________ (2018镇江中学检测)已知函数f(x)= 2x+ 2x —6的零点为X。
高三数学 函数与方程总复习课时跟踪检测试卷含考点分类详解(文科)
课时跟踪检测(十一) 函数与方程一抓基础,多练小题做到眼疾手快1.下列函数中,在(-1,1)内有零点且单调递增的是( ) A .y =log 12xB .y =2x -1C .y =x 2-12D .y =-x 3解析:选B 函数y =log 12x 在定义域上是减函数,y =x 2-12在(-1,1)上不是单调函数,y =-x 3在定义域上单调递减,均不符合要求.对于y =2x -1,当x =0∈(-1,1)时,y =0且y =2x -1在R 上单调递增.故选B.2.(·豫南十校联考)函数f (x )=x 3+2x -1的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:选A 因为f (0)=-1<0,f (1)=2>0,则f (0)·f (1)=-2<0,且函数f (x )=x 3+2x -1的图象是连续曲线,所以f (x )在区间(0,1)内有零点.3.已知函数y =f (x )的图象是连续不断的曲线,且有如下的对应值表:x 1 2 3 4 5 6 y124.433-7424.5-36.7-123.6则函数y =f (x )在区间[1,6]上的零点至少有( ) A .2个 B .3个 C .4个D .5个解析:选B 依题意,f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.4.已知函数f (x )=23x +1+a 的零点为1,则实数a 的值为______.解析:由已知得f (1)=0,即231+1+a =0,解得a =-12.答案:-125.已知关于x 的方程x 2+mx -6=0的一个根比2大,另一个根比2小,则实数m 的取值范围是______.解析:设函数f (x )=x 2+mx -6,则根据条件有f (2)<0,即4+2m -6<0,解得m <1. 答案:(-∞,1)二保高考,全练题型做到高考达标1.函数f (x )=ln x +2x -6的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:选C ∵y =ln x 与y =2x -6在(0,+∞)上都是增函数, ∴f (x )=ln x +2x -6在(0,+∞)上是增函数. 又f (1)=-4,f (2)=ln 2-2<ln e -2<0, f (3)=ln 3>0.∴零点在区间(2,3)上,故选C.2.函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .7D .0解析:选B 法一:由f (x )=0得⎩⎪⎨⎪⎧ x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e.因此函数f (x )共有2个零点.法二:函数f (x )的图象如图所示,由图象知函数f (x )共有2个零点.3.(·郑州质检)已知函数f (x )=⎝⎛⎭⎫12x-cos x ,则f (x )在[0,2π]上的零点个数为( ) A .1 B .2 C .3D .4解析:选C 作出g (x )=⎝⎛⎭⎫12x 与h (x )=cos x 的图象如图所示,可以看到其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3,故选C.4.(·宁夏育才中学第四次月考)已知函数f (x )=⎩⎪⎨⎪⎧e x +a ,x ≤0,3x -1,x >0(a ∈R),若函数f (x )在R上有两个零点,则a 的取值范围是( )A .(-∞,-1)B .(-∞,0)C .(-1,0)D .[-1,0)解析:选D 当x >0时,f (x )=3x -1有一个零点x =13,所以只需要当x ≤0时,e x +a =0有一个根即可,即e x =-a .当x ≤0时,e x ∈(0,1],所以-a ∈(0,1],即a ∈[-1,0),故选D.5.(·湖南考前演练)设x 0是函数f (x )=2x -|log 2x |-1的一个零点,若a >x 0,则f (a )满足( )A .f (a )>0B .f (a )<0C .f (a )≥0D .f (a )≤0解析:选A 当x >1时,f (x )=2x -log 2x -1,易证2x >x +1>x .又函数y =2x 的图象与y =log 2x 的图象关于直线y =x 对称,所以2x >x +1>x >log 2x ,从而f (x )>0.故若a >1,有f (a )>0;若0<a ≤1,因为当0<x ≤1时,f (x )=2x +log 2x -1,显然f (x )单调递增,又f (1)=1>0,f ⎝⎛⎭⎫12=2-2<0,所以x 0是f (x )唯一的零点,且0<x 0<1,所以f (a )>0,故选A.6.已知函数f (x )=⎩⎪⎨⎪⎧-2, x >0,-x 2+bx +c ,x ≤0,若f (0)=-2,f (-1)=1,则函数g (x )=f (x )+x 的零点个数为________.解析:依题意得⎩⎪⎨⎪⎧ c =-2,-1-b +c =1,解得⎩⎪⎨⎪⎧b =-4,c =-2.令g (x )=0,得f (x )+x =0, 该方程等价于①⎩⎪⎨⎪⎧ x >0,-2+x =0,或②⎩⎪⎨⎪⎧x ≤0,-x 2-4x -2+x =0,解①得x =2,解②得x =-1或x =-2, 因此,函数g (x )=f (x )+x 的零点个数为3. 答案:37.已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是______.解析:函数g (x )=f (x )-m 有3个零点,转化为f (x )-m =0的根有3个,进而转化为y =f (x ),y =m 的交点有3个.画出函数y =f (x )的图象,则直线y =m 与其有3个公共点.又抛物线顶点为(-1,1),由图可知实数m 的取值范围是(0,1).答案:(0,1)8.方程2x +3x =k 的解在[1,2)内,则k 的取值范围为______.解析:令函数f (x )=2x +3x -k , 则f (x )在R 上是增函数.当方程2x +3x =k 的解在(1,2)内时,f (1)·f (2)<0, 即(5-k )(10-k )<0, 解得5<k <10. 当f (1)=0时,k =5. 答案:[5,10)9.已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈⎝⎛⎭⎫0,12,使f (x 0)=x 0. 证明:令g (x )=f (x )-x .∵g (0)=14,g ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12-12=-18,∴g (0)·g ⎝⎛⎭⎫12<0.又函数g (x )在⎣⎡⎦⎤0,12上是连续曲线, ∴存在x 0∈⎝⎛⎭⎫0,12,使g (x 0)=0,即f (x 0)=x 0. 10.已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.解:f (x )=2ax 2+2x -3-a 的对称轴为x =-12a.①当-12a ≤-1,即0<a ≤12时,须使⎩⎪⎨⎪⎧ f (-1)≤0,f (1)≥0,即⎩⎪⎨⎪⎧a ≤5,a ≥1,∴无解.②当-1<-12a <0,即a >12时,须使⎩⎪⎨⎪⎧ f ⎝⎛⎭⎫-12a ≤0,f (1)≥0,即⎩⎪⎨⎪⎧-12a -3-a ≤0,a ≥1,解得a ≥1,∴a 的取值范围是[1,+∞). 三上台阶,自主选做志在冲刺名校1.函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≥0,f (x +1),x <0,若方程f (x )=-x +a 有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(-∞,0)B .[0,1)C .(-∞,1)D .[0,+∞)解析:选C 函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≥0,f (x +1),x <0的图象如图所示,作出直线l :y =a -x ,向左平移直线l ,观察可得函数y =f (x )的图象与直线l :y =-x +a 的图象有两个交点,即方程f (x )=-x +a 有且只有两个不相等的实数根, 即有a <1,故选C.2.已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x )x-4ln x 的零点个数.解:(1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}, ∴f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. ∴f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3.(2)∵g (x )=x 2-2x -3x -4ln x =x -3x -4ln x -2(x >0),∴g ′(x )=1+3x 2-4x =(x -1)(x -3)x 2.令g ′(x )=0,得x 1=1,x 2=3.当x 变化时,g ′(x ),g (x )的取值变化情况如下:x (0,1) 1 (1,3) 3 (3,+∞)g ′(x ) + 0 - 0 +g (x )极大值极小值又因为g (x )在(3,+∞)上单调递增,因而g (x )在(3,+∞)上只有1个零点. 故g (x )在(0,+∞)上仅有1个零点.。
2020版高考数学一轮复习课时跟踪检测十一:对数与对数函数
课时跟踪检测(十一)对数与对数函数一、题点全面练1.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=()A.log 2x B.12xC.log 12xD.2x -2解析:选A由题意知f (x )=log a x (a >0,且a ≠1),∵f (2)=1,∴log a 2=1,∴a =2.∴f (x )=log 2x .2.如果log 12x <log 12y <0,那么()A.y <x <1B.x <y <1C.1<x <y D.1<y <x解析:选D∵log 12x <log 12y <log 121,∴x >y >1.3.(2019·新乡一模)若log 2(log 3a )=log 3(log 4b )=log 4(log 2c )=1,则a ,b ,c 的大小关系是()A.a >b >c B.b >a >c C.a >c >b D.b >c >a解析:选D由log 2(log 3a )=1,可得log 3a =2,故a =32=9;由log 3(log 4b )=1,可得log 4b =3,故b =43=64;由log 4(log 2c )=1,可得log 2c =4,故c =24=16.∴b >c >a .故选D.4.(2019·郑州模拟)设a =log 50.5,b =log 20.3,c =log 0.32,则a ,b ,c 的大小关系是()A.b <a <c B.b <c <a C.c <b <a D.a <b <c解析:选B a =log 50.5>log 50.2=-1,b =log 20.3<log 20.5=-1,c =log 0.32>log 0.3103=-1,log 0.32=lg 2lg 0.3,log 50.5=lg 0.5lg 5=lg 2-lg 5=lg 2lg 0.2.∵-1<lg 0.2<lg 0.3<0,∴lg 2lg 0.3<lg 2lg 0.2,即c <a ,故b <c <a .故选B.5.(2019·长春模拟)已知对数函数f (x )=log a x 是增函数,则函数f (|x |+1)的图象大致是()解析:选B 由函数f (x )=log a x 是增函数知,a >1.f (|x |+1)=log a (|x |+1)=a x +1,x ≥0,a [-x -1],x <0.由对数函数图象知选B.6.(2018·肇庆二模)已知f (x )=lg(10+x )+lg(10-x ),则()A.f (x )是奇函数,且在(0,10)上是增函数B.f (x )是偶函数,且在(0,10)上是增函数C.f (x )是奇函数,且在(0,10)上是减函数D.f (x )是偶函数,且在(0,10)上是减函数解析:选Dx >0,x >0,得x ∈(-10,10),故函数f (x )的定义域为(-10,10),关于原点对称.由于f (-x )=lg(10-x )+lg(10+x )=f (x ),故函数f (x )为偶函数.而f (x )=lg(10+x )+lg(10-x )=lg(100-x 2),y =100-x 2在(0,10)上递减,y =lg x 在(0,10)上递增,故函数f (x )在(0,10)上递减.7.(2018·郑州月考)已知2x =72y=A ,且1x +1y=2,则A 的值是________.解析:由2x =72y =A 得x =log 2A ,y =12log 7A ,则1x +1y =1log 2A +2log 7A =log A 2+2log A 7=log A 98=2,A 2=98.又A >0,故A =98=7 2.答案:728.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.解析:因为f (x )=|log 3x 3x ,0<x <1,3x ,x ≥1,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,由0<m <n 且f (m )=f (n ),m <1,>1,3n =-log 3m ,m <1,>1,=1,所以0<m 2<m <1,则f (x )在[m 2,1)上单调递减,在(1,n ]上单调递增,所以f (m 2)>f (m )=f (n ),则f (x )在[m 2,n ]上的最大值为f (m 2)=-log 3m 2=2,解得m =13,则n =3,所以n m=9.答案:99.已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=log a (x +1)(a >0,且a ≠1).(1)求函数f (x )的解析式;(2)若-1<f (1)<1,求实数a 的取值范围.解:(1)当x <0时,-x >0,由题意知f (-x )=log a (-x +1),又f (x )是定义在R 上的偶函数,∴f (-x )=f (x ).∴当x <0时,f (x )=log a (-x +1),∴函数f (x )的解析式为f (xa x +1,x ≥0,a-x +1,x <0.(2)∵-1<f (1)<1,∴-1<log a 2<1,∴log a 1a<log a 2<log a a .①当a >1解得a >2;②当0<a <1解得0<a <12.综上,实数a10.已知函数f (x )=log a (3-ax )(a >0,且a ≠1).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.解:(1)∵a >0且a ≠1,设t (x )=3-ax ,则t (x )=3-ax 为减函数,当x ∈[0,2]时,t (x )的最小值为3-2a ,∵当x ∈[0,2]时,f (x )恒有意义,即x ∈[0,2]时,3-ax >0恒成立.∴3-2a >0,∴a <32.又a >0且a ≠1,∴0<a <1或1<a <32,∴实数a(2)由(1)知函数t (x )=3-ax 为减函数.∵f (x )在区间[1,2]上为减函数,∴y =log a t 在[1,2]上为增函数,∴a >1,当x ∈[1,2]时,t (x )的最小值为3-2a ,f (x )的最大值为f (1)=log a (3-a ),a >0,a 3-a=1,<32,=32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.二、专项培优练(一)易错专练——不丢怨枉分1.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为()A.[1,2)B.[1,2]C.[1,+∞)D.[2,+∞)解析:选A令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,其图象的对称轴为x =a ,要使函数f (x )1>0,≥1,a >0,≥1,解得1≤a <2,即a ∈[1,2),故选A.2.(2019·湛江模拟)已知log a 34<1,那么a 的取值范围是________.解析:∵log a 34<1=log a a ,故当0<a <1时,y =log a x 为减函数,0<a <34;当a >1时,y =log a x 为增函数,a >34,∴a >1.综上所述,a3.函数f (x )=log 13(x 2-4)的单调递增区间为________.解析:设t =x 2-4,因为y =log 13t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t=x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).答案:(-∞,-2)(二)交汇专练——融会巧迁移4.[与指数函数、幂函数的交汇]已知x 1=log 132,x 2=2-12,x 3满足3=log 3x 3,则x 1,x 2,x 3的大小关系是()A.x 1<x 2<x 3B.x 1<x 3<x 2C.x 2<x 1<x 3D.x 3<x 1<x 2解析:选A由题意可知x 3是函数y 与y =log 3x 的图象交点的横坐标,在同一直角坐标系中画出函数y 与y =log 3x 的图象,如图所示,由图象可知x 3>1,而x 1=log 132<0,0<x 2=2-12<1,所以x 3>x 2>x 1.故选A.5.[与数列的交汇]已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=________.解析:∵log 2a n +1=1+log 2a n (n ∈N *),∴log 2a n +1-log 2a n =1,即log 2a n +1a n =1,∴a n +1a n=2.∴数列{a n }是公比q =2的等比数列,则a 101+a 102+…+a 110=(a 1+a 2+a 3+…+a 10)q 100=2100,∴log 2(a 101+a 102+…+a 110)=log 22100=100.答案:100(三)素养专练——学会更学通6.[逻辑推理]设x ,y ,z 为正实数,且log 2x =log 3y =log 5z >0,则x 2,y 3,z5的大小关系不可能是()A.x 2<y 3<z 5B.x 2=y 3=z 5C.z 5<y 3<x 2D.y 3<x 2<z 5解析:选D设log 2x =log 3y =log 5z =k >0,可得x =2k>1,y =3k>1,z =5k>1.∴x 2=2k -1,y 3=3k -1,z 5=5k -1.①若0<k <1,则函数f (x )=x k -1单调递减,∴x 2>y 3>z 5;②若k =1,则函数f (x )=xk -1=1,∴x 2=y 3=z5;③若k >1,则函数f (x )=x k -1单调递增,∴x 2<y 3<z 5.∴x 2,y 3,z5的大小关系不可能是D.7.[直观想象]已知点A (1,0),点B 在曲线G :y =ln x 上,若线段AB 与曲线M :y =1x 相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为()A.0B.1C.2D.4解析:选B 设B (x 0,ln x 0),x 0>0,线段AB 的中点为C ,则C 在曲线M 上,故ln x 02=2x 0+1,即ln x 0=4x 0+1.此方程根的个数可以看作函数y =ln x 与y =4x +1的图象的交点个数.画出图象(如图),可知两个函数的图象只有1个交点.故选B.8.[逻辑推理]若方程2log 2x -log 2(x -1)=m +1有两个不同的解,则实数m 的取值范围是________.>0,-1>0,即x >1,方程化简为log 2x 2x -1=m +1,故x 2x -1=2m +1,即x 2-2m +1x +2m +1=0,当x >1m>1,m +1+2m +1>0,=22m +2-4×2m +1>0,得m >1.答案:(1,+∞)。
2020高考数学一轮复习课时分层训练11函数与方程文北师大版-精装版
教学资料范本2020高考数学一轮复习课时分层训练11函数与方程文北师大版-精装版编辑:__________________时间:__________________【精选】20xx最新高考数学一轮复习课时分层训练11函数与方程文北师大版A组基础达标(建议用时:30分钟)一、选择题1.若函数f(x)=ax+b有一个零点是2,那么函数g(x)=bx2-ax 的零点是( )A.0,2 B.0,12C.0,-D.2,-12C [由题意知2a+b=0,即b=-2a.令g(x)=bx2-ax=0,得x=0或x==-.]2.函数f(x)=ex+x-2的零点所在的区间为( )A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)C [因为f(0)=e0+0-2=-1<0,f(1)=e1+1-2=e-1>0,故f(0)·f(1)<0,故选C.]3.函数f(x)=的零点个数是( )【导学号:00090048】A.1 B.2C.3 D.4B [当x≤0时,f(x)=x2-2,令x2-2=0,得x=(舍)或x=-,即在区间(-∞,0]上,函数只有一个零点.当x>0时,f(x)=2x-6+ln x,令2x-6+ln x=0,得ln x=6-2x.作出函数y=ln x与y=6-2x在区间(0,+∞)上的图像(图略),易得两函数图像只有一个交点,即函数f(x)=2x-6+ln x(x>0)只有一个零点.综上知,函数f(x)的零点个数是2.]4.(20xx·太原模拟)已知函数f(x)=若方程f(x)-a=0有三个不同的实数根,则实数a的取值范围是( )A.(1,3) B.(0,3)C.(0,2) D.(0,1)D [画出函数f(x)的图像如图所示,观察图像可知,若方程f(x)-a=0有三个不同的实数根,则函数y=f(x)的图像与直线y=a有3个不同的交点,此时需满足0<a<1.故选D.]5.(20xx·南昌模拟)已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)=2|x|-1,则函数F(x)=f(x)-|lg x|的零点个数是( )A.9 B.10C.11 D.18B [在坐标平面内画出y=f(x)与y=|lg x|的大致图像如图,由图像可知,它们共有10个不同的交点,因此函数F(x)=f(x)-|lg x|的零点个数是10.]二、填空题6.已知关于x的方程x2+mx-6=0的一个根比2大,另一个根比2小,则实数m的取值范围是________.(-∞,1) [设函数f(x)=x2+mx-6,则根据条件有f(2)<0,即4+2m-6<0,解得m<1.]7.方程2x+3x=k的解在[1,2)内,则k的取值范围为________.[5,10) [令函数f(x)=2x+3x-k,则f(x)在R上是增函数.当方程2x+3x=k的解在(1,2)内时,f(1)·f(2)<0,即(5-k)(10-k)<0,解得5<k<10.当f(1)=0时,k=5.]8.(20xx·湖南高考)若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是__________.(0,2) [由f(x)=|2x-2|-b=0得|2x-2|=b.在同一平面直角坐标系中画出y=|2x-2|与y=b的图像,如图所示,则当0<b<2时,两函数图像有两个交点,从而函数f(x)=|2x-2|-b有两个零点.]三、解答题9.已知函数f(x)=x3-x2++.证明:存在x0∈,使f(x0)=x0.[证明] 令g(x)=f(x)-x. 2分∵g(0)=,g=f-=-,∴g(0)·g<0. 7分又函数g(x)在上连续,∴存在x0∈,使g(x0)=0,即f(x0)=x0.12分10.已知二次函数f(x)=x2+(2a -1)x +1-2a ,(1)判断命题:“对于任意的a∈R,方程f(x)=1必有实数根”的真假,并写出判断过程;(2)若y =f(x)在区间(-1,0)及内各有一个零点,求实数a 的取值范围.【导学号:00090049】[解] (1)“对于任意的a∈R,方程f(x)=1必有实数根”是真命题.依题意,f(x)=1有实根,即x2+(2a -1)x -2a =0有实根. 3分 因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a∈R 恒成立,即x2+(2a -1)x -2a =0必有实根,从而f(x)=1必有实根. 5分(2)依题意,要使y =f(x)在区间(-1,0)及内各有一个零点, 只需7分 即⎩⎪⎨⎪⎧ 3-4a>0,1-2a<0,34-a>0,解得<a<.10分故实数a 的取值范围为.12分B 组 能力提升(建议用时:15分钟)1.(20xx·郑州模拟)已知函数f(x)=(a∈R),若函数f(x)在R 上有两个零点,则a 的取值范围是( )A .(-∞,-1)B .(-∞,-1]C .[-1,0)D .(0,1]D [因为当x >0时,f(x)=2x -1,由f(x)=0得x =.所以要使f(x)在R 上有两个零点,则必须2x -a =0在(-∞,0]上有唯一实数解.又当x∈(-∞,0]时,2x∈(0,1],且y =2x 在(-∞,0]上单调递增,故所求a 的取值范围是(0,1].]2.函数f(x)=则函数y =f[f(x)]+1的所有零点所构成的集合为________.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-3,-12,14,2 [由题意知f[f(x)]=-1,由f(x)=-1得x=-2或x =,则函数y =f[f(x)]+1的零点就是使f(x)=-2或f(x)=的x 的值.解f(x)=-2得x =-3或x =,解f(x)=得x =-或x =,从而函数y =f[f(x)]+1的零点构成的集合为.]3.若关于x 的方程22x +2xa +a +1=0有实根,求实数a 的取值范围.[解] 法一(换元法):设t =2x(t >0),则原方程可变为t2+at +a +1=0,(*)原方程有实根,即方程(*)有正根.令f(t)=t2+at +a +1. 3分 ①若方程(*)有两个正实根t1,t2,则解得-1<a≤2-2; 6分②若方程(*)有一个正实根和一个负实根(负实根不合题意,舍去),则f(0)=a +1<0,解得a <-1;9分③若方程(*)有一个正实根和一个零根,则f(0)=0且->0,解得a =-1.综上,a 的取值范围是(-∞,2-2].12分法二(分离变量法):由方程,解得a =-,3分设t =2x(t >0),则a =-=-⎝ ⎛⎭⎪⎫t +2t +1-1 =2-,其中t +1>1, 9分由基本不等式,得(t +1)+≥2,当且仅当t =-1时取等号,故a≤2-2.12分。
2020届高考数学(文科)总复习课时跟踪练:(十)函数的图象 含解析
答案:(4,+∞)
B组 素养提升
13.(20xx·全国卷Ⅰ)函数y= 的部分图象大致为()
解析:令f(x)= ,定义域为{x|x≠2kπ,k∈Z},
又f(-x)=-f(x),所以f(x)在定义域内为奇函数,图象关于原点对称,B不正确.
答案:B
4.(20xx·新余二模)函数y= 的图象大致为()
解析:函数y= 的定义域为{x|x≠0且x≠±1},A错;
因为f(-x)= =-f(x),f(x)是奇函数,排除C项;
当x=2时,y= >0,排除D项,只有B项适合.
答案:B
5.已知函数f(2x+1)是奇函数,则函数y=f(2x)的图象成中心对称的点为()
又f(2)= =- <0.排除A,故选D.
答案:D
2.若函数f(x)=ax-b的图象如图所示,则()
A.a>1,b>1
B.a>1,0<b<1
C.0<a<1,b>1
D.0<a<1,0<b<1
解析:由图象从左向右下降,知0<a<1.
又y=f(x)与y轴的交点(0,1-b),
所以0<1-b<1,则0<b<1.
答案:D
3.在同一平面直角坐标系中,函数y=g(x)的图象与y=ex的图象关于直线y=x对称.而函数y=f(x)的图象与y=g(x)的图象关于y轴对称,若f(m)=-1,则m的值是()
A.-eB.-
C.eD.
解析:由题意知g(x)=lnx,则f(x)=ln(-x),若f(m)=-1,则ln(-m)=-1,解得m=- .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪练(十一)A 组 基础巩固1.已知函数f (x )=则函数f (x )的零点为( ){2x -1,x ≤1,1+log 2x ,x >1,)A.,0 B .-2,0 C. D .01212解析:当x ≤1时,由f (x )=2x -1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =,又因为x >1,所以此时方程无12解.综上,函数f (x )的零点只有0.答案:D2.(2019·豫西南部分示范性高中联考)函数f (x )=ln x -的零点2x 2所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:f (x )=ln x -在定义域(0,+∞)上是增函数,2x 2又f (1)=-2<0,f (2)=ln 2->0,12则f (1)·f (2)<0,故f (x )的零点在区间(1,2)内.答案:B3.(2019·岳阳模拟)已知函数f (x )=则函数y ={x 2-2x ,x ≤0,1+1x ,x >0,)f (x )+3x 的零点个数是( )A .0B .1C .2D .3解析:函数y =f (x )+3x 的零点个数就是y =f (x )与y =-3x 两个函数图象的交点个数,如图所示,由函数的图象可知零点个数为2.答案:C4.函数f (x )=2x --a 的一个零点在区间(1,2)内,则实数a 的2x取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:因为函数f (x )=2x --a 在区间(1,2)上单调递增,又函2x数f (x )=2x --a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所2x以(-a )(4-1-a )<0,即a (a -3)<0,所以0<a <3.答案:C5.(2019·湖北七校联考)已知f (x )是奇函数且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A. B.1418C .- D .-7838解析:令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ,即2x 2-x +1+λ=0只有一个实根,则Δ=1-8(1+λ)=0,解得λ=-.78答案:C6.已知函数f (x )=2x +x +1,g (x )=log 2x +x +1,h (x )=log 2x -1的零点依次为a ,b ,c ,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c解析:令函数f (x )=2x +x +1=0,可知x <0,即a <0;令g (x )=log 2x +x +1=0,则0<x <1,即0<b <1;令h (x )=log 2x -1=0,可知x =2,即c =2.显然a <b <c .答案:A7.已知函数f (x )=则使方程x +f (x )=m 有解的实{1,x ≤0,1x ,x >0,)数m 的取值范围是( )A .(1,2)B .(-∞,-2]C .(-∞,1)∪(2,+∞)D .(-∞,1]∪[2,+∞)解析:当x ≤0时,x +f (x )=m ,即x +1=m ,解得m ≤1;当x >0时,x +f (x )=m ,即x +=m ,解得m ≥2,即实数m 的取值范围是(-1x∞,1]∪[2,+∞).答案:D8.(2019·安庆二模)定义在R 上的函数f (x ),满足f (x )=且f (x +1)=f (x -1),若g (x )=3-log 2x ,{x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),)则函数F (x )=f (x )-g (x )在(0,+∞)内的零点有( )A .3个B .2个C .1个D .0个解析:由f (x +1)=f (x -1),即f (x +2)=f (x ),知y =f (x )的周期T =2.在同一坐标系中作出y =f (x )与y =g (x )的图象,如图所示,由于两函数图象有2个交点.所以函数F (x )=f (x )-g (x )在(0,+∞)内有2个零点.答案:B9.(2019·湖南衡阳八中、长郡中学第十三校一模)已知[x ]表示不超过实数x 的最大整数,g (x )=[x ]为取整函数,x 0是函数f (x )=ln x -的零点,则g (x 0)等于________.2x解析:f (2)=ln 2-1<0,f (3)=ln 3->0,23又f (x )在(0,+∞)上是增函数,所以x 0∈(2,3),则g (x 0)=[x 0]=2.答案:210.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________.解析:作出函数y =|x -a |-1的图象如图所示,因为直线y =2a与函数y =|x -a |-1的图象只有一个交点,故2a =-1,解得a =-.12答案:-1211.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式f (-2x )<0的解集是________.解析:因为f (x )=x 2+ax +b 的两个零点是-2,3.所以-2,3是方程x 2+ax +b =0的两根,由根与系数的关系知所以{-2+3=-a ,-2×3=b .){a =-1,b =-6,)所以f (x )=x 2-x -6.由f (-2x )<0,得4x 2+2x -6<0,解得-<x <1.32所以不等式f (-2x )<0的解集是.{x |-32<x <1}答案:{x |-32<x <1}12.若函数f (x )=有两个不同的零点,则实数a {2x -a ,x ≤0,ln x ,x >0,)的取值范围是________.解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是(0,1].答案:(0,1]B 组 素养提升13.(2019·永州模拟)已知函数f (x )=a +log 2(x 2+a )(a >0)的最小值为8,则实数a 的取值范围( )A .(5,6)B .(7,8)C .(8,9)D .(9,10)解析:由于f (x )在[0,+∞)上是增函数,在(-∞,0)上递减,所以f (x )min =f (0)=a +log 2a =8.令g (a )=a +log 2a -8,a >0.则g (5)=log 25-3<0,g (6)=log 26-2>0.又g (a )在(0,+∞)上是增函数.所以实数a 所在的区间为(5,6).答案:A14.(2019·黄山一模)已知定义在R 上的函数f (x )满足f (x +2)=f (x ),且当x ∈[-1,1]时,f (x )=x 2.令g (x )=f (x )-kx -k ,若在区间[-1,3]内,函数g (x )=0有4个不相等实根,则实数k 的取值范围是( )A .(0,+∞)B.(0,12]C. D.(0,14][14,13]解析:令g (x )=0,得f (x )=k (x +1).由题意知f (x )的周期为T =2,作出y =f (x )在[1,3]的图象,如图所示.设直线y =k 1(x +1)经过点(3,1),则k 1=.14因为直线y =k (x +1)经过定点(-1,0),且由题意知直线y =k (x +1)与y =f (x )的图象有4个交点,所以0<k ≤.14答案:C15.已知f (x )=则函数y =2f 2(x )-3f (x )+1的零{|lg x |,x >0,2|x |,x ≤0,)点个数是________.解析:由2f 2(x )-3f (x )+1=0得f (x )=或f (x )=1,12作出函数y =f (x )的图象,如图所示.由图象知y =与y =f (x )的图象有2个交点,y =1与y =f (x )的图12象有3个交点.因此函数y =2f 2(x )-3f (x )+1的零点有5个.答案:516.(2018·天津卷)已知a >0,函数f (x )={x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0.)若关于x 的方程f (x )=ax 恰有2个互异的实数解,则a 的取值范围是________.解析:作出函数f (x )的示意图,如图.l 1是过原点且与抛物线y =-x 2+2ax -2a 相切的直线,l 2是过原点且与抛物线y =x 2+2ax +a 相切的直线.由图可知,当直线y =ax 在l 1,l 2之间(不含直线l 1,l 2) 变动时,符合题意.由消去y ,整理得x 2-ax +2a =0.{y =ax y =-x 2+2ax -2a ,)由Δ=0,得a =8(a =0舍去).由消去y ,整理得x 2+ax +a =0.{y =ax ,y =x 2+2ax +a ,)由Δ=0,得a =4(a =0舍去).综上,得4<a <8.答案:(4,8)。