新北师大班九上第一章 特殊平行四边形单元测试题(含答案) (6)
北师大九年级数学上册第一章特殊平行四边形单元综合检测题(含答案)
第一章单元测试卷(时间:100分钟 满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 下列性质中菱形不一定具有的性质是(C )A .对角线互相平分B .对角线互相垂直C .对角线相等D .既是轴对称图形又是中心对称图形2. 下列命题中,真命题是(D )A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形3. 菱形的周长为4,一个内角为60°,则较短的对角线长为(C )A .2B . 3C .1D .124. 如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成(C )A .22.5°角B .30°角C .45°角D .60°角,第5题图) ,第6题图),第7题图)5. 如图,点E ,F ,G ,H 分别为四边形ABCD 的四边AB ,BC ,CD ,DA 的中点,则关于四边形EFGH ,下列说法正确的是(C )A .一定不是平行四边形B .一定不是中心对称图形C .可能是轴对称图形D .当AC =BD 时它是矩形6. 如图,菱形ABCD 的对角线AC ,BD 的长分别是6 cm ,8 cm ,AE ⊥BC 于点E ,则AE 的长是(B )A .485 cmB .245 cmC .125cm D .5 3 cm7. 如图,在△ABC 中,点D 是边BC 上的点(与B ,C 两点不重合),过点D 作DE∥AC,DF ∥AB ,分别交AB ,AC 于E ,F 两点,下列说法正确的是(D )A .若AD⊥BC,则四边形AEDF 是矩形B .若BD =CD ,则四边形AEDF 是菱形C .若AD 垂直平分BC ,则四边形AEDF 是矩形D .若AD 平分∠BAC,则四边形AEDF 是菱形8. 如图,在矩形ABCD 中,AB =2,BC =4,对角线AC 的垂直平分线分别交AD ,AC 于点E ,O ,连接CE ,则CE 的长为(C )A .3B .3.5C .2.5D .2.8,第8题图) ,第9题图),第10题图)9. 如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是(D )A .12B .33C .1-33D .2-1 10. 如图,点E 为边长为2的正方形ABCD 的对角线上一点,BE =BC ,点P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于R ,则PQ +PR 的值为(D )A .22 B .12 C .32D . 2 二、填空题(本大题6小题,每小题4分,共24分)11. 已知菱形的周长是20 cm ,一条对角线长为8 cm ,则菱形的另一条对角线长为6cm .12. 矩形ABCD 的对角线AC ,BD 相交于点O ,请你添加一个适当的条件AB =BC(答案不唯一),使其成为正方形.(只填一个即可)13. 如图,点E 为正方形ABCD 外一点,AE =AD ,∠ADE =75°,则∠AEB=30°.,第13题图) ,第15题图),第16题图)14. 直角三角形斜边上的高与中线分别是5 cm 和6 cm ,则它的面积是30cm 2.15. 如图,矩形ABCD 的对角线BD 的中点为O ,过点O 作OE⊥BC 于点E ,连接OA ,已知AB =5,BC =12,则四边形ABEO 的周长为20.16. 如图,∠MON =45°,OA 1=1,作正方形A 1B 1C 1A 2,周长记作C 1;再作第二个正方形A 2B 2C 2A 3,周长记作C 2;继续作第三个正方形A 3B 3C 3A 4,周长记作C 3;点A 1,A 2,A 3,A 4…在射线ON 上,点B 1,B 2,B 3,B 4…在射线OM 上,依此类推,则第n 个正方形的周长C n =2n +1.三、解答题(一)(本大题3小题,每小题6分,共18分)17. 如图,在正方形ABCD 中,点E 是对角线BD 上的点,求证:AE =CE.证明:∵四边形ABCD 为正方形,∴AB =CB ,∠ABE =∠CBE.在△ABE 和△CBE 中,⎩⎪⎨⎪⎧AB =CB ,∠ABE =∠CBE,BE =BE ,,∴△ABE ≌△CBE(SAS ),∴AE =CE18. 如图,已知菱形ABCD 两条对角线BD 与AC 的长度之比为3∶4,周长为40 cm ,求菱形的高及面积.解:∵BD∶AC=3∶4,∴设BD =3x ,AC =4x ,∴BO =3x 2,AO =2x ,又∵AB 2=BO 2+AO 2,∴AB =52x ,∵菱形的周长是40 cm ,∴AB =40÷4=10(cm ),即52x =10,∴x =4,∴BD =12 cm ,AC =16 cm ,∴S 菱形ABCD =12BD·AC=12×12×16=96(cm 2),又∵S 菱形ABCD =AB·h,∴h =9610=9.6(cm ),菱形的高是9.6 cm ,面积是96 cm 219. 如图,在矩形ABCD 中,点E 为AD 边上一点,EF ⊥CE ,交AB 于点F ,若DE =2,矩形的周长为16,且CE =EF ,求AE 的长.解:∵EF⊥EC,∴∠1+∠3=90°.∵在矩形ABCD 中,∠A =∠D=90°,∴∠3+∠2=90°,∴∠1=∠2.又∵EF=EC ,∴△EFA ≌△CED(AAS ),∴AE =CD.设AE =x ,则DC =x.由矩形的周长为16得2x +2=8,∴x =3,即AE 的长为3四、解答题(二)(本大题3小题,每小题7分,共21分)20. 如图,已知平行四边形ABCD ,对角线AC ,BD 相交于点O ,∠OBC =∠OCB .(1)求证:平行四边形ABCD 是矩形;(2)请添加一个条件使矩形ABCD 为正方形.解:(1)∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵∠OBC =∠OCB,∴OB =OC ,∴AC =BD ,∴平行四边形ABCD 是矩形(2)AB =AD(或AC⊥BD 答案不唯一).理由:∵四边形ABCD 是矩形,又∵AB =AD ,∴四边形ABCD 是正方形(或:∵四边形ABCD 是矩形,又∵AC⊥BD,∴四边形ABCD 是正方形)21. 如图,已知BA =AE =DC ,AD =EC ,CE ⊥AE ,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD =BC(答案不唯一),可使四边形ABCD 为矩形,请加以证明.解:(1)在△DCA 和△EAC 中,⎩⎪⎨⎪⎧DC =EA ,AD =CE ,AC =CA ,∴△DCA ≌△EAC(SSS ) (2)添加AD =BC ,可使四边形ABCD 为矩形.理由:∵AB=DC ,AD =BC ,∴四边形ABCD 是平行四边形.∵CE⊥AE,∴∠E =90°,由(1)知△DCA≌△EAC,∴∠D =∠E=90°,∴四边形ABCD 为矩形22. 如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 的延长线上,且AF =CE =AE.(1)求证:四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF 是菱形,并说明理由.解:(1)由题意知∠FDC=∠DCA=90°,∴EF ∥CA ,∴∠AEF =∠EAC.∵AF=CE =AE ,∴∠F =∠AEF=∠EAC=∠EC A.又∵AE=EA ,∴△AEC ≌△EAF ,∴EF =CA ,∴四边形ACEF 是平行四边形 (2)当∠B=30°时,四边形ACEF 是菱形.理由:∠B=30°,∠ACB =90°,∴AC =12AB.∵DE 垂直平分BC ,∴BE =CE.∵AE=CE ,∴AE =BE =CE =12AB ,∴AC =CE ,由(1)得四边形ACEF 是平行四边形,∴四边形ACEF 是菱形五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C′处,折痕为EF.(1)求证:BE =BF ;(2)若∠ABE=20°,求∠BFE 的度数;(3)若AB =6,AD =8,求AE 的长.解:(1)由题意得∠BEF=∠DEF.∵四边形ABCD 为矩形,∴DE ∥BF ,∴∠BFE =∠DEF,∴∠BEF =∠BFE,∴BE =BF (2)∵四边形ABCD 为矩形,∴∠ABF =90°;而∠ABE=20°,∴∠EBF =90°-20°=70°;又∵∠BEF=∠BFE,∴∠BFE 的度数为55° (3)由题意知BE =DE ;设AE =x ,则BE =DE =8-x ,由勾股定理得(8-x)2=62+x 2,解得x =74,即AE 的长为7424. 如图,在Rt △ABC 中,∠B =90°,AC =60 cm ,∠A =60°,点D 从点C 出发沿CA 方向以4 cm /s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2 cm /s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是t s (0<t≤15).过点D 作DF⊥BC 于点F ,连接DE ,EF.(1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,△DEF 为直角三角形?请说明理由.解:(1)∵∠DFC=90°,∠C =30°,DC =4t ,∴DF =2t ,又∵AE=2t ,∴AE =DF (2)能,理由:∵AB⊥BC,DF ⊥BC ,∴AE ∥DF ,又∵AE=DF ,∴四边形AEFD 为平行四边形,当AE =AD 时,四边形AEFD 为菱形,即60-4t =2t ,解得t =10,∴当t =10秒时,四边形AEFD 为菱形 (3)①当∠DEF=90°时,由(1)知四边形AEFD 为平行四边形,∴EF ∥AD ,∴∠ADE=∠DEF=90°,∵∠A =60°,∴∠AED =30°,∴AD =12AE =t ,又AD =60-4t ,即60-4t =t ,解得t =12;②当∠EDF=90°时,四边形EBFD 为矩形,在Rt △AED 中∠A=60°,则∠ADE=30°,∴AD =2AE ,即60-4t =4t ,解得t =152;③若∠EFD=90°,则E 与B 重合,D 与A 重合,此种情况不存在.综上所述,当t =152s 或12 s 时,△DEF 为直角三角形25. 已知正方形ABCD 中,点E ,F 分别为BC ,CD 上的点,连接AE ,BF 相交于点H ,且AE ⊥BF.(1)如图1,连接AC 交BF 于点G ,求证:∠AGF=∠AEB+45°;(2)如图2,延长BF 到点M ,连接MC ,若∠BMC=45°,求证:AH +BH =BM ;(3)如图3,在(2)的条件下,若点H 为BM 的三等分点,连接BD ,DM ,若HE =1,求△BDM 的面积.解:(1)∵四边形ABCD 是正方形,∴∠ABC =∠BCD=90°,∴∠ACB =∠ACD=45°,∵AE ⊥BF ,∴∠AEB +∠FBC=90°,∵∠FBC +∠BFC=90°∴∠AEB =∠BFC,∵∠AGF =∠BFC +∠ACF,∴∠AGF =∠AEB+45° (2)过C 作CK⊥BM 于K ,∴∠BKC =∠AHB=90°,∵∠BMC =45°,∴CK =MK ,∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =∠BCD=90°,∴∠ABH =∠BCK,∴△ABH ≌△BCK(AAS ),∴BH =CK =MK ,AH =BK ,∴BM =BK +MK =AH +BH (3)由(2)得,BH =CK =MK ,∵H 为BM 的三等分点,∴BH =HK =KM ,过E 作EN⊥CK 于N ,∴四边形HENK 是矩形,∴HK =EN =BH ,∠BHE =∠ENC,∴△BHE ≌△ENC(ASA ),∴HE =CN =NK =1,∴CK =BH =2,∴BM =6,连接CH ,∵HK =MK ,CK ⊥MH ,∠BMC =45°,∴CH =CM ,∠MCH =90°,∴∠BCH =∠DCM,∴△BHC ≌△DMC(SAS ),∴BH =DM =2,∠BHC =∠DMC=135°,∴∠DMB =90°,∴△BDM 的面积为12DM·BM=6。
九年级数学(上)单元测试卷 第一章《特殊平行四边形》(含答案与解析)
【新北师大版九年级数学(上)单元测试卷】第一章《特殊平行四边形》(含答案与解析)班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分,共36分)1. 已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BCB. AC=BCC. ∠B=60°D. ∠ACB=60°3.菱形的对角线长分别为3和4,则该菱形的面积是A. 6B. 8C. 12D. 244. 已知四边形ABCD中,分别是的中点,则四边形EFGH是A. 菱形B. 矩形C. 正方形D. 梯形5.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是()A. AD∥BC,∠B=∠DB. AC=BD,AB=CD,AD=BCC. OA=OC,OB=OD,AB=BCD. OA=OB=OC=OD,AC⊥BD6. 正方形具有而矩形不一定有的性质是()A. 对角线相等且互相平分B. 对角线互相垂直且平分每一组对角C. 每一内角均为直角D. 对边平行且相等7. 平行四边形ABCD是正方形需增加的条件是()A. 邻边相等B. 邻角相等8.如图,在矩形ABCD中,,则BD的长为A. 5B. 10C. 12D. 139.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A. 6cmB. 5cmC.D.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A. 12B. 24C. 12D. 1611.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长为()A. 1B.C. 4-2D. 3-4二.填空题:(每小题3分共12分)13.正方形的一条边长是4,则它的对角线长是_________.15.矩形的对角线相交构成的钝角为120°,短边等于5cm,则对角线的长为__________.16.如图,E为正方形ABCD边BC延长线上一点,且CE=BD,AE交DC于F,则∠AFC=_________.三.解答题:(共52分)17.如图,在四边形ABCD中,∠ABC=∠ADC=90°,点P是AC的中点.求证:∠BDP=∠DBP.18.已知:菱形ABCD中,对角线于点E,求菱形ABCD的面积和BE的长.于点F,且,连接BF.证明:;当满足什么条件时,四边形AFBD是矩形?并说明理由.20.已知中对角线AC的垂直平分线交AD于点F,交BC于点E.求证:四边形AECF是菱形.证明:∵EF是AC的垂直平分线(已知)∴四边形AECF是不正确⑴你能找出小明错误的原因吗?请你指出来.⑵请你给出本题的证明过程.21.如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.22. 如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.23.如图,F是正方形ABCD的边BC的中点,CG平分∠DCM,交过F点AF的垂线FG于G,求证:AF=FG.一.选择题:(每小题3分,共36分)1. 已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个【答案】C【解析】①正确.②等腰梯形是对角线相等,错误.③菱形也两个角相等,错误.④正确.所以选C.2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BCB. AC=BCC. ∠B=60°D. ∠ACB=60°【答案】B【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.3.菱形的对角线长分别为3和4,则该菱形的面积是A. 6B. 8C. 12D. 24【答案】A【解析】∵菱形的两条对角线长分别为3和4,∴S菱形=.故选A.4. 已知四边形ABCD中,分别是的中点,则四边形EFGH是A. 菱形B. 矩形C. 正方形D. 梯形【答案】B【解析】如图,∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF∥AC,HG∥AC,∴EF∥AC,∴四边形EFGH是平行四边形,∵EF∥AC,AC⊥BD,∴EF⊥BD,∵HE∥BD,∴EF⊥HE,∴∠HEF=90°,∴平行四边形EFGH是矩形.故选B.5.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是()A. AD∥BC,∠B=∠DB. AC=BD,AB=CD,AD=BCC. OA=OC,OB=OD,AB=BCD. OA=OB=OC=OD,AC⊥BD【答案】D【解析】A、不能,只能判定出是平行四边形;B、不能,只能判定出是矩形;C、不能,只能判定出是菱形;D、能,由OA=OB=OC=OD可判断出四边形ABCD是矩形,再根据AC⊥BD,可判断出矩形ABCD 又是菱形,所以可判断出四边形ABCD是正方形,故选D.6. 正方形具有而矩形不一定有的性质是()A. 对角线相等且互相平分B. 对角线互相垂直且平分每一组对角C. 每一内角均为直角D. 对边平行且相等【答案】B【解析】根据正方形和矩形的性质知,它们具有相同的特征有:四个角都是直角、对边平行且相等、对角线相等、对角线互相平分,但矩形的对角线不互相垂直,故选B.7. 平行四边形ABCD是正方形需增加的条件是()A. 邻边相等B. 邻角相等C. 对角线互相垂直D. 对角线互相垂直且相等【解析】如图所示:添加的条件是AC=BD且AC⊥BD,平行四边形ABCD为正方形;理由如下:添加的条件时AC=BD且AC⊥BD时;∵四边形ABCD是平行四边形.又AC=BD,∴四边形ABCD是矩形,∵AC⊥BD,∴四边形ABCD是菱形,∴四边形ABCD是正方形;故选:D.8.如图,在矩形ABCD中,,则BD的长为A. 5B. 10C. 12D. 13【答案】B【解析】∵四边形ABCD是矩形,∠BOC=120°,∴AO=BO,∠BAD=90°,∠AOB=60°,∴△AOB是等边三角形,∴∠ABD=60°,∴∠BDA=30°,∴BD=2AB=10.故选B.9.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A. 6cmB. 5cmC.D.【解析】∵菱形的两条对角线分别为5cm和10cm,∴菱形的面积为:(cm2),设正方形的边长为cm,则,解得:(cm).故选B.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A. 12B. 24C. 12D. 16【答案】D【解析】试题分析:根据题意可得:AD=2+6=8,根据折叠图形的性质可得:AB=2,然后根据矩形的面积计算公式求出矩形的面积.11.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.【答案】C【解析】DE BF,AF EC,EGFH是平行四边形,E,F是中点,易得,四边形对角线垂直,1∴EGFH是菱形。
九年级数学上册《第一章 特殊平行四边形》单元测试卷-附带答案(北师大版)
九年级数学上册《第一章特殊平行四边形》单元测试卷-附带答案(北师大版)一、选择题(12小题,每小题3分,共36分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形 C.菱形 D.矩形或菱形5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.36.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.197.在Rt△ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°9.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm11.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm212.(2018•威海)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.19.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.23.(8分)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.参考答案一、选择题(12小题,每小题3分,共36分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的性质以及之间的相互联系.【解答】解:A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.【点评】本题考查的是普通概念,熟练掌握基础的东西是深入研究的必要准备.2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补【考点】矩形的性质;菱形的性质.【专题】推理填空题.【分析】根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.【解答】解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选A.【点评】此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④【考点】矩形的定义及性质.【分析】已知梯形四边中点得到的四边形是矩形,则根据矩形的性质及三角形的中位线的性质进行分析,从而不难求解.【解答】解:如图点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.∵点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.∴∠FEH=90°,EF∥BD∥HG,FG∥AC∥EH,EF≠GH.∴AC⊥BD.①平行四边形的对角线不一定互相垂直,故①错误;②菱形的对角线互相垂直,故②正确;③对角线相等的四边形,故③错误;④对角线互相垂直的四边形,故④正确.综上所述,正确的结论是:②④.故选:D.【点评】此题主要考查矩形的性质及三角形中位线定理的综合运用,正确掌握矩形的判定方法是解题关键.4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形 C.菱形 D.矩形或菱形【考点】菱形的性质,矩形的定义及性质,正方形的定义及性质.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形是轴对称图形,也是中心对称图形,有4条对称轴;矩形是轴对称图形,也是中心对称图形,有2条对称轴;菱形是轴对称图形,也是中心对称图形,有2条对称轴.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3【考点】L8:菱形的性质.【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形∴OA=OC=3,OB=OD,AC⊥BD在Rt△AOB中,∠AOB=90°根据勾股定理,得:OB===4∴BD=2OB=8故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.6.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19【考点】正方形的性质.【分析】由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图设正方形S1的边长为x∵△ABC和△CDE都为等腰直角三角形∴AB=BC,DE=DC,∠ABC=∠D=90°∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD∴AC=BC=2CD又∵AD=AC+CD=6∴CD==2∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°∴AM=MO∵MO=MN∴AM=MN∴M为AN的中点∴S2的边长为3∴S2的面积为3×3=9∴S1+S2=8+9=17.故选B.【点评】本题考查了正方形的性质,找到相等的量,再结合三角函数进行解答.7.在Rt△ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm【考点】直角三角形斜边上的中线.【专题】计算题.【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半;已知了直角三角形的两条直角边,由勾股定理可求得斜边的长,由此得解【解答】解:∵Rt△ABC中,AC=cm,且∠ACB=90°,∠B=30°∴AB=2∴AB边上的中线CD=AB=cm.故选D.【点评】此题主要考查直角三角形斜边上的中线等于斜边的一半等知识点的理解和掌握,难度不大,属于基础题.8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°【考点】正方形的性质.【分析】根据正方形以及等边三角形的性质可得出AD=DE,∠ADF=45°,∠ADC=90°,∠CDE=60°,根据等腰三角形的性质即可得出∠DAE=∠DEA=15°,再结合三角形外角性质即可算出∠AFB的值.【解答】解:∵四边形ABCD为正方形,△CDE为等边三角形∴AD=CD=DE,∠ADF=∠ABF=45°,∠ADC=90°,∠CDE=60°∴∠ADE=150°.∵AD=DE∴∠DAE=∠DEA=15°∴∠AFB=∠ADF+∠DAF=45°+15°=60°.故选C.【点评】本题考查了正方形的性质、等边三角形的性质以及三角形外角的性质,解题的关键是求出∠ADF=45°、∠DAF=15°.本题属于基础题,解决该题型题目时,通过正方形、等边三角形以及等腰三角形的性质计算出角的度数是关键.9.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm【考点】含30度角的直角三角形;多边形内角与外角;平行四边形的性质.【分析】根据四边形ABCD是平行四边形,得出AB∥CD,∠A=∠C,∠CDE=∠AED,根据DE⊥AB,得出∠AED和∠CDE是直角,求出∠CDF的度数,最后根据DF⊥BC,求出∠C、∠A的度数,最后根据∠ADE=30°,AE=2cm,即可求出答案.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD,∠A=∠C∴∠CDE=∠AED∵DE⊥AB∴∠AED=90°∴∠CDE=90°∵∠EDF=60°∴∠CDF=30°∵DF⊥BC∴∠DFC=90°∴∠C=60°∴∠A=60°∴∠ADE=30°∴AD=2DE∵AE=2∴AD=2×2=4(cm);故选A.【点评】此题考查了平行四边形的性质和含30°角的直角三角形,用到的知识点是平行四边形的性质和垂直的定义30°角的直角三角形的性质,关键是求出∠ADE=30°.10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm【考点】矩形的定义及性质.【分析】在折叠的过程中,BE=DE,从而设BE=DE=x,即可表示AE,在直角三角形ADE中,根据勾股定理列方程即可求解.【解答】解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x在Rt△ADE中,DE2=AE2+AD2即x2=(10﹣x)2+16.解得:x=5.8.故选C.【点评】此题主要考查了翻折变换的问题,解答本题的关键是掌握翻折前后对应线段相等,另外要熟练运用勾股定理解直角三角形.11.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm2【考点】菱形的性质.【分析】利用折叠的方式得出AC,BD的长,再利用菱形面积公式求出面积即可.【解答】解:由题意可得:图1中矩形的长为5cm,宽为4cm∵虚线的端点为矩形两邻边中点∴AC=4cm,BD=5cm∴如图(2)所示的小菱形的面积为:×4×5=10(cm2).故选:A.【点评】此题主要考查了菱形的性质以及剪纸问题,得出菱形对角线的长是解题关键.翻折变换(折叠问题)实质上就是轴对称变换.12.(2018•威海)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.【考点】KQ:勾股定理;LB:矩形的性质.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.【解答】解:如图,延长GH交AD于点P∵四边形ABCD和四边形CEFG都是矩形∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1∴AD∥GF∴∠GFH=∠P AH又∵H是AF的中点∴AH=FH在△APH和△FGH中∵∴△APH≌△FGH(ASA)∴AP=GF=1,GH=PH=PG∴PD=AD﹣AP=1∵CG=2、CD=1∴DG=1则GH=PG=×=故选:C.【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为3.【考点】L8:菱形的性质.【分析】根据菱形面积=对角线积的一半可求AC,再根据直角三角形斜边上的中线等于斜边的一半.【解答】解:∵ABCD是菱形∴BO=DO=4,AO=CO,S菱形ABCD==24∴AC=6∵AH⊥BC,AO=CO=3∴OH=AC=3.【点评】本题考查了菱形的性质,直角三角形斜边上的中线等于斜边的一半,关键是灵活运用这些性质解决问题.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为(8,4)或(,7).【分析】分两种情形分别讨论即可解决问题;【解答】解:∵四边形OABC是矩形,B(8,7)∴OA=BC=8,OC=AB=7∵D(5,0)∴OD=5∵点P是边AB或边BC上的一点∴当点P在AB边时,OD=DP=5∵AD=3∴P A==4∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).【点评】本题考查矩形的性质、坐标与图形性质、等腰三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形∴AB=BC=1,∠B=90°∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.【点评】该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.【考点】正方形的性质.【分析】作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG 中,利用勾股定理即可求出E′F的长.【解答】解:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求过F作FG⊥CD于G在Rt△E′FG中GE′=CD﹣BE﹣BF=4﹣1﹣2=1,GF=4所以E′F==.故答案为:.【点评】本题考查的是最短线路问题,熟知两点之间线段最短是解答此题的关键.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.【考点】菱形的性质.【专题】证明题.【分析】在菱形中,由SAS求得△ABE≌△ADF,再由等边对等角得到∠AEF=∠AFE.【解答】证明:∵ABCD是菱形∴AB=AD,∠B=∠D.又∵EB=DF∴△ABE≌△ADF∴AE=AF∴∠AEF=∠AFE.【点评】本题利用了菱形的性质和全等三角形的判定和性质,等边对等角求解.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.【考点】矩形的性质.【专题】计算题.【分析】矩形对角线相等且互相平分,即OA=OD,根据∠AOD=60°可得△AOD为等边三角形,即OA=AD,∵AE⊥BD,∴E为OD的中点,即可求OE的值.【解答】解:∵对角线相等且互相平分∴OA=OD∵∠AOD=60°∴△AOD为等边三角形,则OA=ADBD=2DO,AB=AD∴AD=2∵AE⊥BD,∴E为OD的中点∴OE=OD=AD=1答:OE的长度为1.【点评】本题考查了勾股定理在直角三角形中的运用,考查了等边三角形的判定和等腰三角形三线合一的性质,本题中求得E为OD的中点是解题的关键.19.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形∴BE∥AD,BE=AD∴BE=CD∴四边形BECD是平行四边形.∵BD⊥AC∴∠BDC=90°∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.【考点】菱形的判定.【专题】证明题.【分析】(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;(2)先根据已知中的两组平行线,可证四边形DEFA是▱,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证▱AEDF实菱形.【解答】证明:(1)∵DE∥AC,∠ADE=∠DAF同理∠DAE=∠FDA∵AD=DA∴△ADE≌△DAF∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形∵DE∥AC,DF∥AB∴四边形AEDF是平行四边形∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.【点评】考查了全等三角形的判定方法及菱形的判定的掌握情况.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.【考点】矩形的性质.【分析】(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【解答】(1)证明:在矩形ABCD中,AB∥CD∴∠BAC=∠FCO在△AOE和△COF中∴△AOE≌△COF(AAS)∴OE=OF;(2)解:如图,连接OB∵BE=BF,OE=OF∴BO⊥EF∴在Rt△BEO中,∠BEF+∠ABO=90°由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC∴∠BAC=∠ABO又∵∠BEF=2∠BAC即2∠BAC+∠BAC=90°解得∠BAC=30°∵BC=2∴AC=2BC=4∴AB===6.【点评】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.【考点】正方形的性质.【专题】计算题.【分析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.【解答】解:(1)证明:∵△DAE逆时针旋转90°得到△DCM∴∠FCM=∠FCD+∠DCM=180°∴F、C、M三点共线∴DE=DM,∠EDM=90°∴∠EDF+∠FDM=90°∵∠EDF=45°∴∠FDM=∠EDF=45°在△DEF和△DMF中∴△DEF≌△DMF(SAS)∴EF=MF;(2)设EF=MF=x∵AE=CM=1,且BC=3∴BM=BC+CM=3+1=4∴BF=BM﹣MF=BM﹣EF=4﹣x∵EB=AB﹣AE=3﹣1=2在Rt△EBF中,由勾股定理得EB2+BF2=EF2即22+(4﹣x)2=x2解得:x=则EF=.【点评】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.23.(8分)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.【考点】正方形的性质.【分析】(1)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;(2)通过△DBG≌△FBG的对应边相等知BD=BF=;然后由CF=BF﹣BC=即可求得;(3)分三种情况分别讨论即可求得.【解答】(1)证明:如图1在△BCE和△DCF中∴△BCE≌△DCF(SAS);(2)证明:如图1∵BE平分∠DBC,OD是正方形ABCD的对角线∴∠EBC=∠DBC=22.5°由(1)知△BCE≌△DCF∴∠EBC=∠FDC=22.5°(全等三角形的对应角相等);∴∠BGD=90°(三角形内角和定理)∴∠BGF=90°;在△DBG和△FBG中∴△DBG≌△FBG(ASA)∴BD=BF,DG=FG(全等三角形的对应边相等)∵BD==∴BF=∴CF=BF﹣BC=﹣1;(3)解:如图2,∵CF=﹣1,BH=CF∴BH=﹣1①当BH=BP时,则BP=﹣1∵∠PBC=45°设P(x,x)∴2x2=(﹣1)2解得x=1﹣或﹣1+∴P(1﹣,1﹣)或(﹣1+,﹣1+);②当BH=HP时,则HP=PB=﹣1∵∠ABD=45°∴△PBH是等腰直角三角形∴P(﹣1,﹣1);③当PH=PB时,∵∠ABD=45°∴△PBH是等腰直角三角形∴P(,)综上,在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形,所有符合条件的P点坐标为(1﹣,1﹣)、(﹣1+,﹣1+)、(﹣1,﹣1)、(,).【点评】本题是四边形的综合题,考查了正方形的性质,三角形全等的判定和性质,等腰三角形的判定,熟练掌握性质定理是解题的关键.。
北师大版九年级数学上册第一章特殊平行四边形单元测试卷-(含答案及解析)
北师大版九年级数学上册单元测试卷第一章 特殊平行四边形1.下列说法正确的是A .对角线垂直的四边形是菱形B .对角线互相平分的四边形是菱形C .菱形的对角线相等且互相平分D .菱形的对角线互相垂直且平分 2.下列说法中,你认为正确的是( )A .四边形具有稳定性B .等边三角形是中心对称图形C .任意多边形的外角和是360D .矩形的对角线一定互相垂直 3.已知下列命题:①矩形是轴对称图形,且有两条对称轴;①两条对角线相等的四边形是矩形;①有两个角相等的平行四边形是矩形;①两条对角线相等且互相平分的四边形是矩形.其中正确的有( )A .4个B .3个C .2个D .1个 4.如图,下列条件中①AC BD ⊥①BAD 90∠=①AB BC =①AC BD =,能使平行四边形ABCD 是菱形的是( )A .①①B .①①C .①①D .①①① 5.已知菱形ABCD ,对角线5AC =,12BD =,则菱形的面积为( )A .60B .50C .40D .30 6.在数学活动课上,为探究四边形瓷砖是否为菱形,以下拟定的测量方案,正确的是( )A .测量一组对边是否平行且相等B .测量四个内角是否相等C .测量两条对角线是否互相垂直D .测量四条边是否相等一、单选题(共30分,每小题3分)7.如图,把长方形ABCD 沿对角线BD 折叠,下列结论:①①ABD 与△EDB 全等;①①ABF 与△EDF 全等;①AF EF =;①①BDF 是等腰三角形.其中正确的有( )A .1个B .2个C .3个D .4个 8.如图,在正方形ABCD 中,E 为对角线BD 上一点,CE 交AD 于点F ,连接AE .若①AEC=140︒,则①DFC 等于( )A .55°B .60°C .65°D .70°9.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,,AO CO BO DO ==.添加下列条件,可以判定四边形ABCD 是矩形的是( )A .AB AD =B .AC BD =C .AC BD ⊥ D .ABO CBO ∠=∠ 10.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB BC =时,它是菱形 B .当AC BD ⊥时,它是菱形C .当90ABC ∠=︒时,它是矩形D .当AC BD =时,它是正方形二、填空题(共30分,每小题3分) 11.矩形的两条对角线的夹角为60,较短的边长为12cm ,则对角线长为________cm . 12.已知菱形的周长为20,一条对角线长为8,则菱形的面积为________.13.如图所示,已知ABCD 中,下列条件:①AC =BD ;①AB =AD ;①①1=①2;①AB ①BC 中,能说明ABCD 是矩形的有______________(填写序号)14.如图,已知菱形ABCD 的对角线AC ,BD 的长分别为6,4,则AB 长为__.15.如图,平行四边形ABCD 是对角线互相垂直的四边形,请你添加一个适当的条件________,使ABCD 成为正方形(只需添加一个即可).16.如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC 上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且EF =AE +FC ,则边BC 的长为____________.17.如图,将两张长为16cm ,宽为4cm 的矩形纸条交叉,使重叠部分是一个菱形,那么菱形周长的最大值与最小值的和是________.18.如图,矩形ABCD 的对角线相交于点O ,DE ①AC ,CE ①BD ,已知AB =6cm ,BC =8cm ,则四边形ODEC 的周长为______cm .19.如图,菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF ,若EF =4BD =,则菱形ABCD 的面积为________.20.如图,将平行四边形ABCD 的边DC 延长到E ,使CE CD =,连接AE 交BC 于F ,AFC n D ∠∠=,当n =______时,四边形ABEC 是矩形.三、解答题(共60分) 21.矩形ABCD 中68AB cm BC cm AE ==,,平分BAC ∠交BC 于E CF ,平分ACD ∠交AD 于F .(共8分)(1)说明四边形AECF 为平行四边形;(2)求四边形AECF 的面积.22.如图,在矩形ABCD中,对角线AC与BD交于点O,且①ADO为等边三角形,过点A 作AE①BD于点E.(共8分)(1)求①ABD的度数;(2)若BD=10,求AE的长.23.已知如图,两个长为8,宽为2的矩形纸条倾斜地重叠着.(共10分)()1求证:两矩形重叠部分为菱形;()2求菱形面积最大和最小值.24.如图,在ABC 中,5AB AC ==,6BC =,AD 为BC 边上的高,过点A 作//AE BC ,过点D 作//DE AC ,AE 与DE 交于点E ,AB 与DE 交于点F ,连结BE .(共10分)()1求证:四边形AEBD 是矩形;()2求四边形AEBD 的面积.25.如图,正方形ABCD中,E、F分别在BC、DC上,且45.∠=试说明:EAF+=.(共12分)BE DF EF26.如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA 上,连接CF.(共12分)()1求证:HEA CGF∠=∠;()2当AH DG=时,求证:菱形EFGH为正方形.参考答案:1.D 2.C 3.C 4.A 5.D 6.D 7.D 8.C 9.B 10.D11.24 12.24 13.①① 1415.90ABC∠=16.17.4018.20 19.20.221.(1)见解析;(2)30cm2(1)①四边形ABCD是矩形,①AD①BC(即AF①CE),AB①CD,①①BAC=①ACD,又①AE平分①BAC,CF平分①ACD,①①EAC=①FCA,①AE①CF,①四边形AECF是平行四边形;(2)过点E作EO①AC于点O,①①B=90°,AE平分①BAC,①EO=BO,①AE=AE,①Rt①ABE①Rt①AOE,①AO=AB=6,①在Rt①ABC,10,①OC=AC-AO=4(cm),设CE=x,则EO=BE=BC-CE=8-x,①在Rt①OEC中由勾股定理可得:222-+=,解得:58(x x4)x=,①EC=5,①S四边形AECF=CE·AB=5×6=30(cm2).22.(1)①ABD=30°;(2)AE(1)①四边形ABCD是矩形,①①DAB=90°,①①ADO为等边三角形,①①ADB=60°,①①ABD=180°-①DAB-①ADB=30°;(2)①BD=10,①BAD=90°,①ABD=30°,①AD=12BD=5,①①ADO为等边三角形,①AD=AO=DO=5,①AE①DO,①DE=EO=12DO=2.5,在Rt①AED中,由勾股定理得AE23.(1)详见解析;(2)菱形面积最大和最小值分别是172、4.()1根据题意得:AD//BC,AB//CD,①四边形ABCD是平行四边形.如图1,分别作CD,BC边上的高为AE,AF,①两纸条宽度相同,①AE AF=.①平行四边形ABCD的面积为AE CD BC AF⨯=⨯,①CD BC=.①平行四边形ABCD为菱形;()2如图2,此时菱形ABCD的面积最大.设AB x =,EB 8x =-,AE 2=,则由勾股定理得到:2222(8x)x +-=, 解得 17x 4=, 1717S 242=⨯=最大; 如图3,此时菱形ABCD 的面积最小.S 224=⨯=最小. 综上所述,菱形面积最大和最小值分别是172、4. 24.(1)详见解析;(2)12. ()1①AE //BC ,BE //AC ,①四边形AEDC 是平行四边形. ①AE CD =.在ABC 中,AB AC =,AD 为BC 边上的高, ①ADB 90∠=,BD CD =.①BD AE =.①四边形AEBD 是矩形.()2在Rt ADC 中,ADB 90∠=,AC 5=,1BD CD BC 32===,①AD 4=.①四边形AEBD 的面积BD AD 3412=⋅=⨯=. 25.证明见解析.①四边形ABCD 为正方形①AB=AD,①BAD=①B=①ADF=90°如图,把△ABE 逆时针旋转90°得到△ADG ,①BE =GD ,AE =AG .①ADG=①ABE=90°,①GAD=①BAE ①①ADG+①ADF=180°①G 、D 、F 在同一条直线上.①①EAF =45°,①①F AG =①GAD+①DAF=①BAE+①DAF=①BAD-①EAF=90°﹣45°=45°, ①①EAF =①F AG .在△AEF 和△AGF 中,①AE AG EAF FAG AF AF =⎧⎪∠=∠⎨⎪=⎩,①①AEF ①①AGF (SAS ),①EF =GF ,即EF =GD +DF ,①BE +DF =EF .26.(1)详见解析;(2)详见解析.(1)连接GE ,①AB//CD ,①AEG CGE ∠∠=,①GF//HE ,①HEG FGE ∠∠=,①HEA CGF ∠∠=;()2①四边形ABCD 是正方形, ①D A 90∠∠==, ①四边形EFGH 是菱形, ①HG HE =,在Rt HAE 和Rt GDH 中, AH DG HE HG =⎧⎨=⎩, ①()Rt HAE Rt GDH HL ≅, ①AHE DGH ∠∠=,又DHG DGH 90∠∠+=, ①DHG AHE 90∠∠+=, ①GHE 90∠=, ①菱形EFGH 为正方形;。
北师大版九年级上学期第1章《特殊的平行四边形》单元测练习(含答案)
《特殊的平行四边形》单元测试卷一.选择题1.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.32.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.93.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形4.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠25.矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A .1B .C .D .6.矩形具有而平行四边形不一定具有的性质是( ) A .对边相等 B .对角相等C .对角线相等D .对角线互相平分7.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB =60°,FO =FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE =EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A .4个B .3个C .2个D .1个8.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( ) A .∠A =∠BB .∠A =∠CC .AC =BDD .AB ⊥BC9.在△ABC 中,点D 是边BC 上的点(与B ,C 两点不重合),过点D 作DE ∥AC ,DF ∥AB ,分别交AB ,AC 于E ,F 两点,下列说法正确的是( )A .若AD ⊥BC ,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形 C .若BD =CD ,则四边形AE DF 是菱形 D .若AD 平分∠BAC ,则四边形AEDF 是菱形10.如图,平行四边形ABCD 中,∠B =60°.G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连结CE ,DF ,下列说法不正确的是( )A .四边形CEDF 是平行四边形B .当CE ⊥AD 时,四边形CEDF 是矩形C .当∠AEC =120°时,四边形CEDF 是菱形D .当AE =ED 时,四边形CEDF 是菱形11.如图,正方形ABCD 的边长为1,点E ,F 分别是对角线AC 上的两点,EG ⊥AB .EI ⊥AD ,FH ⊥AB ,FJ ⊥AD ,垂足分别为G ,I ,H ,J .则图中阴影部分的面积等于 ( )A .1B .C .D .12.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF ∥AD ,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连接DE ,EH ,DH ,FH .下列结论:①EG =DF ;②∠AEH +∠ADH =180°;③△EHF ≌△DHC ;④若=,则3S △EDH =13S △DHC ,其中结论正确的有( )A .1个B .2个C .3个D .4个13.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .()2014B .()2015C .()2015D .()201414.关于▱ABCD 的叙述,正确的是( )A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形15.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF16.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是()A.矩形B.菱形C.正方形D.无法判断二.填空题17.如图,四边形ABCD是菱形,AC=16,DB=12,DH⊥AB于H,则DH等于.18.在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是.19.顺次连接四边形ABCD各边中点形成一个菱形,则原四边形对角线AC、BD的关系是.20.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.21.如图,在矩形ABCD中,AB=3,AD=4,P为AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为.22.如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD,若BD=5,则四边形DOCE的周长为.23.如图,矩形ABCD中, AE平分∠BAD交BC于E,∠CAE=15°,则下列结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE =S△COE,其中正确的结论的序号是.24.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.25.在△ABC中,AB=6cm,AC=8cm,BC=10cm,P为边BC上一动点,PE⊥AB于E,PF⊥AC 于F,连接EF,则EF的最小值为cm.26.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快s后,四边形ABPQ成为矩形.27.如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为3,4,H为线段DF的中点,则BH=.28.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去第n个正方形的边长为.29.▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:,使得▱ABCD 为正方形.30.如图,在四边形ABCD中,AD∥BC(BC>AD),∠D=90°,∠ABE=45°,BC=CD,若AE=5,CE=2,则BC的长度为.31.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD 的面积是18,则DP的长是.三.解答题32.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.33.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.34.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC 的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,则菱形ABCD的面积是.35.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE 是矩形.36.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.37.如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.38.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为,∠ABC=°.(直接填写结果)39.如图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CD 上由C点向D点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?40.如图,△ABC的中线AD、BE、CF相交于点G,H、I分别是BG、CG的中点.(1)求证:四边形EFHI是平行四边形;(2)①当AD与BC满足条件时,四边形EFHI是矩形;②当AG与BC满足条件时,四边形EFHI是菱形.参考答案1.解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选:A.2.解:∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴EF=BC,∴BC=6,∴菱形ABCD的周长是4×6=24.故选:A.3.解:菱形的四条边相等,是轴对称图形,也是中心对称图形,对角线垂直不一定相等,故选:B.4.解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.5.解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵C G=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.6.解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.7.解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵△BOC为等边三角形,FO=FC,∴BO⊥EF,BF⊥OC,∴∠CMB=∠EOB=90°,∴BO≠BM,∴△EOB与△CMB不全等;故②错误;③易知△ADE≌△CBF,∠1=∠2=∠3=30°,∴∠ADE=∠CBF=30°,∠BEO=60°,∴∠CDE=60°,∠DFE=∠BEO=60°,∴∠CDE=∠DFE,∴DE=EF,故③正确;④易知△AOE≌△COF,∴S△AOE =S△COF,∵S△COF =2S△CMF,∴S△AOE :S△BCM=2S△CMF:S△BCM=,∵∠FCO=30°,∴FM=,BM=CM,∴=,∴S△AOE :S△BCM=2:3,故④正确;所以其中正确结论的个数为3个;故选:B.8.解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;故选:B.9.解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.10.解:A、∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形,正确;B、∵四边形CEDF是平行四边形,∵CE⊥AD,∴四边形CEDF是矩形,正确;C 、∵四边形CEDF 是平行四边形,∵∠AEC =120°,∴∠CED =60°,∴△CDE 是等边三角形,∴CE =DE ,∵四边形CEDF 是平行四边形,∴四边形CEDF 是菱形,正确;D 、当AE =ED 时,不能得出四边形CEDF 是菱形,错误;故选:D .11.解:∵四边形ABCD 是正方形,∴直线AC 是正方形ABCD 的对称轴,∵EG ⊥AB .EI ⊥AD ,FH ⊥AB ,FJ ⊥AD ,垂足分别为G ,I ,H ,J .∴根据对称性可知:四边形EFHG 的面积与四边形EFJI 的面积相等,△AIE 的面积=△AEG 的面积,∴S 阴=S 正方形ABCD =,故选:B .12.解:①∵四边形ABCD 为正方形,EF ∥AD ,∴EF =AD =CD ,∠ACD =45°,∠GFC =90°,∴△CFG 为等腰直角三角形,∴GF =FC ,∵EG =EF ﹣GF ,DF =CD ﹣FC ,∴EG =DF ,故①正确;②∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =CH ,∠GFH =∠GFC =45°=∠HCD ,在△EHF 和△DHC 中,,∴△EHF ≌△DHC (SAS ),∴∠HEF =∠HDC , ∴∠AEH +∠ADH =∠AEF +∠HEF +∠ADF ﹣∠HDC =∠AEF +∠ADF =180°,故②正确;③∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =CH ,∠GFH =∠GFC =45°=∠HCD ,在△EHF 和△DHC 中,,∴△EHF ≌△DHC (SAS ),故③正确;④∵=, ∴AE =2BE ,∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =GH ,∠FHG =90°,∵∠EGH =∠FHG +∠HFG =90°+∠HFG =∠HFD ,在△EGH 和△DFH 中,, ∴△EGH ≌△DFH (SAS ),∴∠EHG =∠DHF ,EH =DH ,∠DHE =∠EHG +∠DHG =∠DHF +∠DHG =∠FHG =90°, ∴△EHD 为等腰直角三角形,过H 点作HM 垂直于CD 于M 点,如图所示:设HM =x ,则DM =5x ,DH =x ,CD =6x ,则S △DHC =×HM ×CD =3x 2,S △EDH =×DH 2=13x 2,∴3S △EDH =13S △DHC ,故④正确;故选:D .13.方法一:解:如图所示:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3… ∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin30°=,则B 2C 2=()1,同理可得:B 3C 3==()2,故正方形A n B n ∁n D n 的边长是:()n ﹣1.则正方形A 2015B 2015C 2015D 2015的边长是:()2014. 故选:D .方法二:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,∴D 1E 1=B 2E 2=,∵B 1C 1∥B 2C 2∥B 3C 3…∴∠E 2B 2C 2=60°,∴B 2C 2=,同理:B 3C 3=×=…∴a 1=1,q =,∴正方形A 2015B 2015C 2015D 2015的边长=1×. 14.解:∵▱ABCD 中,AB ⊥BC ,∴四边形ABCD 是矩形,不一定是菱形,选项A 错误;∵▱ABCD 中,AC ⊥BD ,∴四边形ABCD 是菱形,不一定是正方形,选项B 错误;∵▱ABCD 中,AC =BD ,∴四边形ABCD 是矩形,选项C 正确;∵▱ABCD 中,AB =AD ,∴四边形ABCD 是菱形,不一定是正方形,选项D 错误.故选:C .15.解:∵EF 垂直平分BC ,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.16.解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形纸条的宽度相等,∴DE=DF.又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.故选:B.二.填空题(共15小题)17.解:∵四边形ABCD是菱形,∴OA=OC=8,OB=OD=6,AC⊥BD,在Rt△AOB中,AB==10,=•AC•BD,∵S菱形ABCDS=DH•AB,菱形ABCD∴DH•10=×12×16,∴DH=.故答案为:.18.解:如图所示:∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,∴可得AD=AB,故△ABD是等边三角形,则AB=AD=4,故BO=DO=2,则AO==2,故AC=4,则菱形ABCD的面积是:×4×4=8.故答案为:8.19.解:∵EFGH为菱形∴EH=EF又∵E、F、G、H为四边中点∴AC=2EH,BD=2FE∴AC=BD.故答案为AC=BD.20.解:根据作图,AC =BC =OA , ∵OA =OB ,∴OA =OB =BC =AC ,∴四边形OACB 是菱形,∵AB =2cm ,四边形OACB 的面积为4cm 2,∴AB •OC =×2×OC =4,解得OC =4cm .故答案为:4.21.解:连接OP ,∵四边形ABCD 是矩形,∴∠BAD =90°,AC =BD ,OA =OC ,OB =OD ,∴OA =OD =BD ,S △AOD =S △AOB ,∵AB =3,AD =4,∴S 矩形ABCD =3×4=12,BD =5,∴S △AOD =S 矩形ABCD =3,OA =OC =,∵S △AOD =S △AOP +S △DOP =OA •PE +OD •PF =××PE +××PF =(PE +PF )=3, ∴PE +PF =.故答案为.22.解:∵CE ∥BD ,DE ∥AC ,∴四边形CODE 是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OC=OD=BD=,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×=10.故答案为:10.23.解:∵矩形ABCD中,AE平分∠BAD,∴∠BAE=45°,∵∠CAE=15°,∴∠BAO=∠BAE+∠CAE=45°+15°=60°,又∵矩形中OA=OB=OC=OD,∴△AOB是等边三角形,∴∠AOB=∠COD=60°,∴△ODC是等边三角形,故①正确;由等边三角形的性质,AB=OA,∴AC=2AB,由垂线段最短BC<AC,∴BC<2AB,故②错误;∵∠BAE=45°,∠ABE=90°,∴△ABE是等腰直角三角形,∴AB=BE,∴BO=BE,∵∠COB=180°﹣60°=120°,∴∠BOE=(180°﹣30°)=75°,∴∠AOE=∠AOB+∠BOE=60°+75°=135°,故③正确;∵△AOE和△COE的底边AO=CO,点E到AC的距离相等,∴S△AOE =S△COE,故④正确;综上所述,正确的结论是①③④.故答案为:①③④.24.解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.25.解:∵AB=6cm,AC=8cm,BC=10cm,∴AB2+AC2=BC2,∴△ABC为直角三角形,∠A=90°,∵PE⊥AB于E,PF⊥AC于F,∴∠AEP=∠AFP=90°,∴四边形AEPF为矩形,连接AP,如图,EF=AP,当AP的值最小时,EF的值最小,当AP⊥BC时,AP的值最,此时AP==,∴EF的最小值为.故答案为.26.解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得3x=20﹣2x.解得x=4,故答案为:4.27.解:连接BD、BF,∵四边形ABCD,BEFG是正方形,且边长分别为3和4,∴∠DBC=∠GBF=45°,BD=3,BF=4,∴∠DBF=90°,由勾股定理得:DF==5,∵H为线段DF的中点,∴BH=DF=.故答案为:.28.解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=同理可得:AE=()2,AG=()3…,∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.29.解:∵▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,∴▱ABCD是菱形,当∠BAD=90°时,▱ABCD为正方形.故答案为:∠BAD=90°.30.解:过点B作BF⊥AD于点F,延长DF使FG=EC,∵AD∥BC,∠D=90°,∴∠C=∠D=90°,BF⊥AD∴四边形CDFB是矩形∵BC=CD∴四边形CDFB是正方形∴CD=BC=DF=BF,∠CBF=90°=∠C=∠BFG,∵BC=BF,∠BFG=∠C=90°,CE=FG∴△BCE≌△BFG(SAS)∴BE=BG,∠CBE=∠FBG∵∠ABE=45°,∴∠CBE+∠ABF=45°,∴∠ABF+∠FBG=45°=∠ABG∴∠ABG=∠ABE,且AB=AB,BE=BG∴△ABE≌△ABG(SAS)∴AE=AG=5,∴A F=AG﹣FG=5﹣2=3在Rt△ADE中,AE2=AD2+DE2,∴25=(DF﹣3)2+(DF﹣2)2,∴DF=6∴BC=6故答案为:631.解:如图,过点D作DE⊥DP交BC的延长线于E,∵∠ADC=∠ABC=90°,∴四边形DPBE是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°,∴∠ADP+∠CDP=90°,∴∠ADP=∠CDE,∵DP⊥AB,∴∠APD=90°,∴∠APD=∠E=90°,在△ADP和△CDE中,,∴△ADP≌△CDE(AAS),∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,∴矩形DPBE是正方形,∴DP==3.故答案为:3.三.解答题(共9小题)32.(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线∴DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,=AC▪DF=×4×5=10.∴S菱形ADCF33.解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.34.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为: AC•BD=×4×2=4.故答案是:4.35.证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.36.证明:(1)∵正方形ABCD,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中,∴△ABE≌△ADF(SAS);(2)连接AC,四边形AECF是菱形.理由:∵正方形ABCD,∴OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.37.(1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵EF∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF==10,∴OC=OE=EF=5;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE、AF,如图所示:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.38.解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形∵AB=AF,∴四边形ABEF是菱形.故答案为菱形.(2)∵四边形ABEF是菱形,∴AE⊥BF,BO=OF=5,∠ABO=∠EBO,∵AB=10,∴AB=2BO,∵∠AOB=90°∴∠BA0=30°,∠ABO=60°,∴AO=BO=5,∠ABC=2∠ABO=120°.故答案为,120.39.解:(1)①∵t=1秒,∴BP=CQ=4×1=4厘米,(1分)∵正方形ABCD中,边长为10厘米∴PC=BE=6厘米,(1分)又∵正方形ABCD,∴∠B=∠C,(1分)∴△BPE≌△CQP(1分)②∵V P≠V Q,∴BP≠CQ,又∵△BPE≌△CQP,∠B=∠C,则BP=PC,而BP=4t,CP=10﹣4t,∴4t=10﹣4t(2分)∴点P,点Q运动的时间秒,(1分)∴厘米/秒.(1分)(2)设经过x秒后点P与点Q第一次相遇,由题意,得4.8x﹣4x=30,(1分)解得秒.(1分)∴点P共运动了厘米(1分)∴点P、点Q在A点相遇,∴经过秒点P与点Q第一次在A点相遇.(1分)40.(1)证明:∵BE,CF是△ABC的中线,∴EF是△ABC的中位线,∴EF∥BC且EF=BC.∵H、I分别是BG、CG的中点.,∴HI是△BCG的中位线,∴HI∥BC且HI=BC,∴EF∥HI且EF=HI.∴四边形EFHI是平行四边形.(2)解:①当AD与BC满足条件AD⊥BC时,四边形EFHI是矩形;理由如下:同(1)得:FH是△ABG的中位线,∴FH∥AG,FH=AG,∴FH∥AD,∵EF∥BC,AD⊥BC,∴EF⊥FH,∴∠EFH=90°,∵四边形EFHI是平行四边形,∴四边形EFHI是矩形;故答案为:AD⊥BC;②当AG=BC时,四边形DEFI是菱形.理由:∵△ABC的两条中线BE与CF交于点G、H、I分别是BG、CG的中点,∴FH=AG,∵EF=BC,∴当AG=BC时,FH=EF,∵四边形EFHI为平行四边形,∴▱EFHI为菱形;故答案为:AG=BC.。
北师大版九年级数学上册 第一章 特殊平行四边形 单元测试题(有答案)
第一章特殊平行四边形单元测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号一二三总分得分一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.245B.125C.5D.42. 能够判定一个四边形为菱形的条件是()A.对角线相互平分且相等B.对角线相互垂直且相等C.对角线相互平分且垂直D.两邻角互补且对角线垂直3. 下列说法中,不正确的是()A.对角线互相垂直的矩形是正方形B.有一个角是直角的菱形是正方形C.两条对角线和一组邻边分别相等的平行四边形是正方形D.四条边都相等的四边形是正方形4. 已知四边形ABCD是平行四边形,则下列结论中正确的是()A.当AB⊥BD时,它是菱形B.当AC=BD时,它是正方形C.当∠ABC=90∘时,它是矩形D.当AC⊥BD时,它是矩形5. 四边形ABCD的对角线相交于点O,能判定它是正方形的条件是()A.AB=BC=CD=DAB.AO=CO,BO=DO,AC⊥BDC.AC=BD,AC⊥BD且AC、BD互相平分D.AB=BC,CD=DA6. 在正方形ABCD中,点E是BC边的中点,若DE=5,则四边形ABED的面积为()A.10B.15C.20D.257. 如图,在正方形ABCD中,AB=1,连接AC,以AC为边作第一个正方形ACC1D1,连接AC1,以AC1为边作第二个正方形AC1C2D2,则第10个正方形边长为()A.8B.16C.32D.648. 下列给出的条件中,不能判定一个四边形是矩形的是()A.一组对边平行且相等,一个角是直角B.对角线互相平分且相等C.有三个角是直角D.一组对边平行,另一组对边相等,且对角线相等9. 下列条件:①四边相等的四边形,②对角线互相垂直且平分的四边形,③一组邻边相等的四边形,④一条对角线平分一组对角的平行四边形,其中能判断四边形是菱形的有()A.1个B.2个C.3个D.4个10. 如图,矩形ABCD的周长是20cm,以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为68cm2,那么矩形ABCD的面积是()A.9cm2B.16cm2C.21cm2D.24cm2二、填空题(本题共计8 小题,每题3 分,共计24分,)11. 如图,在四边形ABCD中,AD // BC,∠D=90∘,若再添加一个条件,就能推出四边形ABCD是矩形,你所添加的条件是________.12. 如图,菱形ABCD的对角线相交于点O,请你添加一个条件:________,使得该菱形为正方形.13. 如图,在▱ABCD中,AC平分∠DAB,AB=7,则▱ABCD的周长为________.14. 如图,在矩形纸片ABCD中,AB=9,BC=6,在矩形边上有一点P,且DP=3,将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.15. 如图,菱形ABCD中,对角线AC,BD相交于点O,不添加任何辅助线,要使四边形ABCD是正方形,则需要添加一个条件是________.(填一个即可)16. 如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是________.17. 如图,已知四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第2个正方形ACEF,再以第2个正方形的对角线AE为边作第3个正方形AEGH,如此下去,则第n个正方形的面积S n=________.18. 如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点.例如,如图的四边形ABCD中,点M在CD边上,连结AM、BM,∠AMB=90∘,则点M为直角点.若点E、F分别为矩形ABCD边AB、CD上的直角点,且AB=5,BC=√6,则线段EF 的长为________√6.三、解答题(本题共计7 小题,共计66分,)19. 如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直接MN交BC于点M,交AD于点N.求证:四边形AMCN是菱形.20. 如图,矩形ABCD,对角线AC、BD交于点O,CE // BD,DE // AC,CE与DE交于点E,那么DC与OE有什么样的位置关系?请说明理由.21. 如图,矩形ABCD的对角线相交于点O,BE // AC、AE // BD.(1)求证:四边形OAEB是菱形.(2)当题中的矩形改为菱形时,则四边形0AEB是________形;当题中的矩形改为正方形时,则四边形0AEB是________形.22. 如图,矩形ABCD的对角线AC,BD相交于点O,DE // AC,CE // BD.求证:四边形OCED是菱形.23. 如图,在矩形ABCD中,DE平分∠ADC,∠EDO=15∘.(1)试比较线段AO与AE的大小.并证明你的结论;(2)连接OE,求∠AOE的大小.24. 已知:如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求菱形BMDN的面积.25. 如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN // BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF会是正方形.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A2.【答案】C3.【答案】D4.【答案】C5.【答案】C6.【答案】B7.【答案】C8.【答案】D9.【答案】C10.【答案】B二、填空题(本题共计8 小题,每题 3 分,共计24分)11.【答案】∠A=90∘或AD=BC或AB // CD12.【答案】AC=BD或AB⊥BC13.【答案】2814.【答案】6√2或2√1015.【答案】∠ABC=90∘16.【答案】AB=AD17.【答案】2n−118.【答案】√7或三、解答题(本题共计7 小题,每题10 分,共计70分)19.【答案】证明:如图,连接BD,则BD过点O,∵ 四边形ABCD是矩形,∵ AD // BC,AD=BC,∵ ∠OBM=∠ODN,在△OBM和△ODN中,{∠OBM=∠ODNOB=OD∠BOM=∠ODN,∵ △OBM≅△ODN,∵ BM=DN;∵ AN=CM,∵ 四边形AMCN是平行四边形,由翻折得,AM=CM,∵ 四边形AMCN是菱形.20.【答案】解:OE⊥CD.证明:∵ DE // AC,CE // BD,∵ 四边形OCED是平行四边形.∵ ABCD是矩形,∵ OC=OD.∵ 四边形OCED是菱形,∵ OE⊥CD.21.【答案】矩形;正方形.矩,正方22.【答案】证明:∵ DE // AC,CE // BD,∵ 四边形OCED是平行四边形,∵ 矩形ABCD,∵ AO=OC=OB=OD=12AC=12BD,∵ 四边形OCED是菱形.23.【答案】解:(1)AO=AE;理由如下:∵ 四边形ABCD是矩形,∵ ∠ADC=∠BAD=90∘,AO=DO,∵ DE平分∠ADC∵ ∠CDE=∠ADE=45∘,∵ △ADE是等腰直角三角形,∵ AD=AE,又∵ ∠EDO=15∘,∵ ∠ADO=60∘;∵ △OAD是等边三角形;∵ AD=AO=DO,∵ AO=AE;(2)∵ △OAD是等边三角形,∵ ∠DAO=60∘,∵ ∠OAE=90∘−∠DAO=30∘,∵ AO=AE,∵ ∠AOE=(180∘−30∘)÷2=75∘.24.【答案】(1)证明:∵ 四边形ABCD是矩形∵ AD // BC,∠A=90∘,∵ ∠MDO=∠NBO,∠DMO=∠BNO,∵ 在△DMO和△BNO中{∠MDO=∠NBO BO=DO∠MOD=∠NOB∵ △DMO≅△BNO(ASA),∵ OM=ON,∵ OB=OD,∵ 四边形BMDN是平行四边形,∵ MN⊥BD,∵ 平行四边形BMDN是菱形.(2)解:∵ 四边形BMDN是菱形,∵ MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8−x)2+42,解得:x=5,∵ S菱形BMDN=DM⋅AB=5×4=20.25.【答案】(1)证明:∵ CE平分∠ACB,∵ ∠1=∠2,又∵ MN // BC,∵ ∠1=∠3,∵ ∠3=∠2,∵ EO=CO,同理,FO=CO,∵ EO=FO.(2)解:当点O运动到AC的中点时,四边形AECF是矩形.理由:∵ EO=FO,点O是AC的中点.∵ 四边形AECF是平行四边形,∵ CF平分∠BCA的外角,∵ ∠4=∠5,×180∘=90∘.又∵ ∠1=∠2,∵ ∠2+∠4=12即∠ECF=90度,∵ 平行四边形AECF是矩形.(3)解:当△ABC是直角三角形时,即∠ACB=90∘时,四边形AECF会是正方形,理由:由(2)证明可知,当点O运动到AC的中点时,四边形AECF是矩形,∵ ∠ACB=90∘,CE、CN分别是∠ACB与∠ACB的外角平分线,∵ ∠1=∠2=∠3=∠4=∠5=45∘,∵ AC⊥MN,∵ 四边形AECF是正方形.。
北师大新版九年级数学上册:第1章《特殊的平行四边形》单元复习试题 (含答案)
第1章特殊的平行四边形一.选择题(共15小题)1.已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC⊥BD B.AC=BD C.∠ABC=90°D.∠ABC=∠BAC 2.菱形的边长是2cm,一条对角线的长是2cm,则另一条对角线的长约是()A.4cm B.1 cm C.cm D.2cm3.如图,四边形ABCD是菱形,AC=12,BD=16,AH⊥BC于H,则AH等于()A.B.C.4 D.54.菱形的两条对角线分别为8和6,则菱形的周长和面积分别是()A.20,48 B.14,48 C.24,20 D.20,245.如图,菱形ABCD的顶点C在直线MN上,若∠1=50°,∠2=20°,则∠ABD的度数为()A.20°B.35°C.40°D.50°6.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,连结OE.若OE=3,则菱形ABCD的周长是()A.6 B.12 C.18 D.247.如图,在菱形ABCD中,AE,AF分别垂直平分BC,CD,垂足分别为E,F,则∠EAF的度数是()A.90°B.60°C.45°D.30°8.如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交AC于点F,点E为垂足,连接DF,则∠CDF=()A.50°B.40°C.30°D.15°9.如图,要使平行四边形ABCD成为菱形,添加一个条件不正确的是()A.AC⊥BD B.AB=AD C.AC=BD D.AC平分∠BAD 10.在平面直角坐标系内,点O是原点,点A的坐标是(3,4),点B的坐标是(3,﹣4),要使四边形AOBC是菱形,则满足条件的点C的坐标是()A.(﹣3,0)B.(3,0)C.(6,0)D.(5,0)11.如图,AC是平行四边形ABCD的对角线,当它满足以下:①∠1=∠2;②∠2=∠3;③∠B=∠3;④∠1=∠3中某一条件时,平行四边形ABCD是菱形,这个条件是()A.①或②B.②或③C.③或④D.①或④12.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣3,0),B(0,2),C(3,0),D(0,﹣2),则四边形ABCD是()A.矩形B.菱形C.正方形D.平行四边形13.如图,矩形ABCD的两条对角线相交于点O,AB=2,∠ACB=30°,则矩形的面积为()A.4B.2 C.4 D.214.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOD=120°,AC=4,则CD的长为()A.2 B.3 C.2D.215.如图,在矩形ABCD中,点A的坐标是(﹣1,0),点C的坐标是(2,4),则BD的长是()A.6 B.5 C.3D.4二.填空题(共9小题)16.工人师博常常通过测量平行四边形零件的对角线是否相等来检验零件是否为矩形,请问工人师博此种检验方法依据的道理是.17.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.18.如图,平行四边形ABCD,添加一个条件使它成为一个矩形,你会加上.19.如图,P是正方形ABCD内一点,且PA=PD,PB=PC.若∠PBC=60°,则∠PAD=.20.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为cm2.21.已知正方形的对角线长为2,则它的面积.22.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为.23.如图在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE =BF,请你添加一个条件,使四边形BECF是正方形.24.如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).三.解答题(共5小题)25.如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.26.如图,在四边形ABCD中,AD∥BC,∠D=90°,E为边BC上一点,且EC=AD,连结AC.(1)求证:四边形AECD是矩形;(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,27.如图,在四边形ABCD中,AD∥BC,∠A=90°,AB=BC,∠D=45°,CD的垂直平分线交CD于E,交AD于F,交BC的延长线于G,若AD=a.(1)求证:四边形ABCF是正方形;(2)求BG的长.28.如图,在正方形ABCD中,对角线AC和BD相交于O,点E、F、G、H分别是OA、OB、OC、OD上,且AE=BF=CG=DH,求证:四边形EFGH是正方形.29.如图,在正方形ABCD中,E,F,G,H分别是边AB,BC,CD,DA上的点,且AE=BF=CG=DH,试判定四边形EFGH的形状,并证明你的结论.参考答案与试题解析一.选择题(共15小题)1.【解答】解:∵四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴AC⊥BD;故选:A.2.【解答】解:如图,设AC=2cm,∵四边形ABCD是菱形,∴AO=CO=1cm,BO=DO,AC⊥BD,∵BO===cm,∴BD=2cm,故选:D.3.【解答】解:∵四边形ABCD是菱形,AC=12,BD=16,∴CO=AC=6,BO=BD=8,AO⊥BO,∴BC==10,∴S菱形ABCD=AC•BD=×16×12=96,∵S菱形ABCD=BC×AH,∴BC×AH=96,∴AH==故选:B.4.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故菱形的周长是20,面积是24,故选:D.5.【解答】解:∵四边形ABCD是菱形,∴∠A=∠BCD,AB=AD,∵∠1=50°,∠2=20°,∴∠BCD=180°﹣50°﹣20°=110°,∴∠A=110°,∵AB=AD,∴∠ABD=∠ADB==35°,故选:B.6.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故选:D.7.【解答】解:连接AC,∵AE垂直平分边BC,∴AB=AC,又∵四边形ABCD是菱形,∴AB=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠B=60°,∴∠BCD=120°,又∵AF垂直平分边CD,∴在四边形AECF中,∠EAF=360°﹣180°﹣120°=60°.故选:B.8.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF(SAS)∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×100°=50°∴∠ABF=∠BAF=50°∵∠ABC=180°﹣100°=80°,∠CBF=80°﹣50°=30°∴∠CDF=30°.故选:C.9.【解答】解:A、对角线互相垂直的平行四边形是菱形,此选项不符合题意;B、邻边相等的平行四边形是菱形,此选项不符合题意;C、由对角线相等不能证明平行四边形ABCD是菱形,此选项符合题意;D、对角线平分对角的平行四边形是菱形,此选项不符合题意;故选:C.10.【解答】解:如图,连接AB交OC于D,∵四边形AOBC是菱形,∴AD⊥OC,OD=CD,∵点A的坐标是(3,4),点B的坐标是(3,﹣4),∴OD=3,∴OC=6,∴C(6,0),故选:C.11.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB=BC,∴平行四边形ABCD是菱形;故①④能判定.故选:D.12.【解答】解:如图所示:∵A(﹣3,0)、B(0,2)、C(3,0)、D(0,﹣2),∴OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD为菱形,故选:B.13.【解答】解:∵四边形ABCD是矩形∴∠ABC=90°,且∠ACB=30°∴BC=AB=2,∴矩形ABCD的面积=AB×BC=2×2=4故选:A.14.【解答】解:∵∠AOD=120°,∴∠COD=180°﹣∠AOD=180°﹣120°=60°,∵四边形ABCD是矩形,∴AO=BO=CO=DO=2,∴△COD是等边三角形,∴CD=DO=2,故选:A.15.【解答】解:∵点A的坐标是(﹣1,0),点C的坐标是(2,4),∴线段AC==5,∵四边形ABCD是矩形,∴BD=AC=5,故选:B.二.填空题(共9小题)16.【解答】解:∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故答案为:对角线相等的平行四边形是矩形.17.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.18.【解答】解:答案不唯一,∵四边形ABCD是平行四边形,∴可添加:∠A=90°、AC=BD等.故答案为:∠A=90°.19.【解答】解:∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠DAB=∠CBA=90°,∵PB=PC,∠PBC=60°,∴△PAB是等边三角形,∴∠APB=∠PBA=60°,PA=PB=AB,∴∠DAP=∠CBP=30°,∵PA=PD,∴∠PDA==75°.∴∠PAD=15°,故答案为:15°.20.【解答】解:如图,向下平移2cm,即AE=2,则DE=AD﹣AE=6﹣2=4cm 向左平移1cm,即CF=1,则DF=DC﹣CF=6﹣1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为:2021.【解答】解:∵正方形的一条对角线的长2,∴这个正方形的面积==4,故答案为422.【解答】解:∵四边形ABCD是菱形∴AB=BC,且∠B=60°,∴△ABC是等边三角形,∴AB=AC=3,∵四边形ACEF是正方形,∴AC=EF=3故答案为:323.【解答】解:添加条件:AC=BC.理由如下:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故答案为AC=BC.24.【解答】解:∵四边形ABCD为菱形,∴当∠BAD=90°时,四边形ABCD为正方形.故答案为∠BAD=90°.三.解答题(共5小题)25.【解答】解:(1)四边形AEBO是矩形.证明:∵BE∥AC,AE∥BD∴四边形AEBO是平行四边形.又∵菱形ABCD对角线交于点O∴AC⊥BD,即∠AOB=90°.∴四边形AEBO是矩形.(2)∵四边形AEBO是矩形∴EO=AB,在菱形ABCD中,AB=DC.∴EO=DC.26.【解答】解:(1)证明:∵AD∥BC,EC=AD,∴四边形AECD是平行四边形.又∵∠D=90°,∴四边形AECD是矩形.(2)∵AC平分∠DAB.∴∠BAC=∠DAC.∵AD∥BC,∴∠DAC=∠ACB.∴∠BAC=∠ACB.∴BA=BC=5.∵EC=2,∴BE=3.∴在Rt△ABE中,AE===4.27.【解答】解:(1)∵CD的垂直平分线交CD于E,交AD于F,∴FC=FD,∴∠D=∠FCD=45°,∴∠CFD=90°,即∠AFC=90°,又∵AD∥BC,∠A=90°,∴∠B=90°,∴四边形ABCF是矩形,又∵AB=BC,∴四边形ABCF是正方形;(2)∵FG垂直平分CD,∴CE=DE,∠CEG=∠DEF=90°,∵BG∥AD,∴∠G=∠EFD,在△CEG和△DEF中,,∴△CEG≌△DEF(AAS),∴CG=FD,又∵正方形ABCF中,BC=AF,∴AF+FD=BC+CG,∴AD=BG=a.28.【解答】证明:∵四边形ABCD是正方形,∴OA=OB=OC=OD,AC⊥BD,∵AE=BF=CG=DH,∴OE=OF=OG=OH,EG⊥FH,∴四边形EFGH是正方形.29.【解答】答:四边形EFGH的形状是正方形,证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∵AE=BF=CG=DH,∴BE=CF=DG=AH,∴△EBF≌△FCG≌△GDH≌△HAB,∴EF=FG=GH=HE,∠AEH=∠EFB,∵∠B=90°,∴∠EFB+∠FEB=90°,∴∠AEH+∠FEB=90°,∴∠HEF=90°,∵EF=FG=GH=HE,∴四边形EFGH的形状是正方形.。
第一章 特殊平行四边形 单元测试卷(含答案) 北师大版九年级上册数学
共有( )
A.1 对
B.2 对
C.3 对
D.4 对
3.如图,AC、BD 是四边形 ABCD 的两条对角线,顺次连接四边形 ABCD 各边中点得到四边形 EFGH,要使四边
形 EFGH 为矩形,应添加的条件是( )
A.AC⊥BD
B.AB=CD
C.AB∥CD
D.AC=BD
4.如图,在正方形 ABCD 中, CE MN , MCE 36 ,那么 ANM 等于( )
的最小值为
.
三、解答题(共 6 小题,每题 8 分,满分 48 分) 19.如图,小亮将升旗的绳子拉到杆底端,绳子末刚好接触地面,然后将绳子末端拉到距离旗杆 8m 处,发现此时 绳子末端距离地面 2m .请你求出杆的高度(滑轮上方的高度忽略不计,解题时请在图中标注字母)
20.如图,将一张长方形纸片 ABCD 沿 CE 折叠,使点 B 与 AD 边上的点 B′重合.过点 B′作 B′F//EB 交 CE 于点 F, 连接 EB′与 BF.
24.(1)
y1
2t 0
16 2t
t 4 4 t
8
;
y2
t
0
t
8
(2)①当 0 t 4 时, y1 随时间 t 的增大而增大,当 4 t 8 时, y1 随时间 t 的增大而减小;② 0 t 16
3
周长多 4,则 AC 的长是(
A.2 3
B.4 3
C.2 7
D. 4 7
8.如图,边长为 4 和 10 的两个正方形 ABCD 与 CEFG 并排在一起,连接 BD 并延长交 EF 于 H,交 EG 于 I,则 GI 的长为( )
A.3
B.7
C.3 2
初中数学北师大版九年级上册 第一章 特殊平行四边形 单元测试(含答案)
第一章特殊平行四边形一、单选题1.如图,要使平行四边形ABCD成为菱形,需添加的一个条件是( )A.AB=BC B.AC=BD C.∠ABC=90°D.AC与BD互相平分2.如图,矩形ABCD中,对角线AC,BD交于O点.若∠BOC=120°,AC=8,则AB的长为()A.6B.4C.43D.423.如图在Rt△ABC中,∠ACB=90°,AB=10cm,点D是AB的中点,则CD的长度是()A.7cm B.6cm C.5cm D.4cmCD的长为半径4.如图,矩形ABCD中,AB=10,BC=6,分别以C,D为圆心,以大于12作弧,两弧分别交于G,H两点,作直线GH交CD于点E,连接AE,点D关于AE的对称点为点M,作射线AM交BC于点N,则CN的长为()A .253B .4C .256D .55.如图,在长方形ABCD 中,AB=3,BC=4,若沿折痕EF 折叠,使点C 与点A 重合,则折痕EF 的长为( )A .158B .154C .152D .156.如图,在四边形ABCD 中,AB ∥CD ,AB =CD ,对角线AC 与BD 交于点O ,点E 是AD 的中点,连接OE ,△ABD 的周长为12cm ,则下列结论错误的是( )A .OE ∥ABB .四边形ABCD 是中心对称图形C .△EOD 的周长等于3cmD .若∠ABC =90°,则四边形ABCD 是轴对称图形7.如图,在△ABC 中,AB =5,AC =12,BC =13,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( )A.6013B.3013C.2413D.12138.如图,正方形ABCD的周长为24,P为对角线AC上的一个动点,E是CD的中点,则PE+PD 的最小值为()A.35B.32C.6D.5二、填空题9.菱形的周长为12cm,它的一个内角为60°,则菱形的面积为.10.如图,在菱形ABCD中,对角线AC,BD相交于点O,H为BC中点,AC=3,BD=4,则线段OH的长为.11.如图,在△ABC中,点D在BC上过点D分别作AB、AC的平行线,分别交AC、AB于点E、F①如果要得到矩形AEDF,那么△ABC应具备条件:;②如果要得到菱形AEDF,那么△ABC应具备条件:.12.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=度.13.如图,矩形ABCD内有一点P,连接AP,DP,CP,延长CP交AB于点E,若∠APD=90°,AD=8,CP=CD=6,则AE的长是.OA,把矩形OABC沿OB折叠,14.如图,四边形OABC是矩形,点A的坐标为(8,0),AB=12点C落在点D处,BD交OA于点E,则点E的坐标为.15.如图,已知点E在菱形ABCD的边AB上,以BE为边向菱形ABCD外部作菱形BEFG,连接DF,M,N分别是DC,DF的中点,连接MN.若AB=5,BE=2,∠ABC=120°,则MN=.16.如图,在边长为10的正方形ABCD中,E是BC的中点,连接AE,过点B作AE的垂线,交AE于点G,交CD于点H,F是BH上一点,连接EF,若BE=FE,则FH的长为.17.如图,矩形ABCD 中,AB =10,BC =24,点P 在BC 边上,PE ⊥BD ,PF ⊥AC ,则PE +PF = .18.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,BP =5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③S △APD +S △APB =12+62;④S 正方形ABCD =4+6.其中正确结论的序号是 .三、解答题19.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC=90°.(1)求证:四边形ABCD 是矩形.(2)若∠ACB=30°,AB=1,求①∠AOB 的度数;②四边形ABCD 的面积.20.如图,在菱形ABCD中,∠A=60∘,AB=4,O是对角线BD的中点,过O点作OE丄AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长;(3)求菱形ABCD的面积.21.如图,在平行四边形ABCD中,两条对角线相交于点O,EF经过O且垂直于AC,分别与边AD、BC交于点F、E.(1)求证:四边形AECF为菱形;(2)若AD=3,CD=2,且∠ADC=60°,求菱形AECF的面积.22.十一国庆节,某校各班都在开展丰富多彩的庆祝活动,八年级(1)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.武玥同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20cm,宽AB=16cm的长方形纸片ABCD;②如图,将纸片沿着直线AE折叠,点D恰好落在BC边上的F处.请你根据①②步骤计算EC,FC的长.23.综合与实践:【问题情境】某数学兴趣小组在学完《平行四边形》之后,研究了新人教版数学教材第64页的数学活动1.其内容如下:如果我们身旁没有量角器或三角尺,又需要作60°,30°,15°等大小的角,可以采用下面的方法(如图1);(1)对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平.(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM.同时,得到了线段BN.【知识运用】请根据上述过程完成下列问题:(1)已知矩形纸片ABCD,AB=43,AM=4,求线段BM的长;(2)通过观察猜测∠NBC的度数是多少?并进行证明;【综合提升】(3)乐乐在探究活动的第(2)步基础上再次动手操作(如图2),将MN延长交BC于点G.将△BMG沿MG折叠,点B刚好落在AD边上点H处,连接GH,把纸片再次展平.请判断四边形BGHM的形状,并说明理由.参考答案:1.A2.B3.C4.C5.B6.C7.B8.Acm29.93210.5411.∠BAC=90∘AD平分∠BAC 12.22.513.8314.(5,0)15.67216.517.1201318.①③④19.解:(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC=90°,∴四边形ABCD是矩形;(2)∵∠ABC=90°,∠ACB=300,AB=1∴∠BAC=60°,AC=2,BC=3又∵矩形ABCD中,OA=OB∴∠AOB=180°-2∠BAC=60°S□ABCD=1×3=320.解:(1)在菱形ABCD中,∵AB=AD,∠A=60∘,∴△ABD为等边三角形,∴∠ABD=60∘;(2)∵O是对角线BD的中点,BD=2,∴OB=12∵∠ABD=60∘,=1;∴BE=OBcos60∘=2×12(3)过D作DF⊥AB于点F,由(2)可得:OE=OBsin60∘=3,∵OE⊥AB,点O为BD中点,∴DF=2OE=23,则S菱形ABCD=AB⋅DF=4×23=83.21.(1)证明:∵四边形ABCD为平行四边形,∴OA=OC,AD∥BC,∴∠FAC=∠ACE,∠AFE=∠CEF,∴△AOF≌△COE,∴AF=CE,∴四边形AECF为平行四边形,∵EF经过O且垂直于AC,∴EF是对角线AC的垂直平分线,∴AF=CF,∴四边形AECF为菱形;(2)解:过C作CH⊥AD于H,则∠CHD=∠CHF=90°,∵∠ADC=60°,∴∠HCD=30°,∴HD=12CD=1,∴CH=CD2−HD2=3,∵AD=3,∴AH=2,∵四边形AECF是菱形,∴AF=CF,设AF=CF=x,则FH=2−x,在Rt△CHF中,由勾股定理得:CF2=FH2+CH2,即x2=(2−x)2+(3)2,解得:x=74,∴AF=CF=74,∴菱形AECF的面积为:AF×CH=74×3=734.22.解:∵△ADE由△AFE关于AE对称,∴△ADE≌△AFE,∴DE=FE,AD=AF,∵四边形ABCD是矩形,∴BC=AD=AF=20cm,AB=CD=16cm,在Rt△ABF中,由勾股定理:BF=AF2−AB2=202−162=12cm,∴CF=BC-BF=20-12=8cm.∵四边形ABCD是矩形,∴∠C=90°.设CE=x,则DE=EF=16-x,在Rt△CEF中,由勾股定理:EF2=CE2+CF2,代入数据:(16-x)2=x2+64,解得:x=6.∴EC=6cm.综上所述,线段EC=6cm,CF=8cm.23.解:(1)∵四边形ABCD为矩形,∴∠A=90°,∵AB=43,AM=4,∴BM=AB2+AM2=8;(2)猜测:∠NBC=30°,证明:连接AN:∵EF为折痕,∴EF垂直平分AB,∴AN=BN,∵△BMN由△BMA折叠所得,∴AB=BN,∴AN=BN=AB,∴△ABN为等边三角形,∴∠ABN=60°,∴∠NBC=90°−60°=30°;(3)四边形BGHM为菱形,理由:∵△BMN由△BMA折叠所得,∴∠ABM=∠NBM,∠BAM=∠MNB=90°,∵∠ABN=∠ABM+∠NBM=60°,∴∠ABM=∠NBM=30°,∵∠NBC=30°,∴∠NBM=∠NBC=30°,∴∠MBG=60°,∴△BMG是等边三角形,∴BM=BG,∵将△BMG沿MG折叠,点B刚好落在AD边上点H处,连接GH,∴△BMG≌△HGM,BH⊥MG,∴MH=BM,∴MH=BM=BG,∵MH∥BG,∴四边形BGHM是平行四边形,∵BM=BG,∴四边形BGHM是菱形.。
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)一、选择题1.菱形的周长为20cm,一条对角线长为8cm,则菱形的面积为()2cm.A.48B.24C.12D.202.菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相垂直C.对角相等D.对边平行3.要检验一个四边形画框是否为矩形,可行的测量方法是()A.测量四边形画框的两个角是否为90︒B.测量四边形画框的对角线是否相等且互相平分C.测量四边形画框的一组对边是否平行且相等D.测量四边形画框的四边是否相等4.如图,在矩形ABCD中,已知AE BD⊥于E,∠BDC=60°,BE=1,则AB的长为()A.3B.2C.3D35.下列条件中,能判定四边形是正方形的是()A.对角线相等的平行四边形B.对角线互相平分且垂直的四边形C.对角线互相垂直且相等的四边形D.对角线相等且互相垂直的平行四边形6.如图,将图1的正方形剪成四块,恰能拼成图2的矩形,则ba=()A 51-B 53+C 51+D 217.如图,在菱形ABCD 中 50ABC ∠=︒ ,对角线AC ,BD 交于点O ,E 为CD 的中点,连接OE ,则 AOE ∠ 的度数是( )A .110°B .112°C .115°D .120°8.如图,在四边形ABCD 中,AB =1,BC =4,CD =6,∠A =90°,∠B =∠C =120°,则AD 的长度为( )A .3B .3C .3D .3+39.如图,点E 、F 在矩形ABCD 的对角线BD 所在的直线上,BE =DF ,则四边形AECF 是( )A .平行四边形B .矩形C .菱形D .正方形10.如图,在边长为2的正方形ABCD 中,点E ,F 分别是边BC ,CD 上的动点,且BE CF =,连接BF ,DE ,则BF DE +的最小值为( )A 3B 5C .3D .512.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,∠A =120°,则A .13.如图,在矩形ABCD 中,E 是BC 边上一点90AED ∠=︒,∠EAD=30°,F 是AD 边的中点2cm EF =则BE = cm .14.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE=3,点Q 为对角线AC 上的动点,则∠BEQ 周长的最小值为 .三、解答题15.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE//BD ,BE//AC .(1)求证:四边形AEBO 是菱形;(2)若2AB =,OB=3,求AD 的长及四边形AEBO 的面积.16.如图,平行四边形ABCD 中,AC=6,BD=8,点P 从点A 出发以每秒1cm 的速度沿射线AC 移动,点Q 从点C 出发以每秒1cm 的速度沿射线CA 移动.(1)经过几秒,以P ,Q ,B ,D 为顶点的四边形为矩形?(2)若BC∠AC 垂足为C ,求(1)中矩形边BQ 的长.17. 如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且∠EAF =45°,分别连接EF 、BD ,BD 与AF 、AE 分别相交于点M 、N.(1)求证:EF =BE +DF .为了证明“EF =BE +DF ”,小明延长CB 至点G ,使BG =DF ,连接AG ,请画出辅助线并按小明的思路写出证明过程. (2)若正方形ABCD 的边长为6,BE =2,求DF 的长.18.已知:如图,在 Rt ABC 中 90ACB ∠=︒ , CD 是 ABC 的角平分线,DE ⊥BC ,DF ⊥AC ,垂足分別为E 、F.求证:四边形 CEDF 是正方形.四、综合题19.如图,在ABC 中,AB=AC=2,∠BAC=45°,AEF 是由ABC 绕点A 按逆时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证:BE CF =;(2)当四边形ABDF 为菱形时,求CD 的长.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE∠AC ,且12DE AC =,连接CE(1)求证:四边形OCED为矩形;(2)连接AE,若DB=6,AC=8,求AE的长.21.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1,连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断∠“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿∠AFB和∠CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q 的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.答案解析部分1.【答案】B【解析】【解答】解:∵菱形周长为20cm∴一条边的边长a=5cm又∵一条对角线长为8cm根据勾股定理可得另一条对角线长的一半22543 b-=∴另一条对角线长为6cm∴2186242m=⨯⨯=菱形的面积故答案为:B.【分析】本题考查菱形的性质、菱形的面积公式以及勾股定理,首先根据菱形的四边相等可知边长为5,又因为菱形的对角线垂直,所以结合一条已知的对角线求出另一条对角线的长度为6,两条对角线长度已知即可求出菱形的面积.2.【答案】B【解析】【解答】矩形的对角线相等,菱形的对角线不一定相等,故A不符合题意;矩形的对角线互相不垂直,菱形的对角线互相垂直,故B符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对角都相等,故C不符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对边都平行,故D不符合题意;故答案为:B.【分析】菱形和矩形具有平行四边形的一切性质,菱形特有:四条边都相等,对角线互相垂直且平分一组对角,矩形特有:四个角都是直角,对角线相等,据此逐一判断即可.3.【答案】B【解析】【解答】解:A、测量四边形画框的两个角是否为90°,不能判定为矩形,故选项A不符合题意;B、测量四边形画框的对角线是否相等且互相平分,能判定为矩形,故选项B符合题意;C、测量四边形画框的一组对边是否平行且相等,能判定为平行四边形,不能判定是否为矩形,故选项C 不符合题意;D、测量四边形画框的四边是否相等,能判断四边形是菱形,故选项D不符合题意.【分析】一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形;四边相等的四边形是菱形,据此一 一判断得出答案.4.【答案】B【解析】【解答】解:四边形ABCD 为矩形60BDC ∠=︒=60ABD ∴∠︒AE BD ⊥30BAE ∴∠=︒AB 2∴=故答案为:B .【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.5.【答案】D【解析】【解答】解:A 、对角线相等的平行四边形是矩形,故此选项不符合题意;B 、对角线互相平分且垂直的四边形是菱形,故此选项不符合题意;C 、对角线相等且互相垂直的平行四边形是正方形,故C 选项不符合题意,D 选项符合题意.故答案为:D.【分析】利用对角线互相平分,垂直且相等的四边形是正方形;对角线相等且互相垂直的平行四边形 是正方形,一一判断可得答案.6.【答案】C【解析】【解答】解:依题意得()2()a b b b a b +=++整理得:22222a b ab b ab ++=+则220a b ab -+= 方程两边同时除以2a 2()10b b a a --=152b a +∴=(负值已经舍去)【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),解方程即可求出ba的值.7.【答案】C【解析】【解答】解:∵四边形ABCD是菱形∴AC∠BD,∠CDO= 12∠ADC=12∠ABC=25°∴∠DOC=90°∵点E是CD的中点∴OE=DE= 12CD∴∠DOE=∠CDO=25°∴∠AOE=∠AOD+∠DOE=90°+25°=115°故答案为:C.【分析】根据菱形的性质得出AC∠BD,∠CDO=25°,然后根据直角三角形斜边中线的性质求出OE=DE,则由等腰三角形的性质求出∠DOE=25°,最后根据角的和差关系求∠AOE的度数即可. 8.【答案】A【解析】【解答】解:延长DC、AB,DC、AB的延长线相交于点E∵∠ABC=∠BCD=120°∴∠EBC=∠ECB=60°∴∠BCE是等边三角形∵BC=4,∴EC=BE=BC=4∵AB=1,CD=6∴AE=1+4=5,DE=CD+CE=4+6=10∵∠A=90°∴22221057553DE AE-=-=故答案为:53.【分析】延长DC、AB,DC、AB的延长线相交于点E,结合已知易得∠BCE是等边三角形,由等边三角形的性质可得EC=BE=BC,由线段的构成可求出AE、DE的值,然后在直角三角形ADE中,用勾股定理可求得AD的值.9.【答案】A∴AO=CO BO=DO又BE=DF∴ BO+BE=DO+DF即EO=FO∴ 四边形AECF 是平行四边(对角线互相平分的四边形是平行四边形)故选:A【分析】根据矩形性质得到平行四边形的判定条件。
九年级数学上册第一章特殊平行四边形单元清新版北师大版(含答案)
九年级数学上册新版北师大版:检测内容:第一章特殊平行四边形得分________卷后分________评价________一、选择题(每小题3分,共30分)1.平行四边形、矩形、菱形都具有的性质是( B )A.对角线相等B.对角线互相平分C.都是轴对称图形D.对角线互相垂直2.下列条件中,不能判断一个四边形是矩形的是( D )A.一组对边平行且相等,有一个内角是直角B.有3个角是直角C.两条对角线把四边形分成两对全等的等腰三角形D.一组对边平行,另一组对边相等,且两条对角线相等3.如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=3,OA=2,则AD 的长为( D )A.5 B.13C.10D.7第3题图第4题图第5题图第6题图4.如图,已知点E,F,G,H分别是菱形ABCD各边的中点,则四边形EFGH是( B ) A.正方形B.矩形C.菱形D.平行四边形5.如图,在正方形ABCD中,A,B,C三点的坐标分别是(-1,2),(-1,0),(-3,0),将正方形向右平移3个单位长度,则平移后点D的坐标是( B )A.(-6,2) B.(0,2) C.(2,0) D.(2,2)6.(宁夏中考)如图,菱形ABCD的边长为13,对角线AC=24,点E,F分别是边CD,BC的中点,连接EF并延长与AB的延长线相交于点G,则EG的长为( B ) A.13 B.10 C.12 D.57.如图,在矩形ABCD中,AB=4,BC=5,将矩形ABCD沿BE折叠,点A落在A′处,若EA′的延长线恰好过点C,则AE的长为( C )A.0.5 B.1 C.2 D.3第7题图第8题图第9题图第10题图8.如图,在正方形ABCD 中,点O 是对角线AC 的中点,点E 是BC 边上的一个动点,OE ⊥OF 交AB 边于点F ,点G ,H 分别是点E ,F 关于直线AC 的对称点,点E 从点C 运动到点B 时,图中阴影部分的面积大小变化情况是( C )A .先增大后减小B .先减小后增大C .一直不变D .不确定9.如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,∠AED =2∠CED ,点G 是DF 的中点,若BE =1,AG =4,则AB 的长为( D )A .3B .4C .17D .1510.如图,在平面直角在坐标系中放置一菱形OABC ,已知∠ABC =60°,点B 在y 轴上,OA =1,将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2 022次,点B 的落点依次为B 1,B 2,B 3,…,则B 2 022的坐标为( A ) A .(1 348,3 ) B .(1 348.5,32 ) C .(1 349,0) D .(1 349.5,32) 二、填空题(每小题3分,共15分)11.如图,直线l 是四边形ABCD 的对称轴,请再添加一个条件:__BC =CD (答案不唯一)__,使四边形ABCD 成为菱形.第11题图 第12题图 第13题图 第14题图第15题图12.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,E 是AC 的中点.若DE =3,则AB 的长为__6__.13.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为72 cm 2,则菱形的边长为__234 _cm__.ABCD 中,点E 是CD 的中点,将△BCE 沿BE 折叠后得到△BEF ,且点F 在矩形ABCD 的内部,将BF 延长交AD 于点G .若DG GA =17 ,则AD AB=__2 . 15.如图,已知正方形ABCD 的边长为5,点E ,F 分别在AD ,DC 上,AE =DF =2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为__342__.三、解答题(共75分)16.(6分)如图所示,在△ABC中,AD⊥BC于点D,点D,E,F分别是BC,AB,AC 的中点.求证:四边形AEDF是菱形.证明:∵点D,E,F分别是BC,AB,AC的中点,∴DE∥AC,DF∥AB,∴四边形AEDF是平行四边形.又∵AD⊥BC,BD=DC,∴AB=AC,∴AE=AF,∴平行四边形AEDF 是菱形17.(8分)(鹿邑县期中)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,求AD的长.解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB.∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD=BD2-AB2=36-9=3318.(8分)如图,在平行四边形ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.连接AC,DE,当∠B=∠AEB=45°时,求证:四边形ACED是正方形.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD.∴∠ADC=∠OCE,∠DAO=∠CEO.∵O是CD的中点,∴OC=OD,∴△AOD≌△EOC,∴OA=OE,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵AB∥CD,∴∠COE=∠BAE=90°,∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE =CD,∴菱形ACED是正方形19.(10分)如图,在菱形ABCD中,AB=AC,E,F分别是BC,AD的中点,连接AE,CF.(1)求证:四边形AECF是矩形;(2)若AB=8,求菱形ABCD的面积.解:(1)证明:∵四边形ABCD 是菱形,∴AB =BC =AD =CD ,AD ∥BC .又∵AB =AC ,∴△ABC 是等边三角形.又∵E 是BC 的中点,∴AE ⊥BC ,CE =12 BC ,∴∠AEC =90°.同理可得AF =12AD ,∴AF =CE .又∵AD ∥BC ,∴AF 綊EC ,∴四边形AECF 是平行四边形.又∵∠AEC =90°,∴四边形AECF 是矩形(2)在Rt △ABE 中,∵AE =AB 2-BE 2 =82-42 =43 ,∴S 菱形ABCD =8×43 =32320.(10分)(舞钢市期中)如图,E 和F 分别是菱形ABCD 的边AB 和AD 的中点,且AB =5,AC =6.(1)判断△OEF 的形状,并说明理由;(2)求线段EF 的长.解:(1)△OEF 是等腰三角形,理由如下:∵四边形ABCD 是菱形,∴AB =AD ,OB =OD .∵E ,F 分别是AB ,AD 的中点,∴OE ,OF 是△ABD 的中位线,∴OE =12 AD ,OF =12AB ,∴OE =OF ,∴△OEF 是等腰三角形(2)∵四边形ABCD 是菱形,∴OA =OC =12AC =3,AC ⊥BD ,∴∠AOB =90°,∴OB =AB 2-OA 2 =52-32 =4,∴BD =2OB =8.∵E ,F 分别是AB ,AD 的中点,∴EF 是△ABD 的中位线,∴EF =12BD =421.(10分)如图,四边形ABCD 和四边形AECF 都是矩形,AE 与BC 相交于点M ,CF 与AD 相交于点N .(1)求证:△ABM ≌△CDN ;(2)矩形ABCD 和矩形AECF 满足何种关系时,四边形AMCN 是菱形?证明你的结论.解:(1)证明:∵四边形ABCD 是矩形,∴∠B =∠D =90°,AB =CD ,AD ∥BC .∵四边形AECF 是矩形,∴AE ∥CF ,∴四边形AMCN 是平行四边形,∴AM =CN ,∴Rt △ABM ≌Rt △CDN (HL)(2)当AB =AF 时,四边形AMCN 是菱形,证明:∵四边形ABCD ,AECF 是矩形,∴∠B =∠BAD =∠EAF =∠F =90°,∴∠BAD -∠NAM =∠EAF -∠NAM ,即∠BAM =∠F AN .又∵AB =AF ,∴△ABM ≌△AFN (ASA),∴AM =AN .由(1)知四边形AMCN 是平行四边形,∴平行四边形AMCN 是菱形22.(10分)(1)如图①,点E ,F 分别在正方形ABCD 的边AB ,BC 上,∠EDF =45°,连接EF,求证:EF=AE+FC;(2)如图②,点E,F在正方形ABCD的对角线AC上,∠EDF=45°,猜想EF,AE,FC的数量关系,并说明理由.解:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠C=∠ADC=∠DAB=90°.延长BA到点M,使AM=CF,连接MD,则△AMD≌△CFD(SAS),∴∠MDA =∠CDF,MD=DF.∵∠EDF=45°,∴∠ADE+∠FDC=45°,∴∠ADM+∠ADE=45°=∠MDE,∴∠MDE=∠EDF.又∵DE=DE,∴△EDF≌△EDM(SAS),∴EF=EM.∵EM =AE+AM=AE+CF,∴EF=AE+CF(2)EF2=AE2+CF2,理由如下:如图②,将△CDF绕点D顺时针旋转90°,可得△ADN,由旋转的性质可得DN=DF,AN=CF,∠DAN=∠DCF=45°,∠CDF=∠ADN,∴∠CAN =∠CAD+∠DAN=90°,∴EN2=AE2+AN2.∵∠EDF=45°,∴∠CDF+∠ADE=45°,∴∠ADE+∠ADN=45°=∠NDE=∠EDF.又∵DE=DE,∴△EDF≌△EDN(SAS),∴EF =EN,∴EF2=AE2+CF223.(13分)如图,在菱形ABCD中,∠ABC=60°,AB=4,对角线AC,BD相交于点O,点P为直线BD上的动点(不与点B重合),连接AP,将线段AP绕点P逆时针旋转60°得到线段PE,连接CE,BE.(1)问题发现:如图①,当点E在直线BD上时,线段BP与CE的数量关系为__BP=CE__;∠ECB=__90°__;(2)拓展探究:如图②,当点P在线段BO的延长线上时,(1)中的结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)问题解决:当∠BEC=30°时,请直接写出线段AP的长度.图①图②备用图解:(2)结论成立,理由如下:连接AE,易知△AEP,△ABC都是等边三角形,∴AE=AP,AB=AC,∠EAP=∠BAC=60°,∴∠EAC=∠BAP,∴△AEC≌△APB(SAS),∴CE =BP,∠ABP=∠ACE=30°,∴∠ECB=∠ACE+∠ACB=90°,∴结论仍然成立(3)如图③,当点E在AC左侧时,∵∠BEC=30°,∠ECB=90°,∴∠EBC=60°.∵∠ABC=60°,∴BE与AB重合.∵AB=BC=4,∴BE=2BC=8,∴AE=BE-AB=4.又∵△APE是等边三角形,∴AP=AE=4(此时点P与点D重合);如图④,当点E在AC右侧时,∵∠BEC=30°,∠ECB=90°,∴∠EBC=60°.∵∠DBC=30°,∴∠DBE=∠DBC+∠EBC=90°.∵BC=AB=4,∴BE=2BC=8,∴CE=43.∵BP=CE,∴BP=43,∴EP=BP2+BE2=47.又∵△APE是等边三角形,∴AP=PE=47.综上所述,AP的长为4或47。
北师大版九年级第一章《特殊平行四边形》单元测试卷(含答案解析)
第一章《特别平行四边形》单元测试卷班级: ___________ 姓名: ___________ 得分: ___________一 .选择题:(每题 3 分,共 36 分)1.菱形拥有而矩形不必定拥有的性质是()A .对角线相互垂直B .对角线相等C.对角线相互均分D.对角互补2.矩形拥有而菱形不必定拥有的性质是()A .内角和等于3600B .对角互补C.对边平行且相等D.对角线相互均分3.已知四边形ABCD 是平行四边形,以下结论不正确的选项是()A .当 AC=BD 时,它是菱形B.当 AC⊥ BD 时,它是菱形C.当∠ ABC=90 °时,它是矩形D.当 AB=BC 时,它是菱形4.如下图,四边形ABCD 的对角线相互均分,要使四边形ABCD 成为矩形,需要增添的条件是()A .AB=CDB .AD =BD C. AB= BC D. AC= BD(第 4题)(第 5题)(第 6题)5.如图,矩形ABCD 的对角线AC=8 cm,∠ AOD =120 °,则 AB 的长为()A .cm B. 2cm C. 2cm D. 4cm6.如图,四边形ABCD 是平行四边形,以下说法不正确的选项是()A .当 AC=BD 时,四边形ABCD 是矩形 ;B .当 AB =BC 时,四边形ABCD 是菱形 ;C.当 AC⊥ BD 时,四边形ABCD 是菱形 ;D .当∠ DAB=90 °时,四边形ABCD 是正方形7.正方形拥有而菱形不拥有的性质是()A .对角线均分一组对角B.对角线相等C.对角线相互垂直均分 D .四条边相等N 分别是边AB、 BC 的中点,则PM +PN 的最小值是()A .5B. 10C. 14 D .不确立(第 8题)(第9题)(第10题)9.如下图,在菱形ABCD 中, AC、 BD 订交于点O, E 为 AB 的中点,若OE=4,则菱形ABCD 的周长是()A .8B. 16C.24D.3210.如图, AC、BD 是矩形 ABCD 的对角线,过点 D 作 DE∥ AC,交 BC 的延伸线于E,则图中与△ ABC 全等的三角形共有()A.1 个B.2 个C.3 个D.4 个11.如图,在菱形 ABCD 中,∠ BAD =82 °,AB 的垂直均分线交对角线AC 于点 F,垂足为 E,连结 DF ,则∠ CDF 等于()A.67 °B.57 °C.60 °D.87 °(第 11 题) (第 12 题)12.如图,将 n 个边长都为 1cm 的正方形按如下图摆放,点A1、 A2、、 A n分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为()A .1cm2 B .ncm2 C.n 1cm2 D .(1)n cm2 4 4 4 4二 .填空题:(每题 3 分,共 12 分13.如图,四边形ABCD 中,点 E、F 、G、 H 分别为边AB、 BC、 CD、 DA 的中点,请你(第 13 题)(第 14 题)(第 15 题)14.如图, l∥m,矩形 ABCD 的极点 B 在直线 m 上,则∠α=度.15.如图, E 是边长为 1 的正方形ABCD 对角线 BD 上一点,且BE=BC,P 为 CE 上随意一点, PQ⊥BC 于点 Q, PR⊥ BD 于点 R,则 PQ+PR 的值为。
北师版九上数学第一章 特殊平行四边形单元测试卷(含答案)
北师版九上数学第一章特殊平行四边形单元测试卷(难)一、选择题(每小题3分,共30分)1.已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形2.如图,点O是矩形ABCD的中心,E是AB上的点,折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()第2题图A.2B.C.D.63.从菱形的钝角顶点向对角的两条边作垂线,垂足恰好是该边的中点,则菱形的内角中钝角的度数是()A.150°B.135°C.120°D.100°4.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6cm和9cmB.5cm和10cmC.4cm和11cmD.7cm和8cm5.如图,在矩形中,分别为边的中点.若,,则图中阴影部分的面积为()A.3B.4C.6D.86.如图,在菱形中,,∠,则对角线等于()A.20B.15C.10D.57.若正方形的对角线长为2cm,则这个正方形的面积为()A.4B.2C.D.8.矩形、菱形、正方形都具有的性质是()A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直9.如图,将一个长为,宽为的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A. B. C. D.第5题图第6题图(1)(2)10.如图是一张矩形纸片,,若将纸片沿折叠,使落在上,点的对应点为点,若,则()A. B. C. D.二、填空题(每小题3分,共24分)11.已知菱形的边长为6,一个内角为60°,则菱形的较短对角线的长是_________.12.如图,在菱形ABCD中,∠B=60°,点E,F分别从点B,D同时以同样的速度沿边BC,DC向点C 运动.给出以下四个结论:①;②∠∠;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述正确结论的序号有.13.如图,四边形ABCD是正方形,延长AB 到点E ,使,则∠BCE 的度数是.14.如图,矩形的两条对角线交于点,过点作的垂线,分别交,于点,,连接,已知△的周长为24cm,则矩形的周长是cm.15.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.CDAB第17题图第15题图第18题图16.已知菱形的周长为,一条对角线长为,则这个菱形的面积为_________.17.如图,矩形的对角线,,则图中五个小矩形的周长之和为_______.第9题图第10题图18.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.三、解答题(共66分)19.(8分)如图,在△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.20.(8分)如图,在□ABCD中,E为BC边上的一点,连接AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.21.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF.(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.第21题图22.(8分)如图,正方形ABCD的边长为3,E,F分别是AB,BC边上的点,且∠EDF=45°.将△DAE 绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.23.(8分)如图,在矩形中,相交于点,平分,交于点.若,求∠的度数.24.(8分)如图所示,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=,求AB的长.25.(8分)已知:如图,在四边形中,∥,平分∠,,为的中点.试说明:互相垂直平分.26.(10分)如图,在△中,∠,的垂直平分线交于点,交于点,点在上,且.(1)求证:四边形是平行四边形.(2)当∠满足什么条件时,四边形是菱形?并说明理由.第26题图第一章特殊平行四边形--单元检测题1(难)参考答案一、1.B 2.A解析:根据图形折叠的性质可得:∠BCE =∠ACE=21∠ACB ,∠B =∠COE =90°,BC =CO =21AC ,所以∠BAC =30°,所以∠BCE =∠ACE =21∠ACB =30°.因为BC =3,所以CE =23.3.C解析:如图,连接AC .在菱形ABCD 中,AD=DC ,AE ⊥CD ,AF ⊥BC ,因为,所以AE 是CD 的中垂线,所以,所以△ADC 是等边三角形,所以∠60°,从而∠120°.4.B 解析:如图,在矩形ABCD 中,10cm,15cm,是∠的平分线,则∠∠C .由AE ∥BC 得∠∠AEB ,所以∠∠AEB ,即,所以10cm,ED =AD -AE =15-10=5(cm),故选B.5.B解析:因为矩形ABCD 的面积为,所以阴影部分的面积为,故选B.6.D 解析:在菱形中,由∠=,得∠.又∵,∴△是等边三角形,∴.7.B 解析:如图,在正方形中,,则,即,所以,所以正方形的面积为2,故选B.8.C 9.A解析:由题意知AC ⊥BD ,且4,5,所以2114510cm )22S AC BD =⋅=⨯⨯=菱形(.10.A 解析:由折叠知,四边形为正方形,∴.二、11.6解析:较短的对角线将菱形分成两个全等的等边三角形,所以较短对角线的长为6.12.①②③解析:因为四边形ABCD 为菱形,所以ABCD ,∠B =∠D ,BE =DF ,所以△≌△,所以AE AF ,①正确.由CB =CD ,BE=DF ,得CE=CF ,所以∠CEF=∠CFE ,②正确.当E ,F 分别为BC ,CD 的中点时,BE=DF =21BC =21DC .连接AC ,BD ,知△为等边三角形,所以⊥.因为AC ⊥BD ,所以∠ACE =60°,∠CEF =30°,⊥,所以∠AEF =.由①知AE AF ,故△为ABCD第7题答图等边三角形,③正确.设菱形的边长为1,当点E ,F 分别为边BC ,DC 的中点时,的面积为,而当点E ,F 分别与点B ,D 重合时,=,故④错.13.22.5°解析:由四边形是正方形,得∠∠又,所以.5°,所以∠.14.48解析:由矩形可知,又⊥,所以垂直平分,所以.已知△的周长为24cm ,即所以矩形ABCD 的周长为15.解析:如图,作E 关于直线AC 的对称点E ′,则BE =DE ′,连接E ′F ,则E ′F 即为所求,过F 作FG ⊥CD 于G ,在Rt△E ′FG 中,GE ′=CD -DE ′-CG =CD -BE -BF =4-1-2=1,GF =4,所以E ′F ===.16.96解析:因为菱形的周长是40,所以边长是10.如图,,.根据菱形的性质,有⊥,,所以,.所以.17.28解析:由勾股定理,得.又,,所以所以五个小矩形的周长之和为18.22.5解析:由四边形ABCD 是正方形,可知∠BAD =∠D =90°,∠CAD =12∠BAD =45°.由FE ⊥AC ,可知∠AEF =90°.在Rt△ABC 与Rt△ADC 中,AE =AD ,AF =AF ,∴Rt△AEF ≌Rt△ADF (HL),∴∠FAD =∠FAE =12∠CAD =12×45°=22.5°.三、19.证明:(1)∵AB =AC ,∴∠B =∠ACB ,∴∠FAC =∠B +∠ACB =2∠BCA .∵AD 平分∠FAC ,∴∠FAC =2∠CAD ,∴∠CAD =∠ACB .在△ABC 和△CDA 中,∠BAC =∠DCA ,AC =AC ,∠DAC =∠ACB ,∴△ABC ≌△CDA .(2)∵∠FAC =2∠ACB ,∠FAC =2∠DAC ,∴∠DAC =∠ACB ,∴AD ∥BC .∵∠BAC =∠ACD ,∴AB ∥CD ,∴四边形ABCD 是平行四边形.∵∠B =60°,AB =AC ,∴△ABC 是等边三角形,∴AB =BC ,∴平行四边形ABCD 是菱形.20.证明:(1)在□ABCD 中,AD ∥BC ,∴∠AEB =∠EAD .∵AE =AB ,∴∠ABE =∠AEB ,∴∠ABE =∠EAD .(2)∵AD∥BC,∴∠ADB=∠DBE.∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB,∴AB=AD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.21.解:(1)证明:因为DE∥AC,DF∥AB,所以四边形AEDF是平行四边形,所以AE=DF.(2)解:若AD平分∠BAC,则四边形AEDF是菱形,理由如下:因为DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,且∠BAD=∠FDA.又AD平分∠BAC,∴∠BAD=∠DAF,∴∠DAF=∠FDA,∴AF=DF,∴平行四边形AEDF为菱形. 22.(1)证明:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F,C,M三点共线,DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°.∵∠EDF=45°,∴∠FDM=∠EDF=45°.在△DEF和△DMF中,DE=DM,∠EDF=∠MDF,DF=DF,∴△DEF≌△DMF(SAS),∴EF=MF.(2)解:设EF=MF=x,∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM-MF=BM-EF=4-x.∵EB=AB-AE=3-1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4-x)2=x2,解得:x=,即EF=.23.解:因为平分,所以.又知,所以因为,所以△为等边三角形,所以因为,所以△为等腰直角三角形,所以.所以,,所以=75°.24.(1)证明:∵四边形ABCD是矩形,∴AB∥CD.∴∠OAE=∠OCF.又∵OA=OC,∠AOE=∠COF,∴△AEO≌△CFO(ASA).∴OE=OF.(2)解:连接BO.∵BE=BF,∴△BEF是等腰三角形.又∵OE=OF,∴BO⊥EF,且∠EBO=∠FBO.∴∠BOF=90°.∵四边形ABCD是矩形,∴∠BCF=90°.又∵∠BEF=2∠BAC,∠BEF=∠BAC+∠EOA,∴∠BAC=∠EOA.∴AE=OE.∵AE=CF,OE=OF,∴OF=CF.又∵BF=BF,∴Rt△BOF≌Rt△BCF(HL).∴∠OBF=∠CBF.∴∠CBF=∠FBO=∠OBE.∵∠ABC=90°,∴∠OBE=30°.∴∠BEO=60°.∴∠BAC=30°.在Rt△BAC中,∵BC AC=2BC=4.AB=25.解:如图,连接∵AB⊥AC,∴∠BAC=90°.因为在Rt△中,是的中点,所以是Rt△的斜边BC 上的中线,所以,所以.因为平分,所以,所以所以∥.又AD ∥BC ,所以四边形是平行四边形.又,所以平行四边形是菱形,所以互相垂直平分.26.(1)证明:由题意知∠∠,∴∥,∴∠∠.∵,∴∠∠AEF =∠EAC =∠ECA .又∵,∴△≌△,∴,∴四边形是平行四边形.(2)解:当∠时,四边形是菱形.理由如下:∵∠,∠,∴AB 21.∵垂直平分,∴.又∵,∴AB 21,∴,∴平行四边形是菱形.。
新北师大版九年级上册第一章《特殊平行四边形》名校单元测试题及解答
6 题图 7 题图 8.已知四边形 ABCD 的两条对角线 AC 与 BD 互相垂直,则下列结论正确的是( ) A.当 AC=BD 时,四边形 ABCD 是矩形 B.当 AB=AD,CB=CD 时,四边形 ABCD 是菱形 C.当 AB=AD=BC 时,四边形 ABCD 是菱形 D.当 AC=BD,AD=AB 时,四边形 ABCD 是正方形 9.已知:线段 AB,BC,∠ABC=90°.求作:矩形 ABCD. 以下是甲、乙两同学的作业: 甲:(1)以点 C 为圆心,AB 长为半径画弧;(2)以点 A 为圆心,BC 长为半径画弧;(3)两 弧在 BC 上方交于点 D,连接 AD,CD,四边形 ABCD 即为所求.(如图①)
乙:(1)连接 AC,作线段 AC 的垂直平分线,交 AC 于点 M;(2)连接 BM 并延长,在延长线 上取一点 D,使 MD=MB,连接 AD,CD,四边形 ABCD 即为所求.(如图②) 对于两人的作业,下列说法正确的是( ) A.两人都对 B.两人都不对 C.甲对,乙不对 D.甲不对,乙对
明你的结论.
21.(10 分)如图,已知菱形 ABCD,AB=AC,点 E,F 分别是 BC,AD 的中点,连接 AE,
19.(10 分)如图,已知菱形 ABCD 的对角线相交于点 O,延长 AB 至点 E,使 BE=AB,连 接 CE. (1)求证:BD=EC; (2)若∠E=50°,求∠BAO 的大小.
20. (10 分)如图, 已知在▱ABCD 中, 点 E, F 分别是边 AB, CD 的中点, BD 是对角线, AG∥BD 交 CB 的延长线于点 G. (1)求证:△ADE≌△CBF; (2)若四边形 BEDF 是菱形,则四边形 AGBD 是什么特殊四边形?证
16.如图,在△ABC 中,点 D,E,F 分别在边 BC,AB,CA 上,且 DE∥CA,DF∥BA.下列 四种说法:①四边形 AEDF 是平行四边形;②如果∠BAC=90°,那么四边形 AEDF 是矩形;③ 如果 AD 平分∠BAC,那么四边形 AEDF 是菱形;④如果 AD⊥BC 且 AB=AC,那么四边形 AEDF 是菱形.其中,正确的有__ __.(填序号)
北师大版九年级数学上《第一章特殊平行四边形》单元测试含答案
第一章特殊平行四边形一、选择题(本大题共6小题,共24分)1.下列关于?ABC啲叙述中,正确的是()A. 若ABL BC 则?ABCD是菱形B. 若AC L BD则?ABCD是正方形C. 若AC= BD 则?ABCD是矩形D. 若AB= AD则?ABCD是正方形2•如图1,在厶ABC中, D是边BC上的点(与B, C两点不重合),过点D作DE/ AC DF // AB,分别交AB AC于E, F两点,下列说法正确的是()A. 若AD L BC,则四边形AEDF是矩形B. 若AD垂直平分BC,则四边形AEDF是矩形C. 若BD= CD则四边形AEDF是菱形D. 若AD平分/ BAC则四边形AEDF是菱形「图1a3. 如图2,在菱形ABCD^ ,对角线AC, BD相交于点0,作OEL AB垂足为E,若/ ADC=130 ° ,则/ A0E勺度数为()A. 75° B . 65° C . 55° D . 50°4. 如图3 , P是矩形ABCD 勺边AD上的一个动点,矩形的两条边AB BC的长分别为3和4 ,那么点P到矩形的两条对角线AC和BD的距离之和是()12 6 24A. —B. 5C. — D .不确定8 E 图68 E 图65.如图4,正方形 ABC 刖正方形 CEFG^,点D 在CG 上,BC= 1, CE= 3, H 是AF 的中 点,那么CH 的长是() A. 2.5 B. 5 C. 32 D . 26.如图5,在平面直角坐标系中,四边形OAB 是正方形,点 A 的坐标是(4 , 0), P 为边AB 上一点,/ CPB= 60° ,沿CP 折叠正方形 OABC 折叠后,点B 落在平面内的点 B 处, 则点B'、填空题(本大题共6小题,共30分)7.已知菱形的边长为 6, 一个内角为60°,则菱形的较短对角线的长是的坐标为(A. (2 , 2 .3) B.(|, 2-C. (2 , 4 -2 3)D . (3, 4-23)&如图6所示,在矩形纸片ABCD中, AB= 2 cm,点E在BC上,且AE= EC若将纸片沿AE折叠,点B恰好与AC上的点B'重合,则AC= ______________________cm.D8 E 图6图119•如图7所示,若菱形 ABCD 勺边长为2,/ ABC= 45°,则点D 的坐标为如图9所示,在四边形ABCD 中 ,对角线ACLBD 垂足为Q E , F, G, H 分别为AD,CD 勺中点.若 AC = 8 , BD= 6,则四边形 EFGH 勺面积为 ____________ .(1)求证:四边形 BEDF 是菱形;⑵ 若正方形 ABC 啲边长为4 , AE = 2 ,求菱形BEDF 的面积.10.如图8,在正方形 ABCD 勺外侧作等边三角形 ADE 则/ BED 勺度数是11 •AB BC如图10 ,在矩形ABCD^ ,已知 BC 于点F ,则厶BQF 的面积为 _________ .12. AB= 6, BC= 8 , BD 的垂直平分线交 AD 于点E,交三、解答题(共46分) 13. (10分)如图11, E, F 是正方形ABCD 勺对角线AC 上的两点,且AE= CF图7CB14. (10分)如图12,已知平行四边形ABCD勺对角线AC BD相交于点0, AC= 20 cm, BD= 12 cm,两动点E,F同时以2 cm/s的速度分别从点A, C出发在线段AC上相对运动,点E到点C,点F到点A 时停止运动.(1) 求证:当点E,F在运动过程中不与点0重合时,以点B, E,D, F为顶点的四边形为平行四边形;(2) 当点E, F的运动时间t为何值时,四边形BEDF为矩形?图1215. (12分)如图13,A ABC是以BC为底的等腰三角形,AD是边BC上的高,E, F分别是AB AC 的中点.⑴求证:四边形AEDF是菱形;(2)如果四边形AEDF勺周长为12,两条对角线的和等于7,求四边形AEDF勺面积S.16. (14分)如图14,四边形ABCD是正方形,E是直线CD上的点,将△ ADE沿AE对折得到△ AFE直线EF交边BC于点G,连接AG(1) 求证:△ ABG2A AFG(2) 当DE是线段CD的一半时,请你在备用图中利用尺规作图画出符合题意的图形(保留作图痕迹,不写作法);(3) 在⑵ 的条件下,求/ EAG的度数.图14学习必备欢迎下载1. C2.D3.B4.A5. B6. C7. 6& 49. (2 + 2, 2)10. 45°.7511. 12 12. v813•解:⑴证明:连接BD交AC于点Q •••四边形ABCD^正方形,••• BDLAC OD= OB= OA= OC•/ AE= CF, • OA- AE= OC- CF,即OE= OF•四边形BEDF为平行四边形,且BD丄EF,•四边形BEDF为菱形.⑵•/正方形ABCD勺边长为4 ,BD= AC= 4 2.AE= CF= 2 , • EF= AC- 2 2= 2 2 , • S 菱形BEDF= 2BD° EF= 2x 4 迈X 2 迈=8. 14.解:⑴证明:连接DE EB BF, FD•••两动点E , F同时以2 cm/s的速度分别从点A, C出发在线段AC上相对运动,••• AE= CF.•••平行四边形ABCD勺对角线AC BD相交于点Q•QD= QB QA= QC平行四边形的对角线互相平分),•QA- AE= QC- CF或AE- QA Cl QC 即QE= QF,•四边形BEDF为平行四边形(对角线互相平分的四边形是平行四边形),即以点B, E, D F为顶点的四边形是平行四边形.⑵当点E在QA上,点F在QC±, EF= BD= 12 cm时,四边形BEDF为矩形. •••运动时间为t,•AE= CF= 2t ,•EF= 20 - 4t = 12,•t = 2;当点E在QC上,点F在QA上时,EF= BD= 12 cm , EF= 4t —20= 12,•t = 8.因此,当点E, F的运动时间t为2 s或8 s时,四边形BEDF为矩形.15 •解:⑴证明:••• ADL BQ E, F分别是AB, AC的中点,1•在Rt △ ABD中,DE= ?AB= AE在Rt△ ACD中, DF= 2A C= AF又••• AB= AC,•AE= AF= DE= DF,•四边形AEDF是菱形.学习必备欢迎下载⑵如图,•••菱形AEDF的周长为12 ,• AE= 3.设Elx, AD= y,则x+y = 7,••• x2+ 2xy+ y2= 49.①由四边形AEDF是菱形得ADL EF,•••在Rt△ AOE中,A6+ EO= AE,1 2 1 2 2•••(2切2+(尹)2= 32,即x2+ y2= 36.②把②代入①,可得2xy = 13,13•-xy =—,1 13•菱形AEDF勺面积S= @xy =-.16•解:⑴证明:•••四边形ABCD^正方形, •AB= AD / B=Z D= 90°.•••将△ ADE沿AEX寸折得到厶AFE•AF= AD= AB, / AFE=Z D= 90°.在Rt △ ABG和Rt △ AFG中 ,AB= AFAG. AG • Rt AB*Rt AFG HL)⑵如图所示:(3) •••△AFE^A ADE △ABG^ AFG•••/ EA1 EAD / GA— GAB •••在正方形ABCDK/ BAD 90 °,1 •••/ EAG=Z EAF^Z GA D q X 90°= 45。
【北师大版】九年级数学上:第1章《特殊平行四边形》单元测试(含答案)
北师大版九年级数学上第1章《特殊平行四边形》单元试题(100分钟,120分)一、选择题1.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠D C.AB∥CD,AD∥BC D.AB=CD,AD=BC 2.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是()A.6cm B.9cm C.3cm D.12cm3.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50° B.55° C.60° D.65°4.给出以下三个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③对角线互相垂直的矩形是正方形;④菱形对角线的平方和等于边长平方的4倍.其中真命题的是()A.③B.①② C.②③D.③④5.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()A.3B.4 C.5 D.76.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6 cm和9 cm B.5 cm和10 cm C.4 cm和11 cm D.7 cm和8 cm7.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为何?()A.8 B.9 C.11 D.129.如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A.2B.3 C.D.1+10.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.3 C.D.二、填空题11.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是矩形、正方形.12.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是3cm2.【解答】解:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).13.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.14.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于 3.5 .【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴∠AOD=90°,∵AB+BC+CD+DA=28,∴AD=7,∵H为AD边中点,∴OH=AD=3.5;15.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为5.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,三、解答题(15题12分,16题12分,17题16分)16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,求△AEF的周长。
九年级数学上册《第一章 特殊平行四边形》单元测试卷带答案(北师大版)
九年级数学上册《第一章 特殊平行四边形》单元测试卷带答案(北师大版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.对角线互相垂直平分的四边形是( )A .菱形、正方形B .矩形、菱形C .矩形、正方形D .平行四边形、菱形2.在ABC 中,点D 是边AC 的中点,连结BD 并延长到E ,使DE DB =,连结AE ,CE .则下列说法不正确的是( )A .四边形ABCE 是平行四边形B .当90ABC ∠=︒时,四边形ABCE 是矩形C .当AB BC =时,四边形ABCE 是菱形D .当AB BC CA ==时,四边形ABCE 是正方形3.如图,在矩形ABCD 中(AD >AB ),点E 是BC 上一点,且DE=DA ,AF ⊥DE ,垂足为点F ,在下列结论中,不一定正确的是( )A .△AFD ≌△DCEB .AF=12AD C .AB=AF D .BE=AD ﹣DF 4.如图,在菱形ABCD 中,点E 是AB 的中点,点F 是AC 的中点,连接EF ,如果4EF =,那么菱形ABCD 的周长为( )A .4B .8C .16D .325.如图,正方形ABCD 中,AB=6,G 是BC 的中点.将△ABG 沿AG 对折至△AFG ,延长GF 交DC 于点E ,则DE 的长是( )A .1B .1.5C .2D .2.56.如图,在菱形ABCD 中,对角线AC ,BD 分别为16和12,DE AB ⊥于点E ,则DE =( )A .485B .965C .10D .87.如图,在正方形ABCD 中,AB=4,E ,F 分别为边AB BC ,的中点,连接AF DE ,,点G ,H 分别为DE AF ,的中点,连接GH ,则GH 的长为( )A .2B .1CD .28.如图,在矩形ABCD 中,在CD 上取点E ,连接AE ,在AE ,AB 上分别取点F ,G ,连接DF ,GF ,AG GF =将ADF 沿FD 翻折,点A 落在BC 边的A '处,若//GF A D ',且3AB =,AD=5,AF 的长是( )A B C .52 D 二、填空题:(本题共5小题,每小题3分,共15分.)9.菱形的边长为5,一条对角线长为8,则此菱形的面积是 .10.如图,在ABCD 中,对角线AC BD 、相交于点O ,在不添加任何辅助线的情况下,请你加一个条件 ,使ABCD 是菱形.11.如图,点M 是正方形ABCD 内位于对角线BD 上方的一点2MAD ∠=∠,则AMD ∠的度数为 .12.如图,矩形ABCD 中,AB =4,AD =3,点E 是边BC 的中点,连接AE ,把△ABE 沿AE 对折得到△AFE ,延长AF 与CD 交于点G ,则DG 的长为 .13.如图,正方形ABCD 的边长为2,将正方形ABCD 绕点A 逆时针旋转角()α0α180︒<<︒得到正方形A B C D '''',连接D C ',当点B '恰好落在线段D C '上时,线段D C '的长度是 .(结果保留根号)三、解答题:(本题共5题,共45分)14.如图,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于点F ,点E 为垂足,连接DF ,求∠CDF 的度数.15.如图,矩形ABCD 中,AB=4,BC=10,E 在AD 上,连接BE ,CE ,过点A 作AG ∥CE ,分别交BC ,BE 于点G ,F ,连接DG 交CE 于点H .若AE=2,求证:四边形EFGH 是矩形.16.把一张矩形ABCD 纸片按如图方式折叠,使点A 与点E 重合,点C 与点F 重合(E 、F 两点均在BD 上),折痕分别为BH 、DG .(1)求证:△BHE ≌△DGF ;(2)若AB=6cm ,BC=8cm ,求线段FG 的长.17.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求BG的长.18.如图1,在正方形ABCD中,P是对角线BD上的点,点E在AB上,且PA=PE.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,试探究∠CPE与∠ABC之间的数量关系,并说明理由参考答案:1.A 2.D 3.B 4.D 5.C 6.A 7.C 8.A9.2410.AB BC =(答案不唯一)11.135°12.5516136214.解答:解:如图,连接BF ,在△BCF 和△DCF 中,∵CD =CB ,∠DCF =∠BCF ,CF =CF ,∴△BCF ≌△DCF ,∴∠CBF =∠CDF ,∵FE 垂直平分AB ,∠BAF = ×80°=40°∴∠ABF =∠BAF =40°,∵∠ABC =180°-80°=100°,∠CBF =100°-40°=60°,∴∠CDF =60°.15.解:∵四边形ABCD 是矩形∴∠BAD=∠ADC=90°∵AB=4,AE=2∴22AE AB +5,22DE CD +221024-+()5∴BE 2+CE 2=BC 2∴∠BEC=90°∵AG ∥CE ,AE ∥CG∴四边形AECG 是平行四边形∴CG=AE=2,5同理∠AGD=90°∵AG ∥CE∴∠EFG=∠FEH=90°∴四边形EFGH 是矩形.16.(1)证明:∵四边形ABCD 是矩形∴AB=CD ,∠A=∠C=90°,∠ABD=∠BDC∵△BEH 是△BAH 翻折而成∴∠ABH=∠EBH ,∠A=∠HEB=90°,AB=BE∵△DGF 是△DGC 翻折而成∴∠FDG=∠CDG ,∠C=∠DFG=90°,CD=DF∴∠DBH=12∠ABD ,∠BDG=12∠BDC ∴∠DBH=∠BDG∴△BEH 与△DFG 中∠HEB=∠DFG ,BE=DF ,∠DBH=∠BDG∴△BEH ≌△DFG(2)解:∵四边形ABCD 是矩形,AB=6cm ,BC=8cm∴AB=CD=6cm ,AD=BC=8cm∴22BC CD +2286+∵由(1)知,FD=CD ,CG=FG∴BF=10-6=4cm设FG=x ,则BG=8-x在Rt △BGF 中BG 2=BF 2+FG 2,即(8-x )2=42+x 2解得x=3,即FG=3cm .17.(1)解:四边形ABCD 是菱形OB OD ∴= E 是AD 的中点OE ∴是ΔABD 的中位线//OE FG ∴//OG EF∴四边形OEFG 是平行四边形EF AB ⊥90EFG ∴∠=︒∴平行四边形OEFG 是矩形;(2)解:四边形ABCD 是菱形BD AC ∴⊥ 10AB AD ==90AOD ∴∠=︒ E 是AD 的中点152OE AE AD ∴===;由(1)知,四边形OEFG 是矩形5FG OE ∴==5AE = 4EF =223AF AE EF ∴=-=10352BG AB AF FG ∴=--=--=.18.(1)证明:在正方形ABCD 中,AB=BC∠ABP=∠CBP=45°在△ABP 和△CBP 中AB BCABP CBP PB PB=⎧⎪∠=∠⎨⎪=⎩∴△ABP ≌△CBP (SAS )∴PA=PC∵PA=PE∴PC=PE ;(2)解:由(1)知,△ABP ≌△CBP ,∴∠BAP=∠BCP ,∵PA=PE ,∴∠PAE=∠PEA∴∠CPB=∠AEP∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°∴∠ABC+∠EPC=180°∵∠ABC=90°,∴∠EPC=90°(3)∠ABC+∠EPC=180°,理由:解:在菱形ABCD 中,AB=BC ,∠ABP=∠CBP=60°,在△ABP 和△CBP 中,AB BC ABP CBPPB PB =⎧⎪∠=∠⎨⎪=⎩ ,∴△ABP ≌△CBP (SAS ),∴∠BAP=∠BCP ,∵PA=PE∴∠DAP=∠DCP∴∠PAE=∠PEA ,∴∠CPB=∠AEP ,∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°,∴∠ABC+∠EPC=180°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章特殊的平行四边形专项测试题(三)
一、单项选择题(本大题共有15小题,每小题3分,共45分)
1、正方形四边中点的连线围成的四边形(最准确的说法)一定是( ) A. 平行四边形 B. 正方形 C. 菱形 D. 矩形
2
①/分钟,在原地休息了/分的
②/
/
升;
③
A.
D. 3、下列四个命题中,真命题是(). A. 四边都相等的四边形是正方形
B. 对角线相等且互相平分的四边形是矩形
C. 对角线互相垂直且相等的四边形是菱形
D. 对角线互相垂直平分的四边形是正方形
4
的基础上,进一步证明().
A.
D.
5、下列正方形的性质中,菱形不具有的性质是().
A. 四边相等
B. 对角线相等
C. 对角线平分一组对角
D. 对角线互相平分且垂直
6
).
A. 平行四边形
B. 矩形
C. 菱形
D. 正方形
7、
( ).
A.
D.
8
)
A.
D.
9、下列命题中,真命题是()
A. 两条对角线互相平分的四边形是平行四边形
B. 两条对角线互相垂直且相等的四边形是正方形
C. 两条对角线互相垂直的四边形是菱形
D. 两条对角线相等的四边形是矩形
10
) A.
D.
11
是()
A.
D.
12
) A.
D.
13
)
A.
D.
14
)
A.
B.
C.
D.
15
)
A.
D.
二、填空题(本大题共有5小题,每小题5分,共25分)
16
17
18、1.正方形的定义
有一组邻边且一个角是的平行四边形叫做正方形。
19
分别从点
后,四边形
20
择一个条件使四边形(只填写序号).
三、解答题(本大题共有3小题,每小题10分,共30分)
21
.
22
(1)
(2)
(3)
(1)
(2)
第一章特殊的平行四边形专项测试题(三) 答案部分
一、单项选择题(本大题共有15小题,每小题3分,共45分)
1、正方形四边中点的连线围成的四边形(最准确的说法)一定是()
A. 平行四边形
B. 正方形
C. 菱形
D. 矩形
【答案】B
【解析】解:
2
①//分的速
度匀速骑回出发地,设时间为
②/
/
升;
③出发,依次沿对角线
)
A.
D. 【答案】B
【解析】解:①不符合;理由如下:
不符合; ②符合;理由如下:
符合; ③符合;理由如下:
3、下列四个命题中,真命题是().
A. 四边都相等的四边形是正方形
B. 对角线相等且互相平分的四边形是矩形
C. 对角线互相垂直且相等的四边形是菱形
D. 对角线互相垂直平分的四边形是正方形
【答案】B
【解析】解:
故答案为:对角线相等且互相平分的四边形是矩形.
4
的基础上,进一步证明().
A.
B.
D.
【答案】C
【解析】解:
故答案为:
5、下列正方形的性质中,菱形不具有的性质是().
A. 四边相等
B. 对角线相等
C. 对角线平分一组对角
D. 对角线互相平分且垂直
【答案】B
【解析】解:菱形具有的性质是四边相等、对角线平分一组对角、对角线互相平分且垂直,不具有的性质是对角线相等,
故答案选:对角线相等.
6
).
A. 平行四边形
B. 矩形
C. 菱形
D. 正方形
【答案】C
由题意知,
.
故答案为:菱形.
7、
( ).
A.
D.
【答案】C
【解析】解:只需添加
故正确答案是:
8
A.
D.
【答案】C
【解析】解:
9、下列命题中,真命题是()
A. 两条对角线互相平分的四边形是平行四边形
B. 两条对角线互相垂直且相等的四边形是正方形
C. 两条对角线互相垂直的四边形是菱形
D. 两条对角线相等的四边形是矩形
【答案】A
【解析】解:两条对角线相等且互相平分的四边形才是矩形,该选项命题错误;两条对角线互相垂直且平分的四边形才是菱形,该选项命题错误;
两条对角线互相垂直且相等且互相平分的四边形是才正方形,该选项命题错误;两条对角线互相平分的四边形是平行四边形,该命题正确.
故答案为:两条对角线互相平分的四边形是平行四边形.
10
)
A.
D.
【答案】B
11
A.
D.
【答案】C
12
) A.
D.
【答案】D
根据直线外一点到直线上任一点的距离,垂线段最短,
13
)
A.
D.
【答案】B
形;
14
) A.
B.
C.
D.
【答案】D
点,
15
) A.
D.
【答案】C
二、填空题(本大题共有5小题,每小题5分,共25分)
16
的长为.
【答案】4
【解析】
解:
故答案为:
17
【答案】16
【解析】解:
如图,连接
18、1.正方形的定义
有一组邻边且一个角是的平行四边形叫做正方形。
【答案】相等,直角
【解析】解:有一组邻边相等且一个角是直角的平行四边形叫做正方形。
故答案是,相等,直角.
19分别从点
后,四边形
【答案】4
【解析】解:设最快
得
20
择一个条件使四边形________(只填写序号).【答案】③
得出菱形,
三、解答题(本大题共有3小题,每小题10分,共30分)
21
.
【解析】解:
如图,连接
22
(1)
(2)
(3)
证明如下:
23
(1)
(2)
四边形ABDF。