2019年高考新课标Ⅱ卷理数试题解析(版)(解析版)

合集下载

2019年全国统一高考数学试卷(理科)(新课标Ⅱ)-解析版

2019年全国统一高考数学试卷(理科)(新课标Ⅱ)-解析版

2019年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(本大题共12小题,共60.0分)1. 设集合A ={x|x 2−5x +6>0},B ={x|x −1<0},则A ∩B =( )A. (−∞,1)B. (−2,1)C. (−3,−1)D. (3,+∞) 2. 设z =−3+2i ,则在复平面内z 对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知AB ⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t),|BC ⃗⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =( )A. −3B. −2C. 2D. 34. 2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:M 1(R+r)2+M 2r 2=(R +r)M1R 3.设α=rR .由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( ).A. √M2M 1RB. √M22M1R C. 3√3M 2M 1RD. 3√M23M1R 5. 演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A. 中位数 B. 平均数 C. 方差 D. 极差 6. 若a >b ,则( )A. ln(a −b)>0B. 3a <3bC. a 3−b 3>0D. |a|>|b| 7. 设α,β为两个平面,则α//β的充要条件是( )A. α内有无数条直线与β平行B. α内有两条相交直线与β平行C. α,β平行于同一条直线D. α,β垂直于同一平面 8. 若抛物线y 2=2px(p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( )A. 2B. 3C. 4D. 89. 下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( )A. f(x)=|cos2x|B. f(x)=|sin2x|C. f(x)=cos|x|D. f(x)=sin|x|10. 已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( )A. 15B. √55 C. √33 D. 2√5511. 设F 为双曲线C :x 2a −y 2b =1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ|=|OF|,则C 的离心率为( ) A. √2 B. √3 C. 2 D. √512. 设函数f(x)的定义域为R ,满足f(x +1)=2f(x),且当x ∈(0,1]时,f(x)=x(x −1).若对任意x ∈(−∞,m],都有f(x)≥−89,则m 的取值范围是( )A. (−∞,94]B. (−∞,73]C. (−∞,52]D. (−∞,83]二、填空题(本大题共4小题,共20.0分)13. 我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______.14. 已知f(x)是奇函数,且当x <0时,f(x)=−e ax .若f(ln2)=8,则a = . 15. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若b =6,a =2c ,B =π3,则△ABC 的面积为______.16. 中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.三、解答题(本大题共7小题,共84.0分)17. 如图,长方体ABCD −A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1. (1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B −EC −C 1的正弦值.18. 11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P(X =2);(2)求事件“X =4且甲获胜”的概率.19.已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n−b n+4,4b n+1=3b n−a n−4.(1)证明:{a n+b n}是等比数列,{a n−b n}是等差数列;(2)求{a n}和{b n}的通项公式.20.已知函数.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=e x的切线..记M的21.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−12轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.(i)证明:△PQG是直角三角形;(ii)求△PQG面积的最大值.22.在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=π时,求ρ0及l的极坐标方程;3(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.23.已知f(x)=|x−a|x+|x−2|(x−a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(−∞,1)时,f(x)<0,求a的取值范围.答案和解析1.【答案】A【解析】 【分析】本题考查交集的计算,关键是掌握交集的定义,涉及到不等式的求解,属于基础题. 根据题意,求出集合A 、B ,由交集的定义计算可得答案. 【解答】解:根据题意,A ={x|x 2−5x +6>0}={x|x >3或x <2}, B ={x|x −1<0}={x|x <1}, 则A ∩B ={x|x <1}, 即A ∩B =(−∞,1). 故选A .2.【答案】C【解析】 【分析】本题主要考查共轭复数的代数表示及其几何意义,属于基础题.求出z 的共轭复数,根据复数的几何意义求出复数所对应点的坐标即可. 【解答】解:∵z =−3+2i , ∴z =−3−2i ,∴在复平面内z 对应的点为(−3,−2),在第三象限. 故选C .3.【答案】C【解析】【分析】本题主要考查了向量数量积的定义及性质的坐标表示,属于基础题. 由BC⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ 先求出BC ⃗⃗⃗⃗⃗ 的坐标,然后根据|BC ⃗⃗⃗⃗⃗ |=1,可求t ,结合向量数量积定义的坐标表示即可求解. 【解答】解:∵AB ⃗⃗⃗⃗⃗ =(2,3),AC⃗⃗⃗⃗⃗ =(3,t), ∴BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =(1,t −3).∵|BC ⃗⃗⃗⃗⃗ |=1,∴t −3=0,即BC ⃗⃗⃗⃗⃗ =(1,0), 则AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =2. 故选C .4.【答案】D【解析】 【分析】本题考查点到月球的距离的求法,考查函数在我国航天事业中的灵活运用,考查化归与转化思想、函数与方程思想,考查运算求解能力,是中档题.由α=rR ,推导出M2M1=3α3+3α4+α5(1+α)2≈3α3,由此能求出r=αR=√M23M13R.【解答】解:∵α=rR,∴r=αR,且r满足方程M1(R+r)2+M2r2=(R+r)M1R3,∴M2M1=3α3+3α4+α5(1+α)2≈3α3,∴r=αR=√M23M13R.故选:D.5.【答案】A【解析】解:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变,故选:A.根据题意,由数据的数字特征的定义,分析可得答案.本题考查数据的数字特征,关键是掌握数据的平均数、中位数、方差、极差的定义以及计算方法,属于基础题.6.【答案】C【解析】【分析】本题考查了不等式的基本性质,利用特殊值法可迅速得到正确选项,属基础题.取a=0,b=−1,利用特殊值法可得正确选项.【解答】解:取a=0,b=−1,则:ln(a−b)=ln1=0,排除A;3a=30=1>3b=3−1=13,排除B;令f(x)=x3,则f(x)在上单调递增,又a>b,故C对;|a|=0<|−1|=|b|,排除D.故选C.7.【答案】B【解析】【分析】本题考查了充要条件的定义和面面平行的判定定理,考查了推理能力,属于基础题.由充要条件的定义结合面面平行的判定定理可得结论.【解答】解:对于A,α内有无数条直线与β平行,α与β相交或α//β;对于B,α内有两条相交直线与β平行,则α//β;对于C,α,β平行于同一条直线,α与β相交或α//β;对于D,α,β垂直于同一平面,α与β相交或α//β.故选B.8.【答案】D【解析】【分析】本题考查了抛物线与椭圆的性质,属基础题.根据抛物线的性质以及椭圆的性质列方程可解得.【解答】解:由题意可得3p−p=(p2)2,解得p=8.故选D.9.【答案】A【解析】【分析】本题主要考查了正弦函数、余弦函数的周期性及单调性,属于基础题.根据正弦函数、余弦函数的周期性及单调性依次判断,结合排除法即可求解.【解答】解:f(x)=sin|x|不是周期函数,可排除D选项;f(x)=cos|x|的周期为2π,可排除C选项;f(x)=|sin2x|在π4处取得最大值,不可能在区间(π4,π2)上单调递增,可排除B.故选A.10.【答案】B【解析】【分析】本题主要考查了二倍角的三角函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.由二倍角公式化简已知条件可得4sinαcosα=2cos2α,结合角的范围可求得sinα>0,cosα>0,可得cosα=2sinα,根据同角三角函数基本关系式即可解得sinα的值.【解答】解:∵2sin2α=cos2α+1,由二倍角公式可得4sinαcosα=2cos2α,∵α∈(0,π2),∴sinα>0,cosα>0,∴cosα=2sinα,则有sin2α+cos2α=sin2α+(2sinα)2=5sin2α=1,解得sinα=√55.故选B.11.【答案】A【解析】【分析】本题考查双曲线的简单性质,考查数形结合的解题思想方法,属于中档题.方法一:根据题意画图,由图形的对称性得出P点坐标,代入圆的方程得到c与a的关系,可求双曲线的离心率.方法二:由题意画出图形,先求出PQ,再由|PQ|=|OF|列式求C的离心率.【解答】方法一:解:设PQ与x轴交于点A,由对称性可知PQ⊥x轴又∵|PQ|=|OF|=c,∴|PA|=c2,∴PA为以OF为直径的圆的半径,∴A为圆心,|OA|=c2∴P(c2,c2),又P点在圆x2+y2=a2上,∴c24+c24=a2,即c22=a2,∴e2=c2a2=2∴e=√2,故选A.方法二:如图,以OF为直径的圆的方程为x2+y2−cx=0,又圆O的方程为x2+y2=a2,∴PQ所在直线方程为.把x=代入x2+y2=a2,得PQ=,再由|PQ|=|OF|,得,即4a2(c2−a2)=c4,∴e2=2,解得e=.故选A.12.【答案】B【解析】【分析】本题考查了函数与方程的综合运用,属中档题.由f(x+1)=2f(x),得f(x)=2f(x−1),分段求解析式,结合图象可得.【解答】解:因为f(x +1)=2f(x), ∴f(x)=2f(x −1),∵x ∈(0,1]时,f(x)=x(x −1)∈[−14,0],∴x ∈(1,2]时,x −1∈(0,1],f(x)=2f(x −1)=2(x −1)(x −2)∈[−12,0]; ∴x ∈(2,3]时,x −1∈(1,2],f(x)=2f(x −1)=4(x −2)(x −3)∈[−1,0], 当x ∈(2,3]时,由4(x −2)(x −3)=−89解得x =73或x =83, 若对任意x ∈(−∞,m],都有f(x)≥−89,则m ≤73. 故选B .13.【答案】0.98【解析】 【分析】本题考查加权平均数公式等基础知识,属于基础题. 利用加权平均数公式直接求解. 【解答】解:∵经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97, 有20个车次的正点率为0.98,有10个车次的正点率为0.99, ∴经停该站高铁列车所有车次的平均正点率的估计值为: x −=110+20+10(10×0.97+20×0.98+10×0.99)=0.98.故答案为0.98.14.【答案】−3【解析】 【分析】本题考查函数的奇偶性,属于基础题. 根据奇函数的定义,可得结果. 【解答】解:∵f(x)是奇函数,∴−f(ln2)=f(−ln2)=−8, 又∵当x <0时,f(x)=−e ax ,∴f(−ln2)=−e−aln2=−8,∴−aln2=ln8,∴a=−3.故答案为−3.15.【答案】6√3【解析】【分析】本题考查了余弦定理和三角形的面积公式,属基础题.利用余弦定理得到c2,然后根据面积公式求出结果即可.【解答】解:由余弦定理有,∵b=6,a=2c,B=π3,∴36=(2c)2+c2−4c2cosπ3,∴c2=12,.故答案为6√3.16.【答案】26;√2−1【解析】【分析】本题考查了几何体的内接多面体,属中档题.中间层是一个正八棱柱,有8个侧面,上层是有8+1个面,下层也有8+1个面,故共有26个面;中间层正八棱柱的棱长加上两个棱长的√22倍等于正方体的棱长.【解答】解:该半正多面体中间层是一个正八棱柱,有8个侧面,故该半正多面体共有8+8+8+ 2=26个面;设其棱长为x,因为每个顶点都在边长为1的正方体上,则x+√22x+√22x=1,解得x=√2−1.故答案为26;√2−1.17.【答案】证明:(1)长方体ABCD−A1B1C1D1中,B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,∴B1C1⊥BE,∵BE⊥EC1,∵B1C1∩EC1=C1,B1C1,EC1⊂平面EB1C1,∴BE⊥平面EB1C1,解:(2)以C为坐标原点,建立如图所示的空间直角坐标系,设AE =A 1E =1,则BB 1=2,∵BE ⊥平面EB 1C 1,EB 1⊂平面EB 1C 1, ∴BE ⊥EB 1,又BE =EB 1=√2, ∴AB =1,则E(1,1,1),A(1,1,0),B 1(0,1,2), C 1(0,0,2),C(0,0,0),∵BC ⊥平面ABB 1A 1,EB 1⊂平面ABB 1A 1,∴BC ⊥EB 1, ∵BE ⊥EB 1,且BC ∩BE =E ,BC,BE ⊂平面EBC , ∴EB 1⊥平面EBC ,故取平面EBC 的法向量为m ⃗⃗⃗ =EB 1⃗⃗⃗⃗⃗⃗⃗ =(−1,0,1),设平面ECC 1 的法向量n⃗ =(x,y ,z), 由{n ⃗ ⋅CC 1⃗⃗⃗⃗⃗⃗⃗ =0n⃗ ⋅CE ⃗⃗⃗⃗⃗ =0,得{z =0x +y +z =0, 取x =1,得n⃗ =(1,−1,0), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=−12, ∴二面角B −EC −C 1的正弦值为√32.【解析】本题主要考查线面垂直的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题. (1)推导出B 1C 1⊥BE ,BE ⊥EC 1,由此能证明BE ⊥平面EB 1C 1.(2)以C 为坐标原点,建立如图所示的空间直角坐标系,利用向量法能求出二面角B −EC −C 1的正弦值.18.【答案】解:(1)设双方10:10平后的第k 个球甲获胜为事件A k (k =1,2,3,…),则P(X =2)=P(A 1A 2)+P(A 1−A 2−) =P(A 1)P(A 2)+P(A 1−)P(A 2−) =0.5×0.4+0.5×0.6=0.5;(2)P(X =4且甲获胜)=P(A 1−A 2A 3A 4)+P(A 1A 2−A 3A 4)=P(A 1−)P(A 2)P(A 3)P(A 4)+P(A 1)P(A 2−)P(A 3)P(A 4) =(0.5×0.4+0.5×0.6)×0.5×0.4=0.1.【解析】本题考查相互独立事件同时发生的概率,考查推理能力与计算能力,是中档题. (1)设双方10:10平后的第k 个球甲获胜为事件A k (k =1,2,3,…),则P(X =2)=P(A 1A 2)+P(A 1−A 2−)=P(A 1)P(A 2)+P(A 1−)P(A 2−),由此能求出结果;(2)P(X =4且甲获胜)=P(A 1−A 2A 3A 4)+P(A 1A 2−A 3A 4)=P(A 1−)P(A 2)P(A 3)P(A 4)+P(A 1)P(A 2−)P(A 3)P(A 4),由此能求出事件“X =4且甲获胜”的概率.19.【答案】(1)证明:∵4a n+1=3a n −b n +4,4b n+1=3b n −a n −4,∴4(a n+1+b n+1)=2(a n +b n ),4(a n+1−b n+1)=4(a n −b n )+8, 即a n+1+b n+1=12(a n +b n ),a n+1−b n+1=a n −b n +2; 又a 1+b 1=1,a 1−b 1=1,∴{a n +b n }是首项为1,公比为12的等比数列, {a n −b n }是首项为1,公差为2的等差数列;(2)解:由(1)可得:a n +b n =(12)n−1,a n −b n =1+2(n −1)=2n −1, ∴a n =(12)n +n −12,b n =(12)n −n +12.【解析】本题主要考查了等差、等比数列的定义和通项公式,考查学生的计算能力和推理能力,属于简单题. (1)定义法证明即可;(2)由(1)结合等差、等比的通项公式可得.20.【答案】解析:(1)函数f(x)=lnx −x+1x−1,定义域为:(0,1)∪(1,+∞);f′(x)=1x +2(x−1)2>0,(x >0且x ≠1), ∴f(x)在(0,1)和(1,+∞)上单调递增,①在(0,1)区间取值1e 2,1e 代入函数,由函数零点的定义得, ∵f(1e 2)<0,f(1e )>0,f(1e 2)⋅f(1e )<0,∴f(x)在(0,1)有且仅有一个零点,②在(1,+∞)区间取值e ,e 2代入函数,由函数零点的定义得, 又∵f(e)<0,f(e 2)>0,f(e)⋅f(e 2)<0, ∴f(x)在(1,+∞)上有且仅有一个零点, 故f(x)在定义域内有且仅有两个零点;(2)x 0是f(x)的一个零点,则有lnx 0=x 0+1x 0−1,曲线y =lnx ,则有y′=1x ,曲线y =lnx 在点A(x 0,lnx 0)处的切线方程为:y −lnx 0=1x 0(x −x 0),即y =1x 0x −1+lnx 0,可得y =1x 0x +2x0−1,而曲线y =e x 的切线在点(ln 1x 0,1x 0)处的切线方程为:y −1x 0=1x 0(x −ln 1x 0),即y =1x 0x +2x 0−1,故曲线y =lnx 在点A(x 0,lnx 0)处的切线也是曲线y =e x 的切线.故得证.【解析】本题考查f(x)的单调性,函数导数,在定义域内根据零点存在性定理求零点个数,以及利用曲线的切线方程定义证明.(1)讨论f(x)的单调性,求函数导数,在定义域内根据零点存在性定理求零点个数, (2)运用曲线的切线方程定义可证明y =lnx 在点A(x 0,lnx 0)处的切线方程为y =1x 0x +2x 0−1,曲线y =e x 在点(ln 1x 0,1x 0)处的切线方程为y = 1x 0x +2x 0−1,得证.21.【答案】解:(1)由题意得y x+2·y x−2=−12,整理得曲线C 的方程:x 24+y 22=1(y ≠0),∴曲线C 是焦点在x 轴上不含长轴端点的椭圆;(2)(i)设P(x 0,y 0),则Q(−x 0,−y 0), E(x 0,0),G(x G ,y G ),∴直线QE 的方程为:y =y2x 0(x −x 0),与x 24+y 22=1联立消去y ,得(2x 02+y 02)x 2−2x 0y 02x +x 02y 02−8x 02=0,∴−x 0x G =x 02y 02−8x 022x 02+y 02,∴x G =(8−y 02)x 02x 02+y 02,∴y G =y 02x 0(x G −x 0)=y 0(4−x 02−y 02)2x 02+y 02, ∴k PG =y G −y 0x G −x 0=y 0(4−x 02−y 02)2x 02+y 02−y 0x 0(8−y 02)2x 02+y 02−x 0 =4y 0−y 0x 02−y 03−2y 0x 02−y 038x 0−x 0y 02−2x 03−x 0y 02=y 0(4−3x 02−2y 02)2x 0(4−y 02−x 02),把x 02+2y 02=4代入上式,得k PG =y 0(4−3x 02−4+x 02)2x 0(4−y 02−4+2y 02)=−y 0×2x 022x 0y 02=−x0y,∴k PQ ·k PG =y 0x 0·(−x0y 0)=−1,∴PQ ⊥PG ,故△PQG 为直角三角形;(ii)S △PQG =12|PE|·(x G −x Q )=12y 0(x G +x 0) =12y 0[(8−y 02)x 02x 02+y 02+x 0] =1y 0x 0×8−y 02+2x 02+y 020202 =y 0x 0(4+x 02)2x 02+y 02 =y 0x 0(x 02+2y 02+x 02)2x 02+y 02=2y 0x 0(x 02+y 02)2x 02+y 02=8y 0x 0(x 02+y 02)(2x 02+y 02)(x 02+2y 02)=8(y 0x 03+x 0y 03)04040202 =8(x0y 0+y 0x0)2(x 0y 0+y 0x 0)2+1 令t =x 0y 0+yx 0,则t ≥2,S △PQG =8t 2t 2+1=82t +1t利用“对勾”函数f(t)=2t +1t 在[2,+∞)的单调性可知,f(t)≥4+12=92(t=2时取等号),∴S△PQG≤892=169(此时x=y0=2√33),故△PQG面积的最大值为169.【解析】此题考查了直接法求曲线方程,直线与椭圆的综合,换元法等,对运算能力考查尤为突出,计算难度大.(1)利用直接法不难得到方程;(2)(i)设P(x0,y0),则Q(−x0,−y0),E(x0,0),利用直线QE的方程与椭圆方程联立求得G点坐标,进而证得PQ,PG斜率之积为−1;(ii)利用S=12|PE|×(x G+x0),代入已得数据,并对x0y0+y0x0换元,利用“对勾”函数可得最值.22.【答案】解:(1)如图:∵M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,当θ0=π3时,,且由图得|OP|=|OA|cosθ0=2,在直线l上任取一点(ρ,θ),则有,即,故l的极坐标方程为ρcos(θ−π3)=2;(2)设P(ρP,θP),则在Rt△OAP中,有|OP|=|OA|cosθP即ρP=4cosθP,∵P在线段OM上,且AP⊥OM,∴θP∈[π4,π2 ],其中π4为P点与M点重合时的角度,由4cosθP=4sinθP得到,故P点轨迹的极坐标方程为ρ=4cosθ,θ∈[π4,π2 ].【解析】本题考查曲线的极坐标方程及其应用,数形结合能力,是中档题.(1)由θ0=π3可得|OP|=2,在直线l上任取一点(ρ,θ),利用三角形中边角关系即可求得l的极坐标方程;(2)设P(ρ,θ),在Rt△OAP中,根据边与角的关系得答案.23.【答案】解:(1)当a=1时,f(x)=|x−1|x+|x−2|(x−1),∵f(x)<0,∴当x<1时,f(x)=−2(x−1)2<0,恒成立,∴x<1;当x≥1时,f(x)=(x−1)(x+|x−2|)≥0恒成立,∴x∈⌀;综上,不等式的解集为(−∞,1).(2)∵x∈(−∞,1)时,f(x)=|x−a|x−(x−2)(x−a).当a≥1时,f(x)=2(a−x)(x−1)<0在x∈(−∞,1)上恒成立;当a<1时,若x∈(−∞,a),f(x)=2(a−x)(x−1)<0,∴f(x)<0,成立;若x∈(a,1),则f(x)=2(x−a)>0,不满足题意;所以当a<1时,不满足题意;综上,a的取值范围为[1,+∞).【解析】本题考查了绝对值不等式的解法,考查了分类讨论思想,关键是掌握相关知识,逐一分析解答即可,属于中档题.(1)将a=1代入得f(x)=|x−1|x+|x−2|(x−1),然后分x<1和x≥1两种情况讨论f(x)<0即可;(2)根据条件分a≥1和a<1两种情况讨论即可.。

2019年全国高考Ⅱ卷(理数) - 含参考答案

2019年全国高考Ⅱ卷(理数) - 含参考答案

2019年普通高等学校招生全国统一考试(Ⅱ卷)数学(理工类)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合=<-=>+-=B A },01|{},065|{A 2则x x B x x x ________)(3,.D ,-1)3C.(- ,1)2(-. ,1)A.(-+∞∞B2. 设z=-3+2i,则在复平面内z 对应的点位于________A.第1象限B.第2象限C.第3象限D.第4象限3. 已知=⋅===B C AB ,1|B C |),,3(AC ),3,2(AB 则t ________A. -3B.-2C.2D.34. 2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面着陆,我国航天事业取得又一重大成就。

实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。

为解决这个问题,发射了嫦娥四号中继器“鹊桥”,鹊桥沿着围绕地月拉格拉日2L 点的轨道运行。

2L 点是平衡点,位于地月连线的延长线上。

设地球质量为1M ,月球质量为2M ,地月距离为R,2L 点到月球的距离为r,根据牛顿运动定律和万有引力定律,r 满足方程:312221RM )r R (r M r)(R M +=++.设325433)1(33.ααααααα≈+++=计算中的值很小,因此在近似由于R r ,则r 的近似值为________R 3M M D. R M 3M C.R 2M M B. R M M A.1231231212⋅⋅⋅⋅ 5. 演讲比赛共有9位评委分别给出某位选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分。

7个有效评分与9个原始评分相比,不变的数字特征是________A.中位数B.平均数C.方差D.极差6. 若a>b,则________||||.D 0C. 33. 0 b)-A.ln(a 33b a b a B b a >>-<>7. 设βαβα//为两个平面,则,的充要条件是________平行内有两条相交直线与平行内有无数条直线与βαβα. A.B 垂直于同一个平面,平行于同一条直线βαβα.D ,C.8. 若抛物线13)0(2222=+>=py p x p px y 的焦点是椭圆的一个焦点,则p=________A.2B.3C.4D.89. 下列函数中,以单调递增的是为周期,且在区间)2,4(2πππ________ A.f(x)=|cos2x|B.f(x)=|sin2x|C.f(x)=cos|x|D.f(x)=sin|x|10. 已知=+=∈αααπαsin ,12cos 2sin 2),2,0(则________552.D 33C. 55. 51A.B 11. 设F 为双曲线C:)0,0(12222>>=-b a by a x的右焦点,O 为坐标原点,以OF 为直径的圆与圆222a y x =+交于P ,Q 两点。

2019年高考理数(2卷)答案详细解析(附试卷)

2019年高考理数(2卷)答案详细解析(附试卷)

2019年普通高等学校招生全国统一考试理科数学(II 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(集合)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =( ) A .(∞-,1) B .(–2,1)C .(–3,–1)D .(3,∞+)【解析】集合A ={x |x 2–5x +6>0}={x |x <2或x >3},集合B ={x |x <1},所以有A ∩B={x |x <1},即A 答案. 【答案】A2.(复数)设i z 23+-=,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【解析】i z 23+-=,则z 的共轭复数为i z 23--=,所以在复平面内z 对应的点位于第三象限. 【答案】C3.(平面向量)已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( ) A .–3 B .–2C .2D .3【解析】(1,3)=+=-BC BA AC t ,由于||1=BC ,所以03=-t ,即3=t ,(1,0)=BC .所以21302⋅=⨯+⨯=AB BC【答案】C4.(公式推导)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为( ) A .21M R M B .212M R MC .2313M R M D .2313M R M【解析】∵=rR α,∴=r R α,代入121223()()+=++M M M R r R r r R 中得12122222(1)(1)+=++M M M R R R ααα12122(1)(1)+=++M M M ααα33453122333=3(1)++⎛⎫=≈ ⎪+⎝⎭M r M R ααααα所以有 2313=M r R M 【答案】C5.(概率统计)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A .中位数 B .平均数 C .方差D .极差【解析】根据几个数字特征的定义,很容易得出答案:去掉1个最高分、1个最低分,最后中位数不变. 【答案】A6.(函数)若a >b ,则( ) A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .|a |>|b |【解析】答案A :∵a >b ,∴a -b >0,无法判断ln(a −b )的正负;答案B :∵y =3x 为增函数,∴3a >3b ;答案C :∵y =x 3为增函数,∴a 3>b 3;答案D :当0>a >b 时,|a |<|b |.【答案】C7.(立体几何)设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】通过画图,采用排除法,很容易得到正确答案. 【答案】B8.(解析几何)若抛物线y 2=2px (p >0)的焦点是椭圆1322=+py p x 的一个焦点,则p =( ) A .2 B .3 C .4D .8【解析】抛物线y 2=2px (p >0)的焦点为)0,2(p,并且在x 轴上. 所以椭圆1322=+p y p x 的一个焦点为)0,2(p . 所以有p p22=,得p =8. 【答案】D9.(三角函数)下列函数中,以2π为周期且在区间)2,4(ππ单调递增的是( ) A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x |D .f (x )=sin|x |【解析】答案A :函数f (x )=|cos2x |的图像如图A9-1所示,其周期是函数f (x )=cos2x 的一半,即21π=T ,且在区间)2,4(ππ为单调递增的. 答案B :与答案A 类似,函数f (x )=|sin2x |的周期是函数f (x )=sin2x 的一半,即22π=T ,且在区间)2,4(ππ为单调递减的;答案C :函数f (x )=cos|x |为偶函数,其图像如图A9-2所示.由函数f (x )=cos|x |的图像可知,其周期π23=T ;答案D :与答案C 类似,由函数f (x )=sin|x |的图像可知,其不是周期函数. 【答案】A图A9-1 图A9-210.(三角函数)已知α∈(0,2π),2sin2α=cos2α+1,则sin α=( ) A .15B .55C .33D .255【解析】利用三角公式12cos 2sin 2+=αα化简得ααα2cos 2cos sin 4=ααcos sin 2=所以2cot =α,设α所对得边为1,则临边为2,斜边为5,所以55sin =α. 【答案】B11.(解析几何)设F 为双曲线C :22221(0,0)-=>>x y a b a b的右焦点,O 为坐标原点,以OF 为直径的圆与圆222+=x y a 交于P ,Q 两点.若=PQ OF ,则C 的离心率为( ) A .2 B .3C .2D .5【解析】如图A11所示. ∵OF 为直径,=PQ OF ,∴PQ 也是直径.,即点P 、Q 的坐标为)2,2(c c .把)2,2(c c 代入222+=x y a 得,222=c a . ∴22=e ,即2=e .图A11【答案】A12.(函数)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【解析】由)(2)1(x f x f =+可得Z x x f t x f t∈⋅=+),(2)(,即Z x t x f x f t∈-⋅=),(2)(.∵当(0,1]∈x 时,()(1)=-f x x x ,1()[,0]4∈-f x ∴当(1,2]∈x 时,1(0,1]-∈x ,则)2)(1(2)1(2)(--=-⋅=x x x f x f ,1()[,0]2∈-f x∴当(2,3]∈x 时,2(0,1]-∈x ,则)3)(2(4)2(2)(2--=-⋅=x x x f x f ,()[1,0]∈-f x 函数()f x 的图像如图A12所示. 对任意(,]∈-∞x m ,都有8()9≥-f x ,因此(2,3]∈m 令98)3)(2(4)(-=--=x x x f ,得 37=x 或38=x . 由图A12可知,当37≤m 时,都有8()9≥-f x .图A12【答案】B二、填空题:本题共4小题,每小题5分,共20分。

2019全国2卷理科数学试题及详解(可编辑修改word版)

2019全国2卷理科数学试题及详解(可编辑修改word版)

2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分。

1.设集合A ={x |x 2−5x +6>0},B ={x |x −1<0},则A ∩B =( A ) A. (−∞,1) B.(−2,1) C.(−3,−1) D. (3,+∞)2.设z =−3+2i,则在复平面z̅对应的点位于( C ) A. 第一象限 B. 第二象限 C.第三象限 D.第四象限3.已知AB⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t ),|BC ⃗⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ =( C ) A.−3 B.−2 C. 2 D. 34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天 事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探 测器的通讯联系。

为解决这个问题,发射了嫦娥四号中继星“鹊桥”。

鹊桥沿着围绕地月 拉格朗日L 2点的轨道运行,L 2点是平衡点,位于地月连线的延长线上,设地球质量为M 1 ,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r,根据牛顿运动定理和万有引力 定律,r 满足方程:M 1(R+r)2+M 2r 2=(R +r)M 1R 3设α=rR ,由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( D )A. √M2M 1R B. √M22M 1R C. √3M 2M 13R D. √M23M 13R5.演讲比赛共有9为评委分别给出某选手的原始评分,评定该选手的成绩时,从9个 原始评分中去掉1个最高分、一个最低分,得到7个有效评分。

7个有效评分与9个 原始评分相比,不变的数字特征是( A )A. 中位数B. 平均数C. 方差D.极差 6.若a >b,则( C )A.ln (a −b )>0B.3a <3bC. a 3−b 3>0D. |a |>|b|7.设α,β为两个平面,则α∥β的 充要条件是( B )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面 8.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p+y 2p=1的一个焦点,则p =( D )A. 2B. 3C. 4D. 89.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( A )A.f (x )=|cos2x|B. f (x )=|sin2x|C. f (x )=cos |x |D. f (x )=sin |x| 10.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( B ) A. 15 B.√55 C.√33D.2√5511.设F 为双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径 的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( A ) A. √2 B. √3 C. 2 D. √512.设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x −1). 若对任意x ∈(−∞,m ],都有f (x )≥−89,则m 的取值范围是( B )A. (−∞,94] B. (−∞,73] C.(−∞,52] D. (−∞,83]二、填空题:本题共4小题,每题5分,共20分。

2019年高考理科数学全国2卷(附答案)

2019年高考理科数学全国2卷(附答案)

学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2019年普通高等学校招生全国统一考试理科数学 全国II 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:z AB AC BC AB BC ⋅2L 2L 121223()()M M M R r R r r R+=++设rR α=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 A B C D .演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差6.若a >b ,则A .ln(a −b )>0B .3a<3bC .a 3−b 3>0 D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是A .α有无数条直线与β平行B .α有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面 8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .8 9.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin│x │10.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B .55C .33D .25511.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF=,则C 的离心率为A .2B .3C .2D .512.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分。

(完整版)2019全国2卷理科数学试题及详解

(完整版)2019全国2卷理科数学试题及详解

2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分。

1.设集合A ={x |x 2−5x +6>0},B ={x |x −1<0},则A ∩B =( A ) A. (−∞,1) B.(−2,1) C.(−3,−1) D. (3,+∞)2.设z =−3+2i,则在复平面z̅对应的点位于( C ) A. 第一象限 B. 第二象限 C.第三象限 D.第四象限3.已知AB⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t ),|BC ⃗⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ =( C ) A.−3 B.−2 C. 2 D. 34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天 事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探 测器的通讯联系。

为解决这个问题,发射了嫦娥四号中继星“鹊桥”。

鹊桥沿着围绕地月 拉格朗日L 2点的轨道运行,L 2点是平衡点,位于地月连线的延长线上,设地球质量为M 1 ,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r,根据牛顿运动定理和万有引力 定律,r 满足方程:M 1(R+r)2+M 2r 2=(R +r)M 1R 3设α=rR ,由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( D )A. √M2M 1R B. √M22M 1R C. √3M 2M 13R D. √M23M 13R5.演讲比赛共有9为评委分别给出某选手的原始评分,评定该选手的成绩时,从9个 原始评分中去掉1个最高分、一个最低分,得到7个有效评分。

7个有效评分与9个 原始评分相比,不变的数字特征是( A )A. 中位数B. 平均数C. 方差D.极差 6.若a >b,则( C )A.ln (a −b )>0B.3a <3bC. a 3−b 3>0D. |a |>|b|7.设α,β为两个平面,则α∥β的 充要条件是( B )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面 8.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p+y 2p=1的一个焦点,则p =( D )A. 2B. 3C. 4D. 89.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( A )A.f (x )=|cos2x|B. f (x )=|sin2x|C. f (x )=cos |x |D. f (x )=sin |x| 10.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( B ) A. 15 B.√55 C.√33D.2√5511.设F 为双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径 的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( A ) A. √2 B. √3 C. 2 D. √512.设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x −1). 若对任意x ∈(−∞,m ],都有f (x )≥−89,则m 的取值范围是( B )A. (−∞,94] B. (−∞,73] C.(−∞,52] D. (−∞,83]二、填空题:本题共4小题,每题5分,共20分。

2019年普通高等学校招生全国统一考试理科数学(全国II卷)解析版

2019年普通高等学校招生全国统一考试理科数学(全国II卷)解析版

2019年普通高等学校招生全国统一考试理科数学(全国II卷)解析版2019年普通高等学校招生全国统一考试(全国 II 卷)理科数学答案一、选择题 1-6ACC DAC 7-12 BDA BAB9. A 对于A,函数|2cos |)(x x f =的周期2T π=,在区间,42ππ??单调递增,符合题意;对于B,函数|2sin |)(x x f =的周期2T π=,在区间,42ππ??单调递减,不符合题意;对于C ,函数x x x f cos ||cos )(==,周期2T π=,不符合题意;对于D,函数||sin )(x x f =的周期T π=,不符合题意.10. B (0,)2πα∈,22sin 2cos 214sin cos 2cos ααααα=+?=,则12sin cos tan 2ααα=?=,所以2125cos 1tan 5αα==+,所以25sin 1cos αα=-=. 11. A ∵||||PQ OF c ==,∴90POQ ∠=o,又||||OP OQ a ==,∴222a a c +=解得2ca=,即2e =.12. B 由当x R ∈,(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-可知当(1,2]x ∈时,231()2()22f x x =--,当(2,3]x ∈时,25()4()12f x x =--,……当(,1],x n n n Z ∈+∈时,221()2()22n n f x x n -=---,函数值域随变量的增大而逐渐减小,对任意的(,]x m ∈-∞,都有8()9f x ≥-有23854()1()292m m --≥-<解得的取值范围是73m ≤。

二、填空题 13. 0.9 14. 3-∵ln 2ln 2(ln 2)(ln 2)()()28a a a f f e e ---=--=--===,∴3a =-. 15. 3621436423cos cos 222222=-+=-+==cc c ac b c a B π,3623323421sin 21,34,32===∴==∴B ac S a c16. 答案:262-1由图2结合空间想象即可得到该正多面体有26个面;将该半正多面体补成正方体后,根据对称性列方程求解.三、解答题 17. 解析:(1)证明:∵⊥11C B 平面1ABB ,?BE 平面1ABB ,∴BE C B ⊥11,又1EC BE ⊥,1111C C B EC =I ,∴⊥BE 平面11C EB .(2)设底面边长为1,高为x 2,∴122+=x BE ,1221+=x E B ,∵⊥BE 平面11C EB ,∴?=∠901BEB 即21212BB E B BE =+,∴22422x x =+解得1=x .∵⊥BC 平面11ABB A ,∴E B BC 1⊥,又BE E B ⊥1,∴⊥E B 1平面BCE ,故B 1为平面BCE 的一个法向量. ∵平面CE C 1与平面11ACC A 为同一平面,故11D B 为平面CE C 1的一个法向量,在E D B 11?中,∵21111===E B E D D B 故E B 1与11D B 成?60角,∴二面角1C EC B --的正弦值为2360sin =?. 18. 解析:(1)2X =时,有两种可能:①甲连赢两局结束比赛,此时10.50.40.2P =?=;②乙连赢两局结束比赛,此时20.50.60.3P =?=,∴12(2)0.5P X P P ==+=;(2)4X =且甲获胜,即只有第二局乙获胜,其他都是甲获胜,此时0.50.60.50.40.06P ==.19. 已知数列{}n a 和{}n b 满足11=a ,01=b ,4341+-=+n n nb a a ,4341--=+n n n a b b . (1)证明: {}n n b a +是等比数列,{}n n b a -是等差数列;(2)求{}n a 和{}n b 的通项公式. 解析:(1)将4341+-=+n n n b a a ,4341--=+n n n a b b 相加可得nn n n n n b a b a b a --+=+++334411,整理可得)(2111n n n n b a b a +=+++,又111=+b a ,故{}n n b a +是首项为1,公比为21的等比数列. 将4341+-=+n n n b a a ,4341--=+n n n a b b 作差可得8334411+-+-=-++n n n n n n b a b a b a ,整理可得211+-=-++n n n n b a b a ,又111=-b a ,故{}n n b a -是首项为1,公差为2的等差数列. (2)由{}n n b a +是首项为1,公比为21的等比数列可得1)21(-=+n n n b a ①;由{}n n b a -是首项为1,公差为2的等差数列可得12-=-n b a n n ②;①②相加化简得21)21(-+=n a n n ,①②相减化简得21)21(+-=n b n n 。

2019年高考全国卷Ⅱ理数试题(Word版含答案解析)

2019年高考全国卷Ⅱ理数试题(Word版含答案解析)

绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共5页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B=A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)2.设z=-3+2i,则在复平面内z对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.已知AB=(2,3),AC=(3,t),BC=1,则AB BC=A.-3 B.-2C.2 D.34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R+=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差6.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .89.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │10.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B .5C 3D 511.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为A BC .2D 12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.14.已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________. 15.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。

2019年高考全国2卷理科数学真题及详解(word解析版)

2019年高考全国2卷理科数学真题及详解(word解析版)

普通高等学校招生全国统一考试(全国卷Ⅱ)理 科 数 学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.=++i1i3 A.i 21+ B.i 21- C.i 2+ D.i 2- 2.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1AB =,则B =A.{}1,3-B.{}1,0C.{}1,3D.{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A.1盏B.3盏C.5盏D.9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.π90B.π63C.π42D.π365.设y x 、满足约束条件⎪⎩⎪⎨⎧≥+≥+-≤-+,,,0303320332y y x y x 则y x z +=2的最小值是A.15-B.9-C.1D.96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有 A.12种 B.18种 C.24种 D.36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1-=a ,则输出的=S A.2 B.3 C.4 D.5开始输出S 否是K =K+1a=-a S =0,K =1S =S+a ⋅K K ≤6输入a 开始9.若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C的离心率为A.2B.3C.2D.332 10.已知直三棱柱111C B A ABC -中, 120=∠ABC , 2=AB , 11==CC BC , 则异面直线1AB 与1BC 所成角的余弦值为 A.23 B.515 C.510 D.33 11.若2-=x 是函数12)1()(--+=x eax x x f 的极值点,则)(x f 的极小值为A.1-B.32--eC.35-eD.1 12.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(PC PB PA +⋅的最小值是 A.2- B.23-C.34- D.1- 二、填空题:本题共4小题,每小题5分,共20分.13.一批产品的二等品率为02.0,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到二等品件数,则=DX.14.函数])20[(43cos 3sin )(2π,∈-+=x x x x f 的最大值是 . 15.等差数列{}n a 的前n 项和为n S ,33=a ,104=S ,则=∑=nk kS 11. 16.已知F 是抛物线x y C 8:2=的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则=FN .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22/23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知2sin 8)sin(2BC A =+. (1)求B cos ;(2)若6=+c a ,ABC ∆的面积为2,求b .18.(12分)M EDCBA P 海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01). 附:22()()()()()n ad bc K a b c d a c b d -=++++19.(12分)如图,四棱锥ABCD P -中,侧面PAD 为等边三角形且垂直于地面ABCD ,AD BC AB 21==, 90=∠=∠ABC BAD ,E 是PD 的中点.(1)证明:直线PAB CE 平面∥;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为 45, 求二面角D AB M --的余弦值.20.(12分)箱产量<50kg箱产量≥50kg旧养殖法 新养殖法箱产量/kg 频率/组距7065605550454035旧养殖法0.0340.0320.0240.0140.0122530箱产量/kg频率/组距0.0400.02007065605550454035新养殖法设O 为坐标原点,动点M 在椭圆12:22=+y x C 上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3-=x 上,且1=⋅PQ OP . 证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(12分)已知函数x x ax ax x f ln )(2--=,且0)(≥x f . (1)求a ;(2)证明:)(x f 存在唯一的极大值点0x ,且2022)(--<<x f e .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修44-:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为4cos =θρ.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足16=⋅OP OM ,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为)32(π,,点B 在曲线2C 上,求OAB ∆面积的最大值.23.[选修54-:不等式选讲](10分) 已知20033=+>>b a b a ,,.证明: (1)4))((55≥++b a b a ; (2)2≤+b a .2017年普通高等学校招生全国统一考试理 科 数 学 参 考 答 案1.解:===2﹣i ,故选 D .2.解:由{}1A B =得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,{}1,3B =,故选C .3. 解:设这个塔顶层有a 盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a 为首项的等比数列,又总共有灯381盏,∴381= 7(12)12a --=127a ,解得a =3,则这个塔顶层有3盏灯,故选B .4.解:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .5.解:x 、y 满足约束条件的可行域如图:z=2x+y 经过可行域的A 时,目标函数取得最小值, 由解得A (﹣6,﹣3),则z=2x+y 的最小值是:﹣15.故选:A .6.解:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列,由乘法原理,不同的安排方式共有2343C A 36⨯=种. 故选D .7.解:四人所知只有自己看到,老师所说及最后甲说话, 甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩) →乙看到了丙的成绩,知自己的成绩→丁看到甲、丁中也为一优一良,丁知自己的成绩, 故选:D .8.解:执行程序框图,有S =0,k =1,a =﹣1,代入循环, 第一次满足循环,S =﹣1,a =1,k =2;满足条件,第二次满足循环,S =1,a =﹣1,k =3; 满足条件,第三次满足循环,S =﹣2,a =1,k =4; 满足条件,第四次满足循环,S =2,a =﹣1,k =5; 满足条件,第五次满足循环,S =﹣3,a =1,k =6; 满足条件,第六次满足循环,S =3,a =﹣1,k =7; 7≤6不成立,退出循环输出,S =3; 故选:B .9.解:由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为22213d =-=,则点()2,0到直线0bx ay +=的距离为222023b a bd ca b +⨯===+, 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2242c e a ===.故选A .10. 解:如图所示,设M 、N 、P 分别为AB ,BB 1和B 1C 1的中点, 则AB 1、BC 1夹角为MN 和NP 夹角或其补角(因异面直线所成角为(0,]),可知MN=AB 1=,NP=BC 1=;作BC 中点Q ,则△PQM 为直角三角形;∵PQ=1,MQ=AC ,△ABC 中,由余弦定理得AC 2=AB 2+BC 2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7, ∴AC=, ∴MQ=; 在△MQP 中,MP==;在△PMN 中,由余弦定理得cos ∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB 1与BC 1所成角的余弦值为.故选C11. 解:由题可得12121()(2)e(1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)e x f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减,所以()f x 的极小值为11()(111)e11f -=--=-,故选A .12. 解:建立如图所示的坐标系,以BC 中点为坐标原点,则A (0,),B (﹣1,0),C (1,0),设P (x ,y ),则=(﹣x ,﹣y ),=(﹣1﹣x ,﹣y ),=(1﹣x ,﹣y ),则•(+)=2x 2﹣2y +2y 2=2[x 2+(y ﹣)2﹣]∴当x =0,y =时,取得最小值2×(﹣)=﹣, 故选:B13.解:由题意可得,抽到二等品的件数符合二项分布,即()~100,0.02X B ,由二项分布的期望公式可得()11000.020.98 1.96DX np p =-=⨯⨯=.故答案为:1.96 14. 解: f (x )=sin 2x +cosx ﹣=1﹣cos 2x +cosx ﹣,令cosx =t 且t ∈[0,1], 则f (t )=﹣t 2+t +=﹣(t ﹣)2+1,当t =时,f (t )max =1,即f (x )的最大值为1,故答案为:115. 解:等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,S 4=2(a 2+a 3)=10, 可得a 2=2,数列的首项为1,公差为1, S n =,=,则 =2[1﹣++…+]=2(1﹣)=.故答案为:.16. 解:如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点F',作MB l ⊥与点B ,NA l ⊥与点A ,由抛物线的解析式可得准线方程为2x =-,则2,4AN FF'==,在直角梯形ANFF'中,中位线'32AN FF BM +==,由抛物线的定义有:3MF MB ==,结合题意,有3MN MF ==,故336FN FM NM =+=+=.故答案为:617.(1)由B C A -=+π得2sin 8sin 2B B =,即2sin 42cos B B =, ∴412tan=B ,得158tan =B ,则有1715cos =B . (2)由(1)可知178sin =B ,则2sin 21==∆B ac S ABC ,得217=ac , 又417302)(cos 22222=--+=-+=ac ac c a B ac c a b ,则2=b . 18.(1)旧养殖法箱产量低于50kg 的频率为62.05)040.0034.0024.0014.0012.0(=⨯++++, 新养殖法箱产量不低于50kg 的频率为66.05)008.0010.0046.0068.0(=⨯+++,而两种箱产量相互独立,则4092.066.062.0)(=⨯=A P . (2)由频率分布直方图可得列联表则635.6705.1510496100100)38346662(20022>≈⨯⨯⨯⨯-⨯=K ,所以有99%的把握认为箱产量与养殖方法有关.(3)新养殖法箱产量低于50kg 的面积为5.034.05)044.0020.0004.0(<=⨯++, 产量低于55kg 的面积为5.068.05)068.0044.0020.0004.0(>=⨯+++, 所以新养殖法箱产量的中位数估计值为35.5250534.034.05.0≈+⨯⎪⎭⎫ ⎝⎛-(kg ).19.(1)取PA 中点F ,连结BF EF 、.因为E 为PD 中点,则AD EF 21∥.而由题可知AD BC 21∥,则BC EF ∥,即四边形BCEF 为平行四边形,所以FB EC ∥.又PAB FB PAB EC 面,面⊂⊄, 故PAB CE 面∥. (2)因为AD AB ⊥,则以A 为坐标原点,AD AB 、所在直线分别为y x 、轴建立空间直角坐标系xyz A -,如图所示.取1=AB ,设)10(<<=λλCP CM 则得)011()001()000(,,,,,,,,C B A ,)310(,,P ,则)301(,,-=CP ,)30(λλ,,-=CM ,可得点)311(λλ,,-M ,所以)31(λλ,,-=BM .取底面ABCD 的法向量为)100(,,=n ,则 45sin 313cos 22=++=〉〈λλλn BM ,,解得22=λ,则)26122(,,-=BM .因为)001(,,=AB ,设面MAB 的法向量为)(z y x m ,,=,由⎪⎩⎪⎨⎧=⋅=⋅00BM m AB m 得⎪⎩⎪⎨⎧=++-=026220z y x x ,取2=z 得)260(,,-=m ,则510 cos ==〉〈n m n m,.故二面角D AB M --的余弦值为510.20.(1)设)(y x P ,,则)22(y x M ,,将点M 代入C 中得12222=+y x ,所以点P 的轨迹方程为222=+y x .(2)由题可知)01(,-F ,设)()3(n m P t Q ,,,-,则)1( )3(n m PF t OQ ---=-=,,,, )3( )(n t m PQ n m OP ---==,,,.由1=⋅OQ OP 得1322=-+--n tn m m ,由(1)有222=+n m ,则有033=-+tn m ,所以033 =-+=⋅tn m PF OQ ,即过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(1))(x f 的定义域为)0(∞+,,则0)(≥x f 等价于0ln ≥--x a ax . 设x a ax x g ln )(--=,则x a x g 1)(-='.由题可知0>a ,则由0)(>'x g 解得ax 1>,所以)(x g 为)1(∞+,a 上的增函数,为)10(a ,上的减函数.则有==)1()(min ag x g0ln 1=+-a a ,解得1=a .(2)由(1)可知x x x x x f ln )(2--=,则x x x f ln 22)(--='. 设x x x h ln 22)(--=,则x x h 12)(-='.由0)(>'x h 解得21>x ,所以)(x h 为)21(∞+, 上的增函数,为)210(,上的减函数.又因为0)1(012ln )21(=<-=h h ,,则)(x h 在)210(,上存在唯一零点0x 使得0ln 2200=--x x ,即00ln 22x x =-,且)(x f 为)0(0x ,,)1(∞+,上的增函数,为)1 (0,x 上的减函数,则)(x f 极大值为41)1()(000<-=x x x f .而101)10(--≠∈e x e ,,,所以210)()(--=>e e f x f . 综上,2022)(--<<x f e .22.(1)设P 极坐标为)0)((>ρθρ,,M 极坐标为)0)((11>ρθρ,.则ρ=OP ,θρcos 41==OM .由16=⋅OP OM 得2C 的极坐标方程为)0(cos 4>=ρθρ.所以2C 的直角坐标方程为)0(4)2(22≠=+-x y x . (2)设B 极标为)0)((22>ρθρ,,由题可知αρcos 422==,OA ,则有3223)32sin(2)3sin(212+≤--=-⋅⋅=∆παπαρOA S OAB . 即当12πα-=时,OAB ∆面积的最大值为32+.23.(1)655655))((b b a ab a b a b a +++=++)(2)(4433233b a ab b a b a ++-+=222)(4b a ab -+=4≥(2)因为3223333)(b ab b a a b a +++=+ )(32b a ab ++=)(4)(322b a b a +++≤4)(323b a ++=,所以8)(3≤+b a ,解得2≤+b a .。

2019年高考理科数学全国卷2(附参考答案和详解)

2019年高考理科数学全国卷2(附参考答案和详解)

*%$
,%+
-%)
.%4
!一!选!!择!题!本!大!题!共!!!$!小 题!!每!小!题!"!分共 &# 分!在 每
小 题 给 出 的 四 个 选 项 中 只 有 一 项 是 符 合 题 目 要 求 的
!!设集合 +'!#"#$("#0&)#"#0'!#"#(!##"#则 +$0
'
$! ! %
*%$( A #!%
,%$($#!%
-%$(+#(!%
.%$+#0 A %
$!设%' (+0$/#则 在 复 平 面 内%!对 应 的 点 位 于
$! ! %
*%第 一 象 限
,%第 二 象 限
-%第 三 象 限
.%第 四 象 限
+!已 知++*0' $$#+%#++*.' $+#;%#"0+*."'!#则++*0.0+*.'
#3$##!)时#*$#%'#$#(!%!若 对 任 意 #3 $( A#D)#都

*$#%1
(
4 8
#则
D
的取




$! ! %
$ ) *% (A#8)
$ ) ,%
(
A
#7 +
$ ) -%
(
A
#" $
$ ) .%
(
A
#4 +
"! $A0B%$

。精品解析:2019年全国统一高考数学试卷(理科)(新课标Ⅱ)(解析版)

。精品解析:2019年全国统一高考数学试卷(理科)(新课标Ⅱ)(解析版)
本题也可用直接法,因为 a b ,所以 a b 0 ,当 a b 1 时, ln( a b) 0 ,知 A 错,因为 y 3x 是增 函数,所以 3a 3b ,故 B 错;因为幂函数 y x3 是增函数, a b ,所以 a3 b3 ,知 C 正确;取 a 1,b 2 ,
4
满足 a b , 1 a b 2 ,知 D 错. 【详解】取 a 2, b 1,满足 a b , ln( a b) 0 ,知 A 错,排除 A;因为 9 3a 3b 3 ,知 B 错,排 除 B ;取 a 1, b 2 ,满足 a b ,1 a b 2 ,知 D 错,排除 D,因为幂函数 y x3 是增函数, a b ,
所以 a3 b3 ,故选 C. 【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算 能力素养,利用特殊值排除即可判断.
7.设 α, β为两个平面,则 α∥β的充要条件是
A. α内有无数条直线与 β平行
B. α内有两条相交直线与 β平行
C. α,β平行于同一条直线
x8 ,
中位数仍为 x5 , A 正确.
②原始平均数 x
1 9
(
x1
x2
x3
x4
x8 x9 ) ,后来平均数 x
1( 7
x2
x3
x4
x8)
平均数受极端值影响较大,
x 与 x 不一定相同, B 不正确
③ S2
1 9
2
x1 x
s2
1 7
x2
2
x
2
x1 x
2
x3 x
2
x9 x
2
x8 x 由②易知, C 不正确.
题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日

2019年高考全国Ⅱ卷理数真题试题(word版,含答案与解析)

2019年高考全国Ⅱ卷理数真题试题(word版,含答案与解析)

2019年高考理数真题试卷(全国Ⅱ卷)原卷+解析一、选择题:本题共12小题,每小题5分,共60分.1.(2019•卷Ⅱ)设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B=()A. (-∞,1)B. (-2,1)C. (-3,-1)D. (3,+∞)【答案】 A【考点】交集及其运算【解析】【解答】解出集合A的解集为,集合B为,由此可求出.故答案为:A【分析】首先求出两个集合,再结合集合交集的定义即可求出结果。

2.(2019•卷Ⅱ)设z=-3+2i,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】 C【考点】复数的代数表示法及其几何意义【解析】【解答】根据题意首先求出复数z的共轭复数,则的共轭复数所对应的点为(-3,-2),进而得到所对于的点在第三象限。

故答案为:C【分析】首先求出该复数的共轭复数,然后取出其共轭复数所对应的点的坐标,从而即可判断出该点位于第三象限。

3.(2019•卷Ⅱ)已知=(2,3),=(3,t),| |=1,则=()A. -3B. -2C. 2D. 3【答案】 C【考点】平面向量数量积的运算【解析】【解答】, = ,求出t=3即可得出, = .故答案为:C【分析】首先利用向量的减法求出向量BC的坐标,再利用向量的模的公式求出t的值,结合向量的数量积运算公式代入数值求出结果即可。

4.(2019•卷Ⅱ)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:.设,由于的值很小,因此在近似计算中,则r的近似值为()A. B. C. D.【答案】 D【考点】根式与分数指数幂的互化及其化简运算【解析】【解答】根据题意可得,等号两边同时乘以,可得, ,由已知代入可得,= = 由题中给出的,∴ , , .故答案为:D【分析】利用已知的代数式整理化简即可得出结果。

(完整版)2019全国2卷理科数学试题及详解(可编辑修改word版)

(完整版)2019全国2卷理科数学试题及详解(可编辑修改word版)

2019 全国 2 卷理科数学试题一、选择题:本题共 12 小题,每小题 5 分,共 60 分。

1.设集合 A = {x │x 2 ‒ 5x + 6 > 0},B = {x│x‒ 1 < 0},则 A ∩ B = ( A )A. ( ‒ ∞,1)B. ( ‒ 2,1)C. ( ‒ 3, ‒ 1)D. (3, + ∞)2. 设 z =‒ 3 + 2i,则在复平面z 对应的点位于(C)A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知AB = (2,3),AC = (3,t ),|BC | = 1,则AB ∙ BC = ( C)A. - 3B. - 2C. 2D. 34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。

为解决这个问题,发射了嫦娥四号中继星“鹊桥”。

鹊桥沿着围绕地月拉格朗日L 2点的轨道运行,L 2点是平衡点,位于地月连线的延长线上,设地球质量为M 1 ,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定理和万有引力定律,r 满足方程:M 1+M 2 M 1(R + r )2rr 2= (R + r )R 33α3 + 3α4 + α53设α = R ,由于α的值很小,因此在近似计算中B.(1 + α)2≈ 3α ,则r 的近似值为(D )A.C.3R 3M 2 M 1D.3RM 23M 1BDAB2 5. 演讲比赛共有9为评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、一个最低分,得到7个有效评分。

7个有效评分与9个原始评分相比,不变的数字特征是( A )A. 中位数B . 平 均数C . 方差D .极差6. 若a > b,则( C)A. ln (a ‒ b) > 0B.3a < 3bC. a 3 ‒ b 3 > 0D. |a| > |b|7. 设α,β为两个平面,则α ∥ β的充要条件是()A. α内有无数条直线与β平行B. α内有两条相交直线与β平行C. α,β平行于同一条直线D. α,β垂直于同一平面8. y 2 = 2px(p > 0) x 2 y 2 + = 1= ( )若抛物线 的焦点是椭圆3p p 的一个焦点,则pA. 2B. 3C. 4D. 89. π(π,π)( )下列函数中,以2为周期且在区间 4 2 单调递增的是A. f(x) = |cos2x|B. f(x) = |sin2x|C. f(x) = cos |x|D. f(x) = sin |x|10. 已知α ∈ (0,π),2s in2α = co s 2α + 1,则sinα = ()1A. 5B. 5 5C.3 2 5D.x 2y 211. 设 F 为双曲线 C :a 2 ‒ b 2 = 1(a > 0,b > 0)的右焦点,O 为坐标原点,以OF 为直径AB2 3π的圆与圆x 2+ y 2 = a 2交于P ,Q 两点.若|PQ | = |OF |,则C 的离心率为()A. B. C. 2D.12.设函数f(x)的定义域为 R ,满足f(x + 1) = 2f(x),且当x ∈ (0,1]时,f(x) = x(x ‒ 1).8若对任意x ∈ ( ‒ ∞,m],都有f(x) ≥‒ 9,则m 的取值范围是()9758A. ( ‒ ∞,4] B . ( ‒ ∞,3] C.( ‒ ∞,2] D. ( ‒ ∞,3]二、填空题:本题共 4 小题,每题 5 分,共 20 分。

(完整word版)2019全国2卷理科数学试题及详解(可编辑修改word版)

(完整word版)2019全国2卷理科数学试题及详解(可编辑修改word版)

2019 全国 2 卷理科数学试题一、选择题:本题共 12 小题,每小题 5 分,共 60 分。

1.设集合 A = {x │x 2 ‒ 5x + 6 > 0},B = {x│x‒ 1 < 0},则 A ∩ B = ( A )A. ( ‒ ∞,1)B. ( ‒ 2,1)C. ( ‒ 3, ‒ 1)D. (3, + ∞)2. 设 z =‒ 3 + 2i,则在复平面z 对应的点位于(C)A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知AB = (2,3),AC = (3,t ),|BC | = 1,则AB ∙ BC = ( C)A. - 3B. - 2C. 2D. 34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。

为解决这个问题,发射了嫦娥四号中继星“鹊桥”。

鹊桥沿着围绕地月拉格朗日L 2点的轨道运行,L 2点是平衡点,位于地月连线的延长线上,设地球质量为M 1 ,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定理和万有引力定律,r 满足方程:M 1+M 2 M 1(R + r )2rr 2= (R + r )R 33α3 + 3α4 + α53设α = R ,由于α的值很小,因此在近似计算中B.(1 + α)2≈ 3α ,则r 的近似值为(D )A.C.3R 3M 2 M 1D.3RM 23M 1BDAB2 5. 演讲比赛共有9为评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、一个最低分,得到7个有效评分。

7个有效评分与9个原始评分相比,不变的数字特征是( A )A. 中位数B . 平 均数C . 方差D .极差6. 若a > b,则( C)A. ln (a ‒ b) > 0B.3a < 3bC. a 3 ‒ b 3 > 0D. |a| > |b|7. 设α,β为两个平面,则α ∥ β的充要条件是()A. α内有无数条直线与β平行B. α内有两条相交直线与β平行C. α,β平行于同一条直线D. α,β垂直于同一平面8. y 2 = 2px(p > 0) x 2 y 2 + = 1= ( )若抛物线 的焦点是椭圆3p p 的一个焦点,则pA. 2B. 3C. 4D. 89. π(π,π)( )下列函数中,以2为周期且在区间 4 2 单调递增的是A. f(x) = |cos2x|B. f(x) = |sin2x|C. f(x) = cos |x|D. f(x) = sin |x|10. 已知α ∈ (0,π),2s in2α = co s 2α + 1,则sinα = ()1A. 5B. 5 5C.3 2 5D.x 2y 211. 设 F 为双曲线 C :a 2 ‒ b 2 = 1(a > 0,b > 0)的右焦点,O 为坐标原点,以OF 为直径AB2 3π的圆与圆x 2+ y 2 = a 2交于P ,Q 两点.若|PQ | = |OF |,则C 的离心率为()A. B. C. 2D.12.设函数f(x)的定义域为 R ,满足f(x + 1) = 2f(x),且当x ∈ (0,1]时,f(x) = x(x ‒ 1).8若对任意x ∈ ( ‒ ∞,m],都有f(x) ≥‒ 9,则m 的取值范围是()9758A. ( ‒ ∞,4] B . ( ‒ ∞,3] C.( ‒ ∞,2] D. ( ‒ ∞,3]二、填空题:本题共 4 小题,每题 5 分,共 20 分。

2019年全国卷Ⅱ理数高考真题及答案解析(word精编)

2019年全国卷Ⅱ理数高考真题及答案解析(word精编)

2019年全国卷Ⅱ理数高考真题及答案解析(word精编)绝密★启用前 xx年普通高等学校招生全国统一考试理科数学本试卷共5页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名.准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整.笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸.试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破.弄皱,不准使用涂改液.修正带.刮纸刀。

一.选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2-5x+6>0},B={ x|x-1b,则A.ln(a−b)>0B.3a0D.│a│>│b│7.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面8.若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=A.2B.3C.4D.89.下列函数中,以为周期且在区间(,)单调递增的是A.f(x)=│cos2x│B.f(x)=│sin2x│C.f(x)=cos│x│D.f(x)= sin│x│10.已知α∈(0,),2sin2α=cos2α+1,则sin α=A.B.C.D.11.设F为双曲线C:的右焦点,为坐标原点,以为直径的圆与圆交于P,Q两点.若,则C的离心率为A.B.C.2D.12.设函数的定义域为R,满足,且当时,.若对任意,都有,则m的取值范围是A.B.C.D.二.填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.14.已知是奇函数,且当时,.若,则__________.15.的内角的对边分别为.若,则的面积为__________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体.正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三.解答题:共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2017年普通高等学校招生全国统一考试课标II理科数学【试卷点评】【命题特点】2017年高考全国新课标II数学卷,试卷结构在保持稳定的前提下,进行了微调,一是取消试卷中的第Ⅰ卷与第II卷,把解答题分为必考题与选考题两部分,二是根据中学教学实际把选考题中的三选一调整为二选一。

试卷坚持对基础知识、基本方法与基本技能的考查, 注重数学在生活中的应用。

同时在保持稳定的基础上,进行适度的改革和创新,与2016年相比难度稳中有降略。

具体来说还有以下几个特点:1.知识点分布保持稳定小知识点集合,复数,程序框图,线性规划,向量问题,三视图保持一道小题的占比,大知识点三角数列三小一大,概率统计一大一小,立体几何两小一大,圆锥曲线两小一大,函数导数三小一大(或两小一大)。

2.注重对数学文化与数学应用的考查教育部2017年新修订的《考试大纲(数学)》中增加了数学文化的考查要求。

2017高考数学全国卷II理科第3题以《算法统宗》中的数学问题为进行背景,理科19题、文科18题以以养殖水产为题材,贴近生活。

3.注重基础,体现核心素养2017年高考数学试卷整体上保持一定比例的基础题,试卷注重通性通法在解题中的运用,另外抽象、推理和建模是数学的基本思想,也是数学研究的重要方法,试卷对此都有涉及。

【命题趋势】1.函数知识:函数性质的综合应用、以导数知识为背景的函数问题是高考命题热点,函数性质重点是奇偶性、单调性及图象的应用,导数重点考查其在研究函数中的应用,注重分类讨论及化归思想的应用。

2. 立体几何知识:立体几何一般有两道小题一道大题,小题中三视图是必考问题,常与几何的面积与体积结合在一起考查,解答题一般分2进行考查。

3.解析几何知识:解析几何试题一般有3道,圆、椭圆、双曲线、抛物线一般都会涉及,双曲线一般作为客观题进行考查,多为容易题,解答题一般以椭圆与抛物线为载体进行考查,运算量较大,不过近几年高考适当控制了运算量,难度有所降低。

4.三角函数与数列:三角函数与数列解答题一般轮流出现,若解答题为数列题,一般比较容易,重点考查基本量求通项及几种求和方法,若解答题为三角函数,一般是解三角形问题,此时客观题中一般会有一道与三角函数性质有关的题目,同时客观题中会有两道数列题,一易一难,数列客观题一般具有小巧活的特点。

【试卷解析】一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31i i+=+( ) A .12i + B .12i - C .2i + D .2i -【答案】D【解析】试题分析:由复数除法的运算法则有:()()3+13212i i i i i -+==-+,故选D 。

【考点】 复数的除法【名师点睛】复数的代数形式的运算主要有加、减、乘、除。

除法实际上是分母实数化的过程。

在做复数的除法时,要注意利用共轭复数的性质:若z 1,z 2互为共轭复数,则z 1·z 2=|z 1|2=|z 2|2,通过分子、分母同乘以分母的共轭复数将分母实数化。

2.设集合{}1,2,4A =,{}240x x x m B =-+=。

若{}1A B =,则B =( )A.{}1,3-B.{}1,0C.{}1,3D.{}1,5【答案】C3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏【答案】B4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A . 90πB .63πC .42πD .36π【答案】B【解析】试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V ππ=⨯⨯=,上半部分是一个底面半径为3,高为4的圆柱的一半,其体积()22136272V ππ=⨯⨯⨯=,该组合体的体积为:12362763V V V πππ=+=+=。

故选B 。

【考点】 三视图;组合体的体积【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线。

在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑。

求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解。

5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9【答案】A6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种【答案】D【解析】试题分析:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列33A 即可,由乘法原理,不同的安排方式共有234336C A ⨯=种方法。

故选D 。

【考点】排列与组合;分步乘法计数原理【名师点睛】(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步。

具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)。

(2)不同元素的分配问题,往往是先分组再分配。

在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法。

7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩。

老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩。

看后甲对大家说:我还是不知道我的成绩。

根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】Da=-,则输出的S=()8.执行右面的程序框图,如果输入的1A.2 B.3 C.4 D.5【答案】B(3)按照题目的要求完成解答并验证。

9.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B .3C .2D .23 【答案】A10.已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A 3B 15C 10D 3 【答案】C11.若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -【答案】A【解析】试题分析:由题可得12121()(2)(1)[(2)1]x x x f x x a e x ax e x a x a e ---'=+++-=+++-因为(2)0f '-=,所以1a =-,21()(1)x f x x x e -=--,故21()(2)x f x x x e -'=+-令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞单调递增,在(2,1)-单调递减 所以()f x 极小值为()111(111)1f e -=--=-,故选A 。

【考点】 函数的极值;函数的单调性【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同。

(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值。

12.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小是( )A.2-B.32-C. 43- D.1- 【答案】B二、填空题:本题共4小题,每小题5分,共20分。

13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = 。

【答案】1.9614.函数()23sin 34f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 。

【答案】1【解析】试题分析:化简三角函数的解析式:()2223131cos 3cos 3cos 1442f x x x x x x ⎛=-+-=-++=--+ ⎝⎭, 由自变量的范围:0,2x π⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈, 当3cos x =时,函数()f x 取得最大值1。

【考点】 三角变换,复合型二次函数的最值。

【名师点睛】本题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”,学科*网它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法。

一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析。

15.等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11n k k S ==∑ 。

【答案】21n n + 【解析】试题分析:设等差数列的首项为1a ,公差为d ,由题意有:1123434102a d a d +=⎧⎪⎨⨯+=⎪⎩ ,解得111a d =⎧⎨=⎩ , 数列的前n 项和()()()111111222n n n n n n n S na d n --+=+=⨯+⨯=, 裂项有:()1211211k S k k k k ⎛⎫==- ⎪++⎝⎭,据此: 11111111221......21223111nk k n S n n n n =⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑ 。

【考点】 等差数列前n 项和公式;裂项求和。

【名师点睛】等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题。

学&科&网数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法。

相关文档
最新文档