6.2 立方根(1)
人教版数学七年级下册第19课时《6.2立方根(1)》教案
人教版数学七年级下册第19课时《6.2立方根(1)》教案一. 教材分析《6.2立方根(1)》是人教版数学七年级下册的教学内容,本节课主要让学生掌握立方根的概念、性质和运算法则。
通过学习,学生能理解和掌握立方根的定义,会运用立方根解决一些实际问题。
教材通过引入立方根的概念,引导学生探究立方根的性质和运算法则,培养学生的逻辑思维能力和数学运算能力。
二. 学情分析学生在七年级上学期已经学习了实数的概念,对有理数、无理数有一定的了解。
在此基础上,学生需要进一步理解立方根的概念,并掌握立方根的性质和运算法则。
学生的学习兴趣较高,但部分学生可能对抽象的数学概念理解起来有一定困难,需要教师耐心引导和讲解。
三. 教学目标1.理解立方根的概念,掌握立方根的性质和运算法则。
2.能运用立方根解决一些实际问题,提高学生的数学应用能力。
3.培养学生的逻辑思维能力和数学运算能力,提高学生的数学素养。
四. 教学重难点1.立方根的概念和性质。
2.立方根的运算法则。
3.运用立方根解决实际问题。
五. 教学方法采用启发式教学法、案例教学法和小组合作学习法。
通过引入生活实例,激发学生的学习兴趣;引导学生主动探究立方根的性质和运算法则,培养学生的逻辑思维能力和数学运算能力;小组讨论,提高学生的合作意识和团队精神。
六. 教学准备1.准备相关的教学PPT和多媒体素材。
2.准备练习题和实际问题,用于巩固和拓展学生的知识。
3.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)通过一个生活实例引入立方根的概念,如“一个正方体的体积是27立方厘米,求这个正方体的棱长。
”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)讲解立方根的定义,引导学生理解立方根的概念。
如“一个数的立方根,就是另一个数,使得这个数的三次方等于另一个数。
”通过PPT和板书,呈现立方根的性质和运算法则,让学生直观地感受和理解。
3.操练(10分钟)进行一些立方根的运算练习,让学生巩固所学知识。
最新人教版初中七年级下册数学【第六章 6.2立方根(1)】教学课件
8
64
解:(1) 3 64 4 ;
(2)3 1 1 ; 82
(3)3 27 3 . 64 4
八、课后作业
教科书第52页习题 6.2 复习巩固第3、4题.
谢谢观看
2.开立方的定义:求一个数的立方根的运算,叫做开立方。 开立方与立方互为逆运算。
3.用根号表示数的立方根:一个数a的立方根,用符号 3 a 表示。读作“三次根号a”。其中a是被开方数,3是根指数。
4.正确使用计算器求立方根。
本节课知识点对应课本P49-50的内容.
七、巩固练习
求下列各式的值:
(1)3 64 ; (2) 3 1 ; (3)3 27 .
三、探索新知
你能类比平方根的定义给出立方根的定义吗?
一般地,如果一个数的 平立方 等于a,那么这个 数叫做a的 平 立 方 根 或者 三二次方根。 这就是说,如 果 x32
==a,那么x叫做a的 立平方根。
求一个数的立方根的运算,叫做开立方。
立方
互逆
开立方
到现在我们学了几种运算? +、-、×、÷、乘方、开方(开平方、开立方)
6.2.1 立方根(1)
学习目Байду номын сангаас:
1
了解立方根和开立方的概念;
2
会表示一个数的立方根;
3
会求一个数的立方根;
4
会使用计算器求立方根。
学习重点:
会求一个数的立方根。
立方根和开立方的概念是怎样从生 活中产生的呢?
一、复习引入
判断下列各数是否有平方根,若有,请求其平方根, 若没有,请简要说明理由。 ① 16 ②−16 ③ 0
四、例题讲解
例1:求下列各数的立方根。
6.2立方根2024年七年级数学下学期重点题型方法与技巧(人教版)(原卷版)
第六章 实数6.2 立方根1 立方根(1)一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。
这就是说,如果x 3=a ,那么x 叫做a 的立方根. 【例】因为53=125,所以125的立方根是5; 因为(−23)3=−827,所以−827的立方根是−23。
(2)求一个数的立方根的运算,叫做开立方。
开立方与立方互为逆运算.(3)一个数a 的立方根,用符号“√a 3”表示,读作“三次根号a ”,其中a 是被开方数,3是根指数.如√83=2,√−83=−2. 【题型1】 求一个数的立方根 【典题1】 √643的平方根是( ) A .±2B .﹣2C .2D .±8【典题2】已知√1.9933=1.2584,√19.933=2.711,则√19933= ,√−0.019933= . 【巩固练习】1. (★)﹣64的立方根是( ) A .﹣4B .±4C .±2D .﹣22.(★)√9的立方根是( ) A .3B .±3C .√33D .±√333. (★)已知x 没有平方根,且|x |=125,则x 的立方根为( ) A .25B .﹣25C .±5D .﹣54. (★)若a 2=25,√b 3=2,则a +b 的值为( ) A .﹣3B .13C .13或﹣3D .13或35. (★★)如果√2.373≈1.333,√23.73≈2.872,那么√23703约等于( ) A .28.72B .0.2872C .13.33D .0.13336. (★★)已知√x −13=x −1,则x 2﹣x 的值为( ) A .0 或 1B .0 或 2C .0 或 6D .0、2 或 67. (★★)方程12x 3+4=0的解是 .8. (★★★)对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”.(1)举一个具体的例子来验证上述结论成立;(2)若√1+y 3和√2y −73互为相反数,且x +3的平方根是它本身,求x +y 的立方根.【题型2】 一个数立方根的估值 【典题1】 设a =√93,则( ) A .1.5<a <2 B .2<a <2.5 C .2.5<a <3 D .a =3【巩固练习】1.(★)a =√123的整数部分是( ) A .1B .2C .3D .42.( ★★)a =√993介于m 和m +1之间(m 为整数),则m 的值为( ) A .1B .2C .3D .43. (★★★)据说著名数学家华罗庚有次搭乘飞机时,看到邻座的乘客阅读的杂志上有一道智力题:一个数是59319,求它的立方根.华罗庚脱口而出,邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗? (1)【发现与思考】∵103=1000,1003=1000000; 又∵1000<59319<1000000; ∴√593193是两位数; ∵59319的个位数字是9; ∴√593193的个位数字是 . ∵303=27000,403=64000; ∴√593193的十位数字是 . ∴√593193= . (2)【运用并解决】类比上述的发现与思考,推理求出110592的立方根. 【题型3】立方根的实际应用【典题1】 已知一个体积为48dm 3的长方体纸箱,它的长、宽、高的比为2:1:3,求纸箱的高. 【巩固练习】1. (★)在一个长,宽,高分别为9cm ,8cm ,3cm 的长方体容器中装满水,然后将容器中的水全部倒入一个正方体容器中,恰好倒满(两容器的厚度忽略不计),求此正方体容器的棱长.2. (★★) “魔方”(如图)是一种立方体形状的益智玩具,它由三层完全相同的小立方块组成,如果“魔方”的体积为216cm 3,那么组成它的每个小立方块的棱长为多少?3. (★★★)小梅用两张同样大小的长方形硬纸片拼接成一个面积为900cm 2的正方形,如图所示,按要求完成下列各小题. (1)求长方形硬纸片的宽;(2)小梅想用该正方形硬纸片制作一个体积512cm 3的正方体的无盖笔筒,请你判断该硬纸片是否够用?若够用,求剩余的硬纸片的面积;若不够用,求缺少的硬纸片的面积.【A 组基础题】1. (★)对于√−83说法错误的是( ) A .表示﹣8的立方根 B .结果等于﹣2C .与−√83的结果相等D .没有意义2. (★)下列各式中正确的是( ) A .√9−√4=√5B .√9=±3C .√93=3D .−√(−9)2=−93. (★)已知x ,y 为实数,且√x −3+(y +2)2=0,则y x 的立方根是( ) A .√63B .﹣8C .﹣2D .±24. (★)已知√3263≈6.882,若√x 3≈68.82,则x 的值约为( ) A .326000B .32600C .3.26D .0.3265. (★★)对于实数a 、b ,定义min {a ,b }的含义为:当a <b 时,min {a ,b }=a ,当b <a 时,min {a ,b }=b ,例如:min {1,﹣2}=﹣2.已知min{√30,a}=a,min{√30,b}=√30,且a 和b 为两个连续正整数,则a ﹣b 的立方根为( ) A .﹣1B .1C .﹣2D .26. (★)方程13x 3+9=0的解是 .7. (★)已知√2a +2的算术平方根是2,﹣a +b +1的立方根是﹣2.则2a ﹣b 的平方根为 . 8. (★★)已知a 为整数,且√403<a +2<√18,则a 的值为 .9. (★★)已知第一个正方体纸盒的棱长为6cm ,第二个正方体纸盒的体积比第一个正方体纸盒的体积大127cm 3.(1)求第二个正方体纸盒的棱长;(2)第二个正方体纸盒的表面积比第一个正方体纸盒的表面积多多少?10. (★★★)在我校科技节活动中爱探究思考的小明,在实验室利用计算器计算得到下列数据:… √0.0324 √0.324 √3.24 √32.4 √324 √3240 √32400 … …0.180.5691.85.691856.9180…(1)通过观察可以发现当被开方数扩大100倍时,它的算术平方根扩大 倍; (2)已知√7≈2.646,根据上述规律直接写出下列各式的值: √0.07≈ ,√700≈ ;(3)已知√10404=102,√x =10.2,√y =1020,则x = ,y = ; (4)小明思考如果把平方根换成立方根,若√0.33≈0.669,√33≈1.442, 则√3003≈ ,√30003≈ .11. (★★★)类比平方根(二次根式)、立方根(三次方根)的定义可给出四次方根、五次方根的定义:①如果x 4=a (a ≥0),那么x 叫做a 的四次方根;②如果x 5=a ,那么x 叫做a 的五次方根.请根据以上两个定义,解答下列问题. (1)求81的四次方根; (2)求﹣32的五次方根;(3)若√a 4有意义,则a 的取值范围为 ;若√a 5有意义,则a 的取值范围为 ; (4)解方程:①x 4=16;②100000x 5=243.【B 组提高题】1. (★★★★)对于一个各数位上的数字均不为0的三位自然数N ,若N 的百位数字与十位数字的平均数等于个位数字,则称N 为“均衡数”.将“均衡数”N 的百位数字与十位数字交换位置后得到的新数再与N 相加的和记为F (N ).若三位数n 是“均衡数”,满足百位数字小于十位数字,√F(n)1113整数,且F (n )能被十位数字与百位数字的差整除,则n 的值为 .。
人教版七年级数学下册课件:6.2 立方根课件
2
3
37
3
27 64
= 4;(4)
3
3
7 -1 8
=
3
- 8=-2.
1
1
8 ≈-0.684; 25
3
(4)± 2 402≈±13.392. (3)x=5.
3 5.解:(1)x=0.2;(2)x=2;
6.解:一个正方体的体积扩大为原来的 8 倍,则它的棱长变为原 来的 2 倍;扩大为原来的 27 倍,则它的棱长变为原来的 3 倍;扩大为 3 原来的 n 倍,则它的棱长变为原来的 n倍. 点拨:正方体的体积等于其棱长的立方. 7.解:设这种容器的底面直径为 x 分米,则高为 2x 分米,根据题意, 得 50=π
3
-
57 6
=-
3
57 ≈-2.118. 6
知识点一
知识点二
知识点三
拓展点一
拓展点二
拓展点三
拓展点四
拓展点一 立方根的实际应用 例1 (2017· 吉林松原长岭期中)已知一个正方体的体积是1 000 cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截 去后余下的体积是488 cm3,问截得的每个小正方体的棱长是多少? 分析:设截得的每个小正方体的棱长为x cm,8个大小相同的小正 方体的体积是8x3,余下的体积是1 000-8x3,则1 000-8x3=488. 解:设截得的每个小正方体的棱长为x cm, 依题意,得1 000-8x3=488, ∴8x3=512, ∴x=4. 答:截得的每个小正方体的棱长是4 cm.
6.2
立方根
知识点一
知识点二
知识点三
知识点一 立方根 1.定义:一般地,如果一个数的立方等于a,那么这个数叫做a的立 方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.例 如,53=125,那么5是125的立方根. 2.表示方法: 一个数a的立方根,用符号“ 3 a ”表示,读作“三次根号a”,其中a是 被开方数,3是根指数. 3.性质: (1)正数的立方根是正数; (2)负数的立方根是负数; (3)0的立方根是0.
人教初中数学七下《6.2 立方根》教案1 【经典教学PPT课件】
《立方根》一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求. (四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0. 让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?. 练一练:抢答1.判断下列说法是否正确,并说明理由. (1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0 (6)互为相反数的两个数的立方根也互为相反数. 例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测(检查学生掌握情况)计算:(六)归纳小结: 学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗? 教师概括:相同点: (1)0的平方根、立方根都有一个是0 (2)平方根、立方根都是开方的结果. 不同点: (1)定义不同. (2)个数不同. (3)表示方法不同.(4)被开方数的取值范围不同. (七)布置作业《垂线》一、选择题:(每小题3分,共18分)827-+1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分)如图所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,•求∠DOG的度数.GOFEDCBA四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°四、解:如图3所示.lA五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,∴13∠BOC+∠BOC=180°, ∴ 43∠BOC=•1 80°,lA∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.•(2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.《垂线》一、选择题:(每小题3分,共18分)1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分)如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°,•求∠DOG 的度数.GOFEDCBA四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°四、解:如图3所示.l五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,lA∴13∠BOC+∠BOC=180°,∴43∠BOC=•1 80°,∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.• (2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.。
人教版七年级下册数学6.2 立方根(001)
6.2 立方根【学习目标】1、了解立方根的概念,初步学会用根号表示一个数的立方根;2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;3、体会一个数的立方根的惟一性,分清一个数的立方根与平方根的区别。
【学习重点和难点】1.学习重点:立方根的概念和求法。
2.学习难点:立方根与平方根的区别。
【学习过程】一、自主探究1.平方根是如何定义的 ? 平方根有哪些性质?2、问题:要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是3、思考:(1) 的立方等于-8?(2)如果上面问题中正方体的体积为5cm3,正方体的边长又该是4、立方根的概念:如果一个数的立方等于a,这个数就叫做a的 .(也叫做数a的).换句话说,如果 ,那么x 叫做a 的 立方根或三次方根. 记作: .读作“ ”,其中a 是 ,3是 ,且根指数3 省略(填能或不能),否则与平方根混淆.5、开立方求一个数的 的 运算叫做开立方, 与开立方互为逆运算(小组合作学习)6、立方根的 性质 (1)教科书49页探究(2)总结归纳: 正数的 立方根是 数,负数的 立方根是 数,0的 立方根是 .(3)思考:每一个数都有立方根吗? 一个数有几个立方根呢?(4)平方根与立方根有什么不同?二、边学边练例1、 求下列各式的 值: (1)364; (2)327102例2、求满足下列各式的 未知数x :(1)3x 0.008=练习1. 判断正误:(1)、25的 立方根是 5 ;( )(2)、互为相反数的 两个数,它们的 立方根也互为相反数;( )(3)、任何数的 立方根只有一个;( )(4)、如果一个数的 平方根与其立方根相同,则 这个数是1;( )(5)、如果一个数的 立方根是这个数的 本身,那么这个数一定是零;( )(6)、一个数的 立方根不是正数就是负数.( )(7)、–64没有立方根.( )2、(1) 64的 平方根是________立方根是________. (2) 的 立方根是________. (3) 37-是_______的 立方根.(4) 若 ,则 x=_______,若 ,则 x=________.(5) 若 , 则x 的 取值范围是__________, 若 有意义,则x 的 取值范围是_______________.327()92=-x ()93=-x x x -=23x -3、计算:(1)38321+ 4、已知x-2的 平方根是4±,2x y 12-+的 立方根是4,求()x yx y ++的 值.三、我的 感悟这节课我的 最大收获是: 我不能解决的 问题是:四、课后反思。
6.2立方根(1)
有两个平方根,互为相反数
有一个立方根,也是正数
性
0 质
负 数
有一个平方根,是0
有一个立方根,是0
没有平方根
有一个立方根,也是负数
开 方
求一个数的平方根的运算叫开 求一个数的立方根的运算叫开 平方;开平方与平方是互逆运算。 立方;开立方与立方是互逆运算。
表 示
a ,其中a 是被开方数,
根指数2 (省略)
3
0.0525 ___
3 1.已 知3 0.342 0.6993 , 3.42 1.507 ,
34.2 3.246 ,求下列各式的值。 3 ( 1 ) 0.000342 = 0.06993 ——————。
3 3 ( 2 ) 34200000= -324.6 ——————。 ——————。 ( 3 ) 3 0.00342= -0.1507
讨论:你能归纳出平方根和立方根的异同点吗?
被开方数 正数 负数 零 平方根 立方根 有一个,是正数 有一个,是负数 零
有两个互为相反数
无平方根 零
练一练
1.判断下列说法是否正确,并说明理由 8 2 (1) 的立方根是 27 3 (2) 25的平方根是5
(3) -64没有立方根 (4) -4的平方根是
所以
3
= 3 27. 27 _____
3
3
a a
负号可从“根号内” 直接移到“根号外” .
巩固新知,形成技能
下列式子表示什么意义?你能求出它 们的值吗?
(1) 64;
27 (3) 3 ; 64
3
(2) 125;
3
( 4) ( 3) ;
3 3
1.求下列各数的立方根.
人教版数学七年级下册6.2《立方根》教案1
人教版数学七年级下册6.2《立方根》教案1一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容。
本节主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。
通过本节的学习,为学生进一步学习实数及其运算打下基础。
二. 学情分析学生在七年级上册已经学习了乘方,对乘方的概念和性质有一定的了解。
但立方根的概念与乘方有所不同,需要学生能够从中找出规律,理解并掌握。
另外,学生可能对求一个数的立方根运算存在困难,因此在教学过程中,需要引导学生掌握运算方法。
三. 教学目标1.理解立方根的概念,掌握立方根的性质。
2.学会求一个数的立方根,能熟练运用立方根解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.立方根的概念和性质。
2.求一个数的立方根的方法。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,让学生在实际情境中感受立方根的意义。
2.讲授法:讲解立方根的性质和求法,引导学生理解和掌握。
3.实践操作法:让学生动手计算,巩固所学知识。
4.问题驱动法:设置问题,引导学生探究,培养学生的解决问题的能力。
六. 教学准备1.PPT课件:制作与教学内容相关的PPT课件,以便进行直观教学。
2.练习题:准备一些有关立方根的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些生活中的实例,如冰雪融化、爆米花等,引导学生思考:这些现象与数学中的哪个概念有关?从而引出立方根的概念。
2.呈现(15分钟)讲解立方根的定义,让学生理解立方根的概念。
通过PPT课件展示立方根的性质,让学生掌握立方根的性质。
3.操练(10分钟)让学生动手计算一些立方根的例子,巩固所学知识。
教师巡回指导,解答学生疑问。
4.巩固(5分钟)设置一些有关立方根的问题,让学生独立解答。
教师选取部分学生的答案进行讲评,巩固所学知识。
5.拓展(10分钟)引导学生思考:立方根有哪些应用?让学生举例说明,培养学生的应用意识。
人教版数学七年级下册6.2立方根优秀教学案例
在作业小结环节,我会布置一些与立方根相关的练习题,让学生在课后进行巩固和提高。同时,我会提醒学生及时总结和反思自己的学习情况,找出自己的不足之处,为今后的学习做好准备。在下一节课开始时,我会及时批改作业,并对学生的学习情况进行反馈,帮助他们纠正错误,提高解题能力。
五、案例亮点
1.启发式教学:本案例中,我运用启发式教学法,通过提问和引导,激发学生的思维,培养他们的抽象思维和逻辑推理能力。例如,在讲解立方根的概念时,我提出问题:“什么是立方根?”“如何快速找出一个数的立方根?”等问题,引导学生进行思考和探索。
在学生小学生进行思考和讨论。例如,我会让学生探讨如何快速找出一个数的立方根,以及立方根在实际生活中的应用。学生可以结合自己的经验和知识,与小组成员进行交流和讨论。通过小组讨论,学生可以互相学习,共同提高。
(四)总结归纳
在总结归纳环节,我会让学生回顾本节课所学的立方根的知识,让他们自己总结和归纳立方根的性质和计算方法。我会引导学生通过整理和概括,形成系统化的知识结构。同时,我会强调立方根在数学和其他学科中的应用,让学生认识到学习立方根的重要性。
为了达到这个目标,我会在课堂上运用生动的例子和动画演示,帮助学生直观地理解立方根的概念。通过大量的练习题,让学生在实践中掌握立方根的计算方法。此外,我还会在课堂上引导学生思考立方根在实际生活中的应用,激发他们的学习兴趣。
(二)过程与方法
在本节课中,我将采用启发式教学法和小组合作学习法,引导学生主动探索、发现和总结立方根的性质和计算方法。
2.小组合作学习:我组织学生进行小组合作学习,让他们在小组活动中共同探索立方根的性质和计算方法。通过小组合作,学生可以互相学习、互相启发,从而提高他们的合作能力和解决问题的能力。
【新】人教版七年级数学下册第六章《6.2 立方根(1)》公开课课件.ppt
6.1 立方根(1)
活动一 创设情境,复旧导新 1. 1想. 想一想一想:
(1) 16的平方根是____4__;
(2)-16的平方根_不__存__在___;
(3)0的平方根是___0_____. 问题:
平方根是如何定义的?平方根有哪些性质?
zX.x.K
2. 做一做
问题: 要制作一种容积为27 m3的正方体形状
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights.
(2) 因为(0.5)3 =0.125,所以0.125的立方是(0.5 );
(3)因为( 0 )3=0,所以0的立方根是( 0 );
(4)因为 ( 2)3=-8,所以-8的立方根是( 2);
(5)因为(
2)3=-
3
-287 ,所以--287
的立方根
是( 2).
3
探究题中正数、0和负数的立方根各有
活动六 布置作业,提升能力 1 ; (2) 3 4 3 ; (3)0.216.
1 000
2.求下列各式的值.
( 1 ) 3-8 ; ( 2 ) -32 7 ; ( 3 ) 33 -1 7 ; ( 4 ) 331 1 21.
2 7
24
3.如果3x+16的立方根是4,求2x+4的算术平方根.
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/102021/1/10January 10, 2021
人教版七年级数学(教案):6.2立方根教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解立方根的基本概念。立方根是一个数乘以自身三次等于另一个数时,这个数就是另一个数的立方根。它是解决涉及立方体体积、三次方等问题的关键。
2.案例分析:接下来,我们来看一个具体的案例。如,一个立方体的体积是27立方米,我们如何求出它的边长?这个案例展示了立方根在实际中的应用,以及它如何帮助我们解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《立方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算一个数的立方根的情况?”比如,我们知道了立方体的体积,想要知道它的边长是多少。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索立方根的奥秘。
-立方根的性质理解:特别是负数的立方根,学生可能会对其存在感到困惑,需要通过具体例子和图形来解释;
-立方根的估算:在没有计算器的情况下,如何估算一个数的立方根,这是学生可能遇到的难点;
-比较不同数的立方根:如何判断两个数的立方根大小关系,尤其是当数值较大或较复杂时。
举例:
-对于难点1,可以通过绘制立方体的图形,让学生直观地看到边长为2的立方体的体积是8,从而理解2的立方根是√8。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“立方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
人教版七年级数学教案:6.2立方根
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《立方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算一个立方体体积的情况?”比如,我们想知道一个骰子的体积,就需要用到立方根的知识。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索立方根的奥秘。
人教版七年级数学教案:6.2立方根
一、教学内容
本节课选自人教版七年级数学教材第六章第二节:6.2立方根。教学内容主要包括以下两个方面:
1.立方根的定义:了解立方根的概念,掌握立方根的表示方法,如∛a。
2.立方根的性质与运算:探索立方根的性质,掌握立方根的运算方法,能够解决实际问题中与立方根相关的计算。具体包括:
首先,对于立方根的抽象概念,尽管我通过引入日常生活中的例子来帮助学生理解,但仍有部分学生感到难以把握。在今后的教学中,我需要寻找更多直观、生动的教学资源,比如动画、实物模型等,让学生能够更直观地感受到立方根的实际意义。
其次,在小组讨论环节,我发现有些学生参与度不高,可能是因为他们对立方根的应用场景不够熟悉。为了提高学生的参与度,我计划在下一节课前,先让学生们预习一些与立方根相关的实际应用案例,激发他们的学习兴趣,从而在讨论中更加积极主动。
-立方根的运算应用:将立方根的运算规律应用于实际问题中,学生可能难以灵活运用。
-立方根的估算:在没有计算器的情况下,如何对立方根进行合理的估算。
举例:为了突破概念抽象的难点,教师可以设计一些具体操作活动,如让学生通过折纸、积木等方式构建立方体,直观感受立方根的意义。在理解负数立方根时,可以通过数轴上的表示或实际例子(如负数的立方根在金融领域的应用)来说明。对于运算应用,可以设计一些实际问题的习题,如计算不规则立方体的体积,让学生在解决问题中掌握运算规律。至于估算方法,可以教授学生一些简单的技巧,如通过整数立方数的逼近来进行估算。
6.2 立方根(1)
点 二
因为23=8,所以8的立方根是__2____;
因为(_0__._4_)3=0.064,所以0.064的立方根是
立 _0_._4__;
方 根
因为(_0__)3=0,所以0的立方根是_0_____;
的 因为(_-__2__)3=-8,所以-8的立方根是_-_2___;
性
质
因为(__23_)3=
;(4)__3 6_4 _ _4________ 27 3
;(6)_3 _1_25__5_________
平
方 根
联系:(1)0的平方根、立方根都有
与 知 一个是 0 .
立 识 (2)平方根、立方根都是开方的结果.
方 点 区别:(1)定义不同:“如果一个数
根三 的 联 系
的 平方 等于a,这个数就叫做a的 平方根”; “如果一个数的 立方 等于a,这
B
因为33=27所以x3= .即包装
D'
C'
x
箱的边长应为3 m
x
A'
B'
x
1.了解立方根的概念,学会用根号 表示一个数的立方根;
2.了解开立方与立方互为逆 运算,会用立方运算求某些 数的立方根;
3.分清一个数的立方根与平 方根的区别.
认真阅读课本第49页至第50页的内容,
完成下面练习并体验知识点的形成过程.
与 个数就叫做a的立方根.”
区
别
(2)个数不同:一个正数有 两 个 平方根,一个正数有个 一 个立方 根;一个负数 没有 平方根,一 个负数有 一 个立方根. (3)表示法不同:正数a的平方根表 示为 a ,a的立方根表示为 3 a .
(4)被开方数的取值范围不同: a 中的被开方数a是 正 数;3 a 中的被
人教版七年级下册数学6.2立方根(1)
灿若寒星制作
灿若寒星制作
第六章 实数
6.2立方根(1)
1. 判断正误:
(1)、64的立方根是8;( )
(2)、互为相反数的两个数,它们的立方根也互为相反数;( )
(3)、任何数的立方根只有一个;( )
(4)、如果一个数的平方根与其立方根相同,则这个数是1;( )
(5)、如果一个数的立方根是这个数的本身,那么这个数一定是零;( )
(6)、一个数的立方根不是正数就是负数.( )
(7)、–8没有立方根.( )
2.填空题:
(1)8的平方根是________立方根是________. (2)327的立方根是________;327-是_______的立方根.
(3)若2x =-x,则x 的取值范围是__________, 若3x -有意义,则x 的取值范围是
____________.
(4) 立方根等于本身的数是___,如果,113a a -=-则=a ___。
(5)64-的立方根是____,3)4(-的立方根是____。
3.计算:
3125.0= ;335= ;)13(33 = ;)13(33-= 33)3(-= ;-364
1= ;-38-= ;3
1-= 327= ;
3278= ;-3
001.0= ;33)2(-=
4.求下列各数的立方根:
(1) 27; (2)-38; (3)1; (4) 0.
5.求下列各式的值: (1) 31000 (2); 37291000; (3) 364125-; (4) 31;。
七年级数学下册:第6章实数6.2立方根教学课件(新版新人教版)
14、许多年轻人在学习音乐时学会了爱。——莱杰 15、学习是劳动,是充满思想的劳动。——乌申斯基 16、我们一定要给自己提出这样的任务:第一,学习,第二是学习,第三还是学习。——列宁 17、学习的敌人是自己的满足,要认真学习一点东西,必须从不自满开始。对自己,“学而不厌”,对人家,“诲人不倦”,我们应取这种态度。——毛泽东
7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。 8、真想干总会有办法,不想干总会有理由;面对困难,智者想尽千方百计,愚者说尽千言万语;老实人不一定可靠,但可靠的必定是老实人;时间,抓起来是黄金,抓不起来是流水。14、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。
有两个互为相反数 有一个,是正数
无平方根
有一个,是负数
零
零
练一练
1.判断下列说法是否正确,并说明理由
(1)
8 27
的立方根是 2 3
(2) 25的平方根是5
x x
(3) -64没有立方根
x
(4) -4的平方根是 2 x √ (5) 0的平方根和立方根都是0
想一想
立方根是它本身的数有那些? 有1, -1, 0
2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。 3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。
4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。 5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了?
课件1:6.2 立方根
6.2 立方根
复习引入: 1.什么是平方根?如何用符号表示数a(≥0)的平方根?
正数a的平方根是: a
2.什么是算术平方根?如何用符号表示?
正数是a的算术平方根: a
3.正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方 根是什么? 正数有两个平方根,它们互为相反数; 0的平方根是0;负数没有平方根。
a的立方根用 3 a 表示 2、立方根的性质
(1)一个正数有两个平方根, (1)正数的立方根还是正数 它们互为相反数
(2)0的立方根还是0 (2)0的平方根还是0
(3)负数的立方根还是负数 (3)负数没有平方根 3平方根的求法,如求4的平方根: 3立方根的求法,如求8的立方根:
∵ (±2)2 = 4
举例: ∵ 3 8 2
3 8 2
∵ 3 273
3 273
∴ 3 83 8
∴ 327327
练习:1.填空
( ( 1 -5 _ 3 ) 1 _ , 3 2 _ 1 _ 5 _ -2 5 _ _ 5_ ) _
(2 ( )54__ 3_ 1 6 _2 ,4 _ 5 3 ) 1 62 4 _ 5 54 ____
解:
(1)3 64 4
(3)
3
2103 27
644 27 3
(2)3 1255
(4) 3 273 273
64 64 4
(5 3-6 ) 4 1 6 4 4 0
(6)原式 5 5 5 5 10
练习:
你能求出下列各式中的未知数x吗?
(1) x3=343
(2)(x-1)3=125
(3)3 x 2
问题:
要制作一种容积为27m3的正方体 形状的包装箱,这种包装箱的边长应该
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)尝试用符号给出数a的立方根的表示方法.( 并问a可以取什么数?)
通过学生自己动手计算,让学生感受任何一个数都有立方根,以及一个数的立方根的惟一性。
练一练
(1)请学生完成课本第172页习题10.2的第2题.
(2)请学生口头回答以下问题:
根据立方根的意义,求下列各数的立方根:
,-64, ,1,-1
体会开立方与立方互为逆运算,因此求一个数的立方根可以通过立方运算来求。
深入探究
完成课本第169页的探究题:
(1)对于 ,可以进一步追问学生,除了2以外是否有其他的数,它的立方也等于8呢?对于下面几个问题可以类似设问.
解:设容积的底面直径为xdm,则
· ·2x=50
可得,
问题是什么数的立方会等于31.84呢?学生百思不得其解,教师可在此处设置一个台阶,再设问:要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是多少?
在学生充分讨论的基础上教师给出解决问题的过程:
设这种包装箱的边长为x m,则 =27
“什么数的立方会等于31.84?”,这对学生来说是一个挑战,是一个学生只有“跳一跳”才能解决的问题,所以在此处铺设了一个台阶,再设置了一个学生容易解决的问题,将学生的注意力朝着开立方运算转化为立方运算的思路引导,让学生对立方运算与开立方运算之间的互逆关系有初步认识,为进一步探究新知做好准备.
3、本章前两节的内容“平方根”“立方根”在内容安排上也有很多类似的地方,因此在教学中利用类比方法,让学生通过类比旧知识学习新知识.教学中突出立方根与平方根的对比,分析它们之间的联系与区别,这样新旧知识联系起来,既有利于复习巩固平方根,又有利于立方根的理解和掌握.通过独立思考,小组讨论,合作交流,学生在“自主探索,合作交流”中充分发挥了他们的主观能动性,感受了立方运算与开立方运算之间的互逆关系,并学会了从立方根与立方是互逆运算中寻找解题途径.
让学生进一步体会立方根与平方根的联系与区别.
例题着眼于弄清立方根的概念,因此不仅用立方的方法求
立方根,且在书写上采用了语言叙述和符号表示相互补充的方
式,让学生学会从立方根与立方是互逆运算中寻找解题途径.
学生讨论,自己体会平方根与立方根的区别。
教学中应该给予学生充分思考、讨论的时间,让他们自己探索并总结出两个互为相反数的立方根之间的关系。
“什么数的立方会等于31.84?”这个问题对于学生来说
是难解决的,但该问题设置的目的是激发学生学习的兴趣.
体会开立方与立方互为逆运算.
试一试
(1)学生回忆平方根的概念,并联系上面的问题,请学生归纳得出立方根的概念。
(2)学生联系开平方的概念,给出开立方的概念。
联系平方根的概念,让学生根据上述问题类比地给出立方根的概念,初步体会立方根与平方根的联系与区别。
巩固新知
例1(1)求下列各数的平方根: ;1;0
(2)求下列各数的立方根。
,1,0,-1,-343,-0.729
解:略
例2求下列各式的值
(1) ;(2) ;(3)
(4) ;(5) ;(6)
(7)
请学生思考数的平方根与数的立方根有什么区别与联系呢?(学生小组讨论后,请学生相互补充.)
例3判断题:
(1)64的立方根是 = ()
课题:
教学目标
1、了解立方根的概念,初步学会用根号表示一个数的立方根;
2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;
3、让学生体会一个数的立方根的惟一性;
4、分清一个数的立方根与平方根的区别;
5、使学生理解“两个互为相反数的立方根的关系,即 .
6、渗透特殊一般-特殊的思想方法。
教学难点
立方根与平方根的区别。
知识重点
立方根的概念和求法。
教学过程(师生活动)
设计理念
情境导入
(出示电热水器图片)
问题(1):同学们在家里或者商场里都见过电热水器,像一般家庭常用的是容积50 L的.如果要生产这种容积为50L的圆柱形热水器,使它的高等于底面直径的2倍,这种容器的底面直径应取多少?
(学生小组讨论,并推选代表发言,教师板演.)
这就是求一个数,使它的立方等于27.
因为 =27,
所以x=3.
即这种包装箱的边长应为3 m.
从学生生活实际中常常见到的热水器引入课题,让学生从
实际问题情境中感受立方根的计算在生活中有着广泛的应用.
空间图形都是三维的,有关空间图形的计算常常涉及开立方.
这个实在解决问题的过程中引入了新问题,这对学生来说是一个挑战,从而激发学生学习的兴趣.
小结与作业
课堂小结
1.立方根和开立方的定义.
2.正数、0、负数的立方根的特征.
3.立方根与平方根的异同.
布置作业
课本第172页习题10.2第1、3、5、6题;
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本节课的教学设计是以人教版教材和课程标准为依据,在教学方法上突出体现了创设
情境-提出问题-建立模型-解决问题的思路,在实际教学中采用了学生自主学习的教学
方式.
1、在导入新课时,创设了一个学生生活实际中常常见到的热水器制造问题,让学生从实际问题情境中感受立方根的计算在生活中有着广泛的应用,体会学习立方根的必要性,激发学生的学习兴趣.
2、在例题中做了适当的处理,把课本上的一个习题作为导入新课的引例.这个实际问题中的数量关系的分析对于学生来说是不成问题的,但在解决问题的过程中引入了新问题,
4、在“深入探究”环节中讨论数的立方根的特征,以填空的方式让学生计算正数,0,负数的立方根,寻找它们各自的特点,通过学生讨论交流等活动,归纳得出“正数的立方根是正数,0的立方根是0,负数的立方根是负数”的结论,这样就让学生通过探究活动经历了一个由特殊到一般的认识过程.教学中注意为学生提供一定的探索和合作交流的空间,在探究活动的过程中发展学生的思维能力,有效改变学生的学习方式.
(2) 是- 的立方根()
(3) ()
(4)立方根等于它本身的数是0和1()
拓展新知:
(1)学生独立研究课本第170页的探究题,并不妨请同学再举几个例子,探索从上面的计算结果中可以得到什么结论?
学生自己总结出两个互为相反数的立方根的关系: ,请同学再试试看 可以怎样解?
(2)小组学习:课本第173页的第9题,探索从上面计算结果中可以得到什么结论?
5、在“拓展新知”环节中,让学生探讨了一个数的立方根与它的相反数的立方根的关系,由此可以将求负数的立方根的问题转化为求正数的立方根的问题,让学生体会转化的思想.