6.2立方根

合集下载

人教版七年级数学下册6.2《立方根》第一课时优秀教学案例

人教版七年级数学下册6.2《立方根》第一课时优秀教学案例
3.重点强调:教师强调立方根在实际生活中的应用,让学生体会数学与生活的紧密联系。
(五)作业小结
1.布置作业:布置具有层次性的作业,让学生在实践中巩固知识,提高解决问题的能力。
2.作业要求:强调作业的完成要求,如认真审题、仔细计算、书写规范等。
3.作业反馈:教师对学生的作业进行及时反馈,给予肯定和鼓励,同时指出存在的问题,帮助学生进一步提高。
人教版七年级数学下册6.2《立方根》第一课时优秀教学案例
一、案例背景
本节课为人教版七年级数学下册6.2《立方根》第一课时,主要内容是让学生理解立方根的概念,掌握求立方根的方法,并能够运用立方根解决实际问题。在学习本节课之前,学生已经掌握了有理数的乘方知识,为本节课的学习打下了基础。
在制定教学案例时,我以学生的认知发展水平和生活经验为出发点,设计了丰富多样的教学活动。首先,我通过生活情境引入立方根的概念,让学生感受到数学与生活的紧密联系。接着,我引导学生通过观察、思考、讨论,探索求立方根的方法,培养学生的推理能力和合作精神。在练习环节,我设计了一系列具有层次性的题目,让学生在实践中巩固知识,提高解决问题的能力。
五、案例亮点
1.生活情境导入:通过展示立方体模型和创设问题情境,激发学生的学习兴趣,使学生感受到数学与生活的紧密联系。
2.问题导向:引导学生自主探究立方根的定义和求法,培养学生的推理能力和探究精神,让学生在思考中发现问题、解决问题。
3.小组合作:组织学生进行小组讨论和分享,培养学生的合作能力和团队精神,让学生在交流中互相学习、共同进步。
(一)导入新课
1.实物引入:展示立方体模型,如魔方、立方体积木等,让学生观察并思考这些立方体的特点。
2.问题激发:提问学生“你知道立方根吗?你能举个例子吗?”引导学生思考立方根的概念。

【核心素养目标】数学人教版七年级下册6.2 立方根 教案含反思(表格式)

【核心素养目标】数学人教版七年级下册6.2 立方根 教案含反思(表格式)

6.2立方根主要师生活动一、创设情境导入新知想一想二阶魔方由几个小立方体构成______三阶魔方由几个小立方体构成______四阶魔方由几个小立方体构成______师生活动:学生独立思考,直接作答填空.教师顺势提问:如果一个魔方由27 个小立方体构成,它应该是几阶魔方?二、探究新知知识点一:立方根的概念及性质问题要做一个体积为27 cm3的正方体模型(如图),它的棱长要取多少?你是怎么知道的?师生活动:学生独立思考,利用方程思想进行计算.总结归纳一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零.想一想:如果问题中正方体的体积为5 cm3,那么其边长又该是多少?师生活动:学生思考并猜想可以利用方程思想计算,得到( x )3=5 .教师顺势引发思考:能否找到一个正数( x )来表示其边长?类比于平方根,一个数a的立方根如何表示?立方根的表示一个数a的立方根可以表示为:师生活动:教师提问,例如思考中( x )3=5,x 的值是多少?预设:5的立方根是,所以x=.平方根与立方根的区别和联系师生活动:学生独立思考完成填空.设计意图:培养学生观察图表获取信息的能力,培养数感和自主探究的习惯.设计意图:培养数形结合思想,渗透立方根几何意义;发展迁移思想,为后面学习立方根符号做准备.设计意图:进一步认识立方根,发展符号意识设计意图:梳理所学,巩固学生对平方根立方根的认识和理解,培养自主学习的能力.例1求下列各数的立方根:(1) -27;(2) ;(3) ;(4) 0.216;(5) -5.师生活动:学生独立思考完成计算,选几名学生板书,其他同学判断正误.自主探究填空:你能归纳出立方根的另一性质吗?师生活动:学生独立思考,共同作答完成填空;教师选学生回答问题,其他同学判断是够正确.总结一般地,例2的算术平方根是 .例3计算:.师生活动:学生独立思考并计算,选两名学生板书计算过程,教师巡视,再根据板书和学生的易错点来纠正.易错提醒计算的算术平方根时,注意先计算= 4,再计算4 的算术平方根;在进行混合运算时,不要忘记负号.知识点二:用计算器求立方根设计意图:锻炼计算立方根的能力.设计意图:培养学生的观察和总结能力,提高解题技巧.设计意图:提高学生计算立方根的能力;在计算中纠正易错点,不混淆开立方与开平方的运算方法.364364364三、当堂练习 由于一个数的立方根可能是无限不循环小数,所以我们可以利用计算器求一个数的立方根或它的近似值.例4 用计算器求下列各数的立方根:343, -1.331.师生活动:学生独立思考,教师引导完成操作.依次按键 、.例5 用计算器求 的近似值(精确到 0.001). 师生活动:学生独立完成操作.三、当堂练习 1.算一算 (1) = , = ; (2) 0.125的立方根是 = ; (3) = , = . 2. 比较 3,4, 的大小. 3. 立方根概念的起源与几何中的正方体有关,如果一个正方体的体积为 V ,那么这个正方体的边长为多少? 4.一个长方体的长为 9 cm ,宽为 3 cm ,高为 4 cm ,而另一个正方体的体积是它的二倍,求这个正方体的棱长.设计意图:学会如何使用计算器计算立方根,感受计算器的便捷;观察计算结果,认识到一个数的立方根可能是无限不循环小数.设计意图:学会使用计算器计算立方根并求立方根的近似值.设计意图:考查学生对计算立方根的掌握. 设计意图:考查学生对立方根概念的掌握,发展逆向思维.设计意图:考查学生对立方根几何意义的掌握. 设计意图:考查学生运用立方根几何意义的进行计算的能力. 板书设计6.2 立方根一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零.课后小结教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.333331.64(1)27=_______ ________125(2) 0.125(3)1________ 10________.-=-==算一算: -,;的立方根是________; -,333331.64(1)27=_______ ________125(2) 0.125(3)1________ 10________.-=-==算一算:-,;的立方根是________; -,35032通过探索立方根的特征,培养学生独立思考和小组交流的能力;通过立方根与。

人教版七年级数学教案:6.2立方根

人教版七年级数学教案:6.2立方根
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《立方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算一个立方体体积的情况?”比如,我们想知道一个骰子的体积,就需要用到立方根的知识。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索立方根的奥秘。
人教版七年级数学教案:6.2立方根
一、教学内容
本节课选自人教版七年级数学教材第六章第二节:6.2立方根。教学内容主要包括以下两个方面:
1.立方根的定义:了解立方根的概念,掌握立方根的表示方法,如∛a。
2.立方根的性质与运算:探索立方根的性质,掌握立方根的运算方法,能够解决实际问题中与立方根相关的计算。具体包括:
首先,对于立方根的抽象概念,尽管我通过引入日常生活中的例子来帮助学生理解,但仍有部分学生感到难以把握。在今后的教学中,我需要寻找更多直观、生动的教学资源,比如动画、实物模型等,让学生能够更直观地感受到立方根的实际意义。
其次,在小组讨论环节,我发现有些学生参与度不高,可能是因为他们对立方根的应用场景不够熟悉。为了提高学生的参与度,我计划在下一节课前,先让学生们预习一些与立方根相关的实际应用案例,激发他们的学习兴趣,从而在讨论中更加积极主动。
-立方根的运算应用:将立方根的运算规律应用于实际问题中,学生可能难以灵活运用。
-立方根的估算:在没有计算器的情况下,如何对立方根进行合理的估算。
举例:为了突破概念抽象的难点,教师可以设计一些具体操作活动,如让学生通过折纸、积木等方式构建立方体,直观感受立方根的意义。在理解负数立方根时,可以通过数轴上的表示或实际例子(如负数的立方根在金融领域的应用)来说明。对于运算应用,可以设计一些实际问题的习题,如计算不规则立方体的体积,让学生在解决问题中掌握运算规律。至于估算方法,可以教授学生一些简单的技巧,如通过整数立方数的逼近来进行估算。

人教版七年级数学下“6.2立方根”说课稿(优秀篇)

人教版七年级数学下“6.2立方根”说课稿(优秀篇)
探究:填空,你能发现其中的规律吗?
因为 , ,所以 ;
因为 , ,所以
由两个例子可归纳出:一般地, ,探讨了一个数的立方根与它的相反数的立方根之间的关系,由此可以将求负数的立方根的问题转化为求正数得出立方根的出问题,引导学生体会这种转化的思想。
(四)典例讲解
例1:求下列各式的值:
(1) (2) (3)
分析:此题的本质还是求立方根.(请三明同学在黑板上板演,其他同学在练习本上完成,并充分利用错误资源,及时给于指导和帮助)
(六)回顾交流,课堂小结
1.本节课你学到了哪些知识,获得了哪些数学思想方法?
2.你认为本节课的易错知识点有哪些?
(1)立方根的根指数不能省略;(2)一个数的立方根只有一个,不能跟平方根相混淆;(3)表示一个负数的立方根时不能直接将负号提前。
(选做题)教材52页第6题
设计意图:检测学生对于课堂知识的理解与掌握程度,从而更好地调整课堂教学。
九、教学评价设计
1.你对于本节课的掌握情况是( )
A.非常好 B.比较好 C.一般
2.谈谈你本节课的收获和不足?
3.通过本节课的学习你对老师有哪些建议?
十、板书设计
主板
副板
1.立方根的概念:
2.立方根的表示方法:
3.开立方的概念:
4.探索立方根的特点:
例题讲解和板演
六、教学方法分析
本节课主要采用通过创设问题情境—启发学生独立思考-引导学生自主探究-发挥小组合作交流—鼓励学生归纳、总结的学习方式,启发学生深度思考,以实现学生对于知识的主动建构!整堂课注意留给学生足够探索和交流的空间,关注数学思想方法的引导和渗透!
七、教学准备:ppt
八、教学过程分析
(一)学前温故

人教版数学七年级下册第20课时《6.2立方根(2)》教学设计

人教版数学七年级下册第20课时《6.2立方根(2)》教学设计

人教版数学七年级下册第20课时《6.2立方根(2)》教学设计一. 教材分析《6.2立方根(2)》是人教版数学七年级下册的教学内容,这部分内容是在学生已经掌握了立方根的定义和求法的基础上进行进一步的拓展。

本节课主要让学生进一步了解立方根的概念,掌握求立方根的方法,并能运用立方根解决实际问题。

教材中通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析学生在进入七年级下学期之前,已经学习了一定的数学知识,对于基本的算术运算和几何概念有一定的了解。

但是,由于学生的学习背景和学习能力各不相同,对于立方根的理解和应用可能存在差异。

因此,在教学过程中,需要关注学生的个体差异,针对不同程度的学生进行有针对性的教学。

三. 教学目标1.知识与技能:让学生掌握立方根的概念,学会求立方根的方法,并能运用立方根解决实际问题。

2.过程与方法:通过学生的自主学习、合作交流,培养学生的数学思维能力和问题解决能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极思考、勇于探索的精神。

四. 教学重难点1.重点:立方根的概念和求法,以及运用立方根解决实际问题。

2.难点:立方根在实际问题中的应用,以及与其他数学概念的关联。

五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,让学生在实际情境中理解立方根的意义。

2.自主学习法:鼓励学生自主探究立方根的求法,培养学生的独立思考能力。

3.合作交流法:学生进行小组讨论,分享学习心得,互相学习,共同进步。

4.案例教学法:通过分析实际问题,引导学生运用立方根解决问题,提高学生的应用能力。

六. 教学准备1.教学课件:制作精美的课件,辅助教学,提高学生的学习兴趣。

2.练习题:准备一定数量的练习题,用于巩固所学知识,提高学生的解题能力。

3.教学资源:收集与立方根相关的教学资源,如视频、文章等,丰富教学内容。

七. 教学过程1.导入(5分钟)利用生活中的实例,如冰雪融化、肥料稀释等,引导学生思考立方根的实际意义,激发学生的学习兴趣。

人教版七年级下册数学6.2 立 方 根课件

人教版七年级下册数学6.2 立  方  根课件

3a3
.
解:(1) 3 64 3 64 -4 ;
(2) 3 0.064 3 0.43 0.4 ;
(3) 3 27 3 3 3 3 ; 125 5 5
(4) 3 a 3 a.
提示:求一个负数的立方根,可以先求出这个负 数绝对值的立方根,然后再取它的相反数.
由于一个数的立方根可能是无限不循环小数,所以 我们可以利用计算器求一个数的立方根或它的近似值. 例4 用计算器求下列各数的立方根:343,-1.331.
如∵ (3)2 9 , ∴ ﹢3 是9的算术平方根,
即 9 3
式子读作“9的算术平方根等于3” 或“根号9等于3” 规定:0的算术平方根是0
填空:
求平方
1 1
1
2 2
4
3
9
3
平方 互逆 运算
开平方
求平方根
1
1 1
4
2 2
9
3
3
求一个数a的平方根的运算,叫做开平方.
你能类比平方根的定义给出立方根的定义吗?
立方根的估算 50的立方根记作
3 50 .
问题:3 50 有多大呢?
因为 33 27 , 43 64
所以
3
‗‗‗‗3‗.6‗8
3
50
‗3‗.6‗9‗4‗‗‗‗
因为 3.63 46.656 , 3.73 50.653
所以 ‗‗‗3‗.‗6‗3‗.‗68‗ 3 50 3‗.6‗39‗.7‗‗‗‗‗
你能看出正数,0,负数的立方根各有什么特点?
8的立方根是 2
0.125的立方根是
1 2
-8的立方根是 -2 0的立方根是 0
归纳:
一个数的立方根只有一个; 正数的立方根是正数; 零的立方根是零; 负数的立方根是负数。

人教版七年级数学下册6.2《立方根》说课稿

人教版七年级数学下册6.2《立方根》说课稿

人教版七年级数学下册6.2《立方根》说课稿一. 教材分析《立方根》是人教版七年级数学下册第六章第二节的内容。

本节课的主要内容是让学生理解立方根的概念,掌握求立方根的方法,以及能够运用立方根解决一些实际问题。

教材通过引入立方根的概念,让学生通过观察、思考、操作、交流等活动,体验数学的探索过程,培养学生的数学思维能力和解决问题的能力。

二. 学情分析七年级的学生已经学习了有理数的乘方,对乘方的概念和运算法则有一定的了解。

但是,学生对立方根的概念可能还比较陌生,需要通过实例和操作来帮助理解。

此外,学生可能对求立方根的方法不够熟悉,需要通过练习和指导来提高。

三. 说教学目标1.知识与技能目标:学生能够理解立方根的概念,掌握求立方根的方法,能够运用立方根解决一些实际问题。

2.过程与方法目标:通过观察、思考、操作、交流等活动,学生能够体验数学的探索过程,培养数学思维能力和解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与数学学习,对数学产生兴趣和信心,培养良好的学习习惯和合作意识。

四. 说教学重难点1.教学重点:学生能够理解立方根的概念,掌握求立方根的方法。

2.教学难点:学生能够运用立方根解决一些实际问题,理解并应用立方根的性质。

五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法、合作学习法等,激发学生的学习兴趣,引导学生主动参与数学学习。

2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学,提高教学效果和学生的学习兴趣。

六. 说教学过程1.导入:通过一个实际问题,引入立方根的概念,激发学生的兴趣。

2.探究:学生通过观察、操作、思考等活动,理解立方根的概念,掌握求立方根的方法。

3.练习:学生进行一些练习题,巩固对立方根的理解和运用。

4.应用:学生通过解决一些实际问题,运用立方根的知识,提高解决问题的能力。

5.总结:教师引导学生总结立方根的概念和求法,加深对知识的理解。

七. 说板书设计板书设计要清晰、简洁,能够突出立方根的概念和求法。

人教版七年级下数学6.2 立方根

人教版七年级下数学6.2 立方根

1、显示结果是()A.15B.±15C.﹣15D.25A要读懂题目中给出的意思和计算器的操作,题目中给出的意思为225开平方.解:按照题目中给出的2nd和x的平方,用计算机按下,结果为225开方为15,故选 A.2、下列说法中正确的是()A.512的立方根是8,记作B.负数没有立方根C.一个数的立方根与平方根同号D.若一个数有立方根,那它一定有平方根A根据立方根的有关定义解答即可.解:A、表示立方根的方法正确;B、负数有立方根,故错误;C、负数没有平方根,但有立方根,故错误;D、负数有立方根,但没有平方根,故错误.故选A.3、下列命题中正确的是()①0.027的立方根是0.3;②不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1.A.①③B.②④C.①④D.③④A①根据立方根的定义即可判定;②根据立方根的性质即可判定;③根据立方根的性质即可判定;④利用平方根和立方根的定义即可判定.解:∵①0.027的立方根是0.3,故说法正确;②当a<0时,是负数,故说法错误;③如果a是b的立方根,那么ab≥0(a、b同号),故说法正确;④一个数的平方根与其立方根相同,则这个数是0,故说法错误.所以①③正确.故选A.4、下列语句不正确的是()A.没有意义B.没有意义C.﹣(a2+1)的立方根是D.﹣(a2+1)的立方根是一个负数BA、根据算术平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据立方根的定义即可判定.解:A、∵﹣(a2+1)<0,故选项正确;B、有意义,故选项错误;C、﹣(a2+1)的立方根是,故选项正确;D、﹣(a2+1)的立方根是一个负数,故选项正确.故选B.5、立方根是它本身的数是()A.1B.﹣1C.0或﹣1D.0或±1D根据立方根的概念进行解答,可以设这个数为x,根据立方根是它本身,求出这个数.解:设这个数为x,根据题意x3=x,解得:x=0,﹣1,1.故选D.6、下列四种说法中,共有()个是错误的.(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)的平方根是;(4).A.1B.2C.3D.4C利用平方根和立方根的定义逐题判断后即可得到答案.解:(1)负数的立方根是负数,故负数没有立方根错误;(2)1的立方根是1,1平方根是±1,故1的立方根与平方根都是1错误;(3)=2,2平方根是,故正确;(4),故原题错误.错误的共有3个.故选C.7、的立方根是()A.B.C.D.如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解:∵的立方等于﹣,∴﹣的立方根等于.故选B.8、下列判断中,错误的有()(1)有立方根的数必有平方根(2)有平方根的数必有立方根(3)零的平方根、立方根、算术平方根都是零(4)不论a是什么实数,必有意义.A.1个B.2个C.3个D.4个A利用平方根、立方根及算术平方根的知识进行判断后即可得到答案.解:(1)有立方根的数必有平方根,错误;(2)有平方根的数必有立方根,正确;(3)零的平方根、立方根、算术平方根都是零,正确,(4)不论a是什么实数,必有意义正确,故选A.9、下列运算正确的是()A.B.C.D.C根据立方根的性质解答即可.解:根据可得A、B、D错误,C正确;故选C.10、下列各式中正确的是()A.=±3B.C.=﹣7D.=9BA、C根据算术平方根的定义来解答:若一个正数x的平方等于a,即x2=a,则这个正数x为a的算术平方根;B、根据立方根的定义来解答:如果一个数x的立方等于a,即x的三次方等于a(x3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根,也叫做三次方根;D、的平方是3.解:A、=3,这是求9的算术平方根,算术平方根的值的前面符号必须为“+”号(可省略),故该选项错误;B、,因为负数的立方根是负数,故该选项正确;C、=|﹣7|=7,故该选项错误;D、=3,故该选项错误;故选B.11、在下列各式中正确的是()A.=﹣2B.=±3C.D.D利用立方根,平方根及算术平方根进行运算后即可得到正确的选项.解:A、正确的运算结果为2,故错误;B、正确的运算结果为3,故错误;C、正确的运算结果为﹣3,故错误;D、正确,故选D.12、在实数中,算术平方根与立方根相同的数是()A.0B.0,1C.1D.±1B分别把0,1,﹣1的算术平方根和立方根计算后,找到相同的数即可求解.解:∵=0,=1,=0,=1,=﹣1,﹣1没有平方根∴算术平方根与立方根相同的数是0,1.故选B.13、下列说法中:①﹣a一定是负数;②1的立方根与平方根都是1;③倒数等于它本身的数是±1;④绝对值等于它本身的数是0和1.其中正确的个数是()A.1B.2C.3D.4B利用立方根、绝对值、倒数及平方根的定义进行判断后即可得到正确的选项.解:①﹣a一定是负数,错误;②1的立方根与平方根都是1,错误;③倒数等于它本身的数是±1,正确;④绝对值等于它本身的数是0和1,正确,故选B.下列语句,写成式子后正确的是()A.3是9的算术平方根,即B.﹣3是﹣27的立方根,即=±3C.是2的算术平方根,即=2D.﹣8的立方根是﹣2,即=﹣2D根据算术平方根、立方根的定义求出每个式子的值,再判断即可.解:A、3是9的算术平方根,即,故本选项错误;B、﹣3是﹣27的立方根,即=﹣3,故本选项错误;C、是2的算术平方根,即=,故本选项错误;D、﹣2是﹣8的立方根,即=﹣2,故本选项正确;故选D.15、下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个A根据负数没有平方根,一个正数有两个平方根,0只有一个平方根是0,一个正数的算术平方根只有一个,即可判断①、②;根据一个负数有一个负的立方根,即可判断③.解:∵负数没有平方根,一个正数有两个平方根,0只有一个平方根是0,∴①错误;∵一个正数有两个平方根,它们互为相反数,而一个正数的算术平方根只有一个,∴②错误;∵一个负数有一个负的立方根,∴③错误;即正确的个数是0个,故选A.16、已知|x|=6,y3=﹣8,且x+y<0,则xy=()A.﹣8B.﹣4C.12D.﹣12C先根据绝对值的性质求出x的值,由立方根的定义求出y的值,再根据x+y<0求出符合条件的未知数的值,再进行计算即可.解:∵|x|=6,∴x=6或x=﹣6;∴y=﹣2,∵x+y<0���∴x=﹣6,y=﹣2,∴xy=(﹣6)×(﹣2)=12.故选C.17、下列说法正确的是()A.1的平方根是1B.平方根是本身的数是0和1C.1的立方根是1D.立方根是本身的数是0和1C1的平方根是±1,0的平方根是0,1的立方根是1,0的立方根是0,﹣1的立方根是﹣1,根据以上内容判断即可.解:A、1的平方根是±1,故本选项错误;B、∵1的平方根是±1,0的平方根是0,∴平方根等于它本身的数只有0,故本选项错误;C、1的立方根是1,故本选项正确;D、1的立方根是1,0的立方根是0,﹣1的立方根是﹣1,即立方根等于它本身的数是1,0,﹣1,故本选项错误;故选C.18、一个正方形的面积变为原来的9倍,则它的边长变为原来的几倍?一个正方体的体积缩小到原来的,则它的棱长缩小到原来的几倍?()A. 3,2B. 3,C. 3,D. 81,2C由于一个正方形的边长扩大x倍,面积扩大x2倍;一个立方体的棱长扩大x倍,体积扩大x3倍.利用前面的结论即可解答.解:一个正方形的面积变为原来的9倍,则边长变为原来的3倍;一个立方体的体积变为原来的,则棱长变为原来的.故选C.19、平方等于的数是_____,立方等于的数是_____.±,根据平方根及立方根的定义作答.解:根据平方根的定义可知,平方等于的数是±;根据立方根的定义可知,立方等于的数是.故答案为:±,.20、计算器计算的按键顺序为,其显示结果为_____.在计算器上按就可得结果.解:∵1.3*1.3=1.69,∴√1.69=1.3,故答案为1.321、用计算器求下列各式的值(精确到0.001):(1)_____(2)=_____ (3)_____(4)≈_____.﹣9.711,0.755,235.000,324.000先利用计算器求值,然后按要求取近似值即可.解:(1)﹣9.7108≈﹣9.711(2)≈0.754784≈0.755;(3)=235.000;(4)=324.000.故答案为:﹣9.711,0.755,235.000,324.000.22、用计算器探索:(1)=_____.(2)=_____.(3)=_____,…,由此猜想:=_____.(1)22;(2)333;(3)444 4;(4)7777 777本题要求同学们能熟练应用计算器,会用科学记算器进行计算.解:利用计算器计算得:(1)=22.(2)=333.(3)=4444,…,由此猜想:=7777777.故答案为:(1)22;(2)333;(3)444 4;(4)7777 777.23、利用计算器比较大小:(1)_____,(2)_____.(1)<,(2)>(1)(2)首先用计算器将近似值计算出来,然后就可以比较大小解答了.解:(1)∵≈4.97,≈5.20,∴<;(2)∵≈1.05,(﹣1)÷3≈0.77,∴>.答:(1)<,(2)>.24、运用计算器求下列各式的值,从中你发现什么规律(1)=_____=_____=_____规律:把一个数的小数点向左(右)移动二位,这个数算术平方根的小数点向_____移动_____位.(2)=_____=_____=_____规律:把一个数的小数点向左(右)移动三位,这个数立方根的小数点向_____移动_____位.13,1.3,0.13,左(右),一;13,1.3,0.13,左(右),一.首先利用计算器进行正确的计算,然后根据计算的结果发现小数点的移动规律即可.解:(1)=13;=1.3;=0.13;规律:把一个数的小数点向左(右)移动二位,这个数算术平方根的小数点向左(右)移动一位.(2)=13;=1.3;=0.13;规律:把一个数的小数点向左(右)移动三位,这个数立方根的小数点向左(右)移动一位.故答案为:13,1.3,0.13,左(右),一;13,1.3,0.13,左(右),一.25、下列实数:,,|﹣1|,,0.1010010001…,,中,有m个有理数,n个无理数,则=_____ (用计算器计算,结果保留5位有效数字).1.5874无理数就是无限不循环小数,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.利用这些定义即可解决问题.解:有理数是:,|﹣1|,,0. 共4个,则m=4;n=3,则==1.5874.26、王老师有两个棱长为40cm的正方体纸箱,都装满了书,他现在把这些书都放入一个新制的正方体木箱中,正好装满,那么这个木箱的棱长大约是多少?想想看.(结果精确到0.01cm)50.40cm由于新制的正方体木箱的体积=2个原来的正方体木箱的体积,根据正方体的体积公式可以列出方程求解即可.解:设这个木箱的棱长为xcm.依题意得 x3=2×403,解得.答:这个木箱的棱长大约是50.40cm.27、用计算器求下列各数的算术平方根(保留四个有效数字),并观察这些数的算术平方根有什么规律.(1)78000,780,7.8,0.078,0.00078.(2)0.00065,0.065,6.5,650,65000.解:(1)(2)规律是:被开方数的小数点向左(右)移动两位,则其平方根的小数点就向左(右)移动一位.用计算器求各数的算术平方根,通过被开方数小数点的位置与其算术平方根的小数点的位置观察规律.28、当人造地球卫星的运行速度大于第一宇宙速度而小于第二宇宙速度时,它能环绕地球运行,已知第一宇宙速度的公式是v1=(米/秒),第二宇宙速度的公式是v2=(米/秒),其中g=9.8米/秒,R=6.4×106米.试求第一、第二宇宙速度(结果保留两个有效数字).解:将g=9.8,R=6.4×106代入v1=,v2=即v1==≈7.9×103v2===≈1.1×104故第一宇宙速度是7.9×103米/秒;第二宇宙速度是1.1×104米/秒.将g=9.8,R=6.4×106分别代入速度公式v1=,v2=,再用计算器开平方即可求得结果.29、已知一个正方体的体积是1000立方米,求这个正方体的表面积.解:∵一个正方体的体积是1000立方米,∴其棱长为10分米,∴其表面积=6×102=600平方米.答:正方体的表面积为600平方米.首先根据其体积求得其棱长,然后计算其表面积即可.30、求满足下列条件的x的值(1)36x2=25(2)(x﹣1)3=﹣8.解:(1)36x2=25,两边同时除以36得:x2=,∴x=±;(2)∵(x﹣1)3=﹣8,∴x=1=﹣2,∴x=﹣1.利用平方根及立方根的定义求解即可.31、3﹣5(精确到0.01)解:∵≈2.24,≈3.32;∴3﹣5≈3×2.24﹣5×3.32=﹣9.88.用计算器求出3和5的近似值后,再来计算它们的差.32、判断下列各式是否正确成立.(1)(2)(3)(4)判断完以后,你有什么体会?你能否得到更一��的结论?若能,请写出你的一般结论.解:能.由已知(1)(2)(3)(4)经观察发现,上述的等式均满足这样的规律:=,故推广后可得=.经过对上述式子的计算,可得出式子均正确,故可得出结论为=.33、已知一个正方体的体积是32cm3,另一个正方体的体积是这个正方体体积的2倍,求另一个正方体的表面积.解:设另一个正方体的边长为xcm.依题意得:x3=32×2x3=64,解得x=4,4×4×6=96(cm2),答:另一个正方体的表面积是96cm2.设另一个正方体的边长为xcm,根据正方体的体积公式即可求出x的值,再求出另一个正方体的表面积即可.34、求出下列各式中x的值.(1)(x﹣1)2﹣9=0(2).解:(1)移项得:(x﹣1)2=9开平方得:x﹣1=±3解得:x=4或x=﹣2;(2)移项得:x3=3+开立方得:x=.(1)移项后两边开平方即可求得未知数的值;(2)移项并合并同类项后两边开立方即可求得未知数的值;35、求下列各式中的x(1)2x2=6;(2)(x+1)3=﹣8.解:(1)2x2=6,x2=3,x1=,x2=﹣;(2)(x+1)3=﹣8,x+1=﹣2,x=﹣3.(1)根据已知得出x2=3,两边开方即可;(2)两边开立方即可得出方程x+1=﹣2,求出即可.36、求满足下列各式中x的值:①121x2﹣25=0②(2x﹣1)3=8.解:(1)121x2﹣25=0,∴x2=,∴x=;(2)(2x﹣1)3=8,∴2x﹣1=2,解得x=.(1)先系数化为1,再直接开平方法进行解答;(2)可用直接开立方法进行解答.37、求下列各式中的x(1)(2)(x﹣2)3=.解:(1)由原方程,得2x﹣1=±,∴x=,∴x1=,x2=;(2)由原方程,得(x﹣2)3=,∴x﹣2=,解得,x=.(1)利用直接开平方法解方程;(2)利用直接开立方法解方程.38、若与(b﹣27)2互为相反数,求的立方根.解:∵与(b﹣27)2互为相反数,∴+(b﹣27)2=0,而≥0,(b﹣27)2≥0,∴=0,(b﹣27)2=0,∴a=﹣8,b=27,∴=﹣2﹣3=﹣5.∴的立方根为.由于与(b﹣27)2互为相反数,那么它们的和为0,然后根据非负数的性质即可得到它们每一个等于0,由此即可得到关于a、b的方程,解方程即可求解.39、计算:若5x+19的立方根是4,求2x+18的平方根.解:根据题意得:5x+19=43,即5x=45,则x=9,则2x+18=36,则2x+18的平方根是±6.由于若5x+19的立方根是4,根据立方根的定义即可得到5x+19=43,即可求得x的值,进而可以求2x+18的平方根.40、求x的值:(1)7=2x2+1;(2)27(x+1)3=64.解:(1)原方程可化为:2x2=6,x2=3x=;(2)原方程可化为:,x+1=x=.(1)根据移项、等式的性质,可化成平方的形式,根据开平方,可得答案;(2)根据等式的性质,可化成立方的形式,根据开立方,可得答案.教师出题相关试题库:/teacher/paper/new学生查看相关知识点:/teacher/lesson/prepare寻找同班同学,自己的老师:/teacher/class/my。

人教版七年级数学下册6.2《立方根》教学设计

人教版七年级数学下册6.2《立方根》教学设计

人教版七年级数学下册6.2《立方根》教学设计一. 教材分析人教版七年级数学下册6.2《立方根》是学生在掌握了有理数的乘方、平方根的基础上,进一步研究立方根的概念和性质。

本节内容主要让学生了解立方根的定义,掌握求一个数的立方根的方法,以及会运用立方根解决实际问题。

教材通过引入立方根的概念,引导学生探究立方根的性质,培养学生的逻辑思维能力和空间想象能力。

二. 学情分析学生在学习本节内容前,已经掌握了有理数的乘方、平方根的概念和性质,具备了一定的数学基础。

但部分学生对平方根的概念还不是很清晰,可能在理解立方根时会受到干扰。

因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生建立清晰的概念。

三. 教学目标1.知识与技能:让学生掌握立方根的概念和性质,学会求一个数的立方根,会用立方根解决实际问题。

2.过程与方法:通过观察、探究、总结,培养学生的逻辑思维能力和空间想象能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、积极思考的精神。

四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根的方法。

2.难点:立方根在实际问题中的应用。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生建立概念。

2.互动法:教师与学生相互交流,共同探讨问题,提高学生的参与度。

3.实例法:教师运用实际例子,让学生更好地理解立方根的应用。

六. 教学准备1.课件:制作与立方根相关的课件,包括图片、动画、实例等。

2.练习题:准备一些有关立方根的练习题,用于巩固所学知识。

3.教学工具:黑板、粉笔、直尺等。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引出立方根的概念,如“一个正方体的体积是27立方厘米,求这个正方体的棱长。

”让学生思考并讨论,激发学生的学习兴趣。

2.呈现(10分钟)教师给出立方根的定义,解释立方根的概念,并通过动画、图片等形式展示立方根的性质。

同时,引导学生回顾平方根的知识,对比二者之间的异同。

人教初中数学七下《6.2 立方根》教案1 【经典教学PPT课件】

人教初中数学七下《6.2 立方根》教案1 【经典教学PPT课件】

《立方根》一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求. (四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0. 让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?. 练一练:抢答1.判断下列说法是否正确,并说明理由. (1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0 (6)互为相反数的两个数的立方根也互为相反数. 例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测(检查学生掌握情况)计算:(六)归纳小结: 学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗? 教师概括:相同点: (1)0的平方根、立方根都有一个是0 (2)平方根、立方根都是开方的结果. 不同点: (1)定义不同. (2)个数不同. (3)表示方法不同.(4)被开方数的取值范围不同. (七)布置作业《垂线》一、选择题:(每小题3分,共18分)827-+1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分)如图所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,•求∠DOG的度数.GOFEDCBA四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°四、解:如图3所示.lA五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,∴13∠BOC+∠BOC=180°, ∴ 43∠BOC=•1 80°,lA∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.•(2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.《垂线》一、选择题:(每小题3分,共18分)1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分)如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°,•求∠DOG 的度数.GOFEDCBA四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°四、解:如图3所示.l五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,lA∴13∠BOC+∠BOC=180°,∴43∠BOC=•1 80°,∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.• (2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.。

人教版数学七年级下册教学设计6.2《 立方根》

人教版数学七年级下册教学设计6.2《 立方根》

人教版数学七年级下册教学设计6.2《立方根》一. 教材分析《立方根》是人教版数学七年级下册的教学内容,这部分内容是在学生已经掌握了整数乘法、平方根的基础上进行的。

通过学习立方根,让学生体会数学与现实生活的联系,培养学生的空间想象力,提高学生的数学素养。

本节课的内容包括:立方根的定义、求一个数的立方根、立方根的性质及应用等。

二. 学情分析学生在学习本节课之前,已经掌握了平方根的知识,对乘法运算也有一定的了解。

但立方根的概念和求法对学生来说是一个新的知识点,需要通过实例和练习来理解和掌握。

同时,学生对于空间几何图形中的立方体可能还不够熟悉,需要通过观察和操作来提高空间想象力。

三. 教学目标1.知识与技能:理解立方根的概念,掌握求一个数的立方根的方法,了解立方根的性质及应用。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象力,提高学生的数学素养。

3.情感态度价值观:培养学生对数学的兴趣,体会数学与现实生活的联系,培养学生的团队协作精神。

四. 教学重难点1.重点:立方根的概念,求一个数的立方根的方法。

2.难点:立方根的性质及应用。

五. 教学方法1.情境教学法:通过实物和几何图形,引导学生观察和操作,激发学生的学习兴趣。

2.启发式教学法:通过提问和讨论,引导学生思考和探索,培养学生的空间想象力。

3.合作学习法:分组讨论和交流,培养学生团队协作精神,提高学生的沟通能力。

六. 教学准备1.教具准备:立方体模型、多媒体课件。

2.学具准备:练习本、笔。

七. 教学过程1.导入(5分钟)通过展示一个立方体模型,引导学生观察和思考,提问:“谁能说出立方体的特点?”、“立方体的体积怎么计算?”等问题,激发学生的学习兴趣,引出立方根的概念。

2.呈现(10分钟)讲解立方根的定义,用多媒体展示立方根的图形,让学生直观地理解立方根的概念。

同时,通过例题讲解求一个数的立方根的方法,让学生学会如何求一个数的立方根。

人教版七年级下数学6.2立方根(2用计算器求立方根、用有理数估计一个数立方根的大小)教案

人教版七年级下数学6.2立方根(2用计算器求立方根、用有理数估计一个数立方根的大小)教案

《§6.2立方根(2)》一、教材分析:1、说教材的地位和作用这一节课是人教版(2012年版)义务教育教科书数学七年级下册第六章《实数》§6.2立方根,本节共两课时,这节课的内容为第二课时。

本章内容是在前面学习有理数的基础上,把有理数的范围进行扩大,也可以看成是其后的代数内容的起始章,是学习二次根式、一元二次方程以及解三角形的基础,因此本章内容起着承上启下的作用,在中学数学中占有重要的地位。

通过本章的学习,学生对数的范围的认识就由有理数扩大到实数,而无理数的概念正是由数的平方根和立方根引入的。

在此之前,学生已学习了数的平方根内容和研究方法,这为过渡到本节的学习起着铺垫作用。

通过本节课的学习,学生可以更深入的了解无理数,为后面学习实数奠定基础。

2、说教学目标知识与技能:(1)会正确使用计算器求一个数的立方根。

(2)能用有理数估计一个立方根的大致范围,使学生形成估算的意识,培养估算能力。

过程与方法:经历运用计算器探求数学规律的过程,发展合情推理能力。

情感态度与价值观:培养学生严谨的数学学习态度,科学的探索精神。

4、说教学重点和难点(1)重点:计算器的使用方法和用有理数估计一个立方根的大致范围。

(2)难点:探索立方根的变化规律及应用。

二、学情分析七年级具有学生年龄低、好奇心强、发言积极、爱好表现,有话就说,小组合作初步形成,兼有一定的形象思维和初步的逻辑思维能力,知识经验不够丰富的特点,因此探索的结论还需要同学公认和老师把关。

三、教法分析针对以上学生基础知识薄弱,主动参与学习的积极性高,学习探究能力较差的这种情况及本节课的特点,我采用“类比探究----验证结论-----归纳概括----巩固应用”为主线的教学程序。

通过创设生动有趣的情境,本着结论让学生得,疑难让学生议,思路让学生想,错误让学生析,规律让学生找,小结让学生讲的原则,在方法的设计上,把重点放在了逐步展示知识的形成过程上,激发学生对数学学习的兴趣。

人教版数学七年级下册6.2《立方根》教案1

人教版数学七年级下册6.2《立方根》教案1

人教版数学七年级下册6.2《立方根》教案1一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容。

本节主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。

通过本节的学习,为学生进一步学习实数及其运算打下基础。

二. 学情分析学生在七年级上册已经学习了乘方,对乘方的概念和性质有一定的了解。

但立方根的概念与乘方有所不同,需要学生能够从中找出规律,理解并掌握。

另外,学生可能对求一个数的立方根运算存在困难,因此在教学过程中,需要引导学生掌握运算方法。

三. 教学目标1.理解立方根的概念,掌握立方根的性质。

2.学会求一个数的立方根,能熟练运用立方根解决实际问题。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.立方根的概念和性质。

2.求一个数的立方根的方法。

五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,让学生在实际情境中感受立方根的意义。

2.讲授法:讲解立方根的性质和求法,引导学生理解和掌握。

3.实践操作法:让学生动手计算,巩固所学知识。

4.问题驱动法:设置问题,引导学生探究,培养学生的解决问题的能力。

六. 教学准备1.PPT课件:制作与教学内容相关的PPT课件,以便进行直观教学。

2.练习题:准备一些有关立方根的练习题,用于巩固所学知识。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些生活中的实例,如冰雪融化、爆米花等,引导学生思考:这些现象与数学中的哪个概念有关?从而引出立方根的概念。

2.呈现(15分钟)讲解立方根的定义,让学生理解立方根的概念。

通过PPT课件展示立方根的性质,让学生掌握立方根的性质。

3.操练(10分钟)让学生动手计算一些立方根的例子,巩固所学知识。

教师巡回指导,解答学生疑问。

4.巩固(5分钟)设置一些有关立方根的问题,让学生独立解答。

教师选取部分学生的答案进行讲评,巩固所学知识。

5.拓展(10分钟)引导学生思考:立方根有哪些应用?让学生举例说明,培养学生的应用意识。

【新】人教版七年级数学下册第六章《6.2 立方根(1)》公开课课件.ppt

【新】人教版七年级数学下册第六章《6.2 立方根(1)》公开课课件.ppt
第六章 实 数
6.1 立方根(1)
活动一 创设情境,复旧导新 1. 1想. 想一想一想:
(1) 16的平方根是____4__;
(2)-16的平方根_不__存__在___;
(3)0的平方根是___0_____. 问题:
平方根是如何定义的?平方根有哪些性质?
zX.x.K
2. 做一做
问题: 要制作一种容积为27 m3的正方体形状
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights.
(2) 因为(0.5)3 =0.125,所以0.125的立方是(0.5 );
(3)因为( 0 )3=0,所以0的立方根是( 0 );
(4)因为 ( 2)3=-8,所以-8的立方根是( 2);
(5)因为(
2)3=-
3
-287 ,所以--287
的立方根
是( 2).
3
探究题中正数、0和负数的立方根各有
活动六 布置作业,提升能力 1 ; (2) 3 4 3 ; (3)0.216.
1 000
2.求下列各式的值.
( 1 ) 3-8 ; ( 2 ) -32 7 ; ( 3 ) 33 -1 7 ; ( 4 ) 331 1 21.
2 7
24
3.如果3x+16的立方根是4,求2x+4的算术平方根.
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/102021/1/10January 10, 2021

人教版初中数学七年级下册6.2 立方根

人教版初中数学七年级下册6.2 立方根

6.2 立方根教学目标【知识与技能】1.了解立方根的概念,初步学会用根号表示一个数的立方根.2.了解立方与开立方互为逆运算,会用立方运算或计算器求某数的立方根.3.能用类比平方根的方法学习立方根及开立方运算.【过程与方法】用类比的方法探寻出立方根的运算及表示方法,并能总结出平方根与立方根的异同.【情感态度】发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并能作出正确的处理.教学重难点【教学重点】立方根的概念及求法.【教学难点】立方根与平方根的区别.课前准备无教学过程一、情境导入,初步认识问题填写,并探求交流立方值与平方值的不同.鼓励学生踊跃发言表述各自总结的结论.【教学说明】求立方运算时,当底数互为相反数,其立方值也互为相反数,这与平方运算不同,平方运算的底数为相反数时,平方值相等.故一个正数的平方根有两个值,但一个正数的立方根只有一个值.3a引出立方根定义:若x3=a,则x为a的立方根,记为.根据上述定义,请学生口述下列问题的结果,并推广到一般规律.【教学总结】由教师汇总得出下列结论:1.正数的立方根是正数,负数的立方根是负数,0的立方根是0.2..33a a -=-二、思考探究,获取新知例1 求下列各数的立方根.分析:依据立方根的定义,先写出这四个数分别是由哪个数的立方得到的,从而求出立方根.【教学说明】被开方数是带分数时,先将其化成假分数.例2 求下列各式的值.分析:先要分清符号的实际意义,如表示求-512的立方根,而-表示求51235123512的立方根的相反数.解:(1)-8;(2);(3)-0.2;(4)6.29【教学说明】以上两例中可总结得到:(1)任何数的立方根只有一个,而且被开方数的符号与立方根的符号相同;(2)被开方数是算式,可先算出结果.例3 求下列各式中的x.分析:可根据立方根的定义求得x 的大小.(2)(3)(4)中分别把(x+2),(x-1),(2x+3)看作一个整体.【教学说明】本题实质是解关于x的三次方程,两边同时开立方是解题的基本思路.例4 在做浮力实验时,小华用一根细线将一正方体铁块拴住,完全浸入盛满水的圆柱烧杯中,并用一量筒量得被铁块排开的水的体积为40.5cm3,小华又将铁块从水中提起,量得水杯中的水位下降了0.62cm,请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器求结果,结果精确到0.1cm).分析:铁块排出的40.5cm3的水的体积,是铁块的体积,也是高为0.62cm烧杯的体积.【答案】烧杯内部的底面半径约是4.6cm,铁块的棱长约是3.4cm.【教学说明】引导学生完成上述问题后,指导学生用计算器求立方根,并用实际训练形成应用能力.三、运用新知,深化理解1.计算下列各题2.某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方体钢铁,此长方体的长,宽,高分别为160cm,80cm和40cm,求原来立方体钢铁的边长.3.有一边长为6cm的正方体的容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127cm3才满,求另一正方体容器的棱长.4.若3x+16的立方根是4,求2x+4的平方根.【教学说明】通过上述几道题目的练习,可进一步巩固对本节知识的理解和领悟.四、师生互动,课堂小结按下列问题顺序让学生表达,并补充完善.1.立方和开立方的意义.2.正数、0、负数的立方根的特征.3.立方根与平方根的异同.课后作业1.布置作业:从教材“习题6.2”中选取.2.完成练习册中本课时的练习.教学反思本课时教学要突出体现“创设情境——提出问题——建立模型——解决问题”的思路,提倡学生自主学习,利用平方根的知识类比学习立方根的知识.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、立方根的性质与表示
平方根
立方根
性质
一个正数有 每个数都只有 两个平方根,它 一个立方根。正 们互为相反数; 数的立方根是正 0只有一个平方 数;0的立方根是 根,它是0本身; 0;负数的立方根 是负数。 负数没有平方根。
表示
a的平方根表示 为
a的立方根表示为:
3
a
a
3、开立方
开平方 定 义 认 识
6.2 立方根
问题
现有一只体积为 216 cm3 的正方体纸 盒,它的每一条棱长是多少? 思考
这个实际问题,在数学上提出怎样的 一个计算问题?类比“平方根”的概念, 你可以抽象出一个什么数学概念?
概括
上面所提出的问题,实质上就是要 找一个数 x,这个数x的立方等于 216。 即x3=216。
因为63=216, 所以正方体的棱长应为6 cm. 像平方根那样,6是216的立方根。 即:如果一个数的立方等于a,那么这个 数就叫做a的立方根
0.125
64 3 (4) 3 3 (5) 3 125 8 3 解:(1) 8 2
( 2) ( 3)
3 3
8 8 2 0.125 0.5
3
解:(4)
3 27 3 3 3 3 8 8 2 64 64 4 3 3 125 125 5
( 5)
3
由此可得出: 3
27 27
也就是把根号里的“负号”直接从根号里面提 到了根号“外面” 。
由此得出求一个负数的立方根的一般方法:
3
a a
3
也就是说,求一个负数的立方根,可以先求出 这个负数的绝对值的立方根,然后再取它的相 反数。
例2:求下列各式的值。 3 3 3 (1) 8 ;(2) 8 ;(3)
1、立方根的定义:
平方根
定义
立方根
举例
如果一个数X的 如果一个数X的 平方等于a,即X2=a, 立方等于a,即 那么,这个数X就叫 X3=a,那么,这个数 做a的平方根。 X就叫做a的立方根。 ∵( ± 2)2=4, 3=-8, ∵ ( -2 ) ∴ ± 2是4的平方根。 ∴ -2是-8的立方根。
作业:
(1)1的平方根是____;立方根为____;算术 平方根为__. (2)平方根是它本身的数是____. (3)立方根是其本身的数是____. (4)算术平方根是其本身的数是____. (5) 64 的立方根为 . (6)
3
3
( 8) 2
的平方根为.Fra bibliotek(7) 512 的立方根为
.
( 4) 0;
解:∵
(3) 27
3
8 ( 5) 125
∴ -27的立方根是-3。
即 3
27 3
问题:
正数有立方根吗?如果有,有几个。
负数呢? 零呢? 从上面的例1可知:一个正数有一个正的立 方根;一个负数有一个负的立方根,零的立方根 是零。
从上面的例题可知:
3
27 3
3
27 3
问:
一个自然数的算术平方根是a, 那么与这个自然数相邻的下一 个自然数的平方根是_________; 2 立方根是 a 1________.
3
a 1
2
小结:
1、什么叫一个数的立方根?怎样 用符号表示 数a的立方根?任何数都有 立方根吗?
2、数的立方根与数的平方根有什么 区别?
“平方根”与“立方根”的比 较
求一个数a的 平方根的运算, 叫做开平方。
开立方
求一个数a的立方 根的运算,叫做开 立方。
①它与平方互 ①它与立方 为逆运算; 互为逆运算; ②它是一种运 ②它是一种 算,而不是结果, 运算,而不是结 它的结果是平方 果,它的结果是 根。 立方根。
例1:求下列各数的立方根。
(1)-27; (2)27; (3)-0.216;

a
的立方根用符号 3
a
表示。
读作:“三次根号 方数,3 是根指数。
a
”,其中
a
叫被开
例如:∵
5 125
3
∴ 5 是125 的立方根。 也可以说,125 的立方根是 5 。
3 用式子表示为:
125 5
注意:3
a
的根指数 3 不能省略,要写在根
号的左上角,而且要写得小一些,不能写成 3
a
求一个数的立方根(三次方根)的运算,叫 做开立方,开立方运算的结果就是立方根。 因为开立方与立方互为逆运算。 所以我们可以运用立方运算来求一个数 的立方根。
相关文档
最新文档