运算符号及等号是怎样产生的?

合集下载

等号和小括号的由来

等号和小括号的由来

等号和小括号的由来
在前面,同学们已经知道了几种数学运算符号的由来.这节课,我们学习了带小括号的两步式题的知识以后,可能又会有些勤学好问的小读者要发问了:小括号又是怎么发明的呢?小括号是谁发明的呢?
在没有发明这些符号以前,人们运算都要用很复杂的文字进行说明才行.在1557年的时候,英国人列可尔德认为:两条平行线是最最相像的两件东西了,可以用这两条平行线来表示相等的意思.过了大约100年的时间,德国著名的数学家——莱布尼茨才提出倡议把“=”作为等号,表示“等于”的意思.大约在400多年以前,大数学家魏芝德的数学运算中,又首次出现了()、[]、和{}.
要是没有这些数学家和聪明人的发明创造,可能我们现在还在使用着非常麻烦的方法来表示这些运算符号呢!。

数学运算符号的来历

数学运算符号的来历

运算符号的来历
同学们每天都与+、-、×、÷号打交道,做起题来有他们的帮助也已经习惯,但你们一定还不知道他们来到这个世界上可比数字晚多了.
大约五百年前,德国科学家魏特曼在横线上加上一竖来表示增加的意思,在加号上去掉一竖来表示减少的意思,从此,数学这一学科就多了两个新成员,这就是“+”、“-”的来历.
“×” 是英国的数学家欧德艾在三百多年前提出来的,他认为乘法是一种特殊的加法,于是把“+”斜过来写,也就是我们今天的“×”.
“÷”是瑞士数学家拉哈提出来的,他在两点中间放上一横,表示平均分的意思,同学们,现在我们不仅会使用这些数学运算符号,而且还了解了它们的来历,以后算题的时候就会辨别的更清楚,计算的更仔细了.。

你知道一些数学符号的来历吗?

你知道一些数学符号的来历吗?

你知道一些数学符号的来历吗?
你知道一些数学符号的来历吗?在数学运算中经常使用一些符号,如+,-,×,÷,=,>,<,〔〕等,你知道它们都是谁首先使用,什么时候被人们所公认的吗?
加减号〝+〞,〝-〞,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷
伊克开始。

乘号〝×〞,英国数学家奥屈特于1631年提出用〝×〞表示相乘;另一乘号〝·〞是数学家赫锐奥特首创的。

除号〝÷〞,最初这个符号是作为减号在欧洲大陆流行,奥屈特用〝∶〞表示除或比。

也有人用分数线表示比,后来有人把二者结合起来就变成了〝÷〞。

瑞士的数学家拉哈的著作中正式把〝÷〞作为除号。

等于号〝=〞,最初是1540年由英国牛津大学教授瑞柯德开始使用。

1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。

17世纪微积分创始人莱布尼兹广泛使用了这个符号,从此人们普遍使用。

大于号〝>〞,小于号〝<〞,1631年为英国数学家赫锐奥特首创使用的。

相似号〝∽〞和全等号〝≌〞是数学家莱布尼兹首创使用的。

括号〝〔〕〞,1591年法国数学家韦达开始使用括线,1629年格
洛德开始使用括号。

第一个〝r〞演变而来的,上面的短线是括线,相当于括号。

运算符号由来

运算符号由来

500多年以前,德国有一位数学家叫威德曼。

他在横线上加一竖(+),用来表示增加的意思,在(+)上去掉一竖(-),用来表示减少、去掉的意思。

于是,加号“+”和减号“-”就产生了。

但是它们被大家公认,作为运算符号,是从1514年被荷兰数学家荷伊克正式应用开始。

“=”是1557年英国剑桥大学的列科尔德引入的。

后来德国数学家莱布尼兹倡议把“=”作为等号。

“>”和“<”分别表示大于和小于。

这两个符号是17世纪的哈里奥特首创的。

表示计算方法的符号叫做运算符号。

如四则计算中的+、-、×、÷等。

加号“+”是加法符号,表示相加。

减号“-”是减法符号,表示相减。

“+”与“-”这两个符号是德国数学家威特曼在1489年他的著作《简算与速算》一书中首先使用的。

在1514年被荷兰数学家赫克作为代数运算符号,后又经法国数学家韦达的宣传和提倡,开始普及,直到1630年,才获得大家的公认。

四则运算符号的由来四则运算符号:“+、-、×、÷、=”,发明于至今有好几百年的历史了。

可它的由来是怎样的呢?“+、-”号是十五世纪德国数学家魏德曼发明的。

他在工作中发现用横线加一竖可以表示增加的意思,于是把“+”作为加号。

而从“+”号中拿去“-”竖,就可表示减少的意思,于是把“-”作为减号。

“×”号是十八世纪美国数学家欧德莱发明的。

他觉得乘法也是增加的意思,但又和加法不同,于是他就把加号斜过来写,表示数字增加的另一种运算。

“÷”号是瑞士学者哈纳发明的。

他在算帐中遇到要把一个整数分成几份的问题,就发明了“÷”号。

“=”号发明已有四百多年的历史,是十六世纪英国数学家列科尔德创造的。

他认为用两条线平行又相等的直线来表示相同,是最合适的。

于是他把“=”取名为等号。

远古时期,古希腊人和印度人都是把两个数字写在一起表示加法,把两个数字写得分开一些来表示减法。

中世纪后期,欧洲商业逐渐发达。

加号、减号的来历

加号、减号的来历

加号、减号的来历
我们在学习数学时,常常和+、-、×、÷、等运算符号打交道.这些符号形式简单、对称,表达的意思确切.
在五百年前,有一位德国数学家,叫魏德曼.他在横线上加了一个竖,成为“+”,他用这个符号表示增加的意思;他又在加号上去掉一个竖,成为“-”,表示减少.兄弟两个就诞生了.但是“+”和“-”正式被大家所公认,用来作为加、减运算符号,是从1541年荷兰数学家荷伊克开始的,以后逐渐普及,沿用到现在.
等号“=”的产生比“+”和“-”晚大约一百年,距今四百多年.英国学者利科尔德,觉得用两条平行而相等的直线来表示两个数相等是再合适不过的了.等号“=”由此产生.。

符号来历

符号来历

加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。

乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。

另一乘号“·”是数学家赫锐奥特首创的。

除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比。

也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。

瑞士的数学家拉哈的著作中正式把“÷”作为除号。

等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。

1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。

加减乘除(+、-、×(•)、÷(∶))等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。

别看它们这么简单,直到17世纪中叶才全部形成。

法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。

这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“—”表示不足。

到1514年,荷兰的赫克首次用“+”表示加法,用“—”表示减法。

1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“—”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。

以符号“×”代表乘是英国数学家奥特雷德首创的。

他于1631年出版的《数学之钥》中引入这种记法。

据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。

后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“•”表示乘号,这样,“•”也得到了承认。

除法符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。

除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。

数学符号的来历

数学符号的来历

数学符号的来历
数学运算中经常使用符号,如+,-,×,÷,=,>,<,∽,()

的等,你知道它们都是谁首先使用,何时被人们所公认的吗?
加减号“+”,“-”:1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始.乘号“×”:英国数学家奥屈特于1631年提出用“×”表示相乘.另一乘号“·”是数学家赫锐奥特首创的.
除号“÷”:最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”.瑞士的数学家拉哈的著作中正式把“÷”作为除号.
等号“=”:最初是1540年由英国牛津大学教授瑞柯德开始使用.1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受.十七世纪微积分创始人莱布尼兹广泛使用了这个符号,从此人们普遍使用.
大于号和小于号“>”“<”:1631年为英国数学家赫锐奥特创用.相似号“∽”和全等号“≌”是数学家莱布尼兹创用.
括号“()”:1591年法国数学家韦达开始使用括线,1629年格洛德开始使用括号.
平方根号“:1220年意大利数学家菲波那契使用R作为平方根号.十
七世纪法国数学家笛卡儿在他的《几何学》一书中第一次用“”表示根
号.“root(方根)的第一个字母“r”变来,上面的短线是括线,相当于括号.
巡河车搜集整理2017/3/23
课堂教学引用素材杂记 1。

数学运算符号的由来

数学运算符号的由来

数学运算符号的由来
小朋友们做数学作业时,常常要和“+”、“-”、“×”、“÷”这四个运算符号打交道,可是不知大家有没有考虑过这四个运算符号是由谁发明的,又是什么时候出现的…
最早出现的要数加号和减号了,500多年前,德国数学家魏德曼,在横线上加了一竖,表示增加的意思;反之,在加号上去掉一竖,就表示减少的意思.这两个符号被大家正式公认,则要从荷兰数学家褐伊克1514年正式应用这个符号开始.
乘号和除号出现的就晚一些了.乘号是300多年前英国数学家奥曲特最早提出使用的.而除号是由瑞士数学家拉哈创造的.在200多年以前,他写了一本数学论著里最先提到了除号,“用一根横线把两个圆点分开来,表示分成几份的意思.”。

数学符号的由来故事

数学符号的由来故事

数学符号的由来故事数学符号是数学语言中不可或缺的一部分,它们起着非常重要的作用,帮助我们更简洁、准确地表达和传达数学概念和问题。

这些符号大多数都有着悠久而有趣的由来故事。

首先,让我们从全球通用的加号 "+" 开始。

这个符号的起源可以追溯到16世纪的德国。

据说,德国数学家约翰·T·拉登在一次会议中使用了拉丁字母“t”的顶部加上“帽子”的标记来表示加法。

随着时间的推移,人们简化了这个符号,最终形成了今天我们所熟知的加号。

在表示减法的减号 "-" 的故事中,有一个传说与古罗马的计数方法有关。

古罗马人使用不同的符号来表示数字,而一种标记是“V”代表5。

他们注意到,将“V”翻转并放置在另一边,它看起来很像现代的减号。

因此,这个变形的“V”被用来表示减法。

除了加号和减号,乘法符号“×”也有引人入胜的故事。

这个符号的来源可以追溯到16世纪的英国。

据说,英国数学家威廉·奥茨在写作时,将拉丁字母“x”用来表示乘法。

这是因为“x”在英文中表示未知数或变量。

随着时间的推移,这个符号在数学领域逐渐流行开来,并成为了乘法的标志。

除了这些基础的数学符号外,还有许多其他符号的起源与故事。

例如,指数符号 "^" 最初是由法国数学家韦达提出的,他将它用来表示幂运算。

积分号"∫" 是由德国数学家约翰·伯恩豪特提出的,他将其用于表示积分运算。

这些数学符号的由来故事反映了人类的创造力和智慧。

通过使用这些简洁而具有特殊意义的符号,数学家们能够更好地沟通和交流数学思想。

这些符号的标准化也使得数学成为一门全球通用的语言,使得人们能够共同探索和发展数学的奥秘。

总而言之,数学符号的创建和发展是数学发展历史中的重要组成部分。

这些符号的故事不仅充满趣味,更表明了人类的思维能力和创造力。

通过理解这些符号的背后故事,我们能够更好地理解数学的本质和意义。

运算符号的由来

运算符号的由来

运算符号的由来运算符号具有极强的指示作用,很难想象现代的算术运算中如果没有运算符号,数字和字母会怎么样。

如果我们想了解运算符号诞生的背景,就不得不探讨一下它的由来。

在古希腊,运算符号第一次被记录下来是在公元前100多年,当时著名的哥德罗斯(Gottlob Frege)提出了统一的算术表达符号,他希望社会普遍接受这一称为“Frege算术”的符号,但不幸的是,这种符号当时并没有得到推广使用。

直到19世纪末,德国数学家George Brauer设计了一套基于英语的算术符号,它包括最常用的13个符号:加、减、乘、除、小于(<)、大于(>)、等于(=)、加等于(≥)、减等于(≤)、不等于(≠)、括号、和百分号(%),他以这些符号表达出算术运算过程。

自1890年以来,几乎每个国家都有自己的运算符号标准,例如美国政府在1908年颁布了一项法律,它要求所有算术教材必须使用现代算术符号。

然而,到了20世纪,全球算术符号标准面临着新的挑战。

美国和英国的算术符号因为有很多不同的语言,在d38世纪末被许多国家采用。

到1960年,联合国教育、科学与文化组织(UNESCO)发布了《国际数学符号表》,以统一全球的算术符号,以期解决现有算术符号的国际化问题。

从古代到现代,运算符号一直沿着它绚丽的轨迹,渐渐发展壮大。

如今,它们已经发挥了极大的作用,成为算术运算中离不开的一部分,他们给社会带来了极大的便利,成为了现代数学中不可或缺的一部分。

因此,运算符号的由来从古代到现代,渐渐经历了发展。

它们不仅仅是用于表示数学运算的符号,而且也是现代社会所有学科的重要组成部分。

它们的发展给社会带来了极大的便利,而且还给下一代带来了更多的灵感,使我们可以更加清晰、明确地表达出我们的意思,并在更高的层次上思考科学技术问题。

数学符号与符号的起源

数学符号与符号的起源

数学符号与符号的起源数学作为一门重要的学科,离不开各种数学符号的运用。

数学符号的出现使得数学表达更加简洁、准确和高效。

本文将探讨数学符号及其起源,以及它们对于数学领域的重要性。

一、数学符号的起源数学符号的起源可以追溯到古代。

在古希腊时期,人们用字母表示数,例如用字母“α”表示数字“1”。

随着数学的发展,数学符号逐渐得到了规范化。

在16世纪的文艺复兴时期,数学符号的使用逐渐普及,并且得到了更加明确的定义。

二、常见的数学符号1. 算术运算符号算术运算符号是最基本的数学符号之一。

加号“+”表示加法运算,减号“-”表示减法运算,乘号“×”表示乘法运算,除号“÷”表示除法运算等。

2. 关系运算符号关系运算符号用于表示数之间的大小关系。

例如,大于号“>”表示大于关系,小于号“<”表示小于关系,等于号“=”表示相等关系等。

3. 逻辑运算符号逻辑运算符号用于表示命题之间的逻辑关系。

例如,逻辑与符号“∧”表示逻辑与关系,逻辑或符号“∨”表示逻辑或关系,逻辑非符号“¬”表示逻辑非关系等。

4. 特殊符号在数学领域中,还有一些特殊的符号,如无穷大符号“∞”,无穷小符号“ε”,数学集合符号“∈”等。

这些符号在数学推导和表达中起到了重要的作用。

三、数学符号的重要性数学符号在数学研究和表达中起到了至关重要的作用。

首先,数学符号使得数学表达更加简洁、准确和高效。

相比于使用文字进行表达,使用数学符号可以省去冗长的句子和解释,更加直观地传达数学思想。

其次,数学符号具有普适性和国际性。

不同国家和地区的数学家可以通过相同的符号进行交流和理解,这样就没有了语言上的障碍。

此外,数学符号的严格定义和使用也保证了数学理论的准确性和可靠性。

总结:数学符号的起源可以追溯到古代,经过了漫长的发展和规范化过程。

常见的数学符号包括算术运算符号、关系运算符号、逻辑运算符号和特殊符号等。

数学符号的重要性体现在它们能够使数学表达更加简洁、准确和高效,具有普适性和国际性,保证数学理论的准确性和可靠性。

数学符号的由来

数学符号的由来

数学符号的由来
数学符号是人们在研究数学的过程中发明的。

采用数学符号不仅为了省事、简化,更重要的是,符号是正确地表述概念,说明方法和建立定理必不可少的。

法国数学家韦达是第一个将符号引入数学的人。

韦达的代数著作《分析术新论》是一部最早的符号代数著作。

现在的数学符号体系主要采用的是笛卡儿使用的符号。

那么,你想知道数学符号的由来吗?请看:
运算符号:+、-、×、÷
加、减、乘、除等数学符号都是经过长期发展而形成的,到了17世纪,才得以广泛使用。

“+”号,开始使用的是英文plus的字头p。

在法国,使用了相当于英语“and”(和)的词“et”。

随着欧洲商业的繁荣,写et也嫌慢了,为了加快速度,把两个字母连平着写,因此,et慢慢地变成了“+”。

“-”号也同样,使用英文monus(减)的字头m,也是为了便于速写,逐渐变成了“-”。

“×”号表示相乘,是英国数学家奥特雷德1618年提出来的。

“×”是表示增加的另一种方法,所以的“+”号斜过来。

德国数学家莱布尼茨认为“×”与字母“ⅹ“容易混淆,提倡用“?”表示相乘。

后来,“×”与“?”都表示相乘。

“÷”号表示相除,也是英国数学家奥特雷德提出的,他用“:”表示除或比,也有人用“横线”表示除法,如a/b表示b除a。

后来有人把这两个符号合二为一,就得到“÷”。

把÷正式作为除法的运算符号是瑞士数学家拉恩,一条横线将两个圆点分开,表示分界的意思。

数学符号的起源

数学符号的起源

数学符号的起源
◆您现在正在阅读的数学符号的起源文章内容由收集!本站将为您提供更多的精品教学资源!数学符号的起源数学符号的起源
数学运算中经常使用符号,如+,-,×,÷,=,>,<,∽,(),等,你知道它们都是谁首先使用,何时被人们所公认的吗?
加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514
年荷兰数学家荷伊克开始。

乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。

另一乘号“·”是数学家赫锐奥特首创的。

除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比。

也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。

瑞士的数学家拉哈的著作中正式把“÷”作为除号。

等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。

1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。

十七世纪微积分创始人莱布尼兹广泛使用了这个符号,从此人们普遍使用。

在(小)于号“>”,“<”,1631年为英国数学家赫锐奥特创用。

相似号“∽”和全等号“≌”是数学家莱布尼兹
创用。

括号“()”,1591年法国数学家韦达开始使用括线,1629年格洛德开始使用括号。

平方根号,1220年意大利数学家菲波那契使用R作为平方根号。

十七世纪法国数学家笛卡尔在他的《几何学》一书中第一次用表示根号。

是由拉丁文root(方根)的第一个字母“r”变来,上面的短线是括线,相当于括号。

第七十二章加减乘除符号的来历

第七十二章加减乘除符号的来历

第七十二章加减乘除符号的来历第七十二章:加减乘除符号的来历在我们日常的数学运算中,加减乘除成为了必不可少的基本操作。

然而,你是否思考过这些符号是如何诞生的?本章将为大家揭开加减乘除符号的来历,让我们一起来探索这些符号背后的故事。

一、加法符号的来历加法是最基本的数学运算之一,用于计算两个数的总和。

加法符号“+”最早可追溯到古代巴比伦的数学表达。

在巴比伦时代,人们用垂直于地面的斜杠来表示数字,而每个数字都有其特定的符号。

加法符号就是由两根斜杠交叉而成的“十”字,表示两个数相加的操作。

随着时间的推移,加法符号逐渐演变为现代常见的“+”形状。

这种形状被认为源于拉丁文中“et”(意为“和”的同义词)的缩写形式“⁊”,其形状与“+”非常相似。

在13世纪,这个符号在欧洲开始广泛使用,并成为了表示加法的标准记号。

二、减法符号的来历减法用于计算两个数之间的差值,而减法符号“-”实际上来自于拉丁文中的字母“R”(拉丁文中的“res”意为“差”,“removere”意为“减去”)。

在中世纪的欧洲,人们将“R”标记用于减法操作。

随着时间的推移,“R”逐渐变形为现代的减法符号“-”。

三、乘法符号的来历乘法用于计算两个数的积,而乘法符号“×”最早可追溯到16世纪的瑞士数学家约翰·普希兹利。

普希兹利在他的著作中使用了拉丁字母“x”来表示乘法。

他将字母“x”选作乘法符号的原因是因为它是字母表中少有的垂直和水平线都有的字母,可以表示两个数的交叉相乘。

然而,“×”符号并未在当时立即普及开来。

直到17世纪,法国的数学家雷内·笛卡尔开始使用“×”符号来表示乘法,这样的表示法才逐渐被人们接受并广泛使用起来。

四、除法符号的来历除法用于计算一个数除以另一个数的商,而除法符号“÷”则源自拉丁文中的分数线。

在16世纪末,数学家威廉·奥特雷德创造了分数线的符号、“÷”,用于表示分数的除法形式。

数学文化:加号、减号的来历

数学文化:加号、减号的来历

加号、减号的来历
在五百年前,有一位德国数学家,叫魏德曼,他在横线上加了一个竖,成为“+”,他用这个符号表示增加的意思;他又在加号上去掉一个竖,成为“-”,表示减少,兄弟两个就诞生了。

但是“+”和“-”正式被大家所公认,用来作为加、减运算符号,是从1541年荷兰数学家荷伊克开始的,以后逐渐普及,沿用到现在。

等号“=”的产生比“+”和“-”晚大约一百年,距今四百多年.英国学者利科尔德,觉得用两条平行而相等的直线来表示两个数相等是再合适不过的了.等号“=”由此产生。

选自《新编小学数学发散思维训练》。

2上“+、-、×、÷、=”的由来

2上“+、-、×、÷、=”的由来

“+、-、×、÷、=”的由来
小朋友们,你们对“+、-、×、÷、=”这些运算符号一定不陌生吧,那你们知道这些符号的由来吗?下面我就向你们介绍一下吧!
“+”与“-”诞生在德国,至今已有五百多年的历史了。

在15世纪,德国有个叫魏德美的数学家,他非常勤奋,整天废寝忘食地搞计算。

当时,还没有现成的符号可以使用。

他在工作中,一边计算一边自言自语地说:“在横线上加一竖,表示增加的意思”,“+”就叫‘加号’吧;在加号上减去一竖,表示减少的意思,“-”就叫‘减号’吧!从此以后,“+”和“-”就被他带到了世界上,成为了运算符号。

“×”已经两百多岁了。

18世纪,美国的数学家欧德莱发现,乘法也是增加的意思,但又和加法有所不同,怎么办呢?他就把加号斜过来写,表示增加的另一种运算方法,并给它取名叫“乘号”。

“÷”是18世纪瑞士的数学家哈纳创造的,意思是表示分界,所以用一横线把两个点分开。

“=”是由16世纪英国学者列科尔德发明的。

他在研究数学时,经常碰到两个数相等的情况,又无法标记,就决心创造一个符号。

比较了许多图形和符号,他认为用这两条平行而又相等的线段来表示两个相等的数值最为恰当。

于是,他就用两条平行线段表示两个相等的数,并给它取名叫“等号”。

知道了这些,你们一定很敬佩这些数学家吧!那么,我们就向他们学习,好好钻研数学知识吧!
(配合二上册)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运算符号及等号是怎么产生的
同学们经常会用到“+、-、×、÷、=”这些符号,你知道它们是怎么来的吗?
“+”号和“-”号是15世纪德国数学家魏德美创造的,他在横线上加一竖来表示增加,从加号中去掉一竖来表示减少.“×”号是18世纪美国数学家欧德莱创造的,他认为这个符号是增加的另一种方法,因此把加号斜过来写了.“÷”号是18世纪瑞士人哈纳创造的,它的含义是分解的意思,因此用一条横线把两个圆点分开了.“=”号是16世纪英国人列科尔德发明的,他认为用两条平行又相等直线表示两数相等是最好的办法.。

相关文档
最新文档