数学同步练习题考试题试卷教案八年级数学整式的乘除

合集下载

人教版数学八年级上册《整式的乘除》教学设计1

人教版数学八年级上册《整式的乘除》教学设计1

人教版数学八年级上册《整式的乘除》教学设计1一. 教材分析人教版数学八年级上册《整式的乘除》是初中数学的重要内容,主要让学生掌握整式乘除的运算方法,为后续代数的学习打下基础。

本节课的内容包括整式乘法、整式除法,以及多项式与多项式的运算。

通过本节课的学习,学生能够理解整式乘除的运算规则,并能灵活运用到实际问题中。

二. 学情分析八年级的学生已经掌握了整数、分数和小数的四则运算,对于新的运算规则,他们有一定的接受能力和学习兴趣。

但同时,学生对于抽象的代数运算可能会感到困惑,因此,在教学过程中,需要注重引导学生理解运算规则,并通过丰富的实例来帮助学生理解和掌握。

三. 教学目标1.知识与技能:使学生掌握整式乘除的运算方法,能熟练进行整式的乘除运算。

2.过程与方法:通过小组合作、讨论交流的方式,培养学生的合作能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.重点:整式乘除的运算方法。

2.难点:理解整式乘除的运算规则,并能灵活运用到实际问题中。

五. 教学方法采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究,合作交流,提高学生解决问题的能力。

六. 教学准备1.教学素材:PPT、黑板、粉笔等。

2.教学工具:多媒体设备。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容,例如:“小明有一块长方形的地毯,长为6米,宽为4米,他想将地毯剪成相同大小的小块,每块的尺寸是多少?”让学生思考如何通过整式乘法来解决这个问题。

2.呈现(10分钟)通过PPT展示整式乘法的运算规则,并通过例题来解释和展示运算过程。

例如,展示(a+b)×(c+d)的运算过程,引导学生理解分配律。

3.操练(10分钟)让学生独立完成一些整式乘法的练习题,教师随机抽取学生进行答案的讲解和解析。

同时,引导学生发现整式乘法中的规律和技巧。

4.巩固(10分钟)通过一些具有挑战性的问题,让学生进一步巩固整式乘法。

第二讲整式的乘除(教案)

第二讲整式的乘除(教案)
在小组讨论环节,我尝试了作为一个引导者,而不是一个讲师。我发现这种方法很有效,因为它鼓励学生主动思考,而不是被动接受知识。学生们的讨论成果分享也显示出他们能够将所学的知识应用到不同的情境中。然而,我也注意到,一些学生在讨论中较为沉默,我需要找到方法来鼓励他们也参与到讨论中来。
最后,我感到很高兴的是,学生们对整式乘除的兴趣被激发了出来。我相信,通过持续的努力和适当的引导,他们不仅能够掌握这些基本技能,还能够在数学学习的道路上走得更远。接下来的课程中,我会继续关注学生的反馈,并根据他们的学习情况调整教学策略。
另一个有趣的观察是,学生在小组讨论中表现出了很高的积极性。他们似乎很喜欢通过解决实际问题来应用整式的乘除知识。这让我觉得,将现实生活中的情境融入数学教学中是非常有价值的,可以帮助学生更好地理解数学概念。
我还发现,通过实验操作和成果展示,学生能够更加直观地理解抽象的数学概念。这种实践活动不仅提高了他们的动手能力,还增强了他们对整式乘除运算的理解。因此,我认为在未来的课程中,应该设计更多类似的活动,让学生在实践中学习和探索。
3.重点难点解析:在讲授过程中,我会特别强调单项式乘以单项式、多项式乘以多项式这两个重点。对于难点部分,如分配律的应用和整式除法的步骤,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式乘除相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示整式乘除的基本原理。
五、教学反思
在今天的课堂中,我们探讨了整式的乘除,这是数学中一个相当基础但至关重要的部分。我发现,尽管学生对单项式乘以单项式的概念掌握得相对较好,但在涉及到多项式乘以多项式,特别是整式的除法时,他们遇到了一些挑战。这让我意识到,需要在这些难点上多花一些时间,用更直观的方法来解释和演示。

八年级数学上乘法公式教案教学设计整式乘除(试题+参考答案)导学案课后测试

八年级数学上乘法公式教案教学设计整式乘除(试题+参考答案)导学案课后测试

海陵中学初二数学教学案班级,姓名(设计人:孙振飞)第十五章《整式的乘除与因式分解》整式乘除复习【教学目标】进一步理解幂的四种运算法则,能熟练进行整式乘除运算.【知识点梳理】1.幂的四种运算法则:(1)同底数幂相乘:;(2)幂的乘方:;(3)积的乘方:;(4)同底数幂相除:.2.零指数幂:(4).3.整式乘除运算:单项式乘除:(三部分)多项式除以单项式多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相单项式乘以多项式:多项式除以单项式:多项式乘以多项式:【典例剖析】例1 填空:(1)8x6y4÷=4x2y2;×3abc=6a3b2c2;(5a3b2+10a2b3)÷=a+2b;(6a2b2++)÷=3a+b-1.(2)(7.9×103)(-2×103)2= ;(-2)2005+(-2)2004= ;(-13)99×950= ;例2 填空:(1)若a x=2,a y=3,则a2x+2y= ,a3x-2y= ;(2)若10m=2,10n=3,则23m-2n·53m-2n= ;(3)若2+·3+=36-,则x= ;(4)若22x+3-22x+1=48,则x= .例3 计算:(1) (-p8)·(-p2)3·[(-p3)]2;(2) (-3a2b3)2·(-a3b2)5;(3) (x-1) (x+2)-3[1-(x-1) (x-3)];(4) [(a2)3·(-a4)3]÷(a6)2÷(-a3)2;(5)[5a4(a2-4a)-(-3a6)2÷(a2)3]÷(-2a2)2.例4 先化简再求值:(1) [2x(x2y-xy2)+xy(xy-x2)]÷x2y,其中x=2008,y=2004;(2)(2018江苏南通)先化简,再求值:(4ab3-8a2b2)÷4ab+(2a+b) (2a-b),其中a=2,b=1.(3)(2018四川重庆)化简:(a+b)2+a(a-2b).(4)2018湖北荆州)已知A=2x,B是多项式,在计算B+A时,小马虎同学把B+A看成了B÷A,结果得x2+12x,则B+A.【课堂练习】(一)填空题1.x10=(-x3)2·_________=x12÷x()-2.4(m-n)3÷(n-m)2=___________.3.-x2·(-x)3·(-x)2=__________.4.(31)-2+π0=_________;4101×0.2599=__________.5.(2018浙江杭州)当7x=-时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为.(二)选择题6.下列计算中正确的是()A.a n·a2=a2n B.(a3)2=a5C.x4·x3·x=x7 D.a2n-3÷a3-n=a3n-67.x2m+1可写作()A.(x2)m+1 B.(x m)2+1C.x·x2m D.(x m)m+18.下列运算正确的是()A.(-2ab)·(-3ab)3=-54a4b4B.5x2·(3x3)2=15x12C.(-0.16)·(-10b2)3=-b7D.(2×10n)(21×10n)=102n9.化简(a n b m)n,结果正确的是()A.a2n b mn B.n mn ba2C.mnn ba2D.n mn ba210.如果x2-kx-ab=(x-a)(x+b),则k应为()A.a+b B.a-b C.b-a D.-a-b(三)计算11.(1)(2018江苏淮安)计算:a4·a2= .(2)4a2x2·(-52a4x3y3)÷(-21a5xy2);(3)(20a n-2b n-14a n-1b n+1+8a2n b)÷(-2a n-3b);【课后检测】(一)填空题1.a6·a2÷(-a2)3=________.2.()2=a6b4n-2.3(2018广东清远)计算:2325________.x x⋅=4.(2x2-4x-10xy)÷()=2x-1-2y.5.x2n-x n+________=()2.6.若3m·3n=1,则m+n=_________.7.已知x m·x n·x3=(x2)7,则当n=6时m=_______.8.若x+y=8,x2y2=4,则x2+y2=_________.9.若3x=a,3y=b,则3x-y=_________.10.[3(a+b)2-a-b]÷(a+b)=_________.11.若2×3×9m=2×311,则m=___________.12.代数式4x2+3mx+9是完全平方式则m=___________.(二)选择题13.(2018 江苏苏州)若m·23=26,则m等于()A. 2B. 4C. 6D. 814.下列计算正确的是()A.x2(m+1)÷x m+1=x2 B.(xy)8÷(xy)4=(xy)2C.x10÷(x7÷x2)=x5D.x4n÷x2n·x2n=115.4m·4n的结果是()A.22(m+n)B.16mn C.4mn D.16m+n16.若a为正整数,且x2a=5,则(2x3a)2÷4x4a的值为()A.5B.25C.25D.1017.下列算式中,正确的是()A.(a2b3)5÷(ab2)10=ab5B.(31)-2=231=91C.(0.00001)0=(9999)0D.3.24×10-4=0.000032418.(-a+1)(a+1)(a2+1)等于()A.a4-1 B.a4+1C.a4+2a2+1 D.1-a445海陵中学初二数学教学案 班级 ,姓名 (设计人:孙振飞) 第十五章《整式的乘除与因式分解》19.若(x +m )(x -8)中不含x 的一次项,则m 的值为 ( ) A .8 B .-8 C .0 D .8或-820.已知a +b =10,ab =24,则a 2+b 2的值是( ) A .148 B .76 C .58 D .52 21.计算:(1)(32a 2b )3÷(31ab 2)2×43a 3b 2;(2)x 3·x 6+x 20÷x 10-x n +8÷x n -1;(3)[(2x 2y )2(-2xy )3-xy 2(-4xy 2)2]÷8x 2y 3;(4)[(a -b )(a +b )]2÷(a 2-2ab +b 2)-2ab. 22.(1)一个半径为10米的水池,现在其周围扩建一个宽为x 米的环形小路,其面积为.(2)一个长方形长为2x cm ,宽比长少4cm ,将其长和宽都扩大3cm ,则面积增加了 .(3)(2018浙江衢州)有足够多的长方形和正方形的卡片,如下图.3a 2aa 1如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间.这个长方形的代数意义是 .2)小明想用类似的方法解释多项式乘法22(3)(2)273a b a b a ab b ++=++,那么需用2号卡片 张,3号卡片 张.23(2018湖南衡阳)先化简,再求值.2(1)(2)x x x ++-,其中12x =-.24.解方程[2x 3(2x -3)-x 3]÷(2x 2)=x (2x -1) 25.解方程组⎩⎨⎧+=-+=+-++.3)3)(4(0)2()5)(1(xy y x y x y x26.与不等式(x +1)(x 2-x +1)-x (x -1)2<(2x -1)(x -3).【课外拓展】27.(2018浙江金华)已知2x -1=3,求代数式(x -3)2+2x (3+x ) -7的值. 28.(2018辽宁沈阳)先化简,再求值:(x+1)2-(x +2)(x -2),x 且x 是整数。

精品 2014年八年级数学上册-整式的乘除与因式分解 同步讲义+练习

精品 2014年八年级数学上册-整式的乘除与因式分解 同步讲义+练习

整式的乘除与因式分解第一课 积的乘方 幂的乘方知识点:1.同底数幂的乘法: 公式:2.幂的乘方:公式:3.积的乘方:公式:同底数幂基础练习:(1)()())(222222222243=⨯⨯⨯⨯⨯⨯=⨯ (2)35 ⨯45= )(5=(3)7)3(-⨯6)3(-= ())(3-= (4))(⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛1011011013(5)3a ⨯4a = =()a 幂的乘方基础练习:(1)23)2(= = =)(2; (2)54)(x = = =)(x;(3)3100)3(= = =)(3 ;(4)23])2[(-= = =)()2(-=)(2;积的乘方基础练习:(1)3)2(x = = × = (2)4)3-(x = = × = (3)5)(ab = = × =例1.计算:(1)310⨯410= ;(2)53a a a ⋅⋅= ;(3);(4)x x x x ⋅+⋅22=(5)11010+⋅m n = ; (6);97)(m m m ⋅-⋅= ;(7)()3922-⨯= ; (8)y y y y ⋅-⋅⋅-425)(=(9)103=)(233⋅=)(533⋅=)(733⋅例2.把下列各式化成()ny x +或()ny x -的形式.(1) ()()43y x y x ++ = ; (2)()()()x y y x y x ---23= ;(3)()()12+++m my x y x = ; (4)342)()()(y x x y y x --- = ;(5)23)()(y x y x +-- = ;例3.计算:(1)32)2(= (2)34)3(= (3)65)(x = (4)3)(n x = (5)8x =)(2)(x =)(xx ⋅2=)(xx ⋅3 (6)12x =)(2)(x =)(xx ⋅2=)(xx ⋅7=)(3)(x例4.计算:(1)()332⨯; (2)()253⨯; (3)()22ab ; (4)()432a ;(5)10001001)21()2(-⨯- (6)()23351021104⎪⎭⎫ ⎝⎛⨯-⨯⨯ (7)20019911323235.0⎪⎭⎫ ⎝⎛⨯-⋅⎪⎭⎫ ⎝⎛⨯例5.已知:2,3==n m x x ,求n m x 23+。

华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷及答案

华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷及答案

华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷及答案(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 计算(12x4y2+3x3y)÷3x3y的结果是()A. 4xy+1B. 4xyC. 4x2y+3D. 4x3y+3x3y2. 在下列各式中的括号内填入a3后成立的是()A. a12=()2B. a12=()3C. a12=()4D. a12=()63. 把多项式(x+2)(x-2)+(x-2)提取公因式(x-2)后,余下的部分是()A. x+1B. x+3C. 2xD. x+24. 下列多项式中,不能进行因式分解的是()A. x2-2x+1B. x2-9C. x2+1D. 6x2+3x5. 若计算(x+my)(x+ny)时能使用平方差公式,则m,n应满足()A. m,n同号B. m,n异号C. m+n=0D. mn=16. 下列因式分解正确的是()A.2a2-4a+2=2(a-1)2B.a2+ab+a=a(a+b)C.4a2-b2=(4a+b)(4a-b)D.a3b-ab3=ab(a-b)27. 今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-7xy(2y-x-3)=-14xy2+7x2y□,□的地方被钢笔水弄污了,你认为□处应是()A. +21xyB. -21xyC. -3D. -10xy8. 如图1-①,将一张长方形纸板四个角各切去一个同样的正方形,制成图1-①的无盖纸盒,若该纸盒的容积为4a2b,则图①中纸盒底部长方形的周长为()A. 4abB. 8abC. 4a+bD. 8a+2b① ①图19. 已知a=314,b=96,c=275,则a,b,c的大小关系为()A. c>a>bB. a>c>bC. c>b>aD. b>c>a10. 课本第37页“阅读材料”中介绍了贾宪三角,贾宪三角可以看作是对两数和平方公式的推广,也告诉我们二项式乘方展开式的系数规律:…… …………根据上述规律,(a+b)7展开式的系数和是()A. 32B. 64C. 88D. 128二、填空题(本大题共6小题,每小题3分,共18分)11. 多项式x2-9与x2-6x+9的公因式是.12. 火星的体积约为1.35×1020立方米,地球的体积约为1.08×1021立方米,地球体积约是火星体积的__________倍.13. 一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:___________.14. 若2a=5,8b=11,则2a+3b的值为____________.15. 一个正方形的边长增加3 cm,它的面积增加了45 cm2,则原来这个正方形的面积为________cm2.16. 已知:31=3,32=9,33=27,34=81,35=243,36=729,…,设A=2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1,则A的个位数字是______________.三、解答题(本大题共6小题,共52分)17. (每小题4,共8分)因式分解:(1)a2(m-2)-b2(m-2);(2)3m3-6m2n+3mn2;18. (6分)先化简,再求值:(2x+y)2-(2x+y)(2x-y)-2y(x+y),其中x=12,y=2.19.(8分)如图2,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪成两个直角梯形后,再拼成一个等腰梯形.图2(1)通过计算左、右两图的阴影部分面积,可以得到乘法公式:______________;(2)利用上述乘法公式计算:1002-98×102;20. (9分)如图3,小明用若干个长为a,宽为b的小长方形拼出图形,把这些拼图置于图①,②所示的正方形和大长方形内,请解答下列问题.(1)分别求出图①,图②中空白部分的面积S1,S2;(用含a,b的代数式表示)(2)若S1=11,S2=32,求ab的值.①②图321.(9分)发现:任意两个连续偶数的平方和是4的奇数倍.验证:(1)计算22+42的结果是4的倍;(2)设两个连续偶数较小的一个为2n(n为整数),请说明“发现”中的结论正确;拓展:(3)任意三个连续偶数的平方和是4的倍数吗?是(填“是”或“不是”)22. (12分)如图4,阴影部分是一个边长为a的大正方形剪去一个边长为b的小正方形和两个宽为b的长方形之后所剩余的部分.(1)①图1中剪去的长方形的长为_____________ ,面积为_____________.①用两种方式表示阴影部分的面积为__________________或________________,由此可以验证的公式为____________________.图4 图5(2)请设计一个新的图形验证公式:(a+b)2=a2+2ab+b2.(3)如图5,S1,S2分别表示边长为a,b的正方形的面积,且A,B,C三点在一条直线上,若S1+S2=40,AB=8,求图中阴影部分的面积.附加题(20分,不计入总分)形如a2±2ab+b2的式子叫做完全平方式.有些多项式虽然不是完全平方式,但可以通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.配方法在因式分解、代数最值等问题中都有着广泛的应用.(1)用配方法因式分解:a2+6a+8.解:原式=a2+6a+9-1=(a+3)2-1=(a+3-1)(a+3+1)=(a+2)(a+4).(2)用配方法求代数式a2+6a+8的最小值.解:原式=a2+6a+9-1=(a+3)2-1.因为(a+3)2≥0,所以(a+3)2-1≥-1.所以a2+6a+8的最小值为-1.解决问题:(1)因式分解:a2-12a+32= ;(2)用配方法求代数式4x2+4x+5的最小值;拓展应用:(3)若实数a,b满足a2-5a-b+7=0,则a+b的最小值为.参考答案一、1. A 2. C 3. B 4. C 5. C 6. C 7. A 8. D 9. A 10. D二、11. x-3 12. 8 13. x2-1(答案不唯一)14. 55 15. 36 16. 110. D 解析:当n=0时,展开式的系数和为1=20;当n=1时,展开式的系数和为1+1=2=21;当n=2时,展开式的系数和为1+2+1=4=22;当n=3时,展开式的系数和为1+3+3+1=8=23;当n=4时,展开式的系数和为1+4+6+4+1=16=24;当n=5时,展开式的系数和为1+5+10+10+5+1=32=25;……当n=8时,展开式的系数和为28=256.16. 1 解析:A=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(34-1)(34+1)(38+1)(316+1)(332+1)+1=(38-1)(38+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364.观察已知等式,个位数字以3,9,7,1循环,且64÷4=16,能整除,所以A的个位数字是1.三、17. 解:(1)原式=(m-2)(a2-b2)=(m-2)(a+b)(a-b);(2)原式=3m(m2-2mn+n2)=3m(m-n)2.18. 解:(2x+y)2-(2x+y)(2x-y)-2y(x+y)=4x2+4xy+y2-4x2+y2-2xy-2y2=2xy.当x=12,y=2时,原式=2×12×2=2.19. 解:(1)(a+b)(a-b)=a2-b2.(2)1002-98×102=1002-(100-2)(100+2)=1002-(1002-22)=1002-1002+22=4.20. 解:(1)S1=(a+b)2-3ab=a2+b2-ab.S2=(2a+b)(a+2b)-5ab=2a2+2b2.(2)因为S1=a2+b2−ab=11,S2=2a2+2b2=32,所以a2+b2=16.所以ab=5.21. 解:(1)5(2)因为两个连续偶数较小的一个为2n(n为整数),则较大的偶数为2n+2.所以(2n)2+(2n+2)2=4n2+4n2+8n+4=8n2+8n+4=4(2n2+2n+1).因为n为整数,所以2n2+2n+1为奇数.所以任意两个连续偶数的平方和是4的奇数倍.(3)是解析:设三个连续偶数较小的一个为2n(n为整数),则中间的偶数为2n+2,最大的偶数为2n+4.所以(2n)2+(2n+2)2+(2n+4)2=4n2+4n2+8n+4+4n2+16n+16=12n2+24n+20=4(3n2+6n+5).所以任意三个连续偶数的平方和是4的倍数.22. 解:(1)①a-b ab-b2①(a-b)2a2-2ab+b2(a-b)2=a2-2ab+b2(2)如图所示:(3)因为S1+S2=40,AB=8,所以a2+b2=40,a+b=8.因为(a+b)2=a2+2ab+b2,所以82=40+2ab.所以ab=12.所以图中阴影部分的面积=2×12ab=ab=12.附加题解:(1)(a-4)(a-8)解析:a2-12a+32=a2-12a+36-4=(a-6)2-4=(a-6+2)(a-6-2)=(a-4)(a-8).(2)4x2+4x+5=4x2+4x+1+4=(2x+1)2+4.因为(2x+1)2≥0,所以(2x+1)2+4≥4.所以4x2+4x+5的最小值为4.(3)3 解析:因为a2-5a-b+7=0,所以a2-4a-a-b+7=0.所以a+b=a2-4a+4+3=(a-2)2+3. 因为(a-2)2≥0,所以(a-2)2+3≥3.所以a+b的最小值为3.。

2022-2023学年华东师大版八年级数学上册《第12章整式的乘除》同步练习题(附答案)

2022-2023学年华东师大版八年级数学上册《第12章整式的乘除》同步练习题(附答案)

2022-2023学年华东师大版八年级数学上册《第12章整式的乘除》同步练习题(附答案)一.选择题1.利用乘法公式计算正确的是()A.(4x﹣3)2=8x2+12x﹣9B.(2m+5)(2m﹣5)=4m2﹣5C.(a+b)(a+b)=a2+b2D.(4x+1)2=16x2+8x+12.下列多项式能直接用完全平方公式进行因式分解的是()A.4x2﹣4x+1B.x2+2x﹣1C.x2+xy+2y2D.9+x2﹣4x3.已知关于x的二次三项式2x2+bx+a分解因式的结果是(x+1)(2x﹣3),则代数式a b的值为()A.﹣3B.﹣1C.﹣D.4.已知a,b满足(3﹣9b)(a+b)+9ab=4a﹣a2,且a≠3b,则关于a与b的数量关系,下列说法中正确的是()①a2﹣a=9b2﹣3b;②(a﹣3b)2=a﹣3b;③a﹣3b=1;④a+3b=1.A.①②B.②③C.①④D.③④5.用4个长为a,宽为b的长方形拼成如图所示的大正方形,则用这个图形可以验证的恒等式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2﹣(a﹣b)2=4ab6.下列各式能用完全平方公式进行分解因式的是()A.x2+1B.x2+2x﹣1C.x2+3x+9D.7.下列运算正确的是()A.(a+b)2=a2+b2B.(﹣)﹣2=C.4a6+2a2=2a3D.(﹣3x3)2=9x68.计算(1﹣3x)(3x+1)的结果为()A.1﹣9x2B.9x2﹣1C.﹣1+6x﹣9x2D.1﹣6x+9x29.下列运算正确的是()A.2a2b•3a3b2=6a6b2B.(a2)3=a5C.a3b3=(ab)6D.(a+2b)(a﹣2b)=a2﹣4b210.下列运算正确的是()A.a2•a3=a6B.(2a)3=2a3C.(a2)3=a6D.(a+1)2=a2+2a二.填空题11.若xy=﹣3,x+y=5,则2x2y+2xy2=.12.计算:2021×512﹣2021×492的结果是.13.杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨超所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律,观察下列各式及其展开式:请你猜想(a+b)9展开式的第三项的系数是.14.若多项式4x2+kx+25是完全平方式,则k的值是.15.已知(m﹣n)2=16,(m+n)2=24,m2+n2=.16.若a﹣b=5,a2+b2=13,则ab=.三.解答题17.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和等数”.例如:4563,x=4+5=9,y=6+3=9,因为x =y,所以4563是“和等数”.(1)请判断3975、5648是否是“和等数”;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的所有满足条件的“和等数”.18.发现与探索(1)根据小明的解答将下式因式分解:a2﹣12a+20.小明的解答:a2﹣6a+5=a2﹣6a+9﹣9+5=(a﹣3)2﹣4=(a﹣5)(a﹣1).(2)根据小丽的思考解决下列问题:小丽的思考:代数式(a﹣3)2+4无论a取何值,(a﹣3)2≥0,则(a﹣3)2+4≥4,所以(a﹣3)2+4有最小值为4.请仿照小丽的思考解释代数式﹣(a+1)2+8的最大值为8.19.如图1所示的正方形,我们可以利用两种不同的方法计算它的面积,从而得到完全平方公式:(a+b)2=a2+2ab+b2.请你结合以上知识,解答下列问题:(1)写出图2所示的长方形所表示的数学等式.(2)根据图3得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=38,求代数式a2+b2+c2的值.(3)小华同学用图4中x张边长为a的正方形纸片,y张边长为b的正方形纸片,z张边长分别为a,b的长方形纸片拼出一个面积为(2a+3b)(6a+5b)的长方形,求代数式x+y+z的值.20.利用因式分解计算:(1)9002﹣894×906;(2)2.68×15.7﹣31.4+15.7×1.32.21.数学课上,在计算(x+a)(x+b)时,琪琪把b看成6,得到的结果是x2+8x+12,莹莹把a看成7,得到的结果是x2+12x+35.根据以上提供的信息:(1)请直接写出a、b的值.(2)请你写出原算式并计算正确的结果.22.材料1:对于一个四位自然数M,如果M满足各数位上的数字均不为0,它的百位上的数字比千位上的数字大1,个位上的数字比十位上的数字大1,则称M为“满天星数”.对于一个“满天星数”M,同时将M的个位数字交换到十位、十位数字交换到百位、百位数字交换到个位,得到一个新的四位数N,规定:F(M)=.例如:M=2378,因为3﹣2=1,8﹣7=1,所以2378是“满天星数”;将M的个位数字8交换到十位,将十位数字7交换到百位,将百位数字3交换到个位,得到N=2783,F (2378)==﹣45.材料2:对于任意四位自然数=1000a+100b+10c+d(a、b、c、d是整数且1≤a≤9,0≤b,c,d≤9),规定:G()=c•d﹣a•b.根据以上材料,解决下列问题:(1)请判断2467、3489是不是“满天星数”,请说明理由;如果是,请求出对应的F(M)的值;(2)已知P、Q是“满天星数”,其中P的千位数字为m(m是整数且1≤m≤7),个位数字为7;Q的百位数字为5,十位数字为s(s是整数且2≤s≤8).若G(P)+G(Q)能被11整除且s>m,求F(P)的值.23.我们知道,图形是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.比如:用图1所示的正方形与长方形纸片,可以拼成一个图2所示的正方形.请你解决下列问题:(1)利用不同的代数式表示:图2中阴影部分的面积S,写出你从中获得的等式,并加以证明;(2)已知(2022﹣m)(2019﹣m)=3505,请用(1)中的结论,求(2022﹣m)2+(2019﹣m)2的值.24.阅读材料:利用公式法,可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c(a≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如x2+4x﹣5=x2+4x+()2﹣()2﹣5=(x+2)2﹣9=(x+2+3)(x+2﹣3)=(x+5)(x﹣1).根据以上材料,解答下列问题.(1)分解因式:x2+2x﹣8;(2)求多项式x2+4x﹣3的最小值;(3)已知a,b,c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC的周长.25.如果一个自然数M能分解成A×B,其中A和B都是两位数,且A与B的十位数字之和为10,个位数字之和为9,则称M为“十全九美数”,把M分解成A×B的过程称为“全美分解”,例如:∵2838=43×66,4+6=10,3+6=9,∴2838是“十全九美数“;∵391=23×17,2+1≠10,∴391不是“十全九美数”.(1)判断2100和168是否是“十全九美数”?并说明理由;(2)若自然数M是“十全九美数“,“全美分解”为A×B,将A的十位数字与个位数字的差,与B的十位数字与个位数字的和求和记为S(M);将A的十位数字与个位数字的和,与B的十位数字与个位数字的差求差记为T(M).当能被5整除时,求出所有满足条件的自然数M.参考答案一.选择题1.解:A.(4x﹣3)2=16x2﹣24x+9,故本选项不合题意;B.(2m+5)(2m﹣5)=4m2﹣25,故本选项不合题意;C.(a+b)(a+b)=a2+2ab+b2,故本选项不合题意;D.(4x+1)2=16x2+8x+1,故本选项符合题意;故选:D.2.解:A、4x2﹣4x+1=(2x﹣1)2,故A符合题意;B、x2+2x+1=(x+1)2,故B不符合题意;C、x2+xy+y2=(x+y)2,故C不符合题意;D、9+x2﹣6x=(x﹣3)2,故D不符合题意;故选:A.3.解:由题意得:2x2+bx+a=(x+1)(2x﹣3),2x2+bx+a=2x2﹣3x+2x﹣3,2x2+bx+a=2x2﹣x﹣3,∴b=﹣1,a=﹣3,∴a b=(﹣3)﹣1=﹣,故选:C.4.解:∵(3﹣9b)(a+b)+9ab=4a﹣a2,∴3a+3b﹣9ab﹣9b2+9ab=4a﹣a2a2﹣a=9b2﹣3ba2﹣9b2=a﹣3b(a+3b)(a﹣3b)=a﹣3b,∵a≠3b,∴a﹣3b≠0,∴a+3b=1.故选:C.5.解:∵此题阴影部分面积可表示为:(a+b)2﹣(a﹣b)2和4ab,∴可得等式(a+b)2﹣(a﹣b)2=4ab,故选:D.6.解:A.x2+1,不能用完全平方公式进行分解因式,故A不符合题意;B.x2+2x﹣1,不能用完全平方公式进行分解因式,故B不符合题意;C.x2+3x+9,不能用完全平方公式进行分解因式,故C不符合题意;D.x2﹣x+=(x﹣)2,故D符合题意;故选:D.7.解:A、原式=a2+2ab+b2,∴不符合题意;B、原式=4,∴不符合题意;C、原式=4a6+2a2,∴不符合题意;D、原式=9x6,∴符合题意;故选:D.8.解:原式=1﹣(3x)2=1﹣9x2;故选:A.9.解:A、原始=6a5b3,∴不符合题意;B、原始=a6,∴不符合题意;C、原始=(ab)3,∴不符合题意;D、原始=a2﹣4b2,∴符合题意;故选:D.10.解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(2a)3=8a3,原计算错误,故此选项不符合题意;C、(a2)3=a6,原计算正确,故此选项符合题意;D、(a+1)2=a2+2a+1,原计算错误,故此选项不符合题意;故选:C.二.填空题11.解:2x2y+2xy2=2xy(x+y).∵xy=﹣3,x+y=5.∴原式=2×(﹣3)×5,=﹣30.12.解:2021×512﹣2021×492=2021×(512﹣492)=2021×(51+49)×(51﹣49)=2021×100×2=404200,故答案为:404200.13.解:依据规律可得到:(a+n)9的展开式的系数是杨辉三角第10行的数,第3行第三个数为1,第4行第三个数为3=1+2,第5行第三个数为6=1+2+3,…第10行第三个数为:1+2+3+…+8==36.故答案为:36.14.解:∵4x2+kx+25是一个完全平方式,∴4x2+kx+25=(2x)2+kx+52=(2x±5)2,∵(2x±5)2=4x2±20x+25,∴kx=±20x,解得k=±20.故答案为:±20.15.解:∵(m+n)2=24,(m﹣n)2=16,∴m2+2mn+n2=24①,m2﹣2mn+n2=16②,①+②得:2(m2+n2)=40,∴m2+n2=20.故答案为:20.16.解:将a﹣b=5两边平方得:(a﹣b)2=a2+b2﹣2ab=25,把a2+b2=13代入得:13﹣2ab=25,解得:ab=﹣6.故答案为:﹣6.三.解答题17.解:(1)3975是“和等数”;5648不是“和等数”;理由如下:3975,x=3+9=12;y=7+5=12,∵x=y,∴3975是“和等数”;∴5648,x=5+6=11;y=4+8=12,∵x≠y,∴5648不是“和等数”.(2)设这个“和等数”千位、百位、十位、个位上数字分别为a、b、c、d,根据题意得:d=2a,a+b=c+d,b+c=12,∴2c+a=12,即a=2,4,6,8,d=4,8,12(舍去),16(舍去),①当a=2,d=4时,2(c+1)=12,可知c+1=6且a+b=c+d,∴c=5,b=7,②当a=4,d=8时,2(c+2)=12,可知c+2=6且a+b=c+d,∴c=4,b=8,综上所述,这个数为2754和4848.18.解:(1)a2﹣12a+20=a2﹣12a+36﹣36+20=(a﹣6)2﹣42=(a﹣10)(a﹣2).(2)无论a取何值时,﹣(a+1)2≤0,则﹣(a+1)2+8≤8,所以﹣(a+1)2+8的最大值为8.19.(1)拼成的大矩形面积之和=(a+b)(a+2b),各个小图形面积之和=a2+3ab+2b2,∴图2所表示的数学等式是(a+b)(a+2b)=a2+3ab+2b2.故答案为:(a+b)(a+2b)=a2+3ab+2b2.(2)图(3)中大正方形的面积=(a+b+c)2,各个小图形面积之和=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.∵a+b+c=10,ab+ac+bc=38.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=102,即a2+b2+c2+2(ab+ac+bc)=100,∴a2+b2+c2=100﹣2×38=24.(3)大长方形的面积为(2a+3b)(6a+5b)=12a2+10ab+18ab+15b2=12a2+28ab+15b2,小图形的面积分别为a2,b2,ab,∴x=12,y=15,z=28.∴x+y+z=12+15+28=55.20.(1)9002﹣894×906=9002﹣(900﹣6)(900+6)=9002﹣(9002﹣62)=9002﹣9002+62=36.(2)2.68×15.7﹣31.4+15.7×1.32=15.7×(2.68+1.32)﹣31.4=15.7×4﹣31.4=31.4×2﹣31.4=31.4.21.解:(1)a=2,b=5;(2)(x+a)(x+b)=(x+2)(x+5)=x2+5x+2x+10=x2+7x+10.22.解:(1)2467不是“满天星数”,3489是“满天星数”,理由如下:∵2467的百位数字为4,千位数字为2,∴4﹣2=2≠1,∴2467不是“满天星数”.∵3489的千位数字为3,百位数字为4,十位数字为8,个位数字为9,∴4﹣3=1,9﹣8=1,∴M=3489是“满天星数”,∴N=3894,∴F(3489)==﹣45.(2)由题意可得:P=,Q=,则P=1000m+100(m+1)+60+7=1100m+167,Q=4000+500+10s+s+1=4501+11s.∴G(P)=6×7﹣m(m+1)=42﹣m2﹣m,G(Q)=s(s+1)﹣20=s2+s﹣20,∴G(P)+G(Q)=42﹣m2﹣m+s2+s﹣20=s2+s﹣m2﹣m+22.∵G(P)+G(Q)能被11整除且s>m,∴只要s2+s﹣m2﹣m=(s+m)(s﹣m)+s﹣m=(s﹣m)(s+m+1)能被11整除.∵2≤s≤8,1≤m≤7,s、m均为整数,s>m,∴4≤s+m+1≤16,∴s+m+1=11即s+m=10.∴.∴P=2367或3467或4567.∴F(2367)=,F(3467)==﹣23,F(4567)==﹣12.23.解:(1)图②中,S阴影=a2+b2,还可以表示为:S阴影=(a+b)2﹣2ab.∴a2+b2=(a+b)2﹣2ab.(2)设a=2022﹣m,b=2019﹣m,则ab=3505,a﹣b=3.∴(2022﹣m)2+(2019﹣m)2=a2+b2=(a﹣b)2+2ab=9+7010=7019.24.解:(1)x2+2x﹣8=x2+2x+1﹣1﹣8=(x+1)2﹣9=(x+1﹣3)(x+1+3)=(x﹣2)(x+4);(2),∵(x+2)2≥0,∴(x+2)2﹣7≥﹣7,∴多项式x2+4x﹣3的最小值为﹣7;(3)∵a2+b2+c2+50=6a+8b+10c,∴a2+b2+c2+50﹣6a﹣8b﹣10c=0,a2﹣6a+9+b2﹣8b+16+c2﹣10c+25﹣9﹣16﹣25+50=0,(a﹣3)2+(b﹣4)2+(c﹣5)2=0,∴a﹣3=0,b﹣4=0,c﹣5=0,∴a=3,b=4,c=5,∴△ABC的周长=3+4+5=12.25.解:(1)2100是“十全九美数”,168不是“十全九美数”,理由如下:∵2100=25×84,2+8=10,5+4=9,∴2100是“十全九美数”;∵168=14×12,l+l≠10,∴168不是“十全九美数“;(2)设A的十位数字为m,个位数字为n,则A=10m+n,∵M是“十全九美数”,M=A×B,∴B的十位数字为10﹣m,个位数字为9﹣n,则B=10(10﹣m)+9﹣n=109﹣10m﹣n,由题知:S(M)=m﹣n+10﹣m+9﹣n=19﹣2n,T(M)=m+n﹣[10﹣m﹣(9﹣n)]=2m﹣1,根据题意,令==5k(k为整数),由题意知:1≤m≤9,0≤n≤9,且都为整数,∴1≤19﹣2n≤19,1≤2m﹣1≤17,当k=l时,=5,∴或或,解得或(舍去)或;∴M=A×B=17×92=1564或M=A×B=22×87=1914;当k=2时,=10,∴,解得(舍去);当k=3时,=15,∴,解得;∴M=A×B=12×97=1164,综上,满足“十全九美数”条件的M有:1564或1914或1164.。

八年级数学上册 整式的乘除(习题及答案)(人教版)

八年级数学上册 整式的乘除(习题及答案)(人教版)

整式的乘除(习题)➢ 例题示范例1:计算328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-.【操作步骤】(1)观察结构划部分:328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-① ②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算.(3)每步推进一点点.【过程书写】解:原式62634(2)(42)x y y x y =⋅-+-6363842x y x y =-+-6342x y =--➢ 巩固练习1. ①3225()a b ab -⋅-=________________;②322()(2)m m n -⋅-=________________;③2332(2)(3)x x y -⋅-; ④323(2)(2)b ac ab ⋅-⋅-.2. ①2223(23)xy xz x y ⋅+=_____________________; ②31422xy y ⎛⎫-⋅-= ⎪⎝⎭_______________________; ③2241334ab c a b abc ⎛⎫-⋅= ⎪⎝⎭___________________; ④222(2)(2)ab a b ⋅-=________________________;⑤32(3231)a a a a -⋅+--=____________________.3. ①(3)(3)x y x y +-;②(2)(21)a b a b -++;③(23)(24)m n m n ---; ④2(2)x y +;⑤()()a b c a b c -+++.4. 若长方形的长为2(421)a a -+,宽为(21)a +,则这个长方形的面积为()A .328421a a a -+-B .381a -C .328421a a a +--D .381a +5. 若圆形的半径为(21)a +,则这个圆形的面积为( )A .42a π+πB .2441a a π+π+C .244a a π+π+πD .2441a a ++6. ①32223x yz xy ⎛⎫÷= ⎪⎝⎭__________________;②3232()(2)a b a b -÷-=________________;③232(2)()x y xy ÷=___________;④2332(2)(__________)2x y x y -÷=;⑤23632()(6)(12)m n m n mn -÷⋅-=_________.7. ①32(32)(3)x yz x y xy -÷-=____________; ②233242112322a b a b a b a b ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭_______________;③24422(48)(2)m n m n mn --÷=_______________;④()221___________________32m mn n ÷=-+-. 8. 计算:①322322(4)(4)()(2)a c a c a c ac -÷--⋅-;②224(2)(21)a a a -+--;③33(2)(2)(2)()a b a b a b ab ab +-+-÷-.➢ 思考小结1. 老师出了一道题,让学生计算()()a b p q ++的值.小聪发现这是一道“多×多”的问题,直接利用握手原则展开即可. ()()a b p q ++=小明观察这个式子后,发现可以把这个式子看成长为(a +b ),宽为(p +q )的长方形,式子的结果就是长方形的面积;于是通过分割就可以表达这个长方形的面积为_________________.∴()()a b p q ++=请你类比上面的做法,利用两种方法计算(a +b )(a +2b ).【参考答案】➢ 巩固练习1. ①445a b ②522m n③12272x y - ④3524a b c -2. ①222336+9x y z x y ②428xy xy -+ ③232321334a b c a b c - ④442584a b a b - ⑤432323a a a a --++3. ①229x y - ②2242a b a b -+-③224212m mn n -++④2244x xy y ++ ⑤2222a b c ac -++4. D5. C6. ①223x z②12 ③48x y④34x y - ⑤22mn7. ①223x z x -+ ②2246b ab a -+-③222n m --④3222132m n m n m -+- 8. ①322a c②7 ③23a ab + ➢ 思考小结()()a b p q ap aq bp bq ++=+++ 22()(2)32a b a b a ab b ++=++。

2014年 八年级数学上册同步教案+同步练习--整式的乘法与因式分解-第01课 整式的乘除

2014年 八年级数学上册同步教案+同步练习--整式的乘法与因式分解-第01课 整式的乘除

第14章 整式的乘法与因式分解第01课 整式的乘除知识点1.同底数幂的乘法:公式:2.幂的乘方:公式:3.积的乘方:公式:4.单项式乘单项式法则:5.单项式乘多项式法则:6.多项式乘多项式法则:7.同底数幂除法法则: 。

0a = (0≠a )8.单项式除以单项式法则:9.多项式除以单项式法则:例1.填空:(1)x x x x ⋅+⋅22= (2)y y y y ⋅-⋅⋅-425)(= (3)()432a = ; (4)10001001)21()2(-⨯-= (5)8x =)(2)(x =)(xx ⋅2=)(xx ⋅3 ;(6)12x =)(2)(x =)(xx ⋅2=)(xx ⋅7=)(3)(x例2.计算下列各题:(1)3222)3()2(x a ax -⋅- (2)233222)()()(21)(2abc abc bc a bc a -⋅--⋅--(3)()()1213+-x x (4)()()y x y x 2352-+(5)()38a a -÷- (6)()()4332222362436x y x y x y x y -+÷-例3.已知:2,3==n m x x ,求n m x 23+与n m x 3-2。

例4.已知22=n x ,求n n x x 2223)(4)3(-的值。

例 5.当0)89(|932|2=--+-+b a b a ,化简)51()3()3()()()3(3232332b a ab b b a a ⋅-+-+-⋅-⋅⋅-,并求该代数式的值;例6.在42++px x 与q x x +-62的积中不含3x 与x 的项,求p 、q 的值.例7.若C x B x x x +-+-=--)1()1(8622 ,求B 、C 的值.例8.已知m m y x 92,332+==+,请你用含x 的代数式表示y.例9.你能说明为什么对于任意自然数n,代数式n(n+7)-(n-3)(n-2)的值都能被6整除吗?课堂练习:1.计算52])[(x -( ) A.7x B.7x - C.10x D.10x - 2.下列计算正确的是( ) A.()422ab ab = B.()42222a a -=- C.()333y x xy =- D.()333273y x xy =3.计算n n 212)3(3)3(-⋅+-+结果正确的是( )A.32n+2B.-32n+2C. 0D. 14.如果552=a ,443=b ,334=c ,那么( )A.a >b >cB.b >c >aC.c >a >bD.c >b >a 5.计算:()m ma a a ⋅2所得结果是( )A.ma3 B.13+m a C.ma4 D.以上结果都不对6.2233)108.0()105.2(⨯-⨯⨯ 计算结果是( )A.13106⨯B.13106⨯-C.13102⨯D.1410 7.计算22232)3(2)(b a b a b a -⋅+-的结果为( )A.3617b a -B.3618b a -C.3617b aD. 3618b a 8.992213y x y x y x n n m m =⋅⋅++-,则=-n m 34( )A.8B.9C.10D.无法确定 9.计算()()1225-+x x 的结果是( )A.2102-xB.2102--x xC.24102-+x xD.25102--x x 10.))(3(2q x px x -+-的乘积中不含x 2项,则( )A.p=qB.p=±qC.p=-qD.无法确定11.在2m n m a A a +-÷=中,A 的值是( )A.2++n m aB.2-n aC.3++n m aD.2+n a12.若x x x n m =÷,么m 与n 的关系是( )A.m=nB.m=-nC.m-n=1D.m-n=-1 13.计算()()n m n m n m n m 22223444128-÷-+-的结果等于( )A.2232n mn n m +-B.22232n mn m +-C.2232n mn m +-D.n mn m +-32214.已知9999909911,99P Q ==,那么P ,Q 的大小关系是( ) A.P>Q B.P=Q C.P<Q D.无法确定15.填空:(1)=⨯⨯⨯)105)(104)(106(1087 ; (2))35(3c ab -(bc a 2103))8(4abc -⋅= ; (3)._____________)21(622=⋅-abc b a (4).._____________)(4)3(523232=-⋅-b a b a (5)..______________21511=⋅⋅--n n n y x y x (6).._____________)21()2(23=-⋅-⋅mn mn m 16.若212=++a a ,则)6)(5(a a +-=______17,若)5)(6(22b x x ax x +-++的乘积展开式中不含2x 和3x 项,则a=_______,b=_______. 18.填空:(1)()2334a bc ab ⎛⎫-÷- ⎪⎝⎭= 。

初二数学单元测试题整式的乘除

初二数学单元测试题整式的乘除

蓝田中学初二年期末复习数学系列练习第13章 整式的乘除班级____________姓名_____________成绩____________一、选择题1.2)3(-的算术平方根是( )A .9B .3-C .3±D .3 2.在实数7、2π-、0.1010010001、722、3.14、16-中,无理数有( )个A .1B .2C .3D .4 3.如果某数的一个平方根为2-,那么这个数是( ) A .4 B .4- C .2 D .2- 4.下列各式中,正确的是( ) A .39±=B .2)2(2-=-C .3)3(33=-D .3)3(2-=-ππ5.下面计算正确的是( ) A .54232)(yx y x = B .632xx x =⋅C .33xx x =⋅ D .4224)2(xx =-6.计算:=÷3233)()(a a ( )A .2aB .3aC .4aD .6a 7.下列各式中,正确的有( ) A .523aa a =+ B .62322aa a =⋅C .6234)2(aa =- D .1)1(--=--a a8.下列式子中,不能用平方差公式计算的是( ) A .))((m n n m -- B .))((2222y x y x +-C .))((b a b a ---D .))((2222a b b a +-9.若422+-kx x 是完全平方式,则=k ( )A .2B .1C .1±D .2± 10.若422=+a ,则计算:=-2009)1(a ( )A .1B .1-C .0D .20092 11.若2234728bb a b a nm=÷,则n m +的值为( )A .4B .5C .7D .8 12.若定义某种运算为:aba b a 22+=*,则把所表示的式子y x *2分解因式的结果是( ) A .)2(22x y y +B .)2(22y x x -C .)2(22y x x +D .)2(+x x13、下列计算正确的是( ) A .3232aa a =+ B .428aaa =÷C .623aa a =⋅ D .623)(aa =14、若0>a 且2=x a ,3=ya,则yx a-的值为( )A .-1B .1C .32 D .23 15、下列式子中是完全平方式的是( ) A .22b ab a ++ B .222++a aC .222bb a +- D .122++a a16、下列计算正确的是( ) A .2)2)(2(2-=-+a a a B .94)23)(32(2-=-+x x xC .44)2)(2(2++-=--+x x x xD .14)21)(12(2-=+-x x x17、如果2221682=⋅⋅nn ,则n 的值为( )A .3B .4C .5D .6 18、下列各式从左到右的变形是因式分解的是( ) A .22))((ba b a b a -=-+ B .bcc b a bcac ab +-=+-)(C .)(d c b a adac ab +-=+- D .42222)(b a b a =⋅19、多项式b ab b --23提取公因式后,另一个因式是( )A .bB .abb -2 C .12--ab b D .12--a b20、化简x x x x x +---)2()12(2的结果是( )A .13--xB .x x --3C .3xD .x x 43+ 21、若my x y x ++=-22)2()2(,则m 等于( )A .xy 4B .xy 4-C .xy 8D .xy 8- 22、任意给定一个非零数,按下列程序计算,最后输出的结果是( )A .mB .1+mC .2mD .1-m 二、填空题 1.分解因式:=-a ax 52____________2.若65))((2+-=++x x b x a x ,则=+b a __________;=ab ___________3.多项式2)()(3b a b a x +-+提取公因式)(b a +后,另一个因式是______________4.若一个长方形的面积为2222ab b a -,它的宽为ab ,则它的长为______________ 5.在多项式142+a 中,添加一个单项式,使它成为一个完全平方式,你添加的单项式是_________________ 6.已知51=+xx ,则=+221xx _________________7、若m y x 32与23y x n -是同类项,则=+n m . 8、若22)21(41-=++x kx x ,则=k ;若12+-kx x 是完全平方式,则=k .9、用“>”“=”或“<”符号填空:10002 3753. 10.-x 2·(-x )3·(-x )2=__________. 11.分解因式:4mx +6my =_________. 12.=-∙-3245)()(a a ___ ____. 13.4101×0.2599=__________.14.用科学记数法表示-0.0000308=___________.15.①a 2-4a +4,②a 2+a +14,③4a 2-a +14, ④4a 2+4a +1,•以上各式中属于完全平方式的有____ __(填序号). 16.(4a 2-b 2)÷(b -2a )=________.17.若x +y =8,x 2y 2=4,则x 2+y 2=_________. 18.计算:832+83×34+172=________.19.=÷-+++++++1214213124)42012(m m m m m m m m b a b a b a b a + . 20.已知==-=-yx y x yx ,则,21222.21.代数式4x 2+3mx +9是完全平方式,则m =___________. 22.若22210a b b -+-+=,则a =,b = .23.已知正方形的面积是2269yxy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 . 24.观察下列算式:32—12=8,52—32=16,72—52=24,92—72=32,…,请将你发现的规律用式子表示出来:____________________________. 25.已知13x x+=,那么441x x+=_______.26、已知:ABC∆的三边分别是cb a ,,满足224210212--+=--++b a c b a则ABC ∆的形状是 . 27、观察下列各式:1)1)(1(2-=+-x x x ,1)1)(1(32-=++-x x x x ,1)1)(1(423-=++-x x x x x ,…根据前面的规律,得 =++++--)1)(1(1x xx x n n (其中n 是正整数).28、让我们轻松一下,做一个数字游戏: 第一步:取一个自然数51=n ,计算121+n 得1a ;第二步:算出1a 的各位数字之和得2n ,计算122+n 得2a ; 第三步:算出2a 的各位数字之和得3n ,再计算123+n 得3a ;……依次类推,则2011a = . 三、计算题1.243234)()()(a a a ÷⋅ 2.)21()232(22b a ab ab-⋅-3.)11()411)(311)(211(2222n-⋅⋅⋅⋅⋅⋅⋅--- 4. 1234571234551234562⨯-5.1)12()12)(12)(12(6442+++++ 6、(-3xy 2)3·(61x 3y )2;8、222)(4)(2)x y x y x y --+(; 9、 221(2)(2))x x x x x-+-+-(三、因式分解: 1 .22363yxy x +- 2. c ab ab abc 249714+--;3. y x y x m +--2)(②; 4.22)(16)(9b a b a +--;5.)()(22a b y b a x -+- 6. 1)(10)(252+---x y y x7、3123x x -; 8、2222)1(2axx a -+;9、xyy x 2122--+ 10、)()3()3)((22a b b a b a b a -+++-.五、解答题 1.用公式计算:2010200820092⨯-2.先化简,再求值:))(()()2(3223b a b a ab ab b a b a +---÷++-(其中2008=a ,20082009=b )4.已知代数式6432+-x x 的值为9,求代数式6342+-x x 的值。

初二数学《整式的乘除与因式分解》习题(含答案)

初二数学《整式的乘除与因式分解》习题(含答案)

整式的乘除与因式分解一、选择题1.下列计算中,运算正确的有几个( )(1) a 5+a 5=a 10 (2) (a+b)3=a 3+b 3 (3) (-a+b)(-a-b)=a 2-b 2 (4) (a-b)3= -(b-a)3A 、0个B 、1个C 、2个D 、3个2.计算(-2a 3)5÷(-2a 5)3的结果是( )A 、—2B 、2C 、4D 、—43.若,则的值为 ( ) A . B .5 C .D .24.若x 2+mx+1是完全平方式,则m=( )。

A 、2B 、-2C 、±2D 、±45.如图,在长为a 的正方形中挖掉一个边长为b 的小正方形(a>b )把余下的部分剪拼成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A .a 2-b 2=(a+b)(a-b)B .(a+b)2=a 2+2ab+b 2C .(a-b)2=a 2-2ab+b 2D .(a+2b)(a-b)=a 2+ab-2b 26. 已知7, 3,则与的值分别是 ( )()=+2b a ()=-2b a A. 4,1 B. 2, C.5,1 D. 10, 3232二、填空题 1.若,则 ,2,3=-=+ab b a =+22b a ()=-2b a 2.已知a - =3,则a 2+ 的值等于 ·1a 21a 3.如果x 2-kx +9y 2是一个完全平方式,则常数k =________________; 4.若,则a 2-b 2= ; ⎩⎨⎧-=-=+31b a b a 5.已知2m =x ,43m =y ,用含有字母x的代数式表示y ,则y =________________;6、如果一个单项式与的积为-a 2bc,则这个单项式为34________________;7、(-2a 2b 3)3 (3ab+2a 2)=________________;8、________________;()()()()=++++12121212242n K 9、如图,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如下图所示,则打包带的长至少要____________(单位:mm )。

人教版八年级数学上整式的乘除与乘法公式教案教学设计导学案教学案课时作业同步练习试卷含答案解析

人教版八年级数学上整式的乘除与乘法公式教案教学设计导学案教学案课时作业同步练习试卷含答案解析

整式的乘除与乘法公式 【知识梳理】(1) mna a ⋅= (m .n 都是正整数). (2) ()m n a = (m .n 都是正整数).(3) ()n ab = (n 是正整数).(4) mna a ÷= (a≠0,m .n 都是正整数,m n >).(5)()()x p x q ++= . (6)()()a b a b +- = . (7)2()a b + = . (8)2()a b - = . (9)2()a b c ++ = .(10)0a = (0≠a ).【例题讲解】例1计算1.()()()()233232222x y x xy yx ÷-+-⋅2.()()()a b b a b a -+-+-222223.()()p n m p n m 3232+++-4.⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--11111122a a a a a a a a 例2应用运算性质及公式进行简便运算 1.200520051003000.25480.5⨯-⨯2. 1241221232⨯-3. ()28.79-例3求值问题 1.已知9=ma ,6=n a ,2=k a ,试求kn m a 32+-的值2.若22()(23)x px q x x ++--展开项中不含2x 和3x 项,求p 和q 的值.3.(浙江绍兴,)先化简,再求值:2(2)2()()()a a b a b a b a b -++-++,其中1,12a b =-=.4.已知一个多项式与单项式xy 2的积为3223423xy y x y x ++-,试求这个多项式5.已知9ab =,3a b -=-,求223a ab b ++的值. 例41.如果1㎏煤的全部能量都释放出来有KJ 141004.9⨯,完全燃烧1㎏煤却只能释放KJ 41035.3⨯的热。

1㎏煤的全部能量是完全燃烧释放的热的多少倍?(保留3个有效数字)2.如图,某市有一块长为()b a +3米,宽为()b a +2米的长方形地块,•规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?•并求出当3=a ,2=b 时的绿化面积.3.利用我们学过的知识,可以导出下面这个形式优美的等式:222a b c ab bc ac ++---=()()()22212a b b c c a ⎡⎤-+-+-⎣⎦ 该等式从左到右的变形,不仅保持了结构的对称性,•还体现了数学的和谐.简洁美. (1)请你检验这个等式的正确性.(2)若a =2005,b =2006,c =2007,你能很快求出ac bc ab c b a ---++222的值吗?【课后巩固】1.(2009眉山)下列运算正确的是( ) A 、(x 2)3=x 5 B 、3x 2+4x 2=7x 4C 、(-x )9÷(-x )3=x 6D 、-x (x 2-x +1)=-x 3-x 2-x2.如果:()159382b a b an m m=⋅+,则( )A .2,3==n mB .3,3==n mC .2,6==n mD .5,2==n m 3.(山东日照)下列等式一定成立的是( ) A . a 2+a 3=a 5 B .(a +b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab4.(台湾全区)若949)7(22+-=-bx x a x ,则b a +之值为何?( )A .18B .24C .39D . 45 5.(湖南邵阳)如果□×3ab =3a 2b ,则□内应填的代数式是( ) A.abB.3abC.aD.3a6.三个连续偶数,若中间一个为k ,则积为( ) A .k k -34 B .k k 43-C .k k 884- D .k k 283-7.矩形ABCD 中,横向阴影部分是长方形,另一部分是平行四边形,依照图中标注的数据,图中空白部分的面积为( )A 2c ac ab bc ++- B .2c ac bc ab +-- C ac bc ab a -++2D .ab a bc b -+-228.对于任何整数,多项式()9542-+m 一定能被( )A .8整除B .m 整除C .()1-m 整除D .()12-m 整除 9.⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+y x y x 4141= , ()223x y -=()=⨯-20082007425.0=÷67)21()5.0(=-⋅⋅mmm m )42(372÷2428y x xy 4=y ax axy 3256)65(=-÷ 10.若(2)32m -=-,则m =_____若1232n=,则n =_____ 11.设12142++mx x 是一个完全平方式,则m =_______12.设223(1)(1)x x a bx cx dx +-=+++,则a b c d +++=a b c d -+-= 13.(2009•宁夏)已知:a +b = 32,ab =1,化简(a -2)(b -2)的结果是14.若2246130,x x y y ++-+=则(2)(2)x y x y +-的值是15.2222223029282721-+-+⋯⋯+-51 52=16.边长为a 的正方形,边长增加b 以后,则所得新正方形的面积比原正方形的面积增加了17.22(2)(2)x y x y +-18.22004200520031-⨯-19.(南通)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中a =2,b =1.20.(北京)已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.21. 已知2362116422x -=××,212[(10)]10y =求的值.22. (金华)已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值.23.已知a 2-3a +1=0.求aa 1+和221a a +的值;24. 某城市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不超过a 吨,每吨m 元;若超过a 吨,则超过的部分以每吨m 2元计算.•现有一居民本月用水x 吨,则应交水费多少元? 参考答案 【知识梳理】 (1)a m+n(2)a mn (3)a n b n(4) a m -n(5) x 2+px +qx +pq(6) a 2-b 2 (7) a 2+2ab +b 2(8) a 2-2ab +b 2(9) a 2+c 2+b 2+2ab +2ac +2bc (10) 1 【例题讲解】1.原式=4x 6y 2·(-2xy )+(-8x 9y 3)÷(2x 2)=-8 x 7y 3-8x 7y 3 =-16 x 7y 32.原式=a 2-4ab +4b 2-2(4b 2-a 2)=a 2-4ab +4b 2-8b 2+2a 2=3a 2-4ab -4b 23.原式=[(m +3p )-2n ] [(m +3p )+2n ]=(m +3p )2-(2n )2 =m 2-6mp +9p 2-4n 24.原式22222222222222424661111()()[()1][()1]111=111111111a a a a a a a a a a a a a a a a a a a a a a a a=----+--+⎡⎤⎛⎫⎡⎤⎡⎤---+++-⎢⎥ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫=-+-⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎛⎫⎛⎫=-++ ⎪⎪⎝⎭⎝⎭=-例21.原式=(0.25×4)2005-(8×0.125)100=1-1 =02. 原式=1232-(123-1)(123+1)=1232-(1232-12) =13. 原式=(0.2-80)2=0.22-2×80×0.2+802 =6400-32+0.04 =6368.04例31.原式=a m ÷a 2n ·a 3k=a m ÷(a n )2·(a k )3 =9÷36×8=22.解:∵(x 2+px +q )(x 2-2x -3) =x 4-2x 3-3x 2+px 3-2px 2-3px +qx 2-2qx -3q =x 4+(p -2)x 3-(2p -q +3)x 2-(3p +2q )x -3q而题意要求展开后不含x 2,x 3项 ∴p -2=0,2p -q +3=0 解得p =2,q =7. 3.原式22=4,a b -当1,12a b =-=时,原式=0. 4.解:(-3x 3y +2x 2y 2+4xy 3)÷2xy =-32x 2+xy +2y 2 5.解:原式=a 2+3ab +b 2=(a -b )2+5ab当9ab =,3a b -=-时 原式=(-3)2+5×9=54例41.解:9.04×1014÷(3.35×104)=2.70×1010 2.解:S 阴影=(3a +b )(2a +b )-(a +b )2=6a 2+3ab +2ab +b 2-a 2-2ab -b 2 =5a 2+3ab (平方米) 当a =3,b =2时, 5a 2+3ab=5×9+3×3×2 =45+18 =63(平方米).3.解:(1) 12[(a -b )2+(b -c )2+(c -a )2]=12(a 2-2ab +b 2+b 2-2bc +c 2+a 2-2ac +c 2) =a 2+b 2+c 2-ab -bc -ac (2)a 2+b 2+c 2-ab -bc -ac=12[(a -b )2+(b -c )2+(c -a )2]=12[[(2005-2006)2+(2006-2007)2+(2007--2005)2] =3【课后巩固】1.C 2.A 3.D 4.D 5.C 6.B 7.B 8.A 9.22116x y; 4x 2-12 xy +9y 2;-4; 0.5;(-1)m;7x 3 y ;-a 2x 4 y 310.5;-511.答案:±44 12. 0;013. 解:(a -2)(b -2) =ab -2(a +b )+4 当a +b = 32,ab =1时,原式=1-2× 32+4=214.-32; 15.465 16.2ab +b 2 17.解:原式=[(x +2y )(x -2y )] 2=(x 2-4y 2)2 =x 4-8x 2y 2+16y 418.解:原式=20042-(2004+1)(2004-1)-1=20042-20042+1-1 =019.解:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ) =b 2-2ab +4a 2-b 2 =4a 2-2ab 当a =2,b =1时, 原式=4×22-2×2×1=16-4 =1220.解:a (a +4b )-(a +2b )(a -2b ) =a 2+4ab -(a 2-4b 2) =4ab +4b 2∵a 2+2ab +b 2=0 ∴a +b =0∴原式=4b (a +b )=021.解:(24)2×(22)3×26=22x -1 220=22x -12x -1=20得2x =21 102y =1012得2y =12即y =62x +y =21+6=2722.解:由2x -1=3得,x =2, 又(x -3)2+2x (3+x ) -7 =x 2-6x +9+6x +2x 2-7 = 3x 2+2,∴当x =2时,原式=14. 23.解:a 2-3a +1=0得aa 1+-3=0 a a 1+=3 222211()2327a a a a+=+-=-=24. 解:当x ≤a 时,mx (元), 当x >a 时,am +2m (x -a )=am +2mx -2ma =2mx -ma (元).。

初中数学《整式的乘除》常考题练习题及参考答案与解析(word版)

初中数学《整式的乘除》常考题练习题及参考答案与解析(word版)

《整式的乘除》常考题练习题及参考答案与解析一、选择题(共40小题,每小题只有一个正确选项)1.(2019秋•河池期末)已知a m=3,a n=4,则a m+n的值为()A.12 B.7 C.D.2.(2018•深圳二模)下列各式计算结果不为a14的是()A.a7+a7B.a2•a3•a4•a5C.(﹣a)2•(﹣a)3•(﹣a)4•(﹣a)5D.a5•a9 3.(2018秋•湘桥区期末)下列计算正确的是()A.b3•b3=2b3B.(ab2)3=ab6C.(a5)2=a10D.y3+y3=y6 4.(2018•咸宁模拟)计算(﹣a2b)3的结果是()A.﹣a6b3B.a6b C.3a6b3D.﹣3a6b35.(2015•曲水县模拟)下列运算正确的是()A.3x﹣2x=1 B.﹣2x﹣2=﹣C.(﹣a)2•a3=a6D.(﹣a2)3=﹣a66.(2015春•东平县校级期末)计算:(π﹣3.14)0+(﹣0.125)2008×82008的结果是()A.π﹣3.14 B.0 C.1 D.27.(2017春•滨湖区校级月考)如果等式(2a﹣1)a+2=1成立,则a的值可能有()A.4个B.1个C.2个D.3个8.(2019春•徐州期中)若a=0.32,b=﹣3﹣2,c=(﹣3)0,那么a、b、c三数的大小为()A.a>c>b B.c>a>b C.a>b>c D.c>b>a9.(2019秋•福清市期末)下列各式运算的结果可以表示为20195()A.(20193)2B.20193×20192C.201910÷20192D.20193+2019210.(2019秋•内江期末)若3x=5,3y=4,9z=2,则32x﹣y+4z的值为()A.B.10 C.20 D.2511.(2016•临沂)下列计算正确的是()A.x3﹣x2=x B.x3•x2=x6C.x3÷x2=x D.(x3)2=x512.(2019秋•云阳县期末)下列等式中正确的个数是()①a5+a3=a10②(﹣a)6•(﹣a)3•a=a10③﹣a4•(﹣a)5=a20④(﹣a)5÷a2=﹣a3A.1个B.2个C.3个D.4个13.(2019•内江模拟)2018年2月18日清•袁枚的一首诗《苔》被乡村老师梁俊和山里的孩子小梁在《经典永流传》的舞台重新唤醒,“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084=8.4×10n,则n为()A.﹣5 B.﹣6 C.5 D.614.(2019•邵阳县一模)近期浙江大学的科学家们研制出今为止世界上最轻的材料,这种被称为“全碳气凝胶”的固态材料密度仅每立方厘米0.00016克,数据0.00016用科学记数法表示应是()A.1.6×104B.0.16×10﹣3C.1.6×10﹣4D.16×10﹣515.(2019•烟台一模)碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米16.(2018•务川县二模)计算正确的是()A.(﹣5)0=0 B.x3+x4=x7C.(﹣a2b3)2=﹣a4b6D.2a2•a﹣1=2a 17.(2016•满洲里市模拟)下列运算正确的是()A.﹣5(a﹣1)=﹣5a+1 B.a2+a2=a4C.3a3•2a2=6a6D.(﹣a2)3=﹣a6 18.(2014春•桥东区期末)下列计算错误的是()A.﹣3x(2﹣x)=﹣6x+3x2B.(2m2n﹣3mn2)(﹣mn)=﹣2m3n2+3m2n3C.xy(x2y﹣3xy2﹣1)=x3y2﹣x2y3D.(x n+1﹣y)xy=x n+2y﹣xy219.(2017春•全椒县期末)若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0 D.q+2p=020.(2018春•杭州期中)已知(x﹣3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A.m=3,n=9 B.m=3,n=6 C.m=﹣3,n=﹣9 D.m=﹣3,n=9 21.(2019秋•张掖期末)下列各式中,能用平方差公式计算的是()A.(﹣a﹣b)(a+b)B.(﹣a﹣b)(a﹣b)C.(﹣a﹣b+c)(﹣a﹣b+c)D.(﹣a+b)(a﹣b)22.(2019秋•张掖期末)(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b223.(2019秋•海安市期中)下列乘法中,能应用平方差公式的是()A.(﹣x+y)(x﹣y)B.(a2+x)(a﹣x)C.(a2﹣1)(﹣a2﹣1)D.(﹣a2﹣b2)(a2+b2)24.(2019秋•田家庵区期末)如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)25.(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣226.(2017•南召县一模)在下列运算中,计算正确的是()A.(x5)2=x7B.(x﹣y)2=x2﹣y2C.x13÷x3=x10D.x3+x3=x627.(2016•武汉)运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2﹣6x+9 C.x2+6x+9 D.x2+3x+928.(2014秋•长清区期末)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2+b2C.(a+b)2=a2+b2D.(a+b)2=a2+2ab+b229.(2019春•港南区期末)已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0 B.1 C.5 D.1230.(2017•萧山区模拟)如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,31.(2014秋•洪山区期末)某学习小组学习《整式的乘除》这一章后,共同研究课题,用4个能够完全重合的长方形,长、宽分别为a、b拼成不同的图形.在研究过程中,一位同学用这4个长方形摆成了一个大正方形.如图,利用面积不同表示方法验证了下面一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2﹣(a﹣b)2=4abC.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b232.(2019秋•海珠区期末)如果(a+b)2=16,(a﹣b)2=4,且a、b是长方形的长和宽,则这个长方形的面积是()A.3 B.4 C.5 D.633.(2019秋•黄石期末)长方形的面积是9a2﹣3ab+6a3,一边长是3a,则它的另一边长是()A.3a2﹣b+2a2B.b+3a+2a2C.2a2+3a﹣b D.3a2﹣b+2a34.(2019秋•曲沃县期末)计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+135.(2019秋•越城区期末)如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A.4ab B.8ab C.4a+b D.8a+2b36.(2019秋•忻州期末)计算27m6÷(﹣3m2)3的结果是()A.1 B.﹣1 C.3 D.﹣337.(2019秋•东城区期末)下列各式计算正确的是()A.3a2•a﹣1=3a B.(ab2)3=ab6C.(x﹣2)2=x2﹣4 D.6x8÷2x2=3x438.(2019秋•滦南县期末)若代数式[2x3(2x+1)]÷(2x2)与x(1﹣6x)的值互为相反数,则x 的值()A.0 B.C.4 D.39.(2016•临夏州)若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.3040.(2019秋•张掖期末)如图,正方体的每一个面上都有一个正整数,已知相对的两个面上两数之和都相等.如果13、9、3对面的数分别为a、b、c,则a2+b2+c2﹣ab﹣bc﹣ca的值等于()A.48 B.76 C.96 D.152二、填空题(共30小题)41.(2017秋•黄浦区期中)计算:(a﹣b)•(b﹣a)2=(结果用幂的形式表示).42.(2017•武侯区模拟)我们知道,同底数幂的乘法法则为:a m•a n=a m+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=,则h(2)=;(2)若h(1)=k(k≠0),那么h(n)•h(2017)=(用含n和k的代数式表示,其中n为正整数)43.(2018秋•新疆期末)若x+4y=3,则2x•16y的值为.44.(2015春•张家港市期末)如果等式(2a﹣1)a+2=1,则a的值为.45.(2018•殷都区三模)计算:()﹣2﹣(3.14﹣π)0=.46.(2018春•沂源县期中)5k﹣3=1,则k﹣2=.47.(2019秋•闵行区期末)将代数式2﹣1x﹣3y2化为只含有正整数指数幂的形式.48.(2015春•邗江区校级期中)已知a=﹣(0.2)2,b=﹣2﹣2,c=(﹣)﹣2,d=(﹣)0,则比较a、b、c、d的大小结果是(按从小到大的顺序排列).49.(2013春•余姚市校级期中)已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是.50.(2019秋•邹城市期末)已知3a=m,81b=n,则32a﹣4b等于.51.(2019秋•莫旗期末)手机上使用14nm芯片,1nm=0.0000001cm,则14nm用科学记数法表示为cm.52.(2017•北辰区校级模拟)如果x n y4与2xy m相乘的结果是2x5y7,那么mn=.53.(2018春•合浦县期中)﹣2a(3a﹣4b)=.54.(2014秋•渝北区期末)计算:2x2•(﹣3x3)=.55.(2018春•济南期末)已知(x+1)(x﹣2)=x2+mx+n,则m+n=.56.(2015春•昌邑市期末)已知(x+a)(x+b)=x2+5x+ab,则a+b=.57.(2018秋•福州期末)已知x2+3x﹣5=0,则x(x+1)(x+2)(x+3)的值是.58.(2015春•兴化市校级期末)在(x+1)(2x2﹣ax+1)的运算结果中x2的系数是﹣6,那么a的值是.59.(2016春•沛县期末)如果x+y=﹣1,x﹣y=﹣3,那么x2﹣y2=.60.(2019秋•黄石期末)计算2019×2017﹣20182=.61.(2017•江岸区模拟)一个正方形的边长增加了3cm,面积相应增加了39cm2,则原来这个正方形的边长为cm.62.(2015秋•安陆市期末)如图1,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的乘法公式是.63.(2019春•慈溪市期中)根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是.64.(2018•恩阳区模拟)已知a+b=3,ab=2,则a2+b2的值为.65.(2018秋•龙岩期末)若a﹣=4,则a2+=.66.(2016•雅安)已知a+b=8,a2b2=4,则﹣ab=.67.(2018秋•齐齐哈尔期末)若x2﹣6x+k是x的完全平方式,则k=.68.(2019春•三明期末)如图,两个正方形边长分别为a、b,如果a+b=7,ab=13,则阴影部分的面积为.69.(2016秋•肇源县期末)长方形面积是3a2﹣3ab+6a,一边长为3a,则它的另一边长是.70.(2012•菏泽)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若,则x=.三、解答题(共30小题)71.(2014春•句容市期中)一个长方形的长是4.2×104cm,宽是2×104cm,求此长方形的面积及周长.72.(2018春•苏州期中)规定a*b=2a×2b,求:(1)求2*3;(2)若2*(x+1)=16,求x的值.73.(2016秋•宜阳县校级月考)比较3555,4444,5333的大小.74.(2014春•姜堰市期中)已知3m=2,3n=5.(1)求3m+n的值;(2)求3×9m×27n的值.75.(2019春•沭阳县期中)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=,(﹣2,4)=,(﹣2,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30)76.(2018秋•武冈市期末)阅读材料:(1)1的任何次幂都为1;(2)﹣1的奇数次幂为﹣1;(3)﹣1的偶数次幂为1;(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2016的值为1.77.(2014春•乳山市期末)计算:[(xy﹣2)÷x0•y﹣3﹣x﹣3y3]÷x﹣1y5.78.(2017春•临淄区校级期中)小丽在学习了“除零以外的任何数的零次幂的值为1”后,遇到这样一道题:“如果(x﹣2)x+3=1,求x的值”,她解答出来的结果为x=﹣3.老师说她考虑的问题不够全面,你能帮助小丽解答这个问题吗?79.(2014秋•射阳县期末)若a m=3,a n=5,求a2m+3n和a3m﹣2n的值.80.(2017春•江阴市期中)已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.81.(2019秋•上蔡县期中)(1)若10a=2,10b=3,求102a+b的值;(2)若3m=6,9n=2,求32m﹣4n+1的值.82.(2019秋•崇川区校级月考)解决下列有关幂的问题(1)若9×27x=317,求x的值;(2)已知a x=﹣2,a y=3.求a3x﹣2y的值;(3)若x=×25n+×5n+,y=×25n+×5n+1,请比较x与y的大小.83.(2018春•吴兴区校级期中)计算(1)(﹣1)2017+()﹣2+(3.14﹣π)0(2)(﹣2x2)3+4x3•x3.84.(2014秋•德惠市期末)先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.85.(2016春•龙口市期中)某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?86.(2019春•太原期中)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(﹣xy)=3x2y﹣xy2+xy(1)求所捂的多项式;(2)若x=,y=,求所捂多项式的值.87.(2018春•张店区期末)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.88.(2017秋•宝山区期末)(2x﹣y+1)(2x+y﹣1)(用公式计算)89.(2019春•赫山区期末)某同学在计算3(4+1)(42+1)时,把3写成4﹣1后,发现可以连续运用两数和乘以这两数差公式计算:3(4+1)(42+1)=(4﹣1)(4+1)(42+1)=(42﹣1)(42+1)=162﹣1=255.请借鉴该同学的经验,计算:.90.(2015秋•锦江区校级期末)①如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,设图1中的阴影部分面积为S,则S=(用含a,b代数式表示).②若把图1中的图形,沿着线段AB剪开(如图2),把剪成的两张纸片拼成如图3的长方形,请写出上述过程你所发现的乘法公式.91.(2019春•高邑县期末)乘法公式的探究及应用:(1)如图1所示,可以求出阴影部分的面积是(写成两数平方差的形式).(2)若将图1中的阴影部分裁剪下来,重新拼成一个如图2的矩形,此矩形的面积是(写成多项式乘法的形式).(3)比较两图的阴影部分面积,可以得到乘法公式.(4)应用所得的公式计算:.92.(2019秋•偃师市期中)(1)当a=﹣2,b=1时,求两个代数式(a+b)2与a2+2ab+b2的值;(2)当a=﹣2,b=﹣3时,再求以上两个代数式的值;(3)你能从上面的计算结果中,发现上面有什么结论.结论是:;(4)利用你发现的结论,求:19652+1965×70+352的值.93.(2019春•邗江区期中)若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=;(2)代数式为完全平方式,则k=;(3)解方程:=6x2+7.94.(2018春•吉州区期末)图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积.方法1:方法2:(2)观察图②请你写出下列三个代数式:(m+n)2,(m﹣n)2,mn之间的等量关系.;(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;②已知:a>0,a﹣=1,求:a+的值.95.(2018春•文登区期末)有若干张如图1所示的A,B,C三种卡片,A表示边长为m的正方形,B表示边长为n的正方形,C表示长为m、宽为n的长方形(1)小明用1张A卡片,4张B卡片,4张C卡片拼成了一个大正方形,这个大正方形的面积为,边长为(2)小玲想用这三种卡片拼一个如图2所示的长为(2m+n),宽为(m+n)的长方形,需要A,B,C三种卡片各多少张?请说明理由,并在图2的长方形中画出一种拼法.(标上卡片名称)96.(2014秋•太和县期末)计算:(8a3b﹣5a2b2)÷4ab.97.(2005•陕西)计算:(a2+3)(a﹣2)﹣a(a2﹣2a﹣2).98.(2011•益阳)观察下列算式:①1×3﹣22=3﹣4=﹣1②2×4﹣32=8﹣9=﹣1③3×5﹣42=15﹣16=﹣1④…(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.99.(2019秋•南召县期末)化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6.100.(2018秋•南召县期末)先化简,再求值:当|x﹣2|+(y+1)2=0时,求[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x的值.参考答案与解析一、选择题(共40小题,每小题只有一个正确选项)1.(2019秋•河池期末)已知a m=3,a n=4,则a m+n的值为()A.12 B.7 C.D.【知识考点】同底数幂的乘法.【思路分析】根据同底数幂的乘法底数不变指数相加,可得答案.【解答过程】解:a m+n=a m•a n=3×4=12,故选:A.【总结归纳】本题考查了同底数幂的乘法,熟记法则并根据法则计算是解题关键.2.(2018•深圳二模)下列各式计算结果不为a14的是()A.a7+a7B.a2•a3•a4•a5C.(﹣a)2•(﹣a)3•(﹣a)4•(﹣a)5D.a5•a9【知识考点】合并同类项;同底数幂的乘法.【思路分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,针对每一个选项进行计算即可.【解答过程】解:A、a7+a7=2a7,此选项正确,符合题意;B、a2•a3•a4•a5=a2+3+4+5=a14,此选项错误,不符合题意;C、(﹣a)2•(﹣a)3•(﹣a)4•(﹣a)5=(﹣a)14=a14,此选项错误,不符合题意;D、a5•a9=a14,此选项错误,不符合题意.故选:A.【总结归纳】此题主要考查了同底数幂的乘法,合并同类项,关键是熟练掌握计算法则,并能正确运用.3.(2018秋•湘桥区期末)下列计算正确的是()A.b3•b3=2b3B.(ab2)3=ab6C.(a5)2=a10D.y3+y3=y6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】直接利用合并同类项法则以及幂的乘方运算法则和积的乘方运算法则分别计算得出答案.【解答过程】解:A、b3•b3=b6,故此选项不符合题意;B、(ab2)3=a3b6,故此选项不符合题意;C、(a5)2=a10,故此选项符合题意;D、y3+y3=2y3,故此选项不符合题意;故选:C.【总结归纳】此题主要考查了合并同类项以及幂的乘方运算和积的乘方运算,正确掌握相关运算法则是解题关键.4.(2018•咸宁模拟)计算(﹣a2b)3的结果是()A.﹣a6b3B.a6b C.3a6b3D.﹣3a6b3【知识考点】幂的乘方与积的乘方.【思路分析】利用积的乘方性质:(ab)n=a n•b n,幂的乘方性质:(a m)n=a mn,直接计算.【解答过程】解:(﹣a2b)3=﹣a6b3.故选:A.【总结归纳】本题考查了幂运算的性质,注意结果的符号确定,比较简单,需要熟练掌握.5.(2015•曲水县模拟)下列运算正确的是()A.3x﹣2x=1 B.﹣2x﹣2=﹣C.(﹣a)2•a3=a6D.(﹣a2)3=﹣a6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【思路分析】结合选项分别进行幂的乘方和积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确选项.【解答过程】解:A、3x﹣2x=x,原式计算错误,故本选项不符合题意;B、﹣2x﹣2=﹣,原式计算错误,故本选项不符合题意;C、(﹣a)2•a3=a5,原式计算错误,故本选项不符合题意;D、(﹣a2)3=﹣a6,原式计算正确,故本选项符合题意.故选:D.【总结归纳】本题考查了幂的乘方和积的乘方、合并同类项、同底数幂的乘法等知识,解答本题的关键是掌握各知识点的运算法则.6.(2015春•东平县校级期末)计算:(π﹣3.14)0+(﹣0.125)2008×82008的结果是()A.π﹣3.14 B.0 C.1 D.2【知识考点】有理数的乘方;零指数幂.【思路分析】分别根据零指数幂及幂的乘方运算法则进行计算即可.【解答过程】解:原式=1+(﹣×8)2008=1+1=2.故选:D.【总结归纳】本题考查了零指数幂及幂的乘方的运算,属于基础题,掌握各部分的运算法则是关键.7.(2017春•滨湖区校级月考)如果等式(2a﹣1)a+2=1成立,则a的值可能有()A.4个B.1个C.2个D.3个【知识考点】有理数的乘方;零指数幂.【思路分析】根据等式(2a﹣1)a+2=1成立,可得,2a﹣1=1,2a﹣1=﹣1(此时a+2是偶数),据此求出a的值可能有哪些即可.【解答过程】解:∵等式(2a﹣1)a+2=1成立,∴,2a﹣1=1,2a﹣1=﹣1(此时a+2是偶数),(1)由,解得a=﹣2.(2)由2a﹣1=1,解得a=1.(3)由2a﹣1=﹣1,解得a=0,此时a+2=2,(﹣1)2=1.综上,可得a的值可能有3个:﹣2、1、0.故选:D.【总结归纳】此题主要考查了零指数幂的运算,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.8.(2019春•徐州期中)若a=0.32,b=﹣3﹣2,c=(﹣3)0,那么a、b、c三数的大小为()A.a>c>b B.c>a>b C.a>b>c D.c>b>a【知识考点】有理数大小比较;零指数幂;负整数指数幂.【思路分析】先根据乘方运算法则、负整数指数幂及零指数幂分别计算,再判断大小即可得.【解答过程】解:a=0.32=0.09,b=﹣3﹣2=﹣,c=(﹣3)0=1,∴c>a>b,故选:B.【总结归纳】本题主要考查有理数的大小比较,解题的关键是熟练掌握乘方运算法则、负整数指数幂及零指数幂.9.(2019秋•福清市期末)下列各式运算的结果可以表示为20195()A.(20193)2B.20193×20192C.201910÷20192D.20193+20192【知识考点】幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的乘法运算法则将原式变形得出答案.【解答过程】解:20195=20193×20192.故选:B.【总结归纳】此题主要考查了同底数幂的乘法运算,正确掌握相关法则是解题关键.10.(2019秋•内江期末)若3x=5,3y=4,9z=2,则32x﹣y+4z的值为()A.B.10 C.20 D.25【知识考点】同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的乘除运算法则将原式化简得出答案.【解答过程】解:∵3x=5,3y=4,9z=2=32z,∴32x﹣y+4z=(3x)2÷3y×(32z)2=25÷4×22=25.故选:D.【总结归纳】此题主要考查了同底数幂的乘除运算,正确将原式变形是解题关键.11.(2016•临沂)下列计算正确的是()A.x3﹣x2=x B.x3•x2=x6C.x3÷x2=x D.(x3)2=x5【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的乘除法运算法则以及结合幂的乘方运算法则分别化简求出答案.【解答过程】解:A、x3﹣x2,无法计算,故此选项不符合题意;B、x3•x2=x5,故此选项不符合题意;C、x3÷x2=x,故此选项符合题意;D、(x3)2=x5,故此选项不符合题意;故选:C.【总结归纳】此题主要考查了同底数幂的乘除法运算法则以及幂的乘方运算等知识,正确掌握相关法则是解题关键.12.(2019秋•云阳县期末)下列等式中正确的个数是()①a5+a3=a10②(﹣a)6•(﹣a)3•a=a10③﹣a4•(﹣a)5=a20④(﹣a)5÷a2=﹣a3A.1个B.2个C.3个D.4个【知识考点】同底数幂的乘法;同底数幂的除法.【思路分析】根据同底数幂的除法的运算方法,以及同底数幂的乘法的运算方法,逐项判断即可.【解答过程】解:∵a5+a3≠a10,∴选项①不符合题意;∵(﹣a)6•(﹣a)3•a=﹣a10,∴选项②不符合题意;∵﹣a4•(﹣a)5=a9,∴选项③不符合题意;∵(﹣a)5÷a2=﹣a3,∴选项④符合题意,∴等式中正确的有1个:④.故选:A.【总结归纳】此题主要考查了同底数幂的除法的运算方法,以及同底数幂的乘法的运算方法,要熟练掌握.13.(2019•内江模拟)2018年2月18日清•袁枚的一首诗《苔》被乡村老师梁俊和山里的孩子小梁在《经典永流传》的舞台重新唤醒,“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084=8.4×10n,则n为()A.﹣5 B.﹣6 C.5 D.6【知识考点】科学记数法—表示较小的数.【思路分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答过程】解:0.0000084=8.4×10﹣6,则n为﹣6.故选:B.【总结归纳】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(2019•邵阳县一模)近期浙江大学的科学家们研制出今为止世界上最轻的材料,这种被称为“全碳气凝胶”的固态材料密度仅每立方厘米0.00016克,数据0.00016用科学记数法表示应是()A.1.6×104B.0.16×10﹣3C.1.6×10﹣4D.16×10﹣5【知识考点】科学记数法—表示较小的数.【思路分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答过程】解:0.00016=1.6×10﹣4,故选:C.【总结归纳】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.(2019•烟台一模)碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米【知识考点】科学记数法—表示较小的数.【思路分析】0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米.小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,在本题中a为5,n为5前面0的个数.【解答过程】解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米.故选:D.【总结归纳】用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数.注意应先把0.5纳米转化为用米表示的数.16.(2018•务川县二模)计算正确的是()A.(﹣5)0=0 B.x3+x4=x7C.(﹣a2b3)2=﹣a4b6D.2a2•a﹣1=2a【知识考点】幂的乘方与积的乘方;单项式乘单项式;零指数幂;负整数指数幂.【思路分析】根据整式乘法运算法则以及实数运算法则即可求出答案.【解答过程】解:(A)原式=1,故本选项不符合题意;(B)x3与x4不是同类项,不能进行合并,故本选项不符合题意;(C)原式=a4b6,故本选项不符合题意;(D)2a2•a﹣1=2a,故本选项符合题意.故选:D.【总结归纳】本题考查学生的计算能力,解题的关键是熟练运用整式的运算法则,本题属于基础题型.17.(2016•满洲里市模拟)下列运算正确的是()A.﹣5(a﹣1)=﹣5a+1 B.a2+a2=a4C.3a3•2a2=6a6D.(﹣a2)3=﹣a6【知识考点】合并同类项;去括号与添括号;幂的乘方与积的乘方;单项式乘单项式.【思路分析】根据乘法分配律;合并同类项系数相加字母及指数不变;系数乘系数,同底数幂的乘法底数不变指数相加;积的乘方等于乘方的积,可得答案.【解答过程】解:A、﹣5(a﹣1)=﹣5a+5,故本选项不符合题意;B、合并同类项系数相加字母及指数不变,故本选项不符合题意;C、系数乘系数,同底数幂的乘法底数不变指数相加,故本选项不符合题意;D、积的乘方等于乘方的积,故本选项符合题意;故选:D.【总结归纳】本题考查了单项式的乘法,熟记法则并根据法则计算是解题关键.18.(2014春•桥东区期末)下列计算错误的是()A.﹣3x(2﹣x)=﹣6x+3x2B.(2m2n﹣3mn2)(﹣mn)=﹣2m3n2+3m2n3C.xy(x2y﹣3xy2﹣1)=x3y2﹣x2y3D.(x n+1﹣y)xy=x n+2y﹣xy2【知识考点】单项式乘多项式.【思路分析】各项利用单项式乘多项式法则计算得到结果,即可做出判断.【解答过程】解:A、﹣3x(2﹣x)=﹣6x+3x2,计算正确,故本选项不符合题意;B、(2m2n﹣3mn2)(﹣mn)=﹣2m3n2+3m2n3,计算正确,故本选项不符合题意;C、xy(x2y﹣3xy2﹣1)=x3y2﹣3x2y3﹣xy,计算错误,故本选项符合题意;D、(x n+1﹣y)xy=x n+2y﹣xy2,计算正确,故本选项不符合题意.故选:C.【总结归纳】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.19.(2017春•全椒县期末)若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0 D.q+2p=0【知识考点】多项式乘多项式.【思路分析】利用多项式乘多项式法则计算,令一次项系数为0求出p与q的关系式即可.【解答过程】解:(x2+px+q)(x﹣2)=x3﹣2x2+px2﹣2px+qx﹣2q=x3+(p﹣2)x2+(q﹣2p)x﹣2q,∵结果不含x的一次项,∴q﹣2p=0,即q=2p.故选:B.【总结归纳】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.20.(2018春•杭州期中)已知(x﹣3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A.m=3,n=9 B.m=3,n=6 C.m=﹣3,n=﹣9 D.m=﹣3,n=9【知识考点】多项式乘多项式.【思路分析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.不含某一项就是说这一项的系数为0.【解答过程】解:∵原式=x3+(m﹣3)x2+(n﹣3m)x﹣3n,又∵乘积项中不含x2和x项,∴(m﹣3)=0,(n﹣3m)=0,解得,m=3,n=9.故选:A.【总结归纳】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.21.(2019秋•张掖期末)下列各式中,能用平方差公式计算的是()A.(﹣a﹣b)(a+b)B.(﹣a﹣b)(a﹣b)C.(﹣a﹣b+c)(﹣a﹣b+c)D.(﹣a+b)(a﹣b)【知识考点】平方差公式.【思路分析】分别将四个选项变形,找到符合a2﹣b2=(a﹣b)(a+b)的即可解答.【解答过程】解:A、(﹣a﹣b)(a+b)=﹣(a+b)(a+b),不符合平方差公式,故本选项不符合题意;B、(﹣a﹣b)(a﹣b)=﹣(a+b)(a﹣b)=b2﹣a2,符合平方差公式,故本选项符合题意;C、(﹣a﹣b+c)(﹣a﹣b+c)=[c﹣(a+b)]2,不符合平方差公式,故本选项不符合题意;D、(﹣a+b)(a﹣b)=﹣(a﹣b)(a﹣b),不符合平方差公式,故本选项不符合题意.故选:B.【总结归纳】本题考查了平方差公式,将算式适当变形是解题的关键.22.(2019秋•张掖期末)(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b2【知识考点】平方差公式.【思路分析】根据平方差公式的逆用找出这两个数写出即可.【解答过程】解:∵(﹣5a2+4b2)(﹣5a2﹣4b2)=25a4﹣16b4,∴应填:﹣5a2﹣4b2.故选:C.【总结归纳】本题主要考查了平方差公式,熟记公式结构是解题的关键.23.(2019秋•海安市期中)下列乘法中,能应用平方差公式的是()A.(﹣x+y)(x﹣y)B.(a2+x)(a﹣x)C.(a2﹣1)(﹣a2﹣1)D.(﹣a2﹣b2)(a2+b2)【知识考点】平方差公式.【思路分析】利用平方差公式的结构特征判断即可.【解答过程】解:能用平方差公式计算的是(a2﹣1)(﹣a2﹣1)=﹣(a2﹣1)(a2+1),相同项是a2,相反项是1.故选:C.【总结归纳】此题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.24.(2019秋•田家庵区期末)如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)【知识考点】4G:平方差公式的几何背景.【思路分析】由大正方形的面积﹣小正方形的面积=矩形的面积,进而可以证明平方差公式.【解答过程】解:大正方形的面积﹣小正方形的面积=a2﹣b2,矩形的面积=(a+b)(a﹣b),故(a+b)(a﹣b)=a2﹣b2,故选:A.【总结归纳】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键.25.(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2【知识考点】4G:平方差公式的几何背景.【思路分析】根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答过程】解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.【总结归纳】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.26.(2017•南召县一模)在下列运算中,计算正确的是()A.(x5)2=x7B.(x﹣y)2=x2﹣y2C.x13÷x3=x10D.x3+x3=x6【知识考点】35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法;4C:完全平方公式.【思路分析】利用积的乘方,完全平方公式,同底数的幂的除法,以及合并同类项求出结果即可确定答案.【解答过程】解:A、(x5)2=x10,故本选项不符合题意;B、(x﹣y)2=x2﹣2xy+y2,故本选项不符合题意;C、x13÷x3=x10,故本选项符合题意;D、x3+x3=2x3,故本选项不符合题意.故选:C.【总结归纳】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.27.(2016•武汉)运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2﹣6x+9 C.x2+6x+9 D.x2+3x+9【知识考点】4C:完全平方公式.【思路分析】根据完全平方公式,即可解答.【解答过程】解:(x+3)2=x2+6x+9,故选:C.。

人教版八年级数学上整式乘除(试题+参考答案)教案教学设计导学案教学案课时作业同步练习试卷含答案解析

人教版八年级数学上整式乘除(试题+参考答案)教案教学设计导学案教学案课时作业同步练习试卷含答案解析

整式乘除复习【目标导航】进一步理解幂的四种运算法则,能熟练进行整式乘除运算.【归纳小结】1.幂的四种运算法则:(1)同底数幂相乘:;(2)幂的乘方:;(3)积的乘方:;(4)同底数幂相除:.2.零指数幂:(4).3.整式乘除运算:单项式乘除:(三部分)多项式除以单项式多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相单项式乘以多项式:多项式除以单项式:多项式乘以多项式:【例题指导】例1 填空:(1)8x6y4÷=4x2y2;×3abc=6a3b2c2;(5a3b2+10a2b3)÷=a+2b;(6a2b2++)÷=3a+b-1.(2)(7.9×103)(-2×103)2= ;(-2)2005+(-2)2004= ;(-13)99×950= ;例2 填空:(1)若a x=2,a y=3,则a2x+2y= ,a3x-2y= ;(2)若10m=2,10n=3,则23m-2n·53m-2n= ;(3)若2x+3·3x+3=36x-2,则x= ;(4)若22x+3-22x+1=48,则x= .例3 计算:(1) (-p8)·(-p2)3·[(-p3)]2;45(2) (-3a 2b 3)2·(-a 3b 2)5;(3) (x -1) (x +2)-3[1-(x -1) (x -3)];(4) [(a 2)3·(-a 4)3]÷(a 6)2÷(-a 3)2;(5)[5a 4(a 2-4a )-(-3a 6)2÷(a 2)3]÷(-2a 2)2.例4 先化简再求值:(1) [2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y ,其中x =2008,y =2004;(2)(2011江苏南通)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b ) (2a -b ),其中a =2,b =1.(3)(2011四川重庆)化简:(a+b )2+a(a-2b) . (4)2011湖北荆州)已知A=2x ,B 是多项式,在计算B+A 时,小马虎同学把B+A 看成了B ÷A ,结果得x 2+12x ,则B+A.【课堂操练】(一)填空题1.x 10=(-x 3)2·_________=x 12÷x( )-2.4(m -n )3÷(n -m )2=___________. 3.-x 2·(-x )3·(-x )2=__________. 4.(31)-2+π0=_________; 4101×0.2599=__________. 5.(2011浙江杭州)当7x =-时,代数式(2x +5)(x +1)-(x -3)(x +1)的值为 . (二)选择题6.下列计算中正确的是 ( ) A .a n ·a 2=a 2n B .(a 3)2=a 5 C .x 4·x 3·x =x 7 D .a 2n -3÷a 3-n =a 3n -6 7.x 2m+1可写作 ( )A .(x 2)m+1B .(x m )2+1C .x ·x 2mD .(x m )m +18.下列运算正确的是 ( )A .(-2ab )·(-3ab )3=-54a 4b 4 B .5x 2·(3x 3)2=15x 12C .(-0.16)·(-10b 2)3=-b 7D .(2×10n )(21×10n )=102n9.化简(a n b m )n ,结果正确的是 ( )A .a 2n b mn B .nm n b a 2C .mn n b a 2D .nm n b a 2 10.如果x 2-kx -ab =(x -a )(x +b ),则k 应为 ( )A .a +b B .a -b C .b -a D .-a -b (三)计算 11.(1)(2011江苏淮安)计算: a 4·a 2= .(2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);(3)(20a n -2b n -14a n -1b n +1+8a 2n b )÷(-2a n -3b );【课后巩固】(一)填空题 1.a 6·a 2÷(-a 2)3=________. 2.( )2=a 6b 4n -2.3(2011广东清远) 计算:2325________.x x ⋅= 4.(2x 2-4x -10xy )÷( )=21x -1-25y . 5.x 2n -x n +________=( )2.6.若3m ·3n =1,则m +n =_________.7.已知x m ·x n ·x 3=(x 2)7,则当n =6时m =_______. 8.若x +y =8,x 2y 2=4,则x 2+y 2=_________. 9.若3x =a ,3y =b ,则3x -y =_________. 10.[3(a +b )2-a -b ]÷(a +b )=_________. 11.若2×3×9m =2×311,则m =___________.12.代数式4x 2+3mx +9是完全平方式则m =___________.(二)选择题13.(2011 江苏苏州)若m·23=26,则m 等于( ) A . 2 B . 4 C . 6 D . 814.下列计算正确的是 ( )A .x 2(m +1)÷x m +1=x 2 B .(xy )8÷(xy )4=(xy )2C .x 10÷(x 7÷x 2)=x 5D .x 4n ÷x 2n ·x 2n =1 15.4m ·4n 的结果是 ( ) A .22(m +n )B .16mnC .4mnD .16m +n16.若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为 ( ) A .5 B .25C .25D .10 17.下列算式中,正确的是 ( )A .(a 2b 3)5÷(ab 2)10=ab 5B .(31)-2=231=91C .(0.00001)0=(9999)0D .3.24×10-4=0.000032418.(-a +1)(a +1)(a 2+1)等于 ( ) A .a 4-1 B .a 4+1 C .a 4+2a 2+1 D .1-a 419.若(x +m )(x -8)中不含x 的一次项,则m 的值为 ( ) A .8 B .-8 C .0 D .8或-820.已知a +b =10,ab =24,则a 2+b 2的值是 ( ) A .148 B .76 C .58 D .52 21.计算:(1)(32a 2b )3÷(31ab 2)2×43a 3b 2;(2)x 3·x 6+x 20÷x 10-x n +8÷x n -1;(3)[(2x 2y )2(-2xy )3-xy 2(-4xy 2)2]÷8x 2y 3;(4)[(a -b )(a +b )]2÷(a 2-2ab +b 2)-2ab . 22.(1)一个半径为10米的水池,现在其周围扩建一个宽为x 米的环形小路,其面积为 .(2)一个长方形长为2x cm ,宽比长少4cm ,将其长和宽都扩大3cm ,则面积增加了 .(3)(2011浙江衢州)有足够多的长方形和正方形的卡片,如下图.3a2b a1如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是 .2)小明想用类似的方法解释多项式乘法22(3)(2)273a b a b a ab b ++=++,那么需用2号卡片 张,3号卡片 张.23(2011湖南衡阳)先化简,再求值.2(1)(2)x x x ++-,其中12x =-.24.解方程[2x 3(2x -3)-x 3]÷(2x 2)=x (2x -1) 25.解方程组⎩⎨⎧+=-+=+-++.3)3)(4(0)2()5)(1(xy y x y x y x26.与不等式(x +1)(x 2-x +1)-x (x -1)2<(2x -1)(x -3).【课外拓展】27.(2011浙江金华)已知2x -1=3,求代数式(x -3)2+2x (3+x ) -7的值.28.(2011辽宁沈阳)先化简,再求值:(x +1)2-(x +2)(x -2)x x 是整数。

整式的乘除》单元考试题及答案

整式的乘除》单元考试题及答案

整式的乘除》单元考试题及答案第五章:整式的乘除单元测验数学试卷班级:______ 姓名:______ 得分:______一、填空题:(每小题3分,共30分)1.(-a)×(-a)×a = ________;-x²⁵³ ÷ (-x)³²² = ________2.-2x²y³3.2c³ × 3(-8x²) × (-x) × (-y)² = ________;abc² × (-2ac) =________4.(2²)² ÷ 2x = ________;5.-x²y × (x²-2xy+1/5) = ________;6.(-1/2) × (-4xy) = 12xy;-2 + (π-3.14) - (-2) = ________7.(a-10a+7) = ________;若x-3x+1=2,则x+(2/2)¹ =________8.若x²n=2,则2x³n = ________;若642 × 83 = 2ⁿ,则n = ________9.(-8)²⁰⁰⁴ = ________10.已知ab=-3,则-abab-ab-b = ________二、选择题:(每小题3分,共30分)11.下列各式计算正确的是()A、a² = a×a;B、3×5x² = 10x⁶;C、(-c)÷(-c) = -1;D、ab³ = a³b³12.下列各式计算正确的是()A、(x+2y)² = x²+4y²;B、(x+5)(x-2) = x²+3x-10;C、(-x+y)² = x²+y²;D、(x+2y)(x-2y) = x²-4y²13.用科学记数法表示的各数正确的是()A、 = 3.45×10⁴;B、0. = 4.3×10⁻⁵;C、-0. = -4.8×10⁻⁴;D、- = 3.4×10⁵14.当a=1/3时,代数式(a-4)(a-3)-(a-1)(a-3)的值为()A、3/4;B、-6;C、0;D、815.已知a+b=2,ab=-3,则a²-ab+b²的值为()A、11;B、12;C、13;D、1416.已知28a²bm÷4anb²=7b²,那么m、n的值为()A、m=4,n=2;B、m=4,n=1;17、设正方形边长为x,则面积为x^2,根据题意可得(x+3)^2-x^2=39,化简得x=6,答案为C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(此文档为word格式,下载后您可任意编辑修改!)第13章整式的乘除一、单元设计总体分析本章教学内容本章是继七年级代数式中学习了整式及其加减运算后,进一步学习整式的乘除,是七年级的延续和发展。

本章的主要内容有同底数幂的乘法和除法,幂的乘方和积的乘方,以及单项式与单项式相乘、单项式与多项式相乘、多项式与多项式相乘,单项式除以单项式、多项式除以单项式、因式分解等运算,整式的乘除法既是七年级上册整式的加减的后续学习,也是分式学习的基础,因此,本章内容的地位也至关重要。

多项式的乘法运算最终都转化为同底数幂的乘法进行,因此同底数幂的乘法是整式乘法的基础,所以同底数幂的运算法则和整式的乘法是本章教学的重点。

而其中多项式与多项式相乘的运算要综合运用乘法分配律、交换律及幂的运算法则,是本章教学的难点。

因式分解这部分内容的难点是因式分解的两种基本方法,即提公因式法和公式法,在教学中一定要让学生牢固地掌握。

因式分解是整式乘法的逆向变形,教材中两种因式分解方法的引入,都紧紧扣住这一关键,采用对比的方法,从多项式乘法出发,根据相等关系得出因式分解公式和方法。

本章教学目标1、了解正整数指数幂的运算法则,会进行正整数指数幂的计算。

2、探索了解单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会进行简单的整式乘法运算。

3、会由整式的乘法推导乘法公式:;,了解公式的几何背景,并能进行简单计算。

4、通过从幂的运算到整式乘法,再到乘法公式的学习,了解乘法公式来源于整式乘法,又应有于整式乘法的辩证过程,并初步认识到事物发展过程中“特殊→一般→特殊”的一般规律。

5、探索了解单项式与单项式、多项式与单项式的法则,会进行简单的整式除法运算。

6、了解因式分解的意义及与整式的乘法之间的关系,从中体会事物之间可以相互转化的辩证思想。

7、会用提公因式法、公式法{直接用公式不超过两次}进行因式分解。

8、让学生主动参与到一些探索过程中去,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严谨性和初步解决问题的愿望与能力。

二、课时安排本章的教学时间为22课时,建议分配如下:§13.1 幂的运算-4课时§13.2 整式乘法-4课时§13.3 乘法公式--4课时§13.4 整式除法--2课时§13.5 因式分解--2课时复习课时课题学习2课时三、本章教学策略1、同底数幂的乘法课本首先从计算引出数学运算或处理现实世界中数量之间的关系时,经常会碰到同底数幂相乘的问题,由此引导学生进行合作学习,探索同底数幂相乘的规律,得出同底数幂的乘法法则。

之后,又安排第2、第3课时,让学生继续通过合作学习,进一步探索幂的乘方与积的乘方的运算法则。

在这三个法则的探索过程中,对乘方意义的理解和运用是关键,其中积的乘方法则的得出还需用到乘法交换律。

同底数幂的除法可以引导学生通过填空,由同底数幂的乘法的逆运算,推导归纳同底数幂相除的法则。

同底数幂的乘法法则、幂的乘方法则、积的乘方法则以及同底数幂相除的法则和整式的除法法则都是从“数”的相应运算入手,类比、过渡到到“式”的运算,从中探索、归纳“式”的运算法则,使新的运算规律自然而然地顺应到原有的知识之中,使原有知识得到扩充、发展。

2、单项式的乘法,课本从一个实际例子,引出单项式的乘法,并引导学生思考两个单项式相乘的运算方法和依据(两个单项式相乘运算的依据主要是乘法交换律和同底数幂的乘法法则),并在此基础上引导学生归纳得出单项式与单项式相乘的法则。

之后引导学生从面积的不同表示和乘法分配律两个方面探索单项式与多项式相乘的运算规律,得出单项式与多项式相乘的法则。

多项式的乘法,对多项式与多项式相乘的法则,课本也是通过对图形面积的不同表示直观得出的,这样处理方便学生理解,符合初中学生形象思维丰富的特点。

之后让学生想一想,用乘法分配律解释法则,提高学生对多项式相乘法则的理性理解。

整式的乘法运算规律的探索,从最简单的同底数幂的乘法运算规律的探索开始,步步深入——研究幂的乘方、积的乘方、两个单项式的乘法、单项式与多项式的乘法,逐步过渡到多项式与多项式的乘法,使学生感到,每一个新规律的探索,都可以用原有知识进行(幂的意义、乘法的交换律、分配律),只需归纳其中的规律,使原有知识不断丰富、完善。

在这里,用原有知识探索发现新的规律,新发现的规律又是下一个新规律探索的基础,学习层次得到不断提高。

整式除法的学习也是同样,从同底数幂相除运算法则的探索开始,到单项式与单项式相除、多项式与单项式相除的运算规律探索,步步深入。

3、乘法公式,实际是两个特殊的多项式相乘及其所得的结果,由于在数学运算中经常用到,就把它们作为公式。

课本采用引导学生观察相乘的两个多项式的系数和字母的特点,以及所得多项式的系数和字母的特点,比较它们之间的关系,得出平方差公式和两数和的完全平方公式。

对于两数差的完全平方公式则采用代换的方法得出,这是一种重要的思想方法。

课本还分别安排了让学生尝试用图形的面积直观验证平方差公式和两数和的完全平方公式成立,目的使学生了解公式的几何背景。

课本在平方差公式之后安排例2,用平方差公式进行两个特殊数值的相乘计算,说明乘法公式还可用于简便计算。

4、整式的除法是整式乘法的逆运算,引导学生考虑两个单项式相乘的法则,并得出单项式除以单项式的法则。

之后安排做一做,引导学生将数的除法类比到式的除法,然后归纳多项式除以单项式的运算方法,得出运算法则。

5、因式分解这部分内容的难点是因式分解的两种基本方法,即提公因式法和公式法,在教学中一定要让学生牢固地掌握。

因式分解的理论比较多(如因式分解的因子存在性与唯一性),分解因式的方法很多;变化技巧较高,这是本部分知识的难点,教学时一定要按照教学要求教学,防止随意拓宽内容和加深题目的难度。

因式分解是整式乘法的逆向变形,教材中两种因式分解方法的引入,都紧紧扣住这一关键,采用对比的方法,从多项式乘法出发,根据相等关系得出因式分解公式和方法。

因式分解是整式乘法的逆运算,课本安排学生自己进行体验、探索与认识,有利于学生知识的迁移,形成新的知识结构。

四、课时教学13.1 幂的运算同底数幂的乘法一、素质教育目标1.理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质.2.能够熟练运用性质进行计算.3.通过推导运算性质训练学生的抽象思维能力.4.通过用文字概括运算性质,提高学生数学语言的表达能力.5.通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度.二、学法引导1.教学方法:尝试指导法、探究法.2.学生学法:运用归纳法由特殊性推导出公式所具有的一般性,在探究规律过程中增进时知识的理解.三、教学重点·难点:(-)重点幂的运算性质.(二)难点有关字母的广泛含义及“性质”的正确使用.四、课时安排一课时.五、师生互动活动设计1.复习幂的意义,并由此引入同底数幂的乘法.2.通过一组同底数幂的乘法的练习,努力探究其规律,在探究过程中理解公式的意义.3.教师示范板书,学生进行巩固性练习,以强化学生对公式的掌握.六、教学步骤1.创设情境,复习导入表示的意义是什么?其中、、分别叫做什么?师生活动:学生回答(叫底数,叫指数,叫做幂),同时,教师板书.提问:1)表示什么?可以写成什么形式?______________2)计算:【教法说明】此问题的提出,目的是通过回忆旧知识,为完成下面的尝试题和学习本节知识提供必要的知识准备.2.尝试解题,探索规律(1)式子的意义是什么?(2)这个积中的两个因式有何特点?学生回答:(1)与的积(2)底数相同(2)式子怎样计算?3247⨯⨯⨯⨯⨯⨯=2=⨯2222()22(2)2学生活动:学生自己思考完成,然后一个(或几个)学生回答结果.同样的:(3)计算:(1)(2)(3)师生共同总结:(都是正整数)请同学们试着用文字概括这个性质:同底数幂相乘,底数不变、指数相加3.尝试反馈,理解新知例1 计算:(1)(2)(3)练习:课本:P19 练习1、2题计算:(1)(2)(3)注意引导学生符号的确定和整体思想的培养;4.知识拓展:例3 (1)(2)(3)已知:,求5.学习小结:学生总结本节所学内容:(都是正整数)同底数幂相乘,底数不变、指数相加6.布置作业:略幂的乘方一、教学目标1.理解幂的乘方性质并能应用它进行有关计算.2.通过推导性质培养学生的抽象思维能力.3.通过运用性质,培养学生综合运用知识的能力.4.通过用文字概括运算性质,提高学生数学语言的表达能力.5.通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度.二、学法引导1.教学方法:引导发现法、尝试指导法.2.学生学法:关键是准确理解幂的乘方公式的意义,只有准确地判别出其适用的条件,才可以较容易地应用公式解题.三、教学重点·难点(-)重点准确掌握幂的乘方法则及其应用.(二)难点同底数幂的乘法和幂的乘方的综合应用.四、课时安排一课时.五、师生互动活动设计1.复习同底数幂乘法法则并进行计算,从而引入新课,在探究规律的过程中,得出幂的乘方公式,并加以充分的理解.2.教师举例进行示范,师生共练以熟悉幂的乘方性质.3.设计错例辨析和练习,通过不同的题型,从不同的角度加深对公式的理解.六、教学过程1.复习引入(1)叙述同底数幂乘法法则并用字母表示.(2)计算:①②2.探索新知,讲授新课(1)引入新课:计算:(1)(2)(3)()3)34333⨯⨯=a=⨯a(aaaa由上述练习猜想:?(2)幂的乘方法则字母表示:(,都是正整数)语言叙述:幂的乘方,底数不变,指数相乘.推导过程按课本,让学生说出每一步变形的根据.3.尝试反馈,理解新知例1 计算:(1)(2)练习:课本:P20 练习1、2题4.知识拓展:1、计算:(2)2、错例辨析:下列各式的计算中,正确的是()A.B.C.D.5.知识小结:1、幂的乘方:(,都是正整数)语言叙述:幂的乘方,底数不变,指数相乘.2、同底数幂的乘法与幂的乘方性质比较:6.布置作业:略积的乘方一、教学目标1.进一步理解积的乘方的运算性质,准确掌握积的乘方的运算性质,熟练应用这一性质进行有关计算.2.通过推导性质进一步训练学生的抽象思维能力,通过完成例2,培养学生综合运用知识的能力.3.培养实事求是、严谨、认真、务实的学习态度.4.渗透数学公式的结构美、和谐美.二、学法引导1.教学方法:引导发现法、探究法、讲练法.2.学生学法:本节主要学习幂的乘方性质和积的乘方性质,到现在为止,我们共学习了幂的三个运算性质.进行幂的运算,关键是熟练掌握幂的三个运算性质,深刻理解每种运算的意义,避免互相混淆,有时逆用幂的三个运算性质,还可简化运算.三、教学重点、难点(-)重点准确掌握积的乘方的运算性质.(二)难点用数学语言概括运算性质.四、课时安排一课时.五、师生互动活动设计1.通过绦习,以达到复习同底数幂的乘法、幂的乘方这两个性质的目的,让学生互问互答.2.推导积的乘方的公式,在推导过程中让学生说出每一步的理由,以便于学生对公式的准确理解.3.通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握.4.多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质.六、教学过程1.创设情境,复习导入前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:填空:(1)(2)(3)(4)学生活动:4个学生说出答案,同桌同学给予判断.【教法说明】通过完成本练习,进一步巩固、理解同底数幂的乘法,幂的乘方,同时也为顺利完成本节例2做个铺垫.2.探索新知,讲授新课我们知道表示个相乘,那么表示什么呢?(注意:中具有广泛性)学生回答时,教师板书.这又根据什么呢?(学生回答乘法交换律、结合律)也就是请同学们回答的结果怎样?那么(是正整数)如何计算呢?;____________个运用了________律和________律________个________个学生活动:学生完成填空.(是正整数)刚才我们计算的、是什么运算?(答:乘方运算)什么的乘方?(积的乘方)通过刚才的推导,我们已经得到了积的乘方的运算性质.请同学们用文字叙述的形式把它概括出来.学生活动:学生总结,并要求同桌相互交流,互相纠正补充.达成一致后,举手回答,其他学生思考,准备更正或补充.【教法说明】通过学生自己概括总结,既培养了学生的参与意识,又训练了他们归纳及口头表达能力.教师根据学生的概括给予肯定或否定,纠正后板书.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.3.尝试反馈,理解新知例1 计算:(1)(2)(3)(4)练习:课本:P21 练习1、2题4.知识拓展:(一)提出问题:这个性质对于三个或三个以上因式的积的乘方适用吗?如学生活动:在运算的基础上给出答案.(3)(4)学生活动:每一题目均由学生说出完整的解题过程.解:(1)原式(2)原式(3)原式(二)(2)下面的计算对不对?如果不对,应怎样改正?①②③④⑤⑥⑦⑧(三)计算:(1)(2)学生活动:学生分成两组,每组各做一题,各派一个学生板演.【教法说明】学生已具备综合运用性质的能力,让学生尝试解题,目的是训练学生分析问题的能力.分组练习,不仅能激发学生的兴趣,同时也可培养学生的集体荣誉感.学生对知识的印象会更深刻.5.知识小结:学生总结所学的三个公式:(都是正整数)(,都是正整数)(是正整数)6.布置作业:略同底数幂的除法一、教学目标1.掌握同底数幂的除法运算性质.2.运用同底数幂的除法运算法则,熟练、准确地进行计算.3.通过总结除法的运算法则,培养学生的抽象概括能力.4.通过例题和习题,训练学生的综合解题能力和计算能力.二、学法引导1.教学方法:引导发现法、探究法、讲练法.2.学生学法:1.根据除法是乘法的逆运算,从具体的同底数的幂的除法,,逐步归纳出同底数幂除法的一般性质.让学生自己归纳出同底数的幂的除法法则.2.性质归纳出后,不要急于讲例题,要对法则做几点说明、强调,以引起学生的注意.(1)要强调底数是不等于零的,这是因为,若为零,则除数为零,除法就没有意义了.(2)本节不讲零指数与负指数的概念,所以性质中必须规定指数都是正整数,并且,要让学生运用时予以注意.三、教学重点难点1.重点准确、熟练地运用法则进行计算.2.难点根据乘、除互逆的运算关系得出法则.三、教学过程1.创设情境,复习导入前面我们学习了同底数幂的乘法,请同学们回答如下问题,看哪位同学回答得快而且准确.(1)叙述同底数幂的乘法性质.(2)计算:①②③学生活动:学生回答上述问题..(m,n都是正整数)【教法说明】通过复习引起学生回忆,巩固同底数幂的乘法性质,同时为本节的学习打下基础.2.提出问题,引出新知思考问题:怎样计算同底数幂的除法?:(1) (2) (3)学生回答。

相关文档
最新文档