奥数第一讲 第一课时定义新运算

合集下载

六年级奥数定义新运算

六年级奥数定义新运算

第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义, 从而解答某些算式的一种运算.解答定义新运算, 关键是要正确地理解新定义的算式含义, 然后严格按照新定义的计算程序, 将数值代入, 转化为常规的四则运算算式进行计算.定义新运算是一种人为的、临时性的运算形式, 它使用的是一些特殊的运算符号, 如:*、△、⊙等, 这是与四则运算中的“+、-、×、÷”不同的.新定义的算式中有括号的, 要先算括号里面的. 但它在没有转化前, 是不适合于各种运算定律的.二、精讲精练【例题1】假设a*b=(a+b)+(a-b), 求13*5和13*(5*4).练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).. 求27*9.2、设a*b=a2+2b, 那么求10*6和5*(2*8).【例题2】设p、q是两个数, 规定:p△q=4×q-(p+q)÷2. 求3△(4△6).练习2:1、设p、q是两个数, 规定p△q=4×q-(p+q)÷2, 求5△(6△4).2、设p、q是两个数, 规定p△q=p2+(p-q)×2. 求30△(5△3).【例题3】如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222, 3*3=3+33+333, 4*2=4+44, 那么7*4=________;210*2=________.练习3:1、如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222, 3*3=3+33+333, ……那么4*4=________.2、规定, 那么8*5=________.【例题4】规定②=1×2×3, ③=2×3×4 , ④=3×4×5, ⑤=4×5×6, ……如果1/⑥-1/⑦ =1/⑦×A, 那么, A是几?练习4:1、规定:②=1×2×3, ③=2×3×4, ④=3×4×5, ⑤=4×5×6, ……如果1/⑧-1/⑨=1/⑨×A, 那么A=________.2、规定:③=2×3×4, ④=3×4×5, ⑤=4×5×6, ⑥=5×6×7, ……如果1/⑩+1/⑾=1/⑾×□, 那么□=________.【例题5】设a⊙b=4a-2b+ ab /2,求x⊙(4⊙1)=34中的未知数x.练习5:1、设a⊙b=3a-2b, 已知x⊙(4⊙1)=7求x.2、对两个整数a和b定义新运算“△”:a△b= , 求6△4+9△8.3、设M、N是两个数, 规定M*N=M/N+N/M, 求10*20-1/4.三、课后作业1、设a*b=3a-b×1/2, 求(25*12)*(10*5).2、如果2*1=1/2, 3*2=1/33, 4*3=1/444, 那么(6*3)÷(2*6)=________.3、如果1※2=1+2, 2※3=2+3+4, ……5※6=5+6+7+8+9+10, 那么x※3=54中, x=________.4、对任意两个整数x和y定于新运算, “*”:x*y=(其中m是一个确定的整数). 如果1*2=1, 那么3*12=________.面积计算一、知识要点计算平面图形的面积时, 有些问题乍一看, 在已知条件与所求问题之间找不到任何联系, 会使你感到无从下手. 这时, 如果我们能认真观察图形, 分析、研究已知条件, 并加以深化, 再运用我们已有的基本几何知识, 适当添加辅助线, 搭一座连通已知条件与所求问题的小“桥”, 就会使你顺利达到目的. 有些平面图形的面积计算必须借助于图形本身的特征, 添加一些辅助线, 运用平移旋转、剪拼组合等方法, 对图形进行恰当合理的变形, 再经过分析推导, 方能寻求出解题的途径.二、精讲精练【例题1】已知如图, 三角形ABC的面积为8平方厘米, AE=ED, BD=2/3BC, 求阴影部分的面积.练习1:1、如图, AE=ED, BC=3BD, S△ABC=30平方厘米. 求阴影部分的面积.2、如图所示, AE=ED, DC=1/3BD, S△ABC=21平方厘米. 求阴影部分的面积.3、如图所示, DE=1/2AE, BD=2DC, S△EBD=5平方厘米.求三角形ABC的面积.【例题2】两条对角线把梯形ABCD分割成四个三角形, 如图所示, 已知两个三角形的面积, 求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形, (如图所示), 已知两个三角形的面积, 求另两个三角形的面积是多少?2、已知AO=1/3OC, 求梯形ABCD的面积(如图所示).【例题3】四边形ABCD的对角线BD被E、F两点三等分, 且四边形AECF的面积为15平方厘米. 求四边形ABCD的面积(如图所示).练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分, 且四边形AECG的面积为15平方厘米. 求四边形ABCD的面积(如图).2、如图所示, 求阴影部分的面积(ABCD为正方形).【例题4】如图所示, BO=2DO, 阴影部分的面积是4平方厘米. 那么, 梯形ABCD的面积是多少平方厘米?练习4:1、如图所示, 阴影部分面积是4平方厘米, OC=2AO. 求梯形面积.2、已知OC=2AO, S△BOC=14平方厘米. 求梯形的面积(如图所示).3、已知S△AOB=6平方厘米. OC=3AO, 求梯形的面积(如图所示).【例题5】如图所示, 长方形ADEF的面积是16, 三角形ADB的面积是3, 三角形ACF的面积是4, 求三角形ABC的面积.练习5:1、如图所示, 长方形ABCD的面积是20平方厘米, 三角形ADF的面积为5平方厘米, 三角形ABE的面积为7平方厘米, 求三角形AEF的面积.2、如图所示, 长方形ABCD的面积为20平方厘米, S△ABE=4平方厘米, S△AFD=6平方厘米, 求三角形AEF的面积.三、课后练习1、已知三角形AOB的面积为15平方厘米, 线段OB的长度为OD的3倍. 求梯形ABCD的面积. (如图所示).2、已知四边形ABCD的对角线被E、F、G三点四等分, 且阴影部分面积为15平方厘米. 求四边形ABCD的面积(如图所示).3、如图所示, 长方形ABCD的面积为24平方厘米, 三角形ABE、AFD的面积均为4平方厘米, 求三角形AEF的面积.。

四年级奥数定义新运算

四年级奥数定义新运算

定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

例1:设a、b都表示数,规定:a△b表示a的3倍减去b的2倍,即:a△b = a×3-b×2。

试计算:(1)5△6;(2)6△5。

练习1:(1)设a、b都表示数,规定:a○b=6×a-2×b。

试计算3○4。

(2):设a、b都表示数,规定:a*b=3×a+2×b。

试计算:(1)(5*6)*7 (2)5*(6*7)例2:对于两个数a与b,规定a⊕b=a×b+a+b,试计算6⊕2。

练习2:(1)对于两个数a与b,规定:a⊕b=a×b-(a+b)。

计算3⊕5。

(2)新运算规定:P☆Q=5P+4Q,求8☆9☆2。

例3:如果2△3=2+3+4,5△4=5+6+7+8,按此规律计算3△5。

练习3:(1)如果5▽2=5×6,2▽3=2×3×4,计算:3▽4。

(2)如果2▽4=24÷(2+4),3▽6=36÷(3+6),计算8▽4。

例4:2▽4=8,5▽3=13,3▽5=11,9▽7=25。

按此规律计算:7▽3。

练习4:(1)有一个数学运算符号“▽”,使下列算式成立:6▽2=12,4▽3=13,3▽4=15,5▽1=8。

按此规律计算:8▽4。

(2)2▽4=8,5▽3=13,3▽5=11,9▽7=25。

按此规律计算7▽3例5:对运算Θ∆和,规定a b a b a b b a b a -⨯=Θ+⨯=∆,,求)()(4232Θ∆∆练习5:(1)已知a,b 是任意的自然数,规定:2,1-⨯=∨-+=∧b a b a b a b a ,求)()(5386∨∧∧(2)规定运算“☆”为:若a>b ,则a ☆b=a +b ;若a=b ,则a ☆b=a -b +1;若a<b ,则a ☆b=a ×b 。

小学奥数-定义新运算

小学奥数-定义新运算

小学奥数-定义新运算小学奥数——定义新运算1.定义运算△为a△b=3×a-2×b。

求4△3,3△4,(17△6)△2,17△(6△2)和5△b=5时的b的值。

2.定义运算※为a※b=a×b-(a+b)。

求5※7,7※5,12※(3※4),(12※3)※4和3※(5※x)=3时的x的值。

3.暂无内容。

4.已知4※2=14,5※3=22,3※5=4,7※18=31,求6※9的值。

5.定义运算▽为a▽b=a×b+a-b,求5▽8.6.定义运算△为a△b=a+(a+1)+(a+2)+……(a+b-1),其中a,b表示自然数。

求1△100的值和5△b=5时的b的值。

7.定义运算为a b3a4b,求(87) 6.8.定义运算⊖为a⊖b=5×a×b-(a+b),求11⊖12.9.定义运算※为a※b=2×a×b-1/4×b,求8※(4※16)。

10.定义运算□为x□y=(x+y)/4,求a□16=10中a的值。

11.定义运算为a b=a×b/(a+b),求21010的值。

12.定义运算※为P※Q=(P+Q)/2,求4※(6※8)和x※(6※8)=6时的x的值。

13.定义运算⊕为x⊕y=(x+1)/y,求3⊕(2⊕4)的值。

14.已知4⊗8=16,10⊗6=26,6⊗10=22,18⊗14=50,求7⊗3的值。

15.定义运算为a b=(a+3)×(b-5),求5(67)的值。

16.定义运算为x y=6x+5y和△为x△y=3xy,求(23)△4的值。

读一读】狼&羊羊和狼在一起时,狼要吃掉羊,所以我们定义了两种运算,用符号△表示羊和狼的运算,用符号☆表示羊与羊战胜狼的运算。

具体规则见上文。

六年级奥数第01讲-定义新运算(教)

六年级奥数第01讲-定义新运算(教)

学科教师辅导讲义学员编号: 年 级:六年级 课 时 数:3 学员姓名: 辅导科目:奥数学科教师:授课主题 第01讲-定义新运算授课类型 T 同步课堂P 实战演练S 归纳总结教学目标① 学会理解新定义的内容;② 理解新定义内容的基础上能够解决用新定义给出的题目; ③ 学会自己总结解题技巧。

授课日期及时段T (Textbook-Based )——同步课堂一、 知识概念1、 定义新运算是指运用某种特殊的符号表示的一种特定运算形式。

注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。

(2)我们还要知道,这是一种人为的运算形式。

它是使用特殊的运算符号,如:*、▲、★、◎、、Δ、◆、■等来表示的一种运算。

(3)新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

2、一般的解题步骤是:一是认真审题,深刻理解新定义的内容; 二是排除干扰,按新定义关系去掉新运算符号; 三是化新为旧,转化成已有知识做旧运算。

例1、对于任意数a ,b ,定义运算“*”: a*b=a×b-a-b 。

知识梳理典例分析(21⊗-31⊗)×32⊗⊗= 21⊗×32⊗⊗-31⊗×32⊗⊗=31⊗-31⊗×32⊗⊗=31⊗(1-32⊗⊗)= 4321⨯⨯×(1-432321⨯⨯⨯⨯)=4321⨯⨯×(1-41)=4321⨯⨯×43=321例6、规定a▲b=5a+21ab-3b 。

求(8▲5)▲X=264中的未知数。

【解析】根据新定义,应该先计算括号里面的,再计算括号外面的,然后解方程即可。

(8▲5)▲X=264 (5×8 +21×8×5-3×5)▲X=264 45▲X=2645×45+21×45×X-3X=264 225+245X-26X =264225+239X=264239X=39 X=2P (Practice-Oriented)——实战演练➢ 课堂狙击1、A ,B 表示两个数,定义A △B 表示(A+B)÷2,求(1)(3△17) △29; (2)[(1△9) △9] △6。

(完整版)定义新运算(小学数学五年级奥数)

(完整版)定义新运算(小学数学五年级奥数)

定义新运算知识与方法:对于常用的加、减、乘、除等运算,我们已经熟知它们的运算法则和计算方法,如6+ 2=8, 6X2=12等。

都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。

由此可见,一种运算实际就是两个数与一个数的一种对应方法。

对应法则不同就是不同的运算。

当然,这个对应法则应该是对应任意两个数。

通过这个法则都有一个唯一确定的数与它们对应。

这节课,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。

解决定义新运算这类题的关键:是抓住定义的本质借用“ +、一、X、十”四则运算进行的,解答时要弄活新运算与四则运算的关系。

特别注意运算顺序,每个新定义的运算符号只能在本题中使用,新运算不一定符合运算定律。

例1:设a、b都表示数,规定:aAb =3X a— 2X b。

试计算:(1) 3A2; (2) 2A3。

练习1:1. 设a b都表示数,规定:a。

b=5X a— 2X b。

试计算3042. 设a b都表示数,规定:a*b=3x a+ 2X b。

试计算:5*6例2:对于两个数a与b,规定b=3a+ 2a,试计算( 3^5)练习2:1.对于两个数a与b,规定:aOb=a+3b,试计算405062.对于两个数A与B,规定:A△ B=2X A — B,试计算5A6A7例3:对于两个数a, b,规定:a金b=ax b+ a+ b,试计算:9 ®练习3:1.对于两个数a, b,规定:a$b=ax b— ( a+ b),试计算:6 ® 7.2..对于两个数A与B,规定:A GB=A X B-2,试计算:8 99例4:如果2、3=2 + 3 + 4, 5A4=5+ 6+ 7+ 8,那么按此规律计算:(1) 3A5;(2) 8A3。

练习4:1.如果4A2=4X 5, 2A3=2X 3X 4,那么按此规律计算:5A4。

2.如果24=24- (2+ 4), 3V6=36- (3 + 6), 6V3=63- (6+ 3),那么按此规律计算:7V2.例5:对于两个数a与b,规定aDb=a(a+1)+(a+2)+・・・(a+b— 1)。

(完整版)小学五年级奥数第一讲__定义新运算及作业

(完整版)小学五年级奥数第一讲__定义新运算及作业

第一讲定义新运算一、a、b是自然数,规定a※b=(a+b)÷2,求:3※(4※6)的值。

二、对于任意两个自然数a、b,定义一种新运算“*”:a*b=ab+a÷b,求75*5=?,12*4=?三、定义运算符“◎”:a◎b=3a+4b-5,求6◎9=?9◎6=?四、定义两种运算“○+”和“○×”,对于任意两个整数a、b规定:a○+b=a+b-1,a○×b=a×b-1,那么8○× [(6○+10)○+(5○×3)]等于多少?五、定义运算“○+”=(a+b)÷3,那么(3○+6)○+12与3○+(6○+12)哪一个大?大的比小的大多少?六、a、b是自然数,规定a⊙b= ab-a-b-10,求8⊙8=?七、如果1*2=1+2,2*3=2+3+4,3*4=3+4+5+6,……,请按照此规则计算3*7=?八、规定运算a@b=(a+b)÷2,且3@(x@2)=2,求x=?九、规定a△b=ab+2a, a▽b=2b-a,求(8△3)▽(9△5)的值。

第二讲定义新运算作业十、定义新运算“*”:a*b=3a+4b-2,求(1)10*11;(2)11*10。

十一、定义新运算“△”:a△b= a÷b×3,求(1)24△6;(2)36△9。

十二、规定a○+b,表示自然数a到b的各个数之和,例如:3 ○+10=3+4+5+6+7+8+9+10=52,求1○+200的值。

十三、定义新运算“○×”,a○×b=10a+20b,求(3○×7)+(4○×8)。

十四、定义新运算“△”:a△b=6a+3b+7,那么5△6和6△5哪个大?大的比小的大多少?十五、规定a*b=(a+b)÷2,求[(1*9)*9]*3的值。

十六、规定a☆b=3a-2b,如果x☆(4☆1)=7,求x的值。

十七、规定X○+Y=(X+Y)÷4求:(1)2○+(3○+5),(2)如果X○+16=10,求X的值。

奥数第一讲奥数定义新运算教师版

奥数第一讲奥数定义新运算教师版

定义新运算姓名分数加、减、乘、除这四种运算的意义和运算法则我们都很熟悉.除了这四种运算之外,我们还可以人为地规定一些其它运算,并给出特定的运算规则,这样的运算形式我们一般称之为定义新运算.它使用的是一些特殊的运算符号,如*、△、▽、⊙等,这与四则运算中的“+、-、×、÷”表示的意义是不同的,其运算规则中运用的计算方法与我们所学的四则运算方法相同,解题的关键是通过表达式寻找到运算规则.一、假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

解析:这道题的新运算被定义为:a*b等于a和b两数之和加上两数之差。

这里的“*”就代表一种新运算。

在定义新运算规定了要先算“小括号”里的。

因此,在13*(5*4)中,就要先算小括号里的5*4。

13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10 =(13+10)+(13-10)=26举一反三(15分)1.设a*b=(a+b)×(a-b),求27*9.解:27*9=(27+9)×(27-9)=36×18=648.2.设a*b=a2+2b,求10*6和5*(2*8)。

解:(1)10*6=102+6×2=100+12=112;(2)5*(2*8)=5*(22+8×2)=5*(4+16)=5*20=52+20×2=25+40=65.求(25*12)*(10*5).解:(25*12)*(10*5)=(25×3-12×)*(10×3-5×)=(75-6)*(30-2.5)=69*27.5=69×3-27.5×=207-13.75=193.25.二、设p、q是两个数,规定:.求.解:因为,所以:所以:.举一反三(15分)1.设p、q是两个数,规定:.求5△(6△4).解:因为,所以:所以:2.设p 、q 是两个数,规定p △q =p 2+(p -q )×2。

六年级小升初常考奥数题型 第1讲定义新运算(例题和答案、讲解)

六年级小升初常考奥数题型 第1讲定义新运算(例题和答案、讲解)

第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).。

求27*9。

2、设a*b=a 2+2b ,那么求10*6和5*(2*8)。

3、设a*b=3a -b ×1/2,求(25*12)*(10*5)。

【答案】1.648 2.112、65 3.193.25【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。

求3△(4△6)。

练习2:1、设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。

2、设p 、q 是两个数,规定p △q =p2+(p -q )×2。

求30△(5△3)。

3、设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。

【答案】1.36 2.902 3.412【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。

练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,7*4=7+77+777+7777=8638210*2=210+210210=2104203*3=3+33+333,……那么4*4=________。

五数奥数新定义运算

五数奥数新定义运算

第一讲定义新运算一、学习目标1. 了解新运算的定义并学会按新运算的要求进行计算。

2. 学习观察、比较、判断和推理的数学方法。

二、内容提要与方法点拨1.要熟练掌握四则运算的法则及运算定律。

2. 定义新运算是指用某种特定的符号表示特定意义的运算。

解答这类题目时,首先要弄清新定义的运算的特定含义,也就是弄清它所表示的通常意义下是什么运算,然后转化为通常意义下的四则运算来进行解答。

在没有特别说明的情况下,一些基本的四则运算法则如从左往右计算、有括号时先算括号里面的等在新定义的运算中也是适用的。

但是,在新定义的运算中,不一定都适合交换律或结合律。

三、例题选讲例1如果a▽b表示a×b+a-b,试计算:(7▽4)▽5。

解:式子a▽b表示两个数的积加上第一个数后再减去第二个数。

在式子(7▽4)▽5中,要先算小括号里面的。

(7▽4)=7×4+7-4=31而31▽5=31×5+31-5=181,所以,(7▽4)▽5=181。

例2规定a☆b表示a的4倍减去b的3倍,即a☆b=4a-3b,试计算:(1)5☆6 ;(2)6☆5。

解:(1)根据a☆b=4a-3b,所以,5☆6=4×5-3×6=2(2)6☆5=6×4-5×3=9注意:a☆b表示a的4倍减去b的3倍,而b☆a表示b的4倍减去a的3倍,这里a≠b,所以a☆b≠b☆a。

因此,本例定义的新运算是不满足交换律的,计算中不能把前后两个数交换。

例3 对于两个数x、y,规定x#y表示3x+2y,试计算:(1)(5#7)#8 ;(2)5#(7#8)。

解:(1)根据x#y=3x+2y,得(5#7)#8=(3×5+2×7)#8=29#8=3×29+2×8=103(2)5#(7#8)=5#(3×7+2×8)=5#37=3×5+2×37=89注意:本例定义的运算是不满足结合律的。

小学六年级奥数--第1讲 定义新运算

小学六年级奥数--第1讲 定义新运算

第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).。

求27*9。

2、设a*b=a2+2b,那么求10*6和5*(2*8)。

【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。

求3△(4△6)。

练习2:1、设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。

2、设p、q是两个数,规定p△q=p2+(p-q)×2。

求30△(5△3)。

【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。

练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……那么4*4=________。

2、规定,那么8*5=________。

【例题4】规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果1/⑥-1/⑦ =1/⑦×A,那么,A是几?练习4:1、规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……如果1/⑧-1/⑨=1/⑨×A,那么A=________。

四年级数学人教版秋季奥数:第一讲 定义新运算

四年级数学人教版秋季奥数:第一讲 定义新运算

第一讲定义新运算知识点讲解定义新运算指用一个符号和已知运算表达式表示一种新的运算。

例如a☆b=3a-3b,新运算使用的符号是☆,而等号右边表示新运算意义的则是四则运算符号。

5☆3=3X5 - 3X3解题技巧要确切理解新运算的意义,严格按照规定的法则进行运算。

注意事项定义新运算一般是不满足四则运算中的运算律和运算性质,所以不能盲目地运用定律和运算性质解题。

例题讲解例1:设a、b都表示数,规定a△b表示a的4倍减去b的3倍,即a△b=4×a-3×b,试计算5△6和6△5。

解析:5△6=5×4-6×3=20-18=26△5=6×4-5×3=24-15=9注意:例1定义的△没有交换律,计算中不得将△前后的数交换。

例2:对于两个数a、b,规定如果a▲b=a×b-(a+b),求6▲(9▲2)。

解析:括号里的部分已经构成了新运算,其运算结果又与括号外的部分构成新运算。

本题要运用新运算的关系,计算两次。

6▲(9▲2)= 6▲[ 9×2 - (9+2) ] = 6▲7 = 6×7-(6+7)= 42-13 = 29注意:有小括号,先算小括号里面的。

例3:已知a☆b=a+(a+1)+(a+2)+•••+(a+b-1),例如:4☆5=4+5+6+7+8,按此规定,2001☆5=?解析:通过观察可以发现,"☆"这个特殊的符号在这道题中所规定的定义是求几个连续的自然数的和。

2001☆5=2001+2002+2003+2004+2005=2003×5=10015注意:定义新运算有省略号的注意尾项。

自我挑战1、现定义一种新运算:★,对于任意整数a和b,规定有:a★b =a+b-1,则4★[(6★8)★(3★5)]的值为( )?2、如果规定:1※2=1+11,2※3=2+22+222,3※4=3+33+333+333+3333。

奥数第1讲_定义新运算

奥数第1讲_定义新运算

小太阳教育第一讲定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

(一)典型例题例1对于任意数a,b,定义运算“*”:a*b=a×b-a-b。

求12*4的值。

分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。

12*4=12×4-12-4=48-12-4=32。

根据以上的规定,求10△6的值。

3,x>=2,求x的值。

分析与解:按照定义的运算,<1,2,3,x>=2,x=6。

由上面三例看出,定义新运算通常是用某些特殊符号表示特定的运算意义。

新运算使用的符号应避免使用课本上明确定义或已经约定俗成的符号,如+,-,×,÷,<,>等,以防止发生混淆,而表示新运算的运算意义部分,应使用通常的四则运算符号。

如例1中,a*b=a×b-a-b,新运算符号使用“*”,而等号右边新运算的意义则用四则运算来表示。

分析与解:按新运算的定义,符号“⊙”表示求两个数的平均数。

四则运算中的意义相同,即先进行小括号中的运算,再进行小括号外面的运算。

按通常的规则从左至右进行运算。

分析与解:从已知的三式来看,运算“”表示几个数相加,每个加数各数位上的数都是符号前面的那个数,而符号后面的数是几,就表示几个数之和,其中第1个数是1位数,第2个数是2位数,第3个数是3位数……按此规定,得35=3+33+333+3333+33333=37035。

从例5知,有时新运算的规定不是很明显,需要先找规律,然后才能进行运算。

例6 对于任意自然数,定义:n!=1×2×… ×n。

奥数第一讲奥数定义新运算教师版(可编辑修改word版)

奥数第一讲奥数定义新运算教师版(可编辑修改word版)

定义新运算姓名分数加、减、乘、除这四种运算的意义和运算法则我们都很熟悉.除了这四种运算之外,我们还可以人为地规定一些其它运算,并给出特定的运算规则,这样的运算形式我们一般称之为定义新运算.它使用的是一些特殊的运算符号,如*、△、▽、⊙等,这与四则运算中的“+、-、×、÷”表示的意义是不同的,其运算规则中运用的计算方法与我们所学的四则运算方法相同,解题的关键是通过表达式寻找到运算规则.一、假设 a*b=(a+b)+(a-b),求13*5 和13*(5*4)。

解析:这道题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。

这里的“*”就代表一种新运算。

在定义新运算规定了要先算“小括号”里的。

因此,在 13* (5*4)中,就要先算小括号里的5*4。

13*5=(13+5)+(13-5)=18+8=2 65*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13 +10)+(13-10)=26举一反三(15 分)1.设a*b=(a+b)×(a-b),求27*9.解:27*9=(27+9)×(27-9)=36×18=648.2. 设 a*b=a2+2b, 求 10*6 和5*(2*8)。

解:(1)10*6 =102+6×2 =100+12 =112;(2)5*(2*8)=5*(22+8×2) =5*(4+16) =5*20 =52+20×2 =25+40 =65.13.设a*b=3a-b ×2 ,求(25*12)*(10*5).解:(25*12)*(10*5) =(25×3-12× )*(10×3-5× ) =(75-6)*(30-2.5) =69*27.5=69×3-27.5× =207-13.75 =193.25.二、 设 p 、 q 是两个数,规定:.求.解:因为 ,所以:所以:.举一反三(15 分)1.设 p、 q 是两个,规定 :数30△(5△3)=30△[52 +(5-3)×2 ].求5△(6△4).解:因为,所以:所以:2.设 p、q 是两个数,规定p△q=p 2+(p-q)×2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档