人教版数学九上24.4第2课时圆锥的侧面积和全面积2优质课公开课教案设计.
人教版-数学-九年级上册-24.4.2 圆锥的侧面积与全面积 教案
圆锥的侧面积与全面积教学目标分析知识与技能:1.认识圆锥,了解圆锥的相关概念。
2.探索圆锥侧面积、全面积计算公式。
3.会应用公式解决有关问题。
过程与方法:通过探究、观察、分析、计算,在活动中培养学生探究问题能力,合作交流意识。
并在解决实际问题中提高他们解决问题的能力,发展学生应用知识的意识。
情感态度与价值观:引导学生对问题观察、质疑,激发他们的好奇心和求知欲,使学生在运用数学知识解决问题的活动中获得成功的体验,建立学习的自信心。
并且鼓励学生思维的多样性,发展创新意识。
重难点分析教学重点:理解圆锥的相关概念,探索圆锥的侧面积的计算公式。
教学难点:探索圆锥侧面积的计算公式。
教学模式:“十二字”教学模式教学过程(一)出示学习目标1.认识圆锥,了解圆锥的相关概念2.探索圆锥侧面积、全面积计算公式3.会应用公式解决有关问题(二)自学指导认真阅读课本112-113页(例题2以前)的内容重点解决:1. 理解圆锥母线的概念。
2.思考圆锥的侧面展开图是什么形状?应怎样计算它的面积?认真解决课本思考中的三个问题并完成填空。
(三)检查自学1.圆锥的高和母线等概念。
思考:圆锥的底面半径、高线、母线长三者之间有怎样的关系: a2=h2+r22.圆锥的侧面展开图(1)沿着圆锥的母线,把一个圆锥的侧面展开,得到一个什么图形?这个扇形的弧长与底面的周长有什么关系?(2)圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?圆锥的 ____________就是其侧面展开图扇形的弧长,圆锥的 ___________就是其侧面展开图扇形的半径。
3.圆锥的侧面积和全面积引导学生理解圆锥的侧面积计算公式的推导过程,能准确的应用公式解决问题。
(四)当堂训练A组1. 根据下列条件求值(其中r、h、a 分别是圆锥的底面半径、高线、母线长)(1)a = 2,r=1 则 h =_______(2) h =3, r=4 则 a =_______(3) a = 10, h = 8 则 r=_______2.已知圆锥的底面直径为4,母线长为6,则它的侧面积为_________.3.已知圆锥底面圆的半径为2 cm ,高为√5,则这个圆锥的侧面积为_________;全面积为_________.B组1.(立体——平面)若一个圆锥的底面圆的周长是4πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角的度数是2.(平面——立体)现有一个圆心角为90°,半径为8 cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为______ .C组1.已知△ABC 中,∠ACB=90°,AC=3cm,BC=4cm,将△ABC绕直角边AC旋转一周,求所得圆锥的侧面积?(五)小结谈谈本节课的收获和困惑(六)作业:114页练习题1,2。
人教版九年级数学上册《圆锥的侧面积和全面积》优秀教学设计
人教版九年级数学上册《圆锥的侧面积和全面积》优秀教学设计一. 教材分析人教版九年级数学上册《圆锥的侧面积和全面积》这一节,是在学生学习了平面几何、立体几何基础知识之后,进一步深化对圆锥几何特征的理解。
通过本节课的学习,学生能够掌握圆锥的侧面积和全面积的计算方法,为后续学习圆锥的体积和表面积打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何和立体几何有一定的了解。
但是,对于圆锥的侧面积和全面积的计算,还需要通过实例和引导,让学生逐步理解和掌握。
三. 教学目标1.知识与技能:学生能够理解圆锥的侧面积和全面积的定义,掌握计算方法。
2.过程与方法:通过实例分析,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.重点:圆锥的侧面积和全面积的计算方法。
2.难点:理解圆锥的侧面积和全面积的计算原理。
五. 教学方法1.采用问题驱动法,引导学生主动思考问题。
2.利用实物模型和动画演示,直观展示圆锥的侧面积和全面积的计算过程。
3.通过小组合作交流,培养学生的团队协作能力。
六. 教学准备1.准备圆锥模型和动画演示素材。
2.设计相关问题,准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过展示圆锥模型和动画演示,引导学生观察圆锥的形状,提出问题:“大家能想到如何计算圆锥的侧面积和全面积吗?”让学生思考并回答问题。
2.呈现(10分钟)呈现圆锥的侧面积和全面积的定义,讲解计算方法。
以一个具体的圆锥为例,展示如何计算其侧面积和全面积。
引导学生理解圆锥的侧面积和全面积的计算原理。
3.操练(10分钟)学生分组合作,每组选择一个圆锥模型,按照刚刚学到的方法计算其侧面积和全面积。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)针对学生刚刚完成的小组练习,进行讲解和点评。
强调圆锥侧面积和全面积计算的关键点。
5.拓展(10分钟)出示一些有关圆锥侧面积和全面积的实际问题,让学生尝试解决。
数学九年级上册《圆锥的侧面积和全面积》教案
想一想现在能解决课前的问题吗?(3分钟学生独立完成)
八、作业布置
板书设计:
24.4圆锥的侧面积和全面积
一、圆锥的构成
二、圆锥的相关概念
圆锥的底面半径、高的全面积计算公式
教学后记(反思成败、总结经验):
初中20-20学年度第一学期教学设计
主备教师
审核教师
授课周次
授课时间
课题
24.4.2圆锥的侧面积和全面积
课型
新授课
教学目标
1、认识圆锥的侧面展开图.
2、会计算圆锥的侧面积和全面积.
教学重点
认识圆锥的侧面展开图
教学难点
会计算圆锥的侧面积和全面积.
教学方法与手段
自主学习——合作探究——汇报展示——解疑释难——当堂训练
4.圆锥的底面半径、高线、母线长三者之间的关系:
探究二、(3分钟,学生通过阅读课本,小组内探究来明晰1、圆锥的底面周长就是其侧面展开图扇形的弧长,2、圆锥的母线就是其侧面展开图扇形的半径)
圆锥的底面周长就是其侧面展开图扇形的弧长,
圆锥的母线就是其侧面展开图扇形的半径。
三、随堂练习:(5分钟)
①已知圆锥的侧面展开图是一个半径为12cm、弧长为12πcm的扇形.求这个圆锥的侧面积、高(结果保留根号和π).
探究一、(3分钟,学生通过阅读课本,小组内探究得出结论)
为了解决这个问题请同学们打开课本带着下列几个问题进行阅读1.圆锥是由一个底面和一个侧面围成的,它的底面是一个圆,侧面是一个曲面.
2.把圆锥底面圆周上的任意一点与圆锥顶点的连线叫做圆锥的母线.
3.连结顶点与底面圆心的线段叫做圆锥的高.
计算圆锥的侧面积和全面积教学设计.doc
《圆锥的侧面积和全面积》教学设计【教材】人教版九年级上册24.4弧长和扇形的面积【课时安排】第2 课时【教学对象】九年级学生【授课教师】韶关市乐昌市新时代学校彭增祥【教材分析】本节内容是在学生已熟知圆的周长、面积,弧长和扇形面积的基础上推导的又一个与圆有关的计算公式.它不仅是几何的基本计算,在实际生活的建筑、钣金制作、设计等方面也有其独特的应用.既是对扇形的弧长和面积的计算知识的深化和应用,又是学习图形变换和转化的数学思想的重要知识.进一步培养学生的空间观念和转化思想,因此,本节内容在教材中处于非常重要的地位. 【学情分析】学生在学习中已掌握了弧长和扇形面积公式的基本知识;学生数学的基本知识较扎实,学习数学的思维敏捷,善于合作、交流,善于探索与实践,所以我将尽量把课堂交给学生去体验做数学、说数学、用数学、再创造.【教学目标】知识目标(1)、通过实验使学生知道圆锥的特征,弄清扇形中各元素与圆锥中各元素之间的关系.(2)掌握圆锥的侧面展开图是扇形,会推导、计算圆锥的侧面积和全面积.过程与方法目标通过圆锥的侧面积公式的推导,体会空间图形平面化的数学方法;学会类比和转化的数学思想,进一步培养学生空间观念,激发学生的好奇心和求知欲,提高学生远用数学知识分析问题和解决问题的能力.情感目标(1)、在做、说、用、再创造中,培养学生的合作精神.(2)、感受空间图形平面化的数学方法,体会图形变换和转化的思想,并在运用数学知识解答实际问题的活动中获取成功的体验,培养学生学习数学的兴趣.第 1 页共13 页(3)、感受数学来源生活而用于生活的实用价值,增强应用意识;【教学重点】理解圆锥的侧面积和全面积公式,掌握其计算.【教学难点】明确扇形中各元素与圆锥各个元素之间的关系.【教学方法】采用多媒体、几何画板直观演示法、启发探究发现法的教学方法,让学生主动参与,积极动手、动脑、动口.通过直观感知、自主探索、合作交流,形成学生多观察、动脑想、大胆猜的研讨式学习模式.【教学手段】多媒体、PPT、几何画板.【课前准备】教师课前需准备PPT和《几何画板》,学生需准备剪刀、圆规、三角板、长方形纸片若干张.一、教学流程设计活动1:温故知新设计意图:复习、应用并熟记公活动2:问题情境引入课设计意图:从实例出发提出问题,引导题学生认识圆锥.活动3:认识圆锥及基本设计意图:通过原有知识对圆锥概念进行再认识,明确圆锥的有关概活动4:通过学生自己动手,探究圆锥的侧面展开设计意图:小组讨论,推出圆锥图,总结出圆锥的侧面积的侧面积和全面积的计算公式.和全面积的计算公式,活动5:应用公式,学以设计意图:培养学生对数学知识致用的灵活应用能力.活动6:用所学知识解设计意图:掌握解题方法和技巧,决实际问题提高熟练性和准确性.第 2 页共13 页活动7:小结,课后作业 设计意图: 巩固解题方法和技 巧,提高熟练性和准确性.二、教学过程设计教学 环节 教 学 内 容教师 活动学生活动设 计 意 图活动 1 1、圆的周长:c 2 r 教 1、 教师 用 演 示 课 练习: 动 动 脑吧:【 学生口答】 复习并熟记公 件 1、 1.已知扇形的圆心式.温故 、圆的面积:sr2 2、教师 角为 120° ,半径为6,则扇形的弧长是 知新板书公式 ( ) 2、 2.钟面上的 分针3、弧长:l弧n 180R 的长是 3cm ,经过20 分钟时间,分针 在钟面上扫过的面 预计 时间 4分钟S4、扇形面积:或Sn R3601 l弧22R积是( )3、 3.已知扇形 AOB 的面积是 36 米,弧 AB 9 的长为 米,那 么半径 ( ) OA=米 ..活动 2从身边 的数学 出发,1、认识圆锥1、教师利学生欣赏 图 片,感受数学中图 用课件展 情境形的美.体现数 示圆锥的 引入学知识,图片,引 导学生欣 来源于 生活.激发赏图片,兴趣 2 预计时间第 3 页共13 页3分钟将实际2、想一想,你会解决吗?如图,玩具厂生产一种圣诞老人的帽子,其帽身是圆锥形,PB=15 cm,2、教师演示课件,提出问学生独立思考,发表自己的见解;【说数学】①问题数学化,让学生从一些简单的底面半径r =5 cm,要生产这种帽身10 题,激发怎样求一个圆锥的000 个,你能帮玩具厂算一算至少需多学生学习侧面积. ②要多少实例中,不材料?实际求断体会少平方米的材料吗?(不计接缝用料新知识的和余料,π取3.14)Pl 母热情并引入课题.3 、板书课题.10000个圆锥的侧面积.从现实世界中寻找数学模型、建立数学关系的学模型、建立数学关系的O rBA24.4.2 圆锥的侧面积和全面积第 4 页共13 页。
人教版数学九年级上册24.4《圆锥的侧面积》教学设计
人教版数学九年级上册24.4《圆锥的侧面积》教学设计一. 教材分析《圆锥的侧面积》是人教版数学九年级上册第24章《圆锥》的一部分,本节内容是在学生已经掌握了圆锥的基本概念、性质以及圆锥的体积计算的基础上进行学习的。
本节课的主要内容是引导学生探究圆锥的侧面积的计算方法,并能够运用所学知识解决实际问题。
教材通过实例和活动,让学生经历探究过程,培养学生的空间想象能力和数学思维能力。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和数学思维能力,他们对圆锥的基本概念和性质有一定的了解。
但是,对于圆锥的侧面积的计算方法,他们可能还比较陌生。
因此,在教学过程中,教师需要通过实例和活动,引导学生理解和掌握圆锥侧面积的计算方法。
三. 教学目标1.理解圆锥侧面积的概念,掌握圆锥侧面积的计算方法。
2.能够运用圆锥侧面积的知识解决实际问题。
3.培养学生的空间想象能力和数学思维能力。
四. 教学重难点1.圆锥侧面积的概念。
2.圆锥侧面积的计算方法。
五. 教学方法1.采用问题驱动的教学方法,通过实例和活动,引导学生探究圆锥侧面积的计算方法。
2.利用多媒体辅助教学,展示圆锥的形状和性质,帮助学生更好地理解和掌握知识。
3.采用小组合作学习的方式,让学生在探究过程中相互交流、相互学习。
六. 教学准备1.多媒体教学设备。
2.圆锥模型。
3.相关教学PPT。
七. 教学过程1.导入(5分钟)教师通过展示圆锥模型,引导学生回顾圆锥的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示圆锥侧面积的实例,引导学生观察和思考,让学生初步了解圆锥侧面积的概念。
3.操练(15分钟)教师学生进行小组合作学习,让学生通过实际操作,探究圆锥侧面积的计算方法。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)教师通过PPT展示一些关于圆锥侧面积的计算题目,让学生独立完成,检验学生对知识的掌握情况。
5.拓展(5分钟)教师通过PPT展示一些实际问题,让学生运用圆锥侧面积的知识进行解决,提高学生的应用能力。
九年级数学上册24.4.2圆锥的侧面积和全面积教案(新版)新人教版
24.4.2圆锥的侧面积和全面积【教学目标】1.知识目标(1)知道圆锥各部分的名称(2)理解圆锥的侧面积展开图是扇形,并能够计算圆锥的侧面积和全面积.2.能力目标通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题.3.情感目标教给学生立体图形与平面图形的思维转换,讲清扇形各元素与圆锥各元素之间的关系.【重点难点】1.圆锥的侧面积公式的推导与应用.2.综合弧长与扇形面积的计算公式计算圆锥的侧面积.【教学过程】一.新课导入观察自己制作的圆锥.在小学大家已学过圆椎,在生活中我们也常常遇到圆椎形的物体,涉及到圆椎形物体的侧面积和全面积的计算问题如何计算呢?这就是今天要学的圆椎的侧面展开图研究的内容。
(幻灯展示生活中常遇的圆椎形物体,如:冰激凌筒、烟囱顶、等),前面展示的物体都是圆椎.在小学,大家已学过圆椎,哪位同学能说出圆椎有哪些特征?(安排举手的学生回答:圆柱的底面是圆面,侧面是曲面.)二.新课展开、重难点突破1、圆锥的基本概念在右图的圆锥中,连结圆锥的顶点S和底面圆上任意一点的线段SA、SA1……叫做圆锥的母线,连接顶点S与底面圆的圆心O的线段叫做圆锥的高。
2、圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系右图中,将圆锥的侧面沿母线l剪开,展开成平面图形,可以得到一个扇形,设圆锥的底面半径为r,这个扇形的半径等于什么?扇形的弧长等于什么?3、圆锥侧面积计算公式从右图中可以看出,圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长,这样,S圆锥侧=S扇形=·2πr · l = πrl4、圆锥全面积计算公式S圆锥全=S圆锥侧+S圆锥底面= πr l +πr 2=πr(l +r)例1、一个圆锥形零件的母线长为a,底面的半径为r,求这个圆锥形零件的侧面积和全面积.解圆锥的侧面展开后是一个扇形,该扇形的半径为a,扇形的弧长为2πr,所以S侧=×2πr×a=πra;S底=πr2;S=πra+πr2.答:这个圆锥形零件的侧面积为πra,全面积为πra+πr2例2 在右图中的扇形中,半径R=10,圆心角θ =144°,用这个扇形围成一个圆锥的侧面。
人教版九年级数学上册24.4.2《圆锥的侧面积和全面积》教学设计
人教版九年级数学上册24.4.2《圆锥的侧面积和全面积》教学设计一. 教材分析《圆锥的侧面积和全面积》是人教版九年级数学上册第24章“圆锥”的一部分。
本节内容是在学生已经掌握了圆锥的定义、性质以及圆锥的体积计算的基础上进行学习的,是进一步深化学生对圆锥的理解和认识。
教材从实际应用出发,引导学生探究圆锥的侧面积和全面积的计算方法,从而提高学生的空间想象能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于圆锥的基本概念和性质有一定的了解。
但是,对于圆锥的侧面积和全面积的计算方法,学生可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生通过观察、操作、思考、交流等途径,自主探究圆锥的侧面积和全面积的计算方法。
三. 教学目标1.让学生掌握圆锥的侧面积和全面积的计算方法。
2.培养学生的空间想象能力和解决问题的能力。
3.提高学生的合作交流和自主探究能力。
四. 教学重难点1.圆锥的侧面积和全面积的计算方法。
2.如何将实际问题转化为数学问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生自主探究圆锥的侧面积和全面积的计算方法。
2.利用多媒体课件和实物模型,帮助学生直观地理解圆锥的侧面积和全面积的概念。
3.采用小组合作交流的方式,让学生在讨论中解决问题,提高学生的合作交流能力。
六. 教学准备1.多媒体课件和实物模型。
2.圆锥的侧面展开图和全面积计算公式。
3.练习题和答案。
七. 教学过程1.导入(5分钟)教师通过展示圆锥的实物模型,引导学生回顾圆锥的定义和性质。
然后提出问题:“圆锥的侧面积和全面积如何计算呢?”从而引出本节课的主题。
2.呈现(10分钟)教师利用多媒体课件,展示圆锥的侧面展开图,引导学生观察和思考圆锥的侧面积和全面积的计算方法。
在这个过程中,教师引导学生发现圆锥的侧面积等于侧面展开图的面积,全面积等于底面积加上侧面积。
3.操练(10分钟)教师给出一些圆锥的侧面积和全面积的计算题目,让学生独立完成。
人教版九年级数学上册24.4圆锥的侧面积和全面积(2)教案
第二十四章 圆 24.4 弧长和扇形面积第2课时 圆锥的侧面积和全面积课题24.4 圆锥的侧面积和全面积(2)授课人教学目标知识技能 会计算圆锥的侧面积和全面积,并会解决实际问题;数学思考增强学生用数学知识解决实际问题的能力,同时还可以培养学生的空间观念; 问题解决 掌握圆锥的侧面积和全面积的计算方法,并可以解决一些实际问题; 情感态度引导学生对圆锥展开图的认识,培养学生空间观念,激发学生的好奇心和求知欲,并在运用数学知识解答实际问题点的活动中获取成功的体验,建立学习的自信心;教学重点 圆锥的侧面积和全面积的计算;教学难点 明确圆锥各个元素与侧面展开图扇形的各元素的对应关系;授课类型 新授课课时 第二课时教具多媒体教学活动教学步骤师生活动设计意图 回顾((多媒体演示) 问题:1.弧长和扇形面积的计算公式是什么?2.什么是圆锥?请描述圆锥的形状,并列举生活常见的圆锥的形状. 师生活动:教师引导学生进行解答,并适时作出补充和讲解.让学生独立思考后,教师做好总结,为本课学习做好准备. 活动一: 创设情境 导入新课 【课堂引入】 (多媒体展示)伴随着优美的音乐进入了蒙古大草原,看到了雪白的蒙古包,看到雪白的蒙古包感受到圆锥的存在. 老师展示圆锥形小帽,出示问题:你能用手上的长方形白纸折叠出这种圆锥形帽子吗? 学生先认真观察圆锥形帽子,再尝试用手中的长方形白纸折叠圆锥形帽子.小组内讨论、交流做法,教师做好巡视指导.初步尝试、体验,产生悬念,造成认知冲突,从而激发学生兴趣,使学生产生强烈的求知欲望.活动二:实践探究交流新知1. 探究圆锥的展开图:活动一:老师展示圆锥形小帽子,结合实物介绍圆锥的底面、侧面、母线、高等概念.学生边听、边理解、边记忆.活动二:老师沿圆锥的一条母线剪开,然后用双面胶粘贴在黑板上,老师引导学生通过观察得出圆锥的侧面展开图是扇形.问题:怎样才能制作出这种圆锥形的小帽子?”老师引导学生观察、分析、比较出展开扇形与圆锥的关系,进行演示,让学生有意识地观察.学生分组讨论,合作探究出展开的扇形半径、弧长与圆锥的母线,底面周长的关系.教师做好总结:①圆锥的侧面展开图是一个扇形;②圆锥的母线是展开图中扇形的半径;③圆锥底面圆的周长是展开图中扇形的弧长;④圆锥的侧面积是展开图中扇形的面积;2.探究面积公式:问题:如果设圆锥的底面半径为r,母线为l,那么圆锥侧面积怎么计算?全面积呢?教师引导学生进行思考后,全班进行交流,最后学生写出认为正确的计算公式,教师给予讲解.圆锥的侧面积就是展开图中扇形的面积,扇形的弧长等于圆锥底面圆的周长2πr,半径为圆锥的母线l,根据扇形面积.公式得:圆锥的全面积是由一个底面和一个侧面组成,所以全面积是.教师与学生共同总结,归纳,给予学生充分的时间观察图形,理解公式.1.学生在小学已经初步认识了圆锥,但对底面、侧面,尤其是母线、高等概念的理解可能还不是很到位,在此通过实物对这些概念作一简介,既形象又直观,为后面的探究和推导展开扇形的圆心角公式和圆锥的侧面积公式做好了准备。
计算圆锥的侧面积和全面积教学设计—【教学参考】
基本信息
课题
人教版九年级数学第24章 24.4.2圆锥的侧面积和全面积
作者及工作单位
教材分析
《圆锥的侧面积和全面积》是义务教育课程标准实验教科书人民教育出版九年级(上)第二十四章《圆》中第四节的第二课时,本课时是前面所学知识的继续和发展,这是一节实践探究课,主要目的是亲历圆锥的侧面积和全面积公式的推导过程。本节课是在学生已熟知的圆的周长、面积,弧长、扇形的面积和圆柱体的侧面积的基础上推导出来的又一个与圆有关的计算公式,它不仅是几何中的基本计算,在生产生活领域中也有着很广泛的实用价值。通过学生的实践活动,渗透了立体图形平面化的数学思维方法,进一步培养了学生的空间观念和转化思想;通过对生活中实际问题的解决,体现数学来源于生活,又服务于生活的教育理念。我们常常运用圆锥的侧面积和全面积公式和圆的相关知识来解决生产和生活中的一些实际问题,所以它在教材中具有非常重要的地位和作用。
例3蒙古包可以近似地看成由圆锥和圆柱组成,如果想用毛毡搭建少需要多少平方米的毛毡 (精确到1m2) ?
例4 思考题
圆锥的底面半径为1,母线长为6,一只蚂蚁要从底面圆周上一点B出发,沿圆锥侧面爬行一圈再回到点B,问它爬行的最短路线是多少?
板书设计
24.4.2圆锥的侧面积和全面积
一、复习弧长公式和扇形面积公式
1、弧长公式
2、扇形面积公式 或
九年级数学上册 24.4 第2课时 圆锥的侧面积和全面积教案3 (新版)新人教版
第2课时 圆锥的侧面积和全面积教学内容1.圆锥母线的概念.2.圆锥侧面积的计算方法. 3.计算圆锥全面积的计算方法. 4.应用它们解决实际问题. 教学目标了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题.通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题. 重难点、关键1.重点:圆锥侧面积和全面积的计算公式. 2.难点:探索两个公式的由来.3.关键:你通过剪母线变成面的过程. 教具、学具准备直尺、圆规、量角器、小黑板. 教学过程一、复习引入1.什么是n °的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点.2.问题1:一种太空囊的示意图如图所示,•太空囊的外表面须作特别处理,以承受重返地球大气层时与空气摩擦后产生的高热,那么该太空囊要接受防高热处理的面积应由几部分组成的.老师点评:(1)n °圆心角所对弧长:L=180n Rπ,S 扇形=2360n R π,公式中没有n °,而是n ;弧长公式中是R ,分母是180;而扇形面积公式中是R ,分母是360,两者要记清,不能混淆.(2)太空囊要接受热处理的面积应由三部分组成;圆锥上的侧面积,•圆柱的侧面积和底圆的面积.这三部分中,第二部分和第三部分我们已经学过,会求出其面积,•但圆锥的侧面积,到目前为止,如何求,我们是无能为力,下面我们来探究它. 二、探索新知我们学过圆柱的侧面积是沿着它的母线展开成长方形,同理道理,我们也把连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线. (学生分组讨论,提问二三位同学)问题2:与圆柱的侧面积求法一样,沿母锥一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形,设圆锥的母线长为L ,•底面圆的半径为r ,•如图24-115所示,那么这个扇形的半径为________,扇形的弧长为________,•因此圆锥的侧面积为________,圆锥的全面积为________.老师点评:很显然,扇形的半径就是圆锥的母线,•扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积S=2360n l π,其中n 可由2πr=2180n l π求得:n=360r l ,•∴扇形面积S=2360360r ll π=πrL ;全面积是由侧面积和底面圆的面积组成的,所以全面积=πrL+r 2.例1.圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为58cm ,高为20cm ,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm 2) 分析:要计算制作20顶这样的纸帽至少要用多少平方厘米的纸,只要计算纸帽的侧面积.解:设纸帽的底面半径为rcm ,母线长为Lcm ,则 r=582π≈22.03 S 纸帽侧=πrL ≈12×58×22.03=638.87(cm ) 638.87×20=12777.4(cm 2)所以,至少需要12777.4cm 2的纸.例2.已知扇形的圆心角为120°,面积为300πcm 2. (1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?分析:(1)由S 扇形=2360n R π求出R ,再代入L=180n Rπ求得.(2)若将此扇形卷成一个圆锥,•扇形的弧长就是圆锥底面圆的周长,就可求圆的半径,其截面是一个以底是直径,•圆锥母线为腰的等腰三角形.解:(1)如图所示:∵300π=2120360R π∴R=30 ∴弧长L=12030180π⨯⨯=20π(cm )(2)如图所示: ∵20π=20πr∴r=10,R=30∴S轴截面=12×BC×AD=12×2×10×(cm2)因此,扇形的弧长是20πcm卷成圆锥的轴截面是cm2.三、巩固练习教材P124 练习1、2.四、应用拓展例3.如图所示,经过原点O(0,0)和A(1,-3),B(-1,5)•两点的曲线是抛物线y=ax2+bx+c(a≠0).(1)求出图中曲线的解析式;(2)设抛物线与x轴的另外一个交点为C,以OC为直径作⊙M,•如果抛物线上一点P 作⊙M的切线PD,切点为D,且与y轴的正半轴交点为E,连结MD,已知点E的坐标为(0,m),求四边形EOMD的面积(用含m的代数式表示).(3)延长DM交⊙M于点N,连结ON、OD,当点P在(2)的条件下运动到什么位置时,能使得S四边形EOMD=S△DON请求出此时点P的坐标.解:(1)∵O(0,0),A(1,-3),B(-1,5)在曲线y=ax2+bx+c(a≠0)上∴35ca b ca b c=⎧⎪-=++⎨⎪=-+⎩解得a=1,b=-4,c=0∴图中曲线的解析式是y=x2-4x(2)抛物线y=x2-4x与x轴的另一个交点坐标为c(4,0), 连结EM,∴⊙M的半径为2,即OM=DM=2∵ED、EO都是⊙M的切线∴EO=ED ∴△EOM≌△EDM∴S四边形EOMD=2S△OME=2×12OM·OE=2m(3)设点D的坐标为(x0,y0)∵S△DON=2S△DOM=2×12OM×y0=2y0∴S四边形ECMD=S△DON时即2m=2y0,m=y0∵m=y0∴ED∥x轴又∵ED为切线∴D(2,2)∵点P在直线ED上,故设P(x,2)∵P在圆中曲线y=x2-4x上∴2=x2-4x 解得:=2∴P1(,0),P2(,2)为所求.五、归纳小结(学生归纳,老师点评)本节课应掌握:1.什么叫圆锥的母线.2.会推导圆锥的侧面积和全面积公式并能灵活应用它们解决问题.六、布置作业1.教材P124 复习巩固4 P125 综合运用8 拓广探索9、10.2.选用课时作业设计.第二课时作业设计一、选择题1.圆锥的母线长为13cm,底面半径为5cm,则此圆锥的高线为()A.6cm B.8cm C.10cm D.12cm2.在半径为50c m的圆形铁皮上剪去一块扇形铁皮,•用剩余部分制作成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪去的扇形的圆心角度数为()A.228° B.144° C.72° D.36°3.如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,•从点A出发绕侧面一周,再回到点A的最短的路线长是()C. D.3A..2二、填空题1.母线长为L,底面半径为r的圆锥的表面积=_______.2.矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转一周,•所得圆柱体的表面积是__________(用含π的代数式表示)3.粮仓顶部是一个圆锥形,其底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头的重合部分,那么这座粮仓实际需用________m2的油毡.三、综合提高题1.一个圆锥形和烟囱帽的底面直径是40cm,母线长是120cm,•需要加工这样的一个烟囱帽,请你画一画:(1)至少需要多少厘米铁皮(不计接头)(2)如果用一张圆形铁皮作为材料来制作这个烟囱帽,那么这个圆形铁皮的半径至少应是多少?2.如图所示,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,•求圆锥全面积.3.如图所示,一个几何体是从高为4m,底面半径为3cm•的圆柱中挖掉一个圆锥后得到的,圆锥的底面就是圆柱的上底面,圆锥的顶点在圆柱下底面的圆心上,•求这个几何体的表面积.答案:一、1.D 2.C 3.C二、1.πr2+πrL 2.1 30πcm2 3.158.4三、1.(1)2400πcm2(2)cm2.48πcm23.S表=S柱侧+S柱底+S锥侧=2π×3×4+π×32+π×3×5=24π+9π+15π=48πcm2。
九数上(RJ)-.教案-24.4 第2课时 圆锥的侧面积和全面积1
第2课时圆锥的侧面积和全面积1.经历圆锥侧面积的探索过程.2.会求圆锥的侧面积和全面积,并能解决一些简单的实际问题.一、情境导入扇子是引风用品,夏令必备之物.中国扇文化有着深厚的文化底蕴,与竹文化、道教文化有着密切关系.历来中国有“制扇王国”之称.观察可以发现扇形是圆的一部分,你会求扇形的面积吗?二、合作探究探究点一:圆锥的侧面展开图【类型一】求圆锥的侧面积小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm,母线长为30cm的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为( )A.270πcm2 B.540πcm2C.135πcm2 D.216πcm2解析:圆锥的侧面积=π×底面半径×母线长,把相关数值代入计算即可.圆锥形礼帽的侧面积=π×9×30=270π(cm2),故选A.方法总结:把圆锥侧面问题转化为扇形问题是解决此类问题的一般步骤,体现了空间图形和平面图形的转化思想.同时还应抓住两个对应关系,即圆锥的底面周长对应着扇形的弧长,圆锥的母线长对应着扇形的半径,结合扇形的面积公式或弧长公式即可解决.【类型二】求圆锥底面的半径用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )A.2πcm B.1.5cm C.πcm D.1cm解析:设底面半径为r,根据底面圆的周长等于扇形的弧长,可得:2πr=120×3π180,∴r=1,故选D.方法总结:用扇形围成圆锥时,扇形的弧长是底面圆的周长.扇形的弧长公式为l=nπr180.【类型三】求圆锥的高小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm,弧长是6πcm,那么这个圆锥的高是()A.4cmB.6cmC.8cmD.2cm解析:如图,∵圆锥的底面圆周长=扇形的弧长=6πcm,圆锥的底面圆周长=2π·OB,∴2π·OB=6π解得OB=3.又∵圆锥的母线长AB=扇形的半径=5cm,∴圆锥的高OA=AB2-OB2=4cm.故答案选A.方法总结:这类题要抓住两个要点:1.圆锥的母线长为扇形的半径;2.圆锥的底面圆周长为扇形的弧长.再结合题意,综合运用勾股定理、方程思想就可解决.【类型四】圆锥的侧面展开图的圆心角一个圆锥的侧面积是底面积的2倍,则此圆锥侧面展开图的圆心角是( )A.120°B.180°C.240°D .300°解析:设圆锥的母线长为R ,底面半径为r ,则由侧面积是底面积的2倍可知侧面积为2πr 2,则2πr 2=πRr ,解得R =2r ,利用弧长公式可列等式2πr =n π·2r180,解方程得n =180°.故选B.方法总结:解决关于圆柱和圆锥的侧面展开图的计算问题时,将立体图形和展开后的平面图形的各个量的对应关系联系起来至关重要.三、板书设计教学过程中,强调学生应熟练掌握相关公式并会灵活运用.要充分发挥空间想象力,把立体图形与展开后的平面图形各个量准确对应起来.。
九年级数学上册 24.4 第2课时 圆锥的侧面积和全面积教案1 新人教版(2021年最新整理)
(贵州专用)2017秋九年级数学上册24.4 第2课时圆锥的侧面积和全面积教案1 (新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((贵州专用)2017秋九年级数学上册24.4 第2课时圆锥的侧面积和全面积教案1 (新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(贵州专用)2017秋九年级数学上册24.4 第2课时圆锥的侧面积和全面积教案1 (新版)新人教版的全部内容。
第2课时圆锥的侧面积和全面积1.经历圆锥侧面积的探索过程.2.会求圆锥的侧面积和全面积,并能解决一些简单的实际问题.一、情境导入扇子是引风用品,夏令必备之物.中国扇文化有着深厚的文化底蕴,与竹文化、道教文化有着密切关系.历来中国有“制扇王国”之称.观察可以发现扇形是圆的一部分,你会求扇形的面积吗?二、合作探究探究点一:圆锥的侧面展开图【类型一】求圆锥的侧面积小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm,母线长为30cm 的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为( )A.270πcm2 B.540πcm2C.135πcm2 D.216πcm2解析:圆锥的侧面积=π×底面半径×母线长,把相关数值代入计算即可.圆锥形礼帽的侧面积=π×9×30=270π(cm2),故选A.方法总结:把圆锥侧面问题转化为扇形问题是解决此类问题的一般步骤,体现了空间图形和平面图形的转化思想.同时还应抓住两个对应关系,即圆锥的底面周长对应着扇形的弧长,圆锥的母线长对应着扇形的半径,结合扇形的面积公式或弧长公式即可解决.【类型二】求圆锥底面的半径用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为()A.2πcm B.1。
人教初中数学九上 《圆锥的侧面积》教案 (公开课获奖)
24.4.2圆锥的侧面积教学目标(一)教学知识点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.(二)能力训练要求1.经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.2.了解圆锥的侧面积计算公式后,能用公式进行计算,训练学生的数学应用能力.(三)情感与价值观要求1.让学生先观察实物,再想象结果,最后经过实践得出结论,通过这一系列活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验.2.通过运用公式解决实际问题,让学生懂得数学与人类生活的密切联系,激发他们学习数学的兴趣,克服困难的决心,更好地服务于实际.教学重点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.教学难点经历探索圆锥侧面积计算公式.教学方法观察——想象——实践——总结法教具准备一个圆锥模型(纸做)投影片两张第一张:(记作§3.8A) 第二张:(记作§3.8B)教学过程Ⅰ.创设问题情境,引入新课[师]大家见过圆锥吗?你能举出实例吗?[主]见过,如漏斗、蒙古包.[师]你们知道圆锥的表面是由哪些面构成的吗?请大家互相交流.[生]圆锥的表面是由一个圆面和一个曲面围成的.[师]圆锥的曲面展开图是什么形状呢?应怎样计算它的面积呢?本节课我们将解决这些问题.Ⅲ.新课讲解一、探索圆锥的侧面展开图的形状[师](向学生展示圆锥模型)请大家先观察模型,再展开想象,讨论圆锥的侧面展开图是什么形状.[生]圆锥的侧面展开图是扇形.[师]能说说理由吗?[生甲]因为数学知识是一环扣一环的,后面的知识是在前面知识的基础上学习的.上节课的内容是弧长及扇形面积,本节课的内容是圆锥的侧面积,而弧长不是面积,所以我猜想圆锥的侧面展开图应该是扇形.[师]这位同学用的虽然是猜想,但也是有一定的道理的,并不是凭空瞎想,还有其他理由吗?[生乙]我是自己实践得出结论的,我拿一个扇形的纸片卷起来,就得到了一个圆锥模型.[师]很好,究竟大家的猜想是否正确呢?下面我就给大家做个演示(把圆锥沿一母线剪开),请大家观察侧面展开图是什么形状的?[生]是扇形.[师]大家的猜想非常正确,既然已经知道侧面展开图是扇形,那么根据上节课的扇形面积公式就能计算出圆锥的侧面积,由于我们不能把所有圆锥都剖开,在展开图中的扇形的半径和圆心角与不展开图形中的哪些因素有关呢?这将是我们进一步研究的对象.二、探索圆锥的侧面积公式[师]圆锥的侧面展开图是一个扇形,如图,设圆锥的母线(generating line)长为l ,底面圆的半径为r ,那么这个圆锥的侧面展开图中扇形的半径即为母线长l ,扇形的弧长即为底面圆的周长2πr ,根据扇形面积公式可知S =12·2πr ·l =πrl .因此圆锥的侧面积为S 侧=πrl .圆锥的侧面积与底面积之和称为圆锥的全面积(surfacearea),全面积为S 全=πr 2+πrl . 三、利用圆锥的侧面积公式进行计算. 投影片(§3.8A)圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽.已知纸帽的底面周长为58cm ,高为20cm ,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm)2分析:根据题意,要求纸帽的面积,即求圆锥的侧面积.现在已知底面圆的周长,从中可求出底面圆的半径,从而可求出扇形的弧长.在高h 、底面圆的半径r 、母线l 组成的直角三角形中,根据勾股定理求出母线l ,代入S 侧=πrl 中即可.解:设纸帽的底面半径为r cm ,母线长为l cm ,则r =582πl =2258()202+π≈22.03cm , S 圆锥侧=πrl ≈12×58×22.03=638.87cm 2.638.87×20=12777.4cm 2.所以,至少需要12777.4cm 2的纸. 投影片(§3.8B)如图,已知Rt △ABC 的斜边AB =13cm ,一条直角边AC =5cm ,以直线AB 为轴旋转一周得一个几何体.求这个几何体的表面积.分析:首先应了解这个几何体的形状是上下两个圆锥,共用一个底面,表面积即为两个圆锥的侧面积之和.根据S 侧=360nπR 2或S 侧=πrl 可知,用第二个公式比较好求,但是得求出底面圆的半径,因为AB 垂直于底面圆,在Rt △ABC 中,由OC 、AB =BC 、AC 可求出r ,问题就解决了.解:在Rt △ABC 中,AB =13cm ,AC =5cm , ∴BC =12cm .∵OC ·AB =BC ·AC , ∴r =OC =.∴S 表=πr (BC +AC )=π×6013×(12+5) =102013π cm 2. Ⅲ.课堂练习 随堂练习 Ⅳ.课时小结本节课学习了如下内容:探索圆锥的侧面展开图的形状,以及面积公式,并能用公式进行计算. Ⅴ.课后作业 习题3.11Ⅵ.活动与探究探索圆柱的侧面展开图在生活中,我们常常遇到圆柱形的物体,如油桶、铅笔、圆形柱子等,在小学我们已知圆柱是由两个圆的底面和一个侧面围成的,底面是两个等圆,侧面是一个曲面,两个底面之间的距离是圆柱的高.圆柱也可以看作是由一个矩形旋转得到的,旋转轴叫做圆柱的轴,圆柱侧面上平行于轴的线段都叫做圆柱的母线.容易看出,圆柱的轴通过上、下底面的圆心,圆柱的母线长都相等,并等于圆柱的高,圆柱的两个底面是平行的. 如图,把圆柱的侧面沿它的一条母线剪开,展在一个平面上,侧面的展开图是矩形,这个矩形的一边长等于圆柱的高,即圆柱的母线长,另一边长是底面圆的周长,所以圆柱的侧面积等于底面圆的周长乘以圆柱的高.[例1]如图(1),把一个圆柱形木块沿它的轴剖开,得矩形ABCD .已知AD =18cm ,AB =30cm ,求这个圆柱形木块的表面积(精确到1cm 2).解:如图(2),AD 是圆柱底面的直径,AB 是圆柱的母线,设圆柱的表面积为S ,则S =2S 圆+S 侧. ∴S =2π(182)2+2π×182×30=162π+540π≈2204cm 2. 所以这个圆柱形木块的表面积约为2204cm 2.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.D CA BD CABDC A B在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DCAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D C ABEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.E DC A B P所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算:(1))1)(1(y x x y x y +--+ (2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab - (3)3 五、1.(1)22y x xy - (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。