高三 导数的综合应用答案
高中数学导数及其应用综合检测试题及答案
高中数学导数及其应用综合检测试题及答案第一章导数及其应用综合检测时间 120 分钟,满分150 分。
一、选择题 (本大题共12 个小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.(2019 全国Ⅱ文, 7)若曲线 y= x2 +ax+ b 在点 (0, b)处的切线方程是 x- y+ 1=0,则 ()A.a= 1,b= 1B.a=- 1, b= 1C.a= 1,b=- 1D .a=- 1, b=- 1[答案]A[ 分析 ]y=2x+ a,y|x= 0= (2x+ a)|x= 0= a=1,将(0, b)代入切线方程得b= 1.2.一物体的运动方程为s= 2tsint+ t,则它的速度方程为()A.v= 2sint+2tcost+ 1B.v =2sint+ 2tcostC.v =2sintD .v= 2sint+2cost+1[答案]A[ 分析 ]由于变速运动在t0 的刹时速度就是行程函数y=s(t)在 t0 的导数, S=2sint+ 2tcost+ 1,应选 A.3.曲线 y=x2 + 3x 在点 A(2,10) 处的切线的斜率是()A .4B.5C.6D .7[答案] D[ 分析 ]由导数的几何意义知,曲线y= x2+ 3x 在点 A(2,10)处的切线的斜率就是函数y= x2+3x 在 x= 2 时的导数, y|x =2=7,应选 D.4.函数 y=x|x(x - 3)|+1()A .极大值为 f(2) = 5,极小值为f(0)= 1B.极大值为 f(2) = 5,极小值为f(3)=1C.极大值为 f(2) = 5,极小值为f(0)=f(3) = 1D .极大值为 f(2) = 5,极小值为f(3)= 1, f( - 1)=- 3[答案 ]B[分析 ]y=x|x(x - 3)|+ 1=x3 - 3x2+ 1 (x0 或 x3)- x3+ 3x2+1 (03)y= 3x2 -6x (x0 或 x3)- 3x2+ 6x (03)x变化时, f(x) ,f(x) 变化状况以下表:x (-, 0) 0 (0,2) 2 (2,3) 3 (3 ,+ )f(x)+0+0-0+f(x) ? 无极值? 极大值 5 ? 极小值 1 ?f(x) 极大= f(2) =5, f(x) 极小= f(3) =1故应选 B.5.(2009 安徽理, 9)已知函数 f(x) 在 R 上知足 f(x) = 2f(2 - x)-x2 + 8x- 8,则曲线 y= f(x) 在点 (1,f(1)) 处的切线方程是 ()A.y= 2x-1B.y= xC.y= 3x-2D .y=- 2x+ 3[答案]A[ 分析 ]此题考察函数分析式的求法、导数的几何意义及直线方程的点斜式.∵f(x) =2f(2 - x) -x2 + 8x-8,f(2 - x) =2f(x) - x2- 4x+ 4,f(x) =x2, f(x) = 2x,曲线 y= f(x) 在点 (1, f(1)) 处的切线斜率为2,切线方程为y-1=2(x -1), y= 2x- 1.6.函数 f(x) = x3+ax2+ 3x- 9,已知 f(x) 在 x=- 3 时获得极值,则 a 等于 ()A.2B.3C.4D .5[答案] D[ 分析 ]f(x) = 3x2 +2ax+ 3,∵ f(x) 在 x=- 3 时获得极值,x=- 3 是方程 3x2+ 2ax+3= 0 的根,a= 5,应选 D.7.设 f(x) ,g(x) 分别是定义在R 上的奇函数和偶函数.当x0时, f(x)g(x) + f(x)g(x)0 ,且 g(- 3)= 0,则不等式 f(x)g(x)0的解集是 ()A.(- 3,0)(3,+ )B.(-3,0)(0,3)C.(-,- 3)(3,+ )D .(-,- 3)(0,3)[答案] D[ 分析 ]令F(x)=f(x)g(x),易知F(x)为奇函数,又当x0 时,f(x)g(x) + f(x)g(x)0 ,即 F(x)0 ,知 F(x) 在(-, 0)内单一递加,又 F(x) 为奇函数,所以 F(x) 在 (0,+ )内也单一递加,且由奇函数知 f(0) =0, F(0)= 0.又由 g(-3)= 0,知 g(3)= 0F(- 3)= 0,从而 F(3)= 0于是 F(x) = f(x)g(x) 的大概图象以下图F(x) = f(x)g(x)0 的解集为 (-,- 3)(0,3) ,故应选 D.8.下边四图都是同一坐标系中某三次函数及其导函数的图象,此中必定不正确的序号是()A.①②B.③④C.①③D.①④[答案]B[ 分析 ]③不正确;导函数过原点,但三次函数在x= 0 不存在极值;④不正确;三次函数先增后减再增,而导函数先负后正再负.故应选 B.9. (2019 湖南理, 5)241xdx 等于 ()A .- 2ln2B.2ln2C.- ln2D .ln2[答案] D[ 分析 ]由于(lnx)=1x,所以 241xdx =lnx|42 =ln4 -ln2= ln2.10.已知三次函数f(x) = 13x3 - (4m- 1)x2+ (15m2 -2m-7)x +2 在 x( -,+ )是增函数,则m 的取值范围是 ()A .m2 或 m4B.- 4- 2C.24D.以上皆不正确[答案] D[ 分析 ]f(x) = x2- 2(4m- 1)x+ 15m2- 2m- 7,由题意得 x2 -2(4m- 1)x+ 15m2-2m-70 恒建立,= 4(4m -1)2-4(15m2 -2m-7)=64m2- 32m+ 4-60m2+ 8m+ 28=4(m2 -6m+8)0,24,应选 D.11.已知 f(x) =x3 + bx2+ cx+d 在区间 [- 1,2] 上是减函数,那么 b+ c()A .有最大值152B.有最大值- 152C.有最小值152D .有最小值- 152[答案]B[ 分析 ]由题意f(x)=3x2+2bx+c在[-1,2]上,f(x)0恒建立.所以 f( - 1)0f(2)0即 2b-c-304b+ c+120令 b+ c= z, b=- c+ z,如图过 A -6,- 32 得 z 最大,最大值为 b+c=- 6- 32=- 152.故应选 B.12.设 f(x) 、g(x) 是定义域为R 的恒大于 0 的可导函数,且f(x)g(x) - f(x)g(x)0 ,则当 ab 时有 ()A.f(x)g(x)f(b)g(b)B.f(x)g(a)f(a)g(x)C.f(x)g(b)f(b)g(x)D .f(x)g(x)f(a)g(x)[答案] C[ 分析 ]令F(x)=f(x)g(x)则 F(x) = f(x)g(x) - f(x)g(x)g2(x)0f(x) 、g(x) 是定义域为R 恒大于零的实数F(x) 在 R 上为递减函数,当 x(a,b)时, f(x)g(x)f(b)g(b)f(x)g(b)f(b)g(x) .故应选 C.二、填空题 (本大题共 4 个小题,每题 4 分,共 16 分.将正确答案填在题中横线上)13.-2- 1dx(11+ 5x)3=________.[答案 ]772[ 分析 ]取F(x)=-110(5x+11)2,从而 F(x) = 1(11+ 5x)3则- 2-1dx(11 + 5x)3= F(-1)-F(- 2)=- 11062+ 11012= 110- 1360=772.14.若函数 f(x) = ax2-1x 的单一增区间为(0,+),则实数 a的取范是 ________.[ 答案 ] a0[ 分析 ] f(x) = ax-1x= a+1x2,由意得, a+ 1x20, x(0,+ )恒建立,a- 1x2, x(0 ,+ )恒建立, a0.15. (2009 西理, 16) 曲 y= xn +1(nN*) 在点 (1,1)的切与 x 的交点的横坐xn ,令 an= lgxn , a1+ a2+⋯+a99 的 ________.[答案 ]-2[ 分析 ]本小主要考数的几何意和数函数的相关性.k= y|x= 1=n+ 1,切 l :y- 1= (n+ 1)(x - 1),令 y= 0, x=nn+ 1,an= lgnn + 1,原式= lg12 +lg23 +⋯+ lg99100=l g1223 ⋯99100= lg1100=- 2.16.如暗影部分是由曲y=1x , y2=x 与直 x= 2, y =0 成,其面________.[ 答案 ]23+ ln2[ 分析 ]由y2=x,y=1x,得交点A(1,1)由 x= 2y= 1x 得交点 B2, 12.故所求面S= 01xdx +121xdx=23x3210 + lnx21 = 23+ ln2.三、解答题 (本大题共 6 个小题,共74 分.解答应写出文字说明、证明过程或演算步骤)17.(此题满分 12 分 )(2019 江西理,19)设函数 f(x) = lnx + ln(2-x)+ ax(a0).(1)当 a= 1 时,求 f(x) 的单一区间;(2)若 f(x) 在 (0,1] 上的最大值为12,求 a 的值.[ 分析 ]函数f(x)的定义域为(0,2),f(x) =1x- 12- x+a,(1)当 a= 1 时, f(x) =- x2+2x(2 -x) ,所以 f(x) 的单一递加区间为 (0, 2),单一递减区间为 (2 ,2);(2)当 x(0,1] 时, f(x) =2-2xx(2 - x) +a0,即 f(x) 在 (0,1] 上单一递加,故f(x) 在 (0,1] 上的最大值为f(1) =a,所以 a=12.18.(此题满分12 分 )求曲线 y=2x- x2,y= 2x2 -4x 所围成图形的面积.[ 分析 ]由y=2x-x2,y=2x2-4x得x1=0,x2=2.由图可知,所求图形的面积为S= 02(2x - x2)dx + |02(2x2-4x)dx| =02(2x -x2)dx - 02(2x2 - 4x)dx.由于 x2- 13x3= 2x-x2,23x3- 2x2= 2x2-4x ,所以 S= x2-13x320 -23x3- 2x220= 4.19. (此题满分 12 分 )设函数 f(x) =x3 - 3ax+ b(a0).(1)若曲线 y= f(x) 在点 (2, f(2)) 处与直线y= 8 相切,求a,b 的值;(2)求函数 f(x) 的单一区间与极值点.[ 剖析 ]考察利用导数研究函数的单一性,极值点的性质,以及分类议论思想.[ 分析 ](1)f(x) = 3x2- 3a.由于曲线 y=f(x) 在点 (2, f(2)) 处与直线 y=8 相切,所以 f(2) = 0, f(2) =8.即 3(4-a)= 0, 8-6a+ b= 8.解得 a= 4,b= 24.(2)f(x) = 3(x2- a)(a0).当 a0 时, f(x)0 ,函数 f(x) 在 (-,+ )上单一递加,此时函数f(x) 没有极值点.当 a0 时,由 f(x) = 0 得 x= a.当 x( -,- a)时, f(x)0 ,函数 f(x) 单一递加;当 x( - a, a)时, f(x)0 ,函数 f(x) 单一递减;当 x(a,+ )时, f(x)0 ,函数 f(x) 单一递加.此时 x=- a 是 f(x) 的极大值点, x= a 是 f(x) 的极小值点.20. (此题满分 12 分 )已知函数f(x) = 12x2 +lnx.(1)求函数 f(x) 的单一区间;(2)求证:当x1 时, 12x2 + lnx23x3.[ 分析 ] (1)依题意知函数的定义域为{x|x0} ,∵f(x) =x+ 1x,故 f(x)0 ,f(x) 的单一增区间为(0,+ ).(2)设 g(x) = 23x3-12x2 - lnx ,g(x) = 2x2 -x- 1x,∵当 x1 时, g(x) = (x- 1)(2x2 + x+ 1)x0,g(x) 在 (1,+ )上为增函数,g(x)g(1) = 160,当 x1 时, 12x2 +lnx23x3.21. (此题满分 12 分 )设函数 f(x) =x3 - 92x2+ 6x- a.(1)关于随意实数x,f(x)m 恒建立,求m 的最大值;(2)若方程 f(x) =0 有且仅有一个实根,求 a 的取值范围.[ 剖析 ]此题主要考察导数的应用及转变思想,以及求参数的范围问题.[ 分析 ](1)f(x) = 3x2- 9x+ 6= 3(x- 1)(x -2).由于 x( -,+ ). f(x)m ,即 3x2- 9x+ (6- m)0 恒建立.所以= 81- 12(6- m)0,得 m- 34,即 m 的最大值为- 34. (2)由于当 x1 时, f(x)0 ;当 12 时, f(x)0 ;当 x2 时 f(x)0.所以当 x= 1 时, f(x) 取极大值 f(1) = 52-a,当 x= 2 时, f(x) 取极小值 f(2) =2- a.故当 f(2)0 或 f(1)0 时,方程 f(x) = 0 仅有一个实根,解得a2或 a52.22. (此题满分 14 分 )已知函数f(x) =- x3+ax2+ 1(aR).(1)若函数 y= f(x) 在区间 0, 23 上递加,在区间23,+上递减,求 a 的值;(2)当 x[0,1] 时,设函数 y=f(x) 图象上随意一点处的切线的倾斜角为,若给定常数a32,+,求的取值范围;(3)在 (1)的条件下,能否存在实数m,使得函数 g(x) = x4- 5x3+(2- m)x2 + 1(mR) 的图象与函数 y= f(x) 的图象恰有三个交点.若存在,恳求出实数 m 的值;若不存在,试说明原因.[ 分析 ] (1)依题意 f23 = 0,由 f(x) =- 3x2+ 2ax,得- 3232+ 2a23= 0,即 a=1.(2)当 x[0,1] 时, tan= f(x) =- 3x2+ 2ax=- 3x- a32+a23.由 a32,+,得 a312,+ .①当 a312,1,即 a32,3 时, f(x)max = a23,f(x)min =f(0) = 0.此时 0tana23.②当 a3(1,+),即 a(3,+)时,f(x)max =f(1) = 2a- 3,f(x)min =f(0) =0,此时, 0tan2a- 3.又∵ [0, ),当 323 时, 0,arctana23,当 a3 时, [0 ,arctan(2a-3)] .(3)函数 y= f(x) 与 g(x) =x4 -5x3+ (2-m)x2 + 1(mR) 的图象恰有 3 个交点,等价于方程-x3+x2 +1=x4- 5x3+ (2-m)x2 + 1 恰有 3 个不等实根,x4- 4x3+ (1-m)x2 = 0,明显 x= 0 是此中一个根 (二重根 ),方程 x2- 4x +(1- m)= 0 有两个非零不等实根,则=16- 4(1- m)01- m0“师”之观点,大概是从先秦期间的“师长、师傅、先生”而来。
2022年高考数学真题分专题训练专题:导数的综合应用(教师版含解析)
专题09导数的综合应用1.(2021年全国高考乙卷数学(文)试题)已知函数32()1f x x x ax .(1)讨论 f x 的单调性;(2)求曲线 y f x 过坐标原点的切线与曲线 y f x 的公共点的坐标.【答案】(1)答案见解析;(2)和 11a ,.【分析】(1)由函数的解析式可得: 232f x x x a ,导函数的判别式412a ,当14120,3a a 时, 0,f x f x 在R 上单调递增,当时,的解为:1211,32x x ,当1,3x时,单调递增;当11311333x时,单调递减;当13x时,单调递增;综上可得:当时,在R 上单调递增,当时,在1,3,1,3上单调递增,在113113,33上单调递减.(2)由题意可得: 3200001f x x x ax , 200032f x x x a ,则切线方程为: 322000000132y x x ax x x a x x ,切线过坐标原点,则: 32200000001320x x ax x x a x ,整理可得:3200210x x ,即:20001210x x x ,解得:,则, 0'()11f x f a切线方程为: 1y a x ,与联立得321(1)x x ax a x ,化简得3210x x x ,由于切点的横坐标1必然是该方程的一个根,1x 是321x x x 的一个因式,∴该方程可以分解因式为2110,x x 解得121,1x x , 11f a ,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和 11a ,.2.(2021年全国高考乙卷数学(理)试题)设函数 ln f x a x ,已知0x 是函数 y xf x 的极值点.(1)求a ;(2)设函数()()()x f x g x xf x .证明: 1g x .【答案】1;证明见详解【分析】(1)由 n 1'l a f x a x f x x , 'ln x y a x x ay xf x ,又0x 是函数 y xf x 的极值点,所以 '0ln 0y a ,解得1a ;(2)由(1)得 ln 1f x x ,ln 1()()()ln 1x x x f x g x xf x x x ,1x 且0x ,当 0,1x 时,要证ln 1()1ln 1x x g x x x , 0,ln 10x x ∵, ln 10x x ,即证 ln 1ln 1x x x x ,化简得 1ln 10x x x ;同理,当 ,0x 时,要证ln 1()1ln 1x x g x x x , 0,ln 10x x ∵, ln 10x x ,即证 ln 1ln 1x x x x ,化简得 1ln 10x x x ;令 1ln 1h x x x x ,再令1t x ,则 0,11,t ,1x t ,令 1ln g t t t t , '1ln 1ln g t t t ,当 0,1t 时, '0g x , g x 单减,假设 1g 能取到,则 10g ,故 10g t g ;当 1,t 时, '0g x , g x 单增,假设 1g 能取到,则 10g ,故 10g t g ;综上所述,ln 1()1ln 1x x g x x x 在 ,00,1x 恒成立3.(2021年全国高考甲卷数学(文)试题)设函数22()3ln 1f x a x ax x ,其中0a .(1)讨论 f x 的单调性;(2)若 y f x 的图像与x 轴没有公共点,求a 的取值范围.【答案】(1) f x 的减区间为10,a,增区间为1,+a;(2)1a e .【分析】(1)函数的定义域为 0, ,又 23(1)()ax ax f x x,因为0,0a x ,故230ax ,当10x a 时,()0f x ;当1x a时,()0f x ;所以 f x 的减区间为10,a,增区间为1,+a .(2)因为 2110f a a 且 y f x 的图与x 轴没有公共点,所以 y f x 的图象在x 轴的上方,由(1)中函数的单调性可得 min 1133ln 33ln f x f a a a,故33ln 0a 即1a e.4.(2021年全国高考甲卷数学(理)试题)已知0a 且1a ,函数()(0)a x x f x x a.(1)当2a 时,求 f x 的单调区间;(2)若曲线 y f x 与直线1y 有且仅有两个交点,求a 的取值范围.【答案】(1)20,ln2上单调递增;2,ln2上单调递减;(2) 1,,e e .【分析】(1)当2a 时,令 '0f x 得2ln 2x,当20ln 2x 时, 0f x ,当2ln 2x 时, 0f x ,∴函数 f x 在20,ln2上单调递增;2,ln2上单调递减;(2) ln ln 1ln ln a x a x x x a f x a x x a a x a x a,设函数 ln x g x x ,则 21ln x g x x,令 0g x ,得x e ,在 0,e 内 0g x , g x 单调递增;在 ,e 上 0g x , g x 单调递减;1max g x g e e,又 10g ,当x 趋近于 时, g x 趋近于0,所以曲线 y f x 与直线1y 有且仅有两个交点,即曲线 y g x 与直线ln a y a有两个交点的充分必要条件是ln 10a a e ,这即是 0g a g e ,所以a 的取值范围是 1,,e e .5.(2021年全国新高考Ⅰ卷数学试题)已知函数 1ln f x x x .(1)讨论 f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b ,证明:112e a b.【答案】(1) f x 的递增区间为 0,1,递减区间为 1,+ ;(2)证明见解析.【分析】(1)函数的定义域为 0, ,又 1ln 1ln f x x x ,当 0,1x 时, 0f x ,当 1,+x 时, 0f x ,故 f x 的递增区间为 0,1,递减区间为 1,+ .(2)因为ln ln b a a b a b ,故 ln 1ln +1b a a b ,即ln 1ln +1a b a b ,故11f f a b,设1211,x x a b,由(1)可知不妨设1201,1x x .因为 0,1x 时, 1ln 0f x x x , ,x e 时, 1ln 0f x x x ,故21x e .先证:122x x ,若22x ,122x x 必成立.若22x ,要证:122x x ,即证122x x ,而2021x ,故即证 122f x f x ,即证: 222f x f x ,其中212x .设 2,12g x f x f x x ,则 2ln ln 2g x f x f x x x ln 2x x ,因为12x ,故 021x x ,故 ln 20x x ,所以 0g x ,故 g x 在 1,2为增函数,所以 10g x g ,故 2f x f x ,即 222f x f x 成立,所以122x x 成立,综上,122x x 成立.设21x tx ,则1t ,结合ln 1ln +1a b a b ,1211,x x a b 可得: 11221ln 1ln x x x x ,即: 111ln 1ln ln x t t x ,故11ln ln 1t t t x t ,要证:12x x e ,即证 11t x e ,即证 1ln 1ln 1t x ,即证: 1ln ln 111t t t t t ,即证: 1ln 1ln 0t t t t ,令 1ln 1ln ,1S t t t t t t ,则 112ln 11ln ln 111t S t t t t t t,先证明一个不等式: ln 1x x .设 ln 1u x x x ,则 1111x u x x x ,当10x 时, 0u x ;当0x 时, 0u x ,故 u x 在 1,0 上为增函数,在 0,+ 上为减函数,故 max 00u x u ,故 ln 1x x 成立由上述不等式可得当1t 时,112ln 11t t t,故 0S t 恒成立,故 S t 在 1, 上为减函数,故 10S t S ,故 1ln 1ln 0t t t t 成立,即12x x e 成立.综上所述,112e a b.6.(2021年全国新高考2卷数学试题)已知函数2()(1)x f x x e ax b .(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点①21,222e a b a ;②10,22a b a .【答案】(1)答案见解析;(2)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可;(2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论.【详解】(1)由函数的解析式可得:'2x f x x e a ,当0a 时,若 ,0x ,则 '0,f x f x 单调递减,若 0,x ,则 '0,f x f x 单调递增;当102a 时,若,ln 2x a ,则 '0,f x f x 单调递增,若ln 2,0x a ,则 '0,f x f x 单调递减,若 0,x ,则 '0,f x f x 单调递增;当12a时, '0,f x f x 在R 上单调递增;当12a 时,若 ,0x ,则 '0,f x f x 单调递增,若0,ln 2x a ,则 '0,f x f x 单调递减,若ln 2,x a ,则 '0,f x f x 单调递增;(2)若选择条件①:由于2122e a ,故212a e ,则 21,010b af b ,而 210b f b b e ab b ,而函数在区间 ,0 上单调递增,故函数在区间 ,0 上有一个零点.2ln 22ln 21ln 2f a a a a a b 22ln 21ln 22a a a a a22ln 2ln 2a a a a ln 22ln 2a a a ,由于2122e a ,212a e ,故 ln 22ln 20a a a ,结合函数的单调性可知函数在区间 0, 上没有零点.综上可得,题中的结论成立.若选择条件②:由于102a ,故21a ,则 01210f b a ,当0b 时,24,42e a ,2240f e a b ,而函数在区间 0, 上单调递增,故函数在区间 0, 上有一个零点.当0b 时,构造函数 1x H x e x ,则 1xH x e ,当 ,0x 时, 0,H x H x 单调递减,当 0,x 时, 0,H x H x 单调递增,注意到 00H ,故 0H x 恒成立,从而有:1x e x ,此时:22111x f x x e ax b x x ax b 211a x b ,当x 2110a x b ,取01x,则 00f x ,即:00,10f f,而函数在区间 0, 上单调递增,故函数在区间 0, 上有一个零点.2ln 22ln 21ln 2f a a a a a b 22ln 21ln 22a a a a a22ln 2ln 2a a a a ln 22ln 2a a a ,由于102a ,021a ,故 ln 22ln 20a a a ,结合函数的单调性可知函数在区间 ,0 上没有零点.综上可得,题中的结论成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.7.(2021年天津卷数学试题)已知0a ,函数()x f x ax xe .(I )求曲线()y f x 在点(0,(0))f 处的切线方程:(II )证明()f x 存在唯一的极值点(III )若存在a ,使得()f x a b 对任意x R 成立,求实数b 的取值范围.【答案】(I )(1),(0)y a x a ;(II )证明见解析;(III ),e 【解析】【分析】(I )求出 f x 在0x 处的导数,即切线斜率,求出 0f ,即可求出切线方程;(II )令 0f x ,可得(1)x a x e ,则可化为证明y a 与 y g x 仅有一个交点,利用导数求出 g x 的变化情况,数形结合即可求解;(III )令 2()1,(1)xh x x x e x ,题目等价于存在(1,)x ,使得()h x b ,即min ()b h x ,利用导数即可求出 h x 的最小值.【详解】(I )()(1)x f x a x e ,则(0)1f a ,又(0)0f ,则切线方程为(1),(0)y a x a ;(II )令()(1)0x f x a x e ,则(1)x a x e ,令()(1)x g x x e ,则()(2)x g x x e ,当(,2)x 时,()0g x , g x 单调递减;当(2,)x 时,()0g x , g x 单调递增,当x 时, 0g x , 10g ,当x 时, 0g x ,画出 g x 大致图像如下:所以当0a 时,y a 与 y g x 仅有一个交点,令 g m a ,则1m ,且()()0f m a g m ,当(,)x m 时,()a g x ,则()0f x , f x 单调递增,当 ,x m 时,()a g x ,则()0f x , f x 单调递减,x m 为 f x 的极大值点,故()f x 存在唯一的极值点;(III )由(II )知max ()()f x f m ,此时)1(1,m a m e m ,所以 2max {()}()1(1),m f x a f m a m m e m ,令 2()1,(1)x h x x x e x ,若存在a ,使得()f x a b 对任意x R 成立,等价于存在(1,)x ,使得()h x b ,即min ()b h x , 2()2(1)(2)x x h x x x e x x e ,1x ,当(1,1)x 时,()0h x , h x 单调递减,当(1,)x 时,()0h x , h x 单调递增,所以min ()(1)h x h e ,故b e ,所以实数b 的取值范围 ,e .【点睛】关键点睛:第二问解题的关键是转化为证明y a 与 y g x 仅有一个交点;第三问解题的关键是转化为存在(1,)x ,使得()h x b ,即min ()b h x .8.(2021年浙江卷数学试题)设a ,b 为实数,且1a ,函数 2R ()x f x a bx e x(1)求函数 f x 的单调区间;(2)若对任意22b e ,函数 f x 有两个不同的零点,求a 的取值范围;(3)当a e 时,证明:对任意4b e ,函数 f x 有两个不同的零点12,x x ,满足2212ln 2b b e x x e b .(注: 2.71828e 是自然对数的底数)【答案】(1)0b 时,()f x 在R 上单调递增;0b 时,函数的单调减区间为,log ln a b a ,单调增区间为log ,ln a b a;(2)21,e ;(3)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后分类讨论即可确定函数的单调性;(2)将原问题进行等价转化,然后构造新函数,利用导函数研究函数的性质并进行放缩即可确定实数a 的取值范围;(3)结合(2)的结论将原问题进行等价变形,然后利用分析法即可证得题中的结论成立.【详解】(1)2(),()ln x x f x b f a x e a x a b ,①若0b ,则()ln 0x f x a a b ,所以()f x 在R 上单调递增;②若0b ,当,log ln a b x a时, '0,f x f x 单调递减,当log ,ln a b x a时, '0,f x f x 单调递增.综上可得,0b 时,()f x 在R 上单调递增;0b 时,函数的单调减区间为,log ln a b a ,单调增区间为log ,ln a b a.(2)()f x 有2个不同零点20x a bx e 有2个不同解ln 20x a e bx e 有2个不同的解,令ln t x a ,则220,0ln ln t tb b e e e e t a a t t ,记22222(1)(),()t t t t e t e e e e e t e g t g t t t t ,记2()(1),()(1)10t t t t h t e t e h t e t e e t ,又(2)0h ,所以(0,2)t 时,()0,(2,)h t t 时,()0h t ,则()g t 在(0,2)单调递减,(2,) 单调递增,22(2),ln ln b b g e a a e,22222,ln ,21b b e a a e e∵.即实数a 的取值范围是21,e .(3)2,()x a e f x e bx e 有2个不同零点,则2x e e bx ,故函数的零点一定为正数.由(2)可知有2个不同零点,记较大者为2x ,较小者为1x ,1222412x x e e e e b e x x ,注意到函数2x e e y x在区间 0,2上单调递减,在区间 2, 上单调递增,故122x x ,又由5245e e e 知25x ,122211122x e e e e b x x x b,要证2212ln 2b b e x x e b ,只需22ln e x b b,222222x x e e e b x x 且关于b 的函数 2ln e g b b b在4b e 上单调递增,所以只需证 22222222ln 52x x e x e x x x e,只需证2222222ln ln 02x x x e x e e x e ,只需证2ln ln 202x e x x e,242e ∵,只需证4()ln ln 2x x h x x e 在5x 时为正,由于 11()44410x x x h x xe e e x x x,故函数 h x 单调递增,又54520(5)ln 5l 20n 2ln 02h e e ,故4()ln ln 2x x h x x e 在5x 时为正,从而题中的不等式得证.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.9.(2021年北京卷数学试题)已知函数 232x f x x a.(1)若0a ,求 y f x 在 1,1f 处切线方程;(2)若函数 f x 在1x 处取得极值,求 f x 的单调区间,以及最大值和最小值.【答案】(1)450x y ;(2)函数 f x 的增区间为 ,1 、 4, ,单调递减区间为 1,4 ,最大值为1,最小值为14.【解析】【分析】(1)求出 1f 、 1f 的值,利用点斜式可得出所求切线的方程;(2)由 10f 可求得实数a 的值,然后利用导数分析函数 f x 的单调性与极值,由此可得出结果.【详解】(1)当0a 时, 232x f x x ,则 323x f x x, 11f , 14f ,此时,曲线 y f x 在点1,1f 处的切线方程为 141y x ,即450x y ;(2)因为 232x f x x a ,则 222222223223x a x x x x a f x x a x a ,由题意可得224101a f a ,解得4a ,故 2324x f x x ,222144x x f x x ,列表如下:x,1 1 1,4 4 4,f x 0 0 f x 增极大值减极小值增所以,函数 f x 的增区间为 ,1 、 4, ,单调递减区间为 1,4 .当32x 时, 0f x ;当32x 时, 0f x .所以, max 11f x f , min 144f x f .。
2024届全国高考数学一轮复习好题专项(导数的综合应用)练习(附答案)
2024届全国高考数学一轮复习好题专项(导数的综合应用)练习一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3eB .31e +C .4eD .41e +2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞⎪⎝⎭3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ] B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 二、提升练习1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2B .3C .ln 2D .52.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +.(1)求a 的值; (2)证明:()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<.9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>. 三、真题练习1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围.2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 4.(2020·山东海南省高考真题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.5.(2020·浙江省高考真题)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点;(Ⅱ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.6.(2019·全国高考真题(理))已知函数.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线的切线.()11ln x f x x x -=-+e x y =参考答案一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3e B .31e +C .4eD .41e +【答案】C 【答案解析】不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立,化为不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,必然有0a >.令1=x e,化为:31b a e +….令4a e =,1b =.利用导数研究函数的单调性极值最值即可得出结论. 【答案详解】解:不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立, 则不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立, 则0a >. 令1=x e,则131a b e -+--…,化为:31b a e +…. 令4a e =,1b =.不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,即不等式20lnx ex -+…对任意(0,)x ∈+∞恒成立, 令()2f x lnx ex =-+,则1()1()e x e f x e x x --'=-=,可得:1=x e 时,函数()f x 取得极大值即最大值,1(1120f e=--+=, 满足题意.可以验证其他值不成立. 故选:C .2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞ ⎪⎝⎭【答案】C 【答案解析】函数零点即方程ax e =的解,2ax e x =(0x >),取对数得2ln ax x =,此方程有两个解,引入函数()ln 2g x x ax =-,利用导数求得函数的单调性,函数的变化趋势,然后由零点存在定理可得结论.【答案详解】显然(0)1f =,()e ax f x =有两个零点,即方程ax e =,2ax e x =在(0,)+∞上有两个解,两边取对数得到2ln ax x =,令()ln 2g x x ax =-,1()2g x a x '=-,()g x 在10,2a ⎛⎫ ⎪⎝⎭单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭单调递减,又当0x →时,()g x →-∞,当x →+∞时,()g x →-∞, 因为()g x 有两个零点,则11ln 1022g a a ⎛⎫=->⎪⎝⎭, 解得12e a <.所以正数a 的取值范围是10,2e ⎛⎫⎪⎝⎭. 故选:C .3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e【答案】A 【答案解析】首先根据()0h x ≥求出2x ≥,进而参变分离解决恒成立的问题即可. 【答案详解】因为()()2xh x x e =-,所以()0h x ≥,即2x ≥,所以当2x ≥时,()()h x g x ≥恒成立,即()2122xa a x e x x -≥-, 即()()1222xx e x ax -≥-, 当2x =时,()()1222xx e x ax -≥-恒成立,符合题意;当()2,x ∈+∞时,有12xe ax ≥,即2xe xa ≥,令()2x e m x x =,则()()2210x e x m x x-'=>,所以()m x 在()2,x ∈+∞上单调递增,而()22m e =,所以2e a ≥,故选:A.4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ]B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}【答案】D 【答案解析】利用导数研究函数在定义域上的单调性,得出1()f x e≤;结合题意得出()f x 在[]02,有且仅有1个解,计算(0)(2)f f 、的值即可. 【答案详解】当[]02x ∈,时()xxf x e =, 则1()x xf x e-'=令()=0f x ',解得1x =,所以当[]01x ∈,时()0f x '>,()f x 单调递增; 当[]12x ∈,时()0f x '<,()f x 单调递减, 所以max 1()(1)f x f e==,故1()f x e≤在定义域上恒成立,由22()(21)()0f x a f x a +--=有且只有2个实数根, 得方程[]12()()02f x a f x ⎡⎤+-=⎢⎥⎣⎦有2个解,又1()f x e≤,所以111()022f x e -≤-<,则()f x 在[]02,有且仅有1个解, 因为22(0)0(2)f f e ==,,则220a e <-<或1a e-=, 所以220a e-<<或1a e =-,即实数的取值范围是2210e e ⎛⎫⎧⎫--⎨⎬ ⎪⎝⎭⎩⎭,, 故选:D5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e【答案】D 【答案解析】画出函数图像,数形结合构造函数,利用导数判断函数单调性并求函数最值即可. 【答案详解】根据题意,画出()f x 的图象如下所示:令()f x t =,(0)t >,故可得lnx t =,解得t x e =;e t x -=,解得e x t=-.故可得(),,,te A e t B t t ⎛⎫- ⎪⎝⎭,(0)t >, 故()teAB g t e t==+,(0)t >, 故可得()2te g t e t ='-,()30te g t e t'=+>'恒成立, 故()g t '是单调递增函数,且()10g '=,关于()0g t '<在()0,1成立,()0g t '>在()1,+∞成立, 故()g t 在()0,1单调递减,在()1,+∞单调递增, 故()()12min g t g e e e ==+=. 即||AB 的最小值为2e . 故选:D6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞ B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞【答案】D 【答案解析】参变分离可得222e x mx x n +-<,研究函数()222exmx xf x +-=,根据导函数()()22e x m x x m f x ⎛⎫--- ⎪⎝⎭'=以及2m <-,可得函数()f x 的极大值为22222e 0e m m f m -⎛⎫==> ⎪⎝⎭,当2x >,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,根据()f x 的最大值的范围即可得解. 【答案详解】由22e 2xmx n x +<+,得222exmx x n +-<, 令()222exmx xf x +-=,则()()22e xm x x m f x ⎛⎫--- ⎪⎝⎭'=,当2m <-时,210m-<<, 函数()f x 在2,m ⎛⎫-∞ ⎪⎝⎭,()2,+∞上单调递增,在2,2m ⎛⎫⎪⎝⎭上单调递减,故函数()f x 的极大值为22222e 0e mm f m -⎛⎫==> ⎪⎝⎭,极小值为()24220e m f -=<, 且2x >时,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,由2m <-, 得22e 2e m -<,由()f x n <恒成立,得2e n ≥, 故选:D .7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点 【答案】ACD 【答案解析】由定义法确定函数的奇偶性,再求导数判断函数的单调性与切线斜率,以及零点情况. 【答案详解】因为对于任意x ∈R ,都有()()()()3e e x x x x a xf x f -=-+---=--, 所以()f x 为奇函数,其图象关于原点对称,故A 正确.又()2e e 3xxx a f x =++-',令()f x a '=-,得2e e 30x x x -++=(*),因为e 0x >,e 0x ->,所以方程(*)无实数解,即曲线()y f x =的所有切线的斜率都不可能为a -,故B 错误.若()f x 为增函数,则()f x ¢大于等于0,即2e e 3x x a x -≤++,2e e 32x x x -++≥, 当且仅当0x =时等号成立,所以2a ≤,故C 正确.令()0f x =,得0x =或2e e x x x a x --+=(0x ≠).设()2e e x x g x x x--=+,则()()()21e 1e 2x x x x x x g x -'=-+++,令()()()1e 1e x xx x t x -=-++,则()()e exxx x t -='-.当0x >时,()0t x '>,当0x =时,()0t x '=,当0x <时,()0t x '>,所以函数()t x 为增函数,且()00t =,所以当0x >时,()0t x >,从而()0g x ¢>,()g x 单调递增.又因为对于任意0x ≠,都有()()g x g x -=,所以()g x 为偶函数,其图象关于y 轴对称. 综上,()g x 在(),0-?上单调递减,在()0,+?上单调递增,则直线y a =与()y g x =最多有2个交点,所以()f x 在R 上最多有3个零点,故D 正确. 故选ACD .8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 【答案】916. 【答案解析】设长方体的底面边长为,a b ,高为h ,由题可得3217244V b b b =--+,求出函数导数,判断单调性,即可求出最值. 【答案详解】设长方体的底面边长为,a b ,高为h ,则由题可得1a b =+,()411a b h ++=,则可得784b h -=,则708b <<, 则该容器容积()32781712444b V abh b b b b b -==+⋅⋅=--+,217176624212V b b b b ⎛⎫⎛⎫'=--+=--+ ⎪⎪⎝⎭⎝⎭,当10,2b ⎛⎫∈ ⎪⎝⎭时,0V '>,V 单调递增;当17,28b ⎛⎫∈ ⎪⎝⎭时,0V '<,V 单调递减, ∴当12b =时,max 916V =,即该容器容积的最大值为916. 故答案为:916.9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.【答案】8 c m 2π+ ()32128 c m 2ππ+ 【答案解析】设圆柱的底面半径为r ,圆柱的高为h ,根据已知条件可得出262h r π+=-,根据柱体的体积公式可得()23262V r r πππ+=-,利用导数可求得V 的最大值及其对应的r 的值,即为所求.【答案详解】设圆柱的底面半径为r ,圆柱的高为h . 则由题意可得2212r h r π++=,所以()1222622r h r ππ-++==-.由0h >,得122r π<+. 故容器的容积()22232212660222V r h r r r r r πππππππ++⎛⎫⎛⎫==-=-<< ⎪ ⎪+⎝⎭⎝⎭,容易忽略上半球是容器的盖子,化妆水储存在圆柱中.()232122V r r πππ+'=-,令0V '=,解得0r =(舍)或82r π=+. 显然当80,2r π⎛⎫∈ ⎪+⎝⎭时,0V '>,函数()23262V r r πππ+=-单调递增; 当812,22r ππ⎛⎫∈⎪++⎝⎭时,0V '<,函数()23262V r r πππ+=-单调递减. 所以当8cm 2r π=+时,V 取得最大值, 此时2862cm 22h ππ+=-⨯=+,()23281282cm 22V ππππ⎛⎫=⨯= ⎪+⎝⎭+. 故答案为:8 c m 2π+;()32128 c m 2ππ+. 10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 【答案】0a ≤或1a e= 【答案解析】将函数的零点转化为方程ln (0)x x x a x xe +=>的根,令ln ()xx xg x xe +=,利用导数研究函数的图象特征,即可得到答案; 【答案详解】ln ln 10(0)x x x x xae a x x xe +--=⇔=>, 令ln ()xx x g x xe+=,则'2()(1ln )()x x x x g x x e +--=, ''()01ln 0,()01ln 0,g x x x g x x x >⇔--><⇔--<令()1ln u x x x =--,则'1()10u x x=--<在0x >恒成立, ∴()1ln u x x x =--在(0,)+∞单调递减,且(1)0u =, ∴''()001,()01g x x g x x >⇒<<<⇒>,∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且1(1)g e=,当x →+∞时,()0g x →, 如图所示,可得当0a ≤或1a e =时,直线y a =与ln xx x y xe +=有且仅有一个交点, 故答案为:0a ≤或1a e=1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2 B .3C .ln 2D .5【答案】C 【答案解析】构造函数()ln f x ax x b =-+,根据函数的单调性及最值可得ln 1b a ≥--,故22ln 1a b a a +≥--,再构造()2ln 1g x x x =--,求得函数()g x 的最小值即可. 【答案详解】由ln x ax b ≤+恒成立,得ln 0ax x b -+≥, 设()ln f x ax x b =-+,()1f x a x'=-, 当0a ≤时,()0f x ¢<,()f x 在()0,+?上单调递减,不成立;当0a >时,令()0f x ¢=,解得1x a=,故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增, 故()10f x f a ⎛⎫≥≥⎪⎝⎭,即11ln 0a b a a ⎛⎫⋅-+≥ ⎪⎝⎭,ln 1b a ≥--,练提升22ln 1a b a a +≥--,设()2ln 1g x x x =--,()12g x x'=-, 令()0g x ¢=,12x =, 故()g x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 故()1112ln 1ln 2222g x g ⎛⎫⎛⎫≥=⨯--=⎪ ⎪⎝⎭⎝⎭, 即2ln 2a b +≥, 故选:C.2.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______. 【答案】①②④ 【答案解析】由()0f x =可得出lg 2x kx =+,考查直线2y kx =+与曲线()lg g x x =的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误. 【答案详解】对于①,当0k =时,由()lg 20f x x =-=,可得1100x =或100x =,①正确; 对于②,考查直线2y kx =+与曲线()lg 01y x x =-<<相切于点(),lg P t t -,对函数lg y x =-求导得1ln10y x '=-,由题意可得2lg 1ln10kt t k t +=-⎧⎪⎨=-⎪⎩,解得100100lg e t k e e ⎧=⎪⎪⎨⎪=-⎪⎩, 所以,存在100lg 0k e e=-<,使得()f x 只有一个零点,②正确; 对于③,当直线2y kx =+过点()1,0时,20k +=,解得2k =-,所以,当100lg 2e k e-<<-时,直线2y kx =+与曲线()lg 01y x x =-<<有两个交点, 若函数()f x 有三个零点,则直线2y kx =+与曲线()lg 01y x x =-<<有两个交点,直线2y kx =+与曲线()lg 1y x x =>有一个交点,所以,100lg 220e k ek ⎧-<<-⎪⎨⎪+>⎩,此不等式无解, 因此,不存在0k <,使得函数()f x 有三个零点,③错误;对于④,考查直线2y kx =+与曲线()lg 1y x x =>相切于点(),lg P t t ,对函数lg y x =求导得1ln10y x '=,由题意可得2lg 1ln10kt t k t +=⎧⎪⎨=⎪⎩,解得100lg 100t ee k e =⎧⎪⎨=⎪⎩,所以,当lg 0100ek e<<时,函数()f x 有三个零点,④正确.故答案为:①②④.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +. (1)求a 的值; (2)证明:()0f x >.【答案】(1)2a =;(2)证明见答案解析. 【答案解析】(1)求出函数的导函数,再代入计算可得;(2)依题意即证()()2222ln 0xf x x x e ex e x =-+->,即()12ln 2x x x e e x--+>,构造函数()()222x g x x e e-=-+,()ln xh x x =,利用导数说明其单调性与最值,即可得到()()>g x h x ,从而得证; 【答案详解】解:(1)因为()()222ln xf x x x e aex e x =-+-,所以()()222xef x x e ae x'=-+-,()22332222e ef ae e =+=+',解得2a =.(2)由(1)可得()()2222ln xf x x x e ex e x =-+-即证()()()2212ln 22ln 02x x x f x x x e ex e x x e e x-=-+->⇔-+>. 令()()222x g x x e e-=-+,()()21x g x x e -=-',于是()g x 在()0,1上是减函数,在()1,+∞上是增函数,所以()()11g x g e≥=(1x =取等号). 又令()ln x h x x =,则()21ln xh x x -'=,于是()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以()()1h x h e e≤=(x e =时取等号).所以()()>g x h x ,即()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.【答案】(1)1m =;(2)证明见答案解析;(3)有一个零点. 【答案解析】(1)利用导数的几何意义求解即可(2)利用导数,得到()f x 在()0,∞+上单调递增,由()00f =,即可证明()0f x >在()0,∞+上恒成立 (3)由(2)可知当1m >且0x >时,()()ln 1e0xf x x x ->+->,即()f x 在()0,∞+上没有零点,再根据,0x m +>,得到x m >-, 对(),0x m ∈-进行讨论,即可求解 【答案详解】解:(1)因为()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,所以()112f '=, 因为()()11e x f x x x m -+-'=+, 所以()11112f m ='=+,解得1m =. (2)由(1)得当1m =时,()()()21e 11e 11ex xx x f x x x x -+-=+-=++', 当0x >时,因为()0f x '>,所以()f x 在()0,∞+上单调递增, 因为()00f =,所以()0f x >在()0,∞+上恒成立. (3)由(2)可知当1m >且0x >时,()()ln 1e 0xf x x x ->+->,即()f x 在()0,∞+上没有零点,当(),0x m ∈-时,()()()()2e 111e e x xxx m x m f x x x m x m -++--=+-=++',令()()2e 1xg x x m x m =++--,(),0x m ∈-,则()e 21xg x x m =++-'单调递增,且()e21e 10mm g m m m m ---=-+-=--<',()00g m '=>,所以()g x '在(),0m -上存在唯一零点,记为0x ,且()0,x m x ∈-时,()0g x '<,()0,0x x ∈时,()0g x '>, 所以()g x 在()0,m x -上单调递减,在()0,0x 上单调递增, 因为1m >, 所以()e0mg m --=>,()010g m =-<,因为()()00g x g <,所以()00g x <,所以()g x 在()0,m x -上存在唯一零点1x ,且在()0,0x 上恒小于零, 故()1,x m x ∈-时,()0g x >;()1,0x x ∈时,()0g x <,所以()f x 在()1,m x -上单调递增,在()1,0x 上单调递减,且()0ln 0f m =>, 所以()f x 在(),0m -上至多有一个零点, 取()e 2e ,0mm x m m -=-+∈-, 则有()()22ln e 0mf x x m m <++=,所以由零点存在定理可知()f x 在(),0m -上只有一个零点, 又f (0)不为0,所以()f x 在(),m -+∞上只有一个零点.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.【答案】(1)答案见答案解析;(2)01a <<+或a e >.【答案解析】 (1)求得()'fx ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)根据(1)的结论,结合函数的极值以及零点个数,求得a 的取值范围. 【答案详解】 (1)()()()'1x x a f x x--=,当01a <<时,由()'00f x x a >⇒<<或1x >,所以()f x 在()0,a ,()1,+∞单调递增,由()'01fx a x <⇒<<,所以()f x 在(),1a 单调递减;当1a >时,由()'001fx x >⇒<<或x a >,所以()f x 在()0,1,(),a +∞单调递增,由()'01f x x a <⇒<<,所以()f x 在()1,a 单调递减;当1a =时,()()2'10x f x x-=≥⇒()f x 在()0,∞+单调递增.(2)1(1)(1(12f a a ⎡⎤⎡⎤=--⎣⎦⎣⎦,()(ln 1)f a a a =-, 由(1)知当01a <<时,()f x 在x a =处,有极大值,且()0f a <,此时函数有一个零点; 当1a =时,()f x 在()0,∞+单调递增,且()10f <,此时函数有一个零点;当1a >时,()0,1,(),a +∞单调递增,()1,a 单调递减,()f x 在x a =处,有极小值,()f x 在1x =处,有极大值,则当()10f <,或()0f a >时函数有一个零点,有11a <<或a e >.综上:01a <<+或a e >.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.【答案】(1)证明过程见解答;(2)当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 【答案解析】(1)将0k =代入,对()f x 求导,得到其单调性,判断其最值,即可得证;(2)令t lnx =,则()0f x =即为2102t k t t e ++=,显然0t ≠,进一步转化为212t k t t e +-=,令21()(0)t t h t t t e+=≠,利用导数作出()h t 的大致图象,进而图象判断方程解的情况,进而得到函数()f x 零点情况. 【答案详解】(1)证明:当0k =时,1()(0)lnx f x x x +=>,则2()lnxf x x'=-, ∴当(0,1)x ∈时,()0f x '>,()f x 单增,当(1,)x ∈+∞时,()0f x '<,()f x 单减,()f x f ∴…(1)1=,即得证;(2)令t lnx =,则()0f x =即为2102t k t t e++=,当0t =,即1x =时,该方程不成立,故1x =不是()f x 的零点; 接下来讨论0t ≠时的情况,当0t ≠时,方程可化为212tk t t e +-=, 令21()(0)t t h t t t e +=≠,则222()tt th t t e++'=-,当0t <时,22220t t ++-=-<…,当且仅当t =当0t >时,22220t t +++=+>…,当且仅当t =时取等号,∴当0t <时,()0h t '>,()h t 单增,当0t >时,()0h t '<,()h t 单减,且当0t →时,()h t →+∞,(1)0h -=,当1t <-时,()0h t <,当0t >时,()0h t >, 函数()h t 的大致图象如下:由图象可知,当02k -<,即0k >时,212t k t t e +-=只有一个解,则()f x 有一个零点,当02k ->,即0k <时,212tk t t e +-=有两个解,则()f x 有两个零点. 综上,当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 【答案】(1)1a =;(2)证明见答案解析. 【答案解析】(1)作差,设()()()1x h x f x g x e ax =-=--,利用导数求出()h x 的最小值为(ln )ln 10h a a a a =--≥,只需1ln 10a a +-≤;设1()ln 1a a aϕ=+-,利用导数求出min ()(1)0a ϕϕ==,解出1a =; (2)利用1x e x >+把原不等式转化为证明1ln 111x x x x -+-<+,即证:21ln 10x x x-++>, 设21()ln 1F x x x x=-++,利用导数求出最小值,即可证明.【答案详解】(1)设()()()1x h x f x g x e ax =-=--,()x h x e a '=-,当0a ≤时,()0x h x e a '=->,()h x 单增,当,()x h x →-∞→-∞,不满足恒成立 当0a >,()h x 在(,ln )x a ∈-∞单减,()h x 在(ln ,)x a ∈+∞单增, 所以()h x 的最小值为(ln )ln 10h a a a a =--≥,即11ln 0a a --≥,即1ln 10a a+-≤ 设1()ln 1a a a ϕ=+-,21()a a aϕ-'=,所以()ϕx 在(0,1)x ∈单减,()ϕx 在(1,)+∞单增, 即min()(1)0a ϕϕ==,故1ln 10a a+-≤的解只有1a =,综上1a =(2)先证当(0,1)x ∈时,1x e x >+恒成立.令()1x h x e x =--,求导()10x h x e '=->,所以()h x 在(0,1)x ∈上单调递增,()(0)0h x h >=,所以1x e x >+所以要证1ln 11x x x e x -+-<,即证1ln 111x x x x-+-<+, 即证211ln 1x x x x x x +-++-<+,即证:21ln 10x x x -++>, 设21()ln 1F x x x x=-++,求导22111()2(1)20F x x x x x x x '=--=--<,所以()F x 在(0,1)上单调递减,所以()(1)10F x F >=>,即原不等式成立.所以当(0,1)x ∈时,如1ln 11()x x f x x-+-<成立. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<. 【答案】(1)当()0,x e ∈时,()f x 单调递增;当(),x e ∈+∞时,()f x 单调递减;(2)证明见答案解析. 【答案解析】(1)将0a =代入函数,并求导即可分析单调性;(2)求导函数,讨论当0a =,01a <<与1a ≥时分析单调性,并判断是否有极大值,再求解极大值,即可证明.【答案详解】(1)()f x 的定义域是()0,∞+ 当0a =时,()ln x f x x =,()21ln xf x x -'=, 令()0f x '=,得x e =,所以当()0,x e ∈时,()0f x '>,()f x 单调递增; 当(),x e ∈+∞时,()0f x '<,()f x 单调递减;(2)()()()()()22ln ln xx a x x a x ax a f x x x x a -+-+++'==+, 令()()()()ln ,0,g x x x a x a x =-++∈+∞, 则()()ln g x x a '=-+,由()f x 的定义域是()0,∞+,易得0a ≥,当0a =时,由(1)知,()f x 在x e =处取得极大值,所以()1==M f e e. 当1a ≥时,()0g x '<在()0,x ∈+∞上恒成立,所以()g x 在()0,∞+上单调递减,()ln 0g x a a <-<,所以()0f x '<,故()f x 没有极值. 当01a <<时,令()0g x '=,得1x a =-,所以当()0,1x a ∈-时,()0g x '>,()g x 单调递增;当()1,x a ∈-+∞时,()0g x '<,()g x 单调递减. 所以当()0,1x a ∈-时,()ln 0g x a a >->,又()110g a a -=->,()0-=-<g e a a ,且1-<-e a a ,所以存在唯一()01,∈--x a e a ,使得()()()0000ln g x x x a x a =-+⋅+,当()00,x x ∈时,()0g x >,即()0f x '>,()f x 单调递增;当()0,x x ∈+∞时,()0g x <,即()0f x '<,()f x 单调递减.所以当0x x =时,()f x 取得极大值,所以()()000ln x a M f x a x +==+,所以()()()()000000011ln M x a x x a x a x a x a x a=++-=++-+⋅+++. 令0x a t +=,则()1,t e ∈,设()1ln h t t t t t=+-,()1,t e ∈, 则()21ln 0h t t t'=--<, 所以()h t 在()1,e 上单调递减, 所以()12<<h t e ,所以12<<M e. 综上,若函数()f x 存在极大值M ,则12M e≤<. 9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 【答案】(1)211b e -≤;(2)证明见答案解析. 【答案解析】(1)由条件求出a ,然后由()1f x bx ≤-可得1ln 1+x b x x≤-,然后用导数求出右边对应函数的最小值即可;(2)11()(1)e 1(1)(xx g x x x e x x'=--+=--,令()1e x h x x =-,然后可得存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-,然后可得0max 000000000012()()(2)ln (2)12x m g x g x x e x x x x x x x x ===--+=---=--,然后判断出函数2()12G x x x=--的单调性即可. 【答案详解】 (1)∵1()f x a x'=+,(1)10f a '=+=,∴1a =-,由已知()1f x bx ≤-,即ln 1x x bx -≤-,即1ln 1+x b x x≤-对()0,x ∀∈+∞恒成立, 令1ln ()1x t x x x =+-,则22211ln ln 2()x x t x x x x --'=--=,易得()t x 在2(0,)e 上单调递减,在2(,)e +∞上单调递增, ∴2min 21()()1t x t e e==-,即211b e -≤. (2)()()(2)e (2)e ln x x g x f x x x x x =+-=--+,则11()(1)e 1(1)(xx g x x x e x x'=--+=--. 当114x <<时,10x -<,令()1e xh x x=-, 则21()e 0xh x x'=+>,所以()h x 在1[,1]4上单调递增.∵121(()e 202h h x ==-<,(1)10h e =->,∴存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-. ∴当01(,)4x x ∈时,()0h x <,此时()0g x '>; 当0(,1)x x ∈时,()0h x >,此时()0g x '<; 即()g x 在01(,)4x 上单调递增,在0(),1x 上单调递减,则0max 000000000012()()(2)ln (2)12xm g x g x x e x x x x x x x x ===--+=---=--. 令2()12G x x x =--,1(,1)2x ∈,则22222(1)()20x G x x x '-=-=>,∴()G x 在1(,1)2x ∈上单调递增,则1()(42G x G >=-,()(1)3G x G <=-, ∴43m -<<-.∴()()430m m ++<.10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>.【答案】(1)答案见答案解析;(2)证明见答案解析. 【答案解析】(1)求函数的导数,分类讨论,解不等式即可求解;(2)根据极值点可转化为1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可得12x >且1x ≠,要证122x x +>,只要证212x x >-,利用构造函数的单调性证明即可. 【答案详解】(1)由题意得()21212ax ax x f x x x-+=+='-(0x >). 令()0f x '>,则2210ax x -+>.①当()2240a ∆=--≤,即1a ≥时,2210ax x -+>在()0,∞+上恒成立,即()f x 的增区间为()0,∞+;②当()2240a ∆=-->,即01a <<时,10x a -<<或1x a+>,即()f x 的增区间为10,a ⎛⎫ ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭.综上,当1a ≥时,()f x 的增区间为()0,∞+;当01a <<时,()f x 的增区间为10,a ⎛⎫- ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭. (2)因为()221x x ax xf -+'=(0x >),()f x 有两个极值点1x ,2x , 所以1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可求出 从而()2240a ∆=-->,0a >,解得01a <<. 由2210-+=ax x 得221x a x -=. 因为01a <<,所以12x >且1x ≠.令()221x g x x -=,12x >且1x ≠,则()()321x g x x-'=,所以当112x <<时,()0g x '>,从而()g x 单调递增;当1x >时,()0g x '<,从而()g x 单调递减, 于是1222122121x x a x x --==(12112x x <<<). 要证122x x +>,只要证212x x >-,只要证明()()212g x g x <-. 因为()()12g x g x =,所以只要证()()112g x g x <-. 令()()()()()1111122112212122x x F x g x g x x x ---=--=-- 则()()()()1113311212212x x F x xx --⎡⎤-⎣⎦'=+-()()()11331121212x x x x --=+- ()()1331111212x x x ⎡⎤=--⎢⎥-⎢⎥⎣⎦()()()()22211111331141222x x x x x x x ⎡⎤--+-+⎣⎦=-.因为1112x <<, 所以()10F x '>,即()1F x 在1,12⎛⎫⎪⎝⎭上单调递增,所以()()110F x F <=,即()()112g x g x <-, 所以212x x >-,即122x x +>.1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围. 【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >. 练真题(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【答案详解】(1)函数的定义域为()0,∞+,又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a <<时,()0f x '<;当1x a>时,()0f x '>; 所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点, 所以()y f x =的图象在x 轴的上方, 由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭, 故33ln 0a +>即1a e>. 2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.【答案】1;证明见答案详解 【答案解析】(1)由题意求出'y ,由极值点处导数为0即可求解出参数a ; (2)由(1)得()()ln 1()ln 1x x g x x x +-=-,1x <且0x ≠,分类讨论()0,1x ∈和(),0x ∈-∞,可等价转化为要证()1g x <,即证()()ln 1ln 1x x x x +->-在()0,1x ∈和(),0x ∈-∞上恒成立,结合导数和换元法即可求解(1)由()()()n 1'l a f x a x f x x ⇒==--,()()'ln xy a x x ay xf x ⇒=-=+-, 又0x =是函数()y xf x =的极值点,所以()'0ln 0y a ==,解得1a =; (2)由(1)得()()ln 1f x x =-,()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-,1x <且0x ≠,当 ()0,1x ∈时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x >-< , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;同理,当(),0x ∈-∞时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x <-> , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;令()()()1ln 1h x x x x =+--,再令1t x =-,则()()0,11,t ∈+∞ ,1x t =-, 令()1ln g t t t t =-+,()'1ln 1ln g t t t =-++=,当()0,1t ∈时,()'0g x <,()g x 单减,假设()1g 能取到,则()10g =,故()()10g t g >=; 当()1,t ∈+∞时,()'0g x >,()g x 单增,假设()1g 能取到,则()10g =,故()()10g t g >=; 综上所述,()()ln 1()1ln 1x x g x x x +-=<-在()(),00,1x ∈-∞ 恒成立3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见答案解析. 【答案解析】(1)求出函数的导数,判断其符号可得函数的单调区间; (2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可。
函数、导数及其应用综合测评试题(含答案)
高中数学阶段综合测评试题测试范围:函数、导数及其应用 (时间:120分钟 满分:150分)温馨提示:1.第Ⅰ卷答案写在答题卡上,第Ⅱ卷书写在试卷上;交卷前请核对班级、姓名、考号.2.本场考试时间为120分钟,注意把握好答题时间.3.认真审题,仔细作答,永远不要以粗心为借口原谅自己.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·浙江杭州七校联考)设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α的值为( )A .1,3B .-1,1C .-1,3D .-1,1,32.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是P n=P 0(1+k )n (k >-1),其中P n 为预测人口数,P 0为初期人口数,k 为预测年内增长率,n 为预测期间隔年数.如果在某一时期有-1<k <0,那么这期间人口数( )A .呈上升趋势B .呈下降趋势C .摆动变化D .不变3.(2013·云南第一次统检)已知f (x )的定义域为(-2,2),且f (x )=⎩⎨⎧2x +3+ln 2-x 2+x,-2<x ≤1-4x 2-5x +23,1<x <2,如果f [x (x +1)]<23,那么x 的取值范围是( )A .-2<x <-1或0<x <1B .x <-1或x >0C .-2<x <-54 D .-1<x <04.(2013·大连双基测)已知f (x )是定义在R 上且以2为周期的偶函数,当0≤x ≤1时,f (x )=x 2.如果函数g (x )=f (x )-(x +m )有两个零点,则实数m 的值为( )A .2k (k ∈Z )B .2k 或2k +14(k ∈Z ) C .0D .2k 或2k -14(k ∈Z )5.函数y =log 2|x |x 的大致图象是()6.函数f (x )=πx +log 2x 的零点所在区间为( ) A.⎝⎛⎦⎥⎤0,18B.⎣⎢⎡⎦⎥⎤18,14 C.⎣⎢⎡⎦⎥⎤14,12 D.⎣⎢⎡⎦⎥⎤12,1 7.定积分⎠⎛039-x 2d x 的值为( )A .9πB .3π C.94πD.92π8.(2013·安徽联谊中学联考)设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =xf ′(x )的图象的一部分,则f (x )的极大值与极小值分别是( )A .f (-2)与f (2)B .f (-1)与f (1)C .f (2)与f (-2)D .f (1)与f (-1)9.(2013·东北三校第一次联考)已知f (x )=ln x1+x -ln x ,f (x )在x =x 0处取最大值,以下各式正确的序号为( )①f (x 0)<x 0 ②f (x 0)=x 0 ③f (x 0)>x 0 ④f (x 0)<12 ⑤f (x 0)>12A .①④B .②④C .②⑤D .③⑤10.(2013·石家庄一模)已知定义域为R 的奇函数f (x )的导函数为f ′(x ),当x ≠0时,f ′(x )+f (x )x >0,若a =12f ⎝ ⎛⎭⎪⎫12,b =-2f (-2),c =ln 12f (ln 2),则下列关于a ,b ,c 的大小关系正确的是( )A .a >b >cB .a >c >bC .c >b >aD .b >a >c11.(2013·陕西省咸阳市高三模拟)定义方程f (x )=f ′(x )的实数根x 0叫做函数f (x )的“新驻点”,若函数g (x )=2x ,h (x )=ln x ,φ(x )=x 3(x ≠0)的“新驻点”分别为a ,b ,c ,则a ,b ,c 的大小关系为( )A .a >b >cB .c >b >aC .a >c >bD .b >a >c12.已知f (x )=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1、x 2都有f (x 1)-f (x 2)x 1-x 2>2恒成立,则a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(0,1)D .(0,1]第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1],log 81x ,x ∈(1,+∞).则满足f (x )=14的x 值为________.14.设函数f (x )=|log 2x |,则f (x )在区间(m -2,2m )内有定义且不是单调函数的充要条件是________.15.(2013·云南第一次统检)已知f (x )=x 3-mx 2+43mx +2 013在(1,3)上只有一个极值点,则实数m 的取值范围为________.16.(2013·山东济宁高三一模)已知定义域为R 的函数f (x )既是奇函数,又是周期为3的周期函数,当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=sinπx ,则函数f (x )在区间[0,6]上的零点个数是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知函数f (x )=2x ,g (x )=12|x |+2. (1)求函数g (x )的值域;(2)求满足方程f (x )-g (x )=0的x 的值.18.(12分)已知函数f (x )=log a (x +1)(a >1),若函数y =g (x )图象上任意一点P 关于原点的对称点Q 的轨迹恰好是函数f (x )的图象.(1)写出函数g (x )的解析式;(2)当x ∈[0,1)时,总有f (x )+g (x )≥m 成立,求实数m 的取值范围. 19.(12分)如图所示,四边形ABCD 表示一正方形空地,边长为30 m ,电源在点P 处,点P 到边AD ,AB 距离分别为9 m,3 m .某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF ,MN ∶NE =16∶9.线段MN 必须过点P ,端点M ,N 分别在边AD ,AB 上,设AN =x (m),液晶广告屏幕MNEF 的面积为S (m 2).(1)用x 的代数式表示AM ;(2)求S 关于x 的函数关系式及该函数的定义域; (3)当x 取何值时,液晶广告屏幕MNEF 的面积S 最小?20.(12分)(2013·东北三校第一次联考)已知函数f (x )=ax sin x +cos x ,且f (x )在x =π4处的切线斜率为2π8.(1)求a 的值,并讨论f (x )在[-π,π]上的单调性;(2)设函数g (x )=ln(mx +1)+1-x1+x ,x ≥0,其中m >0,若对任意的x 1∈[0,+∞)总存在x 2∈⎣⎢⎡⎦⎥⎤0,π2,使得g (x 1)≥f (x 2)成立,求m 的取值范围. 21.(12分)(2013·石家庄一模)设函数f (x )=x 2+a ln(x +1).(1)若函数y =f (x )在区间[1,+∞)上是单调递增函数,求实数a 的取值范围;(2)若函数y =f (x )有两个极值点x 1、x 2,且x 1<x 2,求证:0<f (x 2)x 1<-12+ln 2.22.(12分)(2013·石家庄质量监测)设函数f (x )=x -1e x 的定义域为(-∞,0)∪(0,+∞).(1)设函数f (x )在[m ,m +1](m >0)上的最小值;(2)设函数g (x )=⎩⎨⎧0,(x =0),1f (x ).(x ≠0),如果x 1≠x 2,且g (x 1)=g (x 2),证明:x 1+x 2>2.阶段综合测评 详解答案1.A 由幂函数的性质可知α=1或3.2.B 由于-1<k <0,所以0<1+k <1,因此P n 为关于n 的递减函数.故选B.3.A 依题意得,函数y =2x +3+ln 2-x 2+x =2x +3+ln ⎝ ⎛⎭⎪⎫-1+42+x 在(-2,1]上是减函数(注:函数y =2x +3、y =ln ⎝ ⎛⎭⎪⎫-1+42+x 在(-2,1]上均是减函数);函数y =-4x 2-5x +23在(1,2)上是减函数,且21+3+ln 2-12+1=12-ln 3>-4×12-5×1+23,因此函数f (x )在(-2,2)上是减函数,且f (0)=23,于是不等式f [x (x +1)]<23=f (0)等价于0<x (x +1)<2,由此解得-2<x <-1或0<x <1,选A.4.D 令g (x )=0得f (x )=x +m .(1)先考虑f (x )在0≤x ≤1时的函数图象,因为两个端点为(0,0),(1,1),所以过这两点的直线方程为y =x +0;(2)考虑直线y =x +m 与0≤x ≤1时的f (x )=x 2的图象相切,与1<x ≤2时的函数图象相交也是两个交点,仍然有两个零点.可求得此时切线方程为y =x -14.综上根据周期为2,得m =2k 或m =2k -14(k ∈Z ).5.D y =log 2|x |x 为奇函数,其图象关于(0,0)对称,排除A ,B ;当x =2时,y =12>0,排除C ,故选D.6.C 因为f (x )在定义域内为单调递增函数,而在4个选项中,只有f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫12<0, 所以零点所在区间为⎣⎢⎡⎦⎥⎤14,12.7.C 由定积分的几何意义知⎠⎛039-x 2d x 是由曲线y =9-x 2,直线x=0,x =3,y =0围成的封闭图形的面积,故⎠⎛039-x 2d x =π·324=94π,故选C.8.A 由图可知:x ∈(-∞,-2)时,f ′(x )>0; x ∈(-2,0)时,f ′(x )<0; x ∈(0,2)时,f ′(x )<0; x ∈(2,+∞)时,f ′(x )>0.所以f (-2)是f (x )的极大值,f (2)是f (x )的极小值.9.B f ′(x )=⎣⎢⎡⎦⎥⎤(ln x )·⎝ ⎛⎭⎪⎫11+x -1′=1x ⎝ ⎛⎭⎪⎫11+x -1-ln x(1+x )2=-ln x +x +1(1+x )2,由题意可知f ′(x 0)=0,即ln x 0+x 0+1=0,ln x 0=-(x 0+1), 故f (x 0)=ln x 01+x 0-ln x 0=-x 0ln x 01+x 0=x 0(1+x 0)1+x 0=x 0.令函数g (x )=ln x +x +1(x >0), 则g ′(x )=1x +1>0,故函数g (x )为增函数,而g ⎝ ⎛⎭⎪⎫12=ln ⎝ ⎛⎭⎪⎫12+32>32-ln e =12>0=g (x 0). ∴x 0<12,即f (x 0)<12.故选B.10.D f ′(x )+f (x )x =xf ′(x )+f (x )x >0,即x >0时,x ·f ′(x )+f (x )>0,即x >0时[xf (x )]′>0,x ·f (x )为增函数,又f (x )为奇函数,故0·f (0)=0得:x ≥0时,xf (x )≥0,且为增函数;a =12f ⎝ ⎛⎭⎪⎫12,b =-2f (-2)=2f (2),c =-ln 2f (ln 2)<0,故b >a >c ,选D.11.B ∵g (x )=2x ,∴g ′(x )=2. 令2a =2,∴a =1;h (x )=ln x ,h ′(x )=1x . 令ln b =1b ,设M (x )=1x -ln x , 则M (1)>0,M (e)<0,∴1<b <e ; 由φ(x )=x 3(x ≠0),φ′(x )=3x 2. 令3c 2=c 3,∴c =3,∴a <b <c .故选B.12.A 由于f (x 1)-f (x 2)x 1-x 2=k >2恒成立,所以f ′(x )≥2恒成立.又f ′(x )=a x +x ,故ax +x ≥2即a ≥-x 2+2x ,而g (x )=-x 2+2x 在(0,+∞)上的最大值为1,所以a ≥1,故选A.13.3解析:当x ≤1时,由f (x )=2-x=14得x =2,不合题意;当x >1时,由f (x )=log 81x =14得x =3,故满足f (x )=14的x 值为3.14.2≤m <3解析:由题知,只需1∈(m -2,2m ),且m -2≥0即可. 于是0≤m -2<1,且2m >1, 于是2≤m <3. 15.92≤m <8114解析:依题意得f ′(x )=3x 2-2mx +43m =0有两个不等的实根,且恰有一个根属于区间(1,3),于是有①f ′(1)·f ′(3)<0,或②⎩⎨⎧f ′(1)=0f ′(3)>0m 3>1,或③⎩⎨⎧f ′(1)>0f ′(3)=0m 3>1.解①得92<m <8114;解②得m =92;解③得,该不等式组的解集是空集.综上所述,满足题意的实数m 的取值范围是⎣⎢⎡⎭⎪⎫92,8114.16.9 解析:由f (x )是定义域为R 的奇函数,可知f (0)=0.因为f (x +3)=f (x ),所以f (3)=0.令x =-32,得f ⎝ ⎛⎭⎪⎫32=0.又当x ∈⎝⎛⎭⎪⎫0,32时,f (x )=sinπx ,所以f (1)=0,f (2)=f (3-1)=f (-1)=-f (1)=0,则在区间[0,3]上的零点有5个.由周期性可知,在区间(3,6]上有4个零点,故在区间[0,6]上的零点个数是9.17.解:(1)g (x )=12|x |+2=⎝ ⎛⎭⎪⎫12|x |+2,因为|x |≥0,所以0<⎝ ⎛⎭⎪⎫12|x |≤1,即2<g (x )≤3,故g (x )的值域是(2,3]. (2)由f (x )-g (x )=0得2x-12|x |-2=0,当x ≤0时,显然不满足方程, 当x >0时,由2x-12x -2=0,整理得(2x )2-2·2x -1=0,(2x -1)2=2, 故2x =1±2,因为2x >0,所以2x =1+2,即x =log 2(1+2).18.解:(1)设P 点坐标为(x ,y ),则Q 点坐标为(-x ,-y ). ∵Q (-x ,-y )在函数y =log a (x +1)的图象上, ∴-y =log a (-x +1), 即y =-log a (1-x ).这就是说,g (x )=-log a (1-x ). (2)当x ∈[0,1)时,令F (x )=f (x )+g (x )=log a (x +1)-log a (1-x ) =log a 1+x 1-x(a >1).由题意知,只要m ≤⎝ ⎛⎭⎪⎫log a1+x 1-x min 即可, ∵F (x )=log a 1+x1-x =log a ⎝ ⎛⎭⎪⎫-1+21-x 在[0,1)上是增函数,∴F (x )min =F (0)=0.故m ∈(-∞,0]即为所求.19.解:(1)因为点P 到边AD ,AB 距离分别为9 m,3 m ,所以由平面几何知识得AM -3AM =9x ,解得AM =3xx -9(10≤x ≤30).(2)由勾股定理,得MN 2=AN 2+AM 2=x 2+9x2(x -9)2.因为MN ∶NE =16∶9,所以NE =916MN .所以S =MN ·NE =916MN 2=916⎣⎢⎡⎦⎥⎤x 2+9x 2(x -9)2,定义域为[10,30].(3)S ′=916⎣⎢⎡⎦⎥⎤2x +18x (x -9)2-9x 2(2x -18)(x -9)4=98·x [(x -9)3-81](x -9)3,令S ′=0,得x 1=0(舍),x 2=9+333. 当10≤x <9+333时,S ′<0,S 为减函数; 当9+333<x ≤30时,S ′>0,S 为增函数. 所以当x =9+333时,S 取得最小值.20.解:(1)∵f ′(x )=a sin x +ax cos x -sin x =(a -1)sin x +ax cos x ,f ′⎝ ⎛⎭⎪⎫π4=(a -1)·22+π4·a ·22=2π8, ∴a =1,f ′(x )=x cos x .当f ′(x )>0时,-π<x <-π2或0<x <π2; 当f ′(x )<0时,-π2<x <0或π2<x <π,∴f (x )在⎝⎛⎭⎪⎫-π,-π2,⎝⎛⎭⎪⎫0,π2上单调递增;在⎝⎛⎭⎪⎫-π2,0,⎝⎛⎭⎪⎫π2,π上单调递减.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )单调递增,∴f (x )min =f (0)=1,则只需g (x )≥1在x ∈[0,+∞)上恒成立即可.g ′(x )=m ⎝⎛⎭⎪⎫x 2+m -2m (mx +1)(x +1)2(x ≥0,m >0),①当m ≥2时,m -2m ≥0,∴g ′(x )≥0在[0,+∞)上恒成立,即g (x )在[0,+∞)上单调递增,又g (0)=1,∴g (x )≥1在x ∈[0,+∞)上恒成立,故m ≥2时成立.②当0<m <2时,当x ∈⎝ ⎛⎭⎪⎫0,2-m m 时,g ′(x )<0,此时g (x )单调递减,∴g (x )<g (0)=1,故0<m <2时不成立.综上m ≥2.21.解:(1)f ′(x )=2x 2+2x +ax +1≥0在区间[1,+∞)上恒成立,即a ≥-2x 2-2x 在区间[1,+∞)上恒成立, a ≥-4.经检验,当a =-4时,f ′(x )=2x 2+2x -4x +1=2(x +2)(x -1)x +1,x ∈[1,+∞)时,f ′(x )>0,所以满足题意的a 的取值范围为[-4,+∞).(2)证明:函数的定义域(-1,+∞),f ′(x )=2x 2+2x +ax +1=0,依题意方程2x 2+2x +a =0在区间(-1,+∞)上有两个不等的实根,记g (x )=2x 2+2x +a ,则有⎩⎨⎧Δ>0g (-1)>0-12>-1,得0<a <12.下面有两种证法:证法一:∵x 1+x 2=-1,2x 22+2x 2+a =0,x 2=-12+1-2a 2,-12<x 2<0,f (x 2)x 1=x 22-()2x 22+2x 2ln (x 2+1)-1-x 2,令k (x )=x 2-(2x 2+2x )ln (x +1)-1-x,x ∈⎝ ⎛⎭⎪⎫-12,0 k (x )=-x 2x +1+2x ln(x +1),k ′(x )=x 2(x +1)2+2ln(x +1),k ″(x )=2x 2+6x +2(x +1)3,因为k ″⎝⎛⎭⎪⎫-12=-12,k ″(0)=2,存在x 0∈⎝⎛⎭⎪⎫-12,0,使得k ″(x 0)=0,k ′(0)=0,k ′⎝ ⎭⎪⎫-12=1-2ln 2<0,∴k ′(x )<0,所以函数k (x )在⎝ ⎛⎭⎪⎫-12,0为减函数,k (0)<k (x )<k ⎝⎛⎭⎪⎫-12即0<f (x 2)x 1<-12+ln 2证法二:x 2为方程2x 2+2x +a =0的解,所以a =-2x 22-2x 2,∵0<a <12,x 1<x 2<0,x 2=-12+1-2a 2,∴-12<x 2<0, 先证f (x 2)x 1>0,即证f (x 2)<0(x 1<x 2<0),在区间(x 1,x 2)内,f ′(x )<0,(x 2,0)内f ′(x )>0,所以f (x 2)为极小值,f (x 2)<f (0)=0,即f (x 2)<0,∴f (x 2)x 1>0成立;再证f (x 2)x 1<-12+ln 2,即证f (x 2)>⎝ ⎛⎭⎪⎫-12+ln 2(-1-x 2)=⎝ ⎛⎭⎪⎫12-ln 2(x 2+1),x 22-(2x 22+2x 2)ln(x 2+1)-⎝⎛⎭⎪⎫12-ln 2x 2>12-ln 2,令g (x )=x 2-(2x 2+2x )ln(x +1)-⎝ ⎛⎭⎪⎫12-ln 2x ,x ∈⎝ ⎛⎭⎪⎫-12,0g ′(x )=2x -(4x +2)ln(x +1)-2x (x +1)x +1-⎝ ⎛⎭⎪⎫12-ln 2, =-2(2x +1)ln(x +1)-⎝⎛⎭⎪⎫12-ln 2,ln(x +1)<0,2x +1>0,12-ln 2<0,∴g ′(x )>0,g (x ) 在⎝ ⎛⎭⎪⎫-12,0为增函数. g (x )>g ⎝ ⎛⎭⎪⎫-12=14-⎝ ⎛⎭⎪⎫2×14-1ln 12+12⎝ ⎛⎭⎪⎫12-ln 2 =14+12ln 12+14-12ln 2=12-ln 2. 综上可得0<f (x 2)x 1<-12+ln 2成立.22.解:(1)f ′(x )=x e x -e xx 2,则x >1时,f ′(x )>0;0<x <1时,f ′(x )<0. 知函数f (x )在(0,1)上是减函数,在(1,+∞)上是增函数.当m ≥1时,函数f (x )在[m ,m +1]上是增函数,此时f (x )min =f (m )=e mm . 当0<m <1时,函数f (x )在[m,1]上是减函数,在[1,m +1]上是增函数, 此时f (x )min =f (1)=e.(2)证明:可得g (x )=x e -x (x ∈R ),g ′(x )=(1-x )e -x .所以g (x )在(-∞,1)内是增函数,在(1,+∞)内是减函数.① 考查函数F (x )=g (x )-g (2-x ),即F (x )=x e -x +(x -2)e x -2, 于是F ′(x )=(x -1)(e 2x -2-1)e -x . 当x >1时,2x -2>0,从而e 2x -2-1>0,又e -x >0,所以F ′(x )>0,从而函数F (x )在[1,+∞)是增函数. 又F (1)=e -1-e -1=0,所以x >1时,有F (x )>F (1)=0,即g (x )>g (2-x ).② 由①及g (x 1)=g (x 2),则x 1与x 2只能在1的两侧. 不妨设0<x 1<1,x 2>1,由结论②可知,g (x 2)>g (2-x 2),所以g (x 1)=g (x 2)>g (2-x 2). 因为x 2>1,所以2-x 2<1,又由结论①可知函数g(x)在(-∞,1)内是增函数,所以x1>2-x2,即x1+x2>2.。
专题3 导数解决不等式的恒成立和证明
第三章 导数专题3 导数解决不等式的恒成立和证明【三年高考精选】(2021年全国新高考Ⅰ卷数学试题) 1. 已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【解析】【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令11,m n a b==,命题转换为证明:2m n e <+<,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)()f x 的定义域为()0,∞+. 由()()1ln f x x x =-得,()ln f x x '=-,当1x =时,()0f x '=;当()0,1x ∈时()0f x >′;当()1,x ∈+∞时,()'0f x <. 故()f x 在区间(]0,1内为增函数,在区间[)1,+∞内为减函数, (2)[方法一]:等价转化由ln ln b a a b a b -=-得1111(1ln )(1ln )a a b b -=-,即11()()f f a b=.由a b ,得11a b ≠.由(1)不妨设11(0,1),(1,)b a ∈∈+∞,则1()0f a >,从而1()0f b >,得1(1,)e b∈,①令()()()2g x f x f x =--,则22()(2)()ln(2)ln ln(2)ln[1(1)]g x f x f x x x x x x ''=---'=-+=-=--,当()0,1x ∈时,()0g x '<,()g x 在区间()0,1内为减函数,()()10g x g >=,从而()()2f x f x ->,所以111(2)()()f f f a a b->=,由(1)得112a b -<即112a b<+.①令()()h x x f x =+,则()()'11ln h x f x x '=+=-,当()1,x e ∈时,()0h x '>,()h x 在区间()1,e 内为增函数,()()h x h e e <=,从而()x f x e +<,所以11()f e b b +<.又由1(0,1)a ∈,可得11111(1ln )()()f f a a a a b <-==,所以1111()f e a b b b+<+=.②由①②得112e a b<+<. [方法二]【最优解】:ln ln b a a b a b -=-变形为ln ln 11a b a b b a-=-,所以ln 1ln 1a b a b ++=. 令11,m n a b ==.则上式变为()()1ln 1ln m m n n -=-, 于是命题转换为证明:2m n e <+<.令()()1ln f x x x =-,则有()()f m f n =,不妨设m n <. 由(1)知01,1m n e <<<<,先证2m n +>.要证:()()()222)2(m n n m f n f m f m f m +>⇔>-⇔<-⇔<-()()20f m f m ⇔--<.令()()()()2,0,1g x f x f x x =--∈,则()()()()()2ln ln 2ln 2ln10g x f x f x x x x x '='+'-=---=⎡⎤⎣≥-⎦--=, ()g x ∴在区间()0,1内单调递增,所以()()10g x g <=,即2m n +>.再证m n e +<.因为()()1ln 1ln m n n m m -=⋅->,所以()1ln n n n e m n e -+<⇒+<.令()()()1ln ,1,h x x x x x e =-+∈,所以()'1ln 0h x x =->,故()h x 在区间()1,e 内单调递增. 所以()()h x h e e <=.故()h n e <,即m n e +<. 综合可知112e a b<+<. [方法三]:比值代换 证明112a b+>同证法2.以下证明12x x e +<. 不妨设21x tx =,则211x t x =>, 由1122(1ln )(1ln )x x x x -=-得1111(1ln )[1ln()]x x tx tx -=-,1ln 1n 1l t x t t=--, 要证12x x e +<,只需证()11t x e +<,两边取对数得1ln(1)ln 1t x ++<,即ln(1)1ln 11t t t t++-<-, 即证ln(1)1ln t t t t+<-. 记ln(1)(),(0,)s g s ss ∈=+∞+,则2ln(1)1()s s s g s s '-++=. 记()ln(1)1sh s s s=-++,则211()0(1)1h s s s '=-<++, 所以,()h s 在区间()0,∞+内单调递减.()()00h s h <=,则()'0g s <, 所以()g s 在区间()0,∞+内单调递减.由()1,t ∈+∞得()10,t -∈+∞,所以()()1g t g t <-, 即ln(1)1ln t t t t+<-. [方法四]:构造函数法 由已知得ln ln 11a b a b b a-=-,令1211,x x a b ==,不妨设12x x <,所以()()12f x f x =.由(Ⅰ)知,1201x x e <<<<,只需证122x x e <+<. 证明122x x +>同证法2.再证明12x x e +<.令2ln 21()(0)()(ln ,)exh x x e h x x e x xe x '-++-=<<=--. 令()ln 2(0)e x x x e x ϕ=+-<<,则221()0e x ex x x xϕ-'=-=<. 所以()()()0,0x e h x ϕϕ>='>,()h x 在区间()0,e 内单调递增.因为120x x e <<<,所以122111ln ln x e x e x x --<--,即112211ln ln x x x ex e -->-- 又因为()()12f x f x =,所以12212112ln ln 1,1x x x ex x x ex x --=>--,即()()2222111212,0x ex x ex x x x x e -<--+->.因为12x x <,所以12x x e +<,即11e a b+<. 综上,有112e a b<+<结论得证. 【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于120e x x +-<的式子,这是本方法证明不等式的关键思想所在.视频(2020年高考全国Ⅰ卷文数20) 2. 已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞.【解析】【分析】(1)将1a =代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,将其转化为2xea x =+有两个解,令()(2)2xe h x x x =≠-+,求导研究函数图象的走向,从而求得结果.【详解】(1)当1a =时,()(2)x f x e x =-+,'()1xf x e =-,令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞; (2)若()f x 有两个零点,即(2)0x e a x -+=有两个解,从方程可知,2x =-不成立,即2x e a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++, 令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e+∞.【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线x y e =和直线(2)y a x =+有两个交点,利用过点(2,0)-的曲线x y e =的切线斜率,结合图形求得结果. 【三年高考刨析】【2022年高考预测】预测2022年高考仍是考查函数的单调性,根据不等式恒成立求参数的取值范围或不等式的证明..【2022年复习指引】由前三年的高考命题形式,在2022年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习,关于集合2022高考备考主要有以下几点建议:1.涉及本单元知识点的高考题,综合性强.所以在复习中要熟记相关的定义,法则;2.利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.3.将不等式的证明、方程根的个数的判定转化为函数的单调性、极值问题处理.4.要深入体会导数应用中蕴含的数学思想方法.数形结合思想,如通过从导函数图象特征解读函数图象的特征,或求两曲线交点个数等;等价转化思想,如将证明的不等式问题等价转化为研究相应问题的最值等.【2022年考点定位】 考点1 证明不等式典例1 (安徽省蚌埠市2021-2022学年高三上学期第一次教学质量检查)已知函数()()212,2e 21x x f x x x g x x =+-=---. (1)求()f x 的单调区间;(2)当(),1x ∈-∞时,求证:()()g x f x .【答案】(1)在(),1-∞单调递增,在()1,+∞上单调递减;(2)证明见解析. 【分析】(1)由题可以求函数的导函数,则可得()f x 的单调区间; (2)由题知要证()()g x f x ,即证2201e 2x x x x x x ---+≥-,然后利用导函数判断函数的单调性,最后利用单调性证明即可. 【详解】 (1)因为()21e 2x x f x x x =+-, 所以()()()21e 1e e 1e ex x x x x x x f x x +--=+-=', 令()0f x '=,解得1x =,∴当(),1x ∈-∞时,()()0,1,f x x ∞∈'>+时,()0f x '< 所以()f x 在(),1-∞单调递增,在()1,+∞上单调递减; (2)要证()()g x f x即证22121e 2x x x x x --+--, 即22e 0112x x x x x x --+-≥-, 设2()11e 21x F x x x=---+-,即证()0xF x .因为()2211(1)e 2xF x x =++-' 所以当(),1x ∈-∞时,()0F x '>恒成立,()F x 单调递增, 又当0x =时,()0F x =,所以当01x <<时,()0F x >,当0x <时,()0F x <; 所以当()(),1,0x xF x ∞∈-, 即当(),1x ∈-∞时,()()g x f x .【规律方法技巧】利用导数证明不等式f (x )>g (x )的基本方法 (1)若f (x )与g (x )的最值易求出,可直接转化为证明f (x )min >g (x )max ;(2)若f (x )与g (x )的最值不易求出,可构造函数h (x )=f (x )-g (x ),然后根据函数h (x )的单调性或最值,证明h (x )>0. 2.证明不等式时的一些常见结论(1)ln x ≤x -1,等号当且仅当x =1时取到; (2)e x ≥x +1,等号当且仅当x =0时取到; (3)ln x <x <e x ,x >0; (4)≤ln(x +1)≤x ,x >-1,等号当且仅当x =0时取到.【考点针对训练】(2022贵州省贵阳市五校联考)3. 已知函数()xe f x x =.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-. 【答案】(1)()g x 在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;极小值()2e 24g =,无极大值;(2)证明见解析. 【解析】【分析】(1)写出()g x 的函数表达式,通过求导写出单调区间和极值即可(2)证明()13ln 44f x x >-恒成立,结合(1)得,等价于2e 1(ln 3)4x x x x >-恒成立,且已知左式的最小值,只要大于右式的最大值,则不等式恒成立【详解】(1)解:2243e e 2e e (2)()()x x x x x x x g x g x x x x --'=⇒==,当02x <<时,()0g x '<; 当0x <或2x >时,()0g x '>,()g x ∴在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;故()g x 有一个极小值2e (2)4g =,无极大值.(2)证明:要证13()ln 44f x x >-成立,只需证e 13ln 44x x x >-成立,即证2e 1(ln 3)4x x x x>-成立,令1()(ln 3)4h x x x =-,则24ln ()=4xh x x -',当40e x <<时,()0h x '>; 当4e x >时,()0h x '<,()h x ∴在()40,e 上单调递增,在()4e ,+∞上单调递减,()4max 41()e 4e h x h ==∴, 2e ()x g x x =∵由(1)可知2min e ()(2)4g x g ==,min max ()()g x h x >∴,()()g x h x >∴,13()ln 44f x x >-∴.【点睛】题目比较综合,第一小题是已知函数求单调性极值的问题,属于常规题目;第二小题证明不等式成立,有两种类型,一种是构造左右两个函数,若最小值大于最大值,则不等式恒成立,但是只能做证明题;若最小值不大于最大值,不能说明不等式不成立;另外一种是构造一个函数,证明最小值大于0恒成立,这种的函数会比较困难,所以优先用第一种尝试,再选取第二种方法考点2 不等式恒成立问题典例2 (2020辽宁省沈阳市2019届高三一模)已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( )A.2a ≤B.2a ≥C.0a ≤D.02a ≤≤ 【答案】A【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围. 【详解】设()1,x g x e x =--则()1x g x e '=-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【规律方法技巧】利用导数解决恒成立问题主要涉及以下方面:(1)已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解;(2)如果无法分离参数可以考虑对参数a 或自变量进行分类求解,如果是二次不等式恒成立的问题,可以考虑限制二次项系数或判别式的方法求解.(3)已知函数的单调性求参数的取值范围:转化为f ′(x )≥0(或f ′(x )≤0)恒成立的问题. 【考点针对训练】(山西省运城市2021届高三检测)4. 当0x <时,不等式()2e e 3xxx x k k -≥恒成立,则实数k 的取值范围是__. 【答案】[]3e,0- 【解析】 【分析】由题意可得()232e 3x k x x +≤对0x <恒成立,讨论320x +=,320x +>,320x +<,运用参数分离和构造函数,利用导数判断单调性,求最值,可得所求范围.【详解】解:当0x <时,不等式()2e e 3xxx x k k -≥恒成立, 即为()232e 3x k x x +≤对0x <恒成立,Ⅰ当320x +=即23x =-时,403≤恒成立;Ⅰ当320x +<,即23x <-时,()2332e x x k x +≥恒成立,等价为()2max 332e x x k x ⎡⎤⎢⎥+⎣⎦≥, 设()()2332e x x f x x =+,()()()()()232222632e 335e 931232e 32e x x x x x x x x x x x f x x x +-+-++'==++ ()()()2313432exx x x x -+-=+,可得1x <-时,()0f x >′,()f x 递增;213x -<<-时,()0f x <′,()f x 递减, 可得()f x 在1x =-处取得最大值,且为3e -, 则3e k ≥-;Ⅰ当320x +>,即203x -<<时,()2332e x x k x +≤恒成立, 等价为()2min332e x x k x ⎡⎤⎢⎥+⎣⎦≤,设()()2332e x x f x x =+,()()()()2313432e x f x x x x x -+-'=+, 可得203x -<<时,()0f x <′,()f x 递减, 可得()0f x >, 则0k ≤,综上可得,k 的范围是[]3e,0-.【点睛】本题考查不等式恒成立问题解法,参变分离是常用的解题方法,属于中档题.方法点睛:(1)将参数和变量分离,转化为求最值问题; (2)构造函数,求导数,分析单调性; (3)求函数的最值,求出参数的范围.考点3 不等式存在成立问题典例3 (黑龙江省大庆铁人中学2021届高三第三次模拟)若函数()2ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A.(],2-∞B.1,8⎛⎫-+∞ ⎪⎝⎭C.12,8⎛⎫-- ⎪⎝⎭ D.()2,-+∞【答案】D 【分析】将函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间,转化1()20f x ax x '=+>在区间1()22,成立,再转化为min 212()a x>-,进而可求出结果. 【详解】因为函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间, 所以1()20f x ax x '=+>在区间1()22,上成立, 即min 212()a x>-在区间1()22,上成立,又函数2yx 在1()22,上单调递增, 所以函数21y x =-在1()22,上单调递增, 故当12x =时21y x =-最小,且min 21()=4x --,即24a >-,得2a >-. 故选:D【规律方法技巧】1.有关存在成立问题的解题方法∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2)等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.2.注意不等式恒成立与存在成立的异同不等式在某区间上能成立与不等式在某区间上恒成立问题是既有联系又有区别的两种情况,解题时应特别注意,两者都可转化为最值问题,但f (a )≥g (x )(f (a )≤g (x ))对存在x ∈D 能成立等价于f (a )≥g (x )min (f (a )≤g (x )max ),f (a )≥g (x )(f (a )≤g (x ))对任意x ∈D 都成立等价于f (a )≥g (x )max (f (a )≤g (x )min ),应注意区分,不要搞混. 【考点针对训练】 (2019·吉林白山联考)5. 设函数f (x )=e x 33x x ⎛⎫+- ⎪⎝⎭-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【答案】e 【解析】【分析】已知不等式转化为2(33)x a e x x ≥-+,此不等式有正数解,只要求得2()(33)x g x e x x =-+在(0,)+∞上的最小值即可得a 的范围.【详解】原问题等价于存在x Ⅰ(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=x e (x 2-3x +3),x Ⅰ(0,+∞),则a ≥g (x )min ,而g ′(x )=x e (x 2-x ),由g ′(x )>0,得x Ⅰ(1,+∞),此时()g x 递增,由g ′(x )<0,得x Ⅰ(0,1),此时()g x 递减,Ⅰ函数g (x )在区间(0,+∞)上的极小值也是最小值为g (1)=e , Ⅰa ≥e ,即实数a 的最小值为e . 故答案为:e .【点睛】本题考查不等式有解问题,解题关键是用分离参数法转化为求函数的最值.只是求解时要注意与不等式恒成立区分开来,不等式恒成立也常常用分离参数法转化为求函数的最值,但两者所求最值一个是最大值,一个是最小值,要根据题意确定.考点4 利用导数研究方程的根(或函数的零点)典例4 (河南省郑州市商丘市名师联盟 2020-2021学年高三质量检测)已知函数()2ln f x x x =-,()33g x x xm =-+,方程()()f x g x =在区间1,e e ⎡⎤⎢⎥⎣⎦内有两个不同的实根,则m 的取值范围是( )A.2121,333e ⎛⎤+ ⎥⎝⎦ B.2221e -2,33e 3⎡⎤+⎢⎥⎣⎦ C.221,133e ⎡⎫+⎪⎢⎣⎭ D.21e 2,33⎛⎤- ⎥⎝⎦【答案】A 【分析】由题可得232ln m x x =-,构造函数()22ln h x x x =-,讨论其在1,e e ⎡⎤⎢⎥⎣⎦的变化情况即可得出答案. 【详解】由()()f x g x =,得232ln m x x =-,令()22ln h x x x =-,则()()()211x x h x x-+'=,所以()h x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,所以()()min 11h x h ==,()221122h e e h e e ⎛⎫=->=+ ⎪⎝⎭,则21132m e <≤+,即2121333m e <≤+. 故选:A.【规律方法技巧】求解涉及函数零点或方程根的问题的注意点 (1)利用函数零点存在性定理求解.(2)分离参数a 后转化为函数的值域(最值)问题求解,如果涉及多个零点,还需考虑函数的图象与直线y =a 的交点个数.(3)转化为两个熟悉的函数的图象的上、下位置关系问题,从而构建不等式求解. 【考点针对训练】(重庆市秀山高级中学校2022届高三上学期9月月考) 6. 已知函数2eln ()x f x x =,若关于x 的方程21[()]()08f x mf x -+=有4个不同的实数根,则实数m 的取值范围为___________.【答案】324⎛⎫⎪ ⎪⎝⎭【解析】【分析】利用导数求出函数()f x 的单调区间和最值,设()f x t =,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,故12121201102201t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,从而可求出实数m 的取值范围 【详解】依题意,求导243e 2eln e(12ln )()x x xx x f x x x ⋅--'==,令()0f x '=,解得:x =当x ∈时,()0f x '>,()f x 单调递增;当)x ∈+∞,()0f x '<,函数单调递减,且max 1()e 2f x f ===, 又0x →时,()f x →-∞;又x →+∞时,()0f x →;设()f x t =,显然当10,2t ⎛⎫∈ ⎪⎝⎭时,方程()f x t =有两个实数根,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根, 故121212011022010t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,210211082401m m m ⎧->⎪⎪⎪-+>⎨⎪<<⎪⎪⎩,解得:324m ⎛⎫∈ ⎪ ⎪⎝⎭.故答案为:3,24⎛⎫⎪ ⎪⎝⎭【点睛】关键点点睛:此题考查函数与方程的综合应用,考查导数的应用,解题的关键是利用导数判断出函数()f x 的单调区间和最值,设()f x t =,将问题转化为方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,然后利用一元二次方程根的分布情况求解即可,考查数学转化思想和计算能力,属于中档题【二年模拟精选】(2020河北省衡水市第二中学高三检测) 7. 已知函数21()ln 2f x x a x =+,若对任意两个不等的正数1x ,2x ,都有()()12124f x f x x x ->-恒成立,则a 的取值范围为A. [4,)+∞B. (4.?)+∞C. (,4]-∞D. (,4)-∞【答案】A 【解析】【分析】根据题意先确定g (x )=f (x )﹣4x 在(0,+∞)上单增,再利用导数转化,可得24x a x ≥-恒成立,令()24h x x x =-,求得()h x max ,即可求出实数a 的取值范围.【详解】令()()4g x f x x =-,因为()()12124f x f x x x ->-,所以()()12120g x g x x x ->-,即()g x 在()0,+∞上单调递增,故()40ag x x x=-'+≥在()0,+∞上恒成立, 即24x a x ≥-,令()()24,0,h x x x x =-∈+∞.则()()2424h x x x h =-≤=,()h x max 4=,即a 的取值范围为[4,+∞).故选A.【点睛】本题考查了函数单调性的判定及应用,考查了原函数单调与导函数正负的关系,确定g (x )在(0,+∞)上单增是关键,属于中档题. (2020辽宁省沈阳市高三上学期一模)8. 已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( ) A. 2a ≤ B. 2a ≥C. 0a ≤D. 02a ≤≤【答案】A 【解析】【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围.【详解】设()1,x g x e x =--则()'1x g x e =-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【点睛】本题考查了构造新函数,也考查了导数的应用以及由单调性求参数的问题,属于中档题.(江西省萍乡市2021届高三上期数学期中复习试卷)9. 已知函数222,0()11,0x x x f x x x ⎧++≤⎪=⎨-+>⎪⎩,若()f x ax ≥恒成立,则实数a 的取值范围是( )A. 2⎡⎤-⎣⎦B. (],1-∞C. ()2-D. 2⎡⎤-⎣⎦【答案】A 【解析】 【分析】作出函数()f x 的图象,利用数形结合的思想判断a 的范围,找出临界点即相切时a 的取值,进而得出a 的范围. 【详解】作出()f x 的图象,如图,由图象可知:要使()f x ax 恒成立,只需函数()g x ax =的图象恒在图象()f x 的下方, 可得1a ,设()g x ax =与函数2()22(0)f x x x x =++相切于点(),(0)P m n m <, 由()f x 的导数为22x +,可得切线的斜率为22m +, 即有22a m =+,222am m m =++,解得m =2a =-由图象可得222a -,综上可得a 的范围是[2-1]. 故选:A【点睛】解决此类问题的关键是作出函数图象,根据数形结合的思想处理问题,本题关键找出相切时刻这一临界位置,利用直线与抛物线相切即可求解. (四川省内江市威远中学2020-2021学年高三月考)10. 已知函数32()f x x x ax b =-++,12,(0,1)x x ∀∈且12x x ≠,都有1212|()()|||f x f x x x -<-成立,则实数a 的取值范围是( )A. 2(1,]3--B. 2(,0]3-C. 2[,0]3-D. [1,0]-【答案】C 【解析】 【分析】原不等式等价于()()211212x x f x f x x x --<-<恒成立,得到()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++在()0,1上严格单调,转化为()0g x '≤在()0,1上恒成立,()0h x '≥在()0,1上恒成立,利用分离参数思想转化为求最值问题即可. 【详解】不妨设1210x x >>>,则1212|()()|||f x f x x x -<-等价于()()211212x x f x f x x x --<-<,即()()()()11221122 f x x f x x f x x f x x ⎧-<-⎪⎨+>+⎪⎩,设()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++,依题意,函数()g x 在()0,1上为严格的单调递减函数, 函数()h x 在()0,1上为严格的单调递增函数,Ⅰ()23210g x x x a '=-+-≤在()0,1上恒成立,()23210h x x x a '=-++≥在()0,1上恒成立,Ⅰ2321a x x ≤-++在()0,1上恒成立,2321a x x ≥-+-在()0,1上恒成立, 而二次函数2321y x x =-++在[0,1]上的最小值在1x =时取得,且最小值为0, 二次函数2321y x x =-+-在[0,1]上的最大值在13x =时取得,其最大值为23-, 综上,实数a 的取值范围是2[,0]3-, 故选:C.【点睛】关键点点睛:去绝对值,得到两个函数的单调性,结合导数与单调性的关系,利用分离参数的思想转化为求二次函数最值问题. (2020湖南省益阳市高三上学期期末)11. 已知变量()()12,0,0x x m m ∈>,且12x x <,若2112x x x x <恒成立,则m 的最大值为(e 2.71828=为自然对数的底数)( ) A. eB.C.1eD. 1【答案】A 【解析】 【分析】不等式两边同时取对数,然后构造函数()ln xf x x=,求函数的导数,研究函数的单调性即可得到结论. 【详解】21122112ln ln x x x x x x x x <⇒<,()12,0,,0x x m m ∈>,1212ln ln x x x x ∴<恒成立, 设函数()ln xf x x=,12x x <,()()12f x f x <,()f x ∴在()0,m 上为增函数,函数的导数()21ln xf x x -'=, ()00f x x e '>⇒<<,即函数()f x 的增区间是()0,e ,则m 的最大值为e . 故选:A【点睛】关键点点睛:本题考查利用函数研究函数的单调性,本题的关键点是对已知等式变形,211212211212ln ln ln ln x x x x x x x x x x x x <⇒<⇒<,转化为求函数()ln xf x x=的单调区间. (山东省泰安肥城市2021届高三高考适应性训练)12. 已知函数()ln f x x x x =+,()g x kx k =-,若k Z ∈,且()()f x g x >对任意2x e >恒成立,则k 的最大值为( ) A. 2 B. 3C. 4D. 5【答案】B 【解析】【分析】由不等式,参变分离为ln 1x x x k x +⎛⎫< ⎪-⎝⎭,转化为求函数()ln 1x x x u x x +=-,()2,x e ∈+∞的最小值,利用导数求函数的最小值.【详解】()()f x g x >,即ln x x x kx k +>-.由于()()f x g x >对任意()2,x e ∈+∞恒成立,所以ln 1x x x k x +⎛⎫< ⎪-⎝⎭,即min ln 1x x x k x +⎛⎫< ⎪-⎝⎭.令()ln 1x x x u x x +=-,()2,x e ∈+∞,()()2ln 21x x u x x --'=-.令()ln 2h x x x =--,()1110x h x x x='-=->, 所以()h x 在()2,x e ∈+∞上单调递增,所以()()22e e 40h x h >=->,可得()0u x '>,所以()u x 在()2,e +∞上单调递增.所以()()()22223e 3e 33,4e 1e 1u x u >==+∈--.又k Z ∈,所以max 3k =. 故选:B.(广西柳州市2021届高三摸底考试)13. 已知函数212,(0)()2ln ,(0)x x x f x x x x ⎧++≤⎪=⎨⎪>⎩,若存在0x R ∈,使得()2012f x m m ≤-成立,则实数m 的取值范围是( )A. 1,12⎡⎤-⎢⎥⎣⎦B. 11,2⎡⎤-⎢⎥⎣⎦C. 11,2⎡⎤⎢⎥⎣⎦D. 1,02⎡⎤-⎢⎥⎣⎦【答案】A 【解析】【分析】分析函数()f x 的最小值,只需使()2min 12f x m m ≤-成立即可. 【详解】当0x ≤时,()2122f x x x =++,根据二次函数的性质可知,当1x =-时,()f x 有最小值12-;当0x >时,()ln f x x x =,由()ln 10f x x '=+=得1=x e当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>, 所以()ln f x x x =在10,e x ⎛⎫∈ ⎪⎝⎭上单调递减,在1,x e ⎛⎫∈+∞ ⎪⎝⎭上单调递增,所以()ln f x x x =最小值为11111ln 2f e e ee ⎛⎫==->- ⎪⎝⎭,则()min 12f x =-若存在0x R ∈,使得()2012f x m m ≤-成立,则()2min 12f x m m ≤- 所以21122m m -≤-,解得112m -≤≤故选:A .(重庆实验外国语学校2022届高三上学期入学考试)14. 关于函数()xf x e =,()lng x x =下列说法正确的是( )A. 对0x ∀>,()1g x x ≤-恒成立B. 对x R ∀∈,()f x ex ≥恒成立C. 若a b e >>,()()ag b bg a <D. 若不等式()()f ax ax x g x -≥-对1x ∀>恒成立,则正实数a 的最小值为1e【答案】ABD 【解析】【分析】选项A :构造函数()()ln 10h x x x x =-+>,根据导数判断函数的单调性并求最大值,从而判断选项正确;选项B :构造函数()()x f x ex ϕ=-,根据导数判断函数的单调性并求最小值,从而判断选项正确; 选项C :构造函数()()()0g x m x x x=>,根据导数判断函数在(),e +∞内单调递减,从而判断选项错误;选项D :把不等式()()f ax ax x g x -≥-变形为ln ln ax x e ax e x -≥-,所以只需研究函数()xF x e x =-的单调性即可求出答案,从而判断选项正确.【详解】选项A :令()()ln 10h x x x x =-+>,则()111xh x x x -'=-=,因为0x >,所以由()0h x '>得01x <<;由()0h x '<得1x >, 所以()h x 在()0,1内单调递增,在()1,+∞内单调递减,所以()h x 的最大值为()10h =,所以对0x ∀>,()0h x ≤恒成立, 即对0x ∀>,()1g x x ≤-恒成立,故选项A 正确;选项B :令()()x x f x ex e ex ϕ=-=-,则()xx e e ϕ'=-,由()0x ϕ'>得1x >;由()0x ϕ'<得1x <,所以()x ϕ在()1,+∞内单调递增,在(),1-∞内单调递减,所以()x ϕ的最小值为()10ϕ=,所以对x R ∀∈,()0x ϕ≥恒成立,即对x R ∀∈,()f x ex ≥恒成立,故选项B 正确;选项C :令()()ln ()0g x x m x x x x==>,则21ln ()xm x x -'=,所以由()0m x '>得0x e <<;由()0m x '<得x e >,所以()m x 在()0,e 内单调递增,在(),e +∞内单调递减, 所以当a b e >>时,()()m a m b <,即()()g a g b a b<, 所以a b e >>,()()ag b bg a >成立,故选项C 错误; 选项D :因为不等式()()f ax ax x g x -≥-对1x ∀>恒成立,即不等式ln ax e ax x x -≥-对1x ∀>恒成立,又因为ln ln ln x x x e x -=-, 所以不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立;令()xF x e x =-,则 ()1x F x e '=-,当0x >时,()10x F x e '=->恒成立,所以()xF x e x =-在()0,∞+单调递增,所以由不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立,得ln ax x ≥对1x ∀>恒成立,即ln xa x≥对1x ∀>恒成立, 由选项C 知,()ln ()1xm x x x=>在()1,e 内单调递增,在(),e +∞内单调递减,所以()m x 的最大值为1()m e e =,所以只需1a e ≥,即正实数a 的最小值为1e .故选:ABD.【点睛】利用导数研究不等式恒成立问题,通常要构造函数,然后利用导数研究函数的单调性,求出最值进而得到结论或求出参数的取值范围;也可分类变量构造函数,把问题转化为函数的最值问题.恒成立问题常见的处理方式有:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)()f x a >恒成立型的可转化为min ()f x a >;(3)()()f x g x >恒成立型的可以通过作差法构造函数()()()h x f x g x =-,然后求min ()0h x >,或者转化为min max ()()f x g x >.(T 8联考八校2020-2021学年高三上学期第一次联考) 15. 已知函数()()ln 202x af x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【解析】 【分析】根据()0f x >恒成立,可得到含有x a ,的不等式,再进行分离变量,将“恒成立”’转化为求函数的最大值或最小值,最后得出a 的范围. 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++, 两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-, 令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减,()()max ln 11a g x g ∴>=-=,a e ∴>.故答案为:(),e +∞【点睛】对于“恒成立问题”,关键点为:对于任意的x ,使得()f x a >恒成立,可得出()min f x a >; 对于任意的x ,使得()f x a <恒成立,可得出()max f x a <. (浙江省百校2020-2021学年高三上学期12月联考)16. 已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln xx x a a -≤-恒成立,则a 的最小值为______.【答案】3e【解析】 【分析】不等式等价变形()()()4ln 3ln 3ln 3ln x x xe x x a a x x a a e e -≤-⇔-≤-,利用同构函数()ln f x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x xe x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤- 令()ln f x x x =-,()111x f x x x-'=-=, Ⅰ()f x 在[)1,+∞上单调递增.Ⅰ1a >,1[,)3x ∈+∞,Ⅰ[)3,1,xe x a ∈+∞,Ⅰ33x x eae x x a ⇔≤⇔≤恒成立,令()3x x g x e =,只需max ()a g x ≥,()33xxg x e -'=,Ⅰ1[,1),()0,()3x g x g x ∈'>单调递增,Ⅰ(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e,Ⅰ3a e ≥,Ⅰa 的最小值为3e.故答案为:3e【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键. (河北省部分学校2022届高三上学期第一次月考)17. 已知函数()32f x x x ax =--在R 上单调递增,则a 的取值范围是____________.【答案】1(,]3-∞-【解析】【分析】求出函数()f x 的导函数()f x ',再由()0f x '≥恒成立即可得解.【详解】依题意:()232x x a f x '=--,因函数()32f x x x ax =--在R 上单调递增,于是得2320x x a --≥对x ∈R 恒成立,则4120a ∆=+≤,解得13a ≤-,所以a 的取值范围是1(,]3-∞-.故答案为:1(,]3-∞-18. 已知函数()f x 的定义域为R ,()12f -=,对任意(),2x R f x '∈>,则()24f x x >+的解集为____________.【答案】(1,)-+∞. 【解析】【分析】构造()()24g x f x x =--,根据题意得到()g x 在R 为单调递增函数,又由()12f -=,得到()10g -=,进而得到1x >-时,()0g x >,即可求解.【详解】设()()24g x f x x =--,可得()()2g x f x ''=-,因为对任意(),2x R f x '∈>,所以()0g x '>,所以()g x 在R 为单调递增函数, 又由()12f -=,可得()12240g -=+-=,所以当1x >-时,()0g x >,即不等式()24f x x >+的解集为(1,)-+∞. 故答案为:(1,)-+∞.(浙江省宁波市北仑中学2021-2022学年高三上学期返校考试) 19. 设函数()ln 2ef x x mx n x=--+,若不等式()0f x ≤对任意(0,)x ∈+∞恒成立,则nm的最大值为______________. 【答案】2e 【解析】【分析】根据()0ln 22e n f x x m x x m ⎛⎫≤⇒-≤- ⎪⎝⎭转化成两个函数比较大小的问题.【详解】不等式()0f x ≤对任意(0,)x ∈+∞恒成立,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭,0x >恒成立, 设()()'21ln 0e e g x x g x x x x=-⇒=+> 所以()g x 在()0,∞+单调递增,且()0g e =,当0x →时()g x →-∞ 当x →+∞时()g x →+∞ 作出()g x 的图像如图,再设()22n h x m x m ⎛⎫=- ⎪⎝⎭,当0x >可得()h x 表示过点,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点),要求nm 的最大值且满足不等式恒成立,可求2n m的最大值,由点,02n m ⎛⎫⎪⎝⎭在x 轴上方移动,只需找到合适的0m >,且()h x 与()g x 图像相切于点,02n m ⎛⎫⎪⎝⎭,如图所示,此时22n n e e m m =⇒= 故答案为:2e(江苏省扬州市仪征市精诚高级中学2021-2022学年高三上学期9月月考) 20. 已知函数()ln ()f x x ax a R =-∈. (1)讨论函数()f x 的单调性; (2)证明不等式2()x e ax f x --≥恒成立. 【答案】(1)答案见解析;(2)证明见解析. 【解析】 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性;(2)构造函数2()ln x x e x ϕ-=-,利用导数可得()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则可得()0()0x x ϕϕ≥>,即得证.【详解】(1)11()(0)axf x a x x x-'=-=>, 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当1,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.(2)设函数2()ln x x e x ϕ-=-,则21()x x e xϕ-'=-,可知()x ϕ'在(0,)+∞上单调递增.又由(1)0ϕ'<,(2)0ϕ'>知,()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则()020010x x ex ϕ-'=-=,即0201x e x -=.当()00,x x ∈时,()0x ϕ'<,()ϕx 单调递减; 当()0x x ∈+∞时,()0x ϕ'>,()ϕx 单调递增;所以()0200()ln x x x ex ϕϕ-≥=-,结合021x e x -=,知002ln x x -=-, 所以()()22000000001211()20x x x x x x x x x ϕϕ--+≥=+-==>,则2()ln 0x x e x ϕ-=->, 即不等式2()x e ax f x --≥恒成立.【点睛】关键点睛:本题考查不等式恒成立的证明,解题的关键是转化为证明2()ln x x e x ϕ-=-的最小值大于0.(贵州省铜仁市思南中学2021届高三第十次月考)21. 已知函数()e (0)x f x ax a -=≠存在极大值1e .(1)求实数a 的值;(2)若函数F (x )=f (x )﹣m 有两个零点x 1,x 2(x 1≠x 2),求实数m 的取值范围,并证明:x 1+x 2>2.【答案】(1)a =1 (2)10e m <<,证明见解析【解析】【分析】(1)利用极值的定义,列式求出a 的值,然后进行验证即可; (2)利用(1)中的结论,确定()f x 的单调性、极值以及函数的取值情况,由零点的定义,即可得到m 的取值范围,利用12()()F x F x =,得到2211lnx x x x -=,将问题转化为证明2122111ln 2x x x x x x -<+,即证明21221111ln 21x x x x x x -<+,不妨设12x x <,令21x t x =,则1t >,从而将问题转化为证明1112t lnt t -<+对于1t >恒成立,构造函数11()ln 21t g t t t -=-+,利用导数研究函数的单调性,求解函数的取值情况,即可证明.【小问1详解】解:函数()e (0)x f x ax a -=≠, 则(1)()e xa x f x -'=, 令()0f x '=,解得1x =, 所以f (1)1e ea ==,解得1a =, 此时1()e xxf x -'=, 当1x <时,()0f x '>,则()f x 单调递增, 当1x >时,()0f x '<,则()f x 单调递减, 所以当1x =时,函数()f x 取得极大值f (1)1e=,符合题意,。
《红对勾》2021届高三数学第一轮复习北师大版 课时作业15 Word版含解析
课时作业15 导数的综合应用一、选择题(每小题5分,共40分)1.已知f (x )=12x 2-cos x ,x ∈[-1,1],则导函数f ′(x )是( ) A .仅有最小值的奇函数B .既有最大值,又有最小值的偶函数C .仅有最大值的偶函数D .既有最大值,又有最小值的奇函数解析:f ′(x )=x +sin x ,明显f ′(x )是奇函数,令h (x )=f ′(x ),则h (x )=x +sin x ,求导得h ′(x )=1+cos x .当x ∈[-1,1]时,h ′(x )>0,所以h (x )在[-1,1]上单调递增,有最大值和最小值.所以f ′(x )是既有最大值又有最小值的奇函数.答案:D2.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ) A .0≤a <1 B .0<a <1 C .-1<a <1D .0<a <12解析:∵y ′=3x 2-3a ,令y ′=0,可得:a =x 2.又∵x ∈(0,1),∴0<a <1. 答案:B3.已知对任意实数x ,都有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,f ′(x )>0,g ′(x )>0,则x <0时( )A .f ′(x )>0,g ′(x )>0B .f ′(x )>0,g ′(x )<0C .f ′(x )<0,g ′(x )>0D .f ′(x )<0,g ′(x )<0解析:由题意知f (x )是奇函数,g (x )是偶函数,当x >0时,f (x ),g (x )都单调递增,则当x <0时,f (x )单调递增,g (x )单调递减,即f ′(x )>0,g ′(x )<0.答案:B4.从边长为10 cm ×16 cm 的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为( )A .12 cm 3B .72 cm 3C .144 cm 3D .160 cm 3解析:设盒子容积为y cm 3,盒子的高为x cm ,则x ∈(0,5). 则y =(10-2x )(16-2x )x =4x 3-52x 2+160x ,∴y ′=12x 2-104x +160.令y ′=0,得x =2或203(舍去), ∴y max =6×12×2=144(cm 3). 答案:C5.(2021·湖北,10)已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( )A .f (x 1)>0,f (x 2)>-12B .f (x 1)<0,f (x 2)<-12 C .f (x 1)>0,f (x 2)<-12D .f (x 1)<0,f (x 2)>-12解析:f ′(x )=ln x -2ax +1,ln x -2ax +1=0(x >0)即 ln x +1x =2a 在(0,+∞)上有两个不同根x 1,x 2,令g (x )=ln x +1x (x >0),g ′(x )=-ln xx 2,则0<x <1时,g ′(x )>0;x >1时,g ′(x )<0.则x =1时,g (x )max =1,x →0时,g (x )<0;x →+∞,g (x )>0.因直线y =2a 与y =g (x )(x >0)图像有不同交点,则0<2a <1,0<a <12,又在(x 1,1)上g (x )为增函数,f (x 1)<f (1)=-a <0;在(1,x 2)上f (x )为增函数,f (x 2)>f (1)=-a >-12,故选D. 答案:D6.若f (x )=ln xx ,e<a <b ,则( ) A .f (a )>f (b ) B .f (a )=f (b ) C .f (a )<f (b )D .f (a )f (b )>1解析:f ′(x )=1-ln xx 2,当x >e 时,f ′(x )<0,则f (x )在(e ,+∞)上为减函数,f (a )>f (b ),故选A.答案:A7.(2021·辽宁,12)设函数f (x )满足x 2.f ′(x )+2xf (x )=e x x ,f (2)=e28,则x >0时,f (x )( )A .有极大值,无微小值B .有微小值,无极大值C .既有极大值又有微小值D .既无极大值也无微小值解析:令g (x )=x 2f (x ),则g ′(x )=e x x ,f (x )=g (x )x 2,所以f ′(x )=e x -2g (x )x 3.令h (x )=e x-2g (x ),则h ′(x )=e 2·(x -2x ),h ′(2)=0,所以h (x )=e x -2g (x )在(0,2)上递减,在(2,+∞)上递增,所以h (x )>0,即e 2-2g (x )>0,因此f ′(x )>0,即f (x )在(0,+∞)上单调递增,选D.答案:D8.(2022·新余模拟)函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( )A .{x |x >0}B .{x |x <0}C .{x |x <-1或x >1}D .{x |x <-1或0<x <1}解析:构造函数g (x )=e x ·f (x )-e x ,由于g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )]-e x >e x -e x =0,所以g (x )=e x ·f (x )-e x 为R 上的增函数,又由于g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0.答案:A二、填空题(每小题5分,共15分)9.直线y =a 与函数f (x )=x 3-3x 的图像有相异的三个公共点,则a 的取值范围是________.解析:令f ′(x )=3x 2-3=0,得x =±1,可得极大值为f (-1)=2,微小值为f (1)=-2,如图,观看得-2<a <2时恰有三个不同的公共点.答案:(-2,2)10.(2022·泰州调研)若函数f (x )=x +a sin x 在R 上递增,则实数a 的取值范围。
导数的综合应用
3.3 导数的综合应用1.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答. 2.不等式问题(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题. 3.方程解的个数问题构造函数,利用导数研究函数的单调性,极值和特殊点的函数值,根据函数性质结合草图推断方程解的个数. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)连续函数在闭区间上必有最值.( √ )(2)函数f (x )=x 2-3x +2的极小值也是最小值.( √ )(3)函数f (x )=x +x -1和g (x )=x -x -1都是在x =0时取得最小值-1.( × )(4)函数f (x )=x 2ln x 没有最值.( × ) (5)已知x ∈(0,π2),则sin x >x .( × )(6)若a >2,则方程13x 3-ax 2+1=0在(0,2)上没有实数根.( × )1.(2014·湖南)若0<x 1<x 2<1,则( ) A .2121e e ln ln xxx x >-- B .1221e eln ln xx x x <--C .1221e e x xx x > D .1221e e xxx x < 答案 C解析 设f (x )=e x -ln x (0<x <1), 则f ′(x )=e x-1x =x e x-1x.令f ′(x )=0,得x e x -1=0.根据函数y =e x 与y =1x 的图象可知两函数图象交点x 0∈(0,1),因此函数f (x )在(0,1)上不是单调函数,故A ,B 选项不正确.设g (x )=e xx (0<x <1),则g ′(x )=e x(x -1)x 2.又0<x <1,∴g ′(x )<0.∴函数g (x )在(0,1)上是减函数. 又0<x 1<x 2<1,∴g (x 1)>g (x 2), ∴1221e e xxx x >.2.(2013·福建)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是( )A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点 答案 D解析 A 错,因为极大值未必是最大值.B 错,因为函数y =f (x )与函数y =f (-x )的图象关于y 轴对称,-x 0应是f (-x )的极大值点.C 错,函数y =f (x )与函数y =-f (x )的图象关于x 轴对称,x 0应为-f (x )的极小值点.D 对,函数y =f (x )与y =-f (-x )的图象关于原点对称,-x 0应为y =-f (-x )的极小值点.3.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1 B.12 C.52 D.22答案 D解析 |MN |的最小值,即函数h (x )=x 2-ln x (x >0)的最小值,h ′(x )=2x -1x =2x 2-1x,显然x =22是函数h (x )在其定义域内唯一的极小值点, 也是最小值点,故t =22. 4.若商品的年利润y (万元)与年产量x (百万件)的函数关系式:y =-x 3+27x +123(x >0),则获得最大利润时的年产量为( ) A .1百万件 B .2百万件 C .3百万件 D .4百万件答案 C解析 y ′=-3x 2+27=-3(x +3)(x -3), 当0<x <3时,y ′>0; 当x >3时,y ′<0.故当x =3时,该商品的年利润最大.题型一 利用导数证明不等式例1 已知定义在正实数集上的函数f (x )=12x 2+2ax ,g (x )=3a 2ln x +b ,其中a >0.设两曲线y=f (x ),y =g (x )有公共点,且在该点处的切线相同. (1)用a 表示b ,并求b 的最大值; (2)求证:f (x )≥g (x )(x >0).(1)解 设两曲线的公共点为(x 0,y 0), f ′(x )=x +2a ,g ′(x )=3a 2x,由题意知f (x0)=g (x 0),f ′(x 0)=g ′(x 0),即⎩⎨⎧12x 20+2ax 0=3a 2ln x 0+b ,x 0+2a =3a2x.由x 0+2a =3a 2x 0,得x 0=a 或x 0=-3a (舍去).即有b =12a 2+2a 2-3a 2ln a =52a 2-3a 2ln a .令h (t )=52t 2-3t 2ln t (t >0),则h ′(t )=2t (1-3ln t ).于是当t (1-3ln t )>0,即0<t <13e 时,h ′(t )>0;当t (1-3ln t )<0,即t >13e 时,h ′(t )<0.故h (t )在(0,13e )上为增函数,在(13e ,+∞)上为减函数,于是h (t )在(0,+∞)上的最大值为h (13e )=233e 2,即b 的最大值为233e 2.(2)证明 设F (x )=f (x )-g (x )=12x 2+2ax -3a 2ln x -b (x >0),则F ′(x )=x +2a -3a 2x =(x -a )(x +3a )x(x >0).故F (x )在(0,a )上为减函数,在(a ,+∞)上为增函数. 于是F (x )在(0,+∞)上的最小值是F (a )=F (x 0)=f (x 0)-g (x 0)=0. 故当x >0时,有f (x )-g (x )≥0, 即当x >0时,f (x )≥g (x ).思维升华 利用导数证明不等式的步骤 (1)构造新函数,并求其单调区间; (2)判断区间端点函数值与0的关系;(3)判断定义域内函数值与0的大小关系,证不等式.证明:当x ∈[0,1]时,22x ≤sin x ≤x . 证明 记F (x )=sin x -22x , 则F ′(x )=cos x -22. 当x ∈(0,π4)时,F ′(x )>0,F (x )在[0,π4]上是增函数;当x ∈(π4,1)时,F ′(x )<0,F (x )在[π4,1]上是减函数.又F (0)=0,F (1)>0,所以当x ∈[0,1]时,F (x )≥0, 即sin x ≥22x . 记H (x )=sin x -x ,则当x ∈(0,1)时,H ′(x )=cos x -1<0, 所以H (x )在[0,1]上是减函数, 则H (x )≤H (0)=0,即sin x ≤x .综上,22x≤sin x≤x,x∈[0,1].题型二利用导数研究函数零点问题例2(2013·北京)已知函数f(x)=x2+x sin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.解(1)由f(x)=x2+x sin x+cos x,得f′(x)=x(2+cos x).∵y=f(x)在点(a,f(a))处与直线y=b相切.∴f′(a)=a(2+cos a)=0且b=f(a),则a=0,b=f(0)=1.(2)令f′(x)=0,得x=0.∴当x>0时,f′(x)>0,f(x)在(0,+∞)上递增.当x<0时,f′(x)<0,f(x)在(-∞,0)上递减.∴f(x)的最小值为f(0)=1.∵函数f(x)在区间(-∞,0)和(0,+∞)上均单调,∴当b>1时曲线y=f(x)与直线y=b有且仅有两个不同交点.综上可知,b的取值范围是(1,+∞).思维升华函数零点或函数图象交点问题的求解,一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.解(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞).当a>0时,由f′(x)>0,解得x<-a或x>a.由f′(x)<0,解得-a<x<a,∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,∴f′(-1)=3×(-1)2-3a=0,∴a =1.∴f (x )=x 3-3x -1, f ′(x )=3x 2-3,由f ′(x )=0,解得x 1=-1,x 2=1.由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.∵直线y =m 与函数y =f (x )的图象有三个不同的交点,结合如图所示f (x )的图象可知:实数m 的取值范围是(-3,1). 题型三 生活中的优化问题例3 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.思维点拨 (1)由x =5时y =11求a ;(2)建立商场每日销售该商品所获利润和售价x 的函数关系,利用导数求最值. 解 (1)因为x =5时,y =11,所以a2+10=11,a =2.(2)由(1)可知,该商品每日的销售量为 y =2x -3+10(x -6)2. 所以商场每日销售该商品所获得的利润为f (x )=(x -3)[2x -3+10(x -6)2]=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.思维升华 在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.请你设计一个包装盒,如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x (cm).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.解 设包装盒的高为h cm ,底面边长为a cm. 由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ).由V ′=0,得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12.即包装盒的高与底面边长的比值为12.一审条件挖隐含典例:(12分)设f (x )=ax+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M .(2)如果对于任意的s ,t ∈[12,2],都有f (s )≥g (t )成立,求实数a 的取值范围.审题路线图(1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M(正确理解“存在”的含义) [g (x 1)-g (x 2)]max ≥M挖掘[g (x 1)-g (x 2)]max 的隐含实质 g (x )max -g (x )min ≥MM 的最大整数值(2)对任意s ,t ∈[12,2]都有f (s )≥g (t )(理解“任意”的含义) f (x )min ≥g (x )max求得g (x )max =1 ax+x ln x ≥1恒成立 分离常数 a ≥x -x 2ln x 恒成立求h (x )=x -x 2ln x 的最大值 a ≥h (x )max =h (1)=1 a ≥1 规范解答解 (1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M .[2分]由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3x (x -23).令g ′(x )>0得x <0,或x >23,又x ∈[0,2],所以g (x )在区间[0,23]上单调递减,在区间[23,2]上单调递增,所以g (x )min =g (23)=-8527,g (x )max =g (2)=1.故[g (x 1)-g (x 2)]max =g (x )max -g (x )min =11227≥M , 则满足条件的最大整数M =4.[5分](2)对于任意的s ,t ∈[12,2],都有f (s )≥g (t )成立,等价于在区间[12,2]上,函数f (x )min ≥g (x )max .[7分]由(1)可知在区间[12,2]上,g (x )的最大值为g (2)=1.在区间[12,2]上,f (x )=ax+x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,h ′(x )=1-2x ln x -x ,可知h ′(x )在区间[12,2]上是减函数,又h ′(1)=0,所以当1<x <2时,h ′(x )<0;当12<x <1时,h ′(x )>0.[10分]即函数h (x )=x -x 2ln x 在区间(12,1)上单调递增,在区间(1,2)上单调递减,所以h (x )max =h (1)=1,所以a ≥1,即实数a 的取值范围是[1,+∞).[12分]温馨提醒 (1)“恒成立”、“存在性”问题一定要正确理解问题实质,深刻挖掘条件内含,进行等价转化.(2)构造函数是求范围问题中的一种常用方法,解题过程中尽量采用分离常数的方法,转化为求函数的值域问题.方法与技巧1.利用导数解决含有参数的单调性问题是将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.2.在讨论方程的根的个数、研究函数图象与x 轴(或某直线)的交点个数、不等式恒成立等问题时,常常需要求出其中参数的取值范围,这类问题的实质就是函数的单调性与函数的极(最)值的应用.3.在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较. 失误与防范1.函数f (x )在某个区间内单调递增,则f ′(x )≥0而不是f ′(x )>0,(f ′(x )=0在有限个点处取到).2.利用导数解决实际生活中的优化问题,要注意问题的实际意义.A 组 专项基础训练(时间:45分钟)1.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )答案 C解析 由函数f (x )在x =-2处取得极小值,可得f ′(-2)=0,且当x ∈(a ,-2)(a <-2)时,f (x )单调递减,即f ′(x )<0;当x ∈(-2,b )(b >-2)时,f (x )单调递增,即f ′(x )>0.所以函数y =xf ′(x )在区间(a ,-2)(a <-2)内的函数值为正,在区间(-2,b )(-2<b <0)内的函数值为负,由此可排除选项A ,B ,D.2.(2014·课标全国Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)答案 D解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)单调递增⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞).3.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞) 答案 B解析 ∵f ′(x )=3x 2+2ax +(a +6),由已知可得f ′(x )=0有两个不相等的实根. ∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0. ∴a >6或a <-3.4.若函数f (x )=x x 2+a (a >0)在[1,+∞)上的最大值为33,则a 的值为( )A.33B. 3C.3+1D.3-1 答案 D解析 f ′(x )=x 2+a -2x 2(x 2+a )2=a -x 2(x 2+a )2,若a >1,当x >a 时,f ′(x )<0,f (x )单调递减,当1<x <a 时,f ′(x )>0,f (x )单调递增,当x =a 时,令f (x )=a 2a =33,a =32<1,不合题意. 若0<a ≤1,则f ′(x )≤0,f (x )在[1,+∞)上单调递减,∴f (x )max =f (1)=11+a =33,a =3-1,故选D. 5.设函数h t (x )=3tx -322t ,若有且仅有一个正实数x 0,使得h 7(x 0)≥h t (x 0)对任意的正数t 都成立,则x 0等于( )A .5B. 5 C .3D.7答案 D解析 ∵h 7(x 0)≥h t (x 0)对任意的正数t 都成立,∴h 7(x 0)≥h t (x 0)max .记g (t )=h t (x 0)=3tx 0-322t ,则g ′(t )=3x 0-123t ,令g ′(t )=0,得t =x 20,易得h t (x 0)max =g (x 20)=x 30,∴21x 0-147≥x 30,将选项代入检验可知选D. 6.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为1,则a =________.答案 1解析 ∵f (x )是奇函数,且当x ∈(-2,0)时,f (x )的最小值为1,∴f (x )在(0,2)上的最大值为-1.当x ∈(0,2)时,f ′(x )=1x -a ,令f ′(x )=0得x =1a ,又a >12,∴0<1a <2.当x <1a时,f ′(x )>0,f (x )在(0,1a )上单调递增;当x >1a 时,f ′(x )<0,f (x )在(1a ,2)上单调递减,∴f (x )max =f (1a )=ln 1a -a ·1a =-1,解得a =1.7.已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =________.答案 -2或2解析 设f (x )=x 3-3x +c ,对f (x )求导可得,f ′(x )=3x 2-3,令f ′(x )=0,可得x =±1,易知f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.由题意知,f (1)=0或f (-1)=0,若f (1)=1-3+c =0,可得c =2;若f (-1)=-1+3+c =0,可得c =-2.8.设函数f (x )=kx 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数k 的值为________.答案 4解析 若x =0,则不论k 取何值,f (x )≥0都成立;当x >0,即x ∈(0,1]时,f (x )=kx 3-3x +1≥0可化为k ≥3x 2-1x 3. 设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4, 所以g (x )在区间(0,12]上单调递增, 在区间[12,1]上单调递减, 因此g (x )max =g (12)=4,从而k ≥4; 当x <0即x ∈[-1,0)时,f (x )=kx 3-3x +1≥0可化为k ≤3x 2-1x 3,g (x )=3x 2-1x 3在区间[-1,0)上单调递增, 因此g (x )min =g (-1)=4,从而k ≤4,综上k =4.9.设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.(1)解 由f (x )=e x -2x +2a ,x ∈R知f ′(x )=e x -2,x ∈R .令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )单调递增区间是(ln 2,+∞),f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2-2ln 2+2a .(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R ,于是g ′(x )=e x -2x +2a ,x ∈R .由(1)知当a >ln 2-1时,g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0.即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.10.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100千米. (1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?解 (1)当x =40时,汽车从甲地到乙地行驶了10040小时,共耗油10040×(1128 000×403-380×40+8)=17.5(升).因此,当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油17.5升.(2)当速度为x 千米/小时时,汽车从甲地到乙地行驶了100x小时, 设耗油量为h (x )升,依题意得h (x )=(1128 000x 3-380x +8)·100x=11 280x 2+800x -154(0<x ≤120), h ′(x )=x 640-800x 2=x 3-803640x 2(0<x ≤120).令h ′(x )=0,得x =80.当x ∈(0,80)时,h ′(x )<0,h (x )是减函数;当x ∈(80,120)时,h ′(x )>0,h (x )是增函数,所以当x =80时,h (x )取得极小值h (80)=11.25.易知h (80)是h (x )在(0,120]上的最小值.故当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,为11.25升.B 组 专项能力提升(时间:30分钟)11.(2014·辽宁)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]答案 C 解析 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R .当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3, ∴a ≥⎣⎡⎦⎤x 2-4x -3x 3max .设φ(x )=x 2-4x -3x 3, φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0, ∴φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6,∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3, ∴a ≤⎣⎡⎦⎤x 2-4x -3x 3min .仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4. 当x ∈[-2,-1)时,φ′(x )<0,当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值.而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2.综上知-6≤a ≤-2.12.设函数f (x )=ln x -ax ,g (x )=e x -ax ,其中a 为常数.若f (x )在(1,+∞)上是减函数,且g (x )在(1,+∞)上有最小值,则a 的取值范围是( )A .(e ,+∞)B .[e ,+∞)C .(1,+∞)D .[1,+∞)答案 A解析 f ′(x )=1x-a ,g ′(x )=e x -a ,由题意得,当x ∈(1,+∞)时f ′(x )≤0恒成立,即x ∈(1,+∞)时a ≥1x 恒成立,则a ≥1.因为g ′(x )=e x -a 在(1,+∞)上单调递增,所以g ′(x )>g ′(1)=e -a .又g (x )在(1,+∞)上有最小值,则必有e -a <0,即a >e.综上,a 的取值范围是(e ,+∞).13.已知f (x )=x e x ,g (x )=-(x +1)2+a ,若∃x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围是____________.答案 [-1e,+∞) 解析 f ′(x )=e x +x e x =e x (1+x )当x >-1时,f ′(x )>0,函数f (x )单调递增;当x <-1时,f ′(x )<0,函数f (x )单调递减.所以函数f (x )的最小值为f (-1)=-1e. 而函数g (x )的最大值为a ,则由题意,可得-1e ≤a 即a ≥-1e. 14.设函数f (x )=a 2ln x -x 2+ax ,a >0.(1)求f (x )的单调区间;(2)求所有的实数a ,使e -1≤f (x )≤e 2对x ∈[1,e]恒成立.解 (1)因为f (x )=a 2ln x -x 2+ax ,其中x >0,所以f ′(x )=a 2x -2x +a =-(x -a )(2x +a )x. 由于a >0,所以f (x )的增区间为(0,a ),减区间为(a ,+∞).(2)由题意得f (1)=a -1≥e -1,即a ≥e.由(1)知f (x )在[1,e]内单调递增,要使e -1≤f (x )≤e 2对x ∈[1,e]恒成立.只要⎩⎪⎨⎪⎧f (1)=a -1≥e -1,f (e )=a 2-e 2+a e ≤e 2, 解得a =e.15.已知f (x )=ax -ln x ,x ∈(0,e],g (x )=ln x x,其中e 是自然对数的底数,a ∈R . (1)讨论a =1时,函数f (x )的单调性和极值;(2)求证:在(1)的条件下,f (x )>g (x )+12; (3)是否存在正实数a ,使f (x )的最小值是3?若存在,求出a 的值;若不存在,请说明理由.(1)解 ∵a =1,∴f (x )=x -ln x ,f ′(x )=1-1x=x -1x, ∴当0<x <1时,f ′(x )<0,此时f (x )单调递减;当1<x ≤e 时,f ′(x )>0,此时f (x )单调递增.∴f (x )的极小值为f (1)=1.(2)证明 ∵f (x )的极小值为1,即f (x )在(0,e]上的最小值为1,∴[f (x )]min =1.又g ′(x )=1-ln x x 2, ∴当0<x <e 时,g ′(x )>0,g (x )在(0,e]上单调递增.∴[g (x )]max =g (e)=1e <12, ∴[f (x )]min -[g (x )]max >12, ∴在(1)的条件下,f (x )>g (x )+12. (3)解 假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e])有最小值3,则f ′(x )=a -1x =ax -1x. ①当0<1a <e 时,f (x )在(0,1a)上单调递减, 在(1a,e]上单调递增, [f (x )]min =f (1a)=1+ln a =3,a =e 2,满足条件; ②当1a≥e 时,f (x )在(0,e]上单调递减, [f (x )]min =f (e)=a e -1=3,a =4e(舍去),所以,此时f (x )无最小值. 综上,存在实数a =e 2,使得当x ∈(0,e]时f (x )有最小值3.。
高考大题专项(一) 导数的综合应用
高考大题专项(一)导数的综合应用突破1导数与函数的单调性x3-a(x2+x+1).1.已知函数f(x)=13(1)若a=3,求f(x)的单调区间;(2)略.2.已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)略.13.已知函数f(x)=1-x+a ln x.x(1)讨论f(x)的单调性;(2)略.4.(2019山东潍坊三模,21)已知函数f(x)=x2+a ln x-2x(a∈R).(1)求f(x)的单调递增区间;(2)略.25.(2018全国3,文21)已知函数f(x)=ax 2+x-1 x.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.6.(2019河南开封一模,21)设函数f(x)=(x-1)e x-k2x2(其中k∈R).(1)求函数f(x)的单调区间;(2)略.37.(2019河北衡水同卷联考,21)已知函数f(x)=x2e ax-1.(1)讨论函数f(x)的单调性;(2)略.8.(2019江西新余一中质检一,19)已知函数f(x)=ln(x-a)x.(1)若a=-1,证明:函数f(x)在(0,+∞)上单调递减;(2)若曲线y=f(x)在点(1,f(1))处的切线与直线x-y=0平行,求a的值;(3)若x>0,证明:ln(x+1)x >xe x-1(其中e是自然对数的底数).突破2利用导数研究函数的极值、最值1.(2019哈尔滨三中模拟)已知函数f(x)=ln x-ax(a∈R).(1)当a=12时,求f(x)的极值;(2)略.42.(2019河北衡水深州中学测试)讨论函数f(x)=ln x-ax(a∈R)在定义域内的极值点的个数.3.(2019陕西咸阳模拟一,21)设函数f(x)=2ln x-x2+ax+2.(1)当a=3时,求f(x)的单调区间和极值;(2)略.54.已知函数f(x)=(x-a)e x(a∈R).(1)当a=2时,求函数f(x)在x=0处的切线方程;(2)求f(x)在区间[1,2]上的最小值.5.(2019湖北八校联考二,21)已知函数f(x)=ln x+ax2+bx.6(1)函数f(x)在点(1,f(1))处的切线的方程为2x+y=0,求a,b的值,并求函数f(x)的最大值;(2)略.6.(2019广东广雅中学模拟)已知函数f(x)=ax+ln x,其中a为常数.(1)当a=-1时,求f(x)的最大值;(2)若f(x)在区间(0,e]上的最大值为-3,求a的值.7.(2019湘赣十四校联考一,21)已知函数f(x)=ln x-mx-n(m,n∈R).7(1)若n=1时,函数f(x)有极大值为-2,求m的值;(2)若对任意实数x>0,都有f(x)≤0,求m+n的最小值.突破3导数在不等式中的应用1.(2019湖南三湘名校大联考一,21)已知函数f(x)=x ln x.(1)略;时,f(x)≤ax2-x+a-1,求实数a的取值范围.(2)当x≥1e2.(2018全国1,文21)已知函数f(x)=a e x-ln x-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;时,f(x)≥0.(2)证明:当a≥1e83.(2019湖南湘潭一模,21)已知函数f(x)=e x-x2-ax.(1)略;(2)当x>0时,f(x)≥1-x恒成立,求实数a的取值范围.4.(2019安徽合肥一模,21)已知函数f(x)=e x-1-a(x-1)+ln x(a∈R,e是自然对数的底数).(1)略;(2)若对x∈[1,+∞),都有f(x)≥1成立,求实数a的取值范围.5.(2019陕西咸阳一模,21)设函数f(x)=x+1-m e x,m∈R.(1)当m=1时,求f(x)的单调区间;(2)求证:当x∈(0,+∞)时,ln e x-1x>x2.96.已知函数f(x)=-a ln x-e xx+ax,a∈R.(1)略;(2)当a=1时,若不等式f(x)+bx-b+1xe x-x≥0在x∈(1,+∞)时恒成立,求实数b的取值范围.7.设函数f(x)=e mx+x2-mx.(1)求证:f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.108.(2019山西太原二模,21)已知x1,x2(x1<x2)是函数f(x)=e x+ln(x+1)-ax(a∈R)的两个极值点.(1)求a的取值范围;(2)求证:f(x2)-f(x1)<2ln a.突破4导数与函数的零点1.(2018全国2,文21)已知函数f(x)=1x3-a(x2+x+1).(1)略;(2)证明:f(x)只有一个零点.2.(2019河北唐山三模,21)已知函数f(x)=x ln x-a(x2-x)+1,函数g(x)=f'(x).(1)若a=1,求f(x)的极大值;(2)当0<x<1时,g(x)有两个零点,求a的取值范围.113.(2019河南开封一模,21)已知函数f(x)=ax 2+bx+1 e x.(1)略;(2)若f(1)=1,且方程f(x)=1在区间(0,1)内有解,求实数a的取值范围.4.(2019安徽安庆二模,21)已知函数f(x)=ax-ln x(a∈R).(1)讨论f(x)的单调性;(2)若f(x)=0有两个相异的正实数根x1,x2,求证:f'(x1)+f'(x2)<0.5.(2019河北石家庄二模,20)已知函数f(x)=1+lnxx.12(1)略;(2)当x>1时,方程f(x)=a(x-1)+1(a>0)有唯一零点,求a的取值范围.x6.(2019山西运城二模,21)已知函数f(x)=x e x-a(ln x+x),a∈R.(1)当a=e时,求f(x)的单调区间;(2)若f(x)有两个零点,求实数a的取值范围.7.已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1+x2<2.138.(2019天津,20)设函数f(x)=ln x-a(x-1)e x,其中a∈R.(1)若a≤0,讨论f(x)的单调性;,(2)若0<a<1e①证明:f(x)恰有两个零点;②设x0为f(x)的极值点,x1为f(x)的零点,且x1>x0,证明3x0-x1>2.参考答案高考大题专项(一)导数的1415综合应用突破1 导数与函数的单调性1.解 (1)当a=3时,f (x )=13x 3-3x 2-3x-3,f'(x )=x 2-6x-3. 令f'(x )=0,解得x=3-2√3或x=3+2√3. 当x ∈(-∞,3-2√3)∪(3+2√3,+∞)时,f'(x )>0; 当x ∈(3-2√3,3+2√3)时,f'(x )<0.故f (x )在(-∞,3-2√3),(3+2√3,+∞)上单调递增,在(3-2√3,3+2√3)上单调递减. 2.证明 (1)当a=1时,f (x )≥1等价于(x 2+1)e -x -1≤0. 设函数g (x )=(x 2+1)e -x -1,则g'(x )=-(x 2-2x+1)e -x =-(x-1)2e -x .当x ≠1时,g'(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.3.解 (1)f (x )的定义域为(0,+∞),f'(x )=-1x 2-1+a x =-x 2-ax+1x 2.①若a ≤2,则f'(x )≤0,当且仅当a=2,x=1时f'(x )=0,所以f (x )在(0,+∞)上单调递减. ②若a>2,令f'(x )=0得,x=a -√a 2-42或x=a+√a 2-42.当x ∈(0,a -√a 2-42)∪a+√a 2-42,+∞时,f'(x )<0;当x ∈a -√a 2-42,a+√a 2-42时,f'(x )>0.所以f (x )在(0,a -√a 2-42),(a+√a 2-42,+∞)上单调递减,在(a -√a 2-42,a+√a 2-42)上单调递增.164.解 (1)函数f (x )的定义域为(0,+∞),f'(x )=2x+a x -2=2x 2-2x+ax,令2x 2-2x+a=0,Δ=4-8a=4(1-2a ),若a ≥1,则Δ≤0,f'(x )≥0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递增; 若a<12,则Δ>0,方程2x 2-2x+a=0,两根为x 1=1-√1-2a 2,x 2=1+√1-2a2, 当a ≤0时,x 2>0,x ∈(x 2,+∞),f'(x )>0,f (x )单调递增; 当0<a<12时,x 1>0,x 2>0,x ∈(0,x 1),f'(x )>0,f (x )单调递增, x ∈(x 2,+∞),f'(x )>0,f (x )单调递增.综上,当a ≥12时,函数f (x )单调递增区间为(0,+∞),当a ≤0时,函数f (x )单调递增区间为1+√1-2a2,+∞,当0<a<12时,函数f (x )单调递增区间为0,1-√1-2a 2,1+√1-2a2,+∞.5.(1)解 f'(x )=-ax 2+(2a -1)x+2e x,f'(0)=2.因此曲线y=f (x )在(0,-1)处的切线方程是2x-y-1=0. (2)证明 当a ≥1时,f (x )+e ≥(x 2+x-1+e x+1)e -x . 令g (x )=x 2+x-1+e x+1, 则g'(x )=2x+1+e x+1.当x<-1时,g'(x )<0,g (x )单调递减;当x>-1时,g'(x )>0,g (x )单调递增;所以g (x )≥g (-1)=0. 因此f (x )+e ≥0.6.解 (1)函数f (x )的定义域为(-∞,+∞),f'(x )=e x +(x-1)e x -kx=x e x -kx=x (e x -k ),①当k ≤0时,令f'(x )>0,解得x>0,∴f (x )的单调递减区间是(-∞,0),单调递增区间是(0,+∞). ②当0<k<1时,令f'(x )>0,解得x<ln k 或x>0,17∴f (x )在(-∞,ln k )和(0,+∞)上单调递增,在(ln k ,0)上单调递减. ③当k=1时,f'(x )≥0,f (x )在(-∞,+∞)上单调递增. ④当k>1时,令f'(x )>0,解得x<0或x>ln k ,所以f (x )在(-∞,0)和(ln k ,+∞)上单调递增,在(0,ln k )上单调递减. 7.解 (1)函数f (x )的定义域为R . f'(x )=2x e ax +x 2·a e ax =x (ax+2)e ax .当a=0时,f (x )=x 2-1,则f (x )在区间(0,+∞)内单调递增,在区间(-∞,0)内单调递减;当a>0时,f'(x )=ax x+2a e ax ,令f'(x )>0得x<-2a 或x>0,令f'(x )<0得-2a <x<0,所以f (x )在区间-∞,-2a 内单调递增,在区间-2a ,0内单调递减,在区间(0,+∞)内单调递增;当a<0时,f'(x )=ax x+2a e ax ,令f'(x )>0得0<x<-2a ,令f'(x )<0得x>-2a 或x<0,所以f (x )在区间(-∞,0)内单调递减,在区间0,-2a 内单调递增,在区间-2a ,+∞内单调递减. 8.(1)证明 当a=-1时,函数f (x )的定义域是(-1,0)∪(0,+∞),所以f'(x )=xx+1-ln (x+1)x 2,令g (x )=xx+1-ln(x+1),只需证当x>0时,g (x )≤0. 又g'(x )=1(x+1)2−1=-x (x+1)2<0在(0,+∞)上恒成立,故g (x )在(0,+∞)上单调递减,所以g (x )<g (0)=-ln 1=0,所以f'(x )<0,故函数f (x )在(0,+∞)上单调递减. (2)解 由题意知,f'(1)=1,且f'(x )=xx -a -ln (x -a )x 2,所以f'(1)=11-a -ln(1-a )=1,即有a1-a -ln(1-a )=0, 令t (a )=a1-a -ln(1-a ),a<1,则t'(a )=1(1-a )2+11-a >0,故t(a)在(-∞,1)上单调递增,又t(0)=0,故0是t(a)的唯一零点,即方程a1-a-ln(1-a)=0有唯一实根0,所以a=0.(3)证明因为xe x-1=ln e xe x-1=ln (ex-1+1)e x-1,故原不等式等价于ln(x+1)x>ln(ex-1+1)e x-1,由(1)知,当a=-1时,f(x)=ln(x+1)x在(0,+∞)上单调递减,故要证原不等式成立,只需证明当x>0时,x<e x-1,令h(x)=e x-x-1,则h'(x)=e x-1>0在(0,+∞)上恒成立,故h(x)在(0,+∞)上单调递增, 所以h(x)>h(0)=0,即x<e x-1,故f(x)>f(e x-1),即ln(x+1)x>ln (ex-1+1)e x-1=xe x-1.突破2利用导数研究函数的极值、最值1.解(1)当a=12时,f(x)=ln x-12x,函数的定义域为(0,+∞),f'(x)=1x−12=2-x2x,令f'(x)=0,得x=2,于是当x变化时,f'(x),f(x)的变化情况如下表:故f(x)的极大值为ln 2-1,无极小值.2.解函数的定义域为(0,+∞),f'(x)=1x -a=1-axx(x>0).1819当a ≤0时,f'(x )>0在(0,+∞)上恒成立,故函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a>0时,若x ∈0,1a ,则f'(x )>0,若x ∈1a ,+∞,则f'(x )<0, 故函数f (x )在x=1a 处取极大值.综上可知,当a ≤0时,函数f (x )无极值点,当a>0时,函数f (x )有一个极大值点. 3.解 (1)f (x )的定义域为(0,+∞).当a=3时,f (x )=2ln x-x 2+3x+2, 所以f'(x )=2x -2x+3=-2x 2+3x+2x,令f'(x )=-2x 2+3x+2x=0,得-2x 2+3x+2=0,因为x>0,所以x=2. f (x )与f'(x )在区间(0,+∞)上的变化情况如下:所以f (x )的单调递增区间为(0,2),单调递减区间为(2,+∞). f (x )的极大值为2ln 2+4,无极小值. 4.解 (1)设切线的斜率为k.因为a=2,所以f (x )=(x-2)e x ,f'(x )=e x (x-1).所以f (0)=-2,k=f'(0)=e 0(0-1)=-1. 所以所求的切线方程为y=-x-2,即x+y+2=0. (2)由题意得f'(x )=e x (x-a+1),令f'(x )=0,可得x=a-1.①若a-1≤1,则a≤2,当x∈[1,2]时,f'(x)≥0,则f(x)在[1,2]上单调递增.所以f(x)min=f(1)=(1-a)e.②若a-1≥2,则a≥3,当x∈[1,2]时,f'(x)≤0,则f(x)在[1,2]上单调递减.所以f(x)min=f(2)=(2-a)e2.③若1<a-1<2,则2<a<3,所以f'(x),f(x)随x的变化情况如下表:所以f(x)的单调递减区间为[1,a-1],单调递增区间为[a-1,2].所以f(x)在[1,2]上的最小值为f(a-1)=-e a-1.综上所述,当a≤2时,f(x)min=f(1)=(1-a)e;当a≥3时,f(x)min=f(2)=(2-a)e2;当2<a<3时,f(x)min=f(a-1)=-e a-1.5.解(1)因为f(x)=ln x+ax2+bx,所以f'(x)=1x+2ax+b,则在点(1,f(1))处的切线的斜率为f'(1)=1+2a+b,由题意可得,1+2a+b=-2,且a+b=-2,解得a=b=-1.所以f'(x)=1x-2x-1=-2x2-x+1x=-2x2+x-1x,由f'(x)=0,可得x=12(x=-1舍去),2021当0<x<1时,f'(x )>0,f (x )单调递增;当x>1时,f'(x )<0,f (x )单调递减,故当x=12时,f (x )取得极大值,且为最大值,f 12=-ln 2-34.故f (x )的最大值为-ln 2-34. 6.解 (1)易知f (x )的定义域为(0,+∞),当a=-1时,f (x )=-x+ln x ,f'(x )=-1+1x =1-xx , 令f'(x )=0,得x=1.当0<x<1时,f'(x )>0;当x>1时,f'(x )<0.∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.∴f (x )max =f (1)=-1. ∴当a=-1时,函数f (x )的最大值为-1. (2)f'(x )=a+1x ,x ∈(0,e],则1x ∈1e ,+∞.①若a ≥-1e ,则f'(x )≥0,从而f (x )在(0,e]上单调递增,∴f (x )max =f (e)=a e +1≥0,不合题意. ②若a<-1,令f'(x )>0得,a+1>0,又x ∈(0,e],解得0<x<-1; 令f'(x )<0得,a+1x <0,又x ∈(0,e],解得-1a <x ≤e .从而f (x )在0,-1a 上单调递增,在-1a ,e 上单调递减,∴f (x )max =f -1a =-1+ln -1a . 令-1+ln -1a =-3, 得ln -1a =-2,即a=-e 2.∵-e 2<-1e ,∴a=-e 2符合题意.故实数a 的值为-e 2.7.解 (1)函数f (x )的定义域为(0,+∞),当n=1时,f (x )=ln x-mx-1,∵函数f (x )有极大值为-2, 由f'(x )=1x -m=0,得x=1m >0,∴f(1m)=-ln m-1-1=-2,∴m=1.经检验m=1满足题意.故m的值为1.(2)f'(x)=1x-m.①当m<0时,∵x∈(0,+∞),∴f'(x)>0,∴f(x)在(0,+∞)上单调递增.令x=e n,则f(e n)=ln e n-m e n-n=-m e n>0,舍去;②当m=0时,∵x∈(0,+∞),∴f'(x)>0,∴f(x)在(0,+∞)上单调递增,令x=e n+1,则f(e n+1)=ln e n+1-n=1>0,舍去;③当m>0时,若x∈0,1m ,则f'(x)>0,若x∈1m,+∞,则f'(x)<0,∴f(x)在0,1m 上单调递增,在1m,+∞上单调递减.∴f(x)的最大值为f1m=-ln m-1-n≤0, 即n≥-ln m-1.∴m+n≥m-ln m-1,设h(m)=m-ln m-1,令h'(m)=1-1m=0,则m=1.当m∈(0,1)时,h'(m)<0,∴h(m)在(0,1)上单调递减.当m∈(1,+∞)时,h'(m)>0.∴h(m)在(1,+∞)上单调递增.22∴h(m)的最小值为h(1)=0.综上所述,当m=1,n=-1时,m+n的最小值为0.突破3导数在不等式中的应用1.解(2)由已知得a≥xlnx+x+1x2+1,设h(x)=xlnx+x+1x2+1,则h'(x)=(1-x)(xlnx+lnx+2)(x2+1)2.∵y=x ln x+ln x+2是增函数,且x≥1,∴y≥-1-1+2>0,∴当x∈1e,1时,h'(x)>0;当x∈(1,+∞)时,h'(x)<0,∴h(x)在x=1处取得最大值,h(1)=1,∴a≥1.故a的取值范围为[1,+∞).2.(1)解f(x)的定义域为(0,+∞),f'(x)=a e x-1x.由题设知,f'(2)=0,所以a=12e2.从而f(x)=12e2e x-ln x-1,f'(x)=12e2e x-1x.当0<x<2时,f'(x)<0;当x>2时,f'(x)>0.所以f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.(2)证明当a≥1e 时,f(x)≥e xe-ln x-1.设g(x)=e xe-ln x-1,2324则g'(x )=e x−1.当0<x<1时,g'(x )<0;当x>1时,g'(x )>0. 所以x=1是g (x )的最小值点. 故当x>0时,g (x )≥g (1)=0. 因此,当a ≥1时,f (x )≥0.3.解 (2)由题意,当x>0时,e x-x 2-ax ≥1-x ,即a ≤e x x -x-1x +1.令h (x )=e xx -x-1x +1(x>0), 则h'(x )=e x (x -1)-x 2+1x 2=(x -1)(e x -x -1)x 2. 令φ(x )=e x -x-1(x>0),则φ'(x )=e x -1>0. 当x ∈(0,+∞)时,φ(x )单调递增,φ(x )>φ(0)=0. 故当x ∈(0,1)时,h'(x )<0,h (x )单调递减; 当x ∈(1,+∞)时,h'(x )>0,h (x )单调递增. 所以h (x )min =h (1)=e -1,所以a ≤e -1. 故a 的取值范围为(-∞,e -1].4.解 (2)f'(x )=e x-1+1x -a (x ≥1),令g (x )=f'(x ),g'(x )=e x-1-1x 2, 令φ(x )=g'(x ),φ'(x )=e x-1+2x 3>0,∴g'(x )在[1,+∞)上单调递增,g'(x )≥g'(1)=0. ∴f'(x )在[1,+∞]上单调递增,f'(x )≥f'(1)=2-a.当a≤2时,f'(x)≥0,f(x)在[1,+∞)上单调递增,f(x)≥f(1)=1,满足条件; 当a>2时,f'(1)=2-a<0.又f'(ln a+1)=e ln a-a+1lna+1=1lna+1>0,∴∃x0∈(1,ln a+1),使得f'(x)=0,此时,当x∈(1,x0)时,f'(x)<0;当x∈(x0,ln a+1)时,f'(x)>0,∴f(x)在(1,x0)上单调递减,当x∈(1,x0)时,都有f(x)<f(1)=1,不符合题意.综上所述,实数a的取值范围为(-∞,2].5.(1)解当m=1时,f(x)=x+1-e x,f'(x)=1-e x,令f'(x)=0,则x=0.当x<0时,f'(x)>0;当x>0时,f'(x)<0.∴函数f(x)的单调递增区间是(-∞,0),单调递减区间是(0,+∞).(2)证明由(1)知,当m=1时,f(x)max=f(0)=0,∴当x∈(0,+∞)时,x+1-e x<0,即e x>x+1,当x∈(0,+∞)时,要证ln e x-1x>x2,只需证e x-1>x e x 2,令F(x)=e x-1-x e x 2=e x-x(√e)x-1,F'(x)=e x-(√e)x−12x(√e)x=(√e)x(√e)x-1-x2=e x2ex2-1-x2,由e x>x+1可得,e x2>1+x2,25故当x∈(0,+∞)时,F'(x)>0恒成立,即F(x)在(0,+∞)上单调递增,∴F(x)>F(0)=0,即e x-1>x e x2,∴lne x-1x>x2.6.解(2)由题意,当a=1时,f(x)+bx-b+1xe x -x≥0在x ∈(1,+∞)时恒成立, 整理得ln x-b(x-1)e x≤0在(1,+∞)上恒成立.令h(x)=ln x-b(x-1)e x,易知,当b≤0时,h(x)>0,不合题意,∴b>0.又h'(x)=1-bx e x,h'(1)=1-b e.①当b≥1时,h'(1)=1-b e≤0.又h'(x)=1-bx e x在[1,+∞)上单调递减.∴h'(x)≤h'(1)≤0在[1,+∞)上恒成立,则h(x)在[1,+∞)上单调递减.所以h(x)≤h(1)=0,符合题意.②当0<b<1e 时,h'(1)=1-b e>0,h'(1b)=b-e1b<01b>1.又h'(x)=1x-bx e x在[1,+∞)上单调递减,∴存在唯一x0∈(1,+∞),使得h'(x0)=0.∴h(x)在(1,x0)上单调递增,在(x0,+∞)上单调递减.又h(x)在x=1处连续,h(1)=0,∴h(x)>0在(1,x0)上恒成立,不合题意.综上所述,实数b的取值范围为1e,+∞.7.(1)证明f'(x)=m(e mx-1)+2x.若m≥0,则当x∈(-∞,0)时,e mx-1≤0,2627f'(x )≤0;当x ∈(0,+∞)时,e mx -1≥0, f'(x )≥0.若m<0,则当x ∈(-∞,0)时,e mx -1>0,f'(x )<0;当x ∈(0,+∞)时,e mx -1<0,f'(x )>0. 所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)解 由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x=0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是{f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即{e m -m ≤e -1,e -m +m ≤e -1.设函数g (t )=e t -t-e +1,则g'(t )=e t -1.当t<0时,g'(t )<0;当t>0时,g'(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0, g (-m )≤0,即{e m -m ≤e -1,e -m +m ≤e -1.当m>1时,由g (t )的单调性知,g (m )>0,即e m -m>e -1. 当m<-1时,g (-m )>0, 即e -m +m>e -1.综上,m 的取值范围是[-1,1].8.(1)解 由题意得f'(x )=e x +1x+1-a ,x>-1,令g (x )=e x +1x+1-a ,x>-1,则 g'(x )=e x -1(x+1)2,28令h (x )=e x -1(x+1)2,x>-1,则h'(x )=e x +2(x+1)3>0,∴h (x )在(-1,+∞)上单调递增,且h (0)=0. 当x ∈(-1,0)时,g'(x )=h (x )<0,g (x )单调递减, 当x ∈(0,+∞)时,g'(x )=h (x )>0,g (x )单调递增.∴g (x )≥g (0)=2-a.①当a ≤2时,f'(x )=g (x )>g (0)=2-a ≥0. f (x )在(-1,+∞)上单调递增,此时无极值;②当a>2时,∵g1a-1=e 1a -1>0,g (0)=2-a<0,∴∃x 1∈1a-1,0,g (x 1)=0,当x ∈(-1,x 1)时, f'(x )=g (x )>0,f (x )单调递增;当x ∈(x 1,0)时,f'(x )=g (x )<0,f (x )单调递减,∴x=x 1是f (x )的极大值点.∵g (ln a )=11+lna >0,g (0)=2-a<0, ∴∃x 2∈(0,ln a ),g (x 2)=0,当x ∈(0,x 2)时,f'(x )=g (x )<0,f (x )单调递减;当x ∈(x 2,+∞)时,f'(x )=g (x )>0,f (x )单调递增,∴x=x 2是f (x )的极小值点. 综上所述,a 的取值范围为(2,+∞).(2)证明 由(1)得a ∈(2,+∞),1a -1<x 1<0<x 2<ln a ,且g (x 1)=g (x 2)=0,∴x 2-x 1>0,1a <x 1+1<1,1<x2+1<1+ln a,e x2−e x1=x2-x1(x1+1)(x2+1),∴1(x1+1)(x2+1)-a<0,1<x2+1x1+1<a(1+ln a)<a2,∴f(x2)-f(x1)=e x2−e x1+ln x2+1x1+1-a(x2-x1)=(x2-x1)1(x1+1)(x2+1)-a +ln x2+1x1+1<ln a2=2ln a.突破4导数与函数的零点1.(2)证明由于x2+x+1>0,所以f(x)=0等价于x 3x2+x+1-3a=0.设g(x)=x3x2+x+1-3a,则g'(x)=x2(x2+2x+3)(x2+x+1)2≥0,仅当x=0时g'(x)=0,所以g(x)在(-∞,+∞)单调递增,故g(x)至多有一个零点,从而f(x)至多有一个零点.又f(3a-1)=-6a2+2a-13=-6(a-16)2−16<0,f(3a+1)=13>0,故f(x)有一个零点.综上,f(x)只有一个零点.2.解(1)f(x)=x ln x-x2+x+1(x>0),g(x)=f'(x)=ln x-2x+2,g'(x)=1-2=1-2x,当x∈0,12时,g'(x)>0,g(x)单调递增;当x∈12,+∞时,g'(x)<0,g(x)单调递减.又g(1)=f'(1)=0,则当x∈12,1时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.故当x=1时,f(x)取得极大值f(1)=1.2930(2)g (x )=f'(x )=ln x+1-2ax+a ,g'(x )=1x -2a=1-2axx ,①若a ≤0,则g'(x )>0,g (x )单调递增,至多有一个零点,不合题意. ②若a>0,则当x ∈0,12a 时, g'(x )>0,g (x )单调递增;当x ∈12a ,+∞时,g'(x )<0,g (x )单调递减. 则g 12a ≥g 12=ln 12+1=ln e2>0.不妨设g (x 1)=g (x 2),x 1<x 2,则0<x 1<1<x 2<1.一方面,需要g (1)<0,得a>1.另一方面,由(1)得,当x>1时,ln x<x-1<x ,则x<e x , 进而,有2a<e 2a ,则e -2a <1,且g (e -2a )=-2a e -2a +1-a<0, 故存在x 1,使得0<e -2a <x 1<12a .综上,a 的取值范围是(1,+∞). 3.解 (2)由f (1)=1得b=e -1-a , 由f (x )=1得e x =ax 2+bx+1,设g (x )=e x -ax 2-bx-1,则g (x )在(0,1)内有零点,设x 0为g (x )在(0,1)内的一个零点, 由g (0)=g (1)=0知g (x )在(0,x 0)和(x 0,1)上不单调.设h (x )=g'(x ),则h (x )在(0,x 0)和(x 0,1)上均存在零点,即h (x )在(0,1)上至少有两个零点. g'(x )=e x -2ax-b ,h'(x )=e x -2a ,当a ≤12时,h'(x )>0,h (x )在(0,1)上单调递增,h (x )不可能有两个及以上零点,31当a ≥e2时,h'(x )<0,h (x )在(0,1)上单调递减,h (x )不可能有两个及以上零点, 当12<a<e2时,令h'(x )=0得x=ln(2a )∈(0,1),∴h (x )在(0,ln(2a ))上单调递减,在(ln(2a ),1)上单调递增,h (x )在(0,1)上存在最小值h (ln(2a )), 若h (x )有两个零点,则有h (ln(2a ))<0,h (0)>0,h (1)>0, h (ln(2a ))=3a-2a ln(2a )+1-e 12<a<e2,设φ(x )=32x-x ln x+1-e(1<x<e),则φ'(x )=12-ln x ,令φ'(x )=0,得x=√e , 当1<x<√e 时,φ'(x )>0,φ(x )单调递增;当√e <x<e 时,φ'(x )<0,φ(x )单调递减.∴φmax (x )=φ(√e )=√e +1-e <0, ∴h (ln(2a ))<0恒成立.由h (0)=1-b=a-e +2>0,h (1)=e -2a-b>0,得e -2<a<1.综上,a 的取值范围为(e -2,1). 4.(1)解 f (x )=ax-ln x 的定义域为(0,+∞),所以f'(x )=a-1x =ax -1x .①当a ≤0时,f'(x )<0,所以f (x )在(0,+∞)上为减函数.②当a>0时,由f'(x )>0,得x>1a ,所以f (x )在0,1a 上为减函数,在1a ,+∞上为增函数.(2)证明 解法1:要证f'(x 1)+f'(x 2)<0,即证2a-1x 1−1x 2<0,即2a<1x 1+1x 2.由f (x 1)=f (x 2)得a=ln x 1-ln x2x 12,所以只要证2ln x 1-ln x 2x 12<1x 1+1x 2.不妨设x 1>x 2>0,则只要证2ln x1x 2<(x 1-x 2)1x 1+1x 2⇔2ln x1x 2<x1x 2−x2x 1.令x 1x 2=t>1,则只要证明当t>1时,2ln t<t-1t 成立.32设g (t )=2ln t-t-1t(t>1),则g'(t )=2t -1-1t 2=-(t -1)2t2<0,所以函数g (t )在(1,+∞)上单调递减,所以g (t )<g (1)=0,即2ln t<t-1t 成立. 由上分析可知,f'(x 1)+f'(x 2)<0成立.解法2:要证f'(x 1)+f'(x 2)<0,即证2a-1x 1−1x 2<0,即2a<1x 1+1x 2. 令t 1=1x 1,t 2=1x 2,下证t 1+t 2>2a.由f (x 1)=f (x 2),得ax 1-ln x 1=ax 2-ln x 2,即at 1+ln t 1=at 2+ln t 2.令g (t )=a t +ln t ,g (t 1)=g (t 2),g'(t )=-a t 2+1t =t -at2.由g'(t )>0⇒t>a ,g'(t )<0⇒a>t>0,则g (t )在(0,a )上为减函数,在(a ,+∞)上为增函数. 设t 1∈(0,a ),t 2∈(a ,+∞),令h (t )=g (t )-g (2a-t )=at +ln t-a2a -t -ln(2a-t ). h'(t )=t -a t 2+a -t(2a -t )2 =4a (t -a )(a -t )t 2(2a -t )2,t 1∈(0,a ),h'(t 1)<0.所以h (t )在(0,a )上为减函数,h (t 1)>h (a )=0,即g (t 1)>g (2a-t 1),g (t 2)>g (2a-t 1). 又因为g (t )在(a ,+∞)上为增函数,所以t 2>2a-t 1,即t 1+t 2>2a. 故f'(x 1)+f'(x 2)<0.5.解 (2)当x>1时,方程f (x )=a (x-1)+1x ,即ln x-a (x 2-x )=0,33令h (x )=ln x-a (x 2-x ),有h (1)=0,h'(x )=-2ax 2+ax+1x,令r (x )=-2ax 2+ax+1,x ∈(1,+∞),因为a>0,所以r (x )在(1,+∞)上单调递减,①当r (1)=1-a ≤0即a ≥1时,r (x )<0,即h (x )在(1,+∞)上单调递减,所以h (x )<h (1)=0, 方程f (x )=a (x-1)+1x 无实根.②当r (1)>0即0<a<1时,存在x 0∈(1,+∞),使得x ∈(1,x 0)时,r (x )>0,即h (x )单调递增;x ∈(x 0,+∞)时,r (x )<0,即h (x )单调递减;因此h (x )max =h (x 0)>h (1)=0, 取x=1+1a ,则h 1+1a =ln 1+1a -a (1+1a )2+a 1+1a =ln 1+1a -1+1a , 令t=1+1a (t>1),h (t )=ln t-t ,则h'(t )=1t -1,t>1,所以h'(t )<0,即h (t )在t>1时单调递减,所以h (t )<h (1)=0.故存在x 1∈x 0,1+1a ,使得h (x 1)=0. 综上,a 的取值范围为0<a<1. 6.解 (1)f (x )定义域为(0,+∞),当a=e 时,f'(x )=(1+x )(xe x -e )x.∴0<x<1时,f'(x )<0,x>1时,f'(x )>0.∴f (x )在(0,1)上为减函数;在(1,+∞)上为增函数.(2)记t=ln x+x ,则t=ln x+x 在(0,+∞)上单调递增,且t ∈R .∴f (x )=x e x -a (ln x+x )=e t -at=g (t ).∴f (x )在(0,+∞)上有两个零点等价于g (t )=e t -at 在t ∈R 上有两个零点. ①当a=0时,g (t )=e t 在R 上单调增,且g (t )>0,故g (t )无零点; ②当a<0时,g'(t )=e t -a>0恒成立,∴g (t )在R 上单调递增. 又g (0)=1>0,g1a=e 1a -1<0,故g (t )在R 上只有一个零点;③当a>0时,由g'(t)=e t-a=0可知g(t)在t=ln a时有唯一的极小值g(ln a)=a(1-ln a),若0<a<e,g(t)极小值=a(1-ln a)>0,g(t)无零点;若a=e,g(t)极小值=0,g(t)只有一个零点;若a>e时,g(t)极小值=a(1-ln a)<0,而g(0)=1>0,由于y=lnxx在(e,+∞)上为减函数,可知当a>e时,e a>a a>a2,从而g(a)=e a-a2>0.∴g(t)在(0,ln a)和(ln a,+∞)上各有一个零点.综上可知,当a>e时f(x)有两个零点,即所求a的取值范围是(e,+∞).7.(1)解f'(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).①设a=0,则f(x)=(x-2)e x,f(x)只有一个零点.②设a>0,则当x∈(-∞,1)时,f'(x)<0;当x∈(1,+∞)时,f'(x)>0,所以f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f(1)=-e,f(2)=a,取b满足b<0且b<ln a ,则f(b)>a2(b-2)+a(b-1)2=a(b2-32b)>0,故f(x)存在两个零点.③设a<0,由f'(x)=0得x=1或x=ln(-2a).若a≥-e2,则ln(-2a)≤1,故当x∈(1,+∞)时,f'(x)>0,因此f(x)在(1,+∞)上单调递增.34又当x≤1时,f(x)<0,所以f(x)不存在两个零点.若a<-e2,则ln(-2a)>1,故当x∈(1,ln(-2a))时,f'(x)<0;当x∈(ln(-2a),+∞)时,f'(x)>0.因此f(x)在(1,ln(-2a))上单调递减,在(ln(-2a),+∞)上单调递增.又当x≤1时f(x)<0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(2)证明不妨设x1<x2,由(1)知,x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),f(x)在(-∞,1)上单调递减, 所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)e x2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)e x2.设g(x)=-x e2-x-(x-2)e x,则g'(x)=(x-1)(e2-x-e x).所以当x>1时,g'(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.8.(1)解由已知,f(x)的定义域为(0,+∞),且f'(x)=1x -[a e x+a(x-1)e x]=1-ax2e xx.3536因此当a ≤0时,1-ax 2e x >0,从而f'(x )>0, 所以f (x )在(0,+∞)内单调递增. (2)证明 ①由(1)知,f'(x )=1-ax 2e xx.令g (x )=1-ax 2e x ,由0<a<1e,可知g (x )在(0,+∞)内单调递减,又g (1)=1-a e >0,且g ln 1a =1-a ln 1a 21a =1-ln 1a 2<0,故g (x )=0在(0,+∞)内有唯一解,从而f'(x )=0在(0,+∞)内有唯一解,不妨设为x 0,则1<x 0<ln1a. 当x ∈(0,x 0)时,f'(x )=g (x )x >g (x 0)x=0, 所以f (x )在(0,x 0)内单调递增; 当x ∈(x 0,+∞)时,f'(x )=g (x )x <g (x 0)x=0,所以f (x )在(x 0,+∞)内单调递减,因此x 0是f (x )的唯一极值点.令h (x )=ln x-x+1,则当x>1时,h'(x )=1x -1<0,故h (x )在(1,+∞)内单调递减,从而当x>1时,h (x )<h (1)=0,所以ln x<x-1. 从而fln 1a=lnln 1a-aln 1a -1eln1a =lnln 1a -ln 1a +1=h ln 1a <0,又因为f (x 0)>f (1)=0,所以f (x )在(x 0,+∞)内有唯一零点.又f (x )在(0,x 0)内有唯一零点1,从而,f (x )在(0,+∞)内恰有两个零点.②由题意,{f '(x 0)=0,f (x 1)=0,即{ax 02e x 0=1,ln x 1=a (x 1-1)e x 1,从而ln x 1=x 1-1x 02e x 1-x 0,即e x 1-x 0=x 02ln x 1x 1-1.因为当x>1时,ln x<x-1,又x 1>x 0>1,故ex 1-x 0<x 02(x 1-1)1=x 02,两边取对数,得ln e x 1-x 0<ln x 02,于是x 1-x 0<2ln x 0<2(x 0-1),整理得3x 0-x 1>2.。
高考数学专题突破教师版-导数的综合应用(考点讲析)
【解析】
(I) f (x) 的定义域为 (0, ) .当 a 4 时,
f (x) (x 1) ln x 4(x 1), f (x) ln x 1 3 , f (1) 2, f (1) 0. x
曲线 y f (x) 在 (1, f (1)) 处的切线方程为 2x y 2 0.
(II)当 x (1, ) 时, f (x) 0 等价于 ln x a(x 1) 0. x 1
数图象的交点横坐标.
【典例 1】(2019·全国高考真题(理))已知函数 f (x) sin x ln(1 x) , f (x) 为 f (x) 的导数.证明:
(1) f (x) 在区间 (1, ) 存在唯一极大值点; 2
(2) f (x) 有且仅有 2 个零点.
【答案】(1)见解析;(2)见解析
,
4
因为当 x
1 时, ln x
x 1,又 x1
x0
1,故 ex1x0
x02 (x1 1) x1 1
x02 ,
两边取对数,得 ln ex1x0 ln x02 ,
于是 x1 x0 2 ln x0 2(x0 1) ,整理得 3x0 x1 2 ,
【总结提升】 利用导数研究函数零点或方程根的方法 (1)通过最值(极值)判断零点个数的方法. 借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个 数或者通过零点个数求参数范围. (2)数形结合法求解零点. 对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形 结合确定其中参数的范围. (3)构造函数法研究函数零点. ①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定 区间的极值以及区间端点的函数值与 0 的关系,从而求解. ②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与 化归的思想方法.
高考大题专项(一) 导数的综合应用
高考大题专项(一) 导数的综合应用突破1 利用导数研究与不等式有关的问题1.(2020全国1,理21)已知函数f (x )=e x +ax 2-x. (1)当a=1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.2.(2020山东潍坊二模,20)已知函数f (x )=1x +a ln x ,g (x )=e x x .(1)讨论函数f (x )的单调性; (2)证明:当a=1时,f (x )+g (x )-(1+ex 2)ln x>e .3.已知函数f (x )=ln x+a x(a ∈R )的图象在点1e ,f (1e)处的切线斜率为-e,其中e 为自然对数的底数.(1)求实数a 的值,并求f (x )的单调区间; (2)证明:xf (x )>x ex .4.(2020广东湛江一模,文21)已知函数f (x )=ln ax-bx+1,g (x )=ax-ln x ,a>1. (1)求函数f (x )的极值;(2)直线y=2x+1为函数f (x )图象的一条切线,若对任意的x 1∈(0,1),x 2∈[1,2]都有g (x 1)>f'(x 2)成立,求实数a 的取值范围.5.(2020山东济宁5月模拟,21)已知两个函数f(x)=e xx ,g(x)=lnxx+1x-1.(1)当t>0时,求f(x)在区间[t,t+1]上的最大值;(2)求证:对任意x∈(0,+∞),不等式f(x)>g(x)都成立.6.(2020湖北武汉二月调考,理21)已知函数f(x)=(x-1)e x-kx2+2.(1)略;(2)若∀x∈[0,+∞),都有f(x)≥1成立,求实数k的取值范围.7.(2020山东济南一模,22)已知函数f(x)=a(e x-x-1)x2,且曲线y=f(x)在(2,f(2))处的切线斜率为1.(1)求实数a的值;(2)证明:当x>0时,f(x)>1;(3)若数列{x n}满足e x n+1=f(x n),且x1=13,证明:2n|e x n-1|<1.8.(2020湖南长郡中学四模,理21)已知函数f(x)=x ln x.(1)若函数g(x)=f'(x)+ax2-(a+2)x(a>0),试研究函数g(x)的极值情况;(2)记函数F(x)=f(x)-xe x 在区间(1,2)上的零点为x0,记m(x)=min f(x),xe x,若m(x)=n(n∈R)在区间(1,+∞)上有两个不等实数解x1,x2(x1<x2),证明:x1+x2>2x0.突破2 利用导数研究与函数零点有关的问题1.(2020山东烟台一模,21)已知函数f (x )=1+lnxx -a (a ∈R ).(1)若f (x )≤0在(0,+∞)上恒成立,求a 的取值范围,并证明:对任意的n ∈N *,都有1+12+13+ (1)>ln(n+1); (2)设g (x )=(x-1)2e x ,讨论方程f (x )=g (x )的实数根的个数.2.(2020北京通州区一模,19)已知函数f (x )=x e x ,g (x )=a (e x -1),a ∈R . (1)当a=1时,求证:f (x )≥g (x );(2)当a>1时,求关于x 的方程f (x )=g (x )的实数根的个数.3.(2020湖南长郡中学四模,文21)已知函数f(x)=2a e2x+2(a+1)e x.(1)略;(2)当a∈(0,+∞)时,函数f(x)的图象与函数y=4e x+x的图象有唯一的交点,求a的取值集合.4.(2020天津和平区一模,20)已知函数f(x)=ax+be x,a,b∈R,且a>0.x,求函数f(x)的解析式;(1)若函数f(x)在x=-1处取得极值1e(2)在(1)的条件下,求函数f(x)的单调区间;的取值范(3)设g(x)=a(x-1)e x-f(x),g'(x)为g(x)的导函数,若存在x0∈(1,+∞),使g(x0)+g'(x0)=0成立,求ba围.x3+2(1-a)x2-8x+8a+7.5.已知函数f(x)=ln x,g(x)=2a3(1)若曲线y=g(x)在点(2,g(2))处的切线方程是y=ax-1,求函数g(x)在[0,3]上的值域;(2)当x>0时,记函数h(x)={f(x),f(x)<g(x),g(x),f(x)≥g(x),若函数y=h(x)有三个零点,求实数a的取值集合.参考答案高考大题专项(一)导数的综合应用突破1利用导数研究与不等式有关的问题1.解(1)当a=1时,f(x)=e x+x2-x,f'(x)=e x+2x-1.故当x∈(-∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)f(x)≥12x3+1等价于12x3-ax2+x+1e-x≤1.设函数g(x)=(12x3-ax2+x+1)e-x(x≥0),则g'(x)=-12x3-ax2+x+1-32x2+2ax-1e-x=-12x[x2-(2a+3)x+4a+2]e-x=-12x(x-2a-1)(x-2)e-x.①若2a+1≤0,即a≤-12,则当x∈(0,2)时,g'(x)>0.所以g(x)在(0,2)上单调递增,而g(0)=1,故当x∈(0,2)时,g(x)>1,不合题意.②若0<2a+1<2,即-12<a<12,则当x ∈(0,2a+1)∪(2,+∞)时,g'(x )<0;当x ∈(2a+1,2)时,g'(x )>0.所以g (x )在(0,2a+1),(2,+∞)上单调递减,在(2a+1,2)上单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7-4a )e -2≤1,即a ≥7-e 24.所以当7-e 24≤a<12时,g (x )≤1.③若2a+1≥2,即a ≥12,则g (x )≤12x 3+x+1e -x .由于0∈7-e 24,12,故由②可得(12x 3+x +1)e -x ≤1.故当a ≥12时,g (x )≤1.综上,a 的取值范围是[7-e 24,+∞).2.(1)解 函数的定义域为(0,+∞),f'(x )=-1x 2+ax =ax -1x 2,当a ≤0时,f'(x )<0,所以f (x )在(0,+∞)上单调递减; 当a>0时,由f'(x )>0,得x>1a ,由f'(x )<0,得0<x<1a , 所以f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增, 综上可知:当a ≤0时,f (x )在(0,+∞)上单调递减;当a>0时,f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增. (2)证明 因为x>0,所以不等式等价于e x -e x+1>elnxx ,设F (x )=e x -e x+1,F'(x )=e x -e,所以当x ∈(1,+∞)时,F'(x )>0,F (x )单调递增;当x ∈(0,1)时,F'(x )<0,F (x )单调递减,所以F (x )min =F (1)=1.设G (x )=elnxx ,G'(x )=e (1-lnx )x 2, 所以当x ∈(0,e)时,G'(x )>0,G (x )单调递增,当x ∈(e,+∞)时,G'(x )<0,G (x )单调递减,所以G (x )max =G (e)=1.虽然F (x )的最小值等于G (x )的最大值,但1≠e,所以F (x )>G (x ),即e x -e x+1>elnxx ,故原不等式成立.3.(1)解因为函数f(x)的定义域为(0,+∞),f'(x)=1x −ax2,所以f'(1e)=e-a e2=-e,所以a=2e,所以f'(x)=1x−2ex2.令f'(x)=0,得x=2e,当x∈(0,2e)时,f'(x)<0,当x∈(2e,+∞)时,f'(x)>0,所以f(x)在(0,2e)上单调递减,在(2e,+∞)上单调递增.(2)证明设h(x)=xf(x)=x ln x+2e ,由h'(x)=ln x+1=0,得x=1e,所以当x∈(0,1e)时,h'(x)<0;当x∈(1e,+∞)时,h'(x)>0,所以h(x)在(0,1e)上单调递减,在(1e,+∞)上单调递增,所以h(x)min=h(1e )=1e.设t(x)=xe x(x>0),则t'(x)=1-xe x,所以当x∈(0,1)时,t'(x)>0,t(x)单调递增,当x∈(1,+∞)时,t'(x)<0,t(x)单调递减,所以t(x)max=t(1)=1e.综上,在(0,+∞)上恒有h(x)>t(x),即xf(x)>x e x .4.解(1)∵a>1,∴函数f(x)的定义域为(0,+∞).∵f(x)=ln ax-bx+1=ln a+ln x-bx+1,∴f'(x)=1x-b=1-bxx.①当b≤0时,f'(x)>0,f(x)在(0,+∞)上为增函数,无极值;②当b>0时,由f'(x)=0,得x=1b.∵当x∈(0,1b)时,f'(x)>0,f(x)单调递增;当x∈(1b,+∞)时,f'(x)<0,f(x)单调递减,∴f(x)在定义域上有极大值,极大值为f(1b )=ln ab.(2)设直线y=2x+1与函数f(x)图像相切的切点为(x0,y0),则y0=2x0+1.∵f'(x)=1x -b,∴f'(x0)=1x0-b=2,∴x0=1b+2,即bx0=1-2x0.又ln ax 0-bx 0+1=2x 0+1,∴ln ax 0=1,∴ax 0=e . ∴x 0=ea .∴ae =b+2.∵对任意的x 1∈(0,1),x 2∈[1,2]都有g (x 1)>f'(x 2)成立, ∴只需g (x 1)min >f'(x 2)max . ∵g'(x )=a-1x =ax -1x, ∴由g'(x )=0,得x=1a . ∵a>1,∴0<1a <1.∴当x ∈(0,1a )时,g'(x )<0,g (x )单调递减; 当x ∈(1a ,1)时,g'(x )>0,g (x )单调递增.∴g (x )≥g (1a )=1+ln a , 即g (x 1)min =1+ln a.∵f'(x 2)=1x 2-b 在x 2∈[1,2]上单调递减,∴f'(x 2)max =f'(1)=1-b=3-ae .∴1+ln a>3-ae .即lna+a e -2>0.设h (a )=ln a+ae -2,易知h (a )在(1,+∞)上单调递增.又h (e)=0,∴实数a 的取值范围为(e,+∞). 5.(1)解 由f (x )=e x x 得,f'(x )=xe x -e xx 2=e x (x -1)x 2,∴当x<1时,f'(x )<0,当x>1时,f'(x )>0,∴f (x )在区间(-∞,1)上单调递减,在区间(1,+∞)上单调递增.①当t ≥1时,f (x )在区间[t ,t+1]上单调递增,f (x )的最大值为f (t+1)=e t+1t+1.②当0<t<1时,t+1>1,f (x )在区间(t ,1)上单调递减,在区间(1,t+1)上单调递增,∴f (x )的最大值为f (x )max =max{f (t ),f (t+1)}.下面比较f (t )与f (t+1)的大小.f (t )-f (t+1)=e tt−e t+1t+1=[(1-e )t+1]e tt (t+1).∵t>0,1-e <0,∴当0<t ≤1e -1时,f (t )-f (t+1)≥0,故f (x )在区间[t ,t+1]上的最大值为f (t )=e t t ,当1e -1<t<1时,f (t )-f (t+1)<0,f (x )在区间[t ,t+1]上的最大值为f (t+1)=e t+1t+1.综上可知,当0<t ≤1e -1时,f (x )在区间[t ,t+1]上的最大值为f (t )=e t t ,当t>1e -1时,f (x )在区间[t ,t+1]上的最大值为f (t+1)=e t+1t+1. (2)证明 不等式f (x )>g (x )即为e xx>lnx x +1x -1.∵x>0,∴不等式等价于e x >ln x-x+1,令h (x )=e x -(x+1)(x>0),则h'(x )=e x -1>0,∴h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,即e x >x+1,所以,要证e x >ln x-x+1成立,只需证x+1>ln x-x+1成立即可. 即证2x>ln x 在(0,+∞)上成立. 设φ(x )=2x-ln x ,则φ'(x )=2-1x=2x -1x,当0<x<12时,φ'(x )<0,φ(x )单调递减,当x>12时,φ'(x )>0,φ(x )单调递增,∴φ(x )min =φ(12)=1-ln 12=1+ln 2>0,∴φ(x )>0在(0,+∞)上成立,∴对任意x ∈(0,+∞),不等式f (x )>g (x )都成立. 6.解 (1)略(2)f'(x )=x e x -2kx=x (e x -2k ),①当k ≤0时,e x -2k>0,所以,当x<0时,f'(x )<0,当x>0时,f'(x )>0,则f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增, 所以f (x )在区间[0,+∞)上的最小值为f (0),且f (0)=1,符合题意; ②当k>0时,令f'(x )=0,得x=0或x=ln 2k ,所以当0<k ≤12时,ln 2k ≤0,在区间(0,+∞)上f'(x )>0,f (x )单调递增, 所以f (x )在区间[0,+∞)上的最小值为f (0),且f (0)=1,符合题意;当k>12时,ln 2k>0,当x ∈(0,ln 2k )时,f'(x )<0,f (x )在区间(0,ln 2k )上单调递减, 所以f (ln 2k )<f (0)=1,不满足对任意的x ∈[0,+∞),f (x )≥1恒成立, 综上,k 的取值范围是(-∞,12].7.(1)解 f'(x )=a [(x -2)e x +x+2)]x 3,因为f'(2)=a2=1,所以a=2.(2)证明 要证f (x )>1,只需证h (x )=e x -12x 2-x-1>0.h'(x )=e x -x-1,令c (x )=e x -x-1,则c'(x )=e x -1.因为当x>0时,c'(x )>0,所以h'(x )=e x -x-1在(0,+∞)上单调递增,所以h'(x)=e x-x-1>h'(0)=0.所以h(x)=e x-12x2-x-1在(0,+∞)上单调递增,所以h(x)=e x-12x2-x-1>h(0)=0成立.所以当x>0时,f(x)>1.(3)证明(方法1)由(2)知当x>0时,f(x)>1.因为e x n+1=f(x n),所以x n+1=ln f(x n).设g(x n)=ln f(x n),则x n+1=g(x n),所以x n=g(x n-1)=g(g(x n-2))=…=g((…(g(x1))…))>0.要证2n|e x n-1|<1,只需证|e x n-1|<12n.因为x1=13,所以|e x1-1|=e13-1.因为e-323=e-278<0,所以e 13<32,所以|e x1-1|=e 13-1<12.故只需证|e x n+1-1|<12|e x n-1|.因为x n∈(0,+∞),故只需证e x n+1-1<12e x n−12,即证f(x n)-1<12e x n−12.只需证当x∈(0,+∞)时,φ(x)=12x2-2e x+12x2+2x+2>0,φ'(x)=12x2+x-2e x+x+2,令α(x)=12x2+x-2e x+x+2,则α'(x)=12x2+2x-1e x+1,令β(x)=12x2+2x-1e x+1,则β'(x)=12x2+3x+1e x>0,所以β(x)在区间(0,+∞)上单调递增,故β(x)=12x2+2x-1e x+1>β(0)=0.所以α(x)在区间(0,+∞)上单调递增,故α(x)=12x2+x-2e x+x+2>α(0)=0.所以φ(x)在区间(0,+∞)上单调递增,所以φ(x)=12x2-2e x+12x2+2x+2>φ(0)=0,所以原不等式成立.(方法2)由(2)知当x>0时,f(x)>1.因为e x n+1=f(x n),所以x n+1=ln f(x n).设g(x n)=ln f(x n),则x n+1=g(x n),所以x n=g(x n-1)=g(g(x n-2))=…=g((…(g(x1))…))>0.要证2n|e x n-1|<1,只需证|e x n-1|<12n.因为x1=13,所以|e x1-1|=e13-1.因为e-323=e-278<0,所以e 13<32,所以|e x1-1|=e 13-1<12.故只需证|e x n+1-1|<12|e x n-1|.因为x n∈(0,+∞),故只需证e x n+1-1<12e x n−12,即证f(x n)-1<12e x n−12.只需证当x∈(0,+∞)时,φ(x)=12x2-2e x+12x2+2x+2>0.因为φ(x)=12(x2-4)e x+12(x2+4x+4)=12(x+2)[(x-2)e x+(x+2)],设u(x)=(x-2)e x+(x+2),故只需证u(x)>0.u'(x)=(x-1)e x+1,令v(x)=(x-1)e x+1,则v'(x)=x e x>0,所以v(x)在区间(0,+∞)上单调递增,故v(x)=(x-1)e x+1>v(0)=0,所以u(x)在区间(0,+∞)上单调递增,故u(x)=(x-2)e x+(x+2)>u(0)=0,所以原不等式成立.8.(1)解由题意,得f'(x)=ln x+1,故g(x)=ax2-(a+2)x+ln x+1,故g'(x)=2ax-(a+2)+1x=(2x-1)(ax-1)x,x>0,a>0.令g'(x)=0,得x1=12,x2=1a.①当0<a<2时,1a >12,由g'(x)>0,得0<x<12或x>1a;由g'(x)<0,得12<x<1a.所以g(x)在x=12处取极大值g12=-a4-ln 2,在x=1a处取极小值g1a=-1a-ln a.②当a=2时,1a =12,g'(x)≥0恒成立,所以不存在极值.③当a>2时,1a <12,由g'(x)>0,得0<x<1a或x>12;由g'(x)<0,得1a<x<12.所以g(x)在x=1a处取极大值g1a=-1a-ln a,在x=12处取极小值g12=-a4-ln 2.综上,当0<a<2时,g(x)在x=12处取极大值-a4-ln 2,在x=1a处取极小值-1a-ln a;当a=2时,不存在极值;当a>2时,g(x)在x=1a处取极大值-1a-ln a,在x=12处取极小值-a4-ln 2.(2)证明F(x)=x ln x-xe x ,定义域为x∈(0,+∞),F'(x)=1+ln x+x-1e x.当x∈(1,2)时,F'(x)>0,即F(x)在区间(1,2)上单调递增.又因为F(1)=-1e<0,F(2)=2ln 2-2e2>0,且F(x)在区间(1,2)上的图像连续不断,故根据函数零点存在定理,F(x)在区间(1,2)上有且仅有一个零点.所以存在x0∈(1,2),使得F(x0)=f(x0)-x0e x0=0.且当1<x<x0时,f(x)<xe x;当x>x0时,f(x)>xe x.所以m(x)=min f(x),xe x={xlnx,1<x<x0,xe x,x>x0.当1<x<x0时,m(x)=x ln x,由m'(x)=1+ln x>0,得m(x)单调递增;当x>x 0时,m (x )=x e x ,由m'(x )=1-xe x <0,得m (x )单调递减. 若m (x )=n 在区间(1,+∞)上有两个不等实数解x 1,x 2(x 1<x 2), 则x 1∈(1,x 0),x 2∈(x 0,+∞).要证x 1+x 2>2x 0,即证x 2>2x 0-x 1.又因为2x 0-x 1>x 0,而m (x )在区间(x 0,+∞)上单调递减, 所以可证m (x 2)<m (2x 0-x 1).由m (x 1)=m (x 2),即证m (x 1)<m (2x 0-x 1),即x 1ln x 1<2x 0-x 1e 2x 0-x 1. 记h (x )=x ln x-2x 0-xe 2x 0-x,1<x<x 0, 其中h (x 0)=0. 记φ(t )=t e t ,则φ'(t )=1-te t . 当t ∈(0,1)时,φ'(t )>0; 当t ∈(1,+∞)时,φ'(t )<0. 故φ(t )max =1e .而φ(t )>0,故0<φ(t )<1e . 因为2x 0-x>1, 所以-1e <-2x 0-xe 2x 0-x<0. 因此h'(x )=1+ln x+1e2x 0-x −2x 0-x e 2x 0-x>1-1e >0,即h (x )单调递增,故当1<x<x 0时,h (x )<h (x 0)=0, 即x 1ln x 1<2x 0-x 1e 2x 0-x 1, 故x 1+x 2>2x 0,得证.突破2 利用导数研究 与函数零点有关的问题1.(1)证明 由f (x )≤0可得,a ≥1+lnxx(x>0),令h (x )=1+lnx x ,则h'(x )=1x ·x -(1+lnx )x 2=-lnxx 2. 当x ∈(0,1)时,h'(x )>0,h (x )单调递增;当x ∈(1,+∞)时,h'(x )<0,h (x )单调递减,故h (x )在x=1处取得最大值,要使a ≥1+lnxx,只需a ≥h (1)=1,故a 的取值范围为[1,+∞). 显然,当a=1时,有1+lnxx≤1,即不等式ln x<x-1在(1,+∞)上成立,令x=n+1n >1(n ∈N *),则有ln n+1n <n+1n -1=1n ,所以ln 21+ln 32+…+ln n+1n <1+12+13+…+1n , 即1+12+13+…+1n >ln(n+1).(2)解 由f (x )=g (x ),可得1+lnxx -a=(x-1)2e x ,即a=1+lnxx -(x-1)2e x ,令t (x )=1+lnxx -(x-1)2e x , 则t'(x )=-lnx x 2-(x 2-1)e x ,当x ∈(0,1)时,t'(x )>0,t (x )单调递增;当x ∈(1,+∞)时,t'(x )<0,t (x )单调递减,故t (x )在x=1处取得最大值t (1)=1,又当x →0时,t (x )→-∞,当x →+∞时,t (x )→-∞,所以,当a=1时,方程f (x )=g (x )有一个实数根;当a<1时,方程f (x )=g (x )有两个不同的实数根; 当a>1时,方程f (x )=g (x )没有实数根. 2.(1)证明 设函数F (x )=f (x )-g (x )=x e x -a e x +a.当a=1时,F (x )=x e x -e x +1,所以F'(x )=x e x . 所以当x ∈(-∞,0)时,F'(x )<0; 当x ∈(0,+∞)时,F'(x )>0.所以F (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 所以当x=0时,F (x )取得最小值F (0)=0. 所以F (x )≥0,即f (x )≥g (x ).(2)解 设函数F (x )=f (x )-g (x )=x e x -a e x +a.当a>1时,F'(x )=(x-a+1)e x ,令F'(x )>0,即(x-a+1)e x >0,解得x>a-1; 令F'(x )<0,即(x-a+1)e x <0,解得x<a-1.所以F (x )在(-∞,a-1)上单调递减,在(a-1,+∞)上单调递增.所以当x=a-1时,F (x )取得最小值,即F (a-1)=a-e a-1. 令h (a )=a-e a-1,则h'(a )=1-e a-1.因为a>1,所以h'(a )<0.所以h (a )在(1,+∞)上单调递减. 所以h (a )<h (1)=0,所以F (a-1)<0.又因为F (a )=a>0,所以F (x )在区间(a-1,a )上存在一个零点. 所以在[a-1,+∞)上存在唯一的零点.又因为F (x )在区间(-∞,a-1)上单调递减,且F (0)=0, 所以F (x )在区间(-∞,a-1)上存在唯一的零点0.所以函数F (x )有且仅有两个零点,即方程f (x )=g (x )有两个实数根.3.解 (1)略.(2)设t=e x ,则f (t )=2at 2+2(a+1)t 的图像与y=4t+ln t 的图像只有一个交点,其中t>0,则2at 2+2(a+1)t=4t+ln t 只有一个实数解,即2a=2t+lntt 2+t只有一个实数解. 设g (t )=2t+lnt t 2+t,则g'(t )=-2t 2+t -2tlnt+1-lnt(t 2+t )2,g'(1)=0.令h (t )=-2t 2+t-2t ln t+1-ln t , 则h'(t )=-4t-1φ-2ln t-1.设y=1t +2ln t ,令y'=-1t 2+2t =2t -1t 2=0,解得t=12,则y ,y'随t 的变化如表所示0,1212,+∞y' - 0+则当t=12时,y=1t +2ln t 取最小值为2-2ln 2=2×(1-ln 2)>0. 所以-1t -2ln t<0, 即h'(t )=-4t-1t -2ln t-1<0.所以h (t )在(0,+∞)上单调递减. 因此g'(t )=0只有一个根,即t=1. 当t ∈(0,1)时,g'(t )>0,g (t )单调递增; 当t ∈(1,+∞)时,g'(t )<0,g (t )单调递减. 所以,当t=1时,g (t )有最大值为g (1)=1.由题意知,y=2a 与g (t )图像只有一个交点,而a ∈(0,+∞), 所以2a=1,即a=12,所以a 的取值集合为12.4.解 (1)函数f (x )的定义域为(-∞,0)∪(0,+∞).f'(x )=ax 2+bx -b x 2e x,由题知{f '(-1)=0,f (-1)=1e ,即{(a -2b )e -1=0,(-a+b )-1e -1=1e ,解得{a =2,b =1,所以函数f (x )=2x+1x e x (x ≠0). (2)f'(x )=2x 2+x -1x 2e x =(x+1)(2x -1)x 2e x. 令f'(x )>0得x<-1或x>12, 令f'(x )<0得-1<x<0或0<x<12.所以函数f (x )的单调递增区间是(-∞,-1),12,+∞, 单调递减区间是(-1,0),0,12.(3)根据题意易得g (x )=ax-b x -2a e x (a>0), 所以g'(x )=bx 2+ax-bx -a e x .由g (x )+g'(x )=0,得ax-bx -2a e x +bx 2+ax-bx -a e x =0.整理,得2ax 3-3ax 2-2bx+b=0.存在x 0∈(1,+∞),使g (x 0)+g'(x 0)=0成立,等价于存在x 0∈(1,+∞),使2a x 03-3a x 02-2bx 0+b=0成立.设u (x )=2ax 3-3ax 2-2bx+b (x>1),则u'(x )=6ax 2-6ax-2b=6ax (x-1)-2b>-2b. 当b ≤0时,u'(x )>0,此时u (x )在(1,+∞)上单调递增, 因此u (x )>u (1)=-a-b.因为存在x 0∈(1,+∞),使2a x 03-3a x 02-2bx 0+b=0成立, 所以只要-a-b<0即可,此时-1<ba ≤0. 当b>0时,令u (x )=b , 解得x 1=3a+√9a 2+16ab4a>3a+√9a 24a=32>1,x 2=3a -√9a 2+16ab 4a(舍去),x 3=0(舍去),得u (x 1)=b>0.又因为u (1)=-a-b<0,于是u (x )在(1,x 1)上必有零点,即存在x 0>1,使2a x 03-3a x 02-2bx 0+b=0成立,此时ba >0.综上,ba 的取值范围为(-1,+∞). 5.解 (1)因为g (x )=2a3x 3+2(1-a )x 2-8x+8a+7,所以g'(x )=2ax 2+4(1-a )x-8,所以g'(2)=0. 所以a=0,即g (x )=2x 2-8x+7. g (0)=7,g (3)=1,g (2)=-1.所以g (x )在[0,3]上的值域为[-1,7].(2)①当a=0时,g (x )=2x 2-8x+7,由g (x )=0,得x=2±√22∈(1,+∞),此时函数y=h (x )有三个零点,符合题意.②当a>0时,g'(x )=2ax 2+4(1-a )x-8=2a (x-2)x+2a . 由g'(x )=0,得x=2. 当x ∈(0,2)时,g'(x )<0; 当x ∈(2,+∞)时,g'(x )>0.若函数y=h (x )有三个零点,则需满足g (1)>0且g (2)<0,解得0<a<316.③当a<0时,g'(x )=2ax 2+4(1-a )x-8=2a (x-2)x+2a . 由g'(x )=0,得x 1=2,x 2=-2a .(ⅰ)当-2a <2,即a<-1时,因为g (x )极大值=g (2)=163a-1<0,此时函数y=h (x )至多有一个零点,不符合题意.(ⅱ)当-2a =2,即a=-1时,因为g'(x )≤0,此时函数y=h (x )至多有两个零点,不符合题意. (ⅲ)当-2a >2,即-1<a<0时,若g (1)<0,函数y=h (x )至多有两个零点,不符合题意; 若g (1)=0,得a=-320;因为g -2a =1a 28a 3+7a 2+8a+83,所以g -2a >0,此时函数y=h (x )有三个零点,符合题意;若g (1)>0,得-320<a<0. 由g -2a =1a 28a 3+7a 2+8a+83.记φ(a)=8a3+7a2+8a+83,则φ'(a)>0.所以φ(a)>φ-320>0,此时函数y=h(x)有四个零点,不符合题意.综上所述,满足条件的实数a∈-220∪0,316.。
2023年高考备考导数与放缩法综合应用(含答案)
高考材料高考材料专题13 导数与放缩法综合应用一、解答题1.〔2023·全国·高三专题练习〕已知函数. ()1ln xf x x x=+〔1〕假设时,,求实数的取值范围; 1≥x ()1mf x x ≥+m 〔2〕求证:.()()2*11ln ln 11nk n n k k n N n =--++>∈⎡⎤⎣⎦+∑(答案)〔1〕;〔2〕证明见解析. 2m ≤(解析) (分析)〔1〕先别离参数转化为求函数的最小值,通过求导函数,进而分析单调性再求得最小值得出结果; 〔2〕由〔1〕知:恒成立,即,则累加后结合放缩法即可证明命题. ()21f x x ≥+2ln 1>-x x ()22ln 111+>-+⎡⎤⎣⎦+n n n n (详解)解:〔1〕不等式,即为,()1m f x x ≥+()()11ln x x m x++≤记,()()()11ln x x g x x++=故, ()()()()()'2211ln 11ln ln x x x x x x x g x x x ⎡⎤++-++-='⎣⎦=令,则, ()ln h x x x =-()11h x x'=-∵,∴在单调递增, 1≥x ()()0,h x h x '≥[)1,+∞故,故, ()()min 110h x h ==>()0g x '>故在上单调递增, ()g x [)1,+∞故,故; ()()min 12g x g ==2m ≤〔2〕由〔1〕知:恒成立, ()21f x x ≥+即, 122ln 1112x x x x x-≥=->-++令,则,()1x n n =+()()222ln 11111+>-=-+⎡⎤⎣⎦++n n n n n n 故,()()2222ln 121,ln 2311223⨯>-+⨯>-+, ()()2222ln 341,,ln 11341⨯>-++>-+⎡⎤⎣⎦+ n n n n 累加得:,()21111ln ln 1212111nk n n k k n n n n n =--⎛⎫++>-->-+=⎡⎤ ⎪⎣⎦+++⎝⎭∑故. ()()2*11ln ln 11nk n n k k n N n =--++>∈⎡⎤⎣⎦+∑2.〔2023·上海·闵行中学高三开学考试〕定义在上的函数满足:假设对任意的实数,有R ()f x x y ≠,则称为函数.()()y x x f f y -<-()f x L 〔1〕推断和是否为函数,并说明理由; ()21f x x =+()211g x x =+L 〔2〕当时,函数的图像是一条连续的曲线,值域为,且,求证:关于的方程[],x a b ∈L ()f x G [],G a b ⊆x ()f x x =在区间上有且只有一个实数根;[],a b 〔3〕设为函数,且,定义数列:,,证明:对任意,有()f x L ()33f ={}()n a n *∈N 11a =()()112n n n a f a a +=+n *∈N .13n n a a +<<(答案)〔1〕不是函数,是函数,理由见解析;〔2〕证明见解析;〔3〕证明见解析. ()f x L ()g x L (解析) (分析)(1)利用给定定义结合已知函数式直接验证即可得解;(2)构造函数,利用零点存在性定理及反证法即可得解;()(),[,]h x f x x x a b =-∈(3)依据给定条件,先证得,然后利用数学归纳法证明对任意正整数成立. 123a a <<13n n a a +<<(详解)(1),,12,R x x ∀∈12x x ≠,显然值可以趋近于正无穷大,即不成立,2212121212|()()|||||||f x f x x x x x x x -=-=+⋅-12||x x +1212|()()|||f x f x x x -<-所以函数不是函数;()f x L , 12121222221212||11|()()|||||11(1)(1)x x g x g x x x x x x x +-=-=⋅-++++而,则恒成立, ()()()()()2222121212122222222212121212111111222111111x x x x x x x x x x x x x x x x +++++++≤≤=<++++++++1212|()()|||g x g x x x -<-所以函数是函数;()g x L (2)令,显然的图象是上的一条连续曲线,而值域为,且, ()(),[,]h x f x x x a b =-∈()h x [,]a b ()f x G [],G a b ⊆于是得,,由零点存在性定理知,方程在内有实根,()()0h a f a a =-≥()()0h b f b b =-≤()0h x =[,]a b 假设在内有两个不同的实根,则有,即, ()()0h x f x x =-=[,]a b 34,x x 3344(),()f x x f x x ==3434|()()|||f x f x x x -=-而函数是函数,对上述的,必有与矛盾, ()f x L 34,x x 3434|()()|||f x f x x x -<-3434|()()|||f x f x x x -=-所以关于的方程在区间上有且只有一个实数根;x ()f x x =[],a b高考材料高考材料(3)因函数是函数,又,,于是得,即, ()f x L ()33f =11a =11|()(3)||3|2f a f a -<-=11()5f a <<,从而有,2111[()](1,3)2a f a a =+∈123a a <<用数学归纳法证明不等式:,, 13n n a a +<<n *∈N ①当时,不等式显然成立,1n =②假设时,不等式成立,即,,N n k k *=∈13k k a a +<<,即有,则, ()()()()11113333k k k k f a f f a f a a ++++-≤-<-=-()()11336k k f a a f +++<+=()211132k k k a f a a +++⎡⎤=+<⎣⎦又,即, ()()()()1111k k k k k k k k f a f a f a f a a a a a ++++-≤-<-=-()()11k k k k f a a f a a +++<+则,即, ()()111122k k k k f a a f a a ++⎡⎤⎡⎤+<+⎣⎦⎣⎦12k k a a ++<从而得,即时,不等式成立, 123k k a a ++<<1n k =+综合①②得,对任意,有.n *∈N 13n n a a +<<3.〔2023·宁夏·银川一中三模〔理〕〕已知函数,其中 21()e 2xf x k x =-.k ∈R (1)假设有两个极值点,记为 ()f x 1212,(),x x x x <①求的取值范围; k ②求证:; 122x x +>(2)求证:对任意恒有 ,n *∈N 22212112 1.23e (1)e (1)ek n k n k n --+++++<++ (答案)(1)①;② 证明见解析; 10e<<k (2)证明见解析. (解析) (分析)〔1〕① 由题得有两个变号零点,设求出函数的单调性即得解;② 利用极值点偏移的方法证明; e x x k =(),e xxg x =〔2〕证明,再利用裂项相消求和即得证.21e 11(1)1n n n n n -<-++(1)解:〔1〕由题得有两个变号零点, ()e 0x f x k x '=-=所以有两个变号零点, e xxk =设 1(),(),e e x xx xg x g x -'=∴=当时,函数单调递增,当时,函数单调递减,1x <()g x 1x >()g x当时,,当时,,, 0x <()0g x <0x >()0>g x 1(1)eg =所以. 10e<<k (2)设, ()()(2),(1)h x g x g x x =-->所以, 211()()[(2)]=0,(1)e ex x x xh x g x g x x ---'''=--+>>所以在单调递增,又, ()h x (1,)+∞(1)0h =所以 又, ()(2),g x g x >-121x x <<所以22()(2),g x g x >-所以 因为,所以. 12()(2),g x g x >-221x -<12122,+2x x x x >-∴>(2)证明:由〔1〕知,所以 1,e e x x ≤11,e x x-≤所以对任意恒有, ,n *∈N 2121111(1)e (1)(1)1n n n n n n n n -≤<=-++++所以 2221211211111(1()()23e (1)e (1)e 2231k n k n k n n n --+++++<-+-++-+++ 所以. 2221211211123e (1)e (1)e 1k n k n k n n --+++++<-<+++ 4.〔2023·全国·高三专题练习〕已知函数. ()2()ln 12xf x x x =+-+〔1〕证明:时,; 0x >()0f x>〔2〕证明:1113521n ++⋅⋅⋅+<+(答案)〔1〕证明见解析;〔2〕证明见解析. (解析)〔1〕由,即在定义域内为增函数,即可证明结论. 22()0(1)(2)x f x x x '=>++()f x 〔2〕依据〔1〕结论,令可得,将所得的n 个式子相加,结合对数运算性质、放缩法即可1x n =21ln 21n n n+<+*n N ∈证不等式. (详解)〔1〕时,, 0x >22214()01(2)(1)(2)x f x x x x x '=-=>++++故为增函数,; ()f x ()()00f x f >=〔2〕由〔1〕知:, 2ln(1)2xx x +>+令时,有, 1x n =12121ln 1ln 1212n n n n n n⋅+⎛⎫<+⇒< ⎪+⎝⎭+高考材料高考材料故,,…,, 22ln 31<23ln 52<21ln 21n n n+<+将式相加得:,n 222231ln ln ln 352112n n n ++++<++++ 231ln ln(1)12n n n +⎛⎫=⋅=+ ⎪⎝⎭ ∴. 1111ln(1)35212n n +++<+=+ 5.〔2023·云南师大附中高三阶段练习〔文〕〕已知函数.()ln f x x =〔1〕证明:当时,恒成立;2x >()2532xf x x -+<<〔2〕设数列的通项公式为,记为的前项和,求证:.{}n a 2222n a f n n ⎛⎫=+ ⎪+⎝⎭n S {}n a n 213364n n S n +<<+〔参考数据:〕 2.71828e = 1.41421= (答案)〔1〕证明见解析;〔2〕证明见解析. (解析) (分析)〔1〕构造函数,利用导数得出,可证得成立,构造函数()()253g x f x x =+-()()20g x g >>()253f x x >-+,利用导数得出可证得,综合可证得结论成立; ()()2x h x f x =-()()20h x h <<()2xf x <〔2〕由〔1〕中的结论可得出,利用放缩法得出,22225112132n n n a n n n n +-+<<++++211111131222n a n n n n ⎛⎫+-<<+- ⎪+++⎝⎭结合裂项求和法可证得结论成立. (详解)证明:〔1〕令,可得, ()()2525ln 33g x f x x x x =+-=+-()22122x g x x x x-'=-=当时,,所以,函数在上单调递增.2x >()0g x '>()g x ()2,+∞又,而,,,()22ln 23g =-22ln 2332e e e -=-328=3223e e ⎛⎫= ⎪⎝⎭2.83e =≈>,在上恒成立. ()22ln 203g ∴=->()253f x x >-+()2,+∞令,则, ()()ln 22x x h x f x x =-=-()11222xh x x x-'=-=当时,,所以,函数在上单调递减. 2x >()0h x '<()h x ()2,+∞又,在上恒成立. ()2ln 21ln 2ln 0h e =-=-<()2xf x ∴<()2,+∞综上,当时,恒成立;2x >()2532xf x x -+<<〔2〕,而,22222ln 222n a f n n n n ⎛⎫⎛⎫=+=+ ⎪ ⎪++⎝⎭⎝⎭ 22222n n +>+所以令〔1〕中不等式的, 2222242222n n x n n n n++=+=++由〔1〕可得,22225112132n n n a n n n n+-+<<++++则一方面,, ()()()()()222221125521212133331211n n n n a n n n n n n +-+>-+=-=+>+++++++211312n n =+-++, 211111121121121323341232232336n S n n n n n n n ⎛⎫∴>+-+-++-=+->+-=+ ⎪+++⎝⎭ 另一方面,,()111111222n a n n n n ⎛⎫<+=+- ⎪++⎝⎭, 111111111111232422212n S n n n n n n ⎛⎫⎛⎫∴<+-+-++-=++-- ⎪ ⎪+++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭综上,有.213364n n S n +<<+6.〔2023·四川省宜宾市第四中学校高三阶段练习〕已知函数,满足:①对任意,都有(),y f x x N +=∈,a b N +∈;()()()()af a bf b af b bf a +>+②对任意都有. *n N ∈[()]3f f n n =〔1〕试证明:为上的单调增函数; ()f x +N 〔2〕求;(1)(6)(28)f f f ++〔3〕令,试证明:(3),nn a f n N +=∈121111.424n n n a a a <+++<+ (答案)〔1〕证明见解析;〔2〕66;〔3〕证明见解析. (解析) (分析)〔1〕对①中等式变形,利用定义法推断出的单调性;()f x 〔2〕先假设,依据条件确定出的值,即可求解出的值,再结合〔1〕的单调性确定出的()1f a =a ()()1,6f f ()28f 值,由此计算出结果;〔3〕依据条件推断出为等比数列并求解出通项公式,利用不等式以及二项展开式采纳放缩方法证明不等式. {}n a (详解)解:〔1〕 由①知,对任意,都有 , *,,a b N a b ∈<()(()())0a b f a f b -->由于,从而,所以函数为上的单调增函数;0a b -<()()f a f b <()f x *N 〔2〕令,则,显然,否则,与矛盾. ()1f a =1a …1a ≠()()()111f f f ==()()13f f =从而,而由,即得. 1a >((1))3f f =()3f a =又由〔1〕知,即.()(1)f a f a >=3a <于是得,又,从而,即.13a <<*a N ∈2a =()12f =高考材料高考材料又由知. ()3f a =()23f =于是,(3)((2))326f f f ==⨯=,, (6)((3))339f f f ==⨯=(9)((6))3618f f f ==⨯=,, (18)((9))3927f f f ==⨯=(27)((18))31854f f f ==⨯=, 由于,(54)((27))32781f f f ==⨯=5427815427-=-=而且由〔1〕知,函数为单调增函数,因此. ()f x (28)54155f =+=从而.(1)(6)(28)295566f f f ++=++=〔3〕,()()()13333n n n n f a f f +==⨯=,. ()()()()1133n n n n a f f f f a a ++===1(3)6a f ==即数列是以为首项,以为公比的等比数列. {}n a 63∴16323(1,2,3)n n n a n -=⨯=⨯= 于是,显然, 21211(1)111111111133((1)1233324313n n n n a a a -+++=+++=⨯=--1111434n ⎛⎫-< ⎪⎝⎭另一方面,1223(12)122212n n n nn n n C C C n =+=+⨯+⨯++⨯>+ 从而. 1111114342142nn n n ⎛⎫⎛⎫->-=⎪ ⎪++⎝⎭⎝⎭综上所述,. 121111424n n n a a a <+++<+ 7.〔2023·安徽省霍邱县第二中学高三开学考试〔理〕〕已知函数 . ()ln 3f x a x ax =--(0)a ≠〔1〕商量的单调性;()f x 〔2〕假设对任意恒成立,求实数的取值范围〔为自然常数〕; ()(1)40f x a x e +++-≤2[,]x e e ∈a e 〔3〕求证:. 22221111ln(1)ln(1)ln(1)...ln(1)1234n++++++++<*(2,)n n ≥∈N (答案)〔1〕答案见解析;〔2〕;〔3〕证明见解析.212e e a --≤(解析)〔1〕求导得到 ,然后分和两种求解商量求解. '(1)()a x f x x-=0a >0a <〔2〕令,求导得到,令,得到()ln 3(1)4ln 1F x a x ax a x e a x x e =--+++-=++-'()a x F x x +='()0a x F x x+==x a =-,然后分,和三种情况商量求解.a e -≤2a e -≥2e a e <-<〔3〕令得到,则,由〔1〕知在上单调递增,则有1a =-()ln 3f x x x =-+-(1)2f =-()ln 3f x x x =-+-[1,)+∞即对一切成立, 从而,然后利用裂项相消法求解. ()(1)f x f >ln 1x x <-(1,)x ∈+∞2211111ln(1)(1)1n n n n n n+<<=---(详解)〔1〕函数的定义域为 , , ()0+∞,'(1)()a x f x x-=当时,的单调增区间为,单调减区间为; 0a >()f x (0,1][1,)+∞当时,的单调增区间为,单调减区间为; 0a <()f x [1,)+∞(0,1]〔2〕令,()ln 3(1)4ln 1F x a x ax a x e a x x e =--+++-=++-则,令,则 '()a x F x x +='()0a x F x x+==x a =- 〔a 〕假设,即 则在是增函数, a e -≤a e ≥-()F x 2[,]e e 无解.22max ()()210F x F e a e e ==++-≤〔b 〕假设即,则在是减函数,2a e -≥2a e ≤-()F x 2[,]e e 所以max ()()10F x F e a ==+≤1a ≤-2a e ≤-〔c 〕假设,即,在是减函数, 在是增函数,2e a e <-<2e a e -<<-()F x [,]e a -2[,]a e -可得, 可得22()210F e a e e =++-≤212e e a --≤()10F e a =+≤1a ≤-所以 2212e e e a ---≤≤综上所述 212e e a --≤〔3〕令〔或〕此时,所以, 1a =-1a =()ln 3f x x x =-+-(1)2f =-由〔1〕知在上单调递增,()ln 3f x x x =-+-[1,)+∞∴当时,即,∴对一切成立, (1,)x ∈+∞()(1)f x f >ln 10x x -+->ln 1x x <-(1,)x ∈+∞∵,则有, *2,n n N ≥∈2211111ln(1)(1)1n n n n n n+<<=---所以 22221111ln(1)ln(1)ln(1)...ln(1)234n ++++++++.1111111(1)(()...(223341n n <-+-+-+--111n=-<8.〔2023·四川·石室中学高三期末〕已知函数的图象上有一点列,点在()()()3log 101x f x x x +=>+()(),n n n P x y n N *∈n P x轴上的射影是,且〔且〕,. (),0n n Q x 132n n x x -=+2n ≥n *∈N 12x =〔1〕求证:是等比数列,并求出数列的通项公式;{}1n x +{}n x 〔2〕对任意的正整数,当]时,不等式恒成立,求实数的取值范围; n []1,1m ∈-21363n t mt y -+>t 〔3〕设四边形的面积是,求证:. 11n n n n P Q Q P ++n S 1211132nS S nS +++< (答案)〔1〕证明见解析,;〔2〕;〔3〕证明见解析.31nn x =-()(),22,-∞-+∞ (解析)高考材料高考材料(分析)〔1〕利用等比数列的定义可证得数列为等比数列,确定该数列的首项和公比,可求得数列的通项公式; {}1n x +{}n x 〔2〕求得,利用数列单调性求得数列的最大项为,由题意可知,]时,不等式3n n n y ={}n y 113y =[]1,1m ∈-恒成立,设,依据题意可知关于实数的不等式组,由此可解得实数的取值范围;220t mt ->()22g m mt t =-+t t 〔3〕求得,进而可求得,利用放缩法可得,进而可证得所证不等式成立. 3n n n nP Q =413nn S +=11131n nS n n ⎛⎫<- ⎪+⎝⎭(详解)〔1〕当且时,,则,且, 2n ≥n *∈N 132n n x x -=+111133311n n n n x x x x ---++==++113x +=所以,数列是以为首项,以为公比的等比数列,{}1n x +33,则;11333n n n x -∴+=⨯=31n n x =-〔2〕, ()()33log 1log 3133n n n n n n n x ny f x x +====+则,所以,数列单调递减, 1111120333n n n n n n n ny y ++++--=-=<{}n y 所以,数列的最大项为,可知对任意的,, {}n y 113y =n *∈N 21363n t mt y -+>则,化简得, 2113633t mt -+>220t mt ->当]时,不等式恒成立,[]1,1m ∈-220t mt ->设,则,解得或. ()22g m mt t =-+()()22120120g t t g t t ⎧-=+>⎪⎨=->⎪⎩2t <-2t >因此,实数的取值范围是;t ()(),22,-∞-+∞ 〔3〕由〔2〕可得,则, 3n n n nn P Q y ==11113n n n n P Q ++++=所以,,()()()1111111131312233n nn n n n n n n n n n n S x x P Q P Q ++++++⎛⎫=-+=⨯---⋅+ ⎪⎝⎭413n +=, ()()()113121111121241414414414443n n n nS n n n n n n n n ⎛⎫⎛⎫====-<- ⎪ ⎪+++++⎝⎭⎝⎭1131n n ⎛⎫=- ⎪+⎝⎭因此,.121111111113133313222311n S S nS n n n ⎛⎫⎛⎫⎛⎫⎛⎫+++<-+-++-=-< ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭ 故所证不等式成立. (点睛)此题考查等比数列定义的证明,同时也考查了数列不等式恒成立以及数列不等式的证明,考查推理能力与计算能力,属于中等题.9.〔2023·山东·模拟预测〕已知函数.()2ln(2)2f x x x =--〔1〕求证:有且仅有2个零点;()f x 〔2〕求证:. ()22*1ln (1)(21)2(2,1)nk k n n N n n n k=-++≥∈∑<(答案)〔1〕证明见解析;〔2〕证明见解析. (解析) (分析)〔1〕先求出函数的单调区间,得到在上存在唯—零点,在上存在唯—的零点,即得有且()f x 1,2⎛⎫+∞ ⎪⎝⎭()f x 10,2⎛⎫ ⎪⎝⎭()f x 仅有2个零点;〔2〕设,,证明, 令,得,得到,()ln 1g x x x =-+0x >ln 11x x x ≤-()2*x k k N =∈222ln 11k k k≤-222ln11111≤-,,…,,相加化简即得. 222ln 21122≤-222ln 31133≤-222ln 11n n n ≤-()21*2ln (1)(21)22,(1)ni n n N k n n kn =≥+<+∈-∑(详解)解:〔1〕由题意,函数的定义域为. ()f x (0,)+∞则. 121()2x f x x x-'=-=令,得, ()0f x '=12x =当时,,单调递减;10,2⎛⎫∈ ⎪⎝⎭x ()0f x '<() f x 当时,,单调递增,1,2⎛⎫∈+∞ ⎪⎝⎭x ()0f x '>()f x 所以在处取得极小值,且极小值为, ()f x 12x =112102f ⎛⎫=-=-< ⎪⎝⎭而,故在上存在唯—零点,22222224202e f e e e ⎛⎫=--=-=-> ⎪⎝⎭()f x 1,2⎛⎫+∞ ⎪⎝⎭因为,,故在上存在唯—的零点, 2221112202f e ee ⎛⎫=+-=> ⎪⎝⎭102f ⎛⎫< ⎪⎝⎭()f x 10,2⎛⎫⎪⎝⎭综上所述,有且仅有2个零点. ()f x 〔2〕 设,, ()ln 1g x x x =-+0x >则,可得当时,单调递增, 11()1xg x x x-'=-=(0,1)x ∈()g x 当时,单调递减,所以,所以. (1,)x ∈+∞()(1)0g x g ≤=ln 1≤-x x 即〔当且仅当时,取等号〕. ln 11x x x≤-1x =令,得〔,当且仅当时,取等号〕 ()2*x k k N =∈222ln 11k k k≤-*N k ∈1k =所以依次令,得到1,2,3,,k n =⋯,,,…, 222ln11111≤-222ln 21122≤-222ln 31133≤-222ln 11n n n ≤-高考材料高考材料所以222222222222ln1ln 2ln3ln 11111111123123n n n++++-+-+-++-……22211111111232334(1)n n n n n ⎡⎤⎛⎫=--+++--+++ ⎪⎢⨯⨯+⎝⎭⎣⎦…<…111111123341n n n ⎛⎫=---+-++- ⎪+⎝⎭…11121n n ⎛⎫=--- ⎪+⎝⎭(1)(21)2(1)n n n -+=+即 ()21*2ln (1)(21)22,(1)ni n n N k n n kn =≥+<+∈-∑10.〔2023·浙江·效实中学模拟预测〕已知为定义在上的奇函数,且当时,取最大值为1. ()2ax bf x x c+=+R 1x =()f x 〔1〕写出的解析式. ()f x 〔2〕假设,,求证 112x =()1n n x f x +=〔ⅰ〕;1n n x x +>〔ⅱ〕. ()()()2221223112231516n n n n x x x x x x x x x x x x ++---++⋅⋅⋅+<(答案)〔1〕;〔2〕〔ⅰ〕证明见解析;〔ⅱ〕证明见解析. ()221xf x x =+(解析) (分析)〔1〕先利用求出,再依据当时,取最大值为1可求出,从而得到的解析式. ()0f b 1x =()f x ,a c ()f x 〔2〕先利用数学归纳法证明,从而可证.再依据可得,利用根本不等式可证()0,1n x ∀∈1n n x x +>112x =112n x ≤<,再利用裂项相消法可证原不等式成立,也可以利用导数证明,从而得到,利1516n n x x +-<323110n n n x x x -≤+1310n n x x +-≤用裂项相消法可证原不等式成立. (详解)〔1〕因为的定义域为,得,又为奇函数, ()2ax bf x x c +=+R 0c >()f x 所以,得;又,所以. ()00b f c ==0b =()111af c==+10a c =+>当时,.0x ≤()()210c x f x x c+=≤+当时,,当且仅当0x >()()211c x c f x c x cx x++==≤++x =也就是当,x =()max f x =1==所以,,即的解析式为, 1c =2a =()f x ()221xf x x =+此时,为奇函数,故的解析式为. ()()221x f x f x x -=-=-+()f x ()f x ()221xf x x =+〔2〕〔ⅰ〕先证明, ()0,1n x ∀∈当时,,符合; 1n =()110,12x =∈设当时,有, n k =()0,1k x ∈则当时,因为,故. 1n k =+1221kk k x x x +=+10k x +>又,故,故.()2121011k k kx x x +-=-<+-11k x +<()10,1k x +∈ 由数学归纳法可知.()0,1n x ∀∈因为,故. ()231222120111n n n n nn n n n n n x x x x x x x x x x x +---=-==>+++1n n x x +>〔ⅱ〕法一〔根本不等式+裂项相消〕:因为,所以, 01n x <<()()()3122211111141n n n nn n n n n n n x x xx x x x x x x x +++--==-⋅≤⋅+++又因为, 21121121n n n n x x x x +=+++-+115416n n x x +-≤=<所以,()()211111151116n n n n n n n n n n n n x x x x x x x x x x x x ++++++-⎛⎫-=-⋅<- ⎪⎝⎭所以()()()222122311223112231151111115121616nn n n n n n x x x x x x x x x x x x x x x x x x x ++++---⎛⎫⎛⎫++⋅⋅⋅+<-+-+⋅⋅⋅+-=- ⎪ ⎪⎝⎭⎝⎭由〔ⅰ〕可知,,所以,得. 1112n x +≤<151521616n x +⎛⎫-< ⎪⎝⎭()()()2221223112231516n n n n x x x x x x x x x x x x ++---++⋅⋅⋅+<法二〔函数的值域+裂项相消〕:因为,所以,由〔ⅰ〕可知,,设, 01n x <<3121n n n n n x x x x x +--=+1112n x +≤<()321x x g x x -=+112x ⎛⎫≤< ⎪⎝⎭所以()()()()()2232213121x x x x x g x x -+--'=+,()()()()()()222322222121252011x x x x x x x x -+---+==<++高考材料高考材料得在时单调递减,所以,得;()g x 1112n x +≤<()13210g x g ⎛⎫≤= ⎪⎝⎭1310n n x x +-≤所以,()()211111131110n n n n n n n n n n n n x x x x x x x x x x x x ++++++-⎛⎫-=-⋅≤- ⎪⎝⎭由〔ⅰ〕可知,,()()()222122311223112231131111113121010nn n n n n n x x x x x x x x x x x x x x x x x x x ++++---⎛⎫⎛⎫++⋅⋅⋅+≤-+-+⋅⋅⋅+-=- ⎪ ⎪⎝⎭⎝⎭1112n x +≤<所以, 1121n x +-<,证毕. ()()()2221223112231131352101016nn n n n x x x x x x x x x x x x x +++---⎛⎫++⋅⋅⋅+≤-<< ⎪⎝⎭11.〔2023·全国·高三课时练习〕已知函数,其中. 2()ln f x a x x =+a R ∈〔1〕商量的单调性;()f x 〔2〕当时,证明:;1a=2()1f x x x ≤+-〔3〕求证:对任意的且,都有:.*n N ∈2n …222211*********e n ⎛⎫⎛⎫⎛⎫⎛⎫+++⋯+< ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭〔其中为自然对数的底数〕.2.7183e ≈(答案)〔1〕当时,函数在上调递增;当时,函数在上单调递减,在0a ≥()f x (0,)+∞0a <()f x ⎛ ⎝⎫+∞⎪⎪⎭上单调递增;〔2〕证明见解析;〔3〕证明见解析. (解析) (分析)〔1〕求出导函数,按照和商量,确定的正负,得的单调区间;()'f x 0a ≥0a <()'f x ()f x 〔2〕不等式即为,即.引入函数,由导数确定其最大值后可证结论. ln 1≤-x x ln 10x x -+≤()ln 1g x x x =-+〔3〕关键是如何应用刚刚所证得的函数不等式,由〔2〕,令,让,这些不等式相加ln 1x x <-211x k =+2,3,,k n = 后右边利用放缩法证明和式,可得证结论. 1<(详解)解:〔1〕函数的定义域为,,()f x (0,)+∞22()2a a xf x x x x'+=+=①当时,,所以在上单调递增,a ≥()0f x '>()f x (0,)+∞②当时,令,解得0a <()0fx '=x =当,所以,所以在上单调递减; 0x <<220a x +<()0f x '<()f x ⎛ ⎝当,所以,所以在上单调递增. x >220a x +>()0f x '>()f x ⎫+∞⎪⎪⎭综上,当时,函数在上调递增;0a ≥()f x (0,)+∞当时,函数在上单调递减,在上单调递增. 0a <()f x ⎛ ⎝⎫+∞⎪⎪⎭〔2〕当时,,要证明, 1a =2()ln f x x x =+2()1f x x x ≤+-即证,即. ln 1≤-x x ln 10x x -+≤设,则,令得,. ()ln 1g x x x =-+1()xg x x-'=()0g x '=1x =当时,,当时,. (0,1)x ∈()0g x '>(1,)x ∈+∞()0g x '<所以为极大值点,也为最大值点.1x =所以,即.故. ()(1)0g x g ≤=ln 10x x -+≤2()1f x x x ≤+-〔3〕证:由〔2〕,〔当且仅当时等号成立〕令,则, ln 1≤-x x 1x =211x n =+2211ln 1n n⎛⎫+< ⎪⎝⎭∴222222*********ln 1ln 1ln 123231223(1)n n n n ⎛⎫⎛⎫⎛⎫++++++<+++<+++ ⎪ ⎪ ⎪⨯⨯-⎝⎭⎝⎭⎝⎭L L L , 111111111ln 12231e n n n =-+-++-=-<=-L 即,22221111ln 1111ln 234e n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 所以. 222211*********e n ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12.〔2023·四川·成都七中高三期中〕已知函数,其中是的导函数. ()ln(1),()(),0f x x g x xf x x '=+=≥()'f x ()f x 假设.[]*11()(),()(),n n g x g x g x g g x n +==∈N 〔1〕求的表达式;()n g x 〔2〕求证:,其中n ∈N x .()()()()2222211213111n g g f g n n -+-+-++-<+ (答案)〔1〕;〔2〕证明见解析. ()*N 1n xg x n nx=∈+(解析) (分析)〔1〕依据已知条件猜测,利用数学归纳法证得猜测成立. ()1n xg x nx=+〔2〕利用放缩法,结合裂项求和法,证得不等式成立. (详解)〔1〕由题意可知,, ()01xg x x x=≥+由已知 ()()()12111x x g x g x g g x g x x ⎛⎫⎡⎤=== ⎪⎣⎦++⎝⎭,高考材料高考材料,, 11211xx x x x x+==+++()313xg x x =+ ,猜测,下面用数学归纳法证明: ()*N 1n xg x n nx=∈+〔i 〕当 n =1 时,,结论成立: ()11xg x x=+假设 n =k 〔k ≥1,k ∈N x 〕 时结论成立,即, ()1k xg x kx=+那么,当n =k +1〔k ≥1,k ∈N x 〕时,,即结论成立. ()()()()()1111111k k k k xg x x kx g x g g x x g x k x kx++⎡⎤====⎣⎦+++++由〔i 〕〔ii 〕可知,结论对 n ∈N x 成立. 〔2〕∵, ()01xg x x x=≥+,∴, ()()221111111x g x g n x x n==-⇒-=-++∴g 〔12﹣1〕+g 〔22﹣1〕+g 〔32﹣1〕+…+g 〔n 2﹣1〕222211*********n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22221111123n n ⎛⎫=-++++ ⎪⎝⎭()11111223341n n n ⎡⎤-++++⎢⎥⨯⨯⨯+⎢⎥⎣⎦ <11111112231n n n ⎡⎤⎛⎫⎛⎫⎛⎫=--+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦ , 21111n n n n ⎛⎫=--=⎪++⎝⎭∴g 〔12﹣1〕+g 〔22﹣1〕+g 〔32﹣1〕+…+g 〔n 2﹣1〕. 21n n <+13.〔2023·全国·高三专题练习〕已知二次函数满足,,,. ()f x (2)()f x f x -=-()11f -=(0)2f =()x g x e =〔1〕求的解析式;()f x 〔2〕求证:时,; 0x ≥2()()g x f x ≥〔3〕求证:.()*11112(1)12(2)22()2n N g g g n n +++<∈+++ (答案)〔1〕〔2〕证明见解析;〔3〕证明见解析; 2()22f x x x =++(解析) (分析)〔1〕由,得的对称轴为,再利用待定系数法可求得结果;()2()f x f x -=-()f x 1x =-〔2〕作差构造函数,求导得,再构造函数,求导可得其最2()2e 22x x x x ϕ=---'()222x x e x ϕ=--()222x h x e x =--小值为0,所以,可知为上的增函数,所以时,,即; ()0x ϕ'≥()ϕx R 0x ≥()0x ϕ≥2()()g x f x ≥〔3〕由〔2〕知,即.易知时, 得,2()()g x f x ≥22()32g x x x x +≥++*x ∈N 211112()3212g x x x x x x <=-+++++,再裂项求和后放缩可证不等式.1112()12g n n n n <-+++(详解)〔1〕由,得的对称轴为, ()2()f x f x -=-()f x 1x =-所以可设,()2()1f x a x c =++由 (1)1,1,(0)21,f a f c ⎧-==⎧⇒⎨⎨==⎩⎩,即. 2()(1)1f x x ∴=++2()22f x x x =++〔2〕设,2()2()()2e 22x x g x f x x x ϕ=-=---,'()222x x e x ϕ=--令,即, ()'()x h x ϕ=()222x h x e x =--则,'()22x h x e =-由,'()00,'()00h x x h x x <⇒<>⇒>在区间上单调递减,在区间上单调递增,.()h x (),0-∞()0,∞+min ()(0)0h x h ==∴,'()0x ϕ≥∴在上单调递增, ()x ϕR ∴时,, 0x ≥()(0)0x ϕϕ≥=∴.2()()g x f x ≥〔3〕由〔2〕知即. 2()()g x f x ≥222()222()32g x x x g x x x x ≥++⇔+≥++易知时,,,*x ∈N 2()0g x x +>2320x x ++>,2111112()32(1)(2)12g x x x x x x x x ∴<==-+++++++所以,1112()12g n n n n <-+++.1111111111112(1)12(2)22()233412222g g g n n n n n ∴+++<-+-++-=-<++++++ 14.〔2023·吉林吉林·高三期末〔理〕〕已知函数.()21ln 2f x x x =+-高考材料高考材料〔1〕求函数在区间上的最值;()f x 1,44⎡⎤⎢⎥⎣⎦〔2〕求证:且.2222*2222ln1ln 2ln 3ln 13(12312n n n N n n +++⋅⋅⋅+<+-∈+2)n ≥(答案)〔1〕,;〔2〕见解析 ()min 2f x =()max 93ln 2f x =-(解析) (分析)(1)对f (x )求导,然后推断f (x )的单调性,再求出f (x )在区间上的最值即可;1,44⎡⎤⎢⎥⎣⎦(2)依据(1)可得,然后令,可得,再利用放缩法证明不等式ln 11x x x ≤-()2*x n n N =∈()2*22ln 11n n N n n≤-∈成马上可. 22222222ln1ln 2ln 3ln 1312312n n n n +++⋅⋅⋅+<+-+(详解)解:(1)∵,∴, ()21ln 2(0)f x x x x =+->()121'2x f x x x-=-=令,得;令,得, ()'0f x >12x >()'0f x <102x <<∴在上单调递减,在上单调递增,()f x 10,2⎛⎫ ⎪⎝⎭1,2⎛⎫+∞ ⎪⎝⎭∴在上单调递减,在上单调递增,()f x 11,42⎡⎤⎢⎥⎣⎦1,42⎡⎤⎢⎥⎣⎦∴当时,,1,44x ⎡⎤∈⎢⎥⎣⎦()min 122f x f ⎛⎫== ⎪⎝⎭又,,13ln 242f ⎛⎫=+ ⎪⎝⎭()493ln 2f =-∴,()13493ln 2ln 242f f ⎛⎫⎛⎫-=--+ ⎪ ⎪⎝⎭⎝⎭154ln 22=-15412>-⨯0>∴,∴当时,,()144f f ⎛⎫> ⎪⎝⎭1,44x ⎡⎤∈⎢⎥⎣⎦()()max 493ln 2f x f ==-∴在区间上的最小值为2,最大值为.()f x 1,44⎡⎤⎢⎥⎣⎦93ln 2-(2)由(1)知,,∴,当且仅当时等号成立,21ln 22x x +-≥ln 221x x ≤-12x =∴,当且仅当时等号成立,即. ln 1≤-x x 1x =ln 11x x x≤-令,得,()2*x n n N =∈()2*22ln 11n n N n n≤-∈∴,,,…,, 222ln11111≤-222ln 21122≤-222ln 31133≤-222ln 11n n n ≤-∴ 222222222222ln1ln 2ln 3ln 11111111123123n n n +++⋅⋅⋅+≤-+-+-+⋅⋅⋅+- 222111123n n ⎛⎫=--++⋅⋅⋅+ ⎪⎝⎭()111123341n n n ⎡⎤<--++⋅⋅⋅+⎢⎥⨯⨯+⎣⎦111111123341n n n ⎛⎫=---+-+⋅⋅⋅+- ⎪+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭ 1312n n =+-+即且2222*2222ln1ln 2ln 3ln 13(12312n n n N n n +++⋅⋅⋅+<+-∈+2)n ≥15.〔2023·天津市宝坻区第—中学三模〔理〕〕已知函数〔为自然对数的底数〕. ()e 1x f x ax =--e 〔1〕求函数的单调区间;()f x 〔2〕当时,假设对任意的恒成立,求实数的值;0a >()0f x ≥R x ∈a 〔3〕求证:. 22222232323ln 1ln 1...ln 12(31)(31)(31)n n ⎡⎤⎡⎤⎡⎤⨯⨯⨯++++++<⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦(答案)〔Ⅰ〕答案见解析;〔Ⅱ〕;〔Ⅲ〕证明见解析. 1a =(解析)(分析)〔1〕由题设,, ()e '=-x f x a 当时,在上单调递增;0a ≤()0f x '>()f x R 当时,时,单调递减,0a >(,ln )x a ∈-∞()0f x '<()f x 时,单调递增.(ln ,)x a ∈+∞()0f x '>()f x 〔2〕由〔1〕知:时, 0a >min ()(ln )f x f a =所以,即恒成立,(ln )0f a ≥ln 10--≥a a a 记,则, ()ln 1(0)g a a a a a =-->()1(ln 1)ln g a a a '=-+=-所以在上,在上,(0,1)()0g a '>(1,)+∞()0g a '<所以在上递增,在上递减,则, ()g a (0,1)(1,)+∞()(1)0g a g ≤=所以,即.()0g a =1a =〔3〕时,, 1n =22332(31)2n n⨯=<-时,,2n ≥121123232311(31)(31)(33)(31)(31)3131n n n n n n n n n n ---⨯⨯⨯<==--------所以. 2133112(31)2231k nk nk =<+-<--∑2n ≥由〔2〕知:,即,则时,e 1x x ≥+ln(1)(1)x x x +≤>-0x >ln(1)x x +<综上,,即原不等式成立. 22222212323233ln[1]ln[1]ln[1]2(31)(31)(31)(31)n knn k k =⨯⨯⨯++++⋅⋅⋅++<<----∑高考材料高考材料。
高中 导数综合题 练习 含答案
训练目标(1)导数的综合应用;(2)压轴大题突破. 训练题型(1)导数与不等式的综合;(2)利用导数研究函数零点;(3)利用导数求参数范围. 解题策略 (1)不等式恒成立(或有解)可转化为函数的最值问题,函数零点可以和函数图象相结合;(2)求参数范围可用分离参数法.(1)求函数F (x )=f (x )f ′(x )+(f (x ))2的最大值和最小正周期;(2)若f (x )=2f ′(x ),求1+sin 2x cos 2x -sin x cos x的值.2.已知函数f (x )=ax -e x (a >0).(1)若a =12,求函数f (x )的单调区间; (2)当1≤a ≤1+e 时,求证:f (x )≤x .3.已知函数f (x )=ax +ln x ,a ∈R ,(1)求f (x )的单调区间;(2)设g (x )=x 2-2x +1,若对任意x 1∈(0,+∞),总存在x 2∈[0,1],使得f (x 1)<g (x 2),求实数a 的取值范围.4.设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2.(1)求f n ′(2);(2)证明:f n (x )在⎝⎛⎭⎫0,23内有且仅有一个零点(记为a n ),且0<a n -12<13n 32⎪⎭⎫ ⎝⎛.5.已知a ∈R ,函数f (x )=12ax 2-ln x . (1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线的斜率;(2)讨论f (x )的单调性;(3)是否存在实数a ,使得方程f (x )=2有两个不等的实数根?若存在,求出a 的取值范围;若不存在,请说明理由.答案解析1.解 (1)已知函数f (x )=sin x +cos x ,则f ′(x )=cos x -sin x ,代入F (x )=f (x )f ′(x )+(f (x ))2,可得F (x )=cos 2x +sin 2x +1=2sin(2x +π4)+1, 当2x +π4=2k π+π2(k ∈Z ), 即x =k π+π8(k ∈Z )时,F (x )max =2+1,其最小正周期T =2π2=π. (2)由f (x )=2f ′(x ),易得sin x +cos x =2cos x -2sin x ,解得tan x =13. ∴1+sin 2x cos 2x -sin x cos x =2sin 2x +cos 2x cos 2x -sin x cos x =2tan 2x +11-tan x=116. 2.(1)解 当a =12时,f (x )=12x -e x .f ′(x )=12-e x ,令f ′(x )=0,得x =-ln 2. 当x <-ln 2时,f ′(x )>0;当x >-ln 2时,f ′(x )<0,∴函数f (x )的单调递增区间为(-∞,-ln 2);单调递减区间为(-ln 2,+∞).(2)证明 令F (x )=x -f (x )=e x -(a -1)x ,①当a =1时,F (x )=e x >0,∴f (x )≤x 成立.②当1<a ≤1+e 时,F ′(x )=e x -(a -1)=e x -e ln(a-1), ∴当x <ln(a -1)时,F ′(x )<0;当x >ln(a -1)时,F ′(x )>0,∴F (x )在(-∞,ln(a -1))上单调递减,在(ln(a -1),+∞)上单调递增,∴F (x )≥F (ln(a -1))=e ln(a-1)-(a -1)·ln(a -1)=(a -1)[1-ln(a -1)],∵1<a ≤1+e ,∴a -1>0,1-ln(a -1)≥1-ln [(1+e)-1]=0,∴F (x )≥0,即f (x )≤x 成立.综上,当1≤a ≤1+e 时,f (x )≤x .3.解 (1)f ′(x )=a +1x =ax +1x(x >0). ①当a ≥0时,由于x >0,故ax +1>0,f ′(x )>0,所以f (x )的单调递增区间为(0,+∞).②当a <0时,由f ′(x )=0,得x =-1a ,在区间(0,-1a)上,f ′(x )>0,f (x )单调递增. 在区间(-1a,+∞)上,f ′(x )<0,f (x )单调递减. 综上所述,当a ≥0时,f (x )的单调递增区间为(0,+∞);当a <0时,f (x )的单调递增区间为(0,-1a ),f (x )的单调递减区间为(-1a,+∞). (2)由已知,转化为f (x )max <g (x )max ,又g (x )max =g (0)=1.由(1)知,当a ≥0时,f (x )在(0,+∞)上单调递增,值域为R ,故不符合题意.当a <0时,f (x )在(0,-1a )上单调递增,在(-1a,+∞)上单调递减, 故f (x )的极大值即为最大值,即f (x )max =f (-1a )=-1+ln(-1a)=-1-ln(-a ), 所以1>-1-ln(-a ),解得a <-1e 2. 故实数a 的取值范围是(-∞,-1e 2). 4.(1)解 当x ≠1时,f n (x )=x -x n +11-x-1, 则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2, 可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1. (2)证明 因为f n (0)=-1<0,f n ⎝⎛⎭⎫23=23⎣⎡⎦⎤1-⎝⎛⎭⎫23n 1-23-1=1-2×⎝⎛⎭⎫23n ≥1-2×⎝⎛⎭⎫232>0, 所以f n (x )在⎝⎛⎭⎫0,23内至少存在一个零点, 又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎝⎛⎭⎫0,23内单调递增, 因此f n (x )在⎝⎛⎭⎫0,23内有且仅有一个零点a n , 由于f n (x )=x -x n +11-x-1, 所以0=f n (a n )=a n -a n +1n 1-a n -1,由此可得a n =12+12a n +1n >12, 故12<a n <23, 所以0<a n -12=12a n +1n <12×⎝⎛⎭⎫23n +1=13⎝⎛⎭⎫23n . 5.解 (1)当a =1时,f (x )=12x 2-ln x (x >0),f ′(x )=x -1x,x >0, ∴k =f ′(1)=0,所以曲线y =f (x )在点(1,f (1))处的切线的斜率为0.(2)f ′(x )=ax -1x =ax 2-1x,x >0. 当a ≤0时,f ′(x )<0,f (x )在(0,+∞)上单调递减;当a >0时,令f ′(x )=0,解得x =a a (负值舍去). 当x ∈(0,a a )时,f ′(x )<0,f (x )在(0,a a )上单调递减; 当x ∈(a a ,+∞)时,f ′(x )>0,f (x )在(a a,+∞)上单调递增. (3)存在a ∈(0,e 3),使得方程f (x )=2有两个不等的实数根.理由如下:由(2)可知当a ≤0时,f ′(x )<0,f (x )在(0,+∞)上单调递减,方程f (x )=2不可能有两个不等的实数根;当a >0时,函数f (x )在(0,a a )上单调递减,在(a a,+∞)上单调递增,使得方程f (x )=2有两个不等的实数根,等价于函数f (x )的极小值f (a a )<2,即f (a a )=12+12ln a <2,解得0<a <e 3,所以a 的取值范围是(0,e 3).。
2021届高三数学(文理通用)一轮复习题型专题训练:导数的综合应用--方程的根问题(含答案)
《导数的综合应用—方程的根问题》考查内容:主要涉及到利用导数解决方程的根(或函数零点)问题 注意:复杂的复合函数求导一般为理科内容一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知函数()x f x e x a =--,若函数()y f x =有零点,则实数a 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞2.若关于x 的方程ln 0kx x -=有两个实数根,则实数k 的取值范围是( ) A .(,)e -∞B .1,e ⎛⎫-∞ ⎪⎝⎭C .10,e ⎛⎫⎪⎝⎭D .(0,)e3.若函数3269y x x x =-+的图象与直线y a =有3个不同的交点,则实数a 的取值范围是( ) A .(),0-∞B .()0,4C .()4,+∞D .()1,34.若关于x 的方程0x e ax a +-=有实数根,则实数a 的取值范围是( ) A .(2,0e ⎤-⎦ B .)20,e⎡⎣C .(],0e -D .2,](0,)e -∞-⋃+∞(5.若关于x 的方程有三个不同的实数解,则实数a 的取值范围为( ) A .B .C .D .6.已知函数()x xf x e=,关于x 的方程1()()f x m f x -=有三个不等实根,则实数m 的取值范围是( ) A .1(,)e e-+∞B .1(,)e e-+∞C .1(,)e e-∞-D .1(,)e e-∞-7.已知函数()21,1ln ,1x x f x x x x⎧-<⎪=⎨≥⎪⎩,若关于x 的方程()()()21220+--=⎡⎤⎣⎦f x m f x m 有4个不同的实数解,则实数m 的取值范围是( )A .11,3e ⎛⎫ ⎪⎝⎭B .11,32⎛⎫⎪⎝⎭e C .10,e ⎛⎫ ⎪⎝⎭D .10,2e ⎛⎫ ⎪⎝⎭8.若函数()32ln f x x x x x ax =-+-有两个不同的零点,则实数a 的取值范围是( ) A .()0,∞+B .(]0,1C .[)1,0-D .(),0-∞9.已知()2,0,0x x x f x e x ⎧≤=⎨>⎩,若()2f x a =⎡⎤⎣⎦恰有两个根12,x x ,则12x x +的取值范围是( ) A .(1,)-+∞ B .(,22ln 2)-∞-C .(1,2ln 22)--D .(),2ln 22-∞-10.已知函数()3ln f x x x =-与()3g x x ax =-的图像上存在关于x 轴的对称点,则实数a 的取值范围为( ) A .()e -∞,B .1e ⎛⎤-∞ ⎥⎝⎦,C .(]e -∞, D .1e ⎛⎫-∞ ⎪⎝⎭,11.方程2ln ln 10x x m x x ⎛⎫-⋅-= ⎪⎝⎭有三个不同的解,则m 的取值范围是( ) A .1,e e⎛⎫-+∞ ⎪⎝⎭B .1,e e⎛⎫-∞- ⎪⎝⎭C .1,e e ⎛⎫++∞ ⎪⎝⎭D .1,e e⎛⎫-∞-- ⎪⎝⎭12.已知函数21()(,f x x ax x e e e=-≤≤为自然对数的底数)与()x g x e =的图像上存在关于直线y x =对称的点,则实数a 的取值范围是( ) A .1[1,]e e+ B .1[1,]e e-C .11[,]e e e e-+D .1[,]e e e-二.填空题13.关于x 的方程3230x x a --=只有一个实数解,则实数a 的取值范围是___ 14.已知关于x 的方程20--=x e x k 有2个不相等的实数根,则k 的取值范围是___15.若函数2()2ln f x x a x =-++在21,e e ⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数a 的取值范围为_____.16.已知函数()ln ,012,0x x x f x x x x >⎧⎪=⎨++<⎪⎩,若方程()()22104f x af x e ++=⎡⎤⎣⎦有八个不等的实数根,则实数a 的取值范围是_____.三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.设函数329()62f x x x x a =-+-. (1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值; (2)若方程()0f x =有且仅有一个实根,求a 的取值范围.18.已知函数32()23 3.f x x x =-+(1)求曲线()y f x =在点2x =处的切线方程;(2)若关于x 的方程()0f x m +=有三个不同的实根,求实数m 的取值范围.19.已知函数(),()2ln .mf x mxg x x x=-= (1)当m =2时,求曲线()y f x =在点(1,f (1))处的切线方程; (2)当m =1时,求证:方程()()f x g x =有且仅有一个实数根;(3)若(1,]x e ∈时,不等式()()2f x g x -<恒成立,求实数m 的取值范围.20.已知函数()ln 1xf x ae x =--,a R ∈(1)当1a =时,求曲线()f x 在点()()1,1f 处的切线方程; (2)若函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上有两个零点,求实数a 的取值范围21.已知函数()()22ln f x x a x a x =-++.(1)当2a <且0a ≠时,求函数()f x 的单调区间;(2)若4a =,关于x 的方程()0f x m -=有三个不同的实根,求m 的取值范围.22.已知函数2()ln 23f x x x =-+,()()4ln (0)g x f x x a x a '=++≠. (1)求函数()f x 的单调区间;(2)若关于x 的方程()g x a =有实数根,求实数a 的取值范围.《导数的综合应用—方程的根问题》解析1.【解析】函数()y f x =有零点等价于方程x e x a -=有解,令()xg x e x =-,()1x g x e '=-,当0x >时,()0g x '>,函数()g x 单调递增;当0x <时,()0g x '<,函数()g x 单调递减,又(0)1g =,所以1a ≥.故选B2.【解析】由题意得ln x k x =,设ln ()xf x x=,21ln ()x f x x -'=. 当0x e <<时,()0f x '>,()f x 为增函数; 当x e >时,()0f x '<,()f x 为减函数,且()0f x >. 所以()f x 有最大值1()f e e=,简图如下,由图可知,1k e<<0时符合题意.故选:C. 3.【解析】函数()3269f x x x x =-+的导数为:()23129f x x x '=-+,()0f x '>解得3x >或1x <,函数递增;()0f x '<解得13x <<,函数递减;即()1f 取得极大值4,()3f 取得极小值0;作出()f x 的图像,作出直线y a =, 由图像可得当04a <<时,直线与()f x 的图像有3个不同的交点.故选:B 4.【解析】0(1)xxe ax a e a x +-=⇒=--,当1x =时,0x e =无实数解,不符合题意,故1x ≠.于是有1xe a x =--,令()1x ef x x =--,显然当1x >时,()0f x <;当1x <时,()0f x >.'2(2)()(1)x e x f x x -=--,当2x >时,'()0f x <,函数()f x 单调递减,当1,12x x <<<时,'()0f x >,函数()f x 单调递增,因此当1x >时,2max ()(2)f x f e ==-,函数()f x 的图象一致如下图所示:因此要想0x e ax a +-=有实数根,只需方程组:1x e y x y a ⎧=-⎪-⎨⎪=⎩有交点,如上图,则有实数a 的取值范围是(2,(0,)e ⎤-∞-⋃+∞⎦.故选:D5.【解析】对函数求导,2()330f x x -'==,∴1x =±,当1x <-时,()f x 单调递增,当11x -<<时,函数()f x 单调递减,当1x >时,函数()f x 单调递增,要有三个不等实根,则(1)130f a -=-+->,且(1)130f a =--<,解得22a -<<. 6.【解析】()1'x xf x e-=, 当1x <时,()'0f x >,()f x 在()0,e 上为增函数; 当1x >时,()'0f x <,()f x 在(),e +∞上为减函数; 所以()f x 的图像如图所示又0x >时,()0f x >,又()f x 的值域为1,e⎛⎤-∞ ⎥⎝⎦,所以当0t ≤或1t e=时,方程()t f x =有一个解, 当10t e <<时,方程()t f x =有两个不同的解, 所以方程1t m t-=即210t mt --=有两个不同的解()12110,,,0t t e e ⎛⎫⎧⎫∈∈-∞⋃⎨⎬ ⎪⎝⎭⎩⎭,令()21g t t mt =--,故()0010g g e ⎧<⎪⎨⎛⎫> ⎪⎪⎝⎭⎩,解得1m e e <-,故选:D 7.【解析】令()()()21220+--=⎡⎤⎣⎦f x m f x m ,即()()210f x m f x -⋅+=⎡⎤⎡⎤⎣⎦⎣⎦,得()2f x m =或()1f x =-,则直线2y m =和直线1y =-与函数()y f x =的图象共有4个交点. 当1x ≥时,()ln x f x x =,()21ln x f x x-'=,令()0f x '=,得x e =. 当1x e ≤<时,()0f x '>,此时函数()y f x =单调递增; 当x e >时,()0f x '<,此时函数()y f x =单调递减. 函数()y f x =的极大值为()1f e e =,且当1x >时,()ln 0x f x x=>,如下图所示:由于关于x 的方程()()()21220+--=⎡⎤⎣⎦f x m f x m 有4个不同的实数解, 由图象可知,直线1y =-与函数()y f x =的图象只有一个交点, 所以,直线2y m =与函数()y f x =的图象有3个交点,所以102m e<<,解得102m e <<.因此,实数m 的取值范围是10,2e ⎛⎫ ⎪⎝⎭.故选:D. 8.【解析】由题意,函数的定义域为{}0x x >,又由()32ln 0f x x x x x ax =-+-=,得2ln a x x x =-+,则等价为方程2ln a x x x =-+,在()0,∞+上有两个不同的根,设()2ln h x x x x =-+,()212121x x h x x x x-++'=-+=,由()0h x '>得2210x x -++>得2210x x --<,得112x -<<, 此时01x <<,函数()h x 为增函数,()0h x '<得2210x x -++<得2210x x -->,得21x <-或1x >,此时1x >,函数()h x 为减函数,即当1x =时,函数()h x 取得极大值,极大值为()1ln1110h =-+=,要使2ln a x x x =-+,有两个根,则0a <即可,故实数a 的取值范围是(),0-∞, 故选D .9.【解析】当0x ≤时,20x ≥;当0x >时,e 1x >,()f x ∴值域为[)0,+∞,()2f x a ∴=⎡⎤⎣⎦等价于()f x =()y f x =与y =在平面直角坐标下中作出()f x 图象如下图所示:1>,即1a >,120x x <<,21x ∴=2x e =()1t t =>,1x ∴=2ln x t =,12ln x x t ∴+=令())ln 1g t t t =>,则()122g t t t'==, ∴当()1,4t ∈时,()0g t '>;当()4t ,∈+∞时,()0g t '<,()g t ∴在()1,4上单调递增,在()4,+∞上单调递减,()()42ln 22g t g ∴≤=-,即()12,2ln 22x x +∈-∞-.故选:D .10.【解析】函数f (x )=lnx ﹣x 3与g (x )=x 3﹣ax 的图象上存在关于x 轴的对称点, ∴f (x )=﹣g (x )有解,∴lnx ﹣x 3=﹣x 3+ax ,∴lnx =ax ,即lnx a x =在(0,+∞)有解,令()lnx h x x =,则()1'lnxh x x-=. 当()()()0,,0x e h x h x '∈>,单调递增;()(),0,x e h x +∞'∈<, ()h x 单调递减.()()1max h x h e e ==,且()0,x h x →→-∞,所以1a e ≤.故选B.11.【解析】令ln x t x =,2ln 1ln ,x xy y x x -'==,当()0,0f x x e '><<,当()0,f x x e '<>, ()f x 递增区间是(0,)e ,递减区间是(,)e +∞,,()x e f x =取得极大值为1e,也为最大值,0,(),,()0x f x x f x →→-∞→+∞→,1,()0x f x >>,当0t ≤或1t e =时,方程ln x t x =有一个解, 当10t e <<时,方程ln xt x =有两个解,当1t e >时,方程ln x t x=没有实数解,方程2ln ln 10x x m x x ⎛⎫-⋅-= ⎪⎝⎭有三个不同的解, 则210t mt --=要有两个实数解,设为12,t t ,121t t =-,必有一个根小于0,只需另一根在1(0,)e,设2211()1,(0)1,()10m g t t mt g g e e e=--=-∴=-->,解得1m e e<-.故选:B.12.【解析】设()f x 的图像上与()g x 的图像上关于y x =对称的点为(),x m ,故2mm x ax x e⎧=-⎨=⎩,消去m 得到2x ax x e -=,两边取对数有:2ln x x ax =-, 因为1x e e ≤≤,故2ln x x a x -=,令()2ln x x h x x-=,1x e e ≤≤,则()22ln 1x x h x x+-'=,1x e e ≤≤.令()2ln 1s x x x =+-. 因为()s x 为1,e e ⎡⎤⎢⎥⎣⎦上的增函数,且当1x =时,()10s =,故当1,1x e ⎡⎫∈⎪⎢⎣⎭时,()0s x <,当(]1,x e ∈时,()0s x >;所以当1,1x e ⎡⎫∈⎪⎢⎣⎭时,()0h x '<,()h x 为减函数; 当(]1,x e ∈时,()0h x '>,()h x 为增函数; 因为()11h =,()111,h e e h e ee e ⎛⎫=-=+⎪⎝⎭, 所以()h x 的值域为11,e e ⎡⎤+⎢⎥⎣⎦,故11,a e e ⎡⎤∈+⎢⎥⎣⎦.故选:A.13.【解析】令()323f x x x a =--,则()236f x x x '=-由()0f x '>得2x >或0x <,由()0f x '<得02x <<所以()f x 在(),0-∞和()2,+∞上单调递增,在()0,2上单调递减 所以()f x 的极大值为()0f a =-,极小值为()24f a =-- 由方程3230x x a --=只有一个实数解可得函数()f x 只有一个零点 所以()00f <或()20f >,解得0a >或4a故答案为:()(),40,-∞-⋃+∞14.【解析】由题意,关于x 的方程20--=x e x k 有2个不相等的实数根, 即函数y k =与函数2xy e x =-的图象有两个不同的交点,设()2x f x e x =-,则()2x f x e '=-,令()20xf x e '=-=,解得ln 2x =,所以函数的减区间为(,ln 2)-∞,增区间为(ln 2,)+∞,所以函数()f x 的最小值为(ln 2)22ln 2f =-,且当x →-∞时,()f x →+∞,当x →∞时,()f x →+∞, 要使得2x e x k -=有2个不相等的实数根,所以22ln2k >-. 即实数k 的取值范围是(22ln 2,)-+∞. 15.【解析】令()0f x =可得22ln a x x =-,令2()2ln g x x x =-,则2222()2x g x x x x-'=-=,因为当211x e 时,()0g x ',当1x e <时,()0g x '>,所以()g x 在21,1e ⎡⎤⎢⎥⎣⎦上单调递减,在(1,]e 上单调递增,所以当1x =时()g x 取得最小值(1)1g =, 又224114,()2g g e e e e ⎛⎫=+=-⎪⎝⎭,所以21()g g e e ⎛⎫< ⎪⎝⎭, 因为()ag x 在21,e e ⎡⎤⎢⎥⎣⎦上有两个解,所以4114a e <+.16.【解析】当0x >时()'1ln f x x ,=+令()'1ln =0f x x =+,得1=x e ,可知函数()f x 在10e ,⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,所以()min 11=f x f e e ⎛⎫=- ⎪⎝⎭;当0x <时,()12f x x x=++,可知函数()f x 在(),1-∞-上单调递增,在()1,0-上单调递减,所以()()max =10f x f -=;由此作出函数()0120xlnx x f x x x x >⎧⎪=⎨++<⎪⎩,,的草图,如下图:有图像可知当()10f x e ⎛⎫∈- ⎪⎝⎭,时,有四个不同的x 与f (x )对应,令()t f x =,又方程()()22104f x af x e ⎡⎤++=⎣⎦有八个不等的实数根,所以22104t at e ++=在10e ⎛⎫- ⎪⎝⎭,内有两个不等的实数根12,t t ,令()2214g t t at e =++,可得()222221114102101004a g e e e e ae a e g e ⎧⎛⎫-=++> ⎪⎪⎝⎭⎪⎪-<-<⎪⎪⎨⎪∆=->⎪⎪⎪=>⎪⎩,得154a e e <<. 故答案为15,4e e ⎛⎫ ⎪⎝⎭17.【解析】(1)由题意2()3963(1)(2)f x x x x x '=-+=--,因为(,)x ∈-∞+∞,()f x m '≥,即239(6)0x x m -+-≥恒成立,所以8112(6)0m ∆=--≤,可得34m ≤-, 所以m 的最大值为34-; (2)因为当1x <或2x >时,()0f x '>,函数()f x 单调递增; 当12x <<时,()0f x '<,函数()f x 单调递减; 所以当1x =时,()f x 取极大值5(1)2f a =-; 当2x =时,()f x 取极小值(2)2f a =-;所以当(2)0f >或(1)0f <时,方程()0f x =仅有一个实根. 所以20a ->或502a -<即2a <或52a >, 故a 的取值范围为()5,2,2⎛⎫-∞+∞ ⎪⎝⎭. 18.【解析】(1)当x =2时,f (2)=7,故切点坐标为(2,7), 又∵f ′(x )=6x 2﹣6x .∴f ′(2)=12,即切线的斜率k =12, 故曲线y =f (x )在点(2,f (2))处的切线方程为y ﹣7=12(x ﹣2), 即12x ﹣y ﹣17=0,(2)令f ′(x )=6x 2﹣6x =0,解得x =0或x =1 当x <0,或x >1时,f ′(x )>0,此时函数为增函数, 当0<x <1时,f ′(x )<0,此时函数为减函数,故当x =0时,函数f (x )取极大值3, 当x =1时,函数f (x )取极小值2,若关于x 的方程f (x )+m =0有三个不同的实根,则2<﹣m <3,即﹣3<m <﹣2 故实数m 的取值范围为(﹣3,﹣2) 19.【解析】(1)m =2时,322()2,'()2,'(1)4,f x x f x f x x=-=+= 切点坐标为(1,0),∴切线方程为44440y x x y =-⇒--=; (2)m =1时,令1()()()2ln h x f x g x x x x=-=--, 则22212(1)'()10x h x x x x-=+-=≥,∴()h x 在(0,+∞)上是增函数 又211().()(2)0,()h e h e h x e e=--+<∴在1(,)e e上有且只有一个零点 ∴方程()()f x g x =有且仅有一个实数根; (或说明(1)0h =也可以) (3)由题意知,2ln 2mmx x x--<恒成立, 即2(1)22ln m x x x x -<+恒成立,`210x ->则当(1,]x e ∈时,222ln 1x x xm x +<-恒成立, 令222ln ()1x x x G x x +=-,当(1,]x e ∈时,()()22221ln 4()01x x G x x'-+⋅-=<- 则()G x 在(1,]x e ∈时递减,∴()G x 在(1,]x e ∈时的最小值为24()1eG e e =-, 则m 的取值范围是24,1e e ⎛⎫-∞ ⎪-⎝⎭. 20.【解析】(1)当1a =时,()ln 1xf x e x =--,()1xf x e x'=-,()11f e =-,()11f e '=-.切线方程为()()()111y e e x --=--,化简得()e 1y x =-.曲线()f x 在点()()1,1f 处的切线方程为()e 1y x =-.(2)()ln 1xf x ae x =--,定义域为()0,∞+,函数()f x 在1,e e⎡⎤⎢⎥⎣⎦上有两个零点,即方程ln 10x ae x --=在1,e e ⎡⎤⎢⎥⎣⎦上有两个正根,即y a =与()ln 1x x g x e +=的图象在1,e e ⎡⎤⎢⎥⎣⎦上有两个交点,()1ln 1xx x g x e --'=,令()1ln 1x x x ϕ=--,()2110x x xϕ'=--<, 所以()x ϕ在1,e e ⎡⎤⎢⎥⎣⎦上单调递减,且()10ϕ=.所以当1,1x e ⎡⎫∈⎪⎢⎣⎭时,中()0x ϕ>,即()0g x '>,()g x 单调递增; 当(]1,x e ∈时,()0x ϕ<,即()0g x '<,()g x 单调递减. 所以()()max 11g x g e ==.又知10g e ⎛⎫= ⎪⎝⎭,()2e g e e=.结合y a =与()ln 1x x g x e +=图象可知,若有两个交点只需21e a e e≤<.综上可知满足题意的a 范围为21,ee e ⎡⎫⎪⎢⎣⎭. 21.【解析】(1)函数()()22ln f x x a x a x =-++的定义域是()0,∞+,()()()()22122222a x x x a x a a f x x a x x x⎛⎫-- ⎪-++⎝⎭'=-++==. ①当0a <时,()0f x '<在(0,1)上恒成立,()0f x '>在()1,+∞上恒成立,()f x 的增区间为[)1,+∞,()f x 的减区间为(]0,1.②当02a <<时,012a<<, ()0f x '>在0,2a ⎛⎫⎪⎝⎭和(1,)+∞上恒成立,()0f x '<在,12a ⎛⎫ ⎪⎝⎭上恒成立.∴02a <<时,()f x 的增区间为0,2a ⎛⎤ ⎥⎝⎦和[)1,+∞,()f x 的减区间为,12a ⎡⎤⎢⎥⎣⎦.综上所述,当0a <时()f x 的单调递增区间为[)1,+∞,单调递减区间为(]0,1; 当02a <<时,()f x 的单调递增区间为0,2a ⎛⎤ ⎥⎝⎦和[)1,+∞,单调递减区间为,12a ⎡⎤⎢⎥⎣⎦.(2)若4a =,()264ln f x x x x =-+,关于x 的方程()0f x m -=有三个不同的实根,等价于()y f x =的图象与直线y m =有三个交点.()()()2221426426x x x x f x x x x x---+'=-+==, ()0f x '>,由()0f x '>解得01x <<或2x <,由()0f x '<,解得12x <<.∴在(]0,1上()f x 单调递增,在[]1,2上()f x 单调递减,在[)2,+∞上()f x 单调递增,∴()24ln 28f =-,()15f =-,又∵当x 趋近于+∞时()f x 趋近于+∞, 当x 在定义域()0,∞+内趋近于0时,lnx 趋近于-∞,∴()f x 趋近于-∞, ∴()y f x =的图象与直线y m =有三个交点时m 的取值范围是()4ln 28,5--.22.【解析】(1)依题意,得()()()21212114'4x x x f x x x x x +--=-==,()0,x ∈+∞.令()'0f x >,即120x ->,解得102x <<;令()'0f x <,即120x -<,解得12x >,故函数()f x 的单调递增区间为10,2⎛⎫ ⎪⎝⎭,单调递减区间为1,2⎛⎫+∞ ⎪⎝⎭. (2)由题得,()()'4g x f x x alnx =++ 1alnx x=+. 依题意,方程10alnx a x +-=有实数根,即函数()1h x alnx a x =+-存在零点, 又()2211'a ax h x x x x -=-+=,令()'0h x =,得1x a=. 当0a <时,()'0h x <,即函数()h x 在区间()0,+∞上单调递减,而()110h a =->,1111111a a h e a a a e --⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭ 1111110ae e -=-<-<, 所以函数()h x 存在零点;当0a >时,()'h x ,()h x 随x 的变化情况如表:所以11h a aln a alna a a ⎛⎫=+-=-⎪⎝⎭为函数()h x 的极小值,也是最小值. 当10h a ⎛⎫> ⎪⎝⎭,即01a <<时,函数()h x 没有零点; 当10h a ⎛⎫≤⎪⎝⎭,即1a ≥时,注意到()110h a =-≤,()110h e a a e e =+-=>, 所以函数()h x 存在零点.综上所述,当()[),01,a ∈-∞⋃+∞时,方程()g x a =有实数根.。
导数函数综合应用(含答案)
导数函数综合应用一.选择题(共6小题)1.定义在R上的函数y=f(x),满足f(4﹣x)=f(x),(x﹣2)f′(x)<0,若x1<x2,且x1+x2>4,则有()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.不确定2.定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x;记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰有两个零点,则实数k的取值范围是()A.[1,2)B.C.D.3.设函数f(x)是定义在实数集上的奇函数,在区间[﹣1,0)上是增函数,且f(x+2)=﹣f(x),则有()A.B.C.D.4.已知函数f(x)=,若函数y=f(x)+|x﹣1|﹣kx在定义域内有且只有三个零点,则实数k的取值范围是()A.[)B.[]C.[﹣)D.[﹣]5.设函数f(x)=,若对任意给定的y∈(2,+∞),都存在唯一的x∈R,满足f(f(x))=2a2y2+ay,则正实数a的最小值是()A.2B.C.D.46.已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)二.填空题(共1小题)7.已知函数f(x)=,若关于x的方程f(x)=3恰有两个互异的实数解,则实数a的取值范围是.三.解答题(共19小题)8.已知函数f(x)=﹣alnx(a∈R).(1)讨论f(x)的单调性;(2)若存在实数x0=[1,e],使得f(x0)<0,求正实数a的取值范围.9.已知函数f(x)=x2﹣(a+)x+lnx,其中a>0.(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处切线的方程;(Ⅱ)当a≠1时,求函数f(x)的单调区间;(Ⅲ)若a∈(0,),证明对任意x1,x2∈[,1](x1≠x2),<恒成立.10.已知函数f(x)=lnx﹣ax2+(2﹣a)x.(1)若f′(1)=﹣6,求函数f(x)在(1,f(1))处的切线;(2)设a>0,证明:当0<x<时,f(+x)>f(﹣x);(3)若函数f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0.11.已知a≠0,函数f(x)=|e x﹣e|+e x+ax(1)讨论f(x)的单调性(2)若对∀x∈(﹣,+∞),不等式f(x)≥恒成立,求a的取值范围(3)已知当a<﹣e时,函数f(x)有两个零点x1,x2(x1<x2),求证:f(x1x2)>a+e12.已知函数f(x)=a(x﹣1)e x(a>0),g(x)=﹣cos x.(1)求函数f(x)的单调区间;(2)若对于任意的实数x1,x2∈[0,],(其中x1≠x2),都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|恒成立求实数a的取值范围.13.已知函数f(x)=a+2lnx﹣ax(a>0),(1)求f(x)的最大值φ(a);(2)若f(x)≤0恒成立,求a的值;(3)在(2)的条件下,设g(x)=在(a,+∞)上的最小值为m,求证:﹣11<f(m)<﹣1014.已知函数f(x)=(x2﹣mx)e x(e为自然对数的底数).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若m=2,2n+1≥0,证明:关于x的不等式nf(x)+1≥e x在(﹣∞,0]上恒成立.15.已知函数f(x)=(其中e是自然对数的底数),g(x)=1﹣ax2(a∈R).(Ⅰ)求函数f(x)的极值;(Ⅱ)设h(x)=f(x)﹣g(x),若a满足0<a<且ln2a+1>0,试判断方程h(x)=0的实数根个数,并说明理由.16.已知函数f(x)=ax2﹣lnx.(1)求函数f(x)的单调区间;(2)若函数f(x)有两个零点x1,x2,求a的取值范围,并证明:x1•x2>1.17.己知p:实数m使得函数f(x)=lnx(m﹣2)x2﹣x在定义域内为增函数:q:实数m使得函数g(x)=mx2+(m+1)x﹣5在R上存在两个零点x1,x2,且x1<1<x2(1)分别求出条件p,q中的实数m的取值范围;(2)甲同学认为“p是q的充分条件”,乙同学认为“p是q的必要条件”,请判断两位同学的说法是否正确,并说明理由.18.已知函数f(x)=In+cos x﹣|x|.(Ⅰ)求证:函数f(x)在[0,+∞)上单调递减;(Ⅱ)若f(2x﹣3)+π+1+ln(2+3π2)<0,求x的取值范围.19.已知函数f(x)=lnx﹣sin(x﹣1),f′(x)为f(x)的导函数.证明:(1)f′(x)在区间(0,2)存在唯一极小值点;(2)f(x)有且仅有2个零点.20.已知函数f(x)=te2x+(t+2)e x﹣1,t∈R.(Ⅰ)当t=﹣1时,求f(x)的单调区间与极值;(Ⅱ)当t>0时,若函数g(x)=f(x)﹣4e x﹣x+1在R上有唯一零点,求t的值.21.已知函数f(x)=e x﹣x2﹣ax+b(e为自然对数的底数).(Ⅰ)若a≥1,判断f(x)极值点个数;(Ⅱ)若f(x)≥f′(x)在x∈[﹣1,1]上恒成立,求a+b的取值范围.22.设函数f(x)=lnx﹣a2x+2a(a∈R)(1)若函数f(x)在上递增,在上递减,求实数a的值.(2)讨论f(x)在(1,+∞)上的单调性;(3)若方程x﹣lnx﹣m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.23.已知函数f(x)=2x3﹣3(a﹣1)x2﹣6ax+a2+1.(Ⅰ)设﹣1≤a≤1,曲线y=f(x)在点(1,f(1))处的切线在y轴上的截距为b,求b的最小值;(Ⅱ)若f(x)只有一个零点x0,且x0<0,求a的取值范围.24.设函数f(x)=x﹣﹣alnx(a∈R,a>0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个极值点x1和x2,记过A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k.问:是否存在a,使k=2﹣a?若存在,求出a的值;若不存在,请说明理由.25.已知.(1)讨论函数f(x)的单调区间;(2)若f(x)存在极值且f(x)≥0,求实数a的取值范围;(3)求证:当x>1时,.26.已知函数f(x)=(ax+1)e x,a∈R(1)当a=1时,求函数f(x)的最小值.(2)当a=时,对于两个不相等的实数x1,x2,有f(x1)=f(x2),求证:x1+x2<2.导数函数综合应用参考答案与试题解析一.选择题(共6小题)1.定义在R上的函数y=f(x),满足f(4﹣x)=f(x),(x﹣2)f′(x)<0,若x1<x2,且x1+x2>4,则有(B)A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.不确定【解答】解:由题意f(4﹣x)=f(x),可得出函数关于x=2对称,又(x﹣2)f′(x)<0,得x>2时,导数为负,x<2时导数为正,即函数在(﹣∞,2)上是增函数,在(2,+∞)上是减函数又x1<x2,且x1+x2>4,下进行讨论若2<x1<x2,显然有f(x1)>f(x2)若x1<2<x2,有x1+x2>4可得x1>4﹣x2,故有f(x1)>f(4﹣x2)=f(x2)综上讨论知,在所给的题设条件下总有f(x1)>f(x2)2.定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x;记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰有两个零点,则实数k的取值范围是(C)A.[1,2)B.C.D.【解答】解:因为对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立,且当x∈(1,2]时,f(x)=2﹣x 所以f(x)=﹣x+2b,x∈(b,2b].由题意得f(x)=k(x﹣1)的函数图象是过定点(1,0)的直线,如图所示红色的直线与线段AB相交即可(可以与B点重合但不能与A点重合)所以可得k的范围为3.设函数f(x)是定义在实数集上的奇函数,在区间[﹣1,0)上是增函数,且f(x+2)=﹣f(x),则有(A)A.B.C.D.【解答】解:根据题意,函数f(x)满足f(x+2)=﹣f(x),当x=﹣时,有f()=﹣f(﹣)=f(),函数f(x)是定义在实数集上的奇函数,在区间[﹣1,0)上是增函数,则f(x)在区间(0,1]上是增函数,则有f()<f()<f(1),则有f()<f()<f(1),4.已知函数f(x)=,若函数y=f(x)+|x﹣1|﹣kx在定义域内有且只有三个零点,则实数k的取值范围是(A)A.[)B.[]C.[﹣)D.[﹣]【解答】解:函数y=f(x)+|x﹣1|﹣kx在定义域内有且只有三个零点,即为方程f(x)+|x﹣1|=kx在[﹣3,+∞)内有3个不等实根,可令g(x)=f(x)+|x﹣1|=,作出g(x)的图象(如右),直线y=kx,当k=0时,y=g(x)和y=0显然有3个交点,符合题意;当直线y=kx与y=x2+3x+1相切,可得x2+(3﹣k)x+1=0,△=(3﹣k)2﹣4=0,解得k=1(k=5舍去),由k=1时,y=g(x)和y=x有两个交点,可得0≤k<1时,符合题意;当k<0时,且直线y=kx经过点(﹣3,1)时,直线y=kx与y=g(x)有3个交点,此时k=﹣,由y=kx绕着原点旋转,可得﹣≤k<0,综上可得,k的范围是[﹣,1).5.设函数f(x)=,若对任意给定的y∈(2,+∞),都存在唯一的x∈R,满足f(f(x))=2a2y2+ay,则正实数a的最小值是(C)A.2B.C.D.4【解答】解:函数f(x)=的值域为R.∵f(x)=2x,(x≤0)的值域为(0,1];f(x)=log2x,(x>0)的值域为R.∴f(x)的值域为(0,1]上有两个解,要想f(f(x))=2a2y2+ay在y∈(2,+∞)上只有唯一的x∈R满足,必有f(f(x))>1 (2a2y2+ay>0).∴f(x)>2,即log2x>2,解得:x>4.当x>4时,x与f(f(x))存在一一对应的关系.∴问题转化为2a2y2+ay>1,y∈(2,+∞),且a>0.∴(2ay﹣1)(ay+1)>0,解得:y>或者y<﹣(舍去).∴≤2,得a.6.已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是(B)A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)【解答】解:当m≤0时,当x接近+∞时,函数f(x)=2mx2﹣2(4﹣m)x+1与g(x)=mx均为负值,显然不成立当x=0时,因f(0)=1>0当m>0时,若,即0<m≤4时结论显然成立;若,时只要△=4(4﹣m)2﹣8m=4(m﹣8)(m﹣2)<0即可,即4<m<8则0<m<8二.填空题(共1小题)7.已知函数f(x)=,若关于x的方程f(x)=3恰有两个互异的实数解,则实数a的取值范围是(﹣∞,6).【解答】解:函数f(x)=,当x≥1时,方程f(x)=3,可得lnx+1=3,解得x=e2,函数有一个零点;x<1时,函数只有一个零点,即x2﹣4x+a=3,在x<1时只有一个解,因为y=x2﹣4x+a ﹣3开口向上,对称轴为x=2,x<1时,函数是减函数,所以f(1)<3,可得﹣3+a<3,解得a<6.三.解答题(共19小题)8.已知函数f(x)=﹣alnx(a∈R).(1)讨论f(x)的单调性;(2)若存在实数x0=[1,e],使得f(x0)<0,求正实数a的取值范围.【解答】解:(1)由f(x)=﹣alnx(a∈R),得f′(x)=x﹣=(x>0).当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增;当a>0时,由f′(x)>0,得x>,由f′(x)<0,得0<x<.∴f(x)在(0,)上单调递减,在(,+∞)上单调递增;(2)由(1)知,当a>0时,f(x)在(0,)上单调递减,在(,+∞)上单调递增.①当,即0<a≤1时,f(x)在[1,e]上单调递增,>0,不合题意;②当1<<e,即1<a<e2时,f(x)在[1,]上单调递减,在[,e]上单调递增,由<0,解得e<a<e2;③当≥e,即a≥e2时,f(x)在[1,e]上单调递减,由<0,解得a≥e2.综上所述,a的取值范围为(e,+∞).9.已知函数f(x)=x2﹣(a+)x+lnx,其中a>0.(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处切线的方程;(Ⅱ)当a≠1时,求函数f(x)的单调区间;(Ⅲ)若a∈(0,),证明对任意x1,x2∈[,1](x1≠x2),<恒成立.【解答】(Ⅰ)解:当a=2时,f(x)=,f′(x)=,∴f′(1)=,∵f(1)=.∴切线方程为:y+2=(x﹣1),整理得:x+2y+3=0;(Ⅱ)f′(x)x﹣=(x>0),令f′(x)=0,解得:x=a或x=.①若0<a<1,,当x变化时,f′(x),f(x)的变化情况如表:∴f(x)在区间(0,a)和()内是增函数,在(a,)内是减函数;②若a>1,,当x变化时,f′(x),f(x)的变化情况如表:∴f(x)在区间(0,)和(a,+∞)内是增函数,在(,+∞)内是减函数;(Ⅲ)∵0<a<,∴f(x)在[,1]内是减函数,又x1≠x2,不妨设0<x1<x2,则f(x1)>f(x2),.于是等价于,即.令(x>0),∵g′(x)=在[,1]内是减函数,故g′(x)≤g′()=2﹣(a+).从而g(x)在[,1]内是减函数,∴对任意,有g(x1)>g(x2),即,∴当,对任意,恒成立.10.已知函数f(x)=lnx﹣ax2+(2﹣a)x.(1)若f′(1)=﹣6,求函数f(x)在(1,f(1))处的切线;(2)设a>0,证明:当0<x<时,f(+x)>f(﹣x);(3)若函数f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0.【解答】解:(1)函数f(x)的定义域为(0,+∞),∵f(x)=lnx﹣ax2+(2﹣a)x,∴f'(x)=﹣2ax+2﹣a==﹣.f′(﹣1)=a+1=﹣6,解得a=﹣7,则函数f(x)在(1,f(1))处的切线斜率为k=﹣6,切点为(1,16),则所求切线的方程为y﹣16=﹣6(x ﹣1),即为6x+y﹣22=0;(2)证明:设函数g(x)=f(+x)﹣f(﹣x),则g(x)=ln(1+ax)﹣ln(1﹣ax)﹣2ax,g′(x)=+﹣2a=,当x∈(0,)时,g′(x)>0,g(x)递增,而g(0)=0,即有g(x)>0,故当0<x<时,f(+x)>f(﹣x).(3)证明:当a≤0时,f′(x)>0恒成立,因此f(x)在(0,+∞)单调递增,即有函数y=f(x)的图象与x轴至多有一个交点,故a>0,从而f(x)的最大值为f(),且f()>0,不妨设A(x1,0),B(x2,0),0<x1<x2,则0<x1<<x2,由(2)得,f(﹣x1)=f(+﹣x1)>f(x1)=f(x2)=0,又f(x)在(,+∞)单调递减,∴﹣x1<x2,于是x0=,当x∈(,+∞)(a>0)时,f′(x)<0,则f′(x0)<0成立.11.已知a≠0,函数f(x)=|e x﹣e|+e x+ax(1)讨论f(x)的单调性(2)若对∀x∈(﹣,+∞),不等式f(x)≥恒成立,求a的取值范围(3)已知当a<﹣e时,函数f(x)有两个零点x1,x2(x1<x2),求证:f(x1x2)>a+e【解答】解:(1)函数f(x)=|e x﹣e|+e x+ax=,∴f′(x)=,当a>0时,f(x)在R上是增函数;当a<0时,x≥1时,令f′(x)>0,⇒e x>﹣⇒x>ln(﹣),①ln(﹣)≤1,即﹣2e≤a<0,f(x)在(﹣∞,1)是减函数;在(1,+∞)是增函数;②ln(﹣)>1,即a<﹣2e,f(x)在(﹣∞,ln(﹣))是减函数;在(ln(﹣),+∞)是增函数;(2)函数f(x)=|e x﹣e|+e x+ax=,若x∈(﹣,1),ax+e.∴可得﹣,当x∈[1,+∞)时,,即2a,设g(x)=,g′(x)=,所以g(x)在[1,+∞)上是减函数,所以g(x)max=g(1)=﹣e,所以a.综上.(3)证明:∵f(1)=a+e,∴不等式f(x1x2)>a+e转化为f(x1x2)>f(1),∵a<﹣e,∴f(1)=a+e<0,∴f(x)的两个零点x1<1<x2,∴,∴,∴x1x2=,令h(x)=,h′(x)=,令t(x)=e x﹣xe x﹣e,t′(x)=(1﹣x)e x<0,∴t(x)在(1,+∞)上是减函数,t(x)<t(1)=0,即h′(x)<0,h(x)在(1,+∞)是减函数,h(x)<h(1)=1,即x1x2<1,∵a<﹣e时,f(x)在(﹣∞,1)是减函数,∴f(x1x2)>a+e.12.已知函数f(x)=a(x﹣1)e x(a>0),g(x)=﹣cos x.(1)求函数f(x)的单调区间;(2)若对于任意的实数x1,x2∈[0,],(其中x1≠x2),都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|恒成立求实数a的取值范围.【解答】解:(1)函数f(x)的定义域为(﹣∞,+∞),f′(x)=a[e x+(x﹣1)e x]=ax•e x.当x=0时,f′(x)=0;当x<0时,f′(x)<0;当x>0时,f′(x)>0,所以函数f(x)的单调减区间为(﹣∞,0),单调增区间为(0,+∞).(2)不妨设x1<x2,因为g(x)在[0,]上是增函数,所以g(x1)<g(x2),即g(x1)﹣g(x2)<0,由(1)得f(x)在[0,]上是增函数,所以f(x1)<f(x2),即f(x1)﹣f(x2)<0.由题意,得f(x2)﹣f(x1)>g(x2)﹣g(x1),即f(x2)﹣g(x2)>f(x1)﹣g(x1).令h(x)=f(x)﹣g(x)=a(x﹣1)e x+cos x在[0,]上是增函数,则h′(x)=axe x﹣sin x≥0对任意的x恒成立.设F(x)=(0),则F(x)≤0恒成立,.令,则,从而G(x)在[0,]上是减函数,所以,即.当a≥1时,F(x)≤0′,当且仅当a=1,x=0时取等号,所以F(x)在上是减函数,所以当x时,F(x)≤F(0)=0,故a≥1满足题意.当0<a<1时,F′(0)=1﹣a>0,F.由零点存在定理,存在,使得F′(x0)=0.因为G(x)在(0,)上是减函数,所以F′(x)=G(x)﹣a在(0,)上是减函数,所以0<x<x0时,F′(x)>F′(x0)=0,所以F(x)在(0,x0)上是增函数,所以当x∈(0,x0)(这里(0,x0)⊊)时,F(x)>F(0)=0.所以0<a<1不满足题意,综上,实数a的取值范围是[1,+∞).13.已知函数f(x)=a+2lnx﹣ax(a>0),(1)求f(x)的最大值φ(a);(2)若f(x)≤0恒成立,求a的值;(3)在(2)的条件下,设g(x)=在(a,+∞)上的最小值为m,求证:﹣11<f(m)<﹣10【解答】解:(1)∵f(x)=a+2lnx﹣ax(a>0),∴f′(x)=(a>0),由f′(x)>0得0<x<;f′(x)<0得x>;所以f(x)在(0,)上单调递增,在(,+∞)上单调递减.故f(x)max=f()=a﹣2﹣2lna+2ln2即φ(a)=a﹣2﹣2lna+2ln2(a>0)(2)要使f(x)≤0 成立必须φ(a)=a﹣2﹣2lna+2ln2≤0.因为φ′(a)=,所以当0<a<2 时,φ′(a)<0;当a>2 时,φ′(a)>0.所以φ(a)在(0,2)上单调递减,在(2,+∞)上单调递增.∴φ(a)min=φ(2)=0,所以满足条件的a只有2,即a=2.(3)由(2)知g(x)=,∴g′(x)=令u(x)=x-2lnx﹣4,则u′(x)=>0,u(x)是(2,+∞)上的增函数;又u(8)<0,u(9)>0,所以存在x0∈(8,9)满足u(x0)=0,即2lnx0=x0﹣4,且当x∈(2,x0)时,u(x)<0,g′(x)<0;当x∈(x0,+∞)时,u(x)>0,g′(x)>0;所以g(x)在(2,x0)上单调递减;在(x0,+∞)上单调递增.所以g(x)min=g(x0)===x0,即m=x0.所以f(m)=f(x0)=2+2lnx0﹣2x0=x0﹣2∈(﹣11,﹣10),即﹣11<f(m)<﹣10.14.已知函数f(x)=(x2﹣mx)e x(e为自然对数的底数).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若m=2,2n+1≥0,证明:关于x的不等式nf(x)+1≥e x在(﹣∞,0]上恒成立.【解答】解:(Ⅰ)依题意x∈R,f′(x)=(x2﹣mx+2x﹣m)e x=[x2+(2﹣m)x﹣m]e x令y=x2+(2﹣m)x﹣m,则△=(2﹣m)2+4m=4+m2>0令f′(x)=0,则x2+(2﹣m)x﹣m=0解得x=结合二次函数图象可知:∴f(x)的单调递增区间为(﹣∞,)和(,+∞)单调递减区间为(,)(Ⅱ)令g(x)=nf(x)+1﹣e x=n(x2﹣2x)e x﹣e x+1当x∈(﹣∞,0]时,x2﹣2x≥0而2n+1≥0⇔n≥﹣故n(x2﹣2x)e x≥﹣(x2﹣2x)e x∴g(x)≥﹣(x2﹣2x)e x﹣e x+1令h(x)=﹣(x2﹣2x)e x﹣e x+1,x∈(﹣∞,0]∴h′(x)=﹣x2e x≤0故函数h(x)在(﹣∞,0]上单调递减,则h(x)≥h(0)=0则任意的x∈(﹣∞,0],g(x)≥h(x)≥0∴关于x的不等式nf(x)+1≥e x在(﹣∞,0]上恒成立.15.已知函数f(x)=(其中e是自然对数的底数),g(x)=1﹣ax2(a∈R).(Ⅰ)求函数f(x)的极值;(Ⅱ)设h(x)=f(x)﹣g(x),若a满足0<a<且ln2a+1>0,试判断方程h(x)=0的实数根个数,并说明理由.【解答】解:(Ⅰ)易知,当x<0时,f′(x)>0,此时f(x)单调递增;当x>0时,f′(x)<0,此时f(x)单调递减,所以f(x)极大值=f(0)=1,但无极小值.(Ⅱ)因为,所以.导数因为,所以,于是,令h′(x)=0,此时,当x<0时,f′(x)<0,此时f(x)单调递减;当时,f′(x)>0,此时f(x)单调递增;所以.因为,所以,,又函数h(x)在R上连续,故h(x)有一个零点0,且在上也有一个零点;综上,方程h(x)=0有2个实数根.16.已知函数f(x)=ax2﹣lnx.(1)求函数f(x)的单调区间;(2)若函数f(x)有两个零点x1,x2,求a的取值范围,并证明:x1•x2>1.【解答】解:(1)∵函数f(x)=ax2﹣lnx.定义域为(0,+∞)∴f′(x)=2ax﹣=①当a≤0时,f′(x)=<0恒成立,∴f(x)在(0,+∞)上为减函数.②当a>0时,令f′(x)=<0,解得0<x<令f′(x)=>0,解得x>∴f(x)=ax2﹣lnx在(0,)上为减函数,在(,+∞)上为增函数综上a≤0时f(x)的单调减区间为(0,+∞)a>0时f(x)的单调减区间为(0,),增区间是(,+∞).(2)∵函数f(x)有两个零点x1,x2,由(1)知x=是f(x)的最小值点,∴f(x)在(0,+∞)上的最小值f()=a•()2﹣ln<0时,f(x)有两个零点x1,x2∴解得0<a<要证x1•x2>1⇔要证lnx1•x2>ln1⇔要证lnx1+lnx2>0∵函数f(x)有两个零点x1,x2,不防设0<x1<<x2则f(x1)=ax12﹣lnx1=0 ①f(x2)=ax22﹣lnx2=0 ②①+②得:lnx1+lnx2=a(x12+x22),而a(x12+x22)>0,∴lnx1+lnx2>0即x1•x2>1得证.17.己知p:实数m使得函数f(x)=lnx(m﹣2)x2﹣x在定义域内为增函数:q:实数m使得函数g(x)=mx2+(m+1)x﹣5在R上存在两个零点x1,x2,且x1<1<x2(1)分别求出条件p,q中的实数m的取值范围;(2)甲同学认为“p是q的充分条件”,乙同学认为“p是q的必要条件”,请判断两位同学的说法是否正确,并说明理由.【解答】解:(1)p:实数m使得函数f(x)=lnx(m﹣2)x2﹣x在定义域内为增函数:则有在R上恒成立.∴m﹣2=()2﹣∴m.q:实数m使得函数g(x)=mx2+(m+1)x﹣5在R上存在两个零点x1,x2,且x1<1<x2则有m•f(1)<0⇒m(m﹣2)<0⇒0<m<2.(2)由(1)可得p:∴m.,q:0<m<2.∵{m|m}⊈{|0<m<2}{m|m}⊉{|0<m<2}∴p是q的既不充分也不必要条件.故两位同学都错.18.已知函数f(x)=In+cos x﹣|x|.(Ⅰ)求证:函数f(x)在[0,+∞)上单调递减;(Ⅱ)若f(2x﹣3)+π+1+ln(2+3π2)<0,求x的取值范围.【解答】(1)证明:∵函数f(x)=In+cos x﹣|x|.∴x∈[0,+∞)时f(x)=﹣ln(2+3x2)+cos x﹣x ∴f′(x)=﹣sin x﹣1,∴x∈[0,+∞)时f′(x)=﹣sin x﹣1<0,∴函数f(x)在[0,+∞)上单调递减;(2)∵函数f(x)=In+cos x﹣|x|.定义域为R∴f(﹣x)=)=﹣ln(2+3x2)+cos(﹣x)﹣|﹣x|=﹣ln(2+3x2)+cos x﹣x=f(x)∴f(x)是偶函数.由(1)知f(x)在[0,+∞)上单调递减;∴f(x)在(﹣∞,0]上单调递增;又f(2x﹣3)+π+1+ln(2+3π2)<0⇔f(2x﹣3)<f(π)∴|2x﹣3|>π⇔2x﹣3>π或2x﹣3<﹣π解得x>或x<∴x的取值范围为:(﹣∞,)∪(,+∞)19.已知函数f(x)=lnx﹣sin(x﹣1),f′(x)为f(x)的导函数.证明:(1)f′(x)在区间(0,2)存在唯一极小值点;(2)f(x)有且仅有2个零点.【解答】解:(1)令g(x)=f′(x)=,,当x∈(0,1)时,g′(x)<0恒成立,当x∈(1,2)时,>0.∴g′(x)在(1,2)递增,.故存在a∈(1,2)使得,x∈(1,a)时g′(x)<0,x∈(a,2)时,g′(x)>0.综上,f′(x)在区间(0,2)存在唯一极小值点x=a.(2)由(1)可得x∈(0,a)时,g′(x)<0,g(x)单调递减,x∈(a,2)时,g′(x)<0,g(x)单调递增.且g(1)=0,g(2)=.故g(x)的大致图象如下:当x∈(2,3)时,sin(x﹣1)∈(sin1,sin2),sin(x﹣1)>sin30°∴此时g′(x)>0,g(x)单调递增,而g(3)=﹣cos2>0.故存在∈(2,3),使得g(m)=0故在x∈(0,3)上,g(x)的图象如下:综上,x∈(0,1)时,g(x)<0,x∈(1,m)时,g(x)<0,x∈(m,3)时,g(x)>0.∴f(x)在(0,1)递增,在(1,m)递减,在(m,3)递增,而f(1)=0,f(3)=ln3﹣sin2>0,又当x>3时,lnx>1,f(x)>0恒成立.故在(0,+∞)上f(x)的图象如下:∴f(x)有且仅有2个零点.20.已知函数f(x)=te2x+(t+2)e x﹣1,t∈R.(Ⅰ)当t=﹣1时,求f(x)的单调区间与极值;(Ⅱ)当t>0时,若函数g(x)=f(x)﹣4e x﹣x+1在R上有唯一零点,求t的值.【解答】解:(Ⅰ)当t=﹣1时,f(x)=﹣e2x+e x﹣1,则f′(x)=﹣2e2x+e x=e x(1﹣2e x)令f′(x)=0,解得x=﹣ln2∴f(x)的单调递增区间是(﹣∞,﹣ln2),单调递减区间是(﹣ln2,+∞)∴f(x)的极大值是f(﹣ln2)=﹣,无极小值.(Ⅱ)当t>0时,g(x)=f(x)﹣4e x﹣x+1=te2x+(t﹣2)e x﹣x∴g′(x)=2te2x+(t﹣2)e x﹣1=(te x﹣1)(2e x+1)=0,解得x=﹣lnt∴g(x)的单调递减区间是(﹣∞,﹣lnt),单调递增区间是(﹣lnt,+∞)∴g(x)的极小值是g(﹣lnt)∴g(﹣lnt)=0,即lnt﹣+1=0时,能满足题意.令F(t)=lnt﹣+1,则F′(t)=+>0∴F(t)=lnt﹣+1在(0,+∞)上单调递增,唯有t=1时,F(1)=0∴t=121.已知函数f(x)=e x﹣x2﹣ax+b(e为自然对数的底数).(Ⅰ)若a≥1,判断f(x)极值点个数;(Ⅱ)若f(x)≥f′(x)在x∈[﹣1,1]上恒成立,求a+b的取值范围.【解答】解:(Ⅰ)∵f′(x)=e x﹣x﹣a,x∈R,f″(x)=e x﹣1可得函数f′(x)在(﹣∞,0)上单调递减;在(0,+∞)单调递增,f′(x)min=f′(0)=1﹣a当a>1时,1﹣a<0,且f′(﹣a)=e﹣a>0,取b>0,使得b>ln(b+a),∴f′(b)=e b﹣(b+a)>b+a﹣(b+a)=0即函数f′(x)的图象与x轴有两个交点,此时f(x)极值点个数为2,;当a=1时,f′(x)≥0,此时f(x)极值点个数为0;(Ⅱ)f(x)≥f′(x)在x∈[﹣1,1]上恒成立⇔e x﹣x2﹣ax+b≥e x﹣x﹣a在x∈[﹣1,1]上恒成立⇔a+b≥在x∈[﹣1,1]上恒成立.令h(x)=①当1﹣a≥0时,h(x).∴a+b②当1﹣a<0时,h(x)max=h(1)=a﹣综上得,a+b22.设函数f(x)=lnx﹣a2x+2a(a∈R)(1)若函数f(x)在上递增,在上递减,求实数a的值.(2)讨论f(x)在(1,+∞)上的单调性;(3)若方程x﹣lnx﹣m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.【解答】解:(1)由于函数函数f(x)在上递增,在上递减,由单调性知,是函数的极大值点,无极小值点.所以∵故,经验证成立.(2)∵f(x)=lnx﹣a2x+2a,∴,①当a=0时,在(1,+∞)上单调递增.②当a2≥1,即a≤﹣1或a≥1时,f'(x)<0,∴f(x)在(1,+∞)上单调递减.③当﹣1<a<1且a≠0时,由f'(x)=0得.令f'(x)>0得;令f'(x)<0得.∴f(x)在上单调递增,在上单调递减.综上,当a=0时,f(x)在(1,+∞)上递增;当a≤﹣1或a≥1时,f(x)在(1,+∞)上递减;当﹣1<a<1且a≠0时,f(x)在上递增,在上递减.(3)令h(x)=x﹣lnx(x>0),g(x)=m,当x∈(0,1)时,,h(x)=x﹣lnx(x>0)单调递减;当x∈(1,+∞)时,,h(x)=x﹣lnx(x>0)单调递增;故h(x)在x=1处取得最小值,h(1)=1又当x→0,h(x)→+∞;x→+∞,h(x)→1,∴m∈(1,+∞)不妨设x1<x2,则有0<x1<1<x2,,要证x1x2<1⇔即证⇔即证h(x1)>h()∵h(x1)=h(x2)=m,∴=令,∴p(x)在(1,+∞)上单调递增,故p(x)>p(1)=0即>0,∴∴x1x2<1 得证23.已知函数f(x)=2x3﹣3(a﹣1)x2﹣6ax+a2+1.(Ⅰ)设﹣1≤a≤1,曲线y=f(x)在点(1,f(1))处的切线在y轴上的截距为b,求b的最小值;(Ⅱ)若f(x)只有一个零点x0,且x0<0,求a的取值范围.【解答】解:(Ⅰ)f(x)=2x3﹣3(a﹣1)x2﹣6ax+a2+1的导数为f′(x)=6x2﹣6(a﹣1)x﹣6a,f(x)在点(1,f(1))处的切线斜率为6﹣6(a﹣1)﹣6a=12﹣12a,切点为(1,6﹣9a+a2),可得切线方程为y﹣(6﹣9a+a2)=(12﹣12a)(x﹣1),由x=0,可得b=a2+3a﹣6=(a+)2﹣,由﹣1≤a≤1,可得b在[﹣1,1]上递增,可得b的最小值为﹣8;(Ⅱ)若f(x)只有一个零点x0,且x0<0,可得f(0)>0,f′(x)=6x2﹣6(a﹣1)x﹣6a,由f′(x)=0,可得x=﹣1或x=a,由f(﹣1)<0,且f(a)<0,即为a2+3a+2<0,且a3+2a2﹣1>0,解得<a<﹣1.24.设函数f(x)=x﹣﹣alnx(a∈R,a>0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个极值点x1和x2,记过A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k.问:是否存在a,使k=2﹣a?若存在,求出a的值;若不存在,请说明理由.【解答】解:(1)显然定义域为(0,+∞),∴f′(x)=1+﹣=,(a∈R,a>0).令g(x)=x2﹣ax+2,其判别式△=a2﹣8,①当0<a时,△≤0,f′(x)≥0,f(x)在(0,+∞)上单调递增,②当a时,△>0,令f′(x)=0,得x1=,x2=,∵在(0,x1)上f′(x)>0,在(x1,x2)上f′(x)<0,在(x2,+∞)上f′(x)>0,∴f(x)在(0,x1),(x2,+∞)上为增函数,在(x1,x2)上为减函数.(2)由(1)知,a,∴f(x1)﹣f(x2)=(x1﹣x2)+﹣a(lnx1﹣lnx2),∴k==1+﹣a,∵x1x2=2,∴k=2﹣a,假设存在a,使k=2﹣a,则2﹣a=2﹣a,∴=1,∴lnx1﹣lnx2=x1﹣x2,即x2﹣﹣2lnx2=0(•),其中x2>1,令h(t)=t﹣﹣2lnt,∴h′(t)=1+﹣==>0,∴h(t)在(1,+∞)上是增函数,∴h(t)>h(1)=0,与(•)矛盾.故不存在a使k=2﹣a成立.25.已知.(1)讨论函数f(x)的单调区间;(2)若f(x)存在极值且f(x)≥0,求实数a的取值范围;(3)求证:当x>1时,.【解答】解:(1)显然定义域为(0,+∞),∵f′(x)=x﹣=,①当a≤0时,f′(x)>0,函数f(x)在(0,+∞)上是单调递增函数,②当a>0时,令f′(x)=0,得x=,∵在(0,)上f′(x)<0,∴f(x)是单调递减函数;∵在(,+∞)上f′(x)>0,∴f(x)是单调递增函数.(2)∵f(x)存在极值且f(x)≥0,∴a>0,∴只需f(x)min≥0,由上知f(x)min=f()=a﹣alna=a(1﹣lna)≥0,∴a∈(0,e](3)设F(x)=,∴F′(x)=2x2﹣x﹣=,∵x>1,∴F′(x)>0,即F(x)在(1,+∞)上为增函数,∴F(x)>F(1)=>0,∴F(x)>0在(1,+∞)上恒成立,故当x>1时,.26.已知函数f(x)=(ax+1)e x,a∈R(1)当a=1时,求函数f(x)的最小值.(2)当a=时,对于两个不相等的实数x1,x2,有f(x1)=f(x2),求证:x1+x2<2.【解答】解:(1)当a=1,f(x)=(x+1)e x,∴f′(x)=(x+2)e x,∴f(x)在(﹣∞,﹣2)上单调递减,在(﹣2,+∞)上单调递增,∴f(x)min=f(﹣2)=﹣.(2)当a=时,f(x)=(﹣x+1)e x,对于两个不相等的实数x1,x2,有f(x1)=f(x2),∵f′(x)=(1﹣x)e x,∴f(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,不妨设x1<1<x2,令g(x)=f(x)﹣f(2﹣x),(x<1)∴g′(x)=(1﹣x)(e x﹣e2﹣x),当x<1时,1﹣x>0,x<2﹣x,e x﹣e2﹣x<0,∴g′(x)<0,∴g(x)在(﹣∞,1)单调递减,∴g(x)>g(1)=f(1)﹣f(1)=0,即f(x)﹣f(2﹣x)>0,不妨设x1<1<x2,则2﹣x1>1,由以上可知f(x1)>f(2﹣x1),∵f(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,∵f(x1)=f(x2),∴f(x2)>f(2﹣x1),∵x2>1,2﹣x1>1,∵f(x)在(1,+∞)上单调递减,∴x2<2﹣x1,∴x1+x2<2。
2021届高三数学(文理通用)一轮复习题型专题训练:导数的综合应用--证明不等式(含答案)
《导数的综合应用—证明不等式》考查内容:主要涉及利用导数证明不等式 注意:涉及到复合函数求导问题一般为理科内容一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知1201x x ,则( )A .1221ln ln x x x x > B .1221ln ln x x x x < C .2112ln ln x x x x > D .2112ln ln x x x x <2.当时,有不等式 ( )A .1x e x <+B .1x e x >+C .当0x >时1x e x <+,当0x <时1x e x >+D .当0x <时1x e x <+,当0x >时1x e x >+3.已知非零实数a ,x ,y 满足2211log log 0a a x y ++<<,则下列关系式恒成立的是( )A .221111x y <++ B .y x x y x y+>+ C .1111xya a ⎛⎫⎛⎫< ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭D .x y y x >4.已知函数()=ln 1f x x ax +-有两个零点12,x x ,且12x x <,则下列结论错误的是( ) A .01a << B .122x x a +<C .121x x ⋅>D .2111x x a->-5.已知01a b <<<,则下列不等式一定成立的是( )A .ln ln a b a b> B .ln 1ln ab < C .ln ln a a b b < D .a b a b > 6.当01x <<时,()ln xf x x=,则下列大小关系正确的是( )A .()()()22fx f x f x <<B .()()()22f xf x f x <<C .()()()22f x f x f x <<D .()()()22f xf x f x <<7.若ln22a =,ln33b =,ln66c =,则( ) A .a b c <<B .c b a <<C .c a b <<D .b a c <<8.下列不等式中正确的是( )①sin ,(0,)x x x <∈+∞;②1,xe x x R ≥+∈;③ln ,(0)x x x <∈+∞,. A .①③B .①②③C .②D .①②9.若[)0,x ∈+∞,则下列不等式恒成立的是 ( ) A .21x e x x ≤++ B211124x x ≤-+C .21cos 12x x ≥-D .()21ln 18x x x +≥-10.若0m n e <<<,则下列不等式成立的是( )A .m n e e m n <B .m n e e m n>C .ln ln n mn m<D .ln ln n mn m>11.设a 为常数,函数()()2ln 1f x x x ax =--,给出以下结论: (1)若2a e -=,则()f x 存在唯一零点 (2)若1a >,则()0f x <(3)若()f x 有两个极值点12,x x ,则1212ln ln 1x x x x e-<- 其中正确结论的个数是( ) A .3B .2C .1D .012.已知函数ln ()1x xf x x=-+在0x x =处取得最大值,则下列选项正确的是( ) A .()0012f x x =< B .()0012f x x =>C .()0012f x x ==D .()0012f x x <<二.填空题13.若0<x 1<x 2<1,且1<x 3<x 4,下列命题:①3443ln ln x x ee x x ->-;②2121ln ln x x e e x x ->-;③3232x x x e x e <;④1221x xx e x e >;其中正确的有___14.已知函数,当时,给出下列几个结论:①;②;③;④当时,.其中正确的是 (将所有你认为正确的序号填在横线上).15.若01a b <<<,e 为自然数()2.71828≈e ,则下列不等式:①11++>a b b a ; ②ln ln ->-a b e e a b ;③()()log 1log 1+>+a b a b ,其中一定成立的序号是___ 16.已知函数2()ln f x x x x =+,且0x 是函数()f x 的极值点.给出以下几个命题: ①010x e <<;②01x e>;③00()0f x x +<;④00()0f x x +> 其中正确的命题是__________.(填出所有正确命题的序号) 三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.利用函数的单调性(利用导数),证明下列不等式: (1)sin tan <<x x x ,0,2x π⎛⎫∈ ⎪⎝⎭;(2)1x e x >+,0x ≠.18.已知函数2()2ln f x x x =-.(1)求函数()f x 的单调区间;(2)求证:当2x >时,()34f x x >-.19.已知函数()ln 1a x bf x x x=++曲线()y f x =在点()()1,1f 处的切线方程为230x y +-=.(1)求,a b 的值;(2)证明:当0x >且1x ≠时,()ln 1xf x x >-.20.已知函数f (x )=ln(x +1)-x . ⑴求函数f (x )的单调递减区间; ⑵若1x >-,证明:11ln(1)1x x x -≤+≤+.21.已知函数()21ln(0).f x ax x a x=-+> (1)若()f x 是定义域上的单调函数,求a 的取值范围;(2)若()f x 在定义域上有两个极值点12,x x ,证明:()()1232ln2.f x f x +>-22.已知函数()ln ()x f x e a x a R =+∈(1)当1a =时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)设0x 是()f x 的导函数()f x '的零点,若e a -<<0,求证:()00x f x e >.23.已知函数()1ln f x x x x=--. (1)判断函数()f x 的单调性;(2)若()f x 满足()()()1212f x f x x x ''=≠,证明:()()1232ln 2f x f x +>-.《导数的综合应用—证明不等式》解析1.【解析】设()ln f x x x =,则()'ln 1f x x =+,由()'0f x >,得1x e>,所以函数()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增;由()'0f x <,得10x e <<,函数()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,故函数()f x 在()0,1上不单调,所以()1f x 与()2f x 的大小无法确定,从而排除A ,B ;设()ln x g x x=,则()21ln 'xg x x -=,由()'0g x >,得0x e <<,即函数()f x 在()0,e 上单调递增,故函数()f x 在()0,1上单调递增,所以()()12g x g x <,即1212ln ln x x x x <,所以2112ln ln x x x x <.故选:D 2.【解析】对于函数()1xf x e x =--其导数()1xf x e '=-,当0x >时()0f x '>,当0x <时,()0f x '< ()()min 00f x f ∴==∴当时()01xf x e x >∴>+3.【解析】依题意非零实数a ,x ,y 满足2211log log 0a a x y ++<<,则20,11a a ≠+>,所以01x y <<<.不妨设11,42x y ==, 则2211614161616,,175201720111142===>⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以A 选项错误; 315535,2,422444y x x y x y +=+=+==<,所以B 选项错误;由于1011a <<+,根据指数函数的性质可知:11421111a a ⎛⎫⎛⎫> ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭,所以C 选项错误.依题意01x y <<<,要证明x y y x >,只需证明ln ln x yy x >,即证ln ln x y y x >,即证ln ln y x y x >,构造函数()()ln 01xf x x x=<<,()'21ln x f x x-=,由于01x <<,所以ln 0x <,所以()'21ln 0x f x x -=>在区间()0,1上恒成立,所以()f x 区间()0,1上递增,所以ln ln y xy x>,所以x y y x >.故D 选项正确.故选:D4.【解析】因为函数()=ln 1f x x ax +-,所以11()'-=-=axf x a x x, 当a≤0时,()0,f x '>所以f(x)在(0,+∞)上单调递增,所以不可能有两个零点.当a>0时,10x a <<时,()0f x '>,函数f(x)单调递增,1x a>时,()0f x '<, 函数f(x)单调递减.所以max 11()()ln .f x f aa== 因为函数f(x)有两个零点,所以1ln0,ln 0,ln 0,0 1.a a a a>∴->∴<∴<< 又111()0,(1)10, 1.a f f a x e e e =-<=->∴<<又111210,.x x a a a<<∴->令2221()()()ln()()ln (0)g x f x f x x a x x ax x a a a a=--=----+<≤则212()11()20.21()a x a g x a x x x x a a-=-+=<--' 所以函数g(x)在1(0,)a 上为减函数,11()()g x g a∴>=0,又1()=0f x ,11111222()ln()()1()()0,f x x a x f x g x a a a∴-=---+-=>又2()0f x =,∴212x x a >-,即1222x x a+>>.故答案为B5.【解析】对A ,令()ln x f x x=,'2ln 1()(ln )x f x x -=,当'()00f x x e <⇒<<,∴()f x 在(0,)e 单调递减,∴()()f a f b >,即ln ln a ba b >,故A 正确; 对B ,01a b <<<,∴ln ln 0a b <<,∴ln 1ln ab>,故B 错误; 对C ,令()ln f x x x ='()ln 1f x x ⇒=+,当10x e<<时,'()0f x <;当1x e >时,'()0f x >,∴()f x 在1(0,)e 单调递减,在1(,)e +∞单调递增,显然当1b e=时,ln ln a a b b >,故C 错误;对D ,ln ln a b a a b b a b ⇔>>,由C 选项的分析,当1a e=时,ln ln a a b b <,故D 错误;故选:A.6.【解析】根据01x <<得到201x x <<<,而()21ln 'xf x x-=, 所以根据对数函数的单调性可知01x <<时,1ln 0x ->, 从而可得()'0f x >,函数()f x 单调递增,所以()()()210f xf x f <<=,而()222ln 0x f x x ⎛⎫=> ⎪⎝⎭,所以有()()()22f x f x f x <<.故选D.7.【解析】设ln ()xf x x=,则21ln ()x f x x -'=,所以()f x 在(0,)e 上递增,在(,)e +∞上递减;即有(6)(4)(3)f f f <<,所以ln6ln4ln2ln36423<=<,故c a b <<.故选:C8.【解析】对于①:令sin ,(0,)y x x x =-∈+∞,则'cos 10y x =-≤恒成立, 则sin ,(0,)y x x x =-∈+∞是减函数,所以有0y <恒成立, 所以sin ,(0,)x x x <∈+∞成立,所以①正确;对于②:1,xe x x R ≥+∈,令1xy e x =--,'e 1x y =-, 当0x <时,'0y <,当0x >时,'0y >,所以函数1x y e x =--在(,0)-∞上是减函数,在(0,)+∞上是增函数,所以在0x =处取得最小值,所以0010y e ≥--=,所以1,xe x x R ≥+∈成立,所以②正确;对于③,ln x x <,(0,)x ∈+∞,令ln y x x =-,有11'1x y x x-=-=, 所以有当01x <<时,'0y >,当1x >时,'0y <,所以函数ln y x x =-在1x =时取得最大值,即ln 010y x x =-≤-<, 所以ln x x <,(0,)x ∈+∞恒成立,所以③正确; 所以正确命题的序号是①②③,故选B.9.【解析】对于A ,分别画出2,1x y e y x x ==++在[)0,+∞上的大致图象如图,知21x e x x ≤++不恒成立,排除A ;对于B ,令()()252111,'24x x f x x x f x -⎫=-+=⎪⎭,所以20,,5x ⎡⎤∈⎢⎥⎣⎦()()'0,f x f x <为减函数,2,5x ⎛⎫∈+∞ ⎪⎝⎭,()()'0,f x f x >为增函数,所以()f x 最小值为21,5f B ⎛⎫=<⎪⎝⎭错,排除B ;对于D ,当4x =时,221ln 5ln 244,8e D <==-⨯错,排除D ,故选C.10.【解析】构造函数()()()21,xxx e e f x f x x x -='=,函数在()0,1上单调递减,在()1,+∞上单调递增,因为0m n e <<<,当m 和n 在不同单调区间时,函数值大小不能确定,故AB 不正确;构造函数()()2ln 1ln ,x xf x f x x x -='=,函数在()()0,,,e e +∞,0m n e <<<故ln ln n mn m>.故答案为:D. 11.【解析】(1)若函数()f x 存在零点,只需方程()2ln 10x x ax --=有实根,即方程ln 1x a x -=有实根,令ln 1()x g x x -=,则只需函数ln 1()x g x x -=图像与直线y a =有交点即可.又22ln ()x g x x -'=,由22ln ()0x g x x -'=>可得20x e <<;由22ln ()0x g x x-'=<可得2x e >; 所以函数ln 1()x g x x-=在2(0,)e 上单调递增,在2(,)e +∞上单调递减, 故22max ()()g x g e e -==,因此,当2a e -=时,直线y a =与ln 1()x g x x-=图像仅有一个交点,即原函数只有一个零点,所以(1)正确;(2)由(1)可知,当1a >时,2ln 1()1x g x e a x--=≤<<在(0,)+∞上恒成立, 即2()()0f x g x a x=-<在(0,)+∞上恒成立,即()0f x <在(0,)+∞上恒成立;故(2)正确;(3)因为()()2ln 1f x x x ax =--,所以()ln 2f x x ax '=-,若()f x 有两个极值点12,x x ,则1122ln 20ln 20x ax x ax -=⎧⎨-=⎩,所以1212ln ln 2x x a x x -=-, 又由()f x 有两个极值点,可得方程ln 20x ax -=有两不等实根,即方程ln 2xa x=有两不等式实根,令ln ()x h x x =,则1ln ()xh x x-'=, 由1ln ()0x h x x -'=>得0x e <<;由1ln ()0xh x x -'=<得x e >; 所以函数ln ()xh x x =在(0,)e 上单调递增,在(,)e +∞上单调递减,所以max 1()h x e =,又当1x <时,ln ()0x h x x =<;当1x >时,ln ()0xh x x =>; 所以方程ln 2x a x =有两不等式实根,只需直线2y a =与函数ln ()xh x x=的图像有两不同交点,故102a e<<;所以1212ln ln 1x x x x e -<-,即(3)正确.故选A 12.【解析】函数的定义域为()0,∞+,而()()2ln 11x x f x x ++'=-+,令()ln 1h x x x =---,则()h x 在()0,∞+上单调递减, 且()221133110,ln 2ln 02222h eh e e -⎛⎫=->=-<-=-< ⎪⎝⎭,010,,2x ⎛⎫∴∃∈ ⎪⎝⎭使()00h x =,从而()f x 在()00,x 上单调递增,在()0,x +∞上单调递减,()f x 在0x x =处取得最大值,00ln 10x x ∴++=,()0000000ln 1ln 1,12x x x x f x x x ∴=--∴=-=<+.故选:A13.【解析】令()()ln 0x f x e x x =->,则()1x f x e x'=-, 易知当()0,x ∈+∞时,()f x '单调递增,由131303f e ⎛⎫'=-< ⎪⎝⎭,()110f e '=->,则存在01,13x ⎛⎫∈ ⎪⎝⎭使得()00f x '=,∴当()00,x x ∈时,()0f x '<,()f x 单调递减;当()0,x x ∈+∞时,()0f x '>,()f x 单调递增;1201x x ,∴当02x x =时,()()21f x f x <即2121ln ln x x e x e x -<-,∴此时2121ln ln x x e e x x -<-,故②错误;341x x <<,∴()()43f x f x >即3443ln ln x x e x e x ->-,∴3443ln ln x x e e x x ->-,故①正确;令()()0xe h x x x =>,()()21x e x h x x -'=, ∴当()0,1x ∈时,()0h x '<,()h x 单调递减;当()1,x ∈+∞时,()0h x '>,()h x 单调递增;2301x x <<<,∴()2h x 与()3h x 的大小无法确定即23x x e 、32x x e 的大小无法确定,故③错误;121x x ,∴()()21h x h x <即2121x x e e x x <,∴1221x x x e x e >,故④正确.故答案为:①④.14.【解析】因为,所以,可知(0,1e)递减, (1e,+∞)递增,故①错误;令,所以'()ln g x x =,可知在(0,1)上递减,(1,+∞)上递增,故②错;令,所以h (x )在(0,+∞)上递增,所以,故③正确;当时,可知,又因为f (x )在(1e,+∞)递增, 设111()()2()()x xf x xf x x f x ϕ=-+1'()()'()2()x f x xf x f x ϕ∴=+-112ln 2ln 0x x x x x =+->,又因为f (x )在(1e ,+∞)递增,所以1x x >时,1()()f x f x >即11ln ln x x x x >,所以1x x >时,'()0x ϕ>,故()x ϕ为增函数,所以21()()x x ϕϕ>,所以2222111()()2()()x x f x x f x x f x ϕ=-+1()0x ϕ>=,故④正确.15.【解析】对于①若11++>a b b a 成立.两边同时取对数可得11ln ln a b b a ++>,化简得()()1ln 1ln a b b a +>+,因为01a b <<<, 则10,10a b +>+>,不等式两边同时除以()()11a b ++可得ln ln 11b ab a >++ 令()ln 1xf x x =+,()0,1x ∈,则()()()()22111ln 1ln '11x x x x x f x x x +-+-==++ 当()0,1x ∈时, 11ln 0x x+->,所以()'0f x > 即()ln 1xf x x =+在()0,1x ∈内单调递增 所以当01a b <<<时()()f b f a >,即ln ln 11b ab a >++,所以11++>a b b a ,故①正确 对于②若ln ln ->-a b e e a b ,化简可得ln ln a b e a e b ->-,令()ln xg x e x =-,()0,1x ∈,则()()211',''xx g x e g x e x x=-=+, 由()''0g x >可知()1'xg x e x=-在()0,1x ∈内单调递增, 而()()'0,'110g g e →-∞=->, 所以()1'xg x e x=-在()0,1x ∈内先负后正, 因而()ln xg x e x =-在()0,1x ∈内先递减,再递增,所以当01a b <<<时无法判断,ln a e a -与ln b e b -的大小关系.故②错误.对于③,若()()log 1log 1+>+a b a b ,令()()log 1x h x x =+, 利用换底公式化简可得()()ln 1ln x h x x+=,()0,1x ∈ 则()()()()()()()()22ln 1ln ln 1ln 1ln 11''ln ln 1ln x x x x x x x x x h x x x x x x +-+-++⎡⎤+===⎢⎥+⎣⎦当()0,1x ∈时,()()ln 0,1ln 10x x x x <++> , 所以()()ln 1ln 10x x x x -++<,即()'0h x <, 则()()ln 1ln x h x x+=在()0,1x ∈内单调递减,所以当01a b <<<时,()()ln 1ln 1ln ln a b a b++>,即()()log 1log 1+>+a b a b ,所以③正确,综上可知,正确的为①③,故答案为: ①③ 16.【解析】的定义域为,,所以有,所以有,即,即,所以有;因为, 所以有.17.【解析】(1)设()sin f x x x =-,()tan =-g x x x , ∴()cos 1'=-f x x ,()222cos sin sin 1()11cos cos --'=-=-x x x g x xx, ∵0,2x π⎛⎫∈ ⎪⎝⎭,∴0cos 1x <<,∴()0f x '<,()0g x '>, ∴函数()sin f x x x =-在0,2π⎛⎫⎪⎝⎭上单调递减;函数()tan =-g x x x 在0,2π⎛⎫⎪⎝⎭单调递增;∴()(0)0f x f <=,()(0)0g x g >=,即sin x x <,tan x x >, ∴sin tan <<x x x ,0,2x π⎛⎫∈ ⎪⎝⎭; (2)设函数()1x h x e x =--,所以 ()1xh x e '=-;令()10'=-=xh x e 得:0x =,由()10xh x e '=->得0x >;由()10'=-<xh x e 得0x <;所以函数()1xh x e x =--在(),0-∞上单调递减,在()0,∞+上单调递增;∴当0x =时,()h x 取最小值,即min ()(0)0h x h ==, ∴当0x ≠时,恒有()0h x >,即1x e x >+,0x ≠显然成立. 18.【解析】(1)依题意知函数的定义域为{x |x >0}, ∵f ′(x )=2x -2=2(1)(1)x x x+-,由f ′(x )>0, 得x>1; 由f ′(x )<0, 得0<x<1∴f (x )的单调增区间为(1,+∞), 单调减区间为(0,1).(2)设g (x )=f (x )-3x+1=x 2-2ln x -3x+4, ∴g ′(x )=2x -2--3=2232(21)(2)x x x x x x--+-=, ∵当x >2时,g ′(x )>0,∴g (x )在(2,+∞)上为增函数, ∴g (x )>g (2)=4-2ln2-6+4>0,∴当x >2时, x 2-2lnx>3x-4, 即当x >2时()34f x x >-..19.【解析】1)()()221ln '1x x b x f x x x α+⎛⎫-⎪⎝⎭=-+由于直线230x y +-=的斜率为12-,且过点()1,1,故()()11,1'1,2f f ⎧=⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =.(2)由(1)知f(x)=ln 1,1x x x++所以()22ln 112ln 11x x f x x x x x ⎛⎫--=- ⎪--⎝⎭ 考虑函数()()2120x h x lnx x x-=->,则h′(x)=()()222222112x x x x x x----=-, 所以x≠1时h′(x)<0而h(1)=0,故x ()0,1∈时h(x)>0可得()ln 1xf x x >-, x ()1∈+∞, h(x)<0可得()ln 1xf x x >-,从而当0x >,且1x ≠时,()ln 1xf x x >-.20.【解析】(1)函数f (x )的定义域为(1,)-+∞.()f x '=11x +-1=-1x x +. 由()f x '<0及x >-1,得x >0.∴ 当x ∈(0,+∞)时,f (x )是减函数, 即f (x )的单调递减区间为(0,+∞).(2)证明:由⑴知,当x ∈(-1,0)时,()f x '>0,当x ∈(0,+∞)时,()f x '<0,因此,当1x >-时,()f x ≤(0)f ,即ln(1)x x +-≤0∴ln(1)x x .令1()ln(1)11g x x x =++-+,则211()1(1)g x x x =-+'+=2(1)x x +. ∴ 当x ∈(-1,0)时,()g x '<0,当x ∈(0,+∞)时,()g x '>0. ∴ 当1x >-时,()g x ≥(0)g ,即1ln(1)11x x ++-+≥0,∴1ln(1)11x x +≥-+. 综上可知,当1x >-时,有11ln(1)1x x x -≤+≤+. 21.【解析】(1)()2ln f x x ax x =--+ ,()212121ax x f x ax x x-+==-'--+ ,则18a ∆=- , 当18a ≥时()0,0f x '∆≤≤ ,此时f(x)在()0,∞+单调递减, 当108a <<时0∆≤ ,方程2210ax x -+= 有两个不等的正根12,x x ,不妨设12x x <,则当()()120,,x x x ∈⋃+∞时()0f x '< , 当()12,x x x ∈时,()0f x '> ,这时f(x)不是单调函数, 综上,a 的取值范围为1,8⎡⎫+∞⎪⎢⎣⎭,(2)由(1)可知当且仅当10,8a ⎛⎤∈ ⎥⎝⎦时,f(x)有极小值点1x 和极大值点2x且1212x x a +=,2212x x a=, ()()12f x f x + 22111222ln ln x ax x x ax x =--+--+()()()()12121211ln ln 1122x x x x x x =-+----++ ()()12121ln 12x x x x =-+++ ()1ln 214a a=++ ,令()()1ln 214g a a a =++ ,10,8a ⎛⎤∈ ⎥⎝⎦, 则当10,8a ⎛⎤∈ ⎥⎝⎦时,()221141044a g a a a a -=-=<' , 则()()1ln 214g a a a =++在10,8a ⎛⎤∈ ⎥⎝⎦时单调递减,所以()132ln28g a g ⎛⎫>=- ⎪⎝⎭,即()()1232ln2f x f x +>-, 22.【解析】(1)当1a =时,()ln (0)xf x e x x =+>,1()x f x e x'∴=+,且(1)f e =, ∴曲线()y f x =在(1,)e 处的切线的斜率(1)1k f e '==+. ∴曲线()y f x =在(1,)e 处的切线方程为(1)(1)y e e x -=+-,即(1)10e x y +--=;(2)由题意得()xa f x e x'=+.0x 是()f x 的导函数()f x '的零点,()0000x a f x e x '∴=+=,即00x a e x =-,00ln ln x a e x ⎛⎫-∴= ⎪⎝⎭, 即()00ln ln()x x a +=-.又e a -<<0,则()00ln ln()1x x a +=-<. 令()ln g x x x =+,显然0x >,所以'1()10g x x=+> 因此()ln g x x x =+在(0,)+∞上是增函数,且()0(1)1g x g <=.001x ∴<<,因此0ln 0a x >.()0000ln x x f x e a x e ∴=+>.23.【解析】(1)函数()1ln f x x x x=--的定义域是()0,∞+. 因为()2222213()1112410x x x f x x x x x -+-+'=+-==>恒成立, 所以函数()1ln f x x x x=--在定义域()0,∞+上是单调递增函数.(2)由(1)知()2111f x x x'=+-.令()()12f x f x m ''==,得21122211101110m x x m x x ⎧-+-=⎪⎪⎨⎪-+-=⎪⎩,由一元二次方程根与系数关系得12111x x +=,即1212x x x x +=⋅>124x x ⋅>, ∴()()()()()12121212121211ln ln ln 1f x f x x x x x x x x x x x ⎛⎫+=+-+-+=--⎪⎝⎭令124t x x =⋅>,则()1212ln 1ln 1x x x x t t --=--,令()()ln 14g t t t t =-->, 则()()1104g t t t'=->>,得()()432ln 2g t g >=-.。
【新高考】高三数学一轮复习知识点专题3-3 函数与导数的综合应用
专题3.3 函数与导数的综合应用(精测)1.(2020·四川成都模拟)已知函数f (x )=e 2x -2a e x -2ax ,其中a >0. (1)当a =1时,求曲线y =f (x )在点(0,f (0))处的切线方程; (2)若函数f (x )有唯一零点,求a 的值.【解析】(1)当a =1时,f (x )=e 2x -2e x -2x ,∴f ′(x )=2e 2x -2e x -2,∴f ′(0)=2e 0-2e 0-2=-2. 又f (0)=e 0-2e 0-0=-1,∴曲线y =f (x )在点(0,f (0))处的切线方程为y -(-1)=-2x ,即2x +y +1=0. (2)由题意得f ′(x )=2e 2x -2a e x -2a =2(e 2x -a e x -a ). 令t =e x ∈(0,+∞),则g (t )=2(t 2-at -a ).设t 2-at -a =0的解为t 1,t 2则t 1+t 2=a ,t 1t 2=-a ,又∵a >0,∴函数y =g (t )在(0,+∞)上仅有一个零点. ∴存在t 0∈(0,+∞),使得g (t 0)=0, 即存在x 0满足t 0=e x 0时,f ′(x 0)=0.∴当t ∈(0,t 0),即x ∈(-∞,x 0)时,f ′(x )<0,∴f (x )在(-∞,x 0)上单调递减;当t ∈(t 0,+∞),即x ∈(x 0,+∞)时,f ′(x )>0,∴f (x )在(x 0,+∞)上单调递增.又当x →-∞时,e 2x -2a e x →0,-2ax →+∞,∴f (x )→+∞;当x >0时,e x >x ,∴f (x )=e 2x -2a e x -2ax >e 2x -2a e x -2a e x =e x (e x -4a ), ∵当x →+∞时,e x (e x -4a )→+∞,∴f (x )→+∞.∴函数f (x )有唯一零点时,必有f (x 0)=e2x 0-2a e x 0-2ax 0=0.① 又e2x 0-a e x 0-a =0,②由①②消去a ,得e x 0+2x 0-1=0.令h (x )=e x +2x -1,∵h ′(x )=e x +2>0,∴h (x )单调递增. 又h (0)=0,∴方程e x 0+2x 0-1=0有唯一解x =0.将x =0代入e2x 0-a e x 0-a =0,解得a =12,∴当函数f (x )有唯一零点时,a 为12.2.(2020·广西桂林市联考)已知函数f (x )=⎝⎛⎭⎫a +1a ln x +1x -x (a >0). (1)若a =12,求f (x )的极值点;(2)若曲线y =f (x )上总存在不同的两点P (x 1,f (x 1)),Q (x 2,f (x 2)),使得曲线y =f (x )在P ,Q 两点处的切线平行,求证:x 1+x 2>2.【解析】f (x )的定义域为(0,+∞),f ′(x )=⎝⎛⎭⎫a +1a ·1x -1x2-1(a >0). (1)当a =12时,f ′(x )=-⎝⎛⎭⎫1x -2⎝⎛⎭⎫1x -12=-(x -2)(2x -1)2x 2, 令f ′(x )<0,得0<x <12或x >2;令f ′(x )>0,得12<x <2,∴f (x )在⎝⎛⎭⎫0,12,(2,+∞)上单调递减,在⎝⎛⎭⎫12,2上单调递增, ∴x =12是f (x )的极小值点,x =2是f (x )的极大值点.(2)证明:由题意知,f ′(x 1)=f ′(x 2),即⎝⎛⎭⎫a +1a ·1x 1-1x 21-1=⎝⎛⎭⎫a +1a ·1x 2-1x 22-1(x 1≠x 2), ∴a +1a =1x 1+1x 2=x 1+x 2x 1x 2.∵x 1,x 2∈(0,+∞),x 1≠x 2,∴x 1+x 2>2x 1x 2,则有x 1x 2<(x 1+x 2)24,∴a +1a =x 1+x 2x 1x 2>4x 1+x 2,∴x 1+x 2>⎝ ⎛⎭⎪⎫4a +1a max.∵a >0,∴4a +1a≤2(当且仅当a =1时取等号),∴x 1+x 2>⎝ ⎛⎭⎪⎫4a +1a max=2.3.(2020·云南昆明市高三诊断)已知函数f (x )=2ln x -x +1x .(1)求f (x )的单调区间;(2)若a >0,b >0,且a ≠b ,证明:ab <a -b ln a -ln b <a +b2.【解析】(1)由题意得,函数f (x )的定义域为(0,+∞), f ′(x )=2x -1-1x 2=-x 2+2x -1x 2=-(x -1)2x 2≤0.所以函数f (x )在(0,+∞)上单调递减,无单调递增区间. (2)设a >b >0,则ab <a -b ln a -ln b ⇔ln a -ln b <a -b ab⇔ln a b <a b -1ab ⇔2ln ab-a b +1ab<0. 由(1)知,f (x )是(0,+∞)上的减函数,又ab >1,所以f ⎝⎛⎭⎫a b <f (1)=0, 即f ⎝⎛⎭⎫a b =2ln a b-a b +1ab<0,所以ab <a -bln a -ln b .又a -b ln a -ln b <a +b 2⇔ln a -ln b >2(a -b )a +b⇔ln a b >2⎝⎛⎭⎫a b -1ab+1. 令g (x )=ln x -2(x -1)x +1,则g ′(x )=(x -1)2x (x +1)2,当x ∈(0,+∞)时,g ′(x )≥0,即g (x )是(0,+∞)上的增函数.因为a b >1,所以g ⎝⎛⎭⎫a b >g (1)=0,所以ln a b >2⎝⎛⎭⎫a b -1a b +1,从而a -b ln a -ln b <a +b 2.综上所述,当a >0,b >0,且a ≠b 时,ab <a -b ln a -ln b <a +b2.4.(2020·山东烟台模拟)已知函数f (x )=x ln x ,g (x )=-x 2+ax -3. (1)求函数f (x )在[t ,t +2](t >0)上的最小值;(2)若存在x ∈⎣⎡⎦⎤1e ,e (e 是自然对数的底数,e =2.718 28…)使不等式2f (x )≥g (x )成立,求实数a 的取值范围. 【解析】(1)由题意知f ′(x )=ln x +1, 当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,此时f (x )单调递减; 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,此时f (x )单调递增. 当0<t <t +2<1e时,t 无解;当0<t ≤1e <t +2,即0<t ≤1e 时,f (x )min =f ⎝⎛⎭⎫1e =-1e ; 当1e <t <t +2,即t >1e 时,f (x )在[t ,t +2]上单调递增, 故f (x )min =f (t )=t ln t .所以f (x )min=⎩⎨⎧-1e ,0<t ≤1e ,t ln t ,t >1e .(2)由题意,知2x ln x ≥-x 2+ax -3,即a ≤2ln x +x +3x ,令h (x )=2ln x +x +3x(x >0),则h ′(x )=2x +1-3x 2=(x +3)(x -1)x 2,当x ∈⎣⎡⎭⎫1e ,1时,h ′(x )<0,此时h (x )单调递减; 当x ∈(1,e]时,h ′(x )>0,此时h (x )单调递增.所以h (x )max =max ⎩⎨⎧⎭⎬⎫h ⎝⎛⎭⎫1e ,h (e ). 因为存在x ∈⎣⎡⎦⎤1e ,e ,使2f (x )≥g (x )成立, 所以a ≤h (x )max ,又h ⎝⎛⎭⎫1e =-2+1e +3e ,h (e)=2+e +3e , 故h ⎝⎛⎭⎫1e >h (e),所以a ≤1e+3e -2. 5.(2020·陕西省质检)设函数f (x )=ln x +k x,k ∈R.(1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围. 【解析】(1)由题意,得f ′(x )=1x -kx2(x >0),∵曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直, ∴f ′(e)=0,即1e -ke 2=0,解得k =e ,∴f ′(x )=1x -e x 2=x -ex2(x >0),由f ′(x )<0,得0<x <e ;由f ′(x )>0,得x >e ,∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增. 当x =e 时,f (x )取得极小值,且f (e)=ln e +ee =2.∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +kx -x (x >0),则h (x )在(0,+∞)上单调递减,∴h ′(x )=1x -kx 2-1≤0在(0,+∞)上恒成立,即当x >0时,k ≥-x 2+x =-⎝⎛⎭⎫x -122+14恒成立, ∴k ≥14.故k 的取值范围是⎣⎡⎭⎫14,+∞. 6.(2020·山西大同调研)已知函数f (x )=2ln x -x 2+ax (a ∈R).(1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎡⎦⎤1e ,e 上有两个不同的零点,求实数m 的取值范围. 【解析】(1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x -2x +2,则k =f ′(1)=2.∵f (1)=1,∴切点坐标为(1,1).所以切线方程为y -1=2(x -1),即y =2x -1.(2)由题意得,g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x .∵x ∈⎣⎡⎦⎤1e ,e ,∴令g ′(x )=0,得x =1.当1e ≤x <1时,g ′(x )>0,g (x )单调递增;当1<x ≤e 时,g ′(x )<0,g (x )单调递减. 故g (x )在⎣⎡⎦⎤1e ,e 上有最大值g (1)=m -1.又g ⎝⎛⎭⎫1e =m -2-1e 2,g (e)=m +2-e 2,g (e)-g ⎝⎛⎭⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝⎛⎭⎫1e , ∴g (x )在⎣⎡⎦⎤1e ,e 上的最小值是g (e).g (x )在⎣⎡⎦⎤1e ,e 上有两个不同的零点的条件是⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝⎛⎭⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2, ∴实数m 的取值范围是⎝⎛⎦⎤1,2+1e 2. 7.(2020·河南安阳二模)已知函数f (x )=ln x -x 2+ax ,a ∈R. (1)证明:ln x ≤x -1;(2)若a ≥1,讨论函数f (x )的零点个数.【解析】(1)证明:令g (x )=ln x -x +1(x >0),则g (1)=0, g ′(x )=1x -1=1-x x,∴当x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增;当x ∈(1,+∞)时,g ′(x )<0,函数g (x )单调递减. ∴当x =1时,函数g (x )取得极大值也是最大值, ∴g (x )≤g (1)=0,即ln x ≤x -1.(2)f ′(x )=1x -2x +a =-2x 2+ax +1x ,x >0.令-2x 2+ax +1=0,解得x 0=a +a 2+84(负值舍去),在(0,x 0)上,f ′(x )>0,函数f (x )单调递增,在(x 0,+∞)上,f ′(x )<0,函数f (x )单调递减. ∴f (x )max =f (x 0).当a =1时,x 0=1,f (x )max =f (1)=0,此时函数f (x )只有一个零点x =1.当a >1时,f (1)=a -1>0,f ⎝⎛⎭⎫12a =ln 12a -14a 2+12<12a -1-14a 2+12=-⎝⎛⎭⎫12a -122-14<0, f (2a )=ln 2a -2a 2<2a -1-2a 2=-2⎝⎛⎭⎫a -122-12<0. ∴函数f (x )在区间⎝⎛⎭⎫12a ,1和区间(1,2a )上各有一个零点. 综上可得,当a =1时,函数f (x )只有一个零点x =1; 当a >1时,函数f (x )有两个零点.8.(2020·河北石家庄质检)已知函数f (x )=(2-x )e k (x -1)-x (k ∈R ,e 为自然对数的底数).(1)若f (x )在R 上单调递减,求k 的最大值; (2)当x ∈(1,2)时,证明:lnx (2x -1)2-x>2⎝⎛⎭⎫x -1x .【解析】(1)∵f (x )在R 上单调递减,∴f ′(x )=e k (x -1)[k (2-x )-1]-1≤0恒成立,即-kx +2k -1≤1ek (x -1)对任意x ∈R 恒成立. 设g (x )=1ek (x -1)+kx -2k +1,则g (x )≥0对任意x ∈R 恒成立,显然应满足g (1)=2-k ≥0,∴k ≤2.当k =2时,g ′(x )=2⎣⎡⎦⎤1-1e 2(x -1),且g ′(1)=0,当x ∈(1,+∞)时,g ′(x )>0,g (x )单调递增, 当x ∈(-∞,1)时,g ′(x )<0,g (x )单调递减, ∴g (x )min =g (1)=0,即g (x )≥0恒成立, 故k 的最大值为2.(2)证明:由(1)知,当k =2时,f (x )=(2-x )e 2(x -1)-x 在R 上单调递减,且f (1)=0,所以当x ∈(1,2)时,f (x )<f (1),即(2-x )e 2(x-1)<x ,两边同取以e 为底的对数得ln(2-x )+2(x -1)<ln x , 即2(x -1)<ln x2-x,①下面证明-2x +2<ln(2x -1),x ∈(1,2).②令H (x )=ln(2x -1)-⎝⎛⎭⎫-2x +2(1<x <2), 则H ′(x )=2(x -1)2x 2(2x -1)>0,∴H (x )在(1,2)上单调递增,则H (x )>H (1)=ln(2×1-1)-⎝⎛⎭⎫-21+2=0,故②成立, ① +②得,ln x (2x -1)2-x>2⎝⎛⎭⎫x -1x 成立.9.(2020·河南郑州市第一次质检)已知函数f (x )=(e x -2a )e x ,g (x )=4a 2x . (1)设h (x )=f (x )-g (x ),试讨论h (x )在定义域内的单调性;(2)若函数y =f (x )的图象恒在函数y =g (x )的图象的上方,求a 的取值范围. 【解析】(1)∵h (x )=(e x -2a )e x -4a 2x , ∴h ′(x )=2e 2x -2a e x -4a 2=2(e x +a )(e x -2a ). ①当a =0时,h ′(x )>0恒成立, ∴h (x )在R 上单调递增;②当a >0时,e x +a >0,令h ′(x )=0,解得x =ln 2a , 当x <ln 2a 时,h ′(x )<0,函数h (x )单调递减, 当x >ln 2a 时,h ′(x )>0,函数h (x )单调递增;③当a <0时,e x -2a >0,令h ′(x )=0,解得x =ln(-a ), 当x <ln(-a )时,h ′(x )<0,函数h (x )单调递减, 当x >ln(-a )时,h ′(x )>0,函数h (x )单调递增. 综上所述,当a =0时,h (x )在R 上单调递增;当a >0时,h (x )在(-∞,ln 2a )上单调递减,在(ln 2a ,+∞)上单调递增; 当a <0时,h (x )在(-∞,ln (-a ))上单调递减,在(ln(-a ),+∞)上单调递增.(2)若函数y =f (x )的图象恒在函数y =g (x )的图象的上方,则h (x )>0恒成立,即h (x )min >0. ①当a =0时,h (x )=e 2x >0恒成立;②当a >0时,由(1)得,h (x )min =h (ln 2a )=-4a 2ln 2a >0,∴ln 2a <0,∴0<a <12;③当a <0时,由(1)可得h (x )min =h (ln(-a ))=3a 2-4a 2ln(-a )>0, ∴ln(-a )<34,∴-e 34<a <0.综上所述,a 的取值范围为⎝⎛⎭⎪⎫-e 34,12.10.(2020·河北衡水中学调研)已知函数f (x )=ln x -x +1x -1.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线y =e x 的切线. 【解析】(1)函数f (x )=ln x -x +1x -1.定义域为(0,1)∪(1,+∞); f ′(x )=1x +2(x -1)2>0,(x >0且x ≠1),∴f (x )在(0,1)和(1,+∞)上单调递增.①在(0,1)上取1e 2,1e 代入函数,由函数零点的定义得,∵f ⎝⎛⎭⎫1e 2<0,f ⎝⎛⎭⎫1e >0,f ⎝⎛⎭⎫1e 2·f ⎝⎛⎭⎫1e <0, ∴f (x )在(0,1)有且仅有一个零点.②在(1,+∞)上取e ,e 2代入函数,由函数零点的定义得, 又∵f (e)<0,f (e 2)>0,f (e)·f (e 2)<0, ∴f (x )在(1,+∞)上有且仅有一个零点, 故f (x )在定义域内有且仅有两个零点.(2)证明:若x 0是f (x )的一个零点,则有ln x 0=x 0+1x 0-1,由y =ln x ,得y ′=1x;∴曲线y =ln x 在点A (x 0,ln x 0)处的切线方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x -1+ln x 0,即y =1x 0x +2x 0-1,当曲线y =e x 切线斜率为1x 0时,切点为⎝⎛⎭⎫ln 1x 0,1x 0, ∴曲线y =e x 的切线在点⎝⎛⎭⎫ln 1x 0,1x 0处的切线方程为y -1x 0=1x 0⎝⎛⎭⎫x -ln 1x 0, 即y =1x 0x +2x 0-1,故曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线y =e x 的切线.故得证.11.(2020·四川宜宾市第一中学模拟)设函数()ln e xf x x x a =-,()p x kx =,其中a ∈R ,e 是自然对数的底数.(1)若()f x 在()0,∞+上存在两个极值点,求a 的取值范围;(2)若()1()x lnx f x ϕ=+-′,(1)e ϕ=,函数()x ϕ与函数()p x 的图象交于()11,A x y ,()22,B x y ,且AB 线段的中点为()00,P x y ,证明:()()001x p y ϕ<<.【答案】(1)10ea <<;(2)见解析. 【解析】(1)()ln e xf x x x a =-的定义域为()0,∞+,()ln 1e xf x x a =+-′,则()f x 在()0,+∞上存在两个极值点等价于()0f x '=在()0,+∞上有两个不等实根, 由()ln 1e 0xf x x a =+-=′,解得ln 1e xx a +=, 令ln 1()ex x g x +=,则1(ln 1)()e xx x g x -+'=,令1()ln 1h x x x =--,则211()h x x x'=--, 当0x >时,()0h x '<,故函数()h x 在()0,∞+上单调递减,且()10h =, 所以,当()0,1x ∈时,()0h x >,()0g x '>,()g x 单调递增, 当()1,x ∈+∞时,()0h x <,()0g x '<,()g x 单调递减, 所以,1x =是()g x 的极大值也是最大值, 所以max 1()(1)e g x g ==,所以1ea <, 又当0x →时,()g x ↔-∞,当+x →∞时,()g x 大于0且趋向于0, 要使()0f x '=在()0,∞+有两个根,则10ea <<; (2)证明:()()ln 1()ln ln 1e e 1xxx x f x x x a a ϕ=+-+--==+′,由(1)e ϕ=,得1a =,则()e x x ϕ=, 要证()()001x p y ϕ<<成立, 只需证122112221e e e e e2x x x x x x k x x +-+<=<-,即212121221e e e 1e 2x x x x x x x x +--+<<-,即2121212211e 12e ex x x x x x x x ----+<<-, 设210t x x =->,即证2e 1e 1e 2tt t t -+<<, 要证2e 1e t t t-<,只需证22e e t t t ->,令22()e e tt F t t =--,则221()e e 102t tF t ⎛⎫'=+-> ⎪⎝⎭,所以()F t 在()0,∞+上为增函数,所以()()00F t F >=,即2e 1e tt t -<成立;要证e 1e 12t t t -+<,只需证e 1e 12t t t -<+,令e 1()e 12tt t G t -=-+,则()()()222e 12e 1()02e 12e 1t tt t G t --'=-=<++, 所以()G t 在()0,+∞上为减函数,所以()()00G t G <=,即e 1e 12t t t -+<成立; 所以2e 1e 1e 2tt t t -+<<成立,即()()001x p y ϕ<<成立. 12.(2020·山东师范大学附属中学模拟)已知函数21()e ln (,ax f x x b x ax a b +=⋅--∈R ).(1 )若b =0,曲线f (x )在点(1,f (1)) 处的切线与直线y = 2x 平行,求a 的值; (2)若b =2,且函数f (x )的值域为[2,),+∞求a 的最小值. 【解析】(1)当0b =时,21()ax f x x eax +=-,1()(2)ax f x xe ax a +'=+-,由1(1)e (2)2a f a a +'=+-=,得1e (2)(2)0a a a ++-+=,即1(e1)(2)0a a +-+=,解得1a =-或2a =-.当1a =-时,0(1)e 12f =+=,此时直线2y x =恰为切线,故舍去,所以2a =-. (2)当2b =时,21()e 2ln ax f x x x ax +=--,设21e ax t x +=,则ln 2ln 1t x ax =++,故函数()f x 可化为()ln 1g t t t =-+.由11()1t g t t t-'=-=,可得()g t 的单调递减区间为(0,1),单调递增区间为(1,)+∞, 所以()g t 的最小值为(1)1ln112g =-+=,此时,函数的()f x 的值域为[2,)+∞,问题转化为当1t =时,ln 2ln 1t x ax =++有解, 即ln12ln 10x ax =++=,得12ln x a x +=-,设12ln ()x h x x +=-,则22ln 1()x h x x -'=, 故()h x的单调递减区间为,单调递增区间为)+∞,所以()h x的最小值为h =,故a的最小值为13.(2020·河南省开封市第五中学模拟)已知函数()()211ln 2f x x ax a x =-+-,()ln g x b x x =-的最大值为1e. (1)求实数b 的值;(2)当1a >时,讨论函数()f x 的单调性;(3)当0a =时,令()()()22ln 2F x f x g x x =+++,是否存在区间[],(1m n ⊆,)+∞,使得函数()F x 在区间[],m n 上的值域为()()2,2k m k n ⎡⎤++⎣⎦?若存在,求实数k 的取值范围;若不存在,请说明理由. 【解析】(1) 由题意得()'ln 1g x x =--,令()'0g x =,解得1ex =, 当10,e x ⎛⎫∈ ⎪⎝⎭时,()'>0g x ,函数()g x 单调递增;当1,e x ⎛⎫∈+∞ ⎪⎝⎭时,()'<0g x ,函数()g x 单调递减. 所以当1e x =时,()g x 取得极大值,也是最大值,所以11e e eg b ⎛⎫=+= ⎪⎝⎭,解得0b =. (2)()f x 的定义域为()0,+∞.()()()21111x x a a x ax a f x x a x x x-+---+-=-+==', ① 11a -=即2a =,则()()21x f x x ='-,故()f x 在()0,+∞单调增;②若11a -<,而1a >,故12a <<,则当()1,1x a ∈-时,()0f x '<;当()0,1x a ∈-及()1,x ∈+∞时,()0f x '>故()f x 在()1,1a -单调递减,在()()0,1,1,a -+∞单调递增.③若11a ->,即2a >,同理()f x 在()1,1a -单调递减,在()()0,1,1,a -+∞单调递增(3)由(1)知()2ln 2F x x x x =-+, 所以()'2ln +1F x x x =-,令()()'2ln +1x F x x x ω==-,则()1'20x xω=->对()1,x ∀∈+∞恒成立,所以()'F x 在区间()1,+∞内单调递增,所以()()''110F x F >=>恒成立,所以函数()F x 在区间()1,+∞内单调递增.假设存在区间[](),1,m n ⊆+∞,使得函数()F x 在区间[],m n 上的值域是()()2,2k m k n ⎡⎤++⎣⎦,则()()()()2222{22F m m mlnm k m F n n nlnn k n =-+=+=-+=+, 问题转化为关于x 的方程()2ln 22x x x k x -+=+在区间()1,+∞内是否存在两个不相等的实根, 即方程2ln 22x x x k x -+=+在区间()1,+∞内是否存在两个不相等的实根, 令()2ln 22x x x h x x -+=+,()1,x ∈+∞,则()()22342ln '2x x x h x x +--=+, 设()2342ln p x x x x =+--,()1,x ∈+∞,则()()()2122'230x x p x x x x-+=+-=>对()1,x ∀∈+∞恒成立,所以函数()p x 在区间()1,+∞内单调递增,故()()10p x p >=恒成立,所以()'0h x >,所以函数()h x 在区间()1,+∞内单调递增,所以方程2ln 22x x x k x -+=+在区间()1,+∞内不存在两个不相等的实根. 综上所述,不存在区间[](),1,m n ⊆+∞,使得函数()F x 在区间[],m n 上值域是()()2,2k m k n ⎡⎤++⎣⎦. 的。
专题一第6讲导数的综合应用和定积分
训 练 高 效 提 能
高考专题辅导与训练· 数学(理科)
第一部分 式
基 础 要 点 整 合
专题一
集合、常用逻辑用语、函数与导数、不等
解 题 规 范 流 程
考 点 核 心 突 破
1 1 若 0<a<1,解 f′(x)=x-a=0 得 x=a, 1 由函数的单调性得知 f(x)在 x= 处取最大值, a 1 1 fa=ln a>0,由幂函数与对数函数单调性比较知,当 1 x 充分大时 f(x)<0,即 f(x)在单调递减区间a,+∞有且仅 1 a 有一个零点;又因为 f e =- <0,所以 f(x)在单调递增区 e 1 间0,a有且仅有一个零点. 综上所述, 当 a>1 时, f(x)无零点; 当 a=1 或 a≤0 时, f(x)有且仅有一个零点; 当 0<a<1 时,f(x)有两个零点.
训 练 高 效 提 能
菜
单
高考专题辅导与训练· 数学(理科)
第一部分 式
基 础 要 点 整 合
专题一
集合、常用逻辑用语、函数与导数、不等
解 题 规 范 流 程
ln x+1 (3)令 f(x)=ln x-ax+1=0,a= x .
考 点 核 心 突 破
ln x+1 令 g(x)= x , ln x+1 1-ln x+1 ln x g′(x)= =- 2 , 2 ′= x x x 则 g(x)在(0,1)上单调递增,在(1,+∞)上单调递减, 当 x=1 时,g(x)的最大值为 g(1)=1. 所以若 a>1,则 f(x)无零点; 若 f(x)有零点,则 a≤1. 若 a=1,f(x)=ln x-ax+1=0, 由(1)知 f(x)有且仅有一个零点 x=1. 若 a≤0,f(x)=ln x-ax+1 单调递增, 由幂函数与对数函数单调性比较,知 f(x)有且仅有一个 零点(或:直线 y=ax-1 与曲线 y=ln x 有一个交点).
高三数学导数的实际应用试题答案及解析
高三数学导数的实际应用试题答案及解析1.已知函数,.(Ⅰ)若曲线在点处的切线与直线垂直,求的值;(Ⅱ)求函数的单调区间;(Ⅲ)设,当时,都有成立,求实数的取值范围.【答案】(Ⅰ),(Ⅱ)当时,的单调增区间为;当时,的单调增区间是,的单调减区间是.(Ⅲ).【解析】(Ⅰ)利用导数的几何意义,曲线在点处的切线斜率为在点处的导数值. 由已知得.所以.,(Ⅱ)利用导数求函数单调区间,需明确定义域,再导数值的符号确定单调区间. 当时,,所以的单调增区间为.当时,令,得,所以的单调增区间是;令,得,所以的单调减区间是.(Ⅲ)不等式恒成立问题,一般利用变量分离转化为最值问题. “当时,恒成立”等价于“当时,恒成立.”设,只要“当时,成立.”易得函数在处取得最小值,所以实数的取值范围.(Ⅰ)由已知得.因为曲线在点处的切线与直线垂直,所以.所以.所以. 3分(Ⅱ)函数的定义域是,.(1)当时,成立,所以的单调增区间为.(2)当时,令,得,所以的单调增区间是;令,得,所以的单调减区间是.综上所述,当时,的单调增区间为;当时,的单调增区间是,的单调减区间是. 8分(Ⅲ)当时,成立,.“当时,恒成立”等价于“当时,恒成立.”设,只要“当时,成立.”.令得,且,又因为,所以函数在上为减函数;令得,,又因为,所以函数在上为增函数.所以函数在处取得最小值,且.所以.又因为,所以实数的取值范围. 13分(Ⅲ)另解:(1)当时,由(Ⅱ)可知,在上单调递增,所以.所以当时,有成立.(2)当时,可得.由(Ⅱ)可知当时,的单调增区间是,所以在上单调递增,又,所以总有成立.(3)当时,可得.由(Ⅱ)可知,函数在上为减函数,在为增函数,所以函数在处取最小值,且.当时,要使成立,只需,解得.所以.综上所述,实数的取值范围.【考点】利用导数求切线,利用导数求单调区间,利用导数求最值2.已知y=f(x)与y=g(x)都为R上的可导函数,且f′(x)>g′(x),则下面不等式正确的是()A.f(2)+g(1)>f(1)+g(2)B.f(1)+f(2)>g(1)+g(2)C.f(1)﹣f(2)>g(1)﹣g(2)D.f(2)﹣g(1)>f(1)﹣g(2)【答案】A【解析】∵f'(x)>g'(x),∴f'(x)﹣g'(x)>0,∴[f(x)﹣g(x)]′>0,∴函数f(x)﹣g(x)在R上为增函数.∵1<2,∴f(1)﹣g(1)<f(2)﹣g(2),移向即得f(2)+g(1)>f(1)+g(2)故选A3.某公司生产一种产品,固定成本为20000元,每生产一单位的产品,成本增加100元,若总收入R与年产量x的关系是,则当总利润最大时,每年生产产品的单位数是()A.150B.200C.250D.300【答案】D【解析】∵总利润由P′(x)=0,得x=300,故选D.4.一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.【答案】(1);(2);(3)是.【解析】(1)本题求直四棱柱的体积,关键是求底面面积,我们要用底面半径1和表示出等腰梯形的上底和高,从图形中可知高为,而,因此面积易求,体积也可得出;(2)我们在(1)中求出,这里的最大值可利用导数知识求解,求出,解出方程在上的解,然后考察在解的两边的正负性,确定是最大值点,实质上对应用题来讲,导数值为0的那个唯一点就是要求的极值点);(3),上(2)我们可能把木梁的表面积用表示出来,,由于在体积中出现,因此我们可求的最大值,这里可不用导数来求,因为,可借助二次函数知识求得最大值,如果这里取最大值时的和取最大值的取值相同,则结论就是肯定的.试题解析:(1)梯形的面积=,. 2分体积. 3分(2).令,得,或(舍).∵,∴. 5分当时,,为增函数;当时,,为减函数. 7分∴当时,体积V最大. 8分(3)木梁的侧面积=,.=,. 10分设,.∵,∴当,即时,最大. 12分又由(2)知时,取得最大值,所以时,木梁的表面积S最大. 13分综上,当木梁的体积V最大时,其表面积S也最大. 14分【考点】(1)函数解析式;(2)用导数求最值;(3)四棱柱的表面积及其最值.5.一火车锅炉每小时煤的消耗费用与火车行驶速度的立方成正比,已知当速度为20 km/h时,每小时消耗的煤价值40元,其他费用每小时需400元,火车的最高速度为100 km/h,火车以何速度行驶才能使从甲城开往乙城的总费用最少?【答案】速度为20 km/h时,总费用最少【解析】设火车的速度为x km/h,甲、乙两城距离为a km.由题意,令40=k·203,∴k=,则总费用f(x)=(kx3+400)·=a.∴f(x)=a (0<x≤100).由f′(x)==0,得x=20.当0<x<20时,f′(x)<0;当20<x<100时,f′(x)>0.∴当x=20时,f(x)取最小值,即速度为20 km/h时,总费用最少.6.已知函数(Ⅰ)若对任意,使得恒成立,求实数的取值范围;(Ⅱ)证明:对,不等式成立.【答案】(Ⅰ)(Ⅱ)详见解析.【解析】(Ⅰ) 利用导数分析单调性,进而求最值;(Ⅱ)利用不等式的放缩和数列的裂项求和试题解析:(I)化为易知,,设,设,,,上是增函数,(Ⅱ)由(I)知:恒成立,令,取相加得:即证明完毕【考点】查导数,函数的单调性,数列求和,不等式证明7.设等差数列{an }的前n项和为Sn,已知(a5-1)3+2 011·(a5-1)=1,(a2 007-1)3+2 011(a2 007-1)=-1,则下列结论正确的是()A.S2 011=2 011,a2 007<a5B.S2 011=2 011,a2 007>a5C.S2 011=-2 011,a2 007≤a5D.S2 011=-2 011,a2 007≥a5【答案】A 【解析】令,在R上单调递增且连续的函数所以函数只有唯一的零点,从而可得,同理∵(a5-1)3+2 011·(a5-1)=1,(a2 007-1)3+2 011(a2 007-1)=-1两式相加整理可得,由,可得>0,由等差数列的性质可得【考点】函数性质与等差数列及性质点评:本题的入手点在于通过已知条件的两数列关系式构造两函数,借助于函数单调性得到数列中某些特定项的范围,再结合等差数列中的相关性质即可求解,本题难度很大8.已知定义在上的函数满足,且,,若数列的前项和等于,则=A.7B.6C.5D.4【答案】B【解析】由得,即为R上的减函数,所以,由,得,即,解得或,又,所以,故,数列即,其前项和为,整理得,解得,故选B.【考点】本题考查了导数与数列的综合运用点评:此类问题常常利用导数法研究函数的单调性,然后再利用数列的知识求解9.已知f(x)=x-(a>0),g(x)=2lnx+bx且直线y=2x-2与曲线y=g(x)相切.(1)若对[1,+)内的一切实数x,小等式f(x)≥g(x)恒成立,求实数a的取值范围;(2)当a=l时,求最大的正整数k,使得对[e,3](e=2.71828是自然对数的底数)内的任意k个实数x1,x2,,xk都有成立;(3)求证:.【答案】(1);(2)的最大值为.(3)当时,根据(1)的推导有,时,,即.令,得,化简得,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的综合应用 参考答案典题探究例1解析:(Ⅰ)函数h(x)定义域为{x|x ≠-a},……则21()()()23()h x f x g x bx x a '''=-=---+, h(x)在点(1,0)处的切线斜率为0,∴(1)0,(1)0.h h =⎧⎨'=⎩即2130,11230.(1)b a b a ⎧--=⎪+⎪⎨⎪---=+⎪⎩,解得0,2,a b =⎧⎨=-⎩或4,36.a b ⎧=-⎪⎨⎪=-⎩(Ⅱ)记ϕ(x)=()()g x f x ,则ϕ(x)=(x+a)(bx 2+3x)(x ≠-a), ab=8,所以8b a =,∴28()()(3)x x a x x a ϕ=++(x ≠-a), ∴2211()(24223)(43)(6)x x ax a x a x a a aϕ'=++=++,令()0x ϕ'=,得34x a =-,或16x a =-, …………………………………………………8分因为[)3,a ∈+∞,∴所以3146a a -<-,∴故当34x a <-,或16x a >-时,()0x ϕ'>,当3146a x a -<<-时,()0x ϕ'<,∴函数ϕ(x)的单调递增区间为31(,),(,),(,)46a a a a -∞----+∞,单调递减区间为31(,)46a a --, ……………………………………………………………………10分 [3,)a ∈+∞,∴3944a -≤-,162a -≤-,① 当26a-≤-,即12a ≥时, ϕ(x)在[-2,-1]单调递增,∴ϕ(x)在该区间的最小值为64(2)446a aϕ-=-+-, ………………………………………11分② 当216a-<-<-时,即612a <<, ϕ(x)在[-2,6a -)单调递减, 在(,1]6a--单调递增, ∴ϕ(x)在该区间的最小值为()6a ϕ-=225108a -,………………………………………………12分 ③当16a-≥-时,即36a ≤≤时, ϕ(x)在[-2,-1]单调递减, ∴ϕ(x)在该区间的最小值为8(1)113a aϕ-=-+-综上所述,当36a ≤≤时,最小值为8113a a -+-;当612a <<时,最小值为225108a -;当12a ≥时,最小值为64446a a-+-.例2 解:(I )因为2()ln ,f x x ax bx =++所以1()2f x ax b x'=++ 因为函数2()ln f x x ax bx =++在1x =处取得极值(1)120f a b '=++=…当1a =时,3b =-,2231()x x f x x-+'=,'(),()f x f x 随x 的变化情况如下表:x1(0,)2121(,1)21 1+∞(,)'()f x+0 -0 +()f x极大值极小值………………5分所以()f x 的单调递增区间为1(0,)2,1+∞(,)单调递减区间为1(,1)2……(II)因为222(1)1(21)(1)()ax a x ax x f x x x-++--'==令()0f x '=,1211,2x x a==……… 因为()f x 在 1x =处取得极值,所以21112x x a=≠= 当102a<时,()f x 在(0,1)上单调递增,在(1,e]上单调递减 所以()f x 在区间(]0,e 上的最大值为(1)f ,令(1)1f =,解得2a =-… 当0a >,2102x a=> 当112a <时,()f x 在1(0,)2a 上单调递增,1(,1)2a上单调递减,(1,e)上单调递增 所以最大值1可能在12x a=或e x =处取得 而2111111()ln ()(21)ln 10222224f a a a a a a a a=+-+=--< 所以2(e)lne+e (21)e 1f a a =-+=,解得1e 2a =-………… 当11e 2a ≤<时,()f x 在区间(0,1)上单调递增,1(1,)2a 上单调递减,1(,e)2a上单调递增所以最大值1可能在1x =或e x =处取得 而(1)ln1(21)0f a a =+-+< 所以2(e)lne+e (21)e 1f a a =-+=, 解得1e 2a =-,与211e 2x a<=<矛盾……………当21e 2x a=≥时,()f x 在区间(0,1)上单调递增,在(1,e)单调递减, 所以最大值1可能在1x =处取得,而(1)ln1(21)0f a a =+-+<,矛盾综上所述,12a e =-或2a =-. ……例3 解:函数)(x f 的定义域为),0(+∞, ……(Ⅰ)xa x a x x a ax x x f ))(2(2)(22-+=-+=', … (1)当0=a 时,0)(>='x x f ,所以)(x f 在定义域为),0(+∞上单调递增; (2)当0>a 时,令0)(='x f ,得a x 21-=(舍去),a x =2, 当x 变化时,)(x f ',)(x f 的变化情况如下: 此时,)(x f 在区间),0(a 单调递减, 在区间),(+∞a 上单调递增;………7分(3)当0<a 时,令0)(='x f ,得a x 21-=,a x =2(舍去), 当x 变化时,)(x f ',)(x f 的变化情况如下: 此时,)(x f 在区间)2,0(a -单调递减, 在区间),2(+∞-a 上单调递增.…(Ⅱ)由(Ⅰ)知当0<a 时,)(x f 在区间)2,0(a -单调递减,在区间),2(+∞-a 上单调递增.……(1)当e a ≥-2,即2ea -≤时,)(x f 在区间],1[e 单调递减, 所以,22min 212)()]([e ea a e f x f ++-==; …(2)当e a <-<21,即212-<<-a e 时,)(x f 在区间)2,1(a -单调递减,在区间),2(e a -单调递增,所以)2ln(2)2()]([2min a a a f x f --=-=,……(3)当12≤-a ,即021<≤-a 时,)(x f 在区间],1[e 单调递增, 所以21)1()]([min+==a f x f .例4(Ⅰ)解:()f x 的定义域为(0,)+∞, ………且 11()ax f x a x x-'=-=. ……… ① 当0a ≤时,()0f x '<,故()f x 在(0,)+∞上单调递减. 从而)(x f 没有极大值,也没有极小值. …… ② 当0a >时,令()0f x '=,得1x a=. ()f x 和()f x '的情况如下:x1(0,)a 1a 1(,)a +∞()f x ' -+()f x↘↗故()f x 的单调减区间为1(0,)a ;单调增区间为1(,)a+∞. 从而)(x f 的极小值为1()1ln f a a=+;没有极大值.(Ⅱ)解:()g x 的定义域为R ,且 ()e 3axg x a '=+. ………… ③ 当0a >时,显然 ()0g x '>,从而()g x 在R 上单调递增. 由(Ⅰ)得,此时()f x 在1(,)a+∞上单调递增,符合题意. …④ 当0a =时,()g x 在R 上单调递增,()f x 在(0,)+∞上单调递减,不合题意.……9分⑤ 当0a <时,令()0g x '=,得013ln()x a a=-. ()g x 和()g x '的情况如下表:x0(,)x -∞0x 0(,)x +∞()g x '-+()g x↘ ↗当30a -≤<时,00x ≤,此时()g x 在0(,)x +∞上单调递增,由于()f x 在(0,)+∞上单调递减,不合题意. ………11分当3a <-时,00x >,此时()g x 在0(,)x -∞上单调递减,由于()f x 在(0,)+∞上单调递减,符合题意.综上,a 的取值范围是(,3)(0,)-∞-+∞ .演练方阵A 档(巩固专练)1.B [解析] 对于f(2x +1),-1<2x +1<0,解得-1<x<-12,即函数f(2x +1)的定义域为⎝⎛⎭⎫-1,-12.2. 答案A [解析] 由已知表达式可得:f[f(x)]=1x-x 6,展开式的通项为T r +1=C r61x6-r (-x)r =C r 6·(-1)r ·x r -3,令r -3=0,可得r =3,所以常数项为T 4=-C 36=-20. 3.C [解析] 函数的定义域是{x ∈R |x ≠0},排除选项A ;当x<0时,x 3<0,3x -1<0,故y>0,排除选项B ;当x →+∞时,y>0且y →0,故为选项C 中的图像.4.B [解析] 法一:作出函数f(x)=2ln x ,g(x)=x 2-4x +5的图像如图:可知,其交点个数为2,选B.5.-1 [解析] ∵y′=k +1x,∴y′|x =1=k +1=0,故k =-1.6. 答案2 [解析] f(e x )=x +e x ,利用换元法可得f(x)=ln x +x ,f ′(x)=1x +1,所以f′(1)=2.7.D [解析] f′(x)=2x +a -1x 2≥0在⎝⎛⎭⎫12,+∞上恒成立,即a ≥1x 2-2x 在⎝⎛⎭⎫12 ,+∞上恒成立,由于y =1x 2-2x 在⎝⎛⎭⎫12,+∞上单调递减,所以y<3,故只要a ≥3.8.解:函数f(x)的定义域为(0,+∞),f′(x)=1-ax .(1)当a =2时,f(x)=x -2lnx ,f′(x)=1-2x(x>0),因而f(1)=1,f′(1)=-1,所以曲线y =f(x)在点A(1,f(1))处的切线方程为y -1=-(x -1), 即x +y -2=0.(2)由f′(x)=1-a x =x -ax,x>0知:①当a ≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x =a.又当x ∈(0,a)时,f′(x)<0;当x ∈(a ,+∞)时,f′(x)>0,从而函数f(x)在x =a 处取得极小值,且极小值为f(a)=a -aln a ,无极大值.综上,当a ≤0时,函数f(x)无极值;当a>0时,函数f(x)在x =a 处取得极小值a -aln a ,无极大值.9.答案C [解析] 当k =1时,f(x)=(e x -1)(x -1),f′(x)=e x (x -1)+(e x -1)=xe x -1,则在x =1处取不到极值.当k =2时,f(x)=(e x -1)(x -1)2,f′(x)=e x (x -1)2+(e x -1)×2(x-1)=(x -1)(xe x +e x -2),f′(1)=0,f′(2)>0,f′12<0,所以在x =1处取得极小值.10.答案C [解析] 由题意得直线l 的方程是y =1,代入抛物线方程得x =±2,所以直线l 与抛物线C 所围成图形的面积S =4-2⎠⎛02x 24dx =4-2⎝⎛⎭⎪⎫x 312⎪⎪⎪ 20)=83.B 档(提升精练)1.答案 B 【解析】 由图可知a >0.当m =1,n =1时,f (x )=ax (1-x )的图像关于直线x =12对称,所以A 不可能; 当m =1,n =2时,f (x )=ax (1-x )2=a (x 3-2x 2+x ), f ′(x )=a (3x 2-4x +1)=a (3x -1)(x -1),所以f (x )的极大值点应为x =13<0.5,由图可知B 可能.当m =2,n =1时,f (x )=ax 2(1-x )=a (x 2-x 3), f ′(x )=a (2x -3x 2)=-ax (3x -2),所以f (x )的极大值点为x =23>0.5,所以C 不可能;当m =3,n =1时,f (x )=ax 3(1-x )=a (x 3-x 4), f ′(x )=a (3x 2-4x 3)=-ax 2(4x -3),所以f (x )的极大值点为x =34>0.5,所以D 不可能,故选B.2.答案(0,1) 【解析】 函数f (x )的图象如图1-5所示:图1-5由上图可知0<k <1.3、答案A 【解析】 函数y =e -2x +1的导数为y ′=-2e -2x ,则y ′|x =0=-2,曲线y =e -2x +1在点(0,2)处的切线方程是2x +y -2=0,直线y =x 与直线2x +y -2=0的交点为⎝⎛⎭⎫23,23,直线y =0与直线2x +y -2=0的交点为(1,0),三角形的面积为12×1×23=13,故选A.4、答案2【解析】 f ′(x )=3x 2-6x ,令f ′(x )=0,得x 1=0,x 2=2,当x ∈(-∞,0)时,f ′(x )>0,当x ∈(0,2)时,f ′(x )<0,当x ∈(2,+∞)时,f ′(x )>0,显然当x =2时f (x )取极小值.5.函数3,(0,1)y x x x =-∈和1,(0,1)y x x =-∈的图像的交点的横坐标为 . (精确到0.1)5.D [∵f ′(x )=x 2+2ax +a 2-1,∴f ′(x )的图象开口向上,若图象不过原点,则a =0时,f (-1)=53,若图象过原点,则a 2-1=0,又对称轴x =-a >0,∴a =-1,∴f (-1)=-13.]6.D [|MN |的最小值,即函数h (x )=x 2-ln x 的最小值,h ′(x )=2x -1x =2x 2-1x,显然x =22是函数h (x )在其定义域内唯一的极小值点,也是最小值点,故t =22.] 7.A [因为函数f (x )=12x 4-2x 3+3m ,所以f ′(x )=2x 3-6x 2,令f ′(x )=0,得x =0或x =3,经检验知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -272,不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32.]8.B [∵函数f (x )=x 2-ax +3在(0,1)上为减函数,∴a2≥1,得a ≥2.又∵g ′(x )=2x -a x,依题意g ′(x )≥0在x ∈(1,2)上恒成立,得2x 2≥a 在x ∈(1, 2)上恒成立,有a ≤2,∴a =2.]9.B [令f (x )=e ax+3x ,可求得f ′(x )=3+a e ax,若函数在x ∈R 上有大于零的极值点,即f ′(x )=3+a e ax=0有正根.当f ′(x )=3+a e ax=0成立时,显然有a <0,此时x =1a ln ⎝ ⎛⎭⎪⎫-3a .由x >0,解得a <-3,∴a 的取值范围为(-∞,-3).] 10.解析 由已知,得f ′(x )=x 2-(a +1)x +b . 由f ′(0)=0,得b =0,f ′(x )=x (x -a -1).(1)当a =1时,f (x )=13x 3-x 2+1,f ′(x )=x (x -2),f (3)=1,f ′(3)=3.所以函数f (x )的图象在x =3处的切线方程为y -1=3(x -3), 即3x -y -8=0.(2)存在x <0,使得f ′(x )=x (x -a -1)=-9, -a -1=-x -9x=(-x )+⎝ ⎛⎭⎪⎫-9x ≥2-x ·⎝ ⎛⎭⎪⎫-9x =6,a ≤-7,当且仅当x =-3时,a =-7.所以a 的最大值为-7.C 档(跨越导练)1.答案 D解析 ()()(3)(3)(2)x x xf x x e x e x e'''=-+-=-,令()0f x '>,解得2x >,故选D2.答案 B解:设切点00(,)P x y ,则0000ln 1,()y x a y x =+=+,又0'01|1x x y x a===+ 00010,12x a y x a ∴+=∴==-∴=.故答案 选B3.答案 A解析 由2()2(2)88f x f x x x =--+-得几何2(2)2()(2)8(2)8f x f x x x -=--+--,即22()(2)44f x f x x x --=+-,∴2()f x x =∴/()2f x x =,∴切线方程12(1)y x -=-,即210x y --=选A4.答案 A解析 设过(1,0)的直线与3y x =相切于点300(,)x x ,所以切线方程为320003()y x x x x -=-即230032y x x x =-,又(1,0)在切线上,则00x =或032x =-, 当00x =时,由0y =与21594y ax x =+-相切可得2564a =-, 当032x =-时,由272744y x =-与21594y ax x =+-相切可得1a =-,所以选A . 5.答案 A解析 由已知(1)2g '=,而()()2f x g x x ''=+,所以(1)(1)214f g ''=+⨯=故选A 力。