7.6用锐角三角函数解决问题(2)学案

合集下载

7.6锐角三角函数的简单应用(2)(058)

7.6锐角三角函数的简单应用(2)(058)

响水县双语学校九(8)班数学导学案(058)课题:7.6锐角三角函数的简单应用第2课学生姓名教学目标:进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。

教学过程:一、自主探究1.给出仰角、俯角的定义如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角。

右图中的∠1就是仰角,∠2就是俯角。

二、自主合作1.为了测量停留在空中的气球的高度,小明先站在地面上某点观测气球,测得仰角为27°,然后他向气球方向前进了50m,此时观测气球,测得仰角为40°。

若小明的眼睛离地面1.6m ,小明如何计算气球的高度呢?三、自主展示3.大海中某小岛的周围10km 范围内有暗礁。

一艘海轮在该岛的南偏西55°方向的某处,由西向东行驶了20km 后到达该岛的南偏西25°方向的另一处。

如果该海轮继续向东行驶,会有触礁的危险吗?四、自主拓展1. 如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1).(参考数据:414.12≈ 732.13≈)2.如图,A 、B 是两幢地平高度相等、隔岸相望的建筑物,B 楼不能到达,由于建筑物密集,在A 楼的周围没有开阔地带,为测量B 楼的高度,只能充分利A 楼的空间,A 楼的各层都可到达且能看见B 楼,现仅有测量工具为皮尺和测角器(皮尺可用于测量长度,测角器可以测量仰角、俯角或两视线的夹角)。

(1)你设计一个测量B 楼高度的方法,要求写出测量步骤和必需的测量数据 (用字母表示),并画出测量图形。

(2)用你测量的数据(用字母表示)写出计算B 楼高度的表达式。

九年级(下)数学教案:锐角三角函数的简单应用(全3课时)

九年级(下)数学教案:锐角三角函数的简单应用(全3课时)

主备人用案人授课时间年月日总第课时课题7.6锐角三角函数的简单应用(1)课型新授教学目标1.进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、2.俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。

重点进一步掌握解直角三角形的方法难点进一步掌握解直角三角形的方法教法及教具自主学习,合作交流,分组讨论多媒体教学过程教学内容个案调整教师主导活动学生主体活动一.指导先学:如右图所示,斜坡AB和斜坡A1B1哪一个倾斜程度比较大?显然,斜坡A1B l的倾斜程度比较大,说明∠A′>∠A。

从图形可以看出ACBCCACB'''',即tanA l>tanA。

在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度。

新授:坡度的概念,坡度与坡角的关系。

如下图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,例如上图中的1:2的形式。

坡面与水平面的夹角叫做坡角。

从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡学生回顾相关所学知识学生按照老师要求完成自学内容,有难度的可以组内交流,达成统一意见教学过程教学内容个案调整教师主导活动学生主体活动四.检测巩固:如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角。

和坝底宽AD。

(i=CE:ED,单位米,结果保留根号)2.如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。

问这时摆球B'较最低点B升高了多少?五.小结反思:通过本节课的学习,你有何收获?你还存在什么疑惑?学生独立完成,有难度的可以组内交流,教师巡视,指导学生分组讨论交流,总结归纳,教师补充板书设计7.6锐角三角函数的简单应用(1)坡度的概念,坡度与坡角的关系。

坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡布置作业补充习题教学札记教学过程教学内容个案调整教师主导活动学生主体活动1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?三.释疑拓展:如图,东西两炮台A、B相距2000米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离(精确到l米)。

江苏省徐州市铜山县九年级数学下册7.6用锐角三角函数解决问题锐角三角函数复习导学案2(无答案)(新版)苏

江苏省徐州市铜山县九年级数学下册7.6用锐角三角函数解决问题锐角三角函数复习导学案2(无答案)(新版)苏

锐角三角函数【学习目标】:1. 巩固三角函数的概念,巩固用直角三角形边之比来表示某个锐角的三角函数.2. 熟记30°,45°, 60°角的三角函数值.会计算含有特殊角的三角函数的值,会由一个特殊锐角的三角函数值,求出它的对应的角度.3.掌握直角三角形的边角关系,会运用勾股定理,直角三角形的两锐角互余及锐角三角函数解直角三角形.4.会用解直角三角形的有关知识解决简单的实际问题.二、典型例题探究1:海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.探究:2:我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示.BC∥A D,斜坡AB=40米,坡角∠BAD=60°,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造.经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC 削进到E处,问BE至少是多少米(结果保留根号)?探究3:.如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离是1.7m ,看旗杆顶部的仰角为45°;小红的眼睛与地面的距离(CD )是1.5m ,看旗杆顶部的仰角为30°.两人相距28米且位于旗杆两侧(点B ,N ,D 在同一条直线上).请求出旗杆MN 的高度.(结果保留整数)三、小结四、达标测试题1.已知α为锐角,当αtan 12-无意义时,则tan(α+15°)-tan(α-15°)的值为 . 2.已知α为锐角,且23)10sin(=︒-α,则α等于( ) A .︒50 B .︒60 C .︒70 D .︒80 3.直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是( )A .247 BC .724D .13 4.如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则6 8 C E A B D该高楼的高度大约为()A.82米 B.163米 C.52米 D.70米5.在Rt△ABC中,点C为直角顶点,则下列式子中不一定成立的是()A.sinA=sinB B.cosA=sinB C.sinA=cosB D.sin(A+B)=sinC6.如图,小鸣将测倾器安放在与旗杆AB底部相距6m的C处,量出测倾器的高度CD=1m,测得旗杆顶端B的仰角 =60°,则旗杆AB的高度为.(计算结果保留根号)。

苏科版数学九年级下册教案-7.6 用锐角三角函数解决问题

苏科版数学九年级下册教案-7.6 用锐角三角函数解决问题

用锐角三角函数解决问题学习目标1. 能结合实际问题中的仰角、俯角、坡度等专业术语,运用三角函数解决与直角三角形有关的实际问题.2.能够把实际问题转化为数学问题.能用适当的直角三角形中的边、角各元素之间的关系解直角三角形模型,并借助于计算器进行有关三角函数的计算,同时能够对结果的意义进行说明.课前热身1.小明沿着坡度i 为1∶3的直路向上走了50 m ,则小明沿垂直方向升高了________m.2.如图,无人机在空中C 处测得地面A ,B 两点的俯角分别为60°,45°,如果无人机距地面的高度CD 为100 3 m ,点A ,D ,E 在同一水平直线上,则A ,B 两点间的距离是________m .(结果保留根号)3.如图,一辆小车沿倾斜角为α的斜坡向上行驶13 m ,已知cos α=1213,则小车上升的高度是( )A .5 mB .6 mC .6.5 mD .12 m俯角和仰角例题如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60 m,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底点C到大楼距离AC的值;(2)求斜坡CD的长度.跟踪训练如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°.已知甲楼的高AB是120 m,则乙楼的高CD是________m.(结果保留根号)坡度与坡角例题 .为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2 m(即CD=2 m),背水坡DE的坡度i=1∶1(即DB∶EB=1∶1),如图所示.已知AE=4 m,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)方位角为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在其北偏东60°方向;从A处向正东方向行走200 m,到达公路l上的点B处,再次测得凉亭P在其北偏东45°方向,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:2≈1.414,3≈1.732)。

数学面试《用锐角三角函数解决问题(2)》试讲逐字稿

数学面试《用锐角三角函数解决问题(2)》试讲逐字稿

《用锐角三角函数解决问题(2)》试讲逐字稿上课,同学们好,请坐。

最近咱们一直在学习锐角三角函数相关的知识,今天这节课我们继续学习用锐角三角函数解决问题。

(板书课题)同学们先一起来回顾一下上节课用锐角三角函数解决问题的思路。

第一步是什么?要构造直角三角形。

第二步呢?应用说角三角函数解直角三角形。

那我们再来回顾一下锐角三角函数的定义。

正弦等于对边比斜边,余弦等于邻边比斜边,正切等于对边比邻边。

锐角三角函数反映的是直角三角形中边与角之间的关系。

看来同学们对之前的知识记得很牢固。

下面我们来看一道生活实际问题。

同学们请看大屏幕,图上展示的是什么?是游乐场里的大型摩天轮。

已知摩天轮的半径为20m,旋转1周需要12min,摩天轮的底部与地面相距0.3m。

小明从摩天轮的底部进入轿厢,开始观光后,2min时小明距离地面有多高?为了解决这个问题,我们可以先作图来帮助我们分析题干。

同学们可以在自己的练习本上画一画,并在图中找到并标记相应的已知条件。

老师刚刚巡视发现个别同学似乎对于2min后小明所在的位置有点困惑,我们一起在黑板上画一画。

既然摩天轮是圆形的,我们也用圆形来表示摩天轮,圆上最低点A表示摩天轮的底部、半径OA是竖直的,以上这些同学们都画出来了。

接下来我们想想,小明从底部点A开始,沿着圆形移动,经过2min后会到达圆上的哪个位置呢?这位同学举手了,似乎有想法,我们请他来回答。

好的,请坐。

他说,摩天轮旋转一周需要12min,那么旋转半周就是6min,也就是说3min会旋转四分之一周,同理可知,2min是12min的六分之一,小明在摩天轮的这个圆上会转过整个圆的六分之一。

嗯,他是根据时间的比值来计算移动位置,这个方法很巧妙,但前提得是速度一定才行。

大家认为摩天轮是匀速转动的吗?没错,为了保证每个游客在上面时不会忽快忽慢,摩天轮的确是匀速转动的。

同学们对生活中的这些现象总结的很到位。

我们已经知道了小明会在圆上转过六分之一的位置,那么是在点A的左侧还是右侧呢?嗯,这个问题其实对于我们解决题目并没有实质性的影响,因为在匀速运动过程中,时间一样的情况下,移动的距离是一样的,小明在左侧还是右侧的高度也就是一样的。

7.6用锐角三角函数解决问题(仰角、俯角问题)

7.6用锐角三角函数解决问题(仰角、俯角问题)

7.6 锐角三角函数的简单应用——仰角、俯角问题一、画一画 根据题意,画出仰角或俯角(1)人看气球 (2)在飞机上看地面控制中心二、实际问题问题1: “小机灵”在飞行高度为180米的飞机A 上看到上海浦东国际机场地面指挥中心B 的俯角为30°,求此时飞机A 在地面上的投影点C 离B 点的水平距离。

(结果保留根号)变式:“小机灵”在离中国馆AB 120米的C 处,用高为1米的测角仪测得中国馆的最高处A的仰角为30°,已知测角仪CD 垂直于地面,求中国馆AB 的高。

(结果保留根号)AB问题2:在南浦大桥AB 的上方有一只热气球停在P 点处,此时热气球离桥面的高度为1200米,“小机灵”在大桥的两端A 、B 分别测得热气球的仰角为27°、40°,求南浦大桥的AB 。

参考数据:sin27°≈0.5,cos27°≈0.9, tan27°≈0.5,sin40°≈0.6, cos40°≈0.8,tan40°≈0.8PB A人的眼睛 P · 0· A · 地面控制中心 B · A ·B · D C变式1:已知南浦大桥的主桥AB长900米,热气球由西向东飞行,一段时间后到达C处,此时“小机灵”在大桥两端A、B分别测得热气球的仰角为30°、45°,求此时热气球距桥面的高度。

(结果保留根号)CB A变式2:热气球继续向东飞行至D处,此时“小机灵”在大桥两端A、B分别测得热气球的仰角为40°、27°,已知主桥AB的长为900米,求此时热气球距桥面的高度。

参考数据:sin27°≈0.5,cos27°≈0.9,tan27°≈0.5,sin40°≈0.6,cos40°≈0.8,tan40°≈0.8DB A三、数学活动室思考:1、如何测量得到旗杆的高度?(图1 )2、怎样从地面测量小山的高度呢?(图2 )仪器:卷尺,高度为h的测角仪;要求:画出图形,测得的角用α、β等表示,测得的长度用a、b、c等表示。

用锐角三角函数解决问题优秀教案

用锐角三角函数解决问题优秀教案

2.小明沿着坡度为
3.如图所示,河堤横断面迎水坡。

学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面AB的坡度进行修改,修改后的迎水坡面AE的坡度i=5∶6.
(1)求原方案中此大坝迎水坡AB的长。

(结果保留根号)
(2)如果方案修改前后,修建大坝所需土石方总体积不变,在方案修改后,若坝顶沿EC 方向拓宽2.7m,求坝底将会沿AD方向加宽多少米?
5.我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=600,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过450时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E 处,问BE至少是多少米(结果保留根号)?。

九年级数学下册 第7章 锐角三角形 7.6 锐角三角函数的简单应用作业设计 (新版)苏科版

九年级数学下册 第7章 锐角三角形 7.6 锐角三角函数的简单应用作业设计 (新版)苏科版

7.6 锐角三角函数的简单应用的值是________1、如图,已知AB是⊙O的直径,弦CD⊥AB,AC=22,BC=1,那么sin ABD2、一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)3、如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD 方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)4、如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)5.如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度(取≈1.73,结果保留整数)6.如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为m(结果保留根号)7.如图,某学校新建了一座吴玉章雕塑,小林站在距离雕塑2.7米的A处自B点看雕塑头顶D的仰角为45°,看雕塑底部C的仰角为30°,求塑像CD的高度.(最后结果精确到0.1米,参考数据:)8.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)参考答案221.2.解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).3. 解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.4.解:(1)C作AB的垂线,设垂足为D,根据题意可得:∠1=∠2=42°,∠3=∠4=55°,设CD的长为x海里,在Rt△ACD中,tan42°=,则AD=x•tan42°,在Rt△BCD中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD=80,∴x•tan42°+x•tan55°=80,解得:x≈34.4,答:海轮在航行过程中与灯塔C的最短距离是34.4海里;(2)在Rt△BCD中,cos55°=,∴BC=≈60海里,答:海轮在B处时与灯塔C的距离是60海里.5. 解:∵∠BDE=30°,∠BCE=60°,∴∠CBD=60°﹣∠BDE=30°=∠BDE,∴BC=CD=10米,在Rt△BCE中,sin60°=,即=,∴BE=5,AB=BE+AE=5+1≈10米.答:旗杆AB的高度大约是10米.6. 解:作CE⊥AB于点E,在Rt△BCE中,BE=CD=5m,CE==5m,在Rt△ACE中,AE=CE•tan45°=5m,AB=BE+AE=(5+5)m.故答案为:(5+5).7. 解:在Rt△DEB中,DE=BE•tan45°=2.7米,在Rt△CEB中,CE=BE•tan30°=0.9米,则CD=DE﹣CE=2.7﹣0.9≈1.2米.故塑像CD的高度大约为1.2米.8 解:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.。

九年级数学下册7.6用锐角三角函数解决问题锐角三角函数的简单应用2教案新版苏科版

九年级数学下册7.6用锐角三角函数解决问题锐角三角函数的简单应用2教案新版苏科版
7.6锐角三角函数的简单应用
7.6锐角三角函数的简单应用(2)
教学目标
1.知识与技能:
(1)认清俯角、仰角和方位角;
(2)能把实际问题转化为数学问题,能借助计算器进行有关三角函数的计算,并能对结果的意义进行说明;
2.过程与方法:经历探索实际问题的求解过程,进一步体会三角函数在解决实际问题中的作用;
3.情感态度与价值观:通过对问题情境的讨论,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想.
通过学生相 互讨论使学生主动参与到学习活动中来,培养学生合作交流精神和发散思维能力.
活动二:海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C处的距离.
互相讨 论,踊跃回答.
思考:(1)如何做辅助线?
教学 重点
利用俯角、仰角和方位角相关知识解决实际问题.
教学难点
三角函数在解决问题中的灵活运用.
教学过程(教师)
学生活动
设计思路
情境创设
热气球的探测器显示,从热气球A看一栋高楼顶部B处的仰角为30º,看这栋高楼底部C处的俯角为60º,若热气球与高楼的水平距离为90m,则这栋高楼有多高?(结果保留整数, ≈1.414, ≈1.732)(右图)
(2)设哪条线段为未知数计算最简单?
师生互动,锻炼学生的口头表达能力,培养学生勇于发表自己看法的能力.
例题讲解
怎样测量停留在空中的气球高度呢?明明设计了这样一个方案:
先站在地面上某点处观测气球,测得仰角为27°,然后他向气球方向前进了50m,此时观测气球,测得仰角为 40°.若明明的眼睛离地面1.6m,如何计算气球的 高度呢?(右图)

苏科版九年级数学下册《用锐角三角函数解决问题(2)》导学案-新版

苏科版九年级数学下册《用锐角三角函数解决问题(2)》导学案-新版

7.6 用锐角三角函数解决问题(2)学案学习目标:1.能把实际问题抽象为几何问题,借助直角三角形、锐角三角函数把已知量与未知量联系在一起解决实际问题。

2.构造直角三角形是解决这类问题重要辅助线。

学习过程:【典型例题】1. “五一”节,小明和同学一起到游乐场游玩. 游乐场的大型摩天轮的半径为20m,旋转1周需要12min.小明乘坐最底部的车厢(离地面约0.5m)开始1周的观光,经过2min 后,小明离地面的高度是多少?(1).摩天轮启动多长时间后,小明离地面的高度将首次达到10m?(2).小明将有多长时间连续保持在 离地面10m 以上的空中?2.单摆的摆长AB 为90cm,当它摆动到AB 的位置时, ∠BAB=11°,问这时摆球B 较最低点B 升高了多少(精确到1cm)?sin110.191︒≈cos110.982︒≈tan110.194︒≈sin110.191︒≈cos110.982︒≈tan110.194︒≈3.已知跷跷板长4m,当跷跷板的一端碰到地面时,另一端离地面1.5m.求此时跷跷板与地面的夹角(精确到0.1°).4.如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m,当他攀升到头顶距天花板0.05~0.20m 时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?课后练习:1.如图,秋千链子的长度为3m,当秋千向两边摆动时,两边的摆动角度均为30º。

求它摆动至最高位置与最低位置的高度之差(结果保留根号).2.某商场门前的台阶截面如图所示.已知每级台阶的宽度(如CD)均为30cm ,高度(如BE)均为20cm .为了方便残疾人行走,商场决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角为9°.请计算从斜坡起点A 到台阶前的点B 的水平距离.(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)60º O A BC D B A。

苏科版数学九年级下册《7.6 用锐角三角函数解决问题》教学设计

苏科版数学九年级下册《7.6 用锐角三角函数解决问题》教学设计

苏科版数学九年级下册《7.6 用锐角三角函数解决问题》教学设计一. 教材分析苏科版数学九年级下册《7.6 用锐角三角函数解决问题》这一节主要讲述了如何利用锐角三角函数解决实际问题。

通过本节课的学习,学生能够掌握锐角三角函数的概念,理解其应用,并能够运用到实际问题中。

教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析九年级的学生已经掌握了初中阶段的数学基础知识,对函数的概念和性质有一定的了解。

但是,对于锐角三角函数的理解和应用可能还存在一定的困难。

因此,在教学过程中,教师需要结合学生的实际情况,通过生动的例子和实际问题,引导学生理解和掌握锐角三角函数的概念和应用。

三. 教学目标1.知识与技能:使学生掌握锐角三角函数的概念,理解其应用,并能够运用到实际问题中。

2.过程与方法:通过实际问题,引导学生运用锐角三角函数解决问题,提高学生的解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和实践能力。

四. 教学重难点1.重点:使学生掌握锐角三角函数的概念,理解其应用。

2.难点:如何引导学生运用锐角三角函数解决实际问题。

五. 教学方法采用问题驱动法,通过实际问题引导学生理解和掌握锐角三角函数的概念和应用。

同时,运用小组合作学习法,让学生在小组内讨论和解决问题,提高学生的合作意识和解决问题的能力。

六. 教学准备1.教具准备:多媒体教学设备,投影仪,三角板,直尺,圆规等。

2.教学素材:教材,PPT课件,练习题,实际问题案例等。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,例如:一个直角三角形,两个锐角的度数分别是30度和60度,求这个直角三角形的斜边长。

让学生思考如何解决这个问题,从而引出锐角三角函数的概念。

2.呈现(15分钟)通过PPT课件,呈现锐角三角函数的定义和性质,以及如何利用锐角三角函数解决实际问题。

通过生动的例子和实际问题,让学生理解和掌握锐角三角函数的概念和应用。

【教案】7.6用锐角三角函数解决问题(2)

【教案】7.6用锐角三角函数解决问题(2)

7.6用锐角三角函数解决问题(2)教学目标:进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。

教学重点、难点:进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。

教学过程:一、给出仰角、俯角的定义如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角。

右图中的∠1就是仰角, ∠2就是俯角。

二、例题讲解例2、(2013四川内江)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE 的高度,他们在这棵树正前方一座楼亭前的台阶上A 点处测得树顶端D 的仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60°.已知A 点的高度AB 为3米.台阶AC 坡度为1(即AB :BC =1,且B 、C 、E 三点在同一条直线上.请根据以上条件求出树DE 的高度(测倾器的高度忽略不计).如图,过点A 作AF ⊥DE 于F ,则四边形ABEF 为矩形,∴AF =BE,EF =AB =3,设DE=x ,在Rt △CD E 中,x DE DCE DE CE 3360tan tan =︒=∠=.在Rt △ABC 中,∵31=BC AB ,AB =3,∴BC =在Rt △AFD 中,DF =D E -EF =x -3,∴)33tan tan 30DF x AF x DAF -==-邪.因为AF =BE =BC +CE )33x x -=,解得x =9.答:树DE的高度为9米.例2 (2013山东聊城)如图,一只猫头鹰蹲在一颗树AC的点B处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住.为了寻找这只老鼠,猫头鹰向上飞至树顶C处.已知点B在AC上,DF=4米,短墙底部D与树的底部A的距离AD=2.7米,猫头鹰从C点观察F点的俯角为53°,老鼠躲藏处M距D点3米,且点M在DE上.(参考数据:sin37°≈0.60,c os37°≈0.80,tan37°≈0.75).(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米(精确到0.1米)?解:(1)依题意得:∠AGC=53°,∠GFD=∠GCA=37°,∴DG=DF tan37°=3米=DM,因此这只猫头鹰能看到这只老鼠;(2)∵AG=AD+DG=2.7+3=5.7,∴÷CG sin37°=9.5(米),=AG因此猫头鹰至少要飞9.5米.2、课堂练习:书本P 56 1、23、思考与探索:(2013湖南湘西)钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B 处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号)(1)如图所示:(2)AB =30×0.5=15, 在Rt △ABC 中,ABBC BAC =∠tan , 所以BC =ABtan ∠BAC =ABtan 30°=15×33=35(海里)。

《锐角三角函数》 导学案

《锐角三角函数》 导学案

《锐角三角函数》导学案一、学习目标1、理解锐角三角函数的定义,能够准确说出正弦、余弦、正切的概念。

2、掌握锐角三角函数的求值方法,会利用已知条件求出锐角的三角函数值。

3、能够运用锐角三角函数解决与直角三角形相关的实际问题。

二、学习重难点1、重点(1)锐角三角函数的概念,包括正弦、余弦、正切的定义。

(2)特殊锐角(30°、45°、60°)的三角函数值及其应用。

2、难点(1)理解锐角三角函数的本质,以及如何在直角三角形中准确地表示出三角函数值。

(2)运用锐角三角函数解决实际问题时,如何将实际问题转化为数学模型。

三、知识回顾1、直角三角形的性质(1)直角三角形的两个锐角互余。

(2)直角三角形斜边的平方等于两直角边的平方和(勾股定理)。

2、相似三角形的性质(1)对应角相等,对应边成比例。

(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

四、新课导入在生活中,我们常常会遇到需要测量高度、距离等问题,比如测量大树的高度、河流的宽度等。

而这些问题往往可以通过直角三角形的知识来解决。

今天,我们就来学习一种新的数学工具——锐角三角函数,它将帮助我们更方便、更准确地解决这类问题。

五、知识讲解1、锐角三角函数的定义在直角三角形中,如果一个锐角的对边与斜边的比值是一个固定值,那么这个比值就叫做这个锐角的正弦,记作 sinA。

即 sinA =对边/斜边。

同理,如果一个锐角的邻边与斜边的比值是一个固定值,那么这个比值就叫做这个锐角的余弦,记作 cosA。

即 cosA =邻边/斜边。

如果一个锐角的对边与邻边的比值是一个固定值,那么这个比值就叫做这个锐角的正切,记作 tanA。

即 tanA =对边/邻边。

例如,在直角三角形 ABC 中,∠C = 90°,∠A 为锐角,BC 为∠A 的对边,AC 为∠A 的邻边,AB 为斜边。

则 sinA = BC / AB,cosA = AC / AB,tanA = BC / AC。

锐角三角函数两课时(教案与学案)

锐角三角函数两课时(教案与学案)

教学设计课题:锐角三角函数学科长审核意见: 学科长签名:【教学内容及其分析】1、教学内容:这是九年级人教版数学第28章第1节内容。

主要锐角三角函数的定义、特殊角的三角函数值,三角函数间的同角关系与互余关系。

2、分析:锐角三角函数是本章的一个重点且是难点内容,同样被广泛应用到实际生活当中。

它先阐述一些基本的三角函数知识,然后再举一些特殊角为例。

所以要注意一般到特殊、特殊一般相联系的教学方法。

【教学目标分析】1、教学目标:理解锐角三角函数的定义,掌握锐角三角函数的表示法;能根据锐角三角函数的定义计算一个锐角的各个三角函数的值;并能掌握Rt △中的锐角三角函数的表示: sinA=斜边的对边A ∠, cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠2、分析:在对实际问题的探讨中学会对知识点的掌握,并又能反作用于实际生活中去。

【教学问题诊断分析】三角函数在日常生活是非常普遍的,如何把它引入到数学中来,及如何引导学生通过观 察识别不同类型的三角函数,培养学生的观察分析及归纳能力是一个特别要关注的问题。

第一课时【教学过程设计】(一)教学流程创设情境,提出问题→探索新知,解决问题→范例点击,直击所学→拓展引入→巩固与练习→小结 (二)教学情景1、创设情境,引出问题 如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁先到达楼顶?如果AB 和A ′B ′相等,∠α和∠β大小不同, 那么它们的高度AC 和A ′C ′相等吗?AB 、AC 、BC 与∠α,A ′B ′、A ′C ′、B ′C ′与∠β之间有什么关系呢?(设计意图:从现实生活中选取材料,一则学生比较容易接受,再则本身三角函数与实际生活是紧密联系在一起的。

)2、探索新知,解决问题(设计意图:学生在自主探究的过程中发现并解决问题,锻炼独立思考的能力。

) (1)、下面我们一起来探索一下。

活动一:作一个30°的∠A ,在角的边上任意取一点B ,作BC ⊥AC 于点C 。

锐角三角函数的简单应用第二课时学案

锐角三角函数的简单应用第二课时学案

锐角三角函数的简单应用(2)学习目标:使学生进一步掌握锐角三角函数的简单应用,比较熟练的应用解直角三角形的知识解决与仰角、俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力. 学习重点:仰角、俯角有关的实际问题学习难点:把实际问题转化为数学问题教学过程一、给出仰角、俯角的定义在本章的开头,我们曾经用自制的测角仪测出视线(眼睛与旗杆顶端的连线)与水平线的夹角,那么把这个角称为什么角呢?如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角.右图中的∠1就是仰角, ∠2就是俯角.二、例题讲解例1.如图,为了测量电线杆的高度AB ,在离电线杆22.7米的C处,用1.20米的测角仪CD 测得电线杆顶端B 的仰角a =22°,求电线杆AB 的高度.例2.为了测量停留在空中的气球的高度,小明先站在地面上某点处观测气球,测得仰角为27度,然后他向气球方向前进了50米,此时观测气球,测得仰角40度.若他的眼睛离1.6米地面 ,他如何计算气球的高度呢?(精确到0.1米)?例3:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角DA B C为60°,热气球与高楼的水平距离为120m,这栋高楼有多高?例4、建筑物BC 上有一旗杆AB,由距BC 40m 的D 处观察旗杆顶部A 的仰角为50°,观察底部B 的仰角为45°,求旗杆的高度(精确到0.1m)例5、如图,一艘海轮位于灯塔P 的北偏东65°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东34°方向上的B 处,这时,海轮所在的B 处距离灯塔P 有多远? (精确到0.01海里)三、补充练习:1、如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号). BACD2.如图,在一个坡角为15°的斜坡上有一棵树,高为AB.当太阳光与水平线成500时,测得该树在斜坡上的树影BC 的长为7m ,求树高.(精确到0.1m)3.要在宽为28m 的海堤公路的路边安装路灯.路灯的灯臂长为3m ,且与灯柱成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线与灯臂垂直.当灯罩的轴线通过公路路面的中线时,照明效果最理想.问:应设计多高的灯柱,才能取得最理想的照明效果?4.已知:如图,在△ABC 中,∠CAB=120°,AB=4,AC=2,AD ⊥BC ,D 是垂足.求:AD 的长.5、如图,某校九年级3班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚点A 测得山腰上一点D 的仰角为30°,并测得AD 的长度为180米;另一部分同学在山顶点B 测得山脚点A 的俯角为45°,山腰点D 的俯角为60°.请你帮助他们计算出小山的高度BC (计算过程和结果都不取近似值).3m 120° 轴线 CA BD6.如图,甲、乙两只捕捞船同时从A 港出海捕鱼.甲船以每小时215千米的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北方向前进.甲船航行2小时到达C 处,此时甲船发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B 处相遇. (1)甲船从C 处追赶上乙船用了多少时间?(2)甲船追赶乙船的速度是每小时多少千米?四、小结:本节课我们学习了有关仰角、俯角的解直角三角形的应用题,对于这些问题,一方面要把它们转化为解直角三角形的数学问题,另一方面,针对转化而来的数学问题选用适当的数学知识加以解决.五、作业 见作业纸第一学期九年级数学作业纸内容:三角函数的应用(2) 班级 姓名 日期 月 日 等第1.如图,小岛A 在港口P 的南偏西45°方向,距离港口8l 海里处.甲船从A 出发,沿AP 方向以9海里/时的速度驶向港口,乙船从港口P 出发,沿南偏东6O °方向,以l8海里/时的速度驶离港口.现两船同时出发,北东东B CA(1)出发后几小时两船与港口P的距离相等?(2)出发后几小时乙船在甲船的正东方向?(结果精确到小时)2.如图,在A、B两座工厂之间要修建一条笔直的公路,从A地测得B地的走向是南偏东52°,现A、B两地要同时开工,若干天后公路准确对接,则B地所修公路的走向应该是( )A北偏西52°B南偏东52°C西偏北52°D北偏西3、一船以每小时20海里的速度沿正东方向航行.上午8时,该船在A处测得某灯塔位于它的北偏东30°的B处,上午9时行到C处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是多少海里?((画出示意图,结果保留根号).3.某学生站在公园的湖边M处,测得湖心亭A位于北偏东30º方向上,又测得游船码头B 位于南偏东60º方向上,现有一艘游船从湖心亭A处沿正南方向航行返回游船码头.已知M 处与AB的距离MN为千米,求湖心亭与游船码头的距离.(画出示意图,精确到千米)4.在一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点 A 处观测到河对岸边有一点 C,测得C 在A北偏西31°的方向上,沿河岸向北前行20米到达B处,测得 C在 B 北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.东北BAC。

《用锐角三角函数解决问题》word教案 (公开课获奖)2022苏教版 (2)

《用锐角三角函数解决问题》word教案 (公开课获奖)2022苏教版 (2)

锐角三角函数的简单应用课堂教学教案教材第七章第六节第 2 课时课题 7.6锐角三角函数的简单应用(2)备课人课型新授课:展现标点讲解重点突破难点巩固疑点教学目标(认知技能情感)【知识与技能】能利用解直角三角形的知识,解决与方向角有关的实际问题。

【过程与方法】经历观察、比较、概括解直角三角形的知识;通过探究与方向角有关的实际问题,达成知识目标【情感态度与价值观】培养学生观察、猜想、探究、归纳的习惯和能力,体验数学发现的乐趣,进一步培养学生把实际问题转化为数学问题的能力.教学重难点重点:方向角的问题难点:方向角的问题教具与课件多媒体与三角尺板书设计7.6锐角三角函数的简单应用(2)俯角与仰角方位角教学环节学生自学共研的内容方法(按环节设计自学、讨论、训练、探索、创新等内容)教师施教提要(启发、精讲、活动等)再次优化一、创设情境【知识要点】1.认清俯角与仰角以提问的形式进行。

让学生小结30°45°45°北东西O南2.方位角:如图,从O点出发的视线与铅垂线所成的锐角,叫做观测的方位角30°45°45°北东西O南二、例题教学解决此类问题的关键是将一般三角形问题,通过添加辅助线转化直角三角形问题。

【典型例题】如图,AB和CD是同一地面上的两座相距36米的楼房,在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°,楼底D的俯角为30°.求楼CD的高。

若已知楼CD高为30米,其他条件不变,你能求出两楼之间的距离BD吗?2.如图,飞机在距地面9km高空上飞行,先在A处测得正前方某小岛C的俯角为30°,飞行一段距离后,在B处测得该小岛的俯角为60°.求飞机的飞行距离。

3.如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从A测得船C在北偏东60°的方向,从B测得船C在北偏西45°的方向.求船C离海岸线的距离.4.气象局发出预报:如图, 沙尘暴在A市的正东方向400km的B处以40km/h的速度向北偏西600的方向转移,距沙尘暴中心300km的范围内将受到影响,A市是否受到这次沙尘暴的影响?如果受到影响,将持续多长时间?5.如图, 海上有一灯塔P, 在它周围3海里处有暗礁. 一艘客轮以9海里/时的速度由西向东航行, 行至A点处测得P在它的北偏东60度的方向, 继续行驶20分钟后, 到达B处又测得灯塔P在它的北偏东45度方向. 问客轮不改变方向继续前进有无触礁的危险?以试卷形式开展。

《锐角三角函数的应用》教案02

《锐角三角函数的应用》教案02

《锐角三角函数的应用》教课设计教课目标1.可以把数学识题转变为数学识题。

2. 可以错助于计算器进行有三角函数的计算,并能对结果的意义进行说明,发展数学的应企图识和解决问题的能力。

过程与方法经历探究实质问题的过程,进一步领会三角函数在解决实质问题过程中的应用。

感情态度与价值观踊跃参加探究活动,并在探究过程中发布自己的见解,领会三角函数是解决实质问题的有效工具。

要点:可以把数学识题转变为数学识题,可以借助于计算器进行有三角函数的计算。

难点:可以把数学识题转变为解直角三角形问题,会正确采纳合适的直角三角形的边角关系。

教课过程一、问题引入,认识仰角俯角的看法。

提出问题:某飞机在空中 A 处的高度AC= 1500 米,此时从飞机看地面目标 B 的俯角为18°,求 A、B间的距离。

发问: 1. 俯角是什么样的角?,假如这时从地面 B 点看飞机呢,称∠ABC是什么角呢?这两个角有什么关系?2.这个△ ABC是什么三角形?图中的边角在实质问题中的意义是什么,求的是什么,在这个几何图形中已知什么,又是求哪条线段的长,采纳什么方法?教师经过问题的解析与谈论与学生共同学习也仰角与俯角的看法,也为运用新知识解决实质问题供给了必定的模式。

二、丈量物体的高度或宽度问题.1.提出老问题,找寻新方法我们学习中介绍过丈量物高的一些方法,此刻我们又学习了锐角三角函数,能不可以利用新的知识来解决这些问题呢。

利用三角函数的前提条件是什么?那么假如要测旗杆的高度,你能设计一个方案来利用三角函数的知识来解决吗?学生分组谈论领会用多种方法解决问题,解决问题需要合适的数学模型。

2. 运用新方法,解决新问题.⑴从 1.5 米高的丈量仪上测得古塔顶端的仰角是30°,丈量仪距古塔60 米,则古塔高()米。

⑵从山顶望地面正西方向有C、D 两个地点,俯角分别是45°、 30°,已知C、 D 相距 100 米,那么山高()米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.6用锐角三角函数解决问题(2)学案
学习目标:
通过具体的一些实例,能将实际问题中的数量关系,归结为直角三角形中元素之间的关系。

教学过程:
一、复习巩固:
1、在△ABC中,∠C=90°,∠A=45°,则BC:AC:AB = 。

2、在△ABC中,∠C=90°。

(1)已知∠A=30°,BC=8cm,(2)已知∠A=60°,AC=3cm, 求:AB与AC的长; 求:AB与BC的长。

二、例题学习:
问题1:“五一”节,小明和同学一起到游乐场游玩,游乐场的大型摩天轮的半径为20m,旋转1周需要12min。

小明乘坐最底部的车厢(离地面约0.3m)开始1周的观光,2min后小明离地面的高度是多少(精确到0.1m)?
拓展延伸:1、摩天轮启动多长时间后,小明离地面的高度将首次到达15.3m?
2、小明将有多长时间连续保持在离地面30.3m以上的空中?
三、练习巩固
,
B B
A 1、如图,单摆的摆长A
B 为90cm ,当它摆动到∠B AB '的位置时,∠BAB '=30°。

问这时摆球B '
较最低点B 升高了多少?
2、已知跷跷板长4m ,当跷跷板的一端碰到地面时,另一端离地面32m.求此时跷跷板与地面的夹角.
3、如图,在离水面高度为5米的岸上有人用绳子 拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:8秒后船向岸边移动了多少米?(结果精确到0.1米)
四、小结
五、课堂作业
B A
O B
A 初三数学课堂作业
1、如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离A B为 ( )
A. αcos 5
B.
αcos 5 C . αsin 5 D. αsin 5
第1题 第3题 第4题
2.(09甘肃定西)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为 ( )
A .8米ﻩﻩB.83米ﻩ C .833米ﻩ D.433
米 3.(09潍坊)如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米.
A .25 ﻩﻩB.253 C.10033 ﻩD .25253+
4.已知跷跷板长4m ,当跷跷板的一端碰到地面时,另一端离地面2m 。

时跷跷板与地面的夹角为_____
____。

7.如图,秋千链子的长度为3m,当秋千向两边摆动时,两边摆动的角度均为30°.求它摆动到最高位置与最低
位置的高度之差。

5.海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45°方向,求此时灯塔B 到C处的距离.
6. 单摆的摆长AB 为90cm,当它摆动到A B’的位置时, ∠BAB’=11°,问这时摆球B’
较最低点B 升高了多少(精确到1cm)?
sin110.191︒≈cos110.982︒≈tan110.194︒≈。

相关文档
最新文档