等和线解决的平面向量专题

合集下载

微专题 妙用等和线解决平面向量系数和、差、商、平方问题(六大题型)(解析版)

微专题  妙用等和线解决平面向量系数和、差、商、平方问题(六大题型)(解析版)

妙用等和线解决平面向量系数和、差、商、平方问题【题型归纳目录】题型一:x +y 问题(系数为1)题型二:mx +ny 问题(系数不为1)题型三:mx -ny 问题题型四:m x +ny 问题题型五:yx 问题题型六:x 2+y 2问题【方法技巧与总结】(1)平面向量共线定理已知OA =λOB +μOC ,若λ+μ=1,则A ,B ,C 三点共线;反之亦然。

(2)等和线平面内一组基底OA ,OB 及任一向量OP ,OP =λOA +μOB (λ,μ∈R ),若点P 在直线AB 上或者在平行于AB 的直线上,则λ+μ=k (定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。

①当等和线恰为直线AB 时,k =1;②当等和线在O 点和直线AB 之间时,k ∈(0,1);③当直线AB 在点O 和等和线之间时,k ∈(1,+∞);④当等和线过O 点时,k =0;⑤若两等和线关于O 点对称,则定值k 互为相反数;【典型例题】题型一:x +y 问题(系数为1)1(2024·山东滨州·统考一模)在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN=λAB +μAC (λ,μ∈R ),则λ+μ的取值范围是()A.0,13 B.13,12C.[0,1]D.[1,2]【答案】C【解析】由题意,设AN =tAM,0≤t ≤1 ,当t =0时,AN =0 ,所以λAB +μAC =0 ,所以λ=μ=0,从而有λ+μ=0;当0<t ≤1时,因为AN =λAB +μAC(λ,μ∈R ),所以tAM =λAB +μAC ,即AM =λt AB +μt AC ,因为M 、B 、C 三点共线,所以λt +μt=1,即λ+μ=t ∈0,1 .综上,λ+μ的取值范围是[0,1].故选:C .2(2024·陕西西安·高一西北工业大学附属中学校考阶段练习)在ΔABC 中,M 为边BC 上的任意一点,点N 在线段AM 上,且满足AN =13NM ,若AN =λAB +μAC(λ,μ∈R ),则λ+μ的值为()A.14B.13C.1D.4【答案】A【解析】设BM =tBC ,将AN 用AB 、AC 表示出来,即可找到λ和μ的关系,从而求出λ+μ的值.设BM=tBC (0≤t ≤1),AN =13NM ,所以AN =14AM =14(AB +BM )=14AB +14tBC =14AB+14t (AC -AB )=14-14t AB+14tAC ,又AN =λAB +μAC ,所以λ+μ=14-14t +14t =14.故选:A .3(2024·重庆铜梁·高一统考期末)在△ABC 中,点D 是线段BC 上任意一点,点P 满足AD =3AP,若存在实数m 和n ,使得BP =mAB +nAC,则m +n =()A.23B.13C.-13D.-23【答案】D【解析】由题意,AD =λAB +1-λ AC ,且0<λ<1,而AD =3AP =3AB +BP ,所以3AB +3BP =λAB +1-λ AC ,即BP =λ-33AB +1-λ3AC ,由已知,m =λ-33,n =1-λ3,则m +n =-23,选项D 正确.故选:D题型二:mx +ny 问题(系数不为1)1(2024·山东潍坊·高一统考期末)已知O 是ΔABC 内一点,且OA +OB +OC =0,点M 在ΔOBC 内(不含边界),若AM =λAB +μAC,则λ+2μ的取值范围是()A.1,52B.1,2C.23,1D.12,1【答案】B【解析】根据OA +OB +OC =0 可知O 为ΔABC 的重心;根据点M 在ΔOBC 内,判断出当M 与O 重合时,λ+2μ最小;当M 与C 重合时,λ+2μ的值最大,因不含边界,所以取开区间即可.因为O 是ΔABC 内一点,且OA +OB +OC =0所以O 为ΔABC 的重心M 在ΔOBC 内(不含边界),且当M 与O 重合时,λ+2μ最小,此时AM =λAB +μAC =23×12AB +AC =13AB +13AC 所以λ=13,μ=13,即λ+2μ=1当M 与C 重合时,λ+2μ最大,此时AM =AC所以λ=0,μ=1,即λ+2μ=2因为M 在ΔOBC 内且不含边界所以取开区间,即λ+2μ∈1,2 所以选B2(2024·江苏南京·高一南京师大附中校考期末)在扇形OAB 中,∠AOB =60o,OA=1,C 为弧AB 上的一个动点,且OC =xOA +yOB.则x +4y 的取值范围为()A.[1,4)B.[1,4]C.[2,3)D.[2,3]【答案】B【解析】以O 为原点,OB 所在直线为x 轴建立平面直角坐标系,令∠COB =θ,则θ∈0°,60° ,因为OA =1,则B 1,0 ,A 12,32,C cos θ,sin θ ,又OC =xOA +yOB ,则cos θ=x 2+y sin θ=32x ,则y =cos θ-13sin θx =23sin θ ,则x +3y =-233sin θ+4cos θ,又θ∈0°,60° ,易知f θ =-233sin θ+4cos θ为减函数,由单调性易得其值域为1,4 .故选:B .3(2024·辽宁沈阳·高三统考期末)如图,在扇形OAB 中,∠AOB =30°,C 为弧AB 上且与A ,B 不重合的一个动点,且OC =xOA +yOB,若μ=x +λy (λ>0)存在最大值,则λ的取值范围是()A.34,33B.33,32C.34,32D.32,233【答案】D 【解析】设射线OB 上存在为B ,使OB =1λOB,AB 交OC 于C ,由于OC =xOA +yOB =xOA +λy 1λOB=xOA +λyOB ,设OC =tOC ,OC =x OA+λy OB ,由A ,B ,C 三点共线可知x +λy =1,所以u =x +λy =tx +t ∙λy =1,则μ=OC OC存在最大值1,即在弧AB (不包括端点)上存在与AB平行的切线,所以λ∈32,233.故答案为32,233题型三:mx -ny 问题1(2024·上海徐汇·高二位育中学校考阶段练习)如图,OM ⎳AB ,点P 在由射线OM 、线段OB 及AB 的延长线组成的区域内(不含边界)运动,且OP =xOA +yOB ,当x =-12时,y 的取值范围是【答案】12,32【解析】如图,OM ⎳AB ,点P 在由射线OM ,线段OB 及AB 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB ,由向量加法的平行四边形法则,OP 为平行四边形的对角线,该四边形应是以OB 和OA 的反向延长线为两邻边,∴x 的取值范围是(-∞,0);当x =-12时,要使P 点落在指定区域内,即P 点应落在DE 上,CD =12OB ,CE =32OB ,∴y 的取值范围是12,32 .故答案为:12,322(2024·河南平顶山·高一统考期末)如图所示,点P 在由线段AB ,AC 的延长线及线段BC 围成的阴影区域内(不含边界),则下列说法中正确的是.(填写所有正确说法的序号)①存在点P ,使得AP =12AB +2AC ;②存在点P ,使得AP =-12AB+2AC ;③存在点P ,使得AP =12AB -2AC;④存在点P ,使得AP =12AB +32AC.【答案】①④【解析】设AP =λAB +μAC,λ,μ∈R ,由图可知:λ>0,μ>0,且λ+μ>1,∴①④正确,故答案为:①④3(2024·高一课时练习)已知△ABC 中,CD =-35BC,EC =12AC ,AF =13AB ,若点P 为四边形AEDF 内一点(不含边界)且DP =-13DC+xDE ,则实数x 的取值范围为.【答案】12,43【解析】如图所示,在线段BD 上取一点G ,使得DG =-13DC,设DC =3a ,则DG =a ,BC =5a ,BG =a ;过点G 作GH ∥DE ,分别交DF 、AE 于K 、H ,连接FH ,则点K 、H 为临界点;GH ∥DE ,所以HE =13EC ,AH =23EC ,HG =43DE ,AH HC=12=AFFB ,所以FH ∥BC ;所以FH =13BC ,所以FH DG =KH KG,所以KG =35HK ,KG =38HG =12DE .所以实数x 的取值范围是12,43.故答案为:12,43 .题型四:m x +ny问题1(2024·江苏·高三专题练习)在△ABC 中,点O 是BC 的三等分点,OC =2OB,过点O 的直线分别交直线AB ,AC 于点E ,F ,且AB =mAE ,AC =nAF (m >0,n >0),若1m +t n 的最小值为83,则正数t的值为【答案】2【解析】因为点O 是BC 的三等分点,OC =2OB则AO =AB +BO =AB +13BC =AB +13AC -13AB=23AB +13AC =2m 3AE +n 3AF ,又由点E ,O ,F 三点共线,所以AO =AE +EO =AE +λEF =AE +λAF -AE =1-λ AE +λAF,所以2m3=1-λn3=λ,可得2m 3+n3=1,所以1m +t n =2m 3+n 3 1m +t n =23+t 3 +2mt 3n +n 3m ≥23+t3 +22mt 3n ×n 3m=23+t 3 +22t 9,当且仅当2tm 2=n 2时,等号成立,即1m +t n 的最小值为23+t 3 +22t 9,则有23+t 3 +22t 9=83,即t +22t -6=0,所以t +32 t -2 =0,因为t >0,所以t =2,故答案为:2.2(2024·江苏盐城·高一统考期末)在△ABC 中,点O 是BC 的三等分点,OC =2OB,过点O 的直线分别交直线AB ,AC 于点E ,F ,且AB =mAE ,AC =nAF (m >0,n >0),若1m +t 2nt >0 的最小值为3,则正数t 的值为.【答案】3-2【解析】∵在△ABC 中,点O 是BC 的三等分点,|OC |=2|OB |,∴AO =AB +BO =AB +13BC =AB +13(AC -AB )=23AB+13AC ,∵AB =mAE ,AC =nAF ,∴AO =23mAE +13nAF ,∵O ,E ,F 三点共线,∴23m +13n =1,∴1m +t 2n =1m +t 2n 23m +13n =23+n 3m +2mt 23n +t 23≥22t 29+t 23+23=t 23+232t +23,当且仅当n 3m =2mt 23n ,即2m 2t 2=n 2时取等号,∴1m +t 2n 的最小值为t 23+232t +23,即t 23+232t +23=3,∵t >0,∴t =3-2.故答案为:3-2.3(2024·山东菏泽·高一统考期末)在△ABC 中,点O 是线段BC 上的点,且满足OC =3OB,过点O 的直线分别交直线AB ,AC 于点E ,F ,且AB =mAE ,AC =nAF ,其中m >0且n >0,若1m +2n的最小值为.【答案】5+264【解析】依题意,作出图形如下,因为OC =3OB ,AB =mAE ,AC =nAF ,则BO =14BC ,所以AO =AB +BO =AB +14BC =AB +14AC -AB =34AB +14AC =3m 4AE +n 4AF ,因为E ,O ,F 三点共线,所以3m 4+n4=1,因为m >0,n >0,所以1m +2n =1m +2n 3m 4+n 4 =54+n 4m +6m 4n ≥54+2n 4m ⋅6m 4n =54+264,当且仅当n 4m =6m4n ,即n =6m =46-2 时取等号,所以1m +2n 的最小值为5+264.故答案为:5+264.题型五:yx问题1(2024·山西·高一统考期末)已知在△ABC 中,点D 满足BD =34BC,点E 在线段AD (不含端点A ,D )上移动,若AE =λAB +μAC ,则μλ=.【答案】3【解析】如图,由题意得存在实数m ,使得AE =mAD0<m <1 .又AD =AB +BD =AB +34BC =AB +34AC -AB =14AB+34AC ,所以AE =m 14AB +34AC =m 4AB +3m 4AC ,又∵AE =λAB +μAC ,且AB ,AC 不共线,故由平面向量的分解的唯一性得λ=m 4,μ=3m4.所以μλ=3.故答案为:3.2(2024·山东潍坊·高三开学考试)在△ABC 中,点D 满足BD =34BC,当点E 在射线AD (不含点A )上移动时,若AE =λAB +μAC ,则λ+1μ的最小值为.【答案】233/233【解析】由BD =34BC ,得AD -AB =34(AC -AB ),即AD =14AB +34AC,因为点E 在射线AD (不含点A )上移动,所以AE =tAD =t 4AB+3t 4AC ,又因为AE =λAB +μAC ,所以λ=t 4,μ=3t4(t >0),则λ+1μ=t 4+43t ≥213=233(当且仅当t 4=43t ,即t =433时取等号),所以λ+1μ的最小值为233.故答案为:233.3(2024·黑龙江哈尔滨·高三哈师大附中校考期末)在ΔABC 中,点D 满足BD =34BC,当E 点在线段AD (不包含端点)上移动时,若AE =λAB +μAC ,则λ+3μ的取值范围是A.233,+∞B.[2,+∞)C.174,+∞D.(2,+∞)【答案】C【解析】如图所示,△ABC 中,BD =34BC,∴AD =AB +BD =AB +34BC =AB +34(AC -AB )=14AB+34AC ,又点E 在线段AD (不含端点)上移动,设AE =kAD ,0<k <1,∴AE =k 4AB +3k 4AC ,又AE =λAB +μAC ,∴λ=k4μ=3k 4,∴λ+3μ=k 4+4k .∵k 4+4k在(0,1)上单调递减,∴λ+3μ的取值范围为174,+∞ ,故选C .题型六:x 2+y 2问题1(2024·江苏泰州·高一泰州中学阶段练习)在ΔABC 中,点D 满足BD =34BC,当点E 在射线AD (不含点A )上移动时,若AE =λAB +μAC,则(λ+1)2+μ2的取值范围为.【答案】(1,+∞)【解析】因为点E 在射线AD (不含点A )上,设AE =kAD , 0<k ,又BD =34BC ,所以AE =k (AB +AD )=k AB +34(AC -AB ) =k 4AB+3k 4AC ,所以λ=k4μ=3k4 ,t =(λ+1)2+μ2=k 4+12+916k 2=58k +252+910>1,故(λ+1)2+μ2的取值范围1,+∞ .2(2024·天津·高三校联考阶段练习)如图,在△ABC 中,BD =13BC,点E 在线段AD 上移动(不含端点),若AE =λAB +μAC ,则λμ=,λ2-μ的最小值为.【答案】 2-116【解析】因为在△ABC 中,BD =13BC,所以AD =AB +BD =AB +13BC =AB +13(AC -AB )=23AB+13AC ,即AD =23AB +13AC .因为点E 在线段AD 上移动(不含端点),所以设AE =xAD(0<x <1).所以AE =2x 3AB +x 3AC ,对比AE =λAB +μAC 可得λ=2x 3,μ=x 3.代入λ=2x 3,μ=x 3,得λμ=2x3x 3=2;代入λ=2x 3,μ=x 3可得λ2-μ=2x 3 2-x 3=4x 29-x 3(0<x <1),根据二次函数性质知当x =--132×49=38时,λ2-μ min =49×382-13×38=-116.故答案为:2;-1163(2024·全国·高三专题练习)在△ABC 中,点D 满足BD =DC ,当E 点在线段AD 上移动时,若AE=λAB +μAC ,则t =(λ-1)2+μ2的最小值为.【答案】12【解析】BD =DC;∴D 为边BC 的中点,如图,则:AD =12(AB +AC );∵E 在线段AD 上;∴设AE =kAD =k 2AB +k 2AC ,0≤k ≤1;又AE =λAB +μAC ;∴λ=k2μ=k2;即λ=μ,且0≤μ≤12;∴t =(μ-1)2+μ2=μ2-2μ+1+μ2=2μ-12 2+12;∴μ=12时,t 取最小值12.故答案为:12.4(2024·山东德州·高三统考期末)在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,且满足AN=λAB +μAC ,则λ2+μ2的最小值为.【答案】18/0.125【解析】由M 为边BC 上任意一点,则BM =γBC,0≤γ≤1 ,AN =12AM =12AB +BM =12AB +γBC =12AB+γ2AC -AB =1-γ2AB +γ2AC ,可得λ=1-γ2μ=γ2,则λ+μ=12,即λ=12-μ,由0≤γ≤1,可得0≤γ2≤12,则μ∈0,12 ,故λ2+μ2=12-μ2+μ2=2μ2-μ+14=2μ-14 2+18,当μ=14时,λ2+μ2取得最小值为18.故答案为:18.【过关测试】一、单选题1(2024·高三课时练习)在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN =λAB +μAC,则λ+μ的值为()A.12B.13C.14D.1【答案】A【解析】由题可设BM =tBC ,则AM =AB +BM =AB +tBC =AB +t AC -AB =1-t AB +tAC ,∵N 为AM 中点,∴AN =12AM =121-t AB +12tAC,又AN =λAB +μAC ,∴λ=121-t ,μ=12t ,∴λ+μ=12.故选:A .2(2024·安徽六安·高一六安一中校考期末)如图所示,在△ABC 中,点D 是边BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM =λAB +μAC,则λ+μ=()A.-1B.-12C.-2D.-32【答案】B【解析】如图所示,因为点D 在线段BC 上,所以存在t ∈R ,使得BD =tBC =t AC -AB,因为M 是线段AD 的中点,所以:BM =12BA +BD =12-AB +tAC -tAB =-12t +1 AB +12tAC ,又BM =λAB +μAC ,所以λ=-12t +1 ,μ=12t ,所以λ+μ=-12.故选:B .3(2024·重庆·高三重庆南开中学校考阶段练习)已知点O 为ΔABC 所在平面内一点,满足OA +OB+OC =0 ,M 为AB 中点,点P 在ΔAOC 内(不含边界),若BP =xBM +yBC ,则x +y 的取值范围是()A.1,2B.23,2C.12,1D.13,32【答案】A 【解析】如图:∵OA +OB +OC =0 ,∴点O 是ΔABC 的重心,点N 是BC 的中点,BO =BC +CO =BC +23CM =BC +23BM -BC =13BC+23BM ,BN =12BC ,BA =2BM当点P 在ΔAOC 内(不含边界),BP =BO +OP =BO +λOQ =BO +λOA +AQ ,0<λ<1=BO +λ23NA +μAC =BO +λ23BA -BN +μBC -BA ,0<μ<1=BO +λ232BM -12BC +μBC -2BM =13BC+23BM +43λBM -13λBC +λμBC -2λμBM =13-13λ+λμ BC +23+43λ-2λμ BM∴x +y =13-13λ+λμ+23+43λ-2λμ=1+λ-λμ=1+λ1-μ ,∵0<λ<1,0<μ<1,∴0<1-μ<1,0<λ1-μ <1,∴1<1+λ1-μ <2.故选:A4(2024·广东惠州·高一校联考阶段练习)在△ABC 中,点O 是线段BC 上的点,且满足|OC |=3|OB|,过点O 的直线分别交直线AB 、AC 于点E 、F ,且AB =mAE ,AC =nAF ,其中m >0且n >0,若1m+tn的最小值为3,则正数t 的值为()A.2B.3C.83D.113【答案】B【解析】AO =AB +BO =AB +14BC =AB +14AC -AB =34AB+14AC =3m 4AE +n 4AF ,∵E 、O 、F 三点共线,∴3m 4+n4=1,∵m >0,n >0,t >0,∴1m +t n =1m +t n 3m 4+n 4 =34+n 4m +3mt 4n +t 4≥3+t 4+2n 4m ⋅3mt 4n =3+t 4+23t 4,当且仅当n 4m =3mt4n时取等号,∴3+t 4+23t 4=3⇒t +33 t -3 =0⇒t =3⇒t =3.故选:B .5(2024·江西南昌·高三阶段练习)在△ABC 中,点O 是BC 的三等分点(靠近点B ),过点O 的直线分别交直线AB ,AC 于不同两点M ,N ,若AB =mAM ,AC =nAN ,m ,n 均为正数,则1m +1n的最小值为()A.2 B.1+23C.1+223D.1+233【答案】C【解析】由题意知AO =AB +13BC =AB +13AC -AB =23AB+13AC =2m 3AM +n 3AN ,由于M 、O 、N 三点共线,可知2m 3+n3=1,由于m ,n 均为正数,所以1m +1n =1m +1n 2m 3+n 3 =1+n 3m +2m 3n ≥1+229=1+223,当且仅当n 3m =2m3n ,即m =3(2-2)2,n =3(2-1)时取得等号,故选:C 二、多选题6(2024·江苏南京·高一南京市宁海中学校联考期末)在△ABC 中,点D 是线段BC 上任意一点,点M 是线段AD 的中点,若存在λ,μ∈R 使BM =λAB +μAC,则λ,μ的取值可能是()A.λ=-35,μ=110B.λ=1,μ=-32C.λ=-910,μ=25D.λ=-710,μ=35【答案】AC【解析】令BD =mBC 且m ∈[0,1],而BM =12(BA +BD )=12(BA+mBC ),又BC =BA +AC ,则BM =12[BA +m (BA +AC )]=-1+m 2AB+m 2AC ,所以λ=-1+m2μ=m2,则λ∈-1,-12,μ∈0,12 且λ+μ=-12,故A 、C 满足,B 、D 不满足.故选:AC7(2024·浙江宁波·高一宁波市北仑中学校考期末)已知O 是△ABC 内一点,且OA +OB +OC =0,点M 在△OBC 内(不含边界),若AM =λAB +μAC,则λ+2μ的值可能为()A.97B.117C.137D.157【答案】ABC【解析】因为O 是△ABC 内一点,且OA +OB +OC =0 所以O 为△ABC 的重心M 在△OBC 内(不含边界),且当M 与O 重合时,λ+2μ最小,此时AM =λAB +μAC =23×12AB +AC =13AB +13AC 所以λ=13,μ=13,即λ+2μ=1当M 与C 重合时,λ+2μ最大,此时AM =AC所以λ=0,μ=1,即λ+2μ=2因为M 在△OBC 内且不含边界所以取开区间,即λ+2μ∈1,2 ,结合选项可知ABC 符合,D 不符合故选:ABC8(2024·重庆·高一校联考阶段练习)在ΔABC 中,点D 满足BD =DC,当点E 在线段AD 上(不含A 点)移动时,记AE =λAB +μAC,则()A.λ=2μB.λ=μC.14λ+μ的最小值为1D.4λ+μ的最小值为4【答案】BC【解析】∵BD =DC ,∴D 是BC 中点,则AD =12AB +AC,又点E 在线段AD 上,即A ,E ,D 三点共线,设AE =mAD 0<m ≤1 ,故AE =mAD =12m AB +AC ,λ=μ=12m .故B 对A 错.14λ+μ=14λ+λ≥214λ⋅λ=1,当且仅当14λ=λ时,即λ=12,故C 对.4λ+μ=4λ+λ在λ∈0,12上单调递减,当λ=12取最小值172,故D 错.故答案为:BC9(2024·湖北武汉·高三校联考期末)在△ABC 中,点D 满足BD =DC,当点E 在线段AD 上移动时,记AE =λAB +μAC ,则()A.λ=2μB.λ=μC.λ-2 2+μ2的最小值为2D.λ-2 2+μ2的最小值为52【答案】BD 【解析】由BD =DC 得AD =12AB +AC ,又点E 在线段AD 上移动,AE =kAD =12k AB +AC =12kAB+12kAC ,0≤k ≤1,∴λ=12k ,μ=12k ,故A 错误,B 正确;λ-2 2+μ2=12k -2 2+12k 2=12k 2-2k +4=12k -2 2+2,当k =1时,有最小值52,故C 错误,D 正确.故选:BD .三、填空题10(2024·全国·高三专题练习)如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP =xAB +yAC ,则2x +2y 的最大值为【答案】83【解析】作BC 的平行线与圆相交于点P ,与直线AB 相交于点E ,与直线AC 相交于点F ,设AP =λAE +μAF ,则λ+μ=1,等边三角形边长为2,则外接圆半径为233,当点P 为切点时, AE =AF =83,∵BC ⎳EF ,∴设AE AB =AF AC =k ,则k ∈0,43 ,当点P 为切点时, k 有最大值43,AE =kAB ,AF =kAC ,AP =λAE +μAF =λkAB +μkAC∴x =λk ,y =μk ,∴2x +2y =2λ+μ k =2k ≤83.即2x +2y 的最大值为83.故答案为:8311(2024·福建三明·高二三明一中校考开学考试)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC=xOA +yOB,则x +4y 的取值范围是.【答案】1,4【解析】如图所示,以O 为原点,OB 所在直线为x 轴,建立平面直角坐标系,则根据题意可知B (1,0),A 12,32,设C (cos θ,sin θ),0°≤θ≤60°.由OC =xOA +yOB ,得cos θ=y +12x sin θ=32x ,∴x =23sin θy =cos θ-sin θ3,∴x +4y =4cos θ-233sin θ,点C 在弧AB 上由B →A 运动,θ在0,π3 上逐渐变大,cos θ变小,sin θ逐渐变大,∴当θ=0°时x +4y 取得最大值4,当θ=60°时x +4y 取得最小值1.∴x +4y 的取值范围是[1,4].故答案为:1,4 .12(2024·四川绵阳·高一统考期末)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一动点,若OC=xOA +yOB ,则3x +y 的取值范围是.【答案】1,3【解析】以O 为原点,OA ,OB 分别为x ,y 轴正方向建立平面直角坐标系.则OA =1,0 ,OB =12,32 .不妨设OC =cos θ,sin θ ,0≤θ≤π3.因为OC =xOA +yOB,所以cos θ=x +12y sin θ=32y ,解得:x =cos θ-33sin θy =233sin θ,所以3x +y =3cos θ-33sin θ.因为y =cos θ在θ∈0,π3 上单调递减,y =-sin θ在θ∈0,π3上单调递减,所以3x +y =3cos θ-33sin θ在θ∈0,π3 上单调递减.所以当θ=0时3x +y =3最大;当θ=π3时3x +y =3cos π3-33sin π3=32-33⋅32=1最小.所以3x +y 的取值范围是1,3 .故答案为:1,3 .13(2024·全国·高三专题练习)在扇形OAB 中,OA =1,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB ,则x +3y 的取值范围是.【答案】[1,3]【解析】如图所示,建立平面直角坐标系以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A(1,0),B 12,32,设∠AOC =θ,则C (cos θ,sin θ)0≤θ≤π3 ,由OC =xOA +yOB 得cos θ=x +12y ,sin θ=32y , 从而x =cos θ-13sin θ,y =23sin θ, 则x +3y =cos θ+533sin θ=283sin (θ+φ),易知0<φ<π6,故y =f (θ)=cos θ+533sin θ=283sin (θ+φ)在0,π3上单调递增,∴y min =f (0)=1,y max =f π3 =cos π3+533sin π3=12+52=3.故x +3y ∈[1,3].故答案为:[1,3]14(2024·全国·高三专题练习)扇形OAB 中,∠AOB =120°,C 为AB 上的一个动点,且OC =xOA+yOB ,其中x ,y ∈R .(1)x +y 的取值范围为;(2)2x +y 的取值范围为.【答案】1,21,2213【解析】(1)解法一:(等和线)设OC 与AB 相交于点D ,OD =λOC =λxOA +λyOB,λx +λy =1,x +y =1λ=OC OD ∈[1,2].解法二:(坐标法)C (cos α,sin α),α∈0,2π3,cos α=x -12y ,sin α=32y ,x =cos α+33sin α,y =233sin α,x +y =cos α+3sin α=2sin α+π6∈[1,2].解法三:设∠AOC =α∈0,2π3,OC ⋅OA =xOA ⋅OA +yOB ⋅OA ,OC ⋅OB =xOA ⋅OB +yOB ⋅OB , ,即cos α=x -12y cos (1200-α)=-12x +y∴x +y =2[cos α+cos (1200-α)]=cos α+3sin α=2sin α+π6∈[1,2].(2)解法一:(等和线)解法二:2x +y =2cos α+433sin α=2213sin (α+θ)∈1,2213,其中sin (α+θ)先增后减.15(2024·吉林·高一阶段练习)如图,在ΔABC 中,D ,E ,F 分别为BC ,CA ,AB 上的点,且CD =35BC ,EC =12AC ,AF =13AB .设P 为四边形AEDF 内一点(P 点不在边界上),若DP =-13DC+λDE ,则实数λ的取值范围为【答案】12,43【解析】取BD 中点M ,过M 作MH ⎳DE 交DF ,AC 分别为G ,H ,如图:则由DP =-13DC+λDE =DM +λDE 可知,P 点在线段GH 上运动(不包括端点)当P 与G 重合时,根据DP =tDF =-89tDC +43tDE =-13DC +λDE ,可知λ=12,当P 与H 重合时,由P ,C ,E 共线可知-13+λ=1,即λ=43,结合图形可知λ∈12,43.16(2024·重庆万州·高一万州外国语学校天子湖校区校考期末)如图,在△ABC 中,BD =13BC,点E 在线段AD 上移动(不含端点),若AE =λAB +μAC ,则λ2+1μ的取值范围是.【答案】103,+∞【解析】由题可知,BD =13BC ,设AE =mAD0<m <1 ,则AE =m AB +13BC =m AB +13BA +AC,所以AE =23mAB +13mAC ,而AE =λAB +μAC ,可得:λ=23m ,μ=13m ,所以λ2+1μ=m 3+3m0<m <1 ,设f m =m 3+3m0<m <1 ,由双钩函数性质可知,f x 在0,1 上单调递减,则f x >f 1 =13+3=103,所以λ2+1μ的取值范围是103,+∞ .故答案为:103,+∞ .四、解答题17(2024·高一课时练习)在学习向量三点共线定理时,我们知道当P 、A 、B 三点共线,O 为直线外一点,且OP =xOA +yOB 时,x +y =1(如图1),小明同学提出了如下两个问题,请同学们帮助小明解答.(1)当x +y >1或x +y <1时,O 、P 两点的位置与AB 所在直线之间存在什么关系?写出你的结论,并说明理由;(2)如图2,射线OM ⎳AB ,点P 在由射线OM 、线段OA 及BA 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB ,求实数x 的取值范围,并求当x =12时,实数y 的取值范围.【解析】(1)若x +y >1,则O ,P 在直线AB 异侧;若x +y <1,则O ,P 在直线AB 同侧.理由如下:设x +y =t ,则由OP =xOA +yOB ,得:OP =xOA +(t -x )OB =xOA +1-x OB +t -1 OB ,则在直线AB 上有一点Q ,使得OQ =xOA +1-x OB ,如下图所示:则OP =OQ +t -1 OB ,即QP =t -1 OB ,∴当t >1时,则OB =t -1 OB 与OB 同向,且QP =OB ,由平面共线定理可得,O ,P 在直线AB 异侧;当t <1时,OB =t -1 OB 与OB 反向,如下图所示,且QP =OB ,由平面共线定理可得,O ,P 在直线AB 同侧.(2)射线OM ⎳AB ,点P 在由射线OM 、线段OA 及BA 的延长线围成的区域内(不含边界)运动如图所示,阴影部分为点P 的运动区域(不含边界),由(1)可知,O ,P 在直线AB 同侧,由于OP =xOA +yOB ,则x +y <1.过点P 作PE ⎳OB 交射线OA 于E ,过点P 作PF ⎳OB 交射线BO 的延长线OB 于F ,由平行四边形法则可得OP =OE +OF ,又OE 与OA 方向相同,则OE =mOA ,且m >0,OF 与OB 方向相反,则OF =nOB ,且n <0,则OP =mOA +nOB =xOA +yOB ,故x =m >0,y =n <0,即实数x 的取值范围是(0,+∞),当x =12时,此时E 为OA 中点,过E 作直线平行与OB 交AB 于M ,交射线OM 于M ,则点P 运动轨迹为线段EM (不含端点E ,M ),如下图:当点P 运动到E 时,OP =OE =12OA +0⋅OB ,此时y =0;当点P 运动到M 时,OP =OE +EM =12OA +M E =12OA +12BO =12OA -12OB ,此时y =-12;且由平面向量加法的平行四边形法则得y ∈-12,0 .18(2024·高一课时练习)如图,OM ⎳AB ,点P 在由射线OM ,线段OB 及AB 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB .(1)求x 的取值范围;(2)当x =-12时,求y 的取值范围.【解析】(1)如图,作PE ⎳BA 交OB 于E ,则OP =OE +EP =mOB +nAB =-nOA +(m +n )OB .由P 点的位置容易知道0<m <1,n >0.因此,x =-n <0,即x 的取值范围是(-∞,0).(2)当x =-12时,y =m +n =m +12,所以此时y 的取值范围是12,32.19(2024·上海浦东新·高二华师大二附中校考阶段练习)小郭是一位热爱临睡前探究数学问题的同学,在学习向量三点共线定理时,我们知道当P 、A 、B 三点共线,O 为直线外一点,且OP =xOA +yOB 时,x +y =1(如图1)第二天,小郭提出了如下三个问题,请同学帮助小郭解答.(1)当x +y >1或x +y <1时,O 、P 两点的位置与AB 所在直线之间存在什么关系?写出你的结论,并说明理由(2)如图2,射线OM ∥AB ,点P 在由射线OM 、线段OA 及BA 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB ,求实数x 的取值范围,并求当x =12时,实数y 的取值范围.(3)过O 作AB 的平行线,延长AO 、BO ,将平面分成如图3所示的六个区域,且OP =xOA +yOB ,请分别写出点P 在每个区域内运动(不含边界)时,实数x ,y 应满足的条件.(不必证明)【解析】(1)若x +y >1,则O 、P 异侧,若x +y <1,则O 、P 同侧;理由如下:设x +y =t ,则由OP =xOA +yOB 得,OP =xOA +t -x OB =xOA -xOB +tOB =xBA +tOB ,当t >1时,tOB 与OB 同向,由平面向量加法的平行四边形法则可知,O 、P 异侧;当t <1时,tOB 与OB 反向,由平面向量加法的平行四边形法则可知,O 、P 同侧;(2)由图及平面向量基本定理可知,x >0,即实数x 的取值范围是0,+∞ ,当x =12时,由平面向量加法的平行四边形法则可知,y ∈-12,0 ;(3)Ⅰ:y <0x +y >0 ;Ⅱ:x >0y >0 ;Ⅲ:x <0x +y >0 ;Ⅳ:y >0x +y <0 ;Ⅴ:x <0y <0 ;Ⅵ:x >0x +y <0 .。

平面向量的等和线定理的证明

平面向量的等和线定理的证明

平面向量的等和线定理的证明平面向量的等和线定理是指,如果在平面上有一组向量,使得它们的和等于一个固定向量,则这组向量构成的所有点的集合在平面上形成的曲线,称为等和线。

本文将介绍平面向量的等和线定理的证明。

首先,假设有一组向量v1、v2、v3、...、vn,它们的和等于向量s,即:v1 + v2 + v3 + ... + vn = s我们要证明,这组向量构成的所有点的集合在平面上形成的曲线为等和线。

为了证明这一点,我们需要证明两个部分:一、等和线上任意一点的向量和等于向量s。

二、等和线上任意一点的向量和小于向量s,且任意一点的向量和大于向量s的点都不在等和线上。

首先,证明一。

假设p是等和线上的任意一点,则有:p = a1v1 + a2v2 + a3v3 + ... + anvn其中,a1、a2、a3、...、an是任意实数。

我们将上式两边同时乘以一个实数k,则有:kp = ka1v1 + ka2v2 + ka3v3 + ... + kanvn由于v1、v2、v3、...、vn是一组向量,所以它们的和也可以表示为:v1 + v2 + v3 + ... + vn = s将等号两边同时乘以k,则有:kv1 + kv2 + kv3 + ... + kvn = ks由此可知,kp + ks也可以表示为:kp + ks = ka1v1 + ka2v2 + ka3v3 + ... + kanvn + kv1 + kv2 + kv3 + ... + kvn将等式右边的所有向量都合并起来,则有:kp + ks = (ka1 + k)v1 + (ka2 + k)v2 + (ka3 + k)v3 + ... + (kan + k)vn由于等和线上的任意一点p可以表示为a1v1 + a2v2 + a3v3 + ... + anvn,因此等式右边的向量的系数之和为a1 + a2 + a3 + ... + an + k。

由于k是任意实数,因此a1 + a2 + a3 + ... + an + k可以等于任意实数。

平面向量基本定理以及“等和线”的应用

平面向量基本定理以及“等和线”的应用
平面向量基本定理以及 “等和线”的应用
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
问题的提出
平面向量与代数、几何融合的题目综合性强, 难度大,考试要求高。近年,以“等和线”为背景 的试题层出不穷。考生在解决此类问题时,往往因 思路不清、运算繁琐而失分。
本专题将在平面向量基本定理的基础上推导得 出“等和线”解题的原理,并利用“等和线”原理 解决与向量系数有关的最值和范围有关的问题。
所以, 3 y, 3x 3x 3 y 3
当点P与A点重合时,显然有 : 0,所以,选C.
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
练习:如图,四边形OABC是边长为1的正方形,点D在OA 的延长线上,且OD 2,点P为BCD内(含边界)的动点,
uuur uuur uuur
(二)起点不同,平移改造基底型
F
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
练习: 突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
练习: 突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
(三)合理调节、变换基底型 例题:
1 2
uuur uuur PA, PB1
1 3
uuur PB
.

2x 2x 3y
3y 2x 3y
1
得点
A1 ,
B1,
D
共线,即点
D
在直线
A1 B1
上.
uuur uuur 再由 PC 5PD 知点 C 的轨迹就是直线 A2B2 ,其中 PA2 5PA1, PB2 5PB1 .如下图:

高三数学复习微专题之《平面向量基本定理系数“等和线”的应用》

高三数学复习微专题之《平面向量基本定理系数“等和线”的应用》
等和线定理可知,点 P 位于矩形 ABA'B' 内(含边界).其面积 S 4SAOB 4 3 .
衡阳市高中教师数学交流 QQ 群:731847633
衡阳市数学学会
练习 5:如图 13 所示, A, B, C 是圆 O 上的三点, CO 的延长线与线段 BA 的延长
线交于圆 O 外的点 D ,若 OC mOA nOB ,则 m n 的取值范围是
当 AD EF 时, f x, y AD 取得最 小值,此时 f x0 , y0 AD .易知
ABC AEF ,则 AD AH r 4 .
四、解题总结 1、确定等值线为 1 的直线; 2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和 最小值; 3、从长度比或者点的位置两个角度,计算最大值或最小值.
部的动点,设向量 AP m AB n AFm, n R ,则 m n 的取值范围是( )
A . 1,2
B . 5,6
C . 2,5
D .3,5
【分析】
如图 5,设
AP1
m AB n AF ,由等和线结论,m n
AG AB

2 AB AB
2 .此为 m n
的交点,P 为边 AB 上一动点,Q 为 SMN 内一点(含边界),若 PQ x AM y BN ,
则 x y 的取值范围是
.
【分析】
如图 8 所示,作 PS AM ,PT BN ,过 I 作直线 MN 的平行线,由等和线定理
可知,
x

y


3 4
,1
.
(三)基底一方可变
OB'

专题三 平面向量的等和线(含解析)

专题三 平面向量的等和线(含解析)

专题七 平面向量的等和线根据平面向量基本定理,如果P A →,PB →为同一平面内两个不共线的向量,那么这个平面内的任意向量PC →都可以由P A →,PB →唯一线性表示:PC →=xP A →+yPB →.特殊地,如果点C 正好在直线AB 上,那么x +y =1,反之如果x +y =1,那么点C 一定在直线AB 上.于是有三点共线结论:已知P A →,PB →为平面内两个不共线的向量,设PC →=xP A →+yPB →,则A ,B ,C 三点共线的充要条件为x +y =1.以上讨论了点C 在直线AB 上的特殊情况,得到了平面向量中的三点共线结论.下面讨论点C 不在直线AB 上的情况.如图所示,直线DE ∥AB ,C 为直线DE 上任一点,设PC →=xP A →+yPB →(x ,y ∈R ).1.平面向量等和线定义(1)当直线DE 经过点P 时,容易得到x +y =0.(2)当直线DE 不过点P 时,直线PC 与直线AB 的交点记为F ,因为点F 在直线AB 上,所以由三点共线结论可知,若PF →=λP A →+μPB →(λ,μ∈R ),则λ+μ=1.由△P AB 与△PED 相似,知必存在一个常数k ∈R ,使得PC →=kPF →(其中k =|PC ||PF |=|PE ||P A |=|PD ||PB |),则PC →=kPF →=kλP A →+kμPB →.又PC →=xP A →+yPB → (x ,y ∈R ),所以x +y =kλ+kμ=k .以上过程可逆.在向量起点相同的前提下,所有以与两向量终点所在的直线平行的直线上的点为终点的向量,其基底的系数和为定值,这样的线,我们称之为“等和线”.2.平面向量等和线定理平面内一组基底PA →,PB →及任一向量PF →满足:PF →=λPA →+μPB →(λ,μ∈R ),若点F 在直线AB 上或在平行于AB 的直线上,则λ+μ=k (定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线.3.平面向量等和线性质(1)当等和线恰为直线AB 时,k =1;(2)当等和线在点P 和直线AB 之间时,k ∈(0,1); (3)当直线AB 在点P 和等和线之间时,k ∈(1,+∞); (4)当等和线过点P 时,k =0;(5)若两等和线关于点P 对称,则定值k 互为相反数. 考点一 根据等和线求基底系数和的值 【方法总结】根据等和线求基底系数和的步骤(1)确定值为1的等和线;(2)平移(旋转或伸缩)该线,作出满足条件的等和线;(3)从长度比或点的位置两个角度,计算满足条件的等和线的值.已知点P 是△ABC 所在平面内一点,且AP →=xAB →+yAC →,则有点P 在直线BC 上⇔x +y =1;点P 与点A 在直线BC 异侧⇔x +y >1,且x +y 的值随点P 到直线BC 的距离越远而越大;点P 与点A 在直线BC 同侧⇔x +y < 1,且x +y 的值随点P 到直线BC 的距离越远而越小.平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着少数服从多数的原则,优先平移固定的向量;若需要研究两系数的线性关系,则需要通过变换基底向量,使得需要研究的代数式为基底的系数和.考虑到向量可以通过数乘继而将向量进行拉伸压缩反向等操作,那么理论上来说,所有的系数之间的线性关系,我们都可以通过调节基底,使得要求的表达式是两个新基底的系数和.【例题选讲】[例1](1)如图,A ,B 分别是射线OM ,ON 上的点,给出下列以O 为起点的向量:①OA →+2OB →;②12OA→+13OB →;③34OA →+13OB →;④34OA →+15OB →;⑤34OA →+BA →+23OB →.其中终点落在阴影区域(不包括边界)内的向量的序号是________(写出满足条件的所有向量的序号).答案 ①③ 解析 由向量共线的充要条件可得,当点P 在直线AB 上时,存在唯一的一对有序实数u ,v ,使得OP →=uOA →+vOB →成立,且u +v =1,所以点P 位于阴影区域内的充要条件是“满足OP →=uOA →+vOB →,且u >0,v >0,u +v >1”.①因为1+2>1,所以点P 位于阴影区域内,故正确;同理③正确,②④不正确;⑤原式=34OA →+(OA →-OB →)+23OB →=74OA →-13OB →,而-13<0,故不符合条件.综上可知,只有①③正确.(2)设向量OA →,OB →不共线(O 为坐标原点),若OC →=λOA →+μOB →,且0≤λ≤μ≤1,则点C 所有可能的位置区域用阴影表示正确的是( )答案 A 解析 当λ=0时,OC →=μOB →,故点C 所有可能的位置区域应该包括边界OB →或OB →的一部分,故排除B ,C ,D 项.故选A 项.(3)在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为( ) A .12 B .13 C .14D .1答案 A 解析 通法 设BM →=tBC →,则AN →=12AM →=12(AB →+BM →)=12AB →+12BM →=12AB →+t 2BC →=12AB →+t 2(AC →-AB →)=⎝⎛⎭⎫12-t 2AB →+t 2AC →,∴λ=12-t 2,μ=t 2,∴λ+μ=12,故选A . 等和线法 如图,BC 为值是1的等和线,过N 作BC 的平行线,设λ+μ=k ,则k =|AN ||AM |.由图易知,|AN ||AM |=12,故选A .(4)在平行四边形ABCD 中,点E 和F 分别是边CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=__________.答案 43 解析 通法 选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF→=AB →+12AD →,又AC →=λAE →+μAF →=⎝⎛⎭⎫12λ+μAB →+⎝⎛⎭⎫λ+12μAD →,于是得⎩⎨⎧ 12λ+μ=1,λ+12μ=1,即⎩⎨⎧λ=23,μ=23,故λ+μ=43. 等和线法 如图,EF 为值是1的等和线,过C 作EF 的平行线,设λ+μ=k ,则k =|AC ||AM |.由图易知,|AC ||AM |=43,故选B . A(5)如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,向量AO →=λa +μb ,则λ+μ的值为_______.答案 23 解析 等和线法 如图,BC 为值是1的等和线,过O 作BC 的平行线,设λ+μ=k ,则k=|AO ||AM |.由图易知,|AO ||AM |=23. B(6)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ等于()BA .1B .34C .23D .12答案 B 解析 通法 ∵为线段AO 的中点,∴BE →=12BA →+12BO →=12BA →+12×12BD →=12BA →+14BD →=λBA →+μBD →,∴λ+μ=12+14=34.等和线法 如图,AD 为值是1的等和线,过E 作AD 的平行线,设λ+μ=k ,则k =|BE ||BF |.由图易知,|BE ||BF |=34,故选B .(7)在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ的值为( )A .14B .15C .45D .54答案 C 解析 法一:连接AC (图略),由AB →=λAM →+μAN →,得AB →=λ·12(AD →+AC →)+μ·12(AC →+AB →),则⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2AC →=0,得⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2 [AD →+12AB →]=0,得⎝⎛⎭⎫14λ+34μ-1AB →+⎝⎛⎭⎫λ+μ2AD →=0.又AB →,AD →不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.法二:因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.法三:根据题意作出图形如图所示,连接MN 并延长,交AB 的延长线于点T ,由已知易得AB =45AT ,所以45AT →=AB →=λAM →+μAN →,因为T ,M ,N 三点共线,所以λ+μ=45.等和线法 如图,连接MN 并延长,交AB 的延长线于点T ,则MT 为值是1的等和线,设λ+μ=k ,则k =|AB ||AT |.由图易知,|AB ||AT |=45,故选C .(8) (2013江苏)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC→答案 12 解析 如图,过点A 作AF →=DE →,设AF 与BC 的延长线交于点H ,易知AF =FH ,∴DF =12BH ,因此λ1+λ2=12.(9)在平行四边形ABCD 中,AC 与BD 相交于点O ,点E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,且AF →=λa +μb ,则λ+μ等于( )A .1B .34C .23D .12答案 A 解析 等和线法 如图,作AG →=BD →,延长CD 与AG 相交于G ,因为C ,F ,G 三点共线,所以λ+μ=1.故选A .C考点二 根据等和线求基底的系数和的最值(范围) 【方法总结】根据等和线求基底的系数和的最值(范围)的步骤(1)确定值为1的等和线;(2)平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值; (3)从长度比或点的位置两个角度,计算最大值和最小值.当点P 是某个平面区域内的动点时,首先作与基底两端点连线平行的直线l ,因点P 无论在l 何处,对应α+β的值恒为定值,我们不妨称之为“等和线”(或“等值线”),然后将“等和线”l 在动点P 的“可行域”内平行移动,于是问题便转化为求两个线段长度的比值范围,称之为“平移法”.已知点P 是△ABC 所在平面内一点,且AP →=xAB →+yAC →,则有点P 在直线BC 上⇔x +y =1;点P 与点A 在直线BC 异侧⇔x +y >1,且x +y 的值随点P 到直线BC 的距离越远而越大;点P 与点A 在直线BC 同侧⇔x +y < 1,且x +y 的值随点P 到直线BC 的距离越远而越小.平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着少数服从多数的原则,优先平移固定的向量;若需要研究两系数的线性关系,则需要通过变换基底向量,使得需要研究的代数式为基底的系数和.考虑到向量可以通过数乘继而将向量进行拉伸压缩反向等操作,那么理论上来说,所有的系数之间的线性关系,我们都可以通过调节基底,使得要求的表达式是两个新基底的系数和.【例题选讲】[例1](1)如图,在正六边形ABCDEF 中,P 是△CDE 内(包括边界)的动点,设AP →=αAB →+βAF →(α,β∈答案 [3,4] 解析 等和线法 直线BF 为k =1的等和线,当P 在△CDE 内时,直线EC 是最近的等和线,过D 点的等和线是最远的,所以α+β∈[AN AM ,ADAM]=[3,4].(2)(2009安徽)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3,如图所示,点C 在以O 为圆心的弧AB 上运动,若OC →=xOA →+yOB →(x ,y ∈R ),则x +y 的最大值是________.答案 2 解析 通法 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32),设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得1cos 2sin x y y αα⎧=-⎪⎪⎨⎪=⎪⎩,所以x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.等和线法 令x +y =k ,所有与直线AB 角度,不难得到k =|DO ||OE |=2.(3) (2017·全国Ⅲ)在矩形ABCD 中,AB =1,AD =2AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .22C .5D .2答案 A 解析 建立如图所示的直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD .因为CD =1,BC =2,所以BD =12+22=5,EC =BC ·CD BD =25=255,所以P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎨⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).因为AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ),所以μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝⎛⎭⎫其中sin φ=55,cos φ=255,当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.故选A .等和线法 过动点P 作等和线,设x +y =k ,则k =|AM ||AB |.由图易知,当等和线与EF 重合时,k 取最大值,由EF ∥BD ,可求得|AE ||AB |=3,∴λ+μ取得最大值3.故选A .(4)在直角梯形ABCD 中,AB ⊥AD ,AD =DC =1,AB =3,动点P 在以点C 为圆心,且与直线BD 相切的圆内运动,设AP →=xAB →+yAD →(x ,y ∈R ),则x +y 的取值范围是________.答案 ⎝⎛⎭⎫1,53 解析 等和线法 如图,作CE ⊥BD 于E ,由△CDE ∽△DBA 知CE DA =CD BD ,即CE 1=110,所以CE =1010,设与BD 平行且与圆C 相切的直线交AD 延长线于点F ,作DH 垂直该线于点H ,显然DH =2CE =105,由△DFH ∽△BDA 得DF BD =DH BA ,即DF10=105 3,所以DF =23,过点P 作直线l ∥BD ,交AD 的延长线于点M ,设t =AMAD,则x +y =t ,由图形知“等值线”l 可从直线BD 的位置平移至直线FH 的位置(不包括BD 和FH ),由平面几何知识可得1=AD AD <AM AD <AF AD =53,即1<t <53,故x +y 的取值范围是⎝⎛⎭⎫1,53.(5)如图,在平行四边形ABCD 中,M ,N 为CD 的三等分点,S 为AM 与BN 的交点,P 为边AB 上一动点,Q 为三角形SMN 内一点(含边界),若PQ →=xAM →+yBN →(x ,y ∈R ),则x +y 的取值范围是________.答案 [34,1] 解析如图,作PE →=BN →,PF →=AM →,过S 直线MN 的平行线,由等和线定理知,(x +Ay )max =1,(x +y )min =34.(6)如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A .2B .3C .2D .22答案 C 解析 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r ),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin 60°(l △ABC 为△ABC 的周长),解得r =1.易得B (-3,0),C (3,0),A (0,3),D (0,0),设M (cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA→=(3,3),BD →=(3,0),故BM →=(cos θ+3,1+sin θ)=(3x +3y ,3x ),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎨⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y )2-2xy ].由题意知,x ≥0,y ≥0,|BM →|的最大值为(23)2-(3)2=3,又(2x +y )24≥2xy ,即-(2x +y )24≤-2xy ,所以3×34(2x +y )2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号.等和线法 BM →=xBA →+yBD →=2x (12BA →)+yBD →=2xBE →+yBD →,作出值1为的等和线DE ,AC 是过圆上的点最远的等和线,设2x +y =k ,则k =|NB ||PB |=2.∴2x +y 取得最大值2.故选C .(7) 如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0) 解析 通法 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).等和线法 如图,作OA →,OB →的相反向量OA 1→,OB 1→,则AB ∥A 1B 1,过O 作直线l ∥AB ,则直线l ,A 1B 1分别为以OA →,OB →为基底的值为0,-1的等和线,由题意线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,所以点C 在直线l 与直线A 1B 1之间,所以m +n ∈(-1,0).(8)已知点O 为△ABC 的边AB 的中点,D 为边BC 的三等分点,DC =2DB ,P 为△ADC 内(包括边界)任一点,若OP →=xOB →+yOD →,则x -2y 的取值范围为________.答案 [-8,-1] 解析 等和线法 如图,延长DO 至点E ,使DO =2OE ,则OE →=-12OD →,则OP →=xOB →+yOD →=xOB →+(-2y ) OE →,令z =-2y ,则x -2y =x +z ,OP →=xOB →+zOE →,设过点A ,C ,P 与BE 平行的直线分别为为l 1,l 2,l ,设l ,l 2交线段OD 延长线于点M ,H ,l 1交线段OD 于点K ,令x +z =t ,由图形知,t =-OMOE ,“等和线”l 可从l 1的位置平移至l 2的位置,由平面几何知识可知△OBE ≌△OAK ,△DBE∽△DCH ,所以OE OK =OB OA =1,BD CD =DE DH =3OE DH =12,所以1=OK OE ≤OM OE ≤OH OE =OD +DH OE =2OE +6OEOE =8,则-8≤t ≤-1,故x -2y 的取值范围为[-8,-1].(9)如图,在边长为1的正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心,AB 为半径的圆弧(在正方形内,包括边界点)上的任意一点,若向量AC →=λDE →+μAP →,则λ+μ的最小值为________.答案 12 解析 通法 以A 为原点,以AB 所在的直线为x 轴,AD 所在的直线为y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),E ⎝⎛⎭⎫12,0,C (1,1),D (0,1).设P (cos θ,sin θ),∴AC →=(1,1),AP →=(cos θ,sin θ),DE →=⎝⎛⎭⎫12,-1,∵AC →=λ⎝⎛⎭⎫12,-1+μ(cos θ,sin θ)=⎝⎛⎭⎫λ2+μcos θ,-λ+μsin θ=(1,1),∴⎩⎪⎨⎪⎧λ2+μcos θ=1,-λ+μsin θ=1,∴⎩⎪⎨⎪⎧λ=2sin θ-2cos θ2cos θ+sin θ,μ=32cos θ+sin θ,∴λ+μ=3+2sin θ-2cos θ2cos θ+sin θ=-1+3sin θ+32cos θ+sin θ.∴(λ+μ)′=6+6sin θ-3cos θ(2cos θ+sin θ)2>0,故λ+μ在⎣⎡⎦⎤0,π2上是增函数,∴当θ=0,即cos θ=1时,λ+μ取最小值为3+0-22+0=12.等和线法 由题意,作AK →=DE →,设AD →=λAC →,直线AC 与PK 直线相交于点D ,则有AD →=λxAK →+λyAP →,由等和线定理,λx +λy =1,从而x +y =1λ,当点P 与B 点重合时,如图,λmax =2,此时,(x +y ) max =12.(10) (2013·安徽)在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域的面积是( )A .22B .23C .42D .43答案 D 解析 等和线法 如图,分别作OC →=-OA →,OD →=-OB →.当λ≥0,μ≥0时,{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }={P |OP →=|λ|OA →+|μ|OB →,|λ|+|μ|≤1,λ,μ∈R },对应区域1;当λ≥0,μ<0时,{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }={P |OP →=|λ|OA →+|μ|OD →,|λ|+|μ|≤1,λ,μ∈R },对应区域2;当λ<0,μ≥0时,{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }={P |OP →=|λ|OC →+|μ|OB →,|λ|+|μ|≤1,λ,μ∈R },对应区域3;当λ<0,μ<0时,{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }={P |OP →=|λ|OC →+|μ|OD →,|λ|+|μ|≤1,λ,μ∈R },对应区域4.综上所述可得,点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域即图中的矩形区域,其面积S =2×23=43.故选D .【对点训练】1.如图,△BCD 与△ABC 的面积之比为2,点P 是区域ABCD 内任意一点(含边界),且AP →=λAB →+μAC →, 则λ+μ的取值范围为( )A .[0,1]B .[0,2]C .[0,3]D .[0,4]ABCDO 1342A1.答案 解析 等和线法 如图,(λ+μ)min =0,(λ+μ)max =3.故选C .2.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →, 则μ的取值范围是________.2.答案 ⎣⎡⎦⎤0,12 解析 通法 由题意可求得AD =1,CD=3,所以AB →=2DC →.∵点E 在线段CD 上, ∴DE →=λDC → (0≤λ≤1).∵AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12,即μ的取值范围是⎣⎡⎦⎤0,12. 等和线法 如图,(1+μ)min =1,μmin =0.(1+μ)max =32,μmax =12.3.如图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且OD =2,点P 是△BCD 内任意 一点(含边界),设OP →=λOC →+μOD →,则λ+μ的取值范围为________.3.答案 [1,32] 解析 等和线法 如图,(λ+μ)min =1,(λ+μ)max =32.4.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上 运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1B .2C .3D .24.答案 B 解析 通法 因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+ 2xyOA →·OB →=x 2+y 2,∴x 2+y 2=1,则2xy ≤x 2+y 2=1.又(x +y )2=x 2+y 2+2xy ≤2,故x +y 的最大值为2.等和线法 确定值为1的等和线AB ,过动点C 作等和线,设x +y =k ,则k =|CO ||PO |.由图易知,当等和线与圆相切时,k 取最大值,此时|MO ||NO |=2,∴x +y 取得最大值2.故选B .5.如图,在边长为2的正六边形ABCDEF 中,动圆Q 半径为1,圆心在线段CD (含端点)上运动,P 是圆 上及其内部的动点,设AP →=mAB →+nAF →(m ,n ∈R ),则m +n 的取值范围是________.5.答案 [2,5] 解析 等和线法 如图1时,m +n 的值最小且m +n =ANAB =2,如图2时,m +n 的值最大且m +n =AMAB=5,6.如图,已知点P 为等边三角形ABC 外接圆上一点,点Q 是该三角形内切圆上的一点,若AP →=x 1AB →+y 1AC →,AQ →=x 2AB →+y 2AC →,则|(2x 1-x 2)+(2y 1-y 2)|的最大值为______.F6.答案 73 解析 等和线法 由等和线定理知当点P ,Q 分别在如图所示的位置时x 1+y 1取最大值,x 2+y 2取最小值,且x 1+y 1的最大值为|AP ||AM |=43,x 2+y 2的最小值为|AQ ||AM |=13.故|(2x 1-x 2)+(2y 1-y 2)|=|(2(x 1+y 1)-(x 2+y 2)| ≤43+13=73.7.如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的动点,若OC →=xOA →+yOB →,则x +3y 的取值范围是________.7.答案 [1,3] 解析 等和线法 依题意,OC →=xOA →+3y (OB →3),如图,作OB ′→=OB →3,重新调整基底为OA →,OB →′,设k =x +3y ,显然,当C 在A 点时,经过k =1的等和线,当C 在B 点时,经过k =3的等和线,这两条线分别是最近与最远的等和线,所以x +3y 的取值范围是[1,3].8.如图,G 为△ADE 的重心,P 为△GDE 内任一点(包括边界),B ,C 均为AD ,AE 上的三等分点(靠近 点A ),AP →=αAB →+βAC →,则α+12β的取值范围是________.P8.答案 ⎣⎡⎦⎤32,3 解析 等和线法 如图,在线段AE 上取点F ,使AC =CF ,则AP →=αAB →+12βAF →,设12β =γ,则AP →=αAB →+γAF →,连接BF ,延长EG 交AD 于点H ,因为G 为△ADE 的重心,所以H 为AD 的中点,又B ,C 均为AD ,AE 上靠近点A 的三等分点,所以AF FE =ABBH =2,所以BF ∥HE ,过点P 作直线l ∥HE 交AD 于点M ,设α+γ=t ,则t =AMAB ,由图形知,“等值线”l 可从直线HE 的位置平移到过点D 的位置,由平面几何知识可知32=AH AB ≤AM AB ≤AD AB =3,故32≤t ≤3,即α+γ∈⎣⎡⎦⎤32,3,故α+12β的取值范围是⎣⎡⎦⎤32,3. 9.给定两个长度为1的平面向量OA 和OB ,它们的夹角为90︒,如图所示,点C 在以O 为圆心的圆弧AB 上运动.若OC xOA yOB =+.其中x ,y ∈R ,则23x y +的最大值是( )AB .3 CD .5 9.答案 A 解析 通法点C 在以O 为圆心的圆弧AB 上运动,∴可以设圆的参数方程cos x θ=,sin y θ=,[0θ∈︒,90]︒,232cos 3sin )x y θθθϕ∴+=+=+,其中cos ϕ=,sin ϕ=,3513x y∴+,当且仅当sin()1θϕ+=时取等号.x y ∴+当三角函数取到1时成立.故选A .等和线法 OC →=xOA →+yOB →=2x (12OA →)+3y (13OB →)=2xOE →+3yOF →,2x +3y =k ,则k =|OD ||OM |=13.10.平行四边形ABCD 中,AB =3,AD =2,∠BAD =120°,P 是平行四边形ABCD 内一点,且AP =1,若AP →=xAB →+yAD →,则3x +2y的最大值为________.10.答案 2 解析 通法 |AP →|2=(xAB →+yAD →)2=9x 2+4y 2+2xy ×3×2×⎝⎛⎭⎫-12=(3x +2y )2-3(3x )·(2y )≥(3x + 2y )2-34(3x +2y )2=14(3x +2y )2.又|AP →|2=1,因此14(3x +2y )2≤1,故3x +2y ≤2,当且仅当3x =2y ,即x=13,y =12时,3x +2y 取得最大值2. 等和线法 可转化为例2(2).11.在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ), 则5λ+3μ的最大值为______. 11.答案102解析 通法 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0, 3).∵AP =52,∴x 2+y 2=54.点P 满足的约束条件为⎩⎪⎨⎪⎧0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ),∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ.∵x +y ≤2(x 2+y 2)=2×54=102,当且仅当x =y 时取等号,∴5λ+3μ的最大值为102.等和线法 AP →=λAB →+μAD →=5λ→)+3μAD →)=5λAM →+3μAN →,5λ+3μ=k ,则k=102.12.如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x -y 的取值范围是________.BAN12.答案[1-,1]解析通法设半径为1,由已知可设OB为x轴的正半轴,O为坐标原点,建立直角坐标系,其中1(2A;(1,0)B;(cos,sin)Cθθ(其中(0)3BOCπθθ∠=,有若OC→=xOA→+yOB→=(cosθ,1sin)(2xθ=(1y+,0);整理得:1cos2x yθ+=sinxθ=,解得xcosyθ=,则cos cos2sin()6x yπθθθθ-=-+-=-,其中(0)3πθ;易知cos cos2sin()6x yπθθθθ-==-=-,为增函数,由单调性易得其值域为[1-,1],故答案为[1-,1].等和线法13.如图,在直角梯形ABCD中,AB AD⊥,//AB DC,2AB=,1AD DC==,图中圆弧所在圆的圆心为点C,半径为12,且点P在图中阴影部分(包括边界)运动.若AP xAB yBC=+,其中x,y∈R,则4x y-的最大值为()A.34-B.3+C.2D.3+ 13.答案B解析以A为坐标原点,AB为x轴,AD为y轴建立平面直角坐标系,则(0,0)A,(0,1)D,(1,1)C,(2,0)B,直线BD的方程为220x y+-=,C到BD的距离d,∴圆弧以点C为圆心的圆方程为221(1)(1)4x y-+-=,设(,)P m n则(,)AP m n=,(0,1)AD=,(2,0)AB=,(1,1)BC=-,若AP xAB yBC=+,(m∴,)(2n x y=-,)y,2m x y∴=-,n y=,P在圆内或圆上,221(21)(1)4x y y∴--+-,设4x y t-=,则4y x t=-,代入上式整理得2280(4816)870x t x t-+++,A设22()80(4816)870f x x t x t =-+++,1[2x ∈,3]2,则1()023()02f f ⎧<⎪⎪⎨⎪<⎪⎩,解得5232t +,故4x y -的最大值为3,故选B .等和线法14.如图,在扇形OAB 中,∠AOB=π3,C 为弧AB 上,且与A ,B 不重合的一个动点,OC→=xOA →+yOB →,若u =x +λy (λ>0)存在最大值,则λ的取值范围为( )A .1(, 1)2B .(1, 3)C .1(, 2)2D .1(, 3)314.答案 C 解析 通法 以O 为原点,OB 为x 轴,建立如图所示的直角坐标系,设(0)3COB πθθ∠=<<, 1OB =,则(cos ,sin )C θθ,(1,0)B ,1(2A ,由OC xOA yOB =+,得1cos 2sin y x θθ⎧=+⎪⎪⎨⎪=⎪⎩,∴cos x y θθ⎧=⎪⎪⎨⎪=⎪⎩,cos (0)3u x y πλθλθθ∴=+=+<<,(0)u x y λλ=+>存在最大值,()u θ∴存在极值点,sin u θλθ'∴=-在(0,)3πθ∈上有零点.令0u '=,则tan θ,(0,)3πθ∈,∴tan θ,∴122λ<<,λ∴的取值范围为1(,2)2.故选C .等和线法15.在平面直角坐标系中,O 是坐标原点,若两定点A ,B 满足||||2OA OB ==,1OA OB =,则点集{}|, ||||2, , P OP OA OB λμλμλμ=++∈R 所表示的区域的面积是( )A .B .C .D .15.答案 D 解析2cos 1OA OB AOB =⨯∠=,1cos 2AOB ∴∠=,即60AOB ∠=︒.(1)若0λ>, 0μ>,设2OE OA =,2OF OB =,则22OP OE OF λμ=+,||||2λμλμ+=+,故当2λμ+=时,E ,F ,P 三点共线,故点P 表示的区域为OEF ∆,此时1sin602OEF S ∆=⨯︒=.(2)若0λ<,0μ>,设2OE OA =-,2OF OB =,则22OP OE OF λμ=-+,||||2λμλμ+=-+,故当2λμ-+=时,P ,E ,F 三点共线,故点P表示的区域为OEF ∆,此时1sin1202OEF S ∆=⨯︒=同理可得:当0λ>,0μ<时,P 点表示的区域面积为当0λ<,0μ<时,P点表示的区域面积为,综上,P 点表示的区域面积为4=.故选D .等和线法。

高三数学复习微专题之《平面向量基本定理系数“等和线”的应用》

高三数学复习微专题之《平面向量基本定理系数“等和线”的应用》

衡阳市数学学会高三数学复习微专题之《平面向量基本定理系数“等和线”的应用》衡东一中朱亚旸一、问题的提出平面向量与代数、几何融合考查的题目综合性强,难度大,考试要求高.近年,高考、模考中有关“等和线定理”(以下简称等和线)背景的试题层出不穷.学生在解决此类问题时,往往要通过建系或利用角度与数量积处理,结果因思路不清、解题繁琐,导致得分率不高.在平时教学中,我们能不能给出一个简单、有效的方法解决此类问题呢?带着这个问题,笔者设计本微型专题.二、等和线定理平面内一组基地 OA, OB 及任一向量 OC ,OC = λOA + μOB(λ,μ ∈ R),若点C 在直线 AB 上或在平行于 AB 的直线上,则λ + μ = k (定值),反之也成立,我们把直线 AB 以及直线 AB 平行的直线称为“等和线”.(1)当等和线恰为直线 AB 时, k =1;(2)当等和线在 O 点和直线 AB 之间时, k ∈(0,1);(3)当直线 AB 在 O 点和等和线之间时, k ∈(1,+∞);(4)当等和线过 O 点时, k =0;(5)若两等和线关于 O 点对称,则定值 k 互为相反数;(6)定值 k 的变化与等和线到 O 点的距离成正比;⎛ x y ⎫简证,如图1若 OC = λOD ,那么 OC = xOA + yOB = λ OA + OB⎪ = λOD ,λ λ⎝ ⎭从而有x+y= 1 ,即x+y= λ.另一方面,过C点作直线l // AB,在l上任作一λ λ点 C',连接 OC'⋂ AB = D',同理可得,以 OA, OB 为基底时,OC'对应的系数和依然为λ .三、定理运用(一)基底起点相同例1:(2017年全国Ⅲ卷理科第12题)在矩形 ABCD中, AB =1, AD =2,动点 P 在以 C 为圆心且与 BD 相切的圆上,若 AP = λ AB + μ AD ,则λ + μ的最大值()A .3B .22C . 5D .2【分析】如图2,由平面向量基底等和线定理可知,当等和线 l与圆相切时,λ + μ最大,此时λ + μ =AF=AB+BE+EF=3AB=3,故选 A .AB AB AB练习 1:(2006年湖南卷15题)如图3所示,OM // AB ,点 P 在由射线 OM 、射线段 OB 及 AB的延长线围成的阴影区域内(不含边界)运动,且 OP = xOA + yOB(1)则 x 的取值范围是;(2)当 x = - 1 时, y 的取值范围是.2【分析】(1),根据题意,很显然 x <0;(2)由平面向量基底等和线定理可知,0< x + y <1,结合 x = -12,可得12< y <32.练习2:(衡水中学 2018届高三二次模拟)如图4,边长为 2 的正六边形ABCDEF 中,动圆 Q 的半径为1,圆心在线段 CD (含短点)上运动, P 是圆 Q 上及其内部的动点,设向量 AP = m AB + n AF(m, n ∈ R),则 m + n 的取值范围是()A .(1,2] B .[5,6] C .[2,5] D .[3,5]【分析】如图5,设 AP = m AB + n AF ,由等和线结论,m + n = AG = 2 AB = 2 .此为m+n1 AB AB的最小值;同理,设 AP = m AB + n AF ,由等和线结论,m + n = AH = 5 .此为m+n2 AB的最大值.综上可知 m + n ∈[2,5].(二)基底起点不同例 2:(2013 年江苏高考第 10 题)设 D , E 分别是 ∆ABC 的边 AB , BC 上的点,且有 AD =12 AB , BE = 23 BC , 若 DE = λ1 AB + λ2 AC (λ1 , λ2 ∈ R ),则 λ1+ λ2 的值为【分析】过点 A 作 AF = DE ,设 AF , BC 的延长线交于点 H ,易知 AF = FH ,即 AF = FH ,即 DF 为 BC 的中位线,因此 λ1 + λ2 =12 .练习 3:如图 7,在平行四边形 ABCD 中,M , N 为 CD 的三等分点,S 为 AM 与 BN 的交点,P 为边 AB 上一动点,Q 为 ∆SMN 内一点(含边界),若 PQ = x AM + y BN ,则 x + y 的取值范围是 .【分析】如图 8 所示,作 PS = AM ,PT = BN ,过 I 作直线 MN 的平行线,由等和线定理⎡3 ⎤可知, x + y ∈ ⎢ ,1⎥ .4 ⎣ ⎦(三)基底一方可变例 3:在正方形 ABCD 中,如图 9, E 为 AB 中点, P 以 A 为圆心, AB 为半径的圆弧上的任意一点,设 AC = x DE + y AP ,则 x + y 的最小值为 .【分析】由题意,作 AK = DE ,设 AD = λ AC ,直线 AC 与直线 PK 相交与点 D ,则有AD = λx AK + λy AP ,由等和线定理,λx + λy =1,从而 x + y =λ1,当点 P与点 B 重合时,如图10,λmax= 2 ,此时,(x+y)min=1 2.练习4:在平面直角坐标系 xoy 中,已知点 P 在曲线Γ:y = 1 -x42(x≥ 0)上,曲线Γ与 x 轴相交于点 B ,与 y 轴相交于点 C ,点 D(2,1)和 E(1,0)满足OD = λCE + μOP(λ,μ ∈ R)则λ + μ的最小值为___.【分析】作CE = OA ,令 OD1= xOD ,有 OD1= xλOA + xμOP ,由等和线定理, xλ + xμ =1,所以λ + μ =1x,如图11,再由等和线定理,得(λ + μ)min=12 .(四)基底合理调节例题4:(2013 年高考安徽理科卷)在平面直角坐标系中,O 是坐标原点,两定点A, B 满足 OA = OB = OA⋅OB =2,则点集{P OP = λOA + μOB,λ + μ ≤1,λ,μ ∈ R}所表示的区域面积是()A .22B .23C .42D .4 3【分析】由 OA = OB = OA⋅OB =2可知,OA, OB = π3 .如图 12 所示,当 λ ≥ 0,μ ≥ 0 时,若λ + μ = 1 ,则点P位于线段AB上;当λ ≥ 0,μ ≤ 0 时,若λ - μ = 1,则点P位于线段 AB'上;当λ ≤0,μ ≥0时,若- λ + μ =1,则点 P 位于线段 A' B 上;当λ≤ 0,μ ≤ 0 时,若- λ - μ = 1 ,则点P位于线段A'B'上;又因为λ + μ ≤ 1 ,由等和线定理可知,点 P 位于矩形 ABA' B'内(含边界).其面积 S =4S∆AOB=4 3 .衡阳市数学学会练习5:如图13所示, A, B, C 是圆 O 上的三点, CO 的延长线与线段 BA 的延长线交于圆 O 外的点 D ,若 OC = mOA + nOB ,则 m + n 的取值范围是.【分析】作 OA, OB 的相反向量 OA1, OB1,如图14所示,则 AB // A1 B1,过 O 作直线 l // AB ,则直线 l , A1 B1为以 OA, OB 为基底的平面向量基本定理系数等和线,且定值分别为0,-1 ,由题意CO的延长线与线段BA的延长线交于圆O外的点D,所以点C在直线 l 与直线 A1 B1之间,所以 m + n ∈(-1,0).练习6:如图15,在扇形 OAB 中,∠AOB =π3, C 为弧 AB 上的一个动点,若OC = xOA + yOB ,则 x +3 y 的取值范围是.【分析】,令 OB'=OB,依题意, OC = xOA +3 y OB⎪⎛ ⎫⎪3⎝ 3 ⎭重新调整基底 OA, OB'.显然,当 C 在 A 点时,经过 k =1的等和线, C 在 B 点时经过 k =3的等和线,这两个分别是最近跟最远的等和线,所以系数和x+ 3 y∈[1,3].(五)“基底+”高度融合例 5 :已知三角形∆ABC 中, BC =6 , AC =2 AB ,点 D 满足AD = 2x AB + y AC ,设f(x,y)= AD , f (x, y)≥ f (x , y )恒成立,2(x+y)x + y 0 0则 f (x0, y0)的最大值为.【分析】衡阳市数学学会本题为“基底+阿氏圆”交汇命题.思路1:如图16所示,以 BC 为 x 轴,中垂线为 y 轴建立直角坐标系,易知点 B 的轨迹方程是(x -5)2+ y 2 = 16 .取AC中点F,延长AB 到 E ,且 AB = BE .于是,AD =2xAB +yAC ,∴ AD =x (2 AB)+ y ⎛ 1 AC ⎫⎪ ,即有x + y 2(x+y) x + y (x + y)⎝2 ⎭AD =xAE +yAF ,从而 D ∈ EF ,进一步得到x + y x + yf (x, y)≥ f (x0, y0)= AK ,且有 AK =2 BG ,因为EF恒过∆ACE重心H,所以AK =2 BG ≤2 BH =4,即 f (x0, y0)max=4.思路2:如图17所示,同上分析, D ∈ EF .当 AD ⊥ EF 时,f(x,y)=AD取得最小值,此时 f (x0, y0)= AD .易知∆ABC ≅ ∆AEF ,则AD=AH≤r=4.四、解题总结1、确定等值线为 1 的直线;2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值;3、从长度比或者点的位置两个角度,计算最大值或最小值.五、后记等和线定理巧妙的将代数问题转化为图形关系,将具体的代数式运算转化为距离的长短比例关系问题,这是数形结合思想的非常直接的体现。

等和线解决的平面向量专题

等和线解决的平面向量专题

1、【2021宁波二模理17】点O 是△ABC 的外接圆圆心,且AB=3,AC=4.假设存在非零..实数..x 、y ,使得AO xAB yAC =+,且21x y +=,那么cos ∠BAC = .解答:取AC 中点D ,那么有2AO xAB yAC xAB yAD =+=+,而21x y +=,得点B,O,D 三点共线,点O 是△ABC 的外心,可得BD AC ⊥,故有BC=AB=3,AC=4,求得2cos 3BAC ∠=. 2、【2021杭州二模文8理6】设O △ABC 的外心〔三角形外接圆的圆心〕.假设AC AB AO 3131+=,那么BAC ∠的度数为〔 〕°°°°解答:取AC 中点D ,那么有1233AO AB AD =+,得点B,O,D 三点共线,点O 是△ABC 的外心,可得BD AC ⊥,即有AO=BO=2DO ,故可求得60BAC ∠=︒.3、【2021浙江理样卷6】AOB ∆,点P 在直线AB 上,且满足()2OP tPA tOB t R =+∈,那么PA PB=〔 〕 A.13B.12解答:由212t OP OA tOB t =++,点P 在直线AB 上,得2112t t t +=+,解得1t =-或12t =. 当1t =-时,可得1122OA OP OB =+,此时A 为PB 中点,PA PB =12;当12t =时,可得1122OP OA OB =+,此时P 为AB 中点,PA PB=1.4、【2021浙江省六校联考理17】O 为ABC ∆的外心,2AB a =,2(0)AC a a=>,120BAC ∠=,假设AO xAB yAC =+(x ,y 为实数),那么x y +的最小值为_____.E OBCA解答:如图,设AO BC E =,EO m =,AO R =,那么易知()11R R AO AE x AB y AC R m R m ==+--,其中111x y +=,,2R m R ⎡⎤∈⎢⎥⎣⎦,故由可得Rx y R m+=-,所求取值范围是[)2,+∞.5、【2021学年第一学期末宁波理17】O 为ABC ∆的外心, 120,2,4=∠==BAC AC AB 。

平面向量综合练习7讲(等和线,极化恒等式,奔驰定理,矩形大法一应俱全)

平面向量综合练习7讲(等和线,极化恒等式,奔驰定理,矩形大法一应俱全)

目录第1讲平面向量基本概念和基本定理..............................................................................................1第2讲平面向量基本定理及三点共线定理....................................................................................21第3讲平面向量中的范围、最值问题..........................................................................................30第4讲极化恒等式............................................................................................................................44第5讲矩形大法................................................................................................................................50第6讲五心问题(奔驰定理)........................................................................................................55第7讲等和线 (67)第1讲平面向量基本概念和基本定理题型1平面向量的线性运算1.如图,平面内有三个向量,,OA OB OC ,其中OA 与OB 的夹角为120︒,OA 与OC的夹角为30︒,且||||1,||3OA OB OC === ,若OC OA OB λμ=+,则(λμ+=)A .1B .2C .3D .4【解析】解: OA 与OB 的夹角为120︒,OA 与OC的夹角为30︒,且||||1,||3OA OB OC === ;∴对OC OA OB λμ=+两边平方得:223λλμμ=-+①;对OC OA OB λμ=+ 两边同乘OA 得:322μλ=-,两边平方得:22944μλλμ=-+②;①-②得:23344μ=;根据图象知,0μ>,1μ∴=,代入322μλ=-得,2λ=;3λμ∴+=.故选:C .2.已知向量,OA OB 满足||||1,,(,)OA OB OA OB OC OA OB R λμλμ==⊥=+∈,若M 为AB 的中点,并且||1MC =,则λμ+的最大值是()A .1-B .1+C .D .1【解析】解:如图所示,向量,OA OB 满足||||1OA OB == ,OA OB ⊥,不妨取(1,0)A ,(0,1)B .M 为AB 的中点,11(,)22M ∴.(1OC OA OB λμλ=+=,0)(0μ+,1)(λ=,)μ. ||1MC =,∴2211(()122λμ-+-=,设1cos 2λθ=+,1sin 2μθ=+,[0θ∈,2)π.则1sin cos 1)14πλμθθθ+=++=++ sin(14πθ+=时取等号.λμ∴+的最大值是1+故选:B .3.在ABC ∆中,AB c = ,AC b =.若点D 满足2,(BD DC AD == 则)A .2133b c+ B .5233c b-C .2133b c-D .1233b c+【解析】解:由题意可得AD AB BD=+22()33AB BC AB AC AB =+=+- 12213333AB AC b c =+=+故选:A .4.已知OA ,OB 是两个单位向量,且0OA OB =.若点C 在AOB ∠内,且30AOC ∠=︒,(,)OC mOA nOB m n R =+∈ ,则(m n=)A .13B .3C .D 【解析】解:因为OA ,OB 是两个单位向量,且0OA OB = .所以OA OB ⊥,故可建立直角坐标系如图所示.则(1,0)OA = ,(0,1)OB = ,故(1OC mOA nOB m =+=,0)(0n +,1)(m =,)n ,又点C 在AOB ∠内,所以点C 的坐标为(,)m n ,在直角三角形中,由正切函数的定义可知,tan 30n m ︒==mn=故选:D .5.在ABC ∆中,M 为边BC 上任意一点,N 为AM 中点,AN AB AC λμ=+,则λμ+的值为()A .12B .13C .14D .1【解析】解:设BM tBC=则1111()2222AN AM AB BM AB BM==+=+ 111()2222t AB tBC AB AC AB =+⨯=+-1()222t t AB AC =-+∴122t λ=-,2tμ=∴12λμ+=故选:A .6.点M 是ABC ∆的边BC 上任意一点,N 在线段AM 上,且AN xAB y AC =+ ,若13x y +=,则NBC ∆的面积与ABC ∆的面积的比值是()A .12B .13C .23D .14【解析】解:如图,设BM BC λ= ,AM AN μ=,∴111()()AN AM AB BM AB BC λμμμ==+=+11()AB AC AB AB AC λλλλμμμ-=+-=+, AN xAB y AC =+ ,且13x y +=,∴1113λλμμμ-+==,则3μ=.∴3AM AN = ,则2AM NM = ,又NBC ∆ 与ABC ∆的底边BC 相等,NBC ∴∆的面积与ABC ∆的面积的比值是||23||AM NM =.故选:C .7.ABC ∆中,M 为边BC 上任意一点,N 为线段AM 上一点,且3AM AN =,又AN AB AC λμ=+ ,则λμ+的值为()A .12B .13C .14D .1【解析】解:设BM tBC = ,3AM AN =,∴11()33AN AM AB BM ==+ 1133AB BM =+1133AB tBC =+11()33AB t AC AB =+-1(333t t AB AC =-+,又AN AB AC λμ=+ ,所以11(3333t t λμ+=-+=故选:B .8.在ABC ∆中,点D 满足3,(,)AD DC BD BA CB R λμλμ==-∈,则λμ= 316.【解析】解: 点D 满足3AD DC =,∴34AD AC = ,又AC BC BA =- ,∴3()4AD BC BA =- ,∴313()444BD BA AD BA BC BA BA CB =+=+-=- .又BD BA CB λμ=- ,∴14λ=,34μ=.∴1334416λμ=⨯=.故答案为:316.9.如图,在正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心、AB 为半径的圆弧上的任意一点,设向量AC DE AP λμ=+,则λμ+的最小值为12.【解析】解:以A 为原点,以AB 所在的为x 轴,建立坐标系,设正方形ABCD 的边长为1,则1(2E ,0),(1,1)C ,(0,1)D ,(0,0)A ,(1,0)B .设(cos ,sin )P θθ,∴(1,1)AC =.再由向量1(2AC DE AP λμλ=+= ,1)(cos μθ-+,sin )(θ=cos 2λμθ+,sin λμθ-+)(1=,1),∴cos 12sin 1λμθλμθ⎧+=⎪⎨⎪-+=⎩,∴2sin 2cos 2cos sin 32cos sin θθλθθμθθ-⎧=⎪⎪+⎨⎪=⎪+⎩,32sin 2cos (2cos sin )3sin 33sin 312cos sin 2cos sin 2cos sin θθθθθθλμθθθθθθ+---+++∴+===-++++.由题意得02πθ ,0cos 1θ∴,0sin 1θ .求得223cos (2cos sin )(33)(2sin cos )66sin 3cos ()0(2cos sin )(2cos sin )sn θθθθθθθθλμθθθθ+-+-++-+'=>++,故λμ+在[0,2π上是增函数,故当0θ=时,即cos 1θ=,这时λμ+取最小值为3021202+-=+,故答案为:12.10.如图,在ABC ∆中,M 为BC 上不同于B ,C 的任意一点,点N 满足2AN NM =.若AN xAB y AC =+ ,则229x y +的最小值为25.【解析】解:不妨设BM BC λ=,01λ<<,∴222222222()()33333333AN AM AB BM AB BC AB AC AB AB AC λλλλ-==+=+=+-=+ ,AN xAB y AC =+,223x λ-∴=,23y λ=,222222(22)4084401294()99999105x y λλλλλ-∴+=+=-+=-+,当110λ=时,229x y +有最小值,最小值为25,故答案为:25.题型2平行问题1.已知(1,1),(1,0),(1,2)a b c =-==- ,若a与b mc - 平行,则(m =)A .1-B .1C .2D .3【解析】解:(1,1),(1,0),(1,2)a b c =-==-,(1,2)b mc m m -=-,当a与b mc - 平行时,1(1)(1)20m m ⨯---⨯=,解得1m =-.故选:A .2.已知向量()()1,2,,1,2,2,//a b x u a b v a b u v ===-=+若,则实数x 为()A .112-B .72或2-C .1D .12【解析】解:由题意可得:22(1u a b =-=,2)(x -,1)(2x =-,3),2(1v a b =+=,2)2(x +,1)(12x =+,4)//u v,(2)43(12)0x x ∴-⨯-⨯+=,解得12x =故选:D .3.已知向量(3,)m k = ,(2,4)n = ,若//m n ,则m n =30.【解析】解: 向量(3,)m k = ,(2,4)n = ,且//m n,212k ∴=,即6k =.则(3m n =,6)(2 ,4)326430=⨯+⨯=.故答案为:30.4.已知向量(,2)a x x =+ ,(3,4)b = ,若//a b ,则向量a的模为10.【解析】解:向量(,2)a x x =+,(3,4)b = ,若//a b,则43(2)0x x -+=,解得6x =,∴(6,8)a =,∴向量a的模为||10a == .故答案为:10.5.已知||10a =,(3,4)b = ,//a b ,则向量a =(6,8)或(6,8)--.【解析】解;设:(,)a x y =, //b a ,||10a =,∴22430100x y x y +=⎧⎨+=⎩解得;68x y =⎧⎨=⎩或68x y =-⎧⎨=-⎩∴a等于(6,8)或(6,8)--故答案为(6,8)或(6,8)--.题型3模长问题1.设向量a,b满足||a b +=||a b -= ,则(a b = )A .1B .2C .3D .5【解析】解:||a b +=||a b -=,∴分别平方得22210a a b b ++= ,2226a a b b -+= ,两式相减得41064a b =-=,即1a b =,故选:A .2.若向量a,b 满足||1a = ,(2)a b a +⊥ ,(2)a b b +⊥ ,则||(b = )A .2B .22C .1D【解析】解: 向量a,b 满足||1a = ,(2)a b a +⊥ ,(2)a b b +⊥ ,∴222cos ,02cos ,0a ab a b a b a b b ⎧+<>=⎪⎨<>+=⎪⎩ ,∴22b a =,||||1b a ∴== .故选:C .3.已知向量a,b 的夹角为45︒,且||1a =,|2|a b -= ||(b = )AB.C.D.【解析】解:因为向量a,b 的夹角为45︒,且||1a =,|2|a b -= 所以224410a a b b -+=,即2|||60b b --= ,解得||b = 或||b =).故选:C .4.已知向量a与b 的夹角为45︒,且||1a = ,||b = ||a b -=1.【解析】解:根据题意得,222()21221451a b a a b b -=-⋅+=+-⨯⨯︒=∴1a b-= 故答案为1.5.已知向量a,b 夹角为45︒,且||1a = ,||b = ,则|2|a b - 【解析】解:根据题意,得;|2|a b -====6.已知向量(2,1),10,||a a b a b =⋅=+=,则||b = 5.【解析】解: 向量(2,1),10a a b =⋅=,又 ||a b +=∴2()50a b +=即22||||250a b a b ++⋅=即25||2050b ++=即2||25b =∴||5b = 故答案为:57.已知向量,a b满足||2a = ,||b = ,a 与b 的夹角为4π,则||a b +【解析】解:向量,a b满足||2a =,||b = a 与b 的夹角为4π,则||a b +===.题型4夹角问题1.已知向量a = ,(3,)b m = ,若向量a,b 的夹角为6π,则实数(m =)A.BC .0D.【解析】解:由题意可得cos 62||||a b a b π== ,解得m =,故选:B .2.已知非零向量a ,b 满足||4||b a = ,且(2)a a b ⊥+ ,则a与b 的夹角为()A .3πB .2πC .23πD .56π【解析】解:由已知非零向量a,b 满足||4||b a = ,且(2)a a b ⊥+ ,可得2(2)20a a b a a b +=+= ,设a与b 的夹角为θ,则有22||||4||cos 0a a a θ+= ,即1cos 2θ=-,又因为[0θ∈,]π,所以23πθ=,故选:C .3.已知非零向量,a b满足:||2||a b a b ==- ,则a与b 的夹角为()A .23πB .2πC .3πD .6π【解析】解:由||2||a b a b ==-,所以22222874(2)a b a a b b ==-+ ,解得||2||b a = ,且2||a b a =- ;所以2||1cos ||2||2||||a b a a a a b θ-===-⨯⨯ ;又[0θ∈,]π,所以23πθ=,即a与b 的夹角为23π.故选:A .4.已知非零向量,a b满足||||a b a b +=- ,则a 与b 的夹角为()A .3πB .2πC .4πD .23π【解析】解:由于非零向量,a b满足||||a b a b +=- ,等号两边同时平方化简得:0a b =,则夹角为2π,故选:B .5.已知向量(1,2)a =- ,(1,)b λ= ,若a b ⊥ ,则2a b + 与a的夹角为()A .23πB .34πC .3πD.4π【解析】解:根据题意,设2a b + 与a的夹角为θ,向量(1,2)a =-,(1,)b λ= ,若a b ⊥,则有(1)120a b λ=-⨯+= ,解可得12λ=,则1(1,2b = ,则2(1,3)a b +=,则有|2|a b +=,||a =(2)(1)1235a b a +=-⨯+⨯= ,则有(2)cos 2|2|||a b a a b a θ+===+,则4πθ=;故选:D .6.在ABC ∆中,22AB AC ==,120BAC ∠=︒,点D 为BC 边上一点,且2BD DC =,则AB AD =23.【解析】解:由题意可知D 为BC 的靠近C 的三等分点,∴2212()3333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+ ,∴21212122()412cos1203333333AB AD AB AB AC AB AB AC =+=+=⨯+⨯⨯⨯︒= .故答案为:23.题型5平面向量的坐标运算1.已知(2,1)a =,(1,2)b =- ,若(9,8)(,)ma nb m n R +=-∈ ,则m n -的值为()A .2B .2-C .3D .3-【解析】解:(2,1)a =,(1,2)b =- ,(2,2)ma nb m n m n +=+- ,(9,8)(,)ma nb m n R +=-∈,可得:2928m n m n +=⎧⎨-=-⎩,可得2m =,5n =.3m n -=-故选:D .2.向量a,b ,c 在正方形网格中的位置如图所示,若(,)c a b R λμλμ=+∈ ,则(λμ=)A .2B .4C .12D .12-【解析】解:以向量a,b 的公共点为坐标原点,建立如图直角坐标系可得(1,1)a =- ,(6,2)b = ,(1,3)c =--(,)c a b R λμλμ=+∈,∴1632λμλμ-=-+⎧⎨-=+⎩,解之得2λ=-且12μ=-,因此,则4λμ=故选:B .3.已知向量(1,1)a =-,(1,2)b =- ,则(2)(a b b += )A .1-B .0C .1D .2【解析】解: (1,1)a =-,(1,2)b =- ,222(2)22(12)(1)2651a b b a b b ∴+=+=--+-+=-+=- 故选:A .4.在ABC ∆中,点P 在BC 上,且2BP PC =,点Q 是AC 的中点,若(4,3)PA = ,(1,5)PQ = ,则(BC = )A .(2,7)-B .(6,21)-C .(2,7)-D .(6,21)-【解析】解:(3,2)AQ PQ PA =-=-点Q 是AC 的中点∴2(6,4)AC AQ ==-(2,7)PC PA AC =+=-2BP PC = 3(6,21)BC PC ==-故选:B .5.已知正方形ABCD 的边长为2,E 为CD 的中点,则(AE BD =)A .2-B .6C .2D .6-【解析】解:根据题意,如图:以B 为坐标原点建立坐标系,BC 所在直线为x 轴,AB 所在直线为y 轴建立坐标系,则(2C ,0)(0A ,2),(2,2)D ,则(2,1)E ,则(2,1)AE =- ,(2,2)BD =,则22(1)22AE BD =⨯+-⨯=,故选:C .6.已知向量(2,1)a =,(1,2)b =- ,若(9ma nb += ,8)(m -,)n R ∈,则m n -的值为3-.【解析】解:向量(2,1)a =,(1,2)b =- ,若(9,8)ma nb +=- 可得2928m n m n +=⎧⎨-=-⎩,解得2m =,5n =,3m n ∴-=-.故答案为:3-.7.已知ABC ∆是边长为1的等边三角形,点D 、E 分别是边AB 、BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC的值为18.【解析】解:以BC 所在的直线为x 轴,以BC 的垂直平分线为y 轴,建立平面直角坐标系,ABC ∆ 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,1(2B ∴-,0),1(2C ,0),(0,0)E ,2A ,1(4D ∴-,∴(1,0)BC = ,1(4DE = ,34-,设(,)F x y ,∴(,)EF x y =,2DE EF = ,∴2DE EF = ,1(4∴,2(x =,)y ,解得18x =,38y =,∴(AF = 18,8-,∴(AF BC = 18,(1 ,10)8=,故答案为:18.题型6投影问题1.已知点(1,1)A -,(1,2)B ,(2,1)C --,(3,4)D ,则向量AB 在CD方向上的投影为()A .3152-B .3152C .322-D .322【解析】解:(2,1),(5,5)AB CD ==;∴向量AB 在CD 方向上的投影为:32||cos ,2||AB CD AB AB CD CD <>==.故选:D .2.已知ABC ∆外接圆圆心为O ,半径为1,2AO AB AC =+ ,且||||OA AB = ,则向量AB 在向量BC方向的投影为()A .12B .2C .2D .12-【解析】解:由2AO AB AC =+知,O 为BC 的中点,如图所示;又O 为ABC ∆外接圆的圆心,半径为1,BC ∴为直径,且2BC =,1OA AB ==,3ABC π∠=;∴向量AB 在向量BC 方向的投影为1||cos()32AB ππ-=- .故选:D .3.已知ABC ∆的外接圆的圆心为O ,半径为2,且0OA AB AC ++= ,则向量CA 在向量CB方向上的投影为()A .3B C .3-D .【解析】解:ABC ∆的外接圆的圆心为O ,半径为2,且0OA AB AC ++= ,∴OB CA =,OBAC ∴为平行四边形.ABC ∆ 的外接圆的圆心为O ,半径为2,得||||||OA AB OB ==,∴四边形OBAC 是边长为2的菱形,且60ABO ACO ∠=∠=︒,因此,1302ACB ACO ∠=∠=︒,∴向量CA 在CB方向上的投影为:||cos 2cos30AC ACB ∠=︒= 故选:B .4.已知向量a ,b 的夹角为60︒,且||2a = ,|2|a b -= ,则向量b 在a方向上的投影等于()A .2B .32C .12D .1【解析】解: ,60a b <>=︒,||2a = ,|2|a b -= ,∴244||4||28b b +-= ,解得||3b =或2-(舍去),∴b 在a方向上的投影等于3||cos 602b ︒= .故选:B .5.已知向量(1,2)a = ,(,1)b m = ,且向量b 满足()3b a b ⋅+= ,则向量a在b 方向上的投影为()A B .22C .2D .2或22【解析】解:向量(1,2)a =,(,1)b m = ,()3b a b ⋅+= ,可得:20m m +=,解得0m =,1m =-,当0m =时,(0,1)b =,向量a在b 方向上的投影为2||a b b ⋅= ,当1m =-时,(1,1)b =-,向量a在b 方向上的投影为2||a b b ⋅== ,故选:D .6.向量a ,b 满足a = ,||1b = ,||a b += b 在a方向上的投影为()A .1-B .12-C .12D .1【解析】解:向量a,b 满足a = ,||1b = ,||a b += 可得2223a a b b ++= ,所以1a b =-,则b 在a方向上的投影为:1||2a b a =- .故选:B .7.已知向量b =,向量a在b 方向上的投影为4-,若()a b b λ+⊥ ,则实数λ的值为()A .3B .12C .13D .23【解析】解: ||2b = ,a在b 方向上的投影为4-,∴42a b =- ,8a b =-,又()a b b λ+⊥,∴2()840a b b a b b λλλ+=+=-+= ,解得12λ=.故选:B .8.若b 为单位向量,||||a b a += ,则向量a在向量b 方向上的投影为()A .1-B .1C .12D .12-【解析】解: ||1,||||b a b a =+=,∴2212a a b a ++= ,∴12a b =-,∴a在b 方向上的投影为:12||a b b =- .故选:D .9.已知非零向量a ,b 满足||2a = ,|2|4a b -= ,a在b 方向上的投影为1,则(2)b a b ⋅+= 36.【解析】解:设a ,b 的夹角为θ,则a在b 方向上的投影为||cos 1||a b a b θ⋅== ,∴||a b b ⋅=,|2|4a b -= ,∴224||4||16a a b b -⋅+=,2164||||16b b ∴-+= ,解得:||4b = ,∴4a b ⋅=,∴2(2)2||43236b a b a b b ⋅+=⋅+=+=.故答案为:36.10ABC ∆中,则向量AB在向量CA方向上的投影为32.【解析】解:根据题意,||,120AB AB CA =<>=︒,∴AB 在CA 方向上的投影为:1||cos120()22AB ︒=-=-.故答案为:11.已知向量||3b = ,且6a b ⋅= ,则向量a在向量b 的方向上的投影为2.【解析】解: ||3,6b a b =⋅=,∴a在b 的方向上的投影为2||a b b ⋅= .故答案为:2.12.若两单位向量a ,b 的夹角为3π,则向量2a b - 在a方向上的投影为32.【解析】解: ||||1,,3a b a b π==<>=,∴12a b = ,213(2)2222a b a a a b -=-=-=,∴2a b - 在a方向上的投影为:(2)3||2a b a a -= .故答案为:32.13.已知向量a ,b 满足|||2|a b a b +=- ,其中b 是单位向量,则a在b 方向上的投影为.【解析】解: ||1b = ,|||2|a b a b +=-,∴221244a a b a a b ++=+- ,∴12a b = ,∴a在b 方向上的投影是12||a b b = .故答案为:12.题型7垂直问题1.已知向量(1,2)a =,(,1)b m =- ,且()a a b ⊥+ ,则(m =)A .5-B .5C .6D .7【解析】解:(1,3)a b m +=- ,(1,2)a =,且()a a b ⊥+ ,∴()160a a b m +=-+=,解得7m =.故选:D .2.已知向量(1,2)a = ,(,4)b x = ,(2,)c y = ,若//a b ,a c ⊥,则()(b ac -= )A .14B .14-C .10D .6【解析】解:向量(1,2)a = ,(,4)b x = ,(2,)c y =,//a b,可得142x ⨯= ,解得2x =,(2,4)b = ,a c ⊥,可得1220y ⨯+=,解得1y =-,(1,3)a c -=-,则()21210b a c -=-+=.故选:C .3.已知向量(1,2)a =,向量(,4)b x = ,且a b ⊥ ,则(x =)A .6B .2C .6-D .8-【解析】解: 向量(1,2)a = ,向量(,4)b x = ,且a b ⊥,∴80a b x =+=,则8x =-,故选:D .4.已知向量(1,2)a =- ,(,1)b m = .若向量a b + 与a垂直,则(m =)A .6B .3C .7D .14-【解析】解:已知向量(1,2)a =- ,(,1)b m = ,若向量a b + 与a垂直,则2()5(2)0a b a a a b m +=+=+-+=,求得7m =,故选:C .5.设x ,y R ∈,向量(,1),(1,),(2,4)a x b y c ==-=- 且a c ⊥,//b c ,则||(a b += )A B C .D .10【解析】解: a c ⊥;∴240a c x =-=;2x ∴=; //b c ;420y ∴-=;2y ∴=;∴(2,1),(1,2)a b ==-;∴(1,3)a b +=;∴||10a b +=.故选:B .6.已知两个单位向量a,b 的夹角为60︒,(1)c t a tb =-+ ,若0b c = ,则t =1-.【解析】解: 两个单位向量a,b 的夹角为60︒,∴111cos 602a b =⨯⨯︒=.(1)c t a tb =-+ ,0b c =,∴20(1)b c t a b tb ==-+ ,10(1)2t t ∴=-+,解得1t =-,故答案为:1-.第2讲平面向量基本定理及三点共线定理一.选择题(共4小题)1.如图所示,已知点G 是ABC ∆的重心,过点G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM xAB =,AN y AC =,则x y +的最小值为()A .2B .13C .43D .34【解析】解:根据条件:1AC AN y= ,1AB AM x =;又1133AG AB AC =+ ;∴1133AG AM AN x y=+;又M ,G ,N 三点共线;∴11133y x+=;0x > ,0y >;111124()()23333333333x y x y x y x y x y y x y x ∴+=++=++++= ;x y +的最小值为43.当且仅当23x y ==.故选:C .2.如图所示,已知点G 是ABC ∆的重心,过点G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM xAB =,AN y AC =,则2x y +的最小值为()A .2B .13C .3223+D .34【解析】解:M ,N ,G 三点共线,∴MG GN λ= ,∴()AG AM AN AG λ-=- , 点G 是ABC ∆的重心,∴1()3AG AB AC =+ ,∴11()(())33AB AC x AB y AC AB AC λ+-=-+,∴11331133x y λλλ⎧-=-⎪⎪⎨⎪=-⎪⎩,解得,(31)(31)1x y --=;结合图象可知112x ,112y ;令31x m -=,31y n -=,1(22m ,12)2n ;故1mn =,13m x +=,13ny +=;故112233m n x y +++=+⨯211221333m n =+++ ,(当且仅当233m n=,即2m =,22n =时,等号成立),故2x y +的最小值为132222133++= ;故选:C .3.如图所示,已知点G 是ABC ∆的重心,过点G 作直线分别与AB ,AC 两边交于M ,N 两点(点N 与点C 不重合),设AB xAM = ,AC y AN = ,则111x y +-的最小值为()A .2B .12+C .32D .22+【解析】解:G 为ABC ∆的重心,∴21()32AG AB AC =⨯+ 1()3xAM y AN =+又G 在线段MN 上,∴11133x y +=3x y ∴+=(1)2x y ∴+-=∴11111[(1)]()121x y x y x y +=+-+--11(11)21x y y x-=+++-1(22)22+= 故选:A .4.已知G 是三角形ABC 的重心,过G 的直线分别交直线AB ,AC 于M ,N 两点,AB mAM = ,AC nAN =,(m ,n 都是正数),12m n+的最小值是()A .2B .3C .1D .2213+【解析】解:如图所示,设D 是BC 的中点.M ,N ,G 三点共线,∴存在实数λ使得(1)AG AM AN λλ=+-, AB mAM = ,AC nAN =,(m ,n 都是正数),∴1AG AB AC m n λλ-=+,G 是三角形ABC 的重心,∴22111()33233AG AD AB AC AB AC ==⨯+=+.∴13113m nλλ⎧=⎪⎪⎨-⎪=⎪⎩,化为3m n +=.又m ,n 为正数,∴1211212122()()(3)(313333n m m n m n m n m n +=++=+++=+,当且仅当1)n ==时取等号.∴12m n +的最小值是2213+.故选:D .二.填空题(共5小题)5.如图,在ABC ∆中,D 是线段BC 上的一点,且4BC BD =,过点D 的直线分别交直线AB ,AC 于点M ,N ,若AM AB λ= ,(0,0)AN AC μλμ=>>,则3λμ+的最小值是3.【解析】解: 若AM AB λ= ,(0,0)AN AC μλμ=>>,∴(1)MB MD DB AB λ=+=- ,M ,D ,N 三点共线,∴存在实数k ,使()MD kMN k AN AM k AB k AC λμ==-=-+. 111444DB CB AB AC ==- ,11()((1)44k AB k AC AB λμλ∴-+-=-,∴114k λλ-=-,104k μ-=,43λμλ∴=-,3343λλμλλ+=+-.设3()43f λλλλ=+-,0λ>,则29()1(43)f λλ-'=+-,令()0f λ'=得,0λ=,或32λ=.在3(0,)2上,()0f λ'<;在(32,)+∞时,()0f λ'>;32λ∴=时,()f λ取极小值,也是最小值;()f λ∴的最小值为3,即3λμ+的最小值是3,故答案为:3.6.在ABC ∆中,M ,N 分别在AB ,BC 上,且2AM MB = ,3BN NC =,AN 交CM 于点P ,若BP xPA yBC =+ ,则x =18,y =.【解析】解:如图:过点M 作//MD BC 交AN 于D ; 2AM MB = ,3BN NC = ,2AD DN ∴=;2DP PN =;18NP AP ∴=∴3148BP BN NP BC PA =+=+ ;BP xPA yBC =+ ,18x ∴=,34y =.故答案为:18,34.7.如图所示,已知点G 是ABC ∆的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且,AM xAB AN y AC == ,则xyx y+的值为13.【解析】解:根据题意G 为三角形的重心,∴1()3AG AB AC =+ ,111()()333MG AG AM AB AC x AB x AB AC =-=+-=-+ ,111()()333GN AN AG y AC AG y AC AB AC y AC AB =-=-=-+=-- ,由于MG 与GN 共线,根据共线向量基本定理知,存在实数λ,使得MG GN λ= ,即1111()[(]3333x AB AC y AC AB λ-+=--,∴113311()33x y λλ⎧-=-⎪⎪⎨⎪=-⎪⎩,消去λ得30x y xy +-=,3x y xy ∴+=,即13xy x y =+.8.已知点G 为ABC ∆的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且,AM xAB AN y AC ==,x ,y R +∈,则x y +的最小值为43.【解析】解:M ,G ,N 三点共线,∴存在m ,使(1)(1)AG mAM m AN mxAB m y AC =+-=+-,又G 是ABC ∆的重心,∴1()(1)3AG AB AC mx AB m y AC =+=+- ,13mx ∴=,1(1)3m y -=,∴11133x y +=,即113x y+=.111114()()(2)(23333y x x y x y x y x y ∴+=++=+++= ,当且仅当23x y ==时取等号.故答案为:43.9.点G 是ABC ∆的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM xAB = ,AN y AC =.若12x =,则y =1,若23AMN ABC S S ∆∆=,则x y +=.【解析】解:根据条件:1AC AN y = ,1AB AM x=;又1133AG AB AC =+ ;∴1133AG AM AN x y=+;又M ,G ,N 三点共线;∴11133x y+=;12x =,1y ∴=; 23AMN ABC S S ∆∆=,∴1sin 2213sin 2AM AN MANAM AN xy AB AC AB AC BAC ∠===∠ ,又113x y +=,即3x y xy+=,2x y ∴+=.故答案为:1,2.三.解答题(共3小题)10.已知点G 为ABC ∆的重心,过点G 作直线与AB 、AC 两边分别交于M 、N 两点,且,AM xAB AN y AC == ,求11x y+的值.【解析】解:根据题意G 为三角形的重心,1()3AG AB AC =+ ,111()()333MG AG AM AB AC x AB x AB AC =-=+-=-+ ,GN AN AG y AC AG=-=-1()3y AC AB AC =-+ 11(33y AC AB =--,由于MG 与GN 共线,根据共线向量基本定理知,存在实数λ,使得MG GN λ= ,即1111()[()]3333x AB AC y AC AB λ-+=--,即113311(33x y λλ⎧-=-⎪⎪⎨⎪=-⎪⎩∴11331133xy -=--即30x y xy +-=两边同除以xy 整理得113x y+=.11.若点M 是ABC ∆所在平面内一点,且满足:3144AM AB AC =+.(1)求ABM ∆与ABC ∆的面积之比.(2)若N 为AB 中点,AM 与CN 交于点O ,设BO xBM yBN =+,求x ,y 的值.【解析】解(1)由3144AM AB AC =+,根据三点共线的性质,31144+=,且AB 与AC 不共线,可知M 、B 、C 三点共线.如图令1()(1)4BM BC AM AB BM AB BC AB AC AB AB AC λλλλλλ=⇒=+=+=+-=-+⇒= ,∴14ABM ABC S S ∆∆=,即面积之比为1:4.(2)由2y BO xBM yBN BO xBM BA =+⇒=+,4x BO BC yBN =+ ,由O 、M 、A 三点共线及O 、N 、C 三点共线41726147y x x x y y ⎧⎧=+=⎪⎪⎪⎪⇒⇒⎨⎨⎪⎪+==⎪⎪⎩⎩12.在ABC ∆中,3144AM AB AC=+(Ⅰ)求ABM ∆与ABC ∆的面积之比(Ⅱ)若N 为AB 中点,AM 与CN 交于点P 且(,)AP xAB y AC x y R =+∈,求x y +的值.【解析】解:(Ⅰ)在ABC ∆中,3144AM AB AC =+⇒4303()AM AB AC AM AB AC AM--=⇒-=- 3BM MC ⇒=,即点M 在线段BC 上的靠近B 的四等分点,ABM ∴∆与ABC ∆的面积之比为14.(Ⅱ) 3144AM AB AC =+ ,(,)AP xAB y AC x y R =+∈,//AP AM ,∴设334424AP AM AB AC AN AC λλλλλ==+=+ ;三点N 、P 、C 共线,∴341,247λλλ+==解得,3311,4747x y λλ====,47x y +=.第3讲平面向量中的范围、最值问题一.选择题(共17小题)1.如图,四边形OABC 是边长为1的正方形,3OD =,点P 为BCD ∆内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于()A .14B .43C .13D .1【解析】解:以O 为原点,以OD 所在直线为x 轴建立直角坐标系,设点(,)P x y , OP OC OD αβ=+,则(x ,)(0y α=,1)(3β+,0)(3β=,)α.所以,3x y βα=⎧⎨=⎩13x y αβ+=+.由于点P 在BCD ∆内(包含边界),目标函数为13x y αβ+=+,如图所示,当点P 为点(1,1)B 时,13x y αβ+=+取得最大值,其最大值为14133+=,故选:B .2.已知1,||,||AB AC AB AC t t ⊥== ,若P 点是ABC ∆所在平面内一点,且4||||AB ACAP AB AC =+,则PB PC ⋅ 的最大值等于()A .13B .15C .19D .21【解析】解:由题意建立如图所示的坐标系,可得(0,0)A ,1(B t,0),(0,)C t ,4||||AB ACAP AB AC =+,(1,4)P ∴,∴1(1PB t=- ,4)-,(1,4)PC t =-- ,∴11(1)4(4)17(4PB PC t t t t ⋅=----=-+ ,由基本不等式可得144t t += ,117(4)17413t t ∴-+-= ,当且仅当14t t =即12t =时取等号,∴PB PC ⋅的最大值为13,故选:A .3.已知AB AC ⊥ ,1||AB t = ,||AC t = ,1[4t ∈,4];若P 是ABC ∆所在平面内一点,且4||||AB AC AP AB AC =+,则PB PC的取值范围是()A .[13,17]B .[12,13]C .3[4,12]D .3[4,13]【解析】解:由题意建立如图所示的坐标系,可得(0,0)A ,1(B t,0),(0,)C t ,4(1||||AB ACAP AB AC =+=,0)(0+,4)(1=,4),(1,4)P ∴,∴1(1PB t =- ,4)-,(1,4)PC t =-- ,∴11(1)4(4)17(4)1713PB PC t t t t =----=-+-= ,当且仅当14t t =,即11[24t =∈,4],时,取等号,由4t =可得1317(1644-+=,由14t =可得17(14)12-+=,∴PB PC 的最大值为13,最小值为34.则PB PC 的范围是3[4,13].故选:D .4.已知a,b 是平面内互不相等的两个非零向量,且||1a = ,a b - 与b 的夹角为150︒,则||b 的取值范围是()A .(0B .[1C .(0,2]D .2]【解析】解:如图所示,设OA a = ,OB b = ,则BA OA OB a b =-=-.由于||1a =,a b - 与b 的夹角为150︒,可得OAB ∆中,1OA =,30OBA ∠=︒.由正弦定理可得:OAB ∆的外接圆的半径1r =.则点B 为圆上的动点.由图可令(1cos ,sin )b OB θθ==+,则||b ==.∴||(0,2]b ∈.故选:C .5.设向量α,β 的夹角θ定义:||||sin αβαβθ⨯= 若平面内互不相等的两个非零向量a ,b满足:||1a = ,()a b - 与b 的夹角为150︒,a b ⨯的最大值为()A .2BC .D 【解析】解:设a OA =,b OB = ,则BA a b =- ,||1a = ,a b - 与b的夹角为150︒,OAB ∴∆中,1OA =,30OBA ∠=︒,由正弦定理可得:OAB ∆的半径为1,则B 点为圆上与OA 不重合的动点,设(0150)AOB θθ∠=︒<<︒,由正弦定理可得,2sin AB θ=,2sin(150)OB θ=︒-,则sin 2sin30OAB a b OA OB S AB OB θ∆⨯===︒2sin sin(150)[cos150cos(2150)]θθθ=︒-=-︒--︒cos(2150)2θ=+-︒,当75θ=︒时,a b ⨯取得最大值,且为1+故选:C .6.已知平面内互不相等的非零向量a,b 满足||1a = ,a b - 与b 的夹角为150︒,则a b 的最大值为()A .2BC .32D .32【解析】解:如图所示,设OA a = ,OB b =.则BA OA OB a b =-=- .||1a =,a b - 与b 的夹角为150︒,OAB ∴∆中,1OA =,18015030OBA ∠=︒-︒=︒.由正弦定理可得:OAB ∆的外接圆的半径1r =.则点B 为圆上与A 点重合的动点.由图可令:1(,2a OA ==,(1cos ,sin )b OB θθ==+ .∴11313cos sin()222622a b πθθθ=+-=--+ ,当sin(16πθ-=-时取等号.∴a b 的最大值为32.故选:C .7.已知向量OA 与OB 的夹角为θ,||2OA = ,||1OB = ,OP tOA = ,(1)OQ t OB =-,||PQ 在0t 时取最小值,当0104t <<时,cos θ的取值范围为()A .1(2-,0)B .1(2-,14-C .1(4,1)D .1(2-,1)4【解析】解:由题意得:21cos 2cos OA OB θθ=⨯⨯=,(1)PQ OQ OP t OB tOA =-=-- ,∴22222(1)2(1)PQ t OB t OA t t OA OB=-+-- 222(1)44(1)cos (54cos )(24cos )1t t t t t t θθθ=-+--=++--+,由二次函数知,当上式取最小值时,012cos 54cos t θθ+=+,0104t <<,12cos 1054cos 4θθ+∴<<+,解得11cos 24θ-<<.cos θ∴的取值范围为11(,)24-.故选:D .8.已知向量OA 与OB 的夹角为θ,||2OA = ,||1OB = ,OP tOA = ,(1)OQ t OB =-,||PQ 在0t 时取得最小值.当0105t <<时,夹角θ的取值范围为()A .(0,)3πB .(3π,)2πC .(2π,2)3πD .2(0,3π【解析】解:由题意可得21cos 2cos OA OB θθ=⨯⨯=,(1)PQ OQ OP t OB tOA =-==-- ,∴2222222(1)2(1)(1)44(1)cos PQ t OB t OA t t OA OB t t t t θ=-+--=-+-- 2(54cos )(24cos )1t t θθ=++--+,由二次函数知,当上式取最小值时,012cos 54cos t θθ+=+,由题意可得12cos 1054cos 5θθ+<<+,求得1cos 02θ-<<,∴223ππθ<<,故选:C .9.设向量1e 、2e 满足:12||2,||1e e == ,1e ,2e 的夹角是90︒,若1227te e + 与12e te +的夹角为钝角,则t 的取值范围是()A .(,0)-∞B .1414(,(22-∞-C .(,)2-∞-D .(2-【解析】解: 向量1e 、2e 满足:12||2,||1e e == ,1e ,2e 的夹角是90︒,∴120e e =.若1227te e + 与12e te +的夹角为钝角,则1212(27)()0te e e te ++< ,且12(27)te e + 与12()e te +不共线,即22122070te te ++< ,且271t t≠,即870t t +<,且t ≠.求得0t <,142t ≠±,即(t ∈-∞,1414)(22--⋃,0),故选:B .10.在空间直角坐标系O xyz -中,已知(1,2,3)OA = ,(2,1,2)OB = ,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB取得最小值时,点Q 的坐标为()A .131(,,)243B .133(,,)224C .448(,,)333D .447(,,333【解析】解: 点Q 在直线OP 上运动,∴存在实数λ使得(OQ OP λλ==,λ,2)λ,∴(1,2,32)QA λλλ=--- ,(2,1,22)QB λλλ=---.∴(1)(2)(2)(1)(32)(22)QA QB λλλλλλ=--+--+--22498616106()33λλλ=-+=--,当且仅当43λ=时,上式取得最小值,448(,,333Q ∴.故选:C .11.已知Rt AOB ∆的面积为1,O 为直角顶点,设向量||OA a OA ==,||OB b OB =,2OP a b =+ ,则PA PB 的最大值为()A .1B .2C .3D .4【解析】解:以O 为原点,OA 所在直线为x 轴,建立直角坐标系,设(,0)A m ,(0,)B n ,则(1,0)a =,(0,1)b = ,2(1,2)OP a b =+=,(1,2)PA m =-- ,(1,2)PB n =-- ,Rt AOB ∆的面积为1,即有2mn =,则12(2)PA PB m n =---5(2)55221m n =-+-=-⨯= .当且仅当22m n ==时,取得最大值1.故选:A .12.已知向量a ,b 均为单位问量,且12a b = .向量a c - 与向量b c - 的夹角为6π,则||a c - 的最大值为()A .32B .1C .233D .2【解析】解: 由12a b = ,向量a ,b 为单位向量,可得a ,b的夹角为60︒.设OA a = ,OB b = ,OC c = .由向量12a b = ,向量a ,b 均为单位问量11cos a ∴⨯⨯<,12b >= ,∴a <,3b π>= .设OA a = ,OB b = ,OC c = . 向量c 满足a c -与b c - 的夹角为6π,6ACB π∴∠=.由等边三角形OAB ,点C 在AB 外且ACB ∠为定值,可得C 的轨迹是两段圆弧,ACB ∠是AB 所对的圆周角.可知:当AC 时是弧 AB 所在圆(上述圆弧)的直径时,||a c -取得最大值||AC ,在ABC ∆中,由正弦定理可得:2sin 30ABAC ==︒.|∴,||a c -取得最大值||AC 取得最大值是2.故选:D .13.已知平面向量(1,2)a = ,(2,1)b = ,(,)c x y =,满足0x ,0y .若1a c ⋅ ,1b c ⋅ ,()z a b c=-+⋅ 则()A .z 有最大值2-B .z 有最小值2-C .z 有最大值3-D .z 有最小值3-【解析】解: 21a c x y ⋅=+21b c x y ⋅=+332x y ∴+ ()(33)3()2Z a b c x y x y =-+⋅=-+=-+-Z ∴的最大值为2-故选:A .14.已知a 、b 是平面内两个互相垂直的单位向量,若向量c满足()()0c a c b --= ,则||c 的最大值是()A .1B .2C .D【解析】解:由题意可得0a b =,可得||a b +== 2()()()c a c b c a b c a b --=+-+ 2||||||cos (c c a b a b =-+<+ ,0c >=,即为||c a b =<+ ,c > ,当cos a b <+ ,1c >= 即a b + ,c同向时,||c故选:C .15.已知向量(cos ,sin )a θθ=,向量b = 1)-则|2|a b - 的最大值,最小值分别是()A .0B .4,C .16,0D .4,0【解析】解:2(2cos a b θ-=-,2sin 1)θ+,|2|a b -===4,最小值为0.故选:D .16.已知,a b是单位向量,0a b = ,若向量c 满足||1c a b -+= ,则|||c b - 的取值范围是()A .1]-B .1]+C .[0,2]D .1]-+【解析】解:由,a b是单位向量,且0a b = ,则可设(1,0)a = ,(0,1)b = ,(,)c x y = ;向量c满足||1c a b -+= ,|(1,1)|1x y ∴-+=,∴1=,即22(1)(1)1x y -++=,它表示圆心为(1,1)C -,半径为1r =的圆;又|||(c b x -=,1)|y -=C 上的点到点(0,1)B 的距离,如图所示:且||BC =,∴1||1PB - ;即||c b -的取值范围是1-1]+.故选:D.17.设1e ,2e 为单位向量,非零向量12b xe ye =+ ,x ,y R ∈,若1e ,2e 的夹角为6π,则||||b x的最小值为()A .14B .12C .1D .4【解析】解: 1e ,2e 为单位向量,非零向量12b xe ye =+ ,x ,y R ∈,若1e ,2e 的夹角为6π,∴12123||||cos 62e e e e π==,则22221212||()2b xe ye x y xye e =+=++=,则||1||2b x ==== ,当且仅当y x =故选:B .二.填空题(共7小题)18.在边长为2的等边三角形ABC 中,D 是AB 的中点,E 为线段AC 上一动点,则EB ED的取值范围为23[16,3].【解析】解:由题意可得AE 和AB 的夹角为60︒,设||AE x =,[0x ∈,2],22()()212cos60cos60EB ED AB AE AD AE AB AD AB AE AD AE AE x x x=--=--+=⨯-︒-︒+ 2233232()2416x x x =-+=-+,故当34x =时,EB ED 取得最小值为2316,当2x =时,EB ED 取得最大值为3,故EB ED 的取值范围为23[,3]16,19.已知向量,,a b c满足||6,||a b == ,a 与b 的夹角为4π,()()4c a c b --=- ,则||c a - 的最小值为1-.【解析】解:由向量||6a = ,||b = ,a与b 的夹角为4π,可设(6,0)OA a == ,4OB b π== ,(24π=,2),(,)OC c x y == ,由()()4c a c b --=-,得(6)(2)(2)4x x y y --+-=-;化为22(4)(1)1x y -+-=,所以点C 在以(4,1)M 为圆心,以1为半径的圆的上;且||c a -=表示圆上的点到点(6,0)A 的距离,。

平面向量的等和线问题

平面向量的等和线问题
A.?0,1?? B.?,0 2?? C.?,0 3?? D.?0,4?
解 : 过点P作GH / /BC,交AC, AB的延长线于G, H ,则 uuur uuur uuur OP ? x AG? yAH, 且x ? y ? 1,
当点P位于D点时,G, H分别位于C ', B '
Q ? BCD与? ABC的面积之比为2,? AC' ? 3AC, AB ' ? 3AB
uuur 2 y AE,
2
如图, 连BE ,当点P在B点时,三点B, E , P共线, uuur uuur
且 AP ? AB,即x ? 2 y ? 1? 0 ? 1, uuur uuur uuur uuur uuur uuur
2
2
uuur uuur 例1 ? 4.给定两个长度为 1的平面向量 OA和OB,它们的
夹角为1200.如图所示,点 C在以O为圆心的圆弧 ?AB上 uuur uuur uuur
变动.若OC ? xOA ? yOB,其中x, y ? R,则x ? y的最大值
是 ? ________.
解法 1 : 当点C位于 D点时 ,
所以,CG ? 1 OC, DH ? 1 OD
2
2
uuur 所以, OP
?
uuur OB ?
uuur ? OG ?
uuur ? OH
?
3
?
uuur OC
?
3
?
uuur OD
?
?
uuur OC ?
uuur ? OD
2
2
所以,? ? 3 ? , ? ? 3 ? ,
2
2
所以,? ? ? ? 3 (? ? ? ) ? 3

2024年高考数学复习培优讲义专题31--- 平面向量共线定理与等和线(含解析)

2024年高考数学复习培优讲义专题31--- 平面向量共线定理与等和线(含解析)

专题5-2 平面向量共线定理与等和线一、平面向量共线定理:已知PC PA PB λμ=+,1λμ+=是A B C 、、三点共线的充要条件 证明若点A,B,C 互不重合,P 是A,B,C 三点所在平面上的任意一点,且PC xPA yPB =+,证明:A ,B ,C 三点共线是1x y +=的充要条件.证明:(1)由1x y +=⇒A ,B ,C 三点共线.由1x y +=得(1)()PC xPA yPB xPA x PB PC PB x PA PB BC xBA =+=+−⇒−=−⇒=.即BC ,BA 共线,故A ,B ,C 三点共线. (2)由A ,B ,C 三点共线1x y ⇒+=.由A ,B ,C 三点共线得BC ,BA 共线,即存在实数x 使得BC BA λ=.故()(1)BP PC BP PA PC PA PB λλλ+=+⇒=+−.令,1x y λλ==−,则有1x y +=.AC二、等和线相关性质平面内一组基底OB OA ,及任一向量OP ,OB OA OP μλ+=,若点p 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。

1.当等和线恰为直线AB 时,k 等于1. 2.定值k 的变化与等和线到O 点的距离成正比.平面内一组基底OB OA ,及任一向量OP ,OB OA OP μλ+=,若点p 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。

1.当等和线恰为直线AB 时,k 等于1. 2.定值k 的变化与等和线到O 点的距离成正比.2017全国3卷(理)T12 1.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A .3 B .22 C .5D .22020年江苏省高考2.在中,,,,在边上(不与端点重合).延长到,使得.当为中点时,的长度为 ;若为常数且,则的长度是 .ABC ∆3BC =4AC =90ACB ∠=︒D AB CD P 9CP =D AB PD 3()(2PC mPA m PB m =+−0m ≠3)2m ≠BD题型一 向量共线定理:构造方程组求系数2023·深圳二模1.已知OAB 中,OC CA =,2OD DB =,AD 与BC 相交于点M ,OM xOA yOB =+,则有序数对(,)x y =( )A .11,23⎛⎫ ⎪⎝⎭B .11,32⎛⎫ ⎪⎝⎭C .11,24⎛⎫ ⎪⎝⎭D .11,42⎛⎫ ⎪⎝⎭江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一)2.在ABC 中,已知2BD DC =,CE EA =,BE 与AD 交于点O .若CO xCB yCA =+(),R x y ∈,则x y += .3.在ABC 中,3BC BD =,2CF FA =,E 是AB 的中点,EF 与AD 交于点P ,若AP mAB nAC =+,则m n +=( ) A .37 B .47 C .67D .1题型二 向量共线定理:结合不等式求最值2024届·湖南师大附中月考(二)4.ABC 中,D 为AC 上一点且满足13AD DC =,若P 为BD 上一点,且满足,,AP AB AC λμλμ=+为正实数,则下列结论正确的是( )A .λμ的最小值为116B .λμ的最大值为1C .114λμ+的最小值为4D .114λμ+的最大值为165.如图,在ABC 中,D 是线段BC 上的一点,且4BC BD =,过点D 的直线分别交直线AB ,AC 于点M ,N .若AM AB λ=,(0,0)AN AC μλμ=>>,则1λμ−的最小值是 .重点题型·归类精讲2024届·重庆市西南大学附中、重庆育才中学十月联考6.(多选)在三角形ABC 中,点D 足AB 边上的四等分点且3AD DB =,AC 边上存在点E 满足()0EA CE λλ=>,直线CD 和直线BE 交于点F ,若()0FC DF μμ=>,则( )A .1344CD CA CB =+B .4λμ=C .2164λμ+的最小值为17D .49CF EA CD CA ⋅≤⋅的延长线交于点F,若BC CE λ=,ED DA μ=,3(,0)AB BF λμ=>,则( )A. 3144EB EF EA =+ B. 14λμ=C. 11λμ+的最大值为1 D. 49EC AD EB EA⋅≥−⋅题型三 等和线:求系数和最值,范围8.如图正六边形ABCDEF 中,P 点三角形CDE 内(包括边界)的动点,设AF AB AP y x +=,则y x +的取值范围是________.FEDCB AFED9.如图,在直角梯形ABCD 中,AD AB ⊥,//AB DC ,1AD DC ==,2AB =,动点P 在以点C 为圆心,且与直线BD 相切的圆上或圆内移动,设(,R)AP AD AB λμλμ=+∈,则λμ+取值范围是 .10.给定两个长度为3的平面向量OA 和OB ,它们的夹角为120°,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若=OC xOA yOB +,其中,x y R ∈,则x y +的最大值是_____;2x y +的最大值是______.11.如图,在正方形ABCD 中,E 为BC 的中点,P 是以AB 为直径的半圆弧上任意一点,设(,)AE xAD y AP x y R =+∈,则2x+y 的最小值为( )A .-1B .1C .2D .312.在直角ABC 中,AB AC ⊥,2AB AC ==,以BC 为直径的半圆上有一点M (包括端点),若AM AB AC λμ=+,则λμ+的最大值为( )OACE BDCPA .4B .3C .2D .213.直角梯形中ABCD ,ABD BC AD CD CB ∆⊥,,//是边长为2的正三角形,P 是平面上的动点,1||=CP ,),(R AB AD AP ∈+=μλμλ设,则μλ+的值可以为( ) A. 0 B.1 C.2 D.3专题5-2 平面向量共线定理与等和线一、平面向量共线定理:已知PC PA PB λμ=+,1λμ+=是A B C 、、三点共线的充要条件 证明若点A,B,C 互不重合,P 是A,B,C 三点所在平面上的任意一点,且PC xPA yPB =+,证明:A ,B ,C 三点共线是1x y +=的充要条件.证明:(1)由1x y +=⇒A ,B ,C 三点共线.由1x y +=得(1)()PC xPA yPB xPA x PB PC PB x PA PB BC xBA =+=+−⇒−=−⇒=.即BC ,BA 共线,故A ,B ,C 三点共线. (2)由A ,B ,C 三点共线1x y ⇒+=.由A ,B ,C 三点共线得BC ,BA 共线,即存在实数x 使得BC BA λ=.故()(1)BP PC BP PA PC PA PB λλλ+=+⇒=+−.令,1x y λλ==−,则有1x y +=.AC二、等和线相关性质平面内一组基底OB OA ,及任一向量OP ,OB OA OP μλ+=,若点p 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。

等和线 向量

等和线 向量

等和线向量
等和线是指在平面直角坐标系中满足某一条件的点的集合,例如两点间距离相等的点构成的集合就是一个等和线。

在向量中,等和线也有着重要的应用。

对于一个平面向量 $vec{a}=(a_x,a_y)$,其等和线可以表示为${ vec{r}=(x,y) mid x+y=k }$,其中 $k$ 为常数。

也就是说,等和线上的所有点到原点的向量 $vec{r}$ 都满足
$vec{r}cdotvec{a}=kcdot|vec{a}|^2$,其中 $cdot$ 表示点积,$|vec{a}|$ 表示向量 $vec{a}$ 的模长。

换言之,等和线上的任意一点 $vec{r}$,其到原点的向量$vec{r}$ 与向量 $vec{a}$ 的夹角 $theta$ 满足
$costheta=dfrac{k}{|vec{r}|cdot|vec{a}|}$,其中
$|vec{r}|$ 表示向量 $vec{r}$ 的模长。

因此,等和线可以用来表示平面上与向量 $vec{a}$ 的夹角相等的所有点的集合。

等和线的概念在物理、工程、计算机图形学等领域都有着重要的应用。

例如在物理学中,等和线可以描述电场强度、磁场强度等物理量的分布。

在计算机图形学中,等和线可以用来绘制二次曲线和三次曲线,从而实现平滑的曲线和图形。

- 1 -。

5类平面向量解题技巧(“爪子定理”、等和线、极化恒等式、奔驰定理与三角形四心问题、(解析版)

5类平面向量解题技巧(“爪子定理”、等和线、极化恒等式、奔驰定理与三角形四心问题、(解析版)

5类平面向量解题技巧(“爪子定理”、系数和(等和线)、极化恒等式、奔驰定理与三角形四心问题、范围与最值问题)技法01“爪子定理”的应用及解题技巧技法02系数和(等和线)的应用及解题技巧技法03极化恒等式的应用及解题技巧技法04奔驰定理与三角形四心的应用及解题技巧技法05范围与最值的应用及解题技巧技法01“爪子定理”的应用及解题技巧“爪子定理”是平面向量基本定理的拓展,用“爪子定理”能更快速求解,需同学们重点学习掌握知识迁移形如AD xAB y AC =+条件的应用(“爪子定理”)“爪”字型图及性质:(1)已知,AB AC 为不共线的两个向量,则对于向量AD,必存在,x y ,使得AD xAB y AC =+。

则,,B C D 三点共线⇔1x y +=当01x y <+<,则D 与A 位于BC 同侧,且D 位于A 与BC 之间当1x y +>,则D 与A 位于BC 两侧1x y +=时,当0,0x y >>,则D 在线段BC 上;当0xy <,则D 在线段BC 延长线上(2)已知D 在线段BC 上,且::BD CD m n =,则n m AD AB AC m n m n=+++A例1-1.(全国·高考真题)设D 为ABC 所在平面内一点,且3BC CD =,则()A.1433AD AB AC=-+B.1433AD AB AC=-C.4133AD AB AC=+ D.4133AD AB AC=-解析:由图可想到“爪字形图得:1344AC AB AD =+ ,解得:1433AD AB AC=-+答案:A例1-2.(2023江苏模拟)如图,在ABC 中,13AN NC = ,P 是BN 上的一点,若211AP mAB AC =+,则实数m 的值为()A.911B.511 C.311D.211解:观察到,,B P N 三点共线,利用“爪”字型图,可得AP mAB nAN =+,且1m n +=,由13AN NC = 可得14AN AC = ,所以14AP mAB nAC =+ ,由已知211AP mAB AC =+ 可得:12841111n n =⇒=,所以311m =答案:C1.(2022·全国·统考高考真题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB=()A .32m n- B .23m n-+C .32m n+ D .23m n+ 【答案】B【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=- ,所以CB =3232CD CA n m -=- 23m n =-+ .故选:B .【答案】A【详解】试题分析:,故选A .【答案】A【分析】利用向量的线性运算,即可得到答案;【详解】连结AC ,则AC 为ABC 的中位线,∴111222EF AC a b ==+ ,故选:A【答案】A【分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BD =+,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+,之后将其合并,得到3144BE BA AC =+ ,下一步应用相反向量,求得3144EB AB AC =-,从而求得结果.【详解】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC=+=+=++1113124444BA BA AC BA AC=++=+,所以3144EB AB AC =-,故选A.【点睛】该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.【答案】12【详解】依题意,121212()232363DE DB BE AB BC AB AC AB AB AC =+=+=+-=-+,∴121263AB AC AB AC λλ-+=+ ,∴116λ=-,223λ=,故12121632λλ+=-+=.【考点定位】平面向量的加法、减法法则.分析、计算能力.中等题.技法02系数和(等和线)的应用及解题技巧知识迁移如图,P 为AOB ∆所在平面上一点,过O 作直线//l AB ,由平面向量基本定理知:存在,x y R ∈,使得OP xOA yOB=+下面根据点P 的位置分几种情况来考虑系数和x y +的值①若P l ∈时,则射线OP 与l 无交点,由//l AB 知,存在实数λ,使得OP AB λ=而AB OB OA =- ,所以OP OB OA λλ=-,于是=-=0x y λλ+②若P l ∉时,(i )如图1,当P 在l 右侧时,过P 作//CD AB ,交射线OA OB ,于,C D 两点,则OCD OAB ∆~∆,不妨设OCD ∆与OAB ∆的相似比为k由,P C D ,三点共线可知:存在R λ∈使得:(1)(1)OP OC OD k OA k OBλλλλ=+-=+- 所以(1-)x y k k kλλ+=+=(ii )当P 在l 左侧时,射线的反向延长线与AB 有交点,如图1作P 关于O 的对称点P ',由(i )的分析知:存在存在R λ∈使得:(1)(1)OP OC OD k OA OB λλλλ'=+-=+- 所以--(1)OP k OA OBλλ'=+- 于是--(1-)-x y k k kλλ+=+=综合上面的讨论可知:图中OP 用,OA OB线性表示时,其系数和x y +只与两三角形的相似比有关。

重难点专题04 妙用等和线解决平面向量系数和差商方问题(五大题型)(课件)-高一数学新教材讲义

重难点专题04 妙用等和线解决平面向量系数和差商方问题(五大题型)(课件)-高一数学新教材讲义

O
P
A
l
A1
03
典型例题
典型例题
题型一: + 问题(系数为1)
【例1】(2024·山东滨州·统考一模)在△ 中,M为BC边上任意一点,N为线段AM上任意一点,
若 = + ( , ∈ ),则 + 的取值范围是(
1
A. 0, 3
B.
1 1
,
3 2
C.[0,1]
所以 = + ,即 =

因为 、 、 三点共线,所以 +





+



= 1,即 + = ∈ 0,1 .
综上, + 的取值范围是 [0,1].故选:C.
典型例题
题型一: + 问题(系数为1)
【变式1-1】(2024·重庆铜梁·高一统考期末)在 △ 中,点 是线段 上任意一点,点 满足 =

D.[1,2]
【答案】C
【解析】由题意,设 = , 0 ≤ ≤ 1 ,
当 = 0时, = 0 ,所以 + = 0 ,
所以 = = 0,从而有 + = 0;
当0 < ≤ 1时,因为 = + ( , ∈ ),
由向量加法的 平 行 四 边 形 法则 , 为 平 行 四 边 形的 对
角线,
该四边形应是 以 与 的 反 向 延长 线 为 两 邻 边 ,
1
∴当 = − 2 时,要使 点 落 在 指 定 区 域内 , 即 点 应 落
在 上,
1
2
, =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、【2014宁波二模理17】已知点O 是△ABC 的外接圆圆心,且AB=3,AC=4.若存在非零实...数.x 、y ,使得AO xAB y AC =+u u u r u u u r u u u r ,且21x y +=,则cos ∠BAC = .解答:取AC 中点D ,则有2AO xAB y AC xAB y AD =+=+u u u r u u u r u u u r u u u r u u u r ,而21x y +=,得点B,O,D三点共线,已知点O 是△ABC 的外心,可得BD AC ⊥,故有BC=AB=3,AC=4,求得2cos 3BAC ∠=.2、【2014杭州二模文8理6】设O △ABC 的外心(三角形外接圆的圆心).若3131+=,则BAC ∠的度数为( ) ° ° ° °解答:取AC 中点D ,则有1233AO AB AD =+u u u r u u u r u u u r ,得点B,O,D 三点共线,已知点O 是△ABC 的外心,可得BD AC ⊥,即有AO=BO=2DO ,故可求得60BAC ∠=︒.3、【2009浙江理样卷6】已知AOB ∆,点P 在直线AB 上,且满足()2OP tPA tOB t R =+∈u u u r u u u r u u u r ,则PA PBu u u r u u u r =( ) A.13 B.12 解答:由已知212t OP OA tOB t =++u u u r u u u r u u u r ,点P 在直线AB 上,得2112t t t +=+,解得1t =-或12t =. 当1t =-时,可得1122OA OP OB =+u u u r u u u r u u u r ,此时A 为PB 中点,PA PB u u u r u u u r =12;当12t =时,可得1122OP OA OB =+u u u r u u u r u u u r ,此时P 为AB 中点,PA PBu u u r u u u r =1.4、【2014浙江省六校联考理17】已知O 为ABC ∆的外心,2AB a =,2(0)AC a a=>,120BAC ∠=o ,若AO xAB yAC =+u u u r u u u r u u u r (x ,y 为实数),则x y +的最小值为_____.解答:如图,设AO BC E =I ,EO m =,AO R =,则易知()11R R AO AE x AB y AC R m R m ==+--u u u r u u u r u u u r u u u r ,其中111x y +=,,2R m R ⎡⎤∈⎢⎥⎣⎦,故由已知可得R x y R m+=-,所求取值范围是[)2,+∞.5、【2013学年第一学期末宁波理17】已知为的外心,。

若,则__________.解法1:如图,设AO BC E =I ,EO m =,AO R =,AF BC ⊥于F 点,OG BC ⊥于G 点,则易知()11R R AO AE x AB y AC R m R m ==+--u u u r u u u r u u u r u u u r ,其中111x y +=,由已知可求得3OG =,7AF =,故可求得121316R AF OG OG R m AF AF λλ++===+=-. 解法2:212212AO AB AB AC AB AO AC AB AC AC λλλλ⎧⋅=+⋅⎪⎨⎪⋅=⋅+⎩u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,得12128164244λλλλ=-⎧⎨=-+⎩,解得125686λλ⎧=⎪⎪⎨⎪=⎪⎩,故12136λλ+=. 解法3:设()0,0A ,()4,0B,(C -,外心O 是AB 中垂线2x =和AC中垂线y x =的交点O ⎛ ⎝⎭,得AO ⎛= ⎝⎭u u u r ,()4,0AB =u u u r,(AC =-u u u r ,得12122433λλλ=-⎧⎪⎨=+⎪⎩,有误,重解【变式1】、已知向量a,b 的夹角为23π,且|a |=4,|b|=2,|a-c |=|b-c |=|c |,若c=x a +y b ,则x+y=136.6、【2013学年第一学期月考宁海县正学中学文17】已知,为平面内两个互相垂直的单位向量,若向量满足(∈λ)R , 则的最小值为解答:如图,由已知111c b a λλλ--=+--r r r ,设a OA =r u u u r ,b OB =r u u u r ,c OC -=r u u u r ,则点C 在直线AB 上,得c OC =r u u u r有最小值2.7、【2012年稽阳联考15】A ,B ,P 是直线l 上不同的三点,点O 在直线l 外,若(23),()OP mAP m OB m R =+-∈u u u r u u u r u u u r ,则||||PB PA u u u r u u u r = 2 。

解答:8、【2013杭二中高三适应考理17】如图,在直角梯形中,,∥,,,动点在以点为圆心,且与直线相切的圆上或圆内移动,设(,),则取值范围是 .解答:设AP BD E =I ,AE m =,AP n =,则()n n AP AE xAB yAC m m ==+u u u r u u u r u u u r u u u r ,其中1x y +=,得12k n k m λμ++===+,k 表示点P 到BC边的距离,k ⎡∈⎢⎣⎦,得所求取值范围是[]1,2.9、已知等差数列的前项和为,若且A,B,C 三点共线(该直线不过点O),则等于(D )A .B .C .D .10、已知等差数列{}n a 的前n 项和为n S ,若22013,OA a OB a OC =⋅+⋅u u u r u u u r u u u r 且A,B,C 三点共线(该直线不过点O ),则2014S 等于(D )A.2014B.2012C.1012D.100711、如图,在扇形OAB 中,60AOB ︒∠=,C 为弧AB 上的一个动点.若OC -→x OA y OB -→-→=+,则3x y +的取值范围是 [1,3] .解答:如图,在OB 上取一点D ,使OB=3OD ,设OC AD E =I ,OE m =,EC n =,则有()11m n m n OC OE x OA y OD m m ++==+u u u r u u u r u u u r u u u r ,其中111x y +=,另有3OC xOA yOB xOA yOD =+=+u u u r u u u r u u u r u u u r u u u r ,得31m n n x y m m++==+,易知当点C 和点A 重合时n m 达最小值0,当点C 和点B 重合时n m 达最大值2,故[]31,3x y +∈.12、如图,四边形OABC 是边长为1的正方形,OD =3,点P 为△BCD 内(含边界)的动点,设,则的最大值等于4313、在平面直角坐标系中,是坐标原点,若两定点满足,则点集所表示的区域的面积是.14、若等边ABC ∆的边长为2,平面内一点M 满足2131+=,则=⋅(C ) A.98 B.913 C.98- D.913-15、若等边的边长为,平面内一点M 满足,则-2.16、若为内一点,且满足3144AM AB AC =+u u u u r u u u r u u u r ,则与的面积之比为1:4.17、设O 是ABC ∆的外心,AO xAB yAC =+u u u r u u u r u u u r ,4AB =u u u r ,6AC =u u u r ,1212x y +=,则AB AC ⋅u u u r u u u r =418、已知O 为△ABC 的外心,,若,且32x +25y =25,则OA u u u r = 10 .19、已知是单位圆上的两点,为圆心,且,是圆的一条直径,点在圆内,且满足,则的取值范围是(C )A .B .C .D .20、已知圆的半径为2,是圆上两点且,是一条直径,点在圆内且满足,则的最小值为(C )A .-2B .-1C .-3D .-421、已知(0,0)O ,(cos ,sin )A αα,(cos ,sin )B ββ,(cos ,sin )C γγ,若(2)0kOA k OB OC +-+=u u u r u u u r u u u r r ,(02)k <<,则cos()αβ-的最大值是 .22、【2014稽阳联谊理16】在ABC ∆中,90BAC ∠=︒,以AB 为一边向ABC ∆外作等边ABD ∆,若2BCD ACD ∠=∠,AD AB AC λμ=+u u u r u u u r u u u r ,则λμ+= .解:如图,设点D 关于AC 的对称点为'D ,且'DD 交AC 于点E .设DCA θ∠=,则2,'90,1503,BCD CD D CBD θθθ∠=∠=︒-∠=︒-在',DCD BCD ∆∆中利用正弦定理得'sin(1503)sin 2sin 2sin(90)CD BD DD CD θθθθ︒︒===--从而得sin(1503)sin(90)θθ︒︒-=-,从而1503θ︒-=90θ︒-或150390180θθ︒︒︒-+-=从而得15θ︒=.显然1,2DE AE AB AC λμ===-=,故λμ+=.23、已知ABC ∆中,AB=4,AC=2,若()22AB AC λλ+-u u u r u u u r 的最小值是2,则对于ABC ∆内一点P ,()PA PB PC ⋅+u u u r u u u r u u u r 的最小值是______. A B 、O AOB ∠=MN O C (1)OC OA OB λλ=+-u u u r u u u r u u u r (01)λ<<CM CN ⋅u u u u r u u u r解:()()()22121AB AC AB AC AB AD λλλλλλ+-=+-⋅=+-u u u r u u u r u u u r u u u r u u u r u u u r 的最小值是2,设()1AE AB AD λλ=+-u u u r u u u r u u u r ,则点E 在直线AD 上,AB=4,AC=2,AD=4,故当AE 长度最小为2时,E 为BD 中点,AE BD ⊥,得120BAC ∠=︒,取BC 中点F ,连结AF ,取AF 中点G ,则有: ()()222212222PA PB PC PA PF PG GA PG AF ⋅+=⋅=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 当点P 与点G 重合时,有最小值()22113282AF AB AC -=-+=-u u u r u u u r u u u r .1、ABC ∆内接于以O 为圆心,1为半径的圆,且3450OA OB OC ++=u u u r u u u r u u u r r ,则OC AB ⋅u u u r u u u r =___. 解:345OA OB OC +=-u u u r u u u r u u u r ,两边平方得0OA OB ⋅=u u u r u u u r .故()3411155555OC AB OA OB OB OA OA OB ⎛⎫⋅=--⋅-=-+⋅=- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .2、在ABC ∆中,AC=2,BC=6,O 是ABC ∆内一点,且340OA OB OC ++=u u u r u u u r u u u r r ,则()2OC BA BC ⋅+u u u r u u u r u u u r =_______. 解法1:设()3,0B -,()3,0C ,(),A x y ,则由AC=2得()2234x y -+=, 由340OA OB OC ++=u u u r u u u r u u u r r 得3,88x y O +⎛⎫ ⎪⎝⎭, 得21,88x y OC --⎛⎫= ⎪⎝⎭u u u r ,()215,BA BC x y +=+u u u r u u u r , 故()()()2222115163152888x x x x y OC BA BC y -+-++-⋅+=-=u u u r u u u r u u u r ()223324408x y ---+==.解法2:如图,取AC 中点D ,取BC 中点E , ()()343260OA OB OC OA OC OB OC OD OE ++=+++=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r r , 故31314488OC CE CD CB CA =--=--u u u r u u u r u u u r u u u r u u u r ,223BA BC BC CA BC CA CB +=++=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 得()()22129408OC BA BC CA CB ⋅+=--=u u u r u u u r u u u r u u u r u u u r .。

相关文档
最新文档