第21章二次根式整章测试(含答案)
第21章 二次根式练习题及答案
第21章 二次根式练习题21.1二次根式一、填空题1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. 若1a b -+与()2005_____________a b -=。
二、选择题13. )()()230,2,12,20,3,1,x y y x x x x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )A. B.C.D.15. 若23a,则等于( )A. 52a -B. 12a -C. 25a -D. 21a -A. 24a +B. 22a + C. ()222a + D. ()224a + 17. 若1a ≤)A. (1a -B. (1a -C. (1a -D. (1a -18.=成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥19.的值是( )A. 0B. 42a -C. 24a -D. 24a -或42a - 20. 下面的推导中开始出错的步骤是( )()()()()23123224==-==∴=-∴=- A. ()1B. ()2C. ()3D. ()4 三、解答题21. 2440y y -+=,求xy 的值。
22. 当a 1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20112012a b -的值。
二次根式测试题及答案
二次根式测试题及答案19026(共28页)-本页仅作为预览文档封面,使用时请删除本页-第二十一章 二次根式填空题:1.要使根式3-x 有意义, 则字母x 的取值范围是______. 2.当x ______时,式子121-x 有意义. 3.要使根式234+-x x有意义,则字母x 的取值范围是______. 4.若14+a 有意义,则a 能取得的最小整数值是______. 5.若x x -+有意义,则=+1x ______. 6.使等式032=-⋅+x x 成立的x 的值为______.7.一只蚂蚁沿图1中所示的折线由A 点爬到了C 点,则蚂蚁一共爬行了______cm .(图中小方格边长代表1cm)选择题图1 图2 7.如图2,点E 、F 、G 、H 、I 、J 、K 、N 分别是正方形各边的三等分点,要使中间阴影部分的面积是5,那么大正方形的边长应是( ) (A)525(B)53 (C)25 (D)54 8.使式子23+x 有意义的实数x 的取值范围是( ) (A)x ≥0 (B)32->x(C)23-≥x (D)32-≥x 9.使式子2||1+-x x 有意义的实数x 的取值范围是( )(A)x ≥1(B)x >1且x ≠-2 (C)x ≠-2(D)x ≥1且x ≠-210.x 为实数,下列式子一定有意义的是( )(A)21x (B)x x +2 (C)112-x (D)12+x11.有一个长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )(A)cm 41(B)cm 34(C)cm 25(D)cm 35解答题13.要使下列式子有意义,字母x 的取值必须满足什么条件?(1)1||21--x x (2)x +--21 (3)232+x (4)x x 2)1(- (5)222++x x14.如图3,在6×6的网格(小正方形的边长为1)中有一个△ABC ,请你求出这个△ABC 的周长.图315.一个圆的半径为1 cm ,和它等面积的正方形的边长是多少?16.有一块面积为(2a +b )2的圆形木板,挖去一个圆后剩下的木板的面积是(2a -b )2,问所挖去的圆的半径多少?17.(1)已知05|3|=-++y x ,求yx的值;(2)已知01442=+++++y x y y ,求y x的值.18.2006年黄城市全年完成国内生产总值264亿元,比2005年增长23%,问:(1)2005年黄城市全年完成国内生产总值是多少亿元(精确到1亿元)(2)预计黄城市2008年国内生产总值可达到亿元,那么2006年到2008年平均年增长率是多少(下列数据供计算时选用22.14884.1,21.14641.1==).问题探究:已知实数x 、y 满足324422+--+-=x x x y ,求9x +8y 的值.二次根式(2)掌握二次根式的三个性质:a ≥0(a ≥0);(a )2=a (a ≥0);||2a a =. 填空题:1.当a ≥0时,=2a ______;当a <0时,2a =______. 2.当a ≤0时,=23a ______;=-2)23(______. 3.已知2<x <5,化简=-+-22)5()2(x x ______.4.实数a 在数轴上的位置如图所示,化简:=-+-2)2(|1|a a ______.5.已知△ABC 的三边分别为a 、b 、c 则=+----||)(2c a b c b a ______. 6.若22)()(y x y x -=-,则x 、y 应满足的条件是______. 7.若0)2(|4|2=-+++x y x ,则3x +2y =______.8.直线y =mx +n 如图4所示,化简:|m -n |-2m =______.9.请你观察、思考下列计算过程: 图4 因为112=121,所以11121=,同样,因为1112=12321,所以=12321111,……由此猜想=76543211234567898______. 选择题:10.36的平方根是( )(A)6(B)±6(C)6(D)±611.化简2)2(-的结果是( ) (A)-2 (B)±2(C)2(D)412.下列式子中,不成立的是( )(A)6)6(2= (B)6)6(2=-- (C)6)6(2=-(D)6)6(2-=--13.代数式)0(2=/a a a 的值是( )(A)1 (B)-1(C)±1(D)1(a >0时)或-1(a <0时)14.已知x <2,化简442+-x x 的结果是( )(A)x -2(B)x +2(C)-x +2(D)2-x15.如果2)2(2-=-x x ,那么x 的取值范围是( )(A)x ≤2(B)x <2(C)x ≥2(D)x >216.若a a -=2,则数a 在数轴上对应的点的位置应是( )(A)原点 (B)原点及原点右侧 (C)原点及原点左侧(D)任意点17.若数轴上表示数x 的点在原点的左边,则化简|3|2x x +的结果是( )(A)4x(B)-4x(C)2x(D)-2x18.不用计算器,估计13的大致范围是( )(A)1<13<2 (B)2<13<3 (C)3<13<4 (D)4<13<519.某同学在现代信息技术课学了编程后,写出了一个关于实数运算的程序:输入一个数值后,屏幕输出的结果总比该数的平方小1,若某同学输入7后,把屏幕输出的结果再次输入,则最后屏幕输出的结果是( ) (A)6 (B)8 (C)35 (D)37 解答题: 20.计算:(1);)12(|3|)2(02---+- (2)⋅-+-|21|2)3(0221.化简:(1));1()2()1(22>++-x x x (2).||2)(2x y y x ---22.已知实数x ,y 满足04|5|=++-y x ,求代数式(x +y )2007的值.23.已知x x y y x =-+-+7135,求2)3(|1|-+-y x 的值.24.在实数范围内分解因式:(1)x 4-9; (2)3x 3-6x ; (3)8a -4a 3; (4)3x 2-5.25.阅读下面的文字后,回答问题:小明和小芳解答题目:先化简下式,再求值:221a a a +-+,其中a =9时,得出了不同的答案.小明的解答是:原式=1)1()1(2=-+=-+a a a a ;小芳的解答是:原式=1719212)1()1(2=-⨯=-=--=-+a a a a a . (1)______的解答是错误的;(2)说明错误的原因.26.细心观察图5,认真分析各式,然后解决问题.图5;21,21)1(12==+S ;22,31)2(22==+S;23,41)3(32==+S…… ……(1)请用含有n (n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长; (3)求出21024232221S S S S S +++++ 的值. 27.一物体从高处自由落下,落到地面所用的时间t (单位:秒)与开始落下时的高度h (单位:米)有下面的关系式:⋅≈5ht (1)已知h =100米,求落下所用的时间t ;(结果精确到(2)一人手持一物体从五楼让它自由落到地面,约需多少时间(每层楼高约米,手拿物体高为米)(结果精确到(3)如果一物体落地的时间为秒,求物体开始下落时的高度.问题探究:同学们一定听过蚂蚁和大象进行举重比赛的故事吧!蚂蚁能举起比它的体重重许多倍的火柴棒,而大象举起的却是比自己体重轻许多倍的一截圆木,结果蚂蚁获得了举重冠军!我们这里谈论的话题是:蚂蚁和大象一样重吗?我们知道,即使是最大的蚂蚁与最小的大象,它们的重量明显不是一个数量级的.但是下面的推导却让你大吃一惊:蚂蚁和大象一样重!设蚂蚁重量为x 克,大象的重量为y 克,它们的重量和为2a 克,则x +y =2a .两边同乘以(x -y ),得(x +y )(x -y )=2a (x -y ),即x 2-y 2=2ax -2ay .可变形为x 2-2ax =y 2-2ay .两边都加上a 2,得(x -a )2=(y -a )2. 两边开平方,得x -a =y -a . 所以x =y .这里竟然得出了蚂蚁和大象一样重,岂不荒唐!那么毛病究竟出在哪里呢亲爱的同学,你能找出来吗二次根式的乘除(1) 理解二次根式的乘法法则,即)0,0(≥≥=⋅b a ab b a 的合理性 填空题:1.计算:ab a ⋅=______. 2.已知xy <0,则=y x 2______.3.实数a ,b 在数轴上的位置如图所示,则化简22b a 的结果是______.4.若,6)4()4)(6(2x x x x --=--则x 的取值范围是______. 5.在如图的数轴上,用点A 大致表示40:6.观察分析下列数据,寻找规律:0,3,6,3,23,15,23,……那么第10个数据应是______. 选择题:7.化简20的结果是( ) (A)25(B)52(C)102(D)548.化简5x -的结果是( )(A)x x 2-(B)x x --2(C)x x -2(D)x x 29.若a ≤0,则3)1(a -化简后为( ) (A)1)1(--a a (B)a a --1)1( (C)a a --1)1((D)1)1(--a a解答题: 10.计算:(1);63⨯ (2));7(21-⨯ (3));102(53-⨯(4));804()245(-⨯-(5));25.22(321-⨯(6);656)3122(43⨯-⨯(7));152245(522-⨯(8);24)654(⨯- (9));3223)(3223(-+(10));23)(32(x y y x -+ (11);)10253(2+ (12);10253ab a ⋅(13));42(2212mn m m +-⋅ (14))12()321(123143z xy x x ⋅-⋅⋅.11.化简:(1));0(224≥-a b a a (2)⋅≥≥+-)0(23223a b ab b a b a12.计算:(1)|;911|)1π(8302+-+--+- (2).425.060sin 12)21(20082008o 2⨯---13.如图1,在△ABC 中,∠C =90°,∠A =30°,∠B 的平分线BD 的长为4cm ,求这个三角形的三边长及面积.图1二次根式的乘除(2)理解二次根式除法运算法则,即b aba =(a ≥0,b >0)的合理性 填空题: 1.在4,21,8,6中,是最简二次根式的是______. 2.某精密仪器的一个零件上有一个矩形的孔,其面积是42cm 2,它的长为5cm ,则这个孔的宽为______cm .3.2-3的倒数是______,65+的倒数是______.4.使式子3333+-=+-x xx x 成立的条件是______. 选择题:5.下列各式的计算中,最简二次根式是( ) (A)27(B)14(C)a1 (D)23a6.下列根式xy y x xy 53,,21,12,2+中最简二次根式的个数是( ) (A)1个 (B)2个(C)3个(D)4个7.化简273-的结果是( ) (A)27- (B)27+ (C))27(3- (D))27(3+8.在化简253-时,甲的解法是:,25)25)(25()25(3253+=+-+=-乙的解法是:,2525)25)(25(253+=--+=-以下判断正确的是( )(A)甲的解法正确,乙的解法不正确 (B)甲的解法不正确,乙的解法正确 (C)甲、乙的解法都正确 (D)甲、乙的解法都不正确9.△ABC 的三边长分别为2、10、2,△A ′B ′C ′的两边长分别为1和5,若△ABC ~△A 'B 'C ',则△A 'B 'C '的第三边的长应等于( )(A)22 (B)2 (C)2 (D)2210.如图1,为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A的仰角为30°,沿CB 方向前进12m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于( )图1(A)m )13(6+ (B)m )13(6- (C)m )13(12+(D)m )13(12-11.计算)(baa b a b b a ÷的正确结果是( ) (A)ba(B)ab(C)22ba(D)112.若ab ≠0,则等式ab a b a 135-⋅=--成立的条件是( ) (A)a >0,b >0(B)a <0,b >0 (C)a >0,b <0 (D)a <0,b <0解答题: 13.计算:(1);51 (2);208 (3);2814 (4);5)12(÷-(5));74(142-÷ (6));452()403(-÷-(7));6121(211-÷ (8);1543513÷- (9);45332b a b a ÷(10));6(322344c b a c b a -÷(11);152)1021(23÷⨯(12);521431252313⨯÷(13);653034y xy xy ⋅÷(14);3)23(235ab b a ab b ÷-⋅ (15));1843(3211233xyxy x -÷⋅(16)⋅-÷+)2332()2332(14.已知一个圆的半径是cm,90一个矩形的长是135cm ,若该圆的面积与矩形的面积相等,求矩形的宽是多少?15.已知b a ==20,2,用含a ,b 的代数式表示:(1);5.12(2).016.016.已知:如图2,在△ABC 中,∠A =60°,∠B =45°,AB =8.求△ABC 的面积.图217.阅读下列解题过程,根据要求回答问题:化简:)0(2323<<+--a b a ba ab b a b a解:原式a b a b ab a 2)(--= ①aba b a b a --=)(② ab aa )1(⋅=③ ab =④(1)上面解答过程是否正确若不正确,请指出是哪几步出现了错误 (2)请你写出你认为正确的解答过程.18.座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式是glT π2=,其中T 表示周期(单位:秒),l 表示摆长(单位:米),g =米/秒2,假若一台座钟的摆长为米,它每摆动一个来回发出一次滴答声,那么在1分钟内这台座钟大约发出了多少次滴答声( 取问题探究:借助计算器计算下列各题:(1);211- (2);221111- (3);222111111- (4).222211111111- 仔细观察上面几道题及其计算结果,你能发现什么规律你能解释这一规律吗与同学交流一下想法.并用所发现的规律直接写出下面的结果:个个10012002222111⋅⋅⋅-⋅⋅⋅=______.二次根式的加减(1)学习要求:了解同类二次根式的概念,会辨别两个二次根式是否为同类二次根式.会进行简单的二次根式的加、减法运算,体会化归的思想方法.做一做: 填空题: 选择题:7.计算312-的结果是( ) (A)3(B)3(C)32(D)338.下列二次根式中,属于最简二次根式的是( ) (A)a 4(B)4a (C)4a(D)4a9.下列二次根式中,与2是同类二次根式的是( ) (A)27(B)12(C)10(D)810.在下列各组根式中,是同类二次根式的是( )(A)3和18(B)3和31 (C)b a 2和2ab (D)1+a 和1-a11.下列各式的计算中,成立的是( )(A)5252=+ (B)15354=- (C)y x y x +=+22 (D)52045=-12.若121,121+=-=b a 则)(ab b a ab -的值为( ) (A)2 (B)-2(C)2(D)22解答题:13.计算:(1);2523+ (2);188+ (3);50483122+-(4);312712-+ (5);202452321+-(6);12531110845--+ (7);)33()33(22++-(8);5.0753128132-+--(9))455112()3127(+--+; (10)231)13(3-++;(11)a a a aaa a 1084333273123-+-;问题探究教师节到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画送给老师,其中一个面积为800cm 2,另一个面积为450cm 2.他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有米金彩带,请你帮忙算一算,他的金彩带够用吗如果不够用,还需买多长的金彩带(2=,保留整数)二次根式的加减(2)学习要求会进行简单的二次根式的加、减、乘、除四则运算的混合运算. 做一做:填空题: 选择题:9.在二次根式16,8,4,2中同类二次根式的个数为( ) (A)4 (B)3 (C)2(D)110.下列计算中正确的是( )(A)2323182=⨯= (B)134916916=-=-=- (C)24312312=== (D)a a 242=11.下列各组式子中,不是同类二次根式的是( )(A)81与18 (B)63与2825(C)48与8.4 (D)125.0与128 12.化简)22(28+-得( )(A)-2(B)22-(C)2(D)224-13.下列计算中,正确的是( )(A)562432=+ (B)3327=÷ (C)632333=⨯(D)3)3(2-=-14.下列计算中,正确的是( )(A)14931227=-=- (B)1)52)(52(=+-(C)23226=- (D)228=-15.化简aa a a a a 149164212-+的值必定是( ) (A)正数(B)负数(C)非正数(D)非负数16.若a ,b 为实数且211441+-+-=a a b ,则22-+-++ba ab b a a b 的值为( )(A)22 (B)2(C)22- (D)32解答题:17.计算:(1))232)(232(-+; (2)2)32(+; (3)2145051183-+;(4);7232318283--+ (5)23)121543(÷-; (6)20072006)65()56()1245()31251(-⋅+++--;(7)33322)1(2m n m n m n m m n ÷-.18.如图2,大正方形的边长为515+,小正方形的边长为515-,求图中的阴影部分的面积.图219.阅读下面的解答过程,然后答题:已知a 为实数,化简aa a 13---. 解:原式.)1(1a a a aa a a --=-⋅--= (1)上述解答是否有错误?答:____________;(2)若有错误,错在______步,错误的原因是____________; (3)写出正确的解答过程.20.阅读理解题:如果按一定次序排列的三个数a ,A ,b 满足A -a =b -A ,即,2b a A +=则称A 为a ,b 的等差中项.如果按一定次序排列的三个数a ,G ,b 满足,Gba G =即G 2=ab (a ,b 同号),则称G 为a ,b 的等比中项.根据前面给出的概念,求25-和25+的等差中项和等比中项.问题探究:因为223)12(2-=-,所以,12223-=- 因为223)12(2+=+,所以,12223+=+ 因为347)32(2-=-,所以,32347-=- 请你根据以上规律,结合你的经验化简下列各式: (1)625-; (2)⋅+249复 习学习要求:了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算和化简.做一做: 填空题: 选择题: 10.使根式x x 1+有意义的字母x 的取值范围是( )(A)x >-1 (B)x <-1 (C)x ≥-1且x ≠0 (D)x ≥-111.已知a <0<b ,化简2)(b a -的结果是( )(A)a -b (B)b -a(C)a +b(D)-a -b12.在32,9,,,45222xa y x xy +-中,最简二次根式的个数是( ) (A)1(B)2(C)3(D)413.下列二次根式中,与35-是同类二次根式的是( )(A)18(B)3.0(C)30(D)30014.计算28-的结果是( )(A)6(B)2(C)2(D)15.估算37(误差小于的大小是( ) (A)6 (B)~(C)(D)16.下列运算正确的是( )(A)171251251252222=+=+=+ (B)1234949=-=-=-(C)20)4()5(1625)16()25(=-⨯-=-⨯-=-⨯- (D)1535)3()5(22=⨯=-⨯- 17.下列运算中,错误..的是( ) (A)632=⨯ (B)2221=(C)252322=+(D)32)32(2-=-18.若把aa 1-的根号外的a 适当变形后移入根号内,结果是( ) (A)a --(B)a -(C)a -(D)a19.小明的作业本上有以下四题:①24416a a =; ②a a a 25105=⋅; ③;1.12a aa a a== ④.23a a a =-做错的题是( ) (A)① (B)②(C)③ (D)④20.若)()()(22m n m n n a a m >-=-+-成立,则a 的取值范围是( )(A)m ≤a ≤n(B)a ≥n 且a ≤m (C)a ≤m(D)a ≥n21.用计算器计算,1515,1414,1313,12122222--------…,根据你发现的规律,判断P =112--n n ,与1)1(1)1(2-+-+=n n Q ,(n 为大于1的整数)的值的大小关系为( )(A)P <Q (B)P =Q(C)P >Q(D)不能确定解答题: 22.计算:(1);483122+ (2);7002871-+ (3);8121332+-(4))56()56(+⨯-; (5)2)2332(-; (6)25)520(-÷+;(7)m m m m m m m 3361082273223-+-; (8).123132+++23.(1)当a <0时,化简aa a a -+-2212;(2)已知x 满足的条件为⎩⎨⎧<->+0301x x ,化简;129622++++-x x x x(3)实数a ,b 在数轴上表示如图,化简:.)()2()2(222b a b a ++--+24.(1)当a =5+1,b =5-1时,求a 2b +ab 2的值;(2)当41=x ,y =时,求31441y yx y x x ---的值.(3)已知154-的整数部分为a ,小数部分为b ,求a 2+b 2的值.25.若12+x 与y -2互为相反数,求x y 的值.26.已知x ,y 为实数,且499+---=x x y ,求y x +的值.第二十一章 二次根式测试题填空题:(每题2分,共24分)1.函数1-=x xy 的自变量x 的取值范围是______. 2.当x ______时,x x -+-31有意义. 3.若a <0,则b a 2化简为______.4.若3<x <4,则=-++-|4|962x x x ______. 5.1112-=-⋅+x x x 成立的条件是______. 6.若实数x 、y 、z 满足0412||22=+-+++-z z z y y x ,则x +y +z =______.7.长方形的面积为30,若宽为5,则长为______. 8.当x =______时,319++x 的值最小,最小值是______.9.若代数式22)3()1(a a -+-的值是常数2,则a 的取值范围是______. 10.观察下列各式:,,514513,413412,312311 =+=+=+请将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是______.11.观察下列分母有理化的计算:,4545134341,23231,12121-=+-=+-=+-=+……,从计算结果中找出规律,并利用这一规律计算:=+++++++++)12007)(200620071341231121(. ______. 12.已知正数a 和b ,有下列结论:(1)若a =1,b =1,则1≤ab ; (2)若25,21==b a ,则23≤ab ;(3)若a =2,b =3,则25≤ab ; (4)若a =1,b =5,则3≤ab .根据以上几个命题所提供的信息,请猜想:若a =6,b =7,则ab ≤______.选择题:(每题2分,共24分) 13.已知xy >0,化简二次根式2x yx -的正确结果为( ) (A)y(B)y -(C)y -(D)y --14.若a <0,则||2a a -的值是( ) (A)0 (B)-2a (C)2a (D)2a 或-2a15.下列二次根式中,最简二次根式为( )(A)x 9(B)32-x(C)xyx - (D)b a 2316.已知x 、y 为实数,且0)2(312=-+-y x ,则x -y 的值为( )(A)3(B)-3(C)1(D)-117.若最简二次根式b 5与b 23+是同类二次根式,则-b 的值是( )(A)0(B)1(C)-1(D)3118.下列各式:211,121,27,其中与3是同类二次根式的个数为( ) (A)0个(B)1个(C)2个(D)3个19.当1<x <3时,化简22)3()1(++-x x 的结果正确的是( )(A)4(B)2x +2(C)-2x -2(D)-420.不改变根式的大小,把aa --11)1(根号外的因式移入根号内,正确的是( )(A)a -1(B)1-a (C)1--a (D)a --121.已知m ≠n ,按下列(A)(B)(C)(D)的推理步骤,最后推出的结论是m =n .其中出错的推理步骤是( ) (A)∵(m -n )2=(n -m )2 (B)∴22)()(m n n m -=-(C)∴m -n =n -m (D)∴m =n22.如果a ≠0且a 、b 互为相反数,则在下列各组数中不是互为相反数的一组是( )(A)3a 与3b(B)2a 与2b (C)3a 与3b(D)a +1与b -123.小华和小明计算XXX)(442a a a +-+时,得出两种不同的答案.小华正确审题,得到的答案是“2a -2”,小明忽略了算式后面括号中的条件,得到的结果是“2”,请你判断,括号中的条件是( ) (A)a <2 (B)a ≥2 (C)a ≤2 (D)a ≠2 24.已知点A (3,1),B (0,0),C (3,0),AE 平分∠BAC ,交BC 于点E ,则直线AE 对应的函数表达式是( )(A)332-=x y (B)y =x -2 (C)13-=x y (D)23-=x y解答题:(第25题每小题4分,第26-29题每题4分,第30、31题每题6分)25.计算:(1);21448)21(2+++ (2);836212739x x x ⨯+-(3));32)(32()32)(347(2-++-+(4);211)223(23822+--+⨯- (5);166193232x x x x x x +- (6)).0)](4327121(3[222≥--b ab ab ab a 26.若,03|9|22=--++mm n m 求3m +6n 的立方根.27.已知7979--=--x xx x 且x 为偶数,求132)1(22--++x x x x 的值.28.试求)364()36(3xy yxy xy y x y x+-+的值,其中23=x ,27=y .29.已知正方形纸片的面积是32cm 2,如果将这个正方形做成一个圆柱,请问这个圆柱底面的半径是多少( 精确到,取30.已知:223,223-=+=b a ,求:ab 3+a 3b 的值.31.观察下列各式及其验证过程:⋅+=+=833833;322322验证: ;3221222122)12(232)12(2322232322222233+=-+=-+-=+-=+-==⋅+=-+=-+-=+-=+-==8331333133)13(383)13(3833383833222233 (1)按照上述两个等式及其验证过程的基本思路,猜想一个类似的结果并验证;(2)针对上述各式反映的规律,写出用n (n 为正整数,且n ≥2)表示的等式并给出证明.参考答案第二十一章 二次根式二次根式(1) 1.3≥x 2.21>x 3.34≤x 且x ≠-2 4.0 5.1 6.37.55+8.D 9.A 10.D 11.C 12.C 13.(1)⋅≤21x 且x ≠-1 (2)x <-2 (3)x 为任意实数 (4)x 为非零实数 (5)x 为任意实数 14.135+ 15.cm π 16.ab 22 17.53)1(- (2)-2 18.(1)215 (2)21% 问题探究:6注意x =2时要舍去二次根式(2)1.a ,-a 2.32,3--a 3.3 4.1 5.0 6.x ≥y 7.-6 8.n 9.1 10.D 11.C 12.B 13.D 14.D 15.C 16.C 17.D 18.C 19.C 20.(1)6(2)2521.(1)2x +1 (2)y -x 22.1 23.224.(1))3)(3)(3(2-++x x x(2))2)(2(3+-x x x (3))2)(2(4a a a +- (4))53)(53(+-x x 25.(1)小明 (2)因为a =9,所以1-a <0,所以1)1(2-=-a a 26.(1)2,11)(2n S n n n =+=+ (2),21012110=⨯⨯OA 所以1010=OA(3)222221024232221)210()23()22()21(S S S S S ++++=++++ 434241++=455410=++ 27.(1)秒 (2)秒 (3)米 问题探究:略 二次根式的乘除(1)1.b a 2.y x - 3.-ab 4.x ≤4 5.略 6.33 7.B 8.C 9.B 10.(1)23 (2)37- (3)230- (4)30160 (5)15- (6)237-(7)1222-(8)24 (9)6 (10)9y 2-4x (11)26085+ (12)b a 230 (13)n m m 2+- (14)xz y x 2212-11.(1)22b a a - (2)ab a b )(- 12.(1)22 (2)0 13.2cm 36,cm 34,cm 6,cm 32====∆ABC S AB AC BC 问题探究:分三种情况计算:图1 图2 图3(1)当AE =AF =10cm 时(如图1),S △AEF =50(cm 2) (2)当AE =EF =10cm 时(如图2),BF =8(cm),)cm (40212==⋅∆BF AE S AEF (3)当AE =EF =10cm 时(如图3),⋅==∆)cm (515),cm (512AEF S DF二次根式的乘除(2)1.6 2.10543.56,32-+ 4.-3<x ≤3 5.B 6.B 7.B 8.C 9.C 10.A 11.A 12.B13.(1)55 (2)510 (3)22 (4)5510- (5)22- (6)2(7)-6 (8)332-(9)a a b 52 (10)cab23- (11)23 (12)210 (13)6y 3 (14)ab b a 2- (15)x x y22-(16)625-- 14.cm 152 15.(1)a 5或a 25(2)ba 52或ab 25 16.31648-17.(1)不正确,第②③步出现了错误(2)原式ab ab a a a b a b b a a a b a b a b a =-⋅-=--=--=)1()()(2 18.42问题探究:(1)3 (2)33 (3)333 (4)3333个1001333 二次根式的加减(1)1.23 2.略 3.2 4.23,21 5.123+ 6.10255+7.B 8.D 9.D 10.B 11.D 12.A 13.(1)28 (2)25 (3)2538+- (4)3314(5)52315- (6)523316- (7)24 (8)33132413+ (9)5514334- (10)1 (11)a a32- 问题探究:不够用,还需买78cm二次根式的加减(2)1.3 2.0 3.1560- 4.3 5.xy x y )(- 6.x x 22- 7.212- 8.12 9.C 10.A 11.C 12.A 13.B 14.D 15.A 16.B 17.(1)10 (2)347+ (3)28 (4)26- (5)4523- (6)6338559---(7)2m m n - 18.320 19.(1)有 (2)错在第一步,忽视了a <0(因为01>-a,所以a <0) (3)原式+--=--⋅---=a a a aa a a 1a a a --=-)1( 20.25-和25+的等差中项为5,等比中项为3± 问题探究:212)2(23)1(+-复 习1.x >5 2.x -2 3.1 4.±1 5.0 6.0 7.5 8.2-6a 9.6 10.C 11.B 12.C 13.D 14.C 15.B 16.D 17.D 18.A 19.D20.A 21.C 22.(1)316 (2)7755-(3)2411 (4)1 (5)61230- (6)1 (7)0 (8)323 23.(1)a 1- (2) 4 (3)0 24.(1)58 (2)- (3)5418- 25.4126.5第二十一章 二次根式测试题 1.x ≥0且x ≠1 2.1≤x ≤3 3.b a - 4.1 5.x ≥1 6.0 7.6 8.3,91-9.1≤a ≤3 10.21)1(21++=++n n n n (n 为自然数且n ≥1) 11.2006 12.416913.D 14.B 15.B 16.D 17.C 18.C 19.B20.D 21.C 22.B 23.B 24.D 25.(1)34242++ (2)x 319(3)2 (4)-11 (5)x x x -27 (6)a ab 32526.3 27.11328.229-29. 30.85 31.(1)=+-==+=154441541544154415443315441444144)14(4154)14(42222+=-+=-+-=+- (2)=-12n nn11)1(1111222232322-+=-+-=-+-=-=--+n nn n n n n n n n n n n n n n n n n (n 为正整数,且n ≥2)。
第21章 二次根式 华东师大版数学九年级上册单元测试卷(含答案)
2022-2023学年度华师大版九年级数学第21章《二次根式》单元测试卷一、单选题(每小题3分,共30分)1.下列计算正确的是()A.5-4=1B.+=C.3=D.2+2=42.下列式子中,属于最简二次根式的是()A.B.C.D.3.我国南宋著名数学家秦九韶和古希腊几何学家海伦都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.已知的三边长分别为4,5,7,则的面积为()A.B.C.D.84.如图,从一个大正方形中裁去面积为6cm2和15cm2的两个小正方形,则留下阴影部分的面积为()A.B.C.D.5.计算的结果是()A.B.3C.-3D.6.若与最简二次根式能合并,则m的值为()A.7B.9C.2D.17.若式子有意义,则x的取值范围为()A.x≤2B.x≤2且x≠1C.x≥2D.x≥18.在学完二次根式的乘除法之后,小明借助计算机完成了以下计算:,,,,……,通过计算,小明发现了其中规律,那么按照上述规律,计算的结果是()A.B.C.D.9.若=1﹣x,则x的取值范围是( )A.x>1B.x≥1C.x<1D.x≤110.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm 的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′,设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.2B.C.D.4二、二、填空题(每小题3分,共15分)11.计算的结果是_____.12.计算:所得的结果是_____.13.由四个全等的直角三角形组成如图所示的“赵爽弦图”,若直角三角形斜边长为2,较长直角边的长为,则图中阴影部分的面积为_________.14.如图,平行四边形ABCD的对角线AC与BD交于点O,AC⊥AB,若,,则BD的长为_______.15.如图所示,折叠矩形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与对角线BD重合,得折痕DG.若,,则AG的长是___________.三、解答题(本题8小题,满分75分)16.(8分)计算(1);(2).17.(9分)先化简,再求值:,其中.18.(9分)(1)在边长为cm的正方形的一角剪去一个边长为cm的小正方形,如图1,求图中阴影部分的面积;(2)小明是一位爱动脑筋的学生,他发现沿图1中的虚线将阴影部分前开,可拼成如图2的图形,请你根据小明的思路求图1中阴影部分的面积19.(9分)观察下列等式,解答后面的问题:第1个等式:;第2个等式:;第3个等式:;第4个等式:;……(1)请直接写出第5个等式___________;(2)根据上述规律猜想:若n为正整数,请用含n的式子表示第n个等式,并给予证明;(3)利用(2)的结论化简:.20.(9分)某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC为83米,宽AB为米,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为米,宽为米(1)长方形ABCD的周长是多少?(结果化为最简二次根式);(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果化为最简二次根式)21.(10分)秦九韶(1208年-1268年),字道古,汉族,生于普州安岳(今四川省安岳县)人,祖籍鲁郡(今河南范县).南宋著名数学家,与李冶、杨辉、朱世杰并称宋元数学四大家.他精研星象、音律、算术、诗词、弓剑、营造之学,是一位既重视理论又重视实践,既善于继承又勇于创新的世界著名数学家.他所提出的大衍求一术(中国剩余定理)和正负开方术及其名著《数书九章》,是中国数学史、乃至世界数学史上光彩夺目的一页,对后世数学发展产生了广泛的影响.他写的《数书九章》序堪称一篇奇文.秦九韶的数学成果丰硕,其中关于三角形的面积公式与古希腊几何学家海伦的成果统称海伦-秦九韶公式.如果一个三角形的三边长分别是a、b、c,记,那么三角形的面积为:(1)在△ABC中,BC=4,AC=AB=3,请用上面的公式计算△ABC的面积.(2)如图,在△ABC中,BC=6,AC=AB=7,AD⊥BC,垂足为D,∠ABC的平分线交AD 于点E.求BE的长.22.(10分)如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.23.(11分)观察猜想(1)观察猜想:①;②;③.通过上面三个计算,可以初步对任意的非负实数a,b做出猜想:;(2)验证结论:我们知道可以利用几何图形对一个等式进行验证,请你利用与下图全等的四个矩形,构造几何图形对你的猜想进行验证.(要求:画出构造的图形,写出验证过程)(3)结论应用:如图,某同学在做一个面积为800cm2,对角线相互垂直的四边形玩具时,用来做对角线的竹条至少要cm.第21章《二次根式》单元测试卷参考答案一、单选题1.C 2.B 3.A 4.A 5.D 6.D 7.B 8.B 9.D 10.A 二、填空题11.12.1 13.14.12 15.三、解答题16.(1)解:原式=====;(2)解:原式====.17.解:当x1时,原式.【点睛】本题主要考查了分式的化简求值,熟练掌握分式混合运算法则,二次根式混合运算法则,是解题的关键.18.解:(1)由题意得;(2)由题意得,图2中长方形的长为:,图2中长方形的宽为:,∴;19.(1)解:由题意,第五个等式为:;故答案为:(2)(n为正整数),证明:∵n为正整数,∴∴(n是正整数)又∵,∴左边=右边,∴猜想成立;(3)原.20.(1)解:长方形ABCD的周长(米),答:长方形ABCD的周长是米;(2)解:通道的面积(平方米),购买地砖需要花费(元).答:购买地砖需要花费元.21.(1)解:p=,∴;(2)解:如图,过点E作EF⊥AC,EH⊥AB,垂足为F,H.由角平分线的性质可得:ED=EH=EF.在△ABC中,BC=6,AC=AB=7,由海伦—秦九韶公式:求得p=△ABC的面积为:=.∴,即,;又∵AC=AB=7,AD⊥BC,垂足为D∴,∴在Rt∆BDE中,由勾股定理得:BE=.22.(1)证明:∵四边形ABCD是平行四边形,∴,∴,在与中∴,∴.(2)解:∵,∴,∴,∴,∴,∴,∵,,∴,∴,∴为等腰直角三角形,∴,∴,∵,∴,∴,∴,由(1),∴,∴,∴,23.(1)解:观察三个式子可得,猜想:a+b,故答案为:;(2)解:如图所示,将四个小长方形围城一个大正方形,且画为阴影,中间所围成的小正方形的边长为:,所围成的图形的面积为:,即,∴a+b;(3)解:设对角线的长分别为a厘米,b厘米,∵对角线互相垂直,四边形ABCD的面积为:,即,∴,∵a+b,.∴用来做对角线的竹条至少要用80厘米.。
第21章二次根式综合测试题(含答案人教版)
第21章二次根式综合测试题(含答案人教版)第21章二次根式综合测试题(含答案人教版)(时间:60分钟满分:100分)一、选择题(每题2分,共20分)1.函数y=2-x+1x-3中自变量x的取值范围是().A.x≤2B.x=3C.x<2且x≠3D.x≤2且x≠32.小明的作业本上有以下四题:①16a4=4a2;②5a•10a=52a;③a1a =a2•1a;④3a-2a=a.其中做错的题是().A.①B.②C.③D.④3.计算27-1318-12的结果是().A.1B.-1C.3-2D.2-34.下列各式计算正确的是().A.m2•m3=m6B.1613=16•13=433C.323+33=2+3=5D.(a-1)11-a=---a=-1-a(a<1)5.若x=3-22,y=3+22,则x2+y2的值是().A.52B.32C.3D.146.若ab<0,则化简a2b的结果是().A.-abB.-a-bC.a-bD.ab7.化简4x2-4x+1-(2x-3)2的结果为().A.2B.-4x+4C.-2D.4x-48.下列各式计算正确的是().A.6÷(3+2)=63+62=2+3B.(4-23)2=16-(23)2=4C.2+3÷(2+3)=1D.35+2=+-+2=5-28.小亮设计了一种运算程序,其输入、输出如下表所示,若输入的数据是27,则输出的结果应为().输入0149162536…输出-1012345…A.26B.28C.33-1D.32+110.设0<m<1,则在实数m,1m,m,3m中,最小的数是().A.mB.1mC.mD.3m二、填空题(每题3分,共24分)11.计算:-+3=_______.12.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=a+ba-b,如3※2=3+23-2=5.那么12※4=__________.13.如果5+7,5-7的小数部分分别为a,b,那么a+b的值为________.14.若已知一个梯形的上底长为(7-2)cm,下底长为(7+2)cm,高为27cm,则这个梯形的面积为________.15.如图,数轴上表示1,3的对应点分别为点A、B,点B关于点A的对称点为C,设点C所表示的数为x,则x+3x的值为____________.(第15题)16.若a,b为实数,b=a2-9+9-a2a-3+5,则a2+b2=________.17.先阅读,再回答问题:因为12+1=2,且1<2<2,所以12+1的整数部分是1;因为22+2=6,且2<6<3,所以22+2的整数部分是2;因为32+3=12,且3<12<4,所以32+3的整数部分是3.以此类推,我们会发现a2+a(a为正整数)的整数部分是________,理由为___________________________________.18.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所依据的公式是v=16df,其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦系数.在某次交通事故调查中测得d=24m,f=1.3,则肇事汽车的车速大约是______km/h.三、解答题(第19题16分,第20――23每题6分,24、25题每题8分,共56分)19.计算:(1)50-38+18;(2)5-122+5-12+1;(3)24-1.5+223-53+623;(4).20.先化简,再求值:,其中.21.已知x+y=5,xy=3,求的值.22.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:12+1=-+-=2-12-1=2-1,13+2=-+-=3-23-2=3-2,同理可得14+3=4-3,……从计算结果中找出规律,并利用这一规律计算:23.生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的13,则梯子比较稳定.现有一梯子,稳定摆放时,顶端达到5米的墙头,请问梯子有多长?24.某小区有一块等腰三角形的草地,它的一边长为20m,面积为160m2,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为多少米.25.先观察下列等式,再回答问题.①②③(1)请根据上面三个等式提供的信息,猜想的结果;(2)请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式.附加题(共10分,不计入总分)26.宽与长之比为5-12∶1的矩形叫黄金矩形,黄金矩形令人赏心悦目,它给我们以协调,匀称的美感,如图所示,如果在一个黄金矩形里画一个正方形,那么留下的矩形还是黄金矩形吗?请证明你的结论.(第26题)数学家谈祥柏改诗谈祥柏是中国人民解放军军医大学数学教授,在科普领域辛勤耕耘,创作出不少优秀作品,深受广大青少年喜爱,此外,他对文学诗歌很有研究,常将数学与文学诗歌有机地结合在一起,显现了他的非凡才识与创新精神.有一次,他将我国近代著名诗人徐志摩一首很有名的新诗《再别康桥》:轻轻的,我走了……正如我轻轻的来……组成了一个有趣的数学题目,使数趣渗入到了诗歌领域.经改编,上述两句诗文成了如下的等式组:轻轻的=我+走了正-如÷我=轻轻的÷来这里,相同的汉字代表0,1,2,3,…,9中相同的数字,不同的汉字代表不同的数字,开平方得出的数,当然都是整数,这组等式有唯一的解答,你能试着把它解出来吗?这个问题的答案为:225=4+137-8÷4=225÷9第二十一章综合提优测评卷1.D2.D3.C4.D5.A6.A7.A8.D9.C10.A11.212.1213.114.14cm215.8+2316.3417.a理由略18.89.419.(1)22(2)(2)2(3)166-5(4)20.原式.把代入上式,得原式=.21.22.201123.梯子长5.3m24.m或m或m25.(1)(2)26.留下的矩形CDFE是黄金矩形.∵四边形ABEF是正方形,∴AB=DC=AF.∵ABAD=5-12,∴FDDC=AD-AFDC=ADDC-1=ADAB-1=25-1-1=5-12. ∴矩形CDFE是黄金矩形.。
第21章 二次根式单元达标测试(含答案)
第21章 二次根式单元达标测试卷一、选择题1.如果)3(3-⋅=-⋅x x x x ,那么x 的取值范围是( )A 、x 0≥B 、3≥xC 、03≤≤xD 、x 为一切实数 2.对于所有实数,a b ,下列等式总能成立的是( ) A. ()2a ba b +=+ B.22a b a b +=+C.()22222a b a b +=+ D.()2a b a b +=+3.下列计算正确的是( )A 、2122423=⨯B 、632)3(3232=⨯-=- C 、259)25()9(-⨯-=-⨯-)3(-=15)5(=-⨯D 、5)1213)(1213(121322=-+=-4.下列各组二次根式中,可以进行加减合并的一组是( )A .12与72B .63与78C .38x 与22x D .18与65.把18a化简的结果应是( )A 、32aB 、32a aC 、32a aD 、23a a 6.若53+y =63,则y 值为( )A .3B .1C .23D .3 7.化简aa 1-⋅后得到的正确结果是( ) A .a B 、a - C .a - D .a --8.若b b -=-3)3(2,则( )A .b >3B .b <3C .b ≥3D .b ≤3 9.一个等腰三角形的两边分别为23,32,则这个三角形的周长为( ) A .32+43 B .62+23C .62+43D .32+43或62+23 10.已知,则a 、b 、c 的大小关系是( ) A 、a <b <c B 、b <a <cC 、c <b <aD 、c <a <b二、填空题11.计算:8+18=_________.12.计算:=⨯÷182712 ; 13.计算:()483273_____________-÷=14.(15)(27)-⨯-= 2b a 2·ab8= 15.长方形的宽为3,面积为26,则长方形的长约为 (精确到0.01)。
九年级数学上第21章二次根式单元试卷(华师大附答案和解释)
九年级数学上第21章二次根式单元试卷(华师大附答案和解释)《第21章二次根式》(四川省资阳市简阳市)一、选择题 1.下列二次根式中的取值范围是x≥3的是() A. B. C. D. 2.下列二次根式中,是最简二次根式的是() A.2 B. C. D. 3.如果 =1�2a,则() A.a< B.a≤ C.a> D.a≥ 4.k、m、n 为三整数,若 =k , =15 , =6 ,则下列有关于k、m、n的大小关系,何者正确?() A.k<m=n B.m=n<k C.m<n<k D.m<k<n 5.如果最简二次根式与能够合并,那么a的值为()A.2 B.3 C.4 D.5 6.已知,则2xy的值为() A.�15 B.15 C. D. 7.下列各式计算正确的是() A. B. C. D. 8.等式• = 成立的条件是() A.x>1 B.x<�1 C.x≥1 D.x≤�1 9.下列运算正确的是() A.�= B. =2 C.�= D. =2�10.是整数,则正整数n的最小值是() A.4 B.5 C.6 D.7 二、填空题 11.化简:(�)��| �3|= . 12.已知:一个正数的两个平方根分别是2a�2和a�4,则a的值是. 13.直角三角形的两条直角边长分别为 cm、 cm,则这个直角三角形的斜边长为,面积为. 14.若实数x,y满足,则xy的值为. 15.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是. 16.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .三、解答题 17.计算:(1)�+ ;(2)(�)×;(3)|�6|��(�1)2;(4)�()2+(π+ )0� +| �2| 18.先化简,再求值:(a�1+ )÷(a2+1),其中a= �1. 19.已知x=2�,y=2+ ,求下列代数式的值:(1)x2+2xy+y2;(2)x2�y2. 20.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值. 21.先化简,再求值:(�)• ,其中x= . 22.该试题已被管理员删除 23.已知a,b为等腰三角形的两条边长,且a,b满足b= + +4,求此三角形的周长.《第21章二次根式》(四川省资阳市简阳市)参考答案与试题解析一、选择题 1.下列二次根式中的取值范围是x≥3的是() A. B. C. D.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数为非负数分别计算出x的取值范围,进而得到答案.【解答】解:A、3�x≥0,解得x≤3,故此选项错误; B、6+2x≥0,解得x≤�3,故此选项错误; C、2x�6≥0,解得x≥3,故此选项正确; D、x�3>0,解得x>3,故此选项错误;故选:C.【点评】此题主要考查了二次根式有意义的条件,关键是掌握被开方数为非负数. 2.下列二次根式中,是最简二次根式的是() A.2 B. C. D.【考点】最简二次根式.【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解答】解:A、2 是最简二次根式,故本选项正确; B、 = ,故本选项错误; C、 = ,故本选项错误; D、 =x ,故本选项错误.故选A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式. 3.如果 =1�2a,则()A.a< B.a≤ C.a> D.a≥ 【考点】二次根式的性质与化简.【专题】计算题.【分析】由已知得1�2a≥0,从而得出a的取值范围即可.【解答】解:∵ ,∴1�2a≥0,解得a≤ .故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握. 4.k、m、n为三整数,若 =k , =15 , =6 ,则下列有关于k、m、n的大小关系,何者正确?() A.k<m=n B.m=n<k C.m<n<k D.m<k<n 【考点】二次根式的性质与化简.【专题】计算题.【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解: =3 , =15 , =6 ,可得:k=3,m=2,n=5,则m<k<n.故选:D 【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键. 5.如果最简二次根式与能够合并,那么a的值为() A.2 B.3 C.4 D.5 【考点】同类二次根式.【专题】计算题.【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,3a�8=17�2a,移项合并,得5a=25,系数化为1,得a=5.故选D.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键. 6.已知,则2xy的值为() A.�15 B.15 C. D.【考点】二次根式有意义的条件.【分析】首先根据二次根式有意义的条件求出x的值,然后代入式子求出y的值,最后求出2xy的值.【解答】解:要使有意义,则,解得x= ,故y=�3,∴2xy=2× ×(�3)=�15.故选:A.【点评】本题主要考查二次根式有意义的条件,解答本题的关键是求出x和y的值,本题难度一般. 7.下列各式计算正确的是() A. B. C. D.【考点】二次根式的混合运算.【专题】计算题.【分析】根据二次根式的加减运算对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、原式=6 ,所以A选项的计算错误; B、5 与5 不能合并,所以B选项的计算错误;C、原式=8 =8 ,所以C选项的计算正确;D、原式=2,所以D选项的计算错误.故选C.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 8.等式• = 成立的条件是() A.x>1 B.x<�1 C.x≥1 D.x≤�1 【考点】二次根式的乘除法.【分析】根据二次根式有意义的条件,即可得出x的取值范围.【解答】解:∵ 、有意义,∴ ,∴x≥1.故选C.【点评】本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数. 9.下列运算正确的是() A.� = B. =2 C.� = D. =2�【考点】二次根式的加减法;二次根式的性质与化简.【分析】根据二次根式的加减法对各选项进行逐一分析即可.【解答】解:A、与不是同类项,不能合并,故本选项错误; B、 = ,故本选项错误; C、� =2 � = ,故本选项正确; D、 = �2,故本选项错误.故选C.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键. 10.是整数,则正整数n的最小值是() A.4 B.5 C.6 D.7 【考点】二次根式的定义.【分析】本题可将24拆成4×6,先把化简为2 ,所以只要乘以6得出62即可得出整数,由此可得出n的值.【解答】解:∵ = =2 ,∴当n=6时, =6,∴原式=2 =12,∴n的最小值为6.故选:C.【点评】本题考查的是二次根式的性质.本题还可将选项代入根式中看是否能开得尽方,若能则为答案.二、填空题 11.化简:(�)��| �3|= �6 .【考点】二次根式的混合运算.【分析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可.【解答】解:(�)��| �3| = �3�2 �(3�),=�6.故答案为:�6.【点评】此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键. 12.已知:一个正数的两个平方根分别是2a�2和a�4,则a的值是 2 .【考点】平方根.【专题】计算题.【分析】根据正数有两个平方根,它们互为相反数.【解答】解:∵一个正数的两个平方根分别是2a�2和a�4,∴2a�2+a�4=0,整理得出:3a=6,解得a=2.故答案为:2.【点评】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 13.直角三角形的两条直角边长分别为 cm、 cm,则这个直角三角形的斜边长为 2 cm ,面积为 cm2 .【考点】勾股定理.【分析】此题直接利用勾股定理及三角形的面积解答即可.【解答】解:由勾股定理得,直角三角形的斜边长= =2 cm;直角三角形的面积= × = cm2.故填2 cm, cm2.【点评】此题主要考查勾股定理及三角形的面积. 14.若实数x,y满足,则xy的值为 2 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则xy=2 .故答案是:2 .【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0. 15.已知实数x,y满足,则以x,y 的值为两边长的等腰三角形的周长是20 .【考点】等腰三角形的性质;非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系.【专题】压轴题;分类讨论.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x�4=0,y�8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断. 16.已知a、b为有理数,m、n 分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b=2.5 .【考点】二次根式的混合运算;估算无理数的大小.【专题】计算题;压轴题.【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用�a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5�<3,故m=2,n=5��2=3�.把m=2,n=3�代入amn+bn2=1得,2(3�)a+(3�)2b=1 化简得(6a+16b)�(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=�0.5.所以2a+b=3�0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.三、解答题 17.计算:(1)� + ;(2)(�)× ;(3)|�6|��(�1)2;(4)�()2+(π+ )0� +| �2| 【考点】二次根式的混合运算;零指数幂.【分析】利用二次根式的运算性质即可求出答案.【解答】解:(1)原式=3 �2 + = ;(2)原式=(4 �5 )× =�× =�2;(3)原式=6�3�1=2;(4)原式= �3+1�3 +2� =�3 .【点评】本题考查二次根式的混合运算,涉及二次根式的性质,属于基础题型. 18.先化简,再求值:(a�1+ )÷(a2+1),其中a= �1.【考点】分式的化简求值.【分析】这道求分式值的题目,不应考虑把a的值直接代入,通常做法是先把分式通,把除法转换为乘法化简,然后再代入求值.【解答】解:原式=()• ,= • , = ,当a= �1时,原式= = .【点评】此题主要考查了分式的计算,解答此题的关键是把分式化到最简,然后代值计算 19.已知x=2�,y=2+ ,求下列代数式的值:(1)x2+2xy+y2;(2)x2�y2.【考点】二次根式的化简求值.【专题】计算题.【分析】(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x2+2xy+y2=(x+y)2,然后利用整体代入的方法计算;(2)根据已知条件先计算出x+y=4,x�y=�2 ,再利用平方差公式得到x2�y2=(x+y)(x�y),然后利用整体代入的方法计算.【解答】解:(1)∵x=2�,y=2+ ,∴x+y=4,∴x2+2xy+y2=(x+y)2=42=16;(2))∵x=2�,y=2+ ,∴x+y=4,x�y=�2 ,∴x2�y2=(x+y)(x�y) =4×(�2 ) =�8 .【点评】本题考查了二次根式的化简求值:先根据二次根式的性质和运算法则进行化简,然后把满足条件的字母的值代入求值. 20.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【考点】二次根式的应用;三角形三边关系.【专题】压轴题.【分析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:(1)周长= + + = = ,(2)当x=20时,周长= ,(或当x= 时,周长= 等)【点评】对于第(2)答案不唯一,但要注意必须符合题意. 21.先化简,再求值:(�)• ,其中x= .【考点】分式的化简求值;二次根式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式= • ,当x= 时,x+1>0, =x+1,故原式= = .【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 22.该试题已被管理员删除 23.已知a,b为等腰三角形的两条边长,且a,b满足b= + +4,求此三角形的周长.【考点】二次根式有意义的条件;三角形三边关系;等腰三角形的性质.【分析】根据二次根式有意义:被开方数为非负数可得a的值,继而得出b的值,然后代入运算即可.【解答】解:∵ 、有意义,∴ ,∴a=3,∴b=4,当a为腰时,三角形的周长为:3+3+4=10;当b为腰时,三角形的周长为:4+4+3=11.【点评】本题考查了二次根式有意义的条件,属于基础题,注意掌握二次根式有意义:被开方数为非负数.。
第21章 二次根式单元测试(含答案)
第二十一章 二次根式单元测试题一、填空题:(每题2分,共24分)1.函数1-=x xy 的自变量x 的取值范围是______.2.当x ______________时,x x -+-31有意义.3.若a <0,则b a 2化简为______.4.若3<x <4,则=-++-|4|962x x x ______.5.1112-=-⋅+x x x 成立的条件是______.6.若实数x 、y 、z 满足0412||22=+-+++-z z z y y x ,则x +y +z =______. 7.长方形的面积为30,若宽为5,则长为______.8.当x =______时,319++x 的值最小,最小值是______.9.若代数式22)3()1(a a -+-的值是常数2,则a 的取值范围是______.10.观察下列各式:,,514513,413412,312311 =+=+=+请将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是______.11.观察下列分母有理化的计算:,4545134341,23231,12121-=+-=+-=+-=+……,从计算结果中找出规律,并利用这一规律计算:1)+= ______. 12.已知正数a 和b ,有下列结论: (1)若a =1,b =1,则1≤ab ;(2)若25,21==b a ,则23≤ab ; (3)若a =2,b =3,则25≤ab ; (4)若a =1,b =5,则3≤ab .根据以上几个命题所提供的信息,请猜想:若a =6,b =7,则ab ≤______.二、选择题:(每题2分,共24分)13.已知xy >0,化简二次根式2x y x -的正确结果为( )(A)y (B)y - (C)y - (D)y --14.若a <0,则||2a a -的值是( )(A)0 (B)-2a(C)2a (D)2a 或-2a 15.下列二次根式中,最简二次根式为( ) (A)x 9 (B)32-x (C)x y x - (D)b a 2316.已知x 、y 为实数,且0)2(312=-+-y x ,则x -y 的值为( )(A)3 (B)-3 (C)1 (D)-117.若最简二次根式b 5与b 23+是同类二次根式,则-b 的值是( )(A)0 (B)1 (C)-1 (D)31 18.下列各式:211,121,27,其中与3是同类二次根式的个数为( ) (A)0个 (B)1个(C)2个 (D)3个 19.当1<x <3时,化简22)3()1(++-x x 的结果正确的是( )(A)4 (B)2x +2(C)-2x -2 (D)-4 20.不改变根式的大小,把aa --11)1(根号外的因式移入根号内,正确的是( ) (A)a -1 (B)1-a (C)1--a (D)a --1 21.已知m ≠n ,按下列(A)(B)(C)(D)的推理步骤,最后推出的结论是m =n .其中出错的推理步骤是( )(A)∵(m -n )2=(n -m )2 (B )∴22)()(m n n m -=-(C)∴m -n =n -m (D)∴m =n22.如果a ≠0且a 、b 互为相反数,则在下列各组数中不是互为相反数的一组是( ) (A)3a 与3b (B)2a 与2b (C)3a 与3b (D)a +1与b -123.小华和小明计算XXX)(442a a a +-+时,得出两种不同的答案.小华正确审题,得到的答案是“2a -2”,小明忽略了算式后面括号中的条件,得到的结果是“2”,请你判断,括号中的条件是( )(A)a <2 (B)a ≥2 (C)a ≤2 (D)a ≠224.已知点A (3,1),B (0,0),C (3,0),AE 平分∠BAC ,交BC 于点E ,则直线AE对应的函数表达式是( )(A)332-=x y (B)y =x -2 (C)13-=x y (D)23-=x y三、解答题:(第25题每小题4分,第26-29题每题4分,第30、31题每题6分)25.计算: (1);21448)21(2+++ (2);836212739x x x ⨯+-(3));32)(32()32)(347(2-++-+(4);211)223(23822+--+⨯-(5);166193232x x x x x x +- (6)).0)](4327121(3[222≥--b a b ab ab a26.若,03|9|22=--++m m n m 求3m +6n 的立方根.27.已知7979--=--x x x x 且x 为偶数,求132)1(22--++x x x x 的值.28.试求)364()36(3xy yx y xy y x y x+-+的值,其中23=x ,27=y .29.已知正方形纸片的面积是32cm 2,如果将这个正方形做成一个圆柱,请问这个圆柱底面的半径是多少?(精确到0.1,π取3.14)30.已知:223,223-=+=b a ,求:ab 3+a 3b 的值.31.观察下列各式及其验证过程:⋅+=+=833833;322322验证: ;3221222122)12(232)12(2322232322222233+=-+=-+-=+-=+-== ⋅+=-+=-+-=+-=+-==8331333133)13(383)13(3833383833222233 (1)按照上述两个等式及其验证过程的基本思路,猜想一个类似的结果并验证;(2)针对上述各式反映的规律,写出用n (n 为正整数,且n ≥2)表示的等式并给出证明.参考答案1.x ≥0且x ≠1 2.1≤x ≤3 3.b a - 4.1 5.x ≥1 6.07.6 8.3,91- 9.1≤a ≤3 10.21)1(21++=++n n n n (n 为自然数且n ≥1) 11.2008 12.4169 13.D 14.B 15.B 16.D 17.C 18.C 19.B 20.D 21.C 22.B 23.B 24.D 25.(1)34242++ (2)x 319(3)2 (4)-11 (5)x x x -27 (6)a ab 325 26.3 27.113 28.229- 29.0.9cm 30.85 31.(1)=+-==+=1544415415441544154433 15441444144)14(4154)14(42222+=-+=-+-=+- (2)=-12n n n 11)1(1111222232322-+=-+-=-+-=-=--+n n n n n n n n n n n n n n n n n n n (n 为正整数,且n ≥2)。
第21章 二次根式同步测试及答案.doc
第二十一章 二次根式综合练习一、选择题 1、如果-3x+5是二次根式,则x 的取值范围是( ) A 、x≠-5 B 、x>-5 C 、x<-5 D 、x≤-52、等式x 2-1 =x+1 ·x -1 成立的条件是( ) A 、x>1 B 、x<-1 C 、x≥1 D 、x≤-13、已知a=15 -2 ,b=15 +2,则a 2+b 2+7 的值为( ) A 、3 B 、4 C 、5 D 、64、下列二次根式中,x 的取值范围是x≥2的是( ) A 、2-x B 、x+2 C 、x -2 D 、1x -25、在下列根式中,不是最简二次根式的是( ) A 、a 2 +1 B 、2x+1 C 、2b4D 、0.1y 6、下面的等式总能成立的是( )A 、a 2 =aB 、a a 2 =a 2C 、 a ·b =abD 、ab = a ·b 7、m 为实数,则m 2+4m+5 的值一定是( ) A 、整数 B 、正整数 C 、正数 D 、负数 8、已知xy>0,化简二次根式x-yx2 的正确结果为( ) A 、y B 、-y C 、-y D 、--y9、若代数式(2-a)2 +(a -4)2 的值是常数2,则a 的取值范围是( ) A 、a≥4 B 、a≤2 C 、2≤a≤4 D 、a=2或a=4 10、下列根式不能与48 合并的是( ) A 、0.12 B 、18 C 、113D 、-75 11、如果最简根式3a -8 与17-2a 是同类二次根式,那么使4a -2x 有意义的x 的范围是( )A 、x≤10B 、x≥10C 、x<10D 、x>10 12、若实数x 、y 满足x 2+y 2-4x -2y+5=0,则x +y 3y -2x的值是( )A 、1B 、32 + 2 C 、3+2 2 D 、3-2 2二、填空题 1、要使x -1 3-x有意义,则x 的取值范围是 。
九年级数学(上)第二十一章《二次根式》测试题及参考答案
九年级数学(上)《二次根式》测试题一、选择题(每小题3分,共30分)1、使式子1-x 2+x 有意义X 的取值范围是( )A 、X ≤1B 、X ≤1且X ≠-2C 、X ≠-2D X <1且X ≠-22、若代数式x x -+212有意义,则x 的取值范围是( )A 、21->x B 、4±≠x C 、0≥x D 、40≠≥x x 且 3、下列运算正确的是( ) A 、15.05.15.05.122=-=-B 、15.025.02=⨯= ≥C 、5)5(2-=-x xD 、x x x 22-=-4、下列根式中,最简二次根式是( )A 、a 25B 、22b a +C 、2aD 、5.05、已知:直角三角形的一条直角边为9,斜边长为10,则另一条直角边长为( )A 1B 19C 19D 296、若x=-3,则 ︳1-(1+X 2) ︳=( )A 1B -1C 3D -37、24n 是整数,则正整数n的最小值是( )A 4B 5C 6D 78、对于二次根式92+x ,以下说法不正确的是( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是39、下列说法错误是………………………………( ) A.962+-a a 是最简二次根式 B.4是二次根式 C.22b a +是一个非负数 D.162+x 的最小值是410、下列各式中与6是同类二次根式的是 ( ) A.36 B.12 C.32D.18二、填空题(每小题3分,共18分)11、使式子4-X 无意义的x取值是12、已知:X=2.5, 化简(X-2)2+ ︳X-4 ︳的结果是13、10xy .30yx (x>0,y>0)= 14、已知4322+-+-=x x y ,则,=xy . 15、三角形的三边长分别是20 ㎝ 45 ㎝ 40 ㎝,则这个三角形的周长为 16、观察下列各式:322322+=⨯;833833+=⨯;15441544+=⨯;……则依次第四个式子是 ;用)2(≥n n 的等式表达你所观察得到的规律应是 。
二次根式单元测试题及参考答案
新华师大版九年级上册数学第21章 二次根式单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 若二次根式15-x 有意义,则x 的取值范围是 【 】(A )51>x (B )x ≥51(C )x ≤51 (D )51<x2. 化简()221-的结果是 【 】(A )12- (B )21- (C )()12-±(D )()21-±3. 下列二次根式中是最简二次根式的是 【 】 (A )32(B )2 (C )9 (D )12 4. 下列运算正确的是 【 】 (A )x x x 32=+ (B )3223=- (C )3232=+ (D )25188=+5. 下列二次根式中能与32合并的是 【 】 (A )8 (B )31(C )18 (D )9 6. 等式1313+-=+-x x x x 成立的x 的取值范围在数轴上可表示为 【 】 A. B. C. D.7. 已知a 为整数,且53<<a ,则a 等于 【 】 (A )1 (B )2 (C )3 (D )48. 计算()5452-515-÷⎪⎪⎭⎫⎝⎛的结果为 【 】(A )5 (B )5- (C )7 (D )7-9. 已知21,21-=+=n m ,则代数式mn n m 322-+的值为 【 】 (A )9 (B )3± (C )5 (D )3 10. 已知0>xy ,则化简二次根式2x yx -的结果是 【 】 (A )y (B )y - (C )y -(D )y --二、填空题(每小题3分,共15分)11. 计算:=--124_________. 12. 化简:()=--7177_________.13. 菱形的两条对角线的长分别为()1210+cm 和()3210-cm,则该菱形的面积为_________cm 2.14. 12与最简二次根式15+a 是同类二次根式,则=a _________.15. 对于任意的正数n m ,定义运算※为:m ※⎪⎩⎪⎨⎧<+≥-=nm n m nm n m n ,,,计算(3※2)⨯(8※12)的结果为_________.三、解答题(共75分)16. 计算:(每小题4分,共8分)(1)()1212362-⎪⎭⎫⎝⎛--+⨯-;(2)()()()2217373---+.17. 先化简,再求值:(每小题8分,共16分)(1)44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x ;(2)11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x .18.(10分)(1)要使x 21-在实数范围内有意义,求x 的取值范围; (2)已知实数y x ,满足条件:()211221-+-+-=x x x y ,求()100y x +的值.19.(10分)在二次根式b ax +中,当1=x 时,其值为2;当6=x 时,其值为3. (1)求使该二次根式有意义的x 的取值范围; (2)当15=x 时,求该二次根式的值.20.(10分)一个三角形的三边长分别为xx x x 5445,2021,55. (1)求它的周长;(2)请你给一个适当的x 值,使它的周长为整数,并求出此时三角形的周长.21.(10分)已知c b a ,,满足()023582=-+-+-c b a . (1)求c b a ,,的值;(2)以c b a ,,为边能否构成三角形?若能,求出该三角形的周长;若不能,请说明理由.22.(11分)规律探究: 观察下列各式:()()()()()().;34434343431;23323232321;12212121211 -=-+-=+-=-+-=+-=-+-=+(1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫⎝⎛++++++++ .新华师大版九年级上册数学摸底试卷(一)第21章 二次根式单元测试卷C 卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11.2312. 7 13. 44 14. 2 15. 2 三、解答题(共75分)16. 计算:(每小题4分,共8分)(1)()1212362-⎪⎭⎫⎝⎛--+⨯-;解:原式23212--+-=33332-=--=(2)()()()2217373---+. 解:原式()222179+---=1222232-=+-=17. 先化简,再求值:(每小题8分,共16分)(1)44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x ;解:44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x()()xx x x x x x x x x 3223222212=-⋅-=--÷-+-+=当3=x 时原式333=.(2)11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x .解:11112-÷⎪⎭⎫⎝⎛-+x x x ()()()()x x x x x x x xx x 11111111-+⋅+-=-+÷+--=()xx -=--=11当12+=x 时原式2121-=--=.18.(10分)(1)要使x 21-在实数范围内有意义,求x 的取值范围; (2)已知实数y x ,满足条件:()211221-+-+-=x x x y ,求()100y x +的值.解:(1)由二次根式有意义的条件可知:x 21-≥0解之得:x ≤21; ……………………………………3分 (2)∵x 21-≥0,12-x ≥0∴x ≤21,x ≥21 ∴21=x……………………………………6分∴21211210022=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-++=y……………………………………8分 ∴()112121100100100==⎪⎭⎫⎝⎛+=+y x .……………………………………10分 19.(10分)在二次根式b ax +中,当1=x 时,其值为2;当6=x 时,其值为3. (1)求使该二次根式有意义的x 的取值范围;(2)当15=x 时,求该二次根式的值.解:(1)由题意可得:⎪⎩⎪⎨⎧=+=+362b a b a ∴⎩⎨⎧=+=+964b a b a ……………………………………4分解之得:⎩⎨⎧==31b a……………………………………6分 ∴该二次根式为3+x 由二次根式有意义的条件可知:3+x ≥0 解之得:x ≥3-;……………………………………8分 (2)当15=x 时23183153==+=+x .……………………………………10分 20.(10分)一个三角形的三边长分别为xx x x 5445,2021,55. (1)求它的周长;(2)请你给一个适当的x 值,使它的周长为整数,并求出此时三角形的周长. 解:xx x x C 5445202155++=∆ x x x 52155++=x 525=; ……………………………………7分 (2)答案不唯一.……………………………………10分 21.(10分)已知c b a ,,满足()023582=-+-+-c b a .(1)求c b a ,,的值;(2)以c b a ,,为边能否构成三角形?若能,求出该三角形的周长;若不能,请说明理由. 解:(1)∵()023582=-+-+-c b a()28-a ≥0,5-b ≥0,23-c ≥0∴023,05,08=-=-=-c b a ∴23,5,228====c b a ; ……………………………………7分 (2)能.……………………………8分52523522+=++=∆C .……………………………………10分 22.(11分) 解:(1)11310-;……………………………………2分 (2)n n n n -+=++111……………………………………4分证明:()()nn nn n n n n -+++-+=++11111 nn n n nn -+=-+-+=111……………………………………7分 (3) 2016.(过程略)……………………………………11分。
第21章 二次根式单元测试卷(含答案)
第21章二次根式单元测试卷(时间:90分钟满分:120分)一、细心填一填(每题3分,共24分)1.(2008_____.2=______,)2=_______.3可以合并,则x=______.4.如图所示,矩形内有两个相邻的正方形,面积分别为4和2, 那么阴影面积是_______.5.(2008,宁波)若实数x,y+()2=0,则xy=______.6)2008·+2)2009=______.7.若a,b是矩形的两邻边长,,,则矩形周长为_____.8.(教材变式题)电流通过导线时会产生热量,设电流是I(A),导线电阻为R(Ώ) ,1s产生的热量为Q(J).由物理公式Q=0.24I2R,试用Q,R表示I式子为_______.二、精心选一选,你准成(每题4分,共32分)9的结果为()A.10 B...2010.下列计算正确的是()A=-2 C=3 D=π11的结果是()A. B C D12能合并的是()A B D13.下列计算不正确的是()A B+C(a>0) D.14.下列函数中,自变量取值范围为x>2是()A....15.已知-1,a与b的关系()A.a=b B.ab=1 C.a=-b D.ab=-116.已知△ABC的三边a,b,c满足a2+b+│,则△ABC为()A.等腰三角形 B.正三角形 C.直角三角形 D.等腰直角三角形三、挑战自我,马到成功17.计算:(每题4×4分=16分)(1(2)(()(3)-() (4)2-2]182318.(6分)借用计算器拟求:(1=_______.(2=________.(3=________.19.(8分)如图所示a ,b 的在数轴的位置,化简.20.(8分)如图所示是一个无盖的长方体纸盒展开图,纸盒底面积为1800cm 2.(1)求纸盒的高为多少厘米?(2)展开图的周长为多少厘米?21.(8分)你会求解:因为<2,所以>-2,即>4-2,.设.整数部分为_____,小数部分b=_____.运用上述方法解答问题:和小数部分分别为a,b,求ab-a+b的值.22.(10分)如图所示,梯形ABCD中,AB∥CD,∠ADC=60°,∠BCD=30°, 以AD,AB,BC向形外作正方形,它们面积分别为S1,S2,S3,若DC=2AB,S2=27.23.(8分)(改创题)如图所示是一块长,宽,高分别是6cm,4cm和3cm的长方体木块,一只蚂蚁要从长方体木块的顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长度是多少?答案:1.,0.23.5 4.-2 5. 6. 8.9.B 10.D 11.A 12.B 13.B 14.C 15.A 16.B17.解:(1)原式.(2)原式(3)原式=().1823(4)原式)=1.1218.解:(1)5 (2)55 (3)555 200955555个19.解:由数轴可知a<0,b>0,则a-b<0,a+b<0. 原式=2│a │-│a-b │+│a+b │=-2a+a-b-(a+b )=-2a-2b .[解题思路]判断绝对值中a ,a-b ,a+b =│a │=-a (a ≤0)化简合并.20.解:(1)设底面长为3x ,宽为2x .则2x·3x=1800,解得cm .所以高为cm .(2)展开图最大周长为.[解题思路]运用底面积构建方程求每个小正方形边长.21.解:2,,的小数部分为a ,整数部分为5,则,的小数部分为b ,整数部分为12,则-3.ab-a+b=()-3)-30.[解题思路]本题关键求和的小数部分的值.22.解:如图所示因为S 2=27,∴,而A ′D+B ′=AB .,,BB ′.所以B ′① 又因为AA ′=BB ′,②.9223.解:如图所示,路径一:实线.=路径二:虚线,为最短路径.。
华东师大九年级上册 版第21章《二次根式》章节测试题(含解析答案)
华东师大版九年级上册第22章《二次根式》章节测试题本试卷三个大题共22个小题,全卷满分120分,考试时间100分钟。
一、选择题(本大题共12个小题,每小题4分,共48分。
) 1、下列各式中,是二次根式的是( )A 、1B 、4-C 、38D 、π-3 2、若式子2-x 在实数范围内有意义,则x 的取值范围是( ) A 、2 xB 、2 xC 、2≥xD 、2≤x3、下列计算正确的是( )A 、2312=÷B 、652535=⋅C 、523=+D 、228=- 4、下列属于最简二次根式的是( ) A 、8 B 、5C 、12D 、315、下列二次根式中,与3能合并的是( )A 、6B 、24C 、32D 、43 6、实数a ,b 在数轴上的对应点如图所示,则2a b a --的结果为( ) A 、bB 、b a -2C 、b -D 、a b 2-7、已知()21233-⨯⎪⎪⎭⎫ ⎝⎛-=m ,则( ) A 、56-- m B 、65 m C 、67-- m D 、76 m 8、若xx x x -+=-+3333成立,则x 的取值范围是( ) A 、33 x ≤- B 、3 x C 、3- x D 、33≤-x 9、若最简二次根式b a +7与36+-b b a 是同类二次根式,则b a +的值为( ) A 、2 B 、2- C 、1- D 、1 10、如果0 ab ,0 b a +,那么下列各式:①ba ba=,②1=⋅a b b a ,③b ba ab -=÷,其中正确的是( )学校: 考号: 姓名: 班级:※※※※※※※※※※※密※※※※※※※※※※※※※※※※※封※※※※※※※※※※※※※※※※※※※※※※ 线※※※※※※※※※※※※※A 、①②B 、②③C 、①③D 、①②③11、如果()3322b a +=+,a ,b 为有理数,那么=-b a ( ) A 、3B 、34-C 、2D 、2-12、把()aa --212根号外的因式移入根号内,结果( ) A 、a -2 B 、a --2 C 、2-a D 、2--a二、填空题(本大题共4小题,每小题4分,共16分) 13、如果144+-+-=x x y ,则y x +2的值是_______; 14、已知32+=a ,32-=b ,则_________22=+ab b a ; 15、若12-=x ,则2019323+-+x x x 的值为 ; 16、化简:()()________252520182019=+-.三、解答题:(本大题共6个小题,共56分。
第21章 二次根式 华东师大版九年级数学上册单元测试卷(含答案)
第21章二次根式单元测试卷一.选择题(共10小题,满分30分)1.是整数,正整数n的最小值是( )A.0B.2C.3D.42.下列式子中一定是二次根式的是( )A.B.C.D.3.在实数范围内,要使代数式有意义,则x的取值范围是( )A.x≥2B.x>2C.x≠2D.x<24.如果ab>0,a+b<0,那么下面各式:①•=1;②=;③÷=﹣b,其中正确的是( )A.①②B.①③C.②③D.①②③5.若的整数部分为x,小数部分为y,则(2x+)y的值是( )A.B.3C.D.﹣36.下列各式中,是最简二次根式的是( )A.B.C.D.7.若是整数,则正整数n的最小值是( )A.4B.5C.6D.78.下列式子一定是二次根式的是( )A.B.C.D.9.下列计算正确的是( )A.=±4B.±=3C.D.=﹣3 10.若=2﹣x成立,则x的取值范围是( )A.x≤2B.x≥2C.0≤x≤2D.任意实数二.填空题(共10小题,满分30分)11.化简:= .12.若是整数,则最小正整数n的值为 .13.二次根式有意义的条件是 .14.计算的结果是 .15.已知n为正整数,是整数,则n的最小值是 .16.当x=﹣2时,则二次根式的值为 .17.计算:×= .18.已知实数a、b满足+|6﹣b|=0,则的值为 .19.在、、、、中,最简二次根式是 .20.已知a=3+,b=3﹣,则a2b+ab2= .三.解答题(共6小题,满分90分)21.计算:3•÷(﹣)22.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.23.(1)若y=+4,求xy的平方根.(2)实数x,y使+y2+4y+4=0成立,求的值.24.已知等式=成立,化简|x﹣6|+的值.25.阅读材料,回答问题:观察下列各式=1+﹣=1;;.请你根据以上三个等式提供的信息解答下列问题:(1)猜想:= = ;(2)归纳:根据你的观察、猜想,写出一个用n(n为正整数)表示的等式: ;(3)应用:用上述规律计算.26.当a取什么值时,代数式取值最小?并求出这个最小值.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:∵是整数,∴正整数n的最小值为2,故选:B.2.解:A、当x<0时,不是二次根式,故本选项错误;B、一定是二次根式,故本选项正确;C、当x=0时,不是二次根式,故本选项错误;D、当b<0时,不是二次根式,故本选项错误;故选:B.3.解:要使代数式有意义,则x﹣2≥0,解得:x≥2,故选:A.4.解:∵ab>0,a+b<0,∴a<0,b<0,∴①•=1,正确;②=,错误;③÷=﹣b,正确,故选:B.5.解:∵9<13<16∴3<<4,∴的整数部分x=2,则小数部分是:6﹣﹣2=4﹣,∴y=4﹣,则(2x+)y=(4+)(4﹣)=16﹣13=3.故选:B.6.解:A、=,故此选项不符合题意;B、=2,故此选项不符合题意;C、是最简二次根式,故此选项符合题意;D、=,故此选项不符合题意;故选:C.7.解:∵=2是整数,∴正整数n的最小值是:7.故选:D.8.解:A、,﹣x+2有可能小于0,故不一定是二次根式;B、,x有可能小于0,故不一定是二次根式;C、,x2+1一定大于0,故一定是二次根式,故此选项正确;D、,x2﹣2有可能小于0,故不一定是二次根式;故选:C.9.解:A选项,=4,故该选项错误,不符合题意;B选项,±=±3,故该选项错误,不符合题意;C选项,()2=a(a≥0),故该选项正确,符合题意;D选项,根据=|a|得原式=3,故该选项错误,不符合题意.故选:C.10.解:∵=|x﹣2|=2﹣x,∴x﹣2≤0,∴x≤2,故选:A.二.填空题(共10小题,满分30分)11.解:原式==2.故答案是:2.12.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.13.解:二次根式有意义的条件是:x﹣1≥0,解得:x≥1.故答案为:x≥1.14.解:法一、=|﹣2|=2;法二、==2.故答案为:2.15.解:∵189=32×21,∴=3,∴要使是整数,n的最小正整数为21.故填:21.16.解:原式===4,故答案为:417.解:×=;故答案为:.18.解:∵+|6﹣b|=0,又∵≥0,|6﹣b|≥0,∴a﹣3=0,6﹣b=0.∴a=3,b=6.∴==2.故答案为:19.解:、是最简二次根式,故答案为:、.20.解:∵a=3+,b=3﹣,∴a2b+ab2=ab(a+b)=(3+2)(3﹣2)(3+2+3﹣2)=6;故答案为:6.三.解答题(共6小题,满分90分)21.解:原式=3××(﹣)=﹣2=﹣.22.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.23.解:由题意得,解得:x=3,把x=3代入已知等式得:y=4,所以,xy=3×4=12,故xy的平方根是±=.(2)∵+y2+4y+4=0,∴+(y+2)2=0.∴由非负数的性质可知,x﹣3=0,y+2=0.解得x=3,y=﹣2.∴===.24.解:由题意得,,∴3<x≤5,∴|x﹣6|+=6﹣x+x﹣2=4.25.解:(1)根据题意可得:=1+=1;故答案为:1+﹣,1;(2)根据题意可得:=1+﹣=1+;故答案为:=1+﹣=1+;(3)=1+1﹣+1+﹣+1+﹣+•••+1+=10﹣=9.26.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十一章 二次根式整章测试题
一、填空题:(每题2分,共24分)
1.函数1-=x x
y 的自变量x 的取值范围是______.
2.当x ______________时,x x -+-31有意义.
3.若a <0,则b a 2化简为______.
4.若3<x <4,则=-++-|4|962x x x ______.
5.1112-=-⋅+x x x 成立的条件是______.
6.若实数x 、y 、z 满足04
12||22=+-+++-z z z y y x ,则x +y +z =______. 7.长方形的面积为30,若宽为5,则长为______.
8.当x =______时,319++x 的值最小,最小值是______.
9.若代数式22)3()1(a a -+-的值是常数2,则a 的取值范围是______.
10.观察下列各式:,,5
14513,413412,312311 =+=+=+请将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是______.
11.观察下列分母有理化的计算:
,454
5134341,23231,12121-=+-=+-=+-=+……,从计算结果中找出规律,并利用这一规律计算:
1)+= ______. 12.已知正数a 和b ,有下列结论: (1)若a =1,b =1,则1≤ab ;
(2)若25,21==b a ,则23≤ab ; (3)若a =2,b =3,则25≤ab ; (4)若a =1,b =5,则3≤ab .
根据以上几个命题所提供的信息,请猜想:若a =6,b =7,则ab ≤______.
二、选择题:(每题2分,共24分)
13.已知xy >0,化简二次根式2
x y x -的正确结果为( )
(A)y (B)y - (C)y - (D)y --
14.若a <0,则||2a a -的值是( )
(A)0 (B)-2a
(C)2a (D)2a 或-2a 15.下列二次根式中,最简二次根式为( ) (A)x 9 (B)32-x (C)x y x - (D)b a 23
16.已知x 、y 为实数,且0)2(312=-+-y x ,则x -y 的值为( )
(A)3 (B)-3 (C)1 (D)-1
17.若最简二次根式b 5与b 23+是同类二次根式,则-b 的值是( )
(A)0 (B)1 (C)-1 (D)3
1 18.下列各式:211,121,
27,其中与3是同类二次根式的个数为( ) (A)0个 (B)1个
(C)2个 (D)3个 19.当1<x <3时,化简22)3()1(++-x x 的结果正确的是( )
(A)4 (B)2x +2
(C)-2x -2 (D)-4 20.不改变根式的大小,把a
a --11)1(根号外的因式移入根号内,正确的是( ) (A)a -1 (B)1-a (C)1--a (D)a --1 21.已知m ≠n ,按下列(A)(B)(C)(D)的推理步骤,最后推出的结论是m =n .其中出错的推
理步骤是( )
(A)∵(m -n )2=(n -m )2 (B )∴22)()(m n n m -=-
(C)∴m -n =n -m (D)∴m =n
22.如果a ≠0且a 、b 互为相反数,则在下列各组数中不是互为相反数的一组是( ) (A)3a 与3b (B)2a 与2b (C)3a 与3b (D)a +1与b -1
23.小华和小明计算XXX)(442a a a +-+时,得出两种不同的答案.小华正确审题,得
到的答案是“2a -2”,小明忽略了算式后面括号中的条件,得到的结果是“2”,请你判断,括号中的条件是( )
(A)a <2 (B)a ≥2 (C)a ≤2 (D)a ≠2
24.已知点A (3,1),B (0,0),C (3,0),AE 平分∠BAC ,交BC 于点E ,则直线AE
对应的函数表达式是( )
(A)332-=x y (B)y =x -2 (C)13-=x y (D)23-=x y
三、解答题:(第25题每小题4分,第26-29题每题4分,第30、31题每题6分)
25.计算: (1);214
48)21(2+++ (2);836212739x x x ⨯+-
(3));32)(32()32)(347(2-++-
+
(4);211)223(23822+-
-+⨯-
(5)
;166193232x x x x x x +- (6)).0)](4
327121(3[222≥--b a b ab ab a
26.若
,03|9|22=--++m m n m 求3m +6n 的立方根.
27.已知7
979--=--x x x x 且x 为偶数,求132)1(22--++x x x x 的值.
28.试求)364()36(3xy y
x y xy y x y x
+-+的值,其中23=x ,27=y .
29.已知正方形纸片的面积是32cm 2,如果将这个正方形做成一个圆柱,请问这个圆柱底面
的半径是多少?(精确到0.1,π取3.14)
30.已知:223,223-=+=
b a ,求:ab 3+a 3b 的值.
31.观察下列各式及其验证过程:⋅+=+=8
33833;322322验证: ;322122
2122
)12(232
)12(2322232322
222233+=-+=-+-=+-=
+-== ⋅+=-+=-+-=+-=+-==8
331333133)13(383)13(3833383833222233 (1)按照上述两个等式及其验证过程的基本思路,猜想一个类似的结果并验证;
(2)针对上述各式反映的规律,写出用n (n 为正整数,且n ≥2)表示的等式并给出证明.
参考答案
1.x ≥0且x ≠1 2.1≤x ≤3 3.b a - 4.1 5.x ≥1 6.0
7.6 8.3,91- 9.1≤a ≤3 10.2
1)1(21++=++n n n n (n 为自然数且n ≥1) 11.2008 12.
4169 13.D 14.B 15.B 16.D 17.C 18.C 19.B 20.D 21.C 22.B 23.B 24.D 25.(1)34242++ (2)x 319
(3)2 (4)-11 (5)
x x x -2
7 (6)a ab 325 26.3 27.113 28.229- 29.0.9cm 30.85 31.(1)=+-==+=15444154154415
44154433 15441444144)14(415
4
)14(42222+=-+=-+-=+- (2)=-1
2n n n 11)1(1111
222232322-+=-+-=-+-=-=--+n n n n n n n n n n n n n n n n n n n (n 为正整数,且n ≥2)。