数学数学课程与教学论课后习题答案涂荣豹
学科数学804数学教育概论是哪个学校的自命题
学科数学804数学教育概论是哪个学校的自命题珠海考试科目:(812)专业综合(1)《代数学基础》(上),张英伯,王恺顺,北京师范大学出版社(2)《高等代数学》第三版,姚慕生,吴泉水,谢启鸿。
(3)《空间解析几何》(第四版),高红铸,王敬庚,傅若男,北京师范大学出版社(4)《解析几何》尤承业,北京大学出版社(5)《解析几何》(第三版),丘维声,北京大学出版社二、首都师范大学考试科目:(873)数学基础(1)《数学分析》高等教育出版社,第二、三版华东师范大学数学系;(2)《高等代数》高等教育出版社,第二、三版北京大学。
三、中央民族大学考试科目:(850)数学(微积分、线性代数)(不招收同等学力考生、双少生)四、天津师范大学考试科目:(904)数学教育理论(1)吴立宝,李春兰主编.《数学学科知识与教学能力(高中)》.北京师范大学出版社.2018;(2)张筱玮,潘超主编.《数学学科知识与教学能力(初中)》.北京师范大学出版社.2018五、河北北方学院考试科目:(904)数学分析与线性代数(1)《数学分析》华东师范大学数学系,高等教育出版社;(2)《线性代数》同济大学数学系,高等教育出版社。
六、太原师范学院考试科目:(824)数学教学论(不招收同等学力考生报名,要求本科阶段具有相同或相近专业背景)考试范围:数学教学论、现代数学教育观、数学教学反思、数学的基本特征、数学的文化价值、数学课程论的研究内容、数学课程的发展、义务教育数学课程标准(2011年版)和普通高中数学课程标准(2017年版)的基本理念及基本结构、数学有意义学习、数学建构主义学习、探究性学习理论、数学教学原则、数学教学方法、数学概念的教学、数学解题的教学、数学思想方法的教学、数学课堂教学的情境创设、数学课堂教学的提问、数学课堂教学语言、数学课的备课与说课、数学教育科研与写作。
七、山西师范大学考试科目:(829)教学技能与方法(只接收具有相同学科专业背景的考生)(1)教学技能(2015年)北京师范大学出版社陈旭远(2)教学技能(2013年)北京师范大学出版社张海珠八、内蒙古科技大学考试科目:(879)数学教学论九、内蒙古师范大学考试科目:(909)中学数学教学论(1)《数学教学论》曹一鸣张生春北京师范大学出版社2010(2)《中学数学教学论》代钦斯钦孟克陕西师范大学出版社2009。
(完整版)数学课程与教学论考试题答案
研究生课程进修班试卷封面姓名:程光辉单位:河南省潢川高中专业:数学考试科目:数学课程与教学论考试分数:年月日东北师范大学研究生课程进修班考试试卷评分表数学课程与教学论考试卷一、名词解释(本题共20分,每个4分)1. 数学课程数学课程是按照社会需要,具有明确目标,有计划的根据学生的可接受水平,从人类以往获得的数学知识和数学活动经验中有选择的组织起来的学科体系和实施计划及其实施中所经验的全部历程。
2. 数学教学数学教学是师生双方为了达到数学教学目标,以数学课程、教学内容为中介,教师组织、引导学生主动开展的一种特殊认识活动。
3. 数学能力数学能力是理解数学的 (以及类似的 )问题、符号、方法和证明的本质的能力;是学会它们 ,在记忆中保持和再现它们的能力;是把它们同其他问题、符号、方法和证明结合起来的能力;也是在解数学的 (或类似的 )课题时运用它们的能力。
4. 探究学习探究学习即从数学教学学科领域或现实社会生活中选择和确定研究主题,在教学中创设一种恰当的问题情境,通过学生自主及独立地发现问题、实验、操作、调查、信息搜集与处理、表达与交流等探索活动,获得知识、技能、发展情感与态度,特别是探索精神和创新能力发展的学习方式和学习过程。
二、简述题(本题共50分,每小题10分)1. 简述影响数学课程设置的因素。
答:影响课程设置的因素是多方面的,既有来自课程内部的因素,有又来自课程外部的一系列因素。
这些因素是课程改革、更新、发展的基本依据和必须条件。
概括起来,大致有以下各主要的因素:社会因素、数学因素、学生因素、教师因素、教育理论因素、课程的历史因素。
2.简述现代数学教学观。
答:现代意义下的数学教学观主要体现在以下几个方面 .(一)、数学教学的交往、互动性(二)、数学教学的过程性。
所谓教师引导学生开展积极的数学活动,主要包括如下几方面的含义: 1 、让学生经历一个数学化的过程;2 、让学生进行动手操作。
在使用操作学习数学时,应注意如下三点:第一,要留给学生足够的思维空间。
数学课程与教学论试题及答案
数学课程与教学论试题及答案
引言
本文档旨在提供一份数学课程与教学论的试题及答案,以便帮助教师或学生更好地了解数学教育内容,并促进教学效果的提升。
试题及答案
以下是一些数学课程与教学论的试题及答案供参考:
1. 问题:什么是数学教学论?
答案:数学教学论是研究数学教学方法、教学原理和教学理论的学科。
2. 问题:列举一些数学教学的重要原则。
答案:数学教学的重要原则包括培养学生的逻辑思维能力、激发学生的兴趣和动力、提供合理的研究目标和评价标准等。
3. 问题:如何促进学生的数学研究兴趣?
答案:可以通过设置趣味性的数学问题、引导学生发现数学与现实生活的联系、提供有趣的数学实例等方式来促进学生的数学研究兴趣。
4. 问题:如何评价学生的数学研究成果?
答案:评价学生的数学研究成果可以采用定量和定性相结合的方式,包括考试、作业、项目报告、口头表达等方法。
5. 问题:如何设计一个有效的数学教学活动?
答案:设计一个有效的数学教学活动需要考虑教学目标、学生的特点、教学资源和时间等因素,并结合启发式教学方法和合作研究方式进行设计。
结论
本文档提供了数学课程与教学论的一些试题及答案,希望对教师或学生在数学教育方面有所帮助。
然而,应注意本文档中的内容仅供参考,具体的教学实践仍需要根据实际情况进行调整和改进。
数学课程与教学论新编(涂荣豹)课后习题汇总
数学课程与教学论新编(涂荣豹)课后习题汇总名词解释:用”的思想,以及改革数学学模式两种。
面。
眼神、表情、语调、停顿、数学语言:如同数学的对象教育的鲜明主张,于此同探究发现:强调探究发现的数学“双基”就是指数学基沉思、感叹等,以及由声音一样来源于人类实践,它源时,数学家莱克因也在各种教学模式主要有布鲁纳的础知识和基本技能。
情绪带出的幽默、期望、热于人类的语言,随着数学抽场合发表自己对数学教育发现教学模式、萨奇曼的探合情推理:包括观察与实爱等。
象性和严谨性发展,逐步演的看法,并提出了所谓的究训练教学模式和兰本达验、想象与直觉、猜想与验变成独特的语言符号系统,“米兰大纲”,法国的波利的“探究-研讨”教学模式。
证等数学的探索性特征和计算机辅助数学教学由通数学语言主要有文字语言尔和美国的穆尔也纷纷提启发讨论模式:适用于教师创造性思维方式。
过计算机系统和具有实现出了数学教育改革的主张,诱导全班学生发现预定目自主建构就是建立和构造数学教学功能的软件所组于是就形成了贝利—克莱标的情形。
教师不再是提供关于新知识认知结构的过成。
因运动。
知识答案的唯一来源,而是程。
CAI课件即是针对具体数学进行科学研究和解决问题新数学运动 1950,新数学启发学生思维促进学生讨学习内容的特点和教学目的方法,即用数学语言表达运动就已经作为美国战后论的组织者。
学生不再是教指教师为达成一标,结合所使用的多媒体系事物的状态、关系和过程,数学教育计划之一悄悄地师讲什么记什么,而是在平对教学活动统的特性,采用计算机语经过推理、运算和分析,以开始了主要基于下数学本等的讨论中主动建构对意进行系统规划、安排与决言、写作系统或数学软件所形成解释、判断和预言的方身的变革和课程观念上的义的理解。
策。
产生的教学软件包。
法。
转变。
传统的数学课程存在问题解决模式旨在培养学数学学习心向:对数学学习几何画板是数学CAI课件公理化方法:从五个公设和着明显的不足,人们开始制生提出问题与解决问题的而言,学习起点水平包括学制作的专门工具,也是当前五条公理出发,运用演绎方定新的数学课程。
小学数学课程与教学论课后题答案第二版
小学数学课程与教学论课后题答案第二版1. 下列算式中,运用乘法交换律使运算简便的是()[选择题] [单选题] *A、64×101B、125×66×8(正确答案)C、352×5×22. 去掉()末尾的0,这个数的大小就改变了。
[选择题] [单选题] *A、300(正确答案)B、6.80C、2.0203. 小方3分钟跳绳453下,小明2分钟跳286下,()的速度快。
[选择题] [单选题] *A、小方(正确答案)B、小明C、无法确定4. 下面哪个算式是正确的。
()[选择题] [单选题] *A、99+1×23=100×23B、201×50=200×50+1C、75+34+66=75+100(正确答案)5. 把69900元改写成用“万元”作单位并精确到十分位的是()[选择题] [单选题] *A、6.9万元B、7万元C 、7.0万元(正确答案)6. 25×4÷25×4的结果是()。
[选择题] [单选题] *A、1B 、 4C、 16(正确答案)7. 117×3+117×7=117×(3+7),在计算时运用了( ) [单选题] *A乘法分配律(正确答案)B乘法结合录C乘法交换律8. 下列不是小数计数单位是()。
[选择题] [单选题] *A 、十分之一B、百分之一C、千(正确答案)9. 已知两个因数的积与其中一个因数,求另一个因数用()法 [单选题] *A加法B乘法C除法(正确答案)10. 已知4×▲一■×4=72,那么▲一■=( )。
[单选题] *A18(正确答案)B24C911. 计算25×4×125×8=(25×4)×(125×8),运用了()【填运算定律的名称】。
[单选题] *A乘法分配律B乘法结合律(正确答案)C乘法交换律12. 大于0.2而小于0.5的小数有()。
福建师范大学智慧树知到“数学与应用数学”《数学课程与教学论》网课测试题答案卷1
福建师范大学智慧树知到“数学与应用数学”《数学课程与教学论》网课测试题答案(图片大小可自由调整)第1卷一.综合考核(共10题)1.对于数学科学的理解,以下不正确的是()。
A.数学是一门技术B.数学是一种文化C.数学是理性的艺术D.数学的研究内容只是数量关系2.阶梯模式的学习过程不包括()A.选择阶段B.回忆阶段C.概括阶段D.分析阶段3.逻辑思维是数学思维中的主导成分,直觉思维是数学发现中的关键因素,是逻辑的飞跃和升华。
()A.错误B.正确4.数学教育学的研究手段可以是教学设计、教学、分析课堂活动、实验、定向观察等。
()A.正确B.错误5.数学学习的过程可以分为哪几个阶段()A.输入阶段B.相互作用阶段C.操作阶段D.输出阶段6.教学的量力性,就是量力而行。
()A.错误B.正确7.斯金纳的操作性条件反射学习说是将动物实验推及人类的,因此对当代学习理论没有任何作用。
()A.正确B.错误8.推动学生进行学习的内部动力是()A.强烈意志B.学习动机C.学习态度D.外在激励9.美国NCTM数学课程标准(1998)把()作为有“数学素养”的一个重要标志。
A.具有解决数学问题的能力B.具有提出数学问题的能力C.具有分析数学问题的能力D.具有发现数学问题的能力10.以下哪项不属于认知学派的学习理论?()A.布鲁纳的认知发现学习理论B.斯金纳的操作性条件反射学习说C.奥苏伯尔的认知接受学习理论D.托尔曼的认知学习理论第1卷参考答案一.综合考核1.参考答案:D2.参考答案:D3.参考答案:B4.参考答案:A5.参考答案:ABCD6.参考答案:B7.参考答案:B8.参考答案:B9.参考答案:A10.参考答案:B。
(完整版)数学课程与教学论考试题答案
研究生课程进修班试卷封面*名:***单位:河南省潢川高中专业:数学考试科目:数学课程与教学论考试分数:年月日东北师范大学研究生课程进修班考试试卷评分表数学课程与教学论考试卷一、名词解释(本题共20分,每个4分)1. 数学课程数学课程是按照社会需要,具有明确目标,有计划的根据学生的可接受水平,从人类以往获得的数学知识和数学活动经验中有选择的组织起来的学科体系和实施计划及其实施中所经验的全部历程。
2. 数学教学数学教学是师生双方为了达到数学教学目标,以数学课程、教学内容为中介,教师组织、引导学生主动开展的一种特殊认识活动。
3. 数学能力数学能力是理解数学的 (以及类似的 )问题、符号、方法和证明的本质的能力;是学会它们 ,在记忆中保持和再现它们的能力;是把它们同其他问题、符号、方法和证明结合起来的能力;也是在解数学的 (或类似的 )课题时运用它们的能力。
4. 探究学习探究学习即从数学教学学科领域或现实社会生活中选择和确定研究主题,在教学中创设一种恰当的问题情境,通过学生自主及独立地发现问题、实验、操作、调查、信息搜集与处理、表达与交流等探索活动,获得知识、技能、发展情感与态度,特别是探索精神和创新能力发展的学习方式和学习过程。
二、简述题(本题共50分,每小题10分)1. 简述影响数学课程设置的因素。
答:影响课程设置的因素是多方面的,既有来自课程内部的因素,有又来自课程外部的一系列因素。
这些因素是课程改革、更新、发展的基本依据和必须条件。
概括起来,大致有以下各主要的因素:社会因素、数学因素、学生因素、教师因素、教育理论因素、课程的历史因素。
2.简述现代数学教学观。
答:现代意义下的数学教学观主要体现在以下几个方面 .(一)、数学教学的交往、互动性(二)、数学教学的过程性。
所谓教师引导学生开展积极的数学活动,主要包括如下几方面的含义: 1 、让学生经历一个数学化的过程;2 、让学生进行动手操作。
在使用操作学习数学时,应注意如下三点:第一,要留给学生足够的思维空间。
涂荣豹《新编数学教学论》复习材料
涂荣豹《新编数学教学论》复习材料引言涂荣豹教授的《新编数学教学论》是一本权威的数学教育著作,旨在帮助数学教师提高教学水平,培养学生的数学思维能力。
该书内容涵盖了数学教学的各个方面,从教学原理到实际操作,均有详细的阐述。
本文将对该书进行概述,并提供一些复习材料,帮助读者更好地理解和应用该书中的知识。
一、教学原理涂荣豹教授在《新编数学教学论》中提出了许多关于数学教学的原理和观点。
其中包括以下几个方面:1.1 数学学习的本质数学学习的本质在于培养学生的逻辑思维和问题解决能力。
教师应该注重培养学生的数学思维方式,而非简单地灌输知识。
1.2 教学策略涂荣豹强调了灵活教学策略的重要性。
教师应根据学生的实际情况灵活选择教学方法,并注重启发式教学,开展探究式学习。
1.3 学习环境的营造良好的学习环境对学生的学习十分重要。
教师应营造积极、和谐、互助的学习氛围,激发学生的学习兴趣和动力。
二、教学实践教学实践是涂荣豹教授《新编数学教学论》的重要内容之一。
以下是一些复习材料,涵盖了该书的主要教学实践内容。
2.1 教学设计和备课教学设计和备课是教师提高教学质量的重要环节。
通过充分的教学设计和备课,教师可以更好地组织教学过程,达到预期的教学目标。
复习材料包括教学设计的要点和备课的步骤。
2.2 教学方法和教学手段涂荣豹教授根据不同的教学内容和学生特点,提出了多种教学方法和教学手段。
复习材料包括教学方法的分类、特点和应用场景,以及常用的教学手段和技巧。
2.3 课堂管理和教学评价良好的课堂管理和教学评价可以有效地提高教学效果。
复习材料包括课堂管理的原则和技巧,以及教学评价的方法和工具。
三、案例分析涂荣豹教授在《新编数学教学论》中提供了一些案例分析,帮助读者更好地理解和应用教学原理和实践。
复习材料包括案例分析的步骤、方法和实例。
结论涂荣豹《新编数学教学论》是一本非常有价值的数学教育著作。
通过对该书进行复习,读者可以深入了解数学教学的原理和实践,并将其应用于实际教学中。
浅谈新课标下如何发挥小学数学教学的育人作用
浅谈新课标下如何发挥小学数学教学的育人作用摘要:数学是贯穿教育整个阶段的一门极为重要的学科,其中小学阶段更是作为数学的入门时期,对于学生今后的学习生涯具有重要意义。
在新课标下,小学数学课堂不仅是教师传授知识的平台,也是开发学生智力,培养学生理性思维的过程,同时,数学课堂也是发挥育人作用的重要时刻,小学数学教师应当挖掘数学知识背后潜藏的道德教育因素,让学生树立健康积极的思想,形成良好的道德品质和人格品行,践行新课标理念,培养社会所需的综合型人才。
关键词:新课标;小学数学;育人作用。
引言:新课程标准是在社会和教育行业快速发展的背景下提出的新型教育理念,它肯定了数学的工具性,也肯定了其文化性和育人性。
数学训练所形成的理性思维、逻辑思维和独立思维已广泛应用至其他自然学科及社会学科,因而在数学学习的过程中,教师应设法挖掘其潜在的育人特性。
在课堂教学中,学生习得数学知识是最基础的要求,除此之外,数学教学还应当激发学生内在的更深刻的东西——理性思维。
理性思维并非只有利于数学学习,在学生步入社会后,理性思维也起着重要的作用,是体现公民素养的重要方面之一。
因此,小学数学学科应当依据新课程标准,跳出传统的教学方式,将德育思想贯穿于数学课堂中,充分发挥小学数学的育人作用。
一、小学数学育人价值的界定小学数学学科的育人价值不仅可以使学生掌握系统的数学基础知识,认识数学与人类社会的密切联系,了解数学的价值,理解数学的本质,提高和保持学习数学的兴趣和信心,增进有效应用数学的能力,而且能够在很大程度上开发学生的思维,形成理性、逻辑、条理化思维模式,让学生从理性的角度出发去发现问题、提出问题并解决问题。
这种思维方式对于当今社会而言是至关重要的,学生只有在合理的思维方式的驱动下,才能养成发散性、创新型思维,积极探索,勇于创新,举一反三,这是小学数学的育人价值所在。
二、小学数学育人价值的实现方法1.融合生活教育数学追根到底来源于生活,其最终目的是为生活服务,因此,生活实例是学习数学的现实教材,也是育人之本。
(完整版)数学数学课程与教学论新编课后习题答案(涂荣豹)
第一篇数学课程第1章数学的特点、方法与意义第2章数学课程概述第3章国外的数学课程改革第4章国内数学课程改革第二篇数学教学理论第5章一般教学理论概述第6章数学教学模式第7章数学教学评价第三篇数学教学设计第8章数学教学原则第9章数学教学设计第10章数学知识的分类教学设计第四篇数学教学基本技能第11章备课与说课第12章数学教学的语言第13章计算机辅助数学教学附录第14章数学能力及其培养第15章中学数学思想方法第16章数学学习的基本理论第一篇数学课程第1章数学的特点、方法与意义数学语言:如同数学的对象一样来源于人类实践,它源于人类的语言,随着数学抽象性和严谨性发展,逐步演变成独特的语言符号系统,数学语言主要有文字语言(术语)、符号语言(记号)和图像语言组成。
数学方法:是以数学为工具进行科学研究和解决问题的方法,即用数学语言表达事物的状态、关系和过程,经过推理、运算和分析,以形成解释、判断和预言的方法。
公理化方法:从五个公设和五条公理出发,运用演绎方法将当时所知道的几何学知识全部推导出来,并使之条理化、系统化,形成了一个合乎逻辑的体系。
随机方法:随机方法又称概率统计方法,就是指人们以概率统计为工具,通过有效的收集、整理受随机因素影响的数据,从中寻找确定的本质的数量规律,并对这些随机影响以数量的刻画和分析,从而对所观察的现象和问题作出推断、预测,直至为未来的决策与行动提供依据和建议的一种方法。
数学模型:那些利用数学语言来模拟现实的模型。
广义地说,一切数学都是数学模型。
数学的特点:(1)抽象性:①数学抽象的彻底性;②数学抽象的层次性;③数学方法的抽象性。
(2)严谨性,(3)广泛的应用性。
公理化方法的作用和意义首先有利于概括整理数学知识并提高认知水平。
其次促进新理论创立。
再次,由于数学公理化思想表述数学理论的简捷性、条件性和结构的和谐性,从而为其他科学理论的表述起到了示范作用,其他科学纷纷效法建立自己的公理化系统。
数学数学课程与教学论新编课后习题答案
第一篇数学课程第1章数学的特点、方法与意义第2章数学课程概述第3章国外的数学课程改革第4章国内数学课程改革第二篇数学教学理论第5章一般教学理论概述第6章数学教学模式第7章数学教学评价第三篇数学教学设计第8章数学教学原则第9章数学教学设计第10章数学知识的分类教学设计第四篇数学教学基本技能第11章备课与说课第12章数学教学的语言第13章计算机辅助数学教学附录第14章数学能力及其培养第15章中学数学思想方法第16章数学学习的基本理论第一篇数学课程第1章数学的特点、方法与意义数学语言:如同数学的对象一样来源于人类实践,它源于人类的语言,随着数学抽象性和严谨性发展,逐步演变成独特的语言符号系统,数学语言主要有文字语言(术语)、符号语言(记号)和图像语言组成。
数学方法:是以数学为工具进行科学研究和解决问题的方法,即用数学语言表达事物的状态、关系和过程,经过推理、运算和分析,以形成解释、判断和预言的方法。
公理化方法:从五个公设和五条公理出发,运用演绎方法将当时所知道的几何学知识全部推导出来,并使之条理化、系统化,形成了一个合乎逻辑的体系。
随机方法:随机方法又称概率统计方法,就是指人们以概率统计为工具,通过有效的收集、整理受随机因素影响的数据,从中寻找确定的本质的数量规律,并对这些随机影响以数量的刻画和分析,从而对所观察的现象和问题作出推断、预测,直至为未来的决策与行动提供依据和建议的一种方法。
数学模型:那些利用数学语言来模拟现实的模型。
广义地说,一切数学都是数学模型。
数学的特点:(1)抽象性:①数学抽象的彻底性;②数学抽象的层次性;③数学方法的抽象性。
(2)严谨性,(3)广泛的应用性。
公理化方法的作用和意义首先有利于概括整理数学知识并提高认知水平。
其次促进新理论创立。
再次,由于数学公理化思想表述数学理论的简捷性、条件性和结构的和谐性,从而为其他科学理论的表述起到了示范作用,其他科学纷纷效法建立自己的公理化系统。
(完整版)数学数学课程与教学论新编课后习题答案(涂荣豹)
第一篇数学课程第1章数学的特点、方法与意义第2章数学课程概述第3章国外的数学课程改革第4章国内数学课程改革第二篇数学教学理论第5章一般教学理论概述第6章数学教学模式第7章数学教学评价第三篇数学教学设计第8章数学教学原则第9章数学教学设计第10章数学知识的分类教学设计第四篇数学教学基本技能第11章备课与说课第12章数学教学的语言第13章计算机辅助数学教学附录第14章数学能力及其培养第15章中学数学思想方法第16章数学学习的基本理论第一篇数学课程第1章数学的特点、方法与意义数学语言:如同数学的对象一样来源于人类实践,它源于人类的语言,随着数学抽象性和严谨性发展,逐步演变成独特的语言符号系统,数学语言主要有文字语言(术语)、符号语言(记号)和图像语言组成。
数学方法:是以数学为工具进行科学研究和解决问题的方法,即用数学语言表达事物的状态、关系和过程,经过推理、运算和分析,以形成解释、判断和预言的方法。
公理化方法:从五个公设和五条公理出发,运用演绎方法将当时所知道的几何学知识全部推导出来,并使之条理化、系统化,形成了一个合乎逻辑的体系。
随机方法:随机方法又称概率统计方法,就是指人们以概率统计为工具,通过有效的收集、整理受随机因素影响的数据,从中寻找确定的本质的数量规律,并对这些随机影响以数量的刻画和分析,从而对所观察的现象和问题作出推断、预测,直至为未来的决策与行动提供依据和建议的一种方法。
数学模型:那些利用数学语言来模拟现实的模型。
广义地说,一切数学都是数学模型。
数学的特点:(1)抽象性:①数学抽象的彻底性;②数学抽象的层次性;③数学方法的抽象性。
(2)严谨性,(3)广泛的应用性。
公理化方法的作用和意义首先有利于概括整理数学知识并提高认知水平。
其次促进新理论创立。
再次,由于数学公理化思想表述数学理论的简捷性、条件性和结构的和谐性,从而为其他科学理论的表述起到了示范作用,其他科学纷纷效法建立自己的公理化系统。
数学课程与教学论答案
答:1)由关心教师的“教”转向也关注学生的“学”;2)从“双基”与“三力”观点的形成,发展到更宽广的能力观和素质观。
双基:基础知识、基本技能(简称)三力:正确而迅速的计算能力、逻辑推理能力和空间想象能力。
新课标提出了新的数学能力观,包括:“注重培养学生数学地提出问题、分析问题和解决问题的能力,发展学生的创新意识和应用意识,提高学生的数学探究能力,数学建模能力和数学交流能力,进一步发展学生的数学实践能力。
”3)从听课、阅读、演题,到提倡实验、讨论、探索的学习方式;4)从看重数学的抽象和严谨,到关注数学文化、数学探究和数学应用;2、简述《普通高中数学课程标准》中课程基本理念之一“注重信息技术与数学课程的整合”的具体内容.答:(一)、数学课程与信息技术的整合应体现数学学习的发现、探索教学过程的原则。
它强调利用信息技术对数学知识的发生发展过程给学生以展示,强调对数学知识的探索;强调对数学知识应用;强调对数学知识的迁移。
这种整合,是以数学教学的具体任务完成为目的,有意识地与信息技术相结合的教学。
其目的是使学生的数学学习始终处于发现问题,用数学的方式提出问题,探寻解决方法、解决问题的自主的、动态的过程中。
在解决问题的同时,让学生做到个性学习与协作和谐统一,以达到数学学习的目标。
(二)、数学课程与信息技术的整合应体现“教师为主导,学生为主体”的教学理念原则。
要注意运用“学教并重”的教学设计理论来进行信息技术与课程整合的教学设计。
目前流行的教学设计理论主要有“以教为主”的教学设计和“以学为主”的教学设计(也称建构主义学习环境下的教学设计)两大类。
由于这两种教学设计理论均有其各自的优势与不足,所以最好是将二者结合起来,互相取长补短,形成优势互补的“学教并重”教学设计理论。
这种理论正好能支持“既要发挥教师主导作用,又要充分体现学生主体地位的新型教学结构”的创建要求。
在运用这种理论进行教学设计时,应当注意的是,对于计算机为核心的信息技术,都不能把它们仅仅看作是辅助教师教课的形象化教学工具,而应当更强调把它们作为促进学生自主学习的认知工具与协作交流工具。
(完整版)数学课程与教学论考试题答案
研究生课程进修班试卷封面姓名:程光辉_____________________单位:河南省潢川高中_______________________ 专业:数学____________________考试科目:数学课程与教学论考试分数: ________________东北师范大学研究生课程进修班考试试卷评分表数学课程与教学论考试卷一、名词解释(本题共20分,每个 4 分)1. 数学课程数学课程是按照社会需要,具有明确目标,有计划的根据学生的可接受水平,从人类以往获得的数学知识和数学活动经验中有选择的组织起来的学科体系和实施计划及其实施中所经验的全部历程。
2. 数学教学数学教学是师生双方为了达到数学教学目标,以数学课程、教学内容为中介,教师组织、引导学生主动开展的一种特殊认识活动。
3. 数学能力数学能力是理解数学的(以及类似的)问题、符号、方法和证明的本质的能力;是学会它们, 在记忆中保持和再现它们的能力;是把它们同其他问题、符号、方法和证明结合起来的能力;也是在解数学的(或类似的)课题时运用它们的能力。
4. 探究学习探究学习即从数学教学学科领域或现实社会生活中选择和确定研究主题,在教学中创设一种恰当的问题情境,通过学生自主及独立地发现问题、实验、操作、调查、信息搜集与处理、表达与交流等探索活动,获得知识、技能、发展情感与态度,特别是探索精神和创新能力发展的学习方式和学习过程。
二、简述题(本题共50 分,每小题10 分)1. 简述影响数学课程设置的因素。
答:影响课程设置的因素是多方面的,既有来自课程内部的因素,有又来自课程外部的一系列因素。
这些因素是课程改革、更新、发展的基本依据和必须条件。
概括起来,大致有以下各主要的因素:社会因素、数学因素、学生因素、教师因素、教育理论因素、课程的历史因素。
2.简述现代数学教学观。
答:现代意义下的数学教学观主要体现在以下几个方面.(一)、数学教学的交往、互动性(二)、数学教学的过程性。
(完整版)课程与教学论(数学)
-课程与教学论 ( 数学 )专业代码( 040102 )主要研究方向1.中学数学教材教法研究2.初等数学研究课程设置和课程讲课类别公共学位课学位基学础课位课学位专业课课程编号课程名称学学开课学期核查备注时分1 2 3方式10285001英语144444考试10285006科学社会主义理论与实践1812考试10285007自然辩证法1812考试10285009政治专题讲座362207010101代数基础5433考试07010102实解析与泛函解析10845考试07010103微分流形与Riemann 几何7234考试04010241数学教育心理学5433考试04010242数学教育丈量与评估5433考试04010243数学教育科学研究方法5433考试04010244数学教育学5433考试-课程设置和课程讲课(续)类别课程编号课程名称学学开课学期时分 1 2 3 04010245数学方法论与数学文化概论543304010246数学教育国际比较543304010247中学数学建模与CAI543304010248奥林匹克数学543304010249中学数学现代基础543304010250教育研究方法与论文写作5433非选07010304概率论基础7244 10285002日语(二外)144310285003俄语(二外)1443学10285004法语(二外)144310285005德语(二外)1443修位课课核查备注方式考试考试考试考试考试考试考试考试第二学年考试第二学年考试第二学年考试第二学年10285010文件阅读1察看必修学术商讲和学术报告1察看10285011环节210285012实习活动察看。
《数学教学论》涂荣豹王光明等
新编数学教学论复习材料第一章现代数学教育观1.简述什么是数学教育现代化答:数学教育现代化是指:数学教育思想现代化,数学教育内容的现代化,数学教学方法的现代化。
(1)在数学教学内容现代化方面,主要是如何运用数学教育现代化的思想和方法,编写出现代化的普通教育的数学教材,即在体系、结构、内容各方面适应于教育现代化的需要。
在数学教育思想的现代化和教学方法的现代化方面,主要是教师如何用最先进的教育思想认识教材,如何用最先进的教学方法组织教学。
(1)2. 数学教育现代化的本质是数学教育思想观念的现代化。
3. 在数学教育观念现代化的问题上,最重要的是处理好继承和发展的关系,防止从一个极端走向另一个极端。
(1)1.1现代数学教育观1.树立科学的现代化教育观,是数学教育沿着正确轨道前进的前提和保证。
(1)2.科学的现代数学教育观涉及多方面的思想认识,包括数学教育的目的观、功能观、学习观、教学观、能力观、技术观等等。
1.1.1数学教育的目的观1.现代社会需要的人是:富有教养、具有独立性、自信心、创造力、积极主动和讲究效率的人。
(1)2.教育作为发展和完善人的活动,其目的是:培养出适应社会发展需要的人。
(1)3.数学教育已成为教育不可或缺的重要组成部分(因为,数学是人类文化的重要组成部分,数学素养是现代公民所必需具备得一种修养。
在现代社会中,数学教育是终身发展的重要方面,是人进一步学习的需要,是终身教育不可缺少的基础。
这就需要学校向更多的或者全体学生提供数学的基础知识、基本技能、基本思想,使学生学会数学地思维,数学地表达,培养学生实事求是、锲而不舍的精神。
)(2)1.1.2数学教育的功能观1.数学教育的功能观是随着时代的进步而发展。
(2)2.从传统上看,教育的任务就是培养和造就人才,这里“人才”的含义实际是指“英才”。
3.数学教育的功能应该给学生一颗好奇的心,激发他们的求知欲;给学生一双数学的眼睛,丰富他们观察世界的方式;给他们一个睿智的头脑,让他们学会理性地思维;给他们一套研究的模式,让他们获得探索世界奥秘的显微镜和望远镜;给他们一双数学的眼睛,一对数学的翅膀,让他们看得更远,飞得更高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一篇数学课程第1章数学的特点、方法与意义第2章数学课程概述第3章国外的数学课程改革第4章国内数学课程改革第二篇数学教学理论第5章一般教学理论概述第6章数学教学模式第7章数学教学评价第三篇数学教学设计第8章数学教学原则第9章数学教学设计第10章数学知识的分类教学设计第四篇数学教学基本技能第11章备课与说课第12章数学教学的语言第13章计算机辅助数学教学附录第14章数学能力及其培养第15章中学数学思想方法第16章数学学习的基本理论第一篇数学课程第1章数学的特点、方法与意义数学语言:如同数学的对象一样来源于人类实践,它源于人类的语言,随着数学抽象性和严谨性发展,逐步演变成独特的语言符号系统,数学语言主要有文字语言(术语)、符号语言(记号)和图像语言组成。
数学方法:是以数学为工具进行科学研究和解决问题的方法,即用数学语言表达事物的状态、关系和过程,经过推理、运算和分析,以形成解释、判断和预言的方法。
公理化方法:从五个公设和五条公理出发,运用演绎方法将当时所知道的几何学知识全部推导出来,并使之条理化、系统化,形成了一个合乎逻辑的体系。
随机方法:随机方法又称概率统计方法,就是指人们以概率统计为工具,通过有效的收集、整理受随机因素影响的数据,从中寻找确定的本质的数量规律,并对这些随机影响以数量的刻画和分析,从而对所观察的现象和问题作出推断、预测,直至为未来的决策与行动提供依据和建议的一种方法。
数学模型:那些利用数学语言来模拟现实的模型。
广义地说,一切数学都是数学模型。
数学的特点:(1)抽象性:①数学抽象的彻底性;②数学抽象的层次性;③数学方法的抽象性。
(2)严谨性,(3)广泛的应用性。
公理化方法的作用和意义首先有利于概括整理数学知识并提高认知水平。
其次促进新理论创立。
再次,由于数学公理化思想表述数学理论的简捷性、条件性和结构的和谐性,从而为其他科学理论的表述起到了示范作用,其他科学纷纷效法建立自己的公理化系统。
数学模型方法:是指对某种事物或现象中所包含的数量关系和空间形式进行数学概括、描述和抽象的基本方法。
随机方法又称概率统计方法的特点:A概率统计方法的归纳性B处理的数据受随机因素的影响C处理的问题一般是机理不甚清楚的复杂问题D概率数据中隐藏着概率特性。
第2章数学课程概述经验课程:在培养具有丰富个性的学生,它是从学生的兴趣和需要出发,以儿童的主体性活动的经验为中心组织的课程。
隐性课程:学生在学习环境中所学习到的非预期的或非计划性的知识、价值观念、规范和态度,具有某种潜在性。
研究性课程:为“研究性学习方式”的充分展开而提供的相对独立的、有计划的学习机会。
直线式:将一门学科的知识内容按照逻辑体系组织起来,前后的内容不重复,也就是一个知识点学习完之后,不在作为新知识出现。
螺旋式:在不同的学习阶段重复呈现特定的知识内容,也就是说某个知识点学完之后,有可能再次作为新知识出现.结论式:教材内容反映的是编者经过研究、整理得到的结论性知识,没有给出得到这些结论的思考、分析、探索过程。
过程式:从问题出发,通过提出问题、解决问题、给出学习新知识的背景与必要性,提供观察、尝试、操作、猜想、验证等方面的学习材料,暴露思维活动过程,总结数学活动的经验,使学生在数学化的过程中学习概念、公式、法则、性质。
“人本主义”的教育目标:突出的强调个人的心智训练和发展.“实用主义”的教育目标:则强调对于实用技能的掌握.大众数学的数学课程的设置特点:(1)注重课程内容的普适性,即精选未来社会所需要的、学生所喜爱并能够接受的数学基础知识作为课程内容(2)以未来社会公民所必须的数学思想方法为主线选择和安排教学内容(3)以与学生年龄特征相适应的大众化、生活化的方式呈现数学内容(4)使学生在活动中、在现实生活中,学习数学、发展数学(5)淡化形式,重在实质。
大众数学内涵:必须面向所有的学生,促进所有的学生学好数学,包括A人人学有用的数学,B人人掌握数学,C不同的学生学习不同的数学。
注重数学应用的数学课程:具体表现:A增加具有广泛应用前景的数学知识;B 加强传统数学知识与实际的联系;C进行实践课题的研究。
数学课程体系的编排基本原则:(1)符合学生的认知规律与心理发展规律,课程体系的编排应符合下列要求:A可接受性B直观性C趣味性;D阶段性。
(2)符合数学科学的基本特性,首先要尽可能的保持数学知识的系统性,由易到难、由浅入深、由古到今、纲目清晰的展开知识内容,其次要突出数学学科的知识结构。
第3章国外的数学课程改革贝利—克莱因运动 1901年,英国数学家贝利提出了“数学教育应该面向大众”、“数学教育必须重视应用”的思想,以及改革数学教育的鲜明主张,于此同时,数学家莱克因也在各种场合发表自己对数学教育的看法,并提出了所谓的“米兰大纲”,法国的波利尔和美国的穆尔也纷纷提出了数学教育改革的主张,于是就形成了贝利—克莱因运动。
新数学运动 1950,新数学运动就已经作为美国战后数学教育计划之一悄悄地开始了主要基于下数学本身的变革和课程观念上的转变。
传统的数学课程存在着明显的不足,人们开始制定新的数学课程。
继美国、欧洲推进数学教育现代化后,非洲、拉丁美洲、东南亚地区都相继成立了地区性的机构,召开会议推进“新数学运动”。
回到基础运动几乎是悄无声息的进行的,没有口号,没有统一的纲领,出发点是希望重新引起对基本技能的重视。
问题解决:三种说法:一是作为背景的问题解决。
二是作为技能的问题解决。
三是作为艺术的问题解决。
IEA国际教育成就评估协会;FIMS第一次国际数学研究;SIMS第二次国际数学研究;TIMSS 1994—1995年开始实施的第三次国际数学与科学研究;PISA 是一项新的面向15岁学生的国际性评价。
IAEP教育进步国际评价的简称;NCTM美国数学教师协会贝利—克莱因运动的基本思想:注重发展学生的函数思维能力,其主要特点如下:从运动和变化中提出数学对象;运用因果关系对数学内容作实际有效的解释;重视说明数学对象的丰富内容,即强调数学的实用观点。
发展函数思维的手段之一是借助一组相同的问题,这些问题的目的是对某些明显有“函数内容的”具体对象给予数学的表达和分析。
新数学运动与回到基础运动带给我们的教训:A教育不是一门纯粹独立的科学;B用口号来代替行动纲领,将毫无益处;C数学课程的改革不是一个突变的过程;D教材的编写应照顾到不同层次的学生。
1990年NCTM修订《学校..》基本原则:(1)课堂教师是促进数学教育的关键(2)数学教育应当促进所有学生学习数学(3)新的教学大纲的目标的制定要让真正关心它的教师运用方便、容易取得,要让教师知道怎样从他们目前的课堂教学达到大纲的目标(4)在新的大纲中应清楚地阐述发展基本技能的观点(5)社会的支持对于大纲的修改是非常重要的(6)在大纲的基础上进行专业进修时帮助教师提高教学能力的重要一环(7)在数学教育方面,必须发展领导技能来帮助和支持教师的教学(8)只有在教学大纲、教学评价相结合的教育系统中,学生学习才能取得成功,这三者是紧密结合的。
(9)改进教和学需要长时间的。
第4章国内数学课程改革新一轮数学课程改革的社会背景20世纪后半叶,计算机的普,科学技术迅猛发展,现代社会逐步实现工业时代向信息时代的转变。
在这个高度信息化的时代背景下,国际竞争已跨越区域的地理界线,愈演愈烈,因为未来的国力竞争将越来越依赖于对知识信息、人才的占有程度。
新的时代背景对学生的创新意识和实践能力提出了更高的要求,对未来公民的学习能力也提出了更高的要求,对公民的创新意识、实践能力、合作交流的意识与能力、终身学习的心向和能力等方面提出了新的要求。
正式在这样的时代背景下,1990年以来,世界各国都调整了人才培养目标,加快了教育改革的步伐,新起了教育改革浪潮。
本次教育改革力图以课程为突破口,最终实现教学改革。
与国际相比,我国数学教育有哪些优势与不足?优势:我国学生学习勤奋刻苦,双基扎实。
我国际同年龄段学生相比,我国学生对数学学习内容的基础知识掌握的扎实,数学的基本技能熟练,中国学生的总体平均水平比国际同龄人要高得多。
不足:①教学目标方面存在问题②课程内容方面存在问题③教学方式方面的问题④教学评价方面的问题⑤课程设置方面的问题全日制义务教育数学课程基本理念(1)明确义务教育阶段数学课程的性质(2)通过数学教学使学生了解数学的作用(3)改变学生消极被动的学习方式(4)正确发挥教师的作用(5)关于数学教学评价(6)正确发挥现代信息技术的作用普通高中课程标准的基本理念(1)高中课程的基础性:为适应现代生活与未来发展提供数学基础,获得数学素养,为进一步学习提供必要的数学准备(2)高中课程的选择性和多样性(3)提供积极主动、勇于探索的学习方式(4)提高学生的数学思维能力(5)发展学生的应用意识及联系的观念(6)正确处理好“双基”的继承与发展(7)强调理解数学的本质,注意适度的形式化(8)体现数学的人文价值(9)信息技术与课程的有机整合(10)建立合理、科学的评价体系。
第二篇数学教学理论第5章一般教学理论概述教学:(1)教学及学习。
(2)教学即教授。
(3)教学即教学生学。
(4)教学即教师的教与学生的学。
教学理论一种规范性、实践性的理论,它主要关心两大问题:一是教师的教如何影响学生学的;二是怎样教才是有效的。
现代教学论:又称思维教学论,其主流思想方式着眼于学习方法的掌握与创新精神的发挥,其理论基础是主体教育论属于以学为本的研究。
传统教学论:文艺复兴以后,针对中世纪神学思想的束缚,培根喊出“知识就是力量”的口号,以近代教学思想为支撑的教学理论,一般称为传统教学论。
现代教学论三大流派以前苏联赞可夫为代表的教学与发展实验派、以美国布鲁纳为代表的结构主义或结构课程派、以德国瓦根舍因和克拉夫斯基为代表的范例教学派。
教学发生的必要条件:其一是引起学生的学习意向;其二是用易于学生觉知的方式暗示或明释学习的内同容。
具体来说又可以被分解为三方面(1)它们必须与引起学习的意图相联系(2)它们必须说明或展示学习的内容(3)它们必须用易于学生理解并适于学习者能力的方式来进行。
《学记》中的教学思想:《学记》是世界教育史上最早论述教学的专着,教学作为一门科学的系统地理论,其基础是捷克教育学夸美纽斯《大教学论》奠定的,真正使教学成为一门独立的学科,那是德国教育家赫尔巴特的功劳,他的《普通教育学》确立了以实践哲学和心理学为理论基础的教学理论。
夸美纽斯的教学思想:进一步发展拉特克的观点,把培根的认识论和方法论应用于教育,提出人的发展和自然界的动植物一样,教育要适应这种自然,自然适应论原则是教学的方法论原则,孕育了“教与学对应”思想,在这一原则指导下,建立学年制和班级授课制是一种最适宜的做法。